

ENVIRONMENTAL TECHNICAL SERVICES

AN ENVIRONMENTAL CONSULTING FIRM

(800) 200-4ETS

Enviolent 2003

LAN
EASSESSMENT

A WORK PLAN FOR A LIMITED SITE ASSESSMENT IN THE AREA OF A FORMER 500-GALLON GASOLINE UNDERGROUND STORAGE TANK

Beneath the site at:

1115 21st STREET OAKLAND, CALIFORNIA 94607

SEPTEMBER 2003

ENVIRONMENTAL TECHNICAL SERVICES

1548 Jacob Avenue, San Jose, CA 95188

Email: HMawhinneyETS@aol.com

A WORK PLAN FOR A LIMITED SITE ASSESSMENT IN THE AREA OF A FORMER 500-GALLON GASOLINE UNDERGROUND STORAGE TANK

Beneath the site at:

1115 21st STREET OAKLAND, CALIFORNIA 94607

Helen Mawhinney

Environmental Specialist

Date

John Cavanough

CA Registered Geologist License No. 6515

Date

Phone: (408) 267-6427 Cell: (510) 385-4308 Fax: (408) 267-9729

1.0 INTRODUCTION

The following work plan, prepared in response to a pending real estate transaction, describes the proposed method of soil boring advancement, sample collection, and analyses, in the area of one former 500-gallon gasoline underground storage tank (UST), beneath the site at 1115 21st Street, Oakland, California. The site location is shown in the map of Figure 1. (Appendix A). The 500-gallon gasoline underground storage tank (UST) was removed from the subject site on November 11, 1993.

The Subject Site is located at 1115 21st and 2015 Chestnut Street, on the southwest side of 21st Street and on the northwest side of Chestnut Street in the City of Oakland. The subject site is located approximately 1-mile northwest of Highway 980 and approximately 1-mile southeast of the San Francisco Bay.

The purpose of the investigation is to attempt to determine the lateral and vertical migration, if any, of known contaminants in soil and ground water.

1.1 Subject Property Setting

The subject property located in the western portion of the City of Oakland in the San Francisco Bay Area occupies a broad alluvial valley that slopes gently northward toward San Francisco Bay and is flanked by alluvial fans deposited at the foot of the Diablo Range to the east and the Santa Cruz Mountains to the west.

The subject site is located approximately 1.25-miles west of Lake Merritt, a tidally influenced lake. Surface topography on and in the immediate vicinity of the subject property is almost flat.

1.2 Geologic and Soil Conditions

Materials underlying the site area are Quaternary-age sediments consisting of unconsolidated gravels, sands, and silts with interbeds of fine-grained floodplain clay deposits that form aquitards. Beneath these sediments, are older fine to coarse-grained sandy sediments (Lake Merritt Sand) deposited by erosion and alluvial deposition from the nearby upland surfaces. Bedrock at an estimated depth of less than 250-feet beneath the sediments consists of Jurassic-aged sedimentary rocks of the Franciscan Formation.

1.3 Groundwater Conditions

The subject site is located on the San Francisco Bay plain in the northernmost part of the Santa Clara Valley Groundwater Basin. (RWQCB, 1986), the surface of which slopes gently down toward the San Francisco Bay. The regional groundwater flow follows the topography, moving from areas of higher elevations to areas of lower elevation. The regional groundwater flow direction in the area of the subject property is estimated to be toward the west.

2.0 PREVIOUS ENVIRONMENTAL HISTORY

2.1 Removal of 500-Gallon Gasoline Underground Storage Tanks

A 500-gallon gasoline underground storage tank (UST) was removed from the subject site on November 11, 1993. A soil sample, designated as BP-1, was collected from beneath the former UST. The analytical results indicated Total Petroleum Hydrocarbons as gasoline (TPHg) at 630 mg/Kg, Benzene 600 ug/Kg, Toluene 770 ug/Kg, Ethyl Benzene 940 ug/Kg, Total Xylenes 2.5 ug/Kg and Lead 6.6 mg/Kg. Two samples, designated as SP-1 and SP-2, were collected from the stockpiled soil. Analytical results are presented in Table I.

TABLE I Original Removal of One 500-Gallon Gasoline UST November 23, 1993

Sample ID	TPHg (mg/Kg)	Benzene (µg/Kg)	Toluene (µg/Kg)	Ethyl-Benzene (µg/Kg)	Total Xylenes (µg/Kg)	Lead (mg/Kg)
BP-1	630	600	770	940	2500	6.6
SP-1	ND	ND	ND	ND	ND	7.0
SP-2	22	21	27	33	85	3.2
Detection Limit	1.0	5.0	5.0	5.0	5.0	1.0

ND = Non Detect for constituent analyzed.

3.0 SCOPE OF SERVICES

This work plan describes a limited site assessment to be performed in the area of one former 500-gallon gasoline underground storage tank (UST). The purpose of the assessment is to attempt to determine the lateral and vertical migration of contamination, if any, in soil and groundwater.

3.1 Site Investigation

The assessment will be accomplished by advancing one to four soil borings to a total depth of 3.0' below groundwater. Soil and/or groundwater samples will be collected and analyzed. Groundwater depth is anticipated to be approximately 4' below ground surface (bgs).

The number of soil borings, their location, and sample collection will be based upon field monitoring i.e.; Gastech Model 1314 readings, odor and discoloration. The borings will be designated as FB1 through FB 4.

One exploratory soil boring (FB1) will be placed within the former tank pit. Soil and groundwater samples will be collected and analyzed. Should indications of contamination be present in soil or groundwater additional soil borings will be advanced as follows: Boring FB2 will be placed within 25' of, and in the assumed down gradient flow (west) of the former tank pit. A water sample will be collected and analyzed. Should indications of contamination not be present Boring FB3 will be placed west of and within 10' of the former tank pit, a capillary zone/soil and groundwater sample will be collected and analyzed. Boring FB4 will be placed southwest of and within 10' of the former tank pit. This boring will be lateral and up gradient to provide groundwater characterization. A capillary zone/soil and groundwater sample will be collected and analyzed.

3.2 Exploratory Soil Borings

Environmental Control Associates (ECA) of Aptos, California, will be engaged to perform field exploration using direct push Geoprobe ® equipment. Two-inch diameter soil probes will be advanced using truck-mounted hydraulic equipment to push and/or hammer, the Geoprobe ®, sampler into undisturbed soil. Continuous soil samples will be retrieved in clear plastic liners, so as to allow continuous profiling of the lithologic column. The soil profile will be logged in the field by a State Licensed Geotechnical Engineer, using the Unified Soil Classification System.

The probes will be advanced to approximately three-feet below first encountered water, to allow for the collection of groundwater samples.

3.3 Collection of Soil Samples

Soil samples will be collected upon encountering native soil (below the backfill), at fivefoot intervals thereafter, at changing lithologies, and where indications of impact are present.

The clear plastic liner will be cut and prepared for transport to an analytical laboratory, based upon field monitoring results. The liner will be cut to a six-inch length, using a clean cutting tool designed specifically for this purpose. Each end of the tube will be covered with a clean Teflon sheet and tightly fitting plastic caps, then labeled with the site project number, date, and time of collection, depth interval, company and sampler ID. Pertinent data will be entered on to the chain of custody (COC) document. The sample will then be placed in a clean cooler, with ice in a plastic container, pending transport to an analytical laboratory.

3.4 Field Monitoring

Soil will be field monitored for odor and discoloration, and hydrocarbon vapor using a Gastech Model 1314, calibrated with hexane for gasoline vapor detection.

3.5 Collection of Groundwater Samples

Groundwater samples will be collected within each probe hole by lowering a clean 1/2-inch stainless steel bailer into the hole, and retrieving a groundwater sample. This process will be repeated and the bailer decanted into two one-liter amber glass bottles and two 40-ml volatile analysis vials (VOAs), to a positive meniscus eliminating headspace.

3.6 Decontamination

Prior to arriving on site the drill rig and all parts that may approach the borings will decontaminated using a hot pressure wash. All sampling equipment will be decontaminated between samples using an Alconox wash, and two tap water rinses.

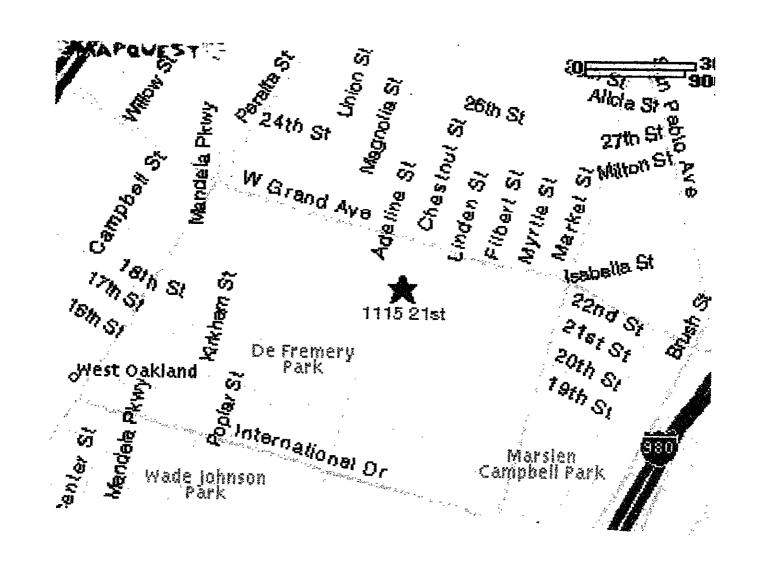
3.7 Analyses

Soil samples will be transported to Entech Analytical Laboratory of San Jose, California, a state certified hazardous materials analytical laboratory, under chain of custody.

Selected soil samples and all groundwater samples, will be analyzed for Total Petroleum Hydrocarbons as Gasoline (TPHg), Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX) and MTBE, using EPA Modified Method 8015/8020/602.

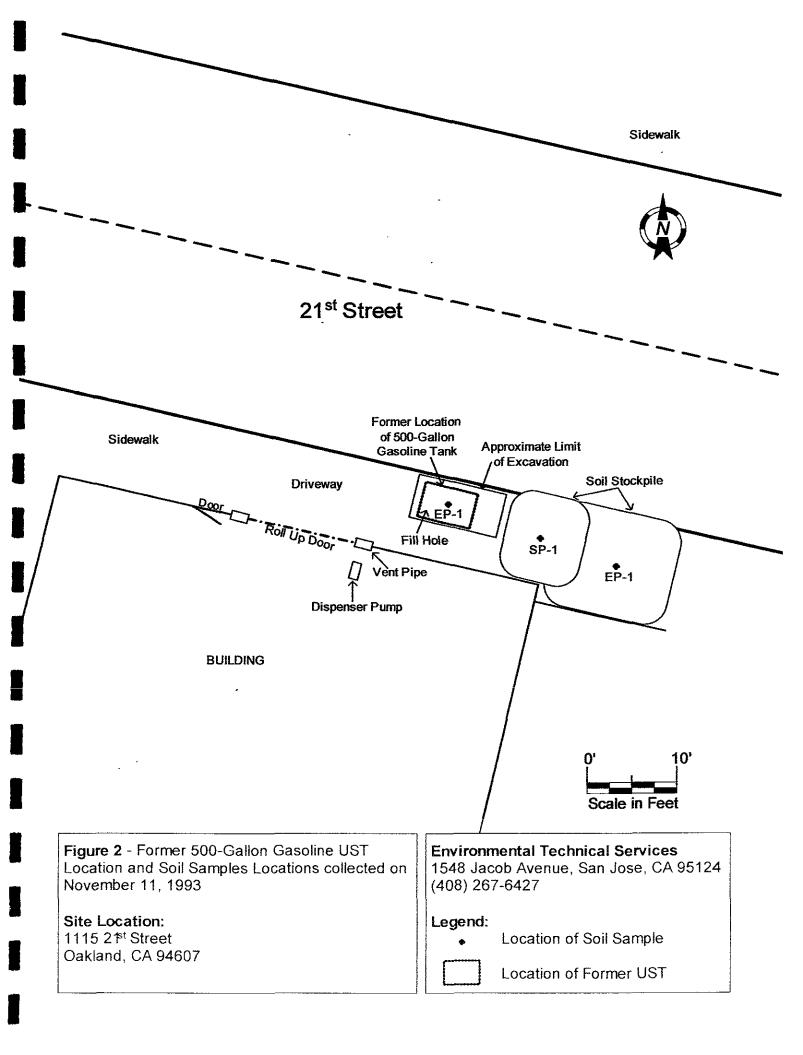
3.8 Health and Safety Plan

A site specific Health and Safety Plan will be prepared to guide the field crew in safely handling potentially hazardous materials, to discuss potential site and work hazards, and to identify the nearest health care facilities. These issues will be discussed in a tailgate safety meeting prior to the initiation of work.


4.0 Report

A report will be prepared documenting work performed, tables of analytical results, laboratory analytical reports, field observations, chain of custodies, soil boring logs, and to-scale diagrams.

APPENDIX A - FIGURES


- Figure 1. Site Location Map
- Figure 2. Location of Former 500-Gallon Gasoline UST
- Figure 3. Proposed Soil Boring Locations

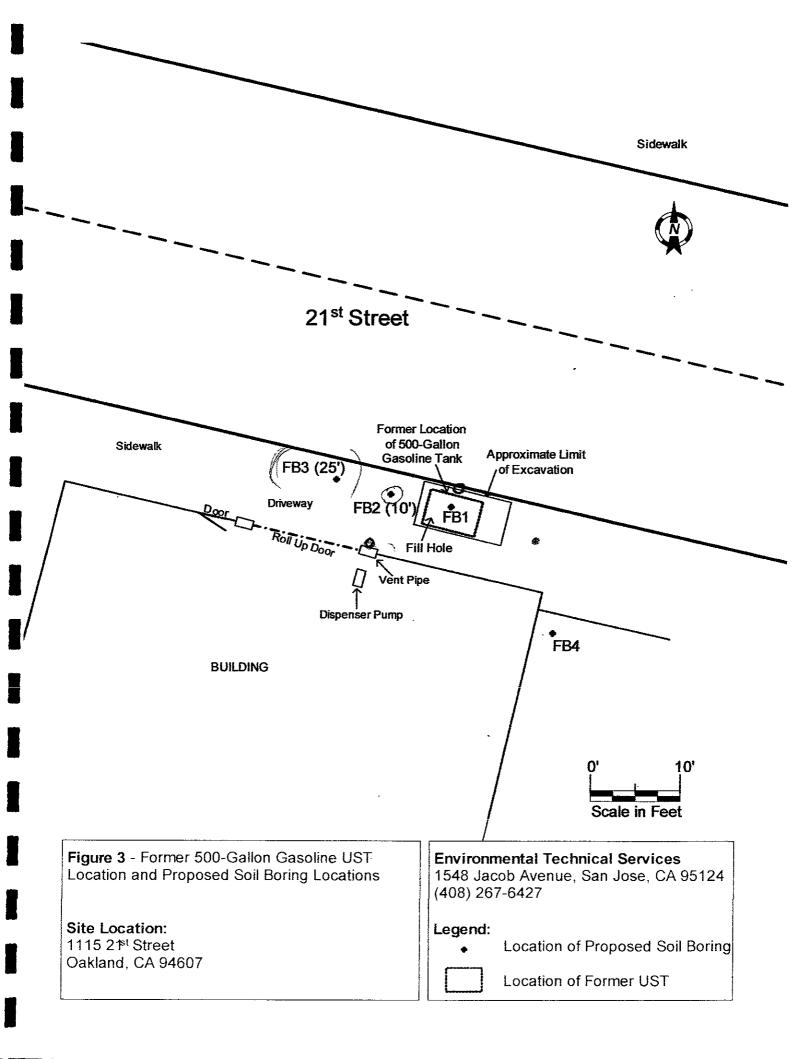

1115 21st STREET OAKLAND, CALIFORNIA

Figure 1 - Site Location Map

Site Location: 1115 2^{†t} Street Oakland, CA 94607 Environmental Technical Services 1548 Jacob Avenue, San Jose, CA 95124 (408) 267-6427

APPENDIX B

Original Tank Removal - November 23, 1993 Laboratory Analytical Report

PRIORITY ENVIRO

Precision Environmental Analytical Laboratory

November 29, 1993

PEL # 9311075

TANK PROTECT ENGINEERING, INC.

Attn: Jeff

Re: Three soil samples for Gasoline/BTEX analysis.

Project name: Franks Tire Service

Project location: 1115 21st St. - Oakland, CA.

Project number: 293A-112393

Date sampled: Nov 23, 1993 *

Date extracted: Nov 24-25, 1993

Date submitted: Nov 24, 1993

Date analyzed: Nov 24-25,1993

RESULTS:

SAMPLE I.D.	Gasoline	Benzene	Toluene	Ethyl	Total
	(mg/Kg)	(ug/Kg)	(ug/Kg)	Benzene (ug/Kg)	<pre>Xylenes (ug/Kg)</pre>
BP-1 below UST SP-1 SP-2	630 N.D. 22	500 N.D. .21	770 N.D. 27	940 N.D. 33	2500 N.D. 85
Blank	N.D.	N.D.	N.D.	N.D.	N.D.
spiked Recovery	92.0%	90.2%	91.7%	89.6%	100.3%
Duplicate Spiked Recovery	94.9%	94.5%	93.2%	96.2%	104.1%
Detection limit	1.0	5.0	5.0	5.0	5.0
Method of Analysis	5030/ 8015	8020	8020	8020	80 20

David Duong

PRIORITY ENVIRONMENTAL LABS

Precision Environmental Analytical Laboratory

November 29, 1993

TANK PROTECT ENGINEERING, INC.

Attn: Jeff

.

Re: Three soil samples for total Lead analysis,

Project name: Franks Tire Services
Project location: 1115 21st St., - Oakland, CA.

Date sampled: Nov 23, 1993 Date extracted: Nov 24-26, 1993

Date submitted: Nov 24, 1993 Date analyzed: Nov 24-26, 1993

PEL # 9311075

RESULTS:

SAMPLE I.D.		Lead (mg/Kg)
BP-1		The state of the s
\$P-1		6.6
SP-2		7.0 3.2
Blank		N.D.
Detection	limit	1.0
Method of Analysis		7420

David Duong Laboratory Director ENGTHERAME.

8

TAINE PROTECT ENGINEERING

2021 WATELS NO 6157429 -0000 (600) 5-27 -0000 FAI(415) 429-700

PEL# 9311075

INV# 24233

LAB: PRIORITY

TURNAROUND: NORMAL

CHAIN OF CUSTODY CHOUSEL NO. SITE MARE L'ADDRESS. PAGE Z OF Z 2934-112392 40A3463663 LIVE TRAVIS TORK Protect ENGINEERICH TYPE TYPE 2521 WHIPPLE ROSE, WHEN CITY, CA 94587 (415) (29-108) WATER | SAMPRATON LOCATION TOLTE | TIRE | SOIL | COH TAIRER REMARKS BP-1 @ 9.51 į lows is XIBP-1 W/27/91157 "HOE ž عمس SP-1 @ 18'-151 L2:07 5P-1 SADRE 1.04/51 مسط 2:15 50-2 SE SE FRICKI (Rolings word by (Rignoture) .. Date / Time Belliamisted by : (Signolary) Date / Ties \mathcal{R} Dato / Time Received by : (Signatu 0 Received his Gamedony By Hollowished by : (Signature) Date / Klass Z S Person Gla Boscaied by . (Signatus Date / Time Romarica CR-82-108

DATE: 11/ 23/0