

GETTLER-RYAN INC.

TRANSMITTAL

Octobe 17, 2000 G-R#1802

TO:

Mr. David B. De Witt

Tosco Marketing Company

2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

CC:

Mr. David Vossler

Gettler-Ryan Inc.

Petaluma, California

FROM:

Deanna L. Harding

Project Coordinator

Gettler-Ryan Inc.

6747 Sierra Court, Suite J

Dublin, California 94568

RE:

Tosco (76) SS #4625

3070 Fruitvale Avenue

Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	October 5, 2000	Groundwater Monitoring and Sampling Report Third Quarter - Event of July 28, 2000
1		Third Quarter - Event of July 26, 2000

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by October 27, 2000, this report will be distributed to the following:

Enclosure

Mr. Don Hwang, Alameda County Health Care Services, 1131 Harbor Bay Parkway, Alameda, California 94502

trans/4625.dbd

October 5, 2000 G-R Job #180255

Mr. David B. De Witt **Tosco Marketing Company** 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

Third Quarter 2000 Groundwater Monitoring & Sampling Report RE:

Tosco (76) Service Station #4625

3070 Fruitvale Avenue Oakland, California

Dear Mr. De Witt:

This report documents the quarterly groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R). On July 28, 2000, field personnel monitored and sampled four wells (MW-1 through MW-4) and monitored the UST Observation Well at the above referenced site.

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in any of the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1 and 2. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

No. 5577

Sincerely,

Deanna L. Harding

Project Coordinator

Stephen J. Carter

Senior Geologist, R.G. No. 5577

Figure 1:

Potentiometric Map

Figure 2:

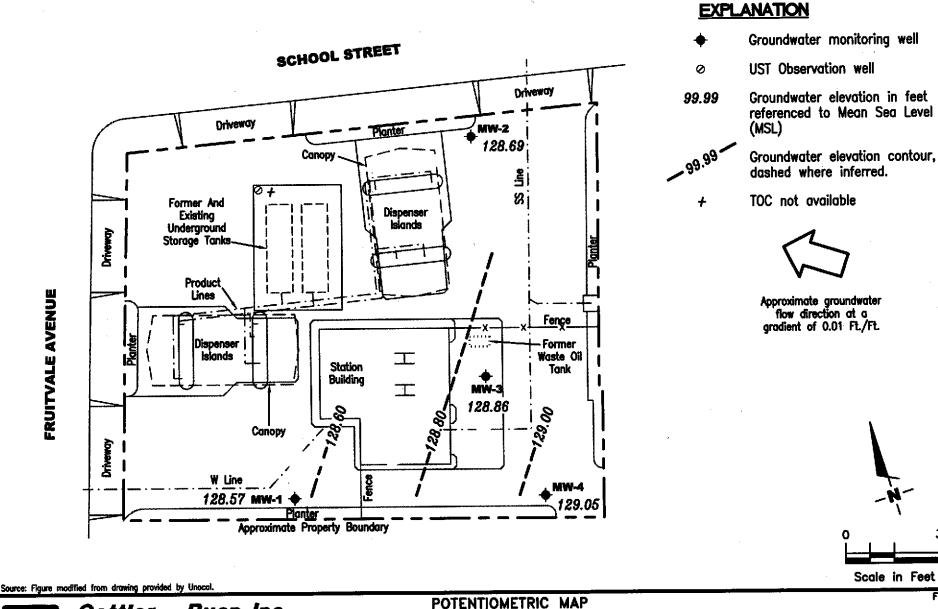
Concentration Map

Table 1:

Groundwater Monitoring Data and Analytical Results

Table 2:

Groundwater Analytical Results


Attachments:

Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

4625.qml

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568

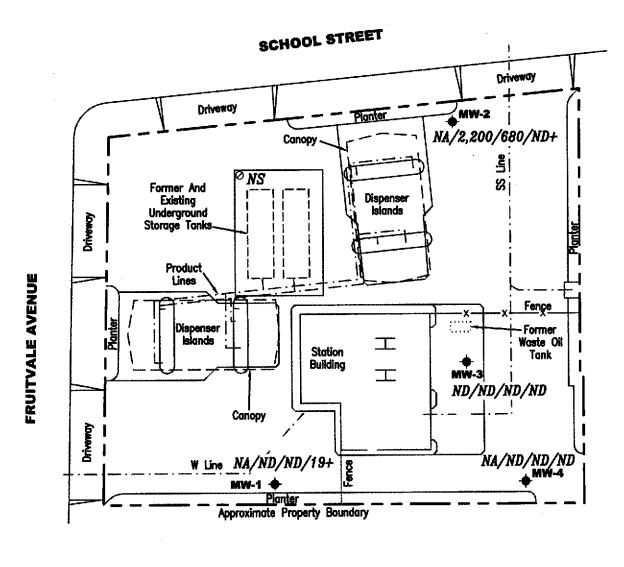
(925) 551-7555

Tosco (Unocal) Service Station #4625 3070 Fruitvale Avenue Oakland, California

PROJECT NUMBER 180255

REVIEWED BY

DATE


July 28, 2000

FIGURE

30

£.

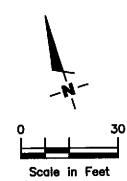
REVISED DATE

EXPLANATION

Groundwater monitoring well

r

UST Observation well


A/B/C/DTPH(D) (Total Petroleum Hydrocarbons as Diesel)/TPH(G) (Total Petroleum Hydrocarbons as Gasoline)/Benzene/MTBE concentrations in ppb

ND Not Detected

NA Not Analyzed

MTBE by EPA Method 8260

NS Not Sampled

Source: Figure modified from drawing provided by Unocal.

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

CONCENTRATION MAP Tosco (Unocal) Service Station #4625 3070 Fruitvale Avenue

Oakland, California

DATE

REVISED DATE

PROJECT NUMBER 180255

REVIEWED BY

July 28, 2000

FILE NAME: P:\Enviro\Tosco\4625\Q00-4625.DWG | Layout Tab: Con3

FIGURE

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco (76) Service Station #4625 3070 Fruitvale Avenue Oakland, California

WELL ID/	DATE	DTW	S.I.	GWE	TPH(D)	TPH(G)	В	T	E	X	MTBE
TOC*		(fL)	(ft. bgs.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-1											11/11/2
136.36	05/03/00	11.81	5.0-25.0	124.55		ND	ND	ND	ND	ND	11/14 ² 21/19 ²
	07/28/00	7.79		128.57	i.	ND	ND	ND	ND	ND	21/19
MW-2							1				.
138.64	05/03/00	8.59	5.0-25.0	130.05		2,400¹	53	ND^3	ND ³	240	³ ND/ND ²
	07/28/00	9.95		128.69		2,200¹	680	4.1	. 57	270	24/ND ²
MW-3											4
137.68	05/03/00	7.60	5.0-25.0	130.08	935	ND	ND .	ND	ND	ND	ND/ND ⁴
	07/28/00	8.82		128.86	ND ³	ND	ND	ND	ND	ND	ND/ND⁴
MW-4								•			2
136.60	05/03/00	6.48	5.0-25.0	130.12		ND	ND	ND	ND	ND	ND/ND ²
	07/28/00	7.55		129.05		ND	ND	ND	ND	NĎ	ND
UST OBSER	VATION WEI	L	· .			·					
	05/03/00	8.00									
	07/28/00	9.28		-		**					
Tuin Dlank											
Trip Blank TB-LB	05/03/00					ND	ND	ND	NĎ	ND	ND
I D-PD	03/03/00 07/28/00				••	ND	ND	ND	ND	NĎ	ND .

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco (76) Service Station #4625 3070 Fruitvale Avenue Oakland, California

EXPLANATIONS:

TOC = Top of Casing

B = Benzene

ppb = Parts per billion

DTW = Depth to Water

T = Toluene

ND = Not Detected

(ft.) = Feet

E = Ethylbenzene

-- = Not Measured/Not Analyzed

S.I. = Screen Interval

X = Xylenes

S.I. = Screen interval

MTBE = Methyl tertiary butyl ether

GWE = Groundwater Elevation

(ft. bgs.) = Feet Below Ground Surface

(msl) = Mean sea level

TPH(G) = Total Petroleum Hydrocarbons as Gasoline

TPH(D) = Total Petroleum Hydrocarbons as Diesel

- * TOC elevations were surveyed based on a cut square on School Street, City of Oakland Benchmark No. 3783, (Elevation = 136.99 feet msl).
- Laboratory report indicates gasoline C6-C12.
- ² MTBE by EPA Method 8260.
- Detection limit raised. Refer to analytical reports.
- MTBE by EPA Method 8240.
- Laboratory report indicates unidentified hydrocarbons C9-C24.

Table 2

Groundwater Analytical Results

Tosco (76) Service Station #4625 3070 Fruitvale Avenue Oakland, California

WELL ID	DAIR	VOCs (ppb)	SVOCs (ppb)	Chromium (ppm)	TOG (ppm)
MW-3	05/03/00	ND	ND	ND	NĐ
	07/28/00	ND ¹	ND	1.8	ND

EXPLANATIONS:

VOCs = Volatile Organic Compounds SVOCs = Semi-Volatile Organic Compounds TOG = Total Oil and Grease ppb = Parts per billion ppm = Parts per million

ND = Not Detected

ANALYTICAL METHODS:

EPA Method 8240B for VOCs EPA Method 8270B for SVOCs EPA 200 Series Methods for Chromium

All EPA Method 8240 and 8270 constituents were ND, unless noted.

All VOC's by EPA Method 8240 were ND, except for Tertrachloroethene was detected at 2.7 ppb.

Table 3

Groundwater Analytical Results - Oxygenate Compounds

Tosco (76) Service Station #4625 3070 Fruitvale Avenue Oakland, California

WELLID	DATE	ETHANOL (ppb)	TBA (ppb)	MTBE (ppb)	DIPE (ppb)	ETBE (pph)	TAME (ppb)	1,2-DCA (ppb)	EDB (ppb)
MW-3	07/28/00 ¹		ND	ND	ND	ND	ND	ND	ND

EXPLANATIONS:

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = Ethylene dibromide

ppb = Parts per billion

-- = Not Analyzed

ND = Not Detected

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

¹ VOCs by EPA Method 8240.

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/ Facility(0500 76 f	= 468	<u>5</u> Job#	#: <u>1</u>	8025	5	
•	70 Fruity):	7/28	100	
. ~~	LAND, C	N.	 Sam	nler: L	4-KEV0	RK	
City: <u>PAK</u>	LINE C	<i></i>		piei			
Well ID	MW-1	Well	Condition: _	OK			
Well Diameter			rocarbon Z	7	Amount Bai		(Gallons)
Total Depth	25.06 ft.			0.17	3" = 0.38	4	= 0.66
Depth to Water	7.49 m		tor (VF)	6" = 1.	50	12" = 5.80	
	17.27 x	VF 0.17	= 2.9 x 3 (case	e volume) =	Estimated Pur	ge Volume: _	8. 7 (cal.)
Purge Equipment:	Disposable Bailer Bailer Stack		Sampling Equipmen	→ Bai	posable Bail er ssure Bailer		·
· ·	Suction Grundfos Other:			Gra	ssure ballel ib Sample ner:		
Starting Time: Sampling Time: Purging Flow Rate		gpm.	Weather Conditi Water Color: _ك Sediment Descri	LEA iption:		Odor:	
Did well de-wate	n?		If yes; Time:		Volume	»:	<u>(qal.)</u>
	olume pH (gal.)			perature F	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
11:33	3 6.9	3 10	68 7	H. 2			
11:40	9 6.8	8 10	<u>७२</u> न	5.9			
SAMPLE ID	(#) - CONTAINER	LABOR REFRIG.	ATORY INFORM PRESERV. TYPE		RATORY	ANALY	
MW-1	3 VOA'S	Υ	HCL	SEQUOIA	6	LBTEX/	MTBE
<u> </u>			<u> </u>			· · · · · · · · · · · · · · · · · · ·	
COMMENTS: _				<u> </u>			
					 	<u> </u>	

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/	76#	4625	Job#:	1802	55	
_	70 Fruitua		Date:	7/28	100	
		<u> </u>		er: <u>14-KE</u>		· · · · ·
City: OAY	CHAIN DI CH	<u>, </u>	Sampi	er:	<u> </u>	
Well ID	MW- 2	Well Conditi	ion:	o K		
Well Diameter	in.	Hydrocarbo	n S	Amount I		5
Total Depth	24.28	Thickness:	_ 	(feet) (product/w		(Gallons) = 0.66
Depth to Water	9,95 %	Volume Factor (VF)	2" = 0.1	7 3" = 0.3 6" = 1.50	12" = 5.80	- 0.00
	14.33 × VF	0.17 - 2.4	X 3 (case ve	olume) = Estimated P	urge Volume: _	M. Qual
Purge Equipment:	Disposable Bailer Bailer		ampling quipment:	Disposable B	ailer	
	Stack			Bailer Pressure Bail		
•	Suction Grundfos	,		Grab Sample		·
	Other:	-	•	Other:		
Starting Time: Sampling Time:	12:07	Weathe	r Condition Color: _CL	s: SU	Odor:	
Purging Flow Ra	ate: 🔀 📗 gp			lon:		
Did well de-wat	er?	If yes;	Time:	Volur	ne:	(cal.)
Time	Volume pH (gal.)	Conductivity µmhos/cm	Temperi •F	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
12:09	2.5 6.56	790	MS	5.3		
10	5 652	· #52	<u> </u>			
12112 -	_7_ 6.50	164	-14	طنۃ		
		LABORATORY				_
SAMPLE ID			V. TYPE	LABORATORY	ANALYS	SES / Ω(-)
MW- 2	3 VOA'S	<u> </u>	CU S	AIOUDA	<u> </u>	MIDIS
COMMENTS:	·	· · · · · · · · · · · · · · · · · · ·				
	A 115			-		

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/	05co 76#1	H025	Job#:	18025	55	
• ———			Date:	H/28	100	
· · · · · · · · · · · · · · · · · · ·	70 Fruitva		,	11 12	60 L)	
City: UAK	LAND, CA		Sampler:	HUNDU	vnk_	
<u> </u>						
Well ID	MW-3	Well Conditio	n: <u>0</u>	<u> </u>	· 	
Well Diameter	<u>2</u> in.	Hydrocarbon Thickness:		Amount E		(Gallons)
Total Depth	24.73 m	Volume Factor (VF)	2" = 0.17	3" = 0.3 = 1.50		= 0.66
Depth to Water	8.8 m	Pactor (VI)				
	15.91 × VF	0.17-2.7	X 3 (case volume) = Estimated P	urge Voluma:	Z Ligal)
Purge Equipment:	Disposable Bailer Bailer		mpling uipment: \	Disposable B	ailer	
	Stack			Bailer Pressure Baile		•
	Suction Grundfos			Grab Sample	•	•
	Other:	_	•	Other:		
Starting Time: Sampling Time: Purging Flow Ra	10:56 11:15 te: 21 gpm	Water Co	Conditions: plor: <u>CLO</u> ! t Description:		MMY Odor:	
Did well de-wate		_ If yes;	Time:	Volun	ne:	<u>(gal.)</u>
•	Volume pH (gal.)	Conductivity µmhos/cm	Temperature •F	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
10:54	3 6.40	552	M 5.			
	6 6.65	520	MY	<u> </u>	· ·	
11:06 -	8 6.63	508	113.	δ		
· <u>· </u>				<u> </u>	·	
		ABORATORY II	FORMATION			
SAMPLE ID		FRIG. PRESERV	. TYPE LA	BORATORY	ANALYS	2 5 450 il a
MW-3	4 4094	YHC		OIA	G/BTEX/MT	
	2 AMBICAL	Y NO /	HCr -	/)	TPH-0	TOG
	1.50 OML PLASTIC	Y HYO	3	1,	7 2 Mo	ROMIUM
	IANBIA	7		· /	7 6 60	
COMMENTS: _	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·

9/97-Reidet.frm

WELL MONITORING/SAMPLING FIELD DATA SHEET

Facility TOSCO 76 # 4625 Job#: 180255	·
Facility T05C0 76 # 4625 Job#: 180255 Address: 3070 Fruitvale AVE Date: 4/28/40	• •
Address. Sold Traffic Address.	
City: OAKLAND, CA Sampler: H-KIEVOKIY	•
Well ID MW-4 Well Condition: OK	
Well Diameter in. Hydrocarbon Amount Bailed Thickness: (feet) (product/water):	Gallons)
Total Depth 2^{+} 65^{+} V_{olume} 2^{*} = 0.17 3^{*} = 0.38 4^{*} = 0.0	
Depth to Water $\frac{1.55}{\text{ft.}}$ Factor (VF) $6'' = 1.50$ $12'' = 5.80$	
$\frac{11100 \times VF}{11100 \times VF} = \frac{0.111 \times 2.9}{11100 \times 3.0} \times 3 \text{ (case volume)} = \text{Estimated Purge Volume} \times \frac{8.11}{11100 \times 3.0} \times \frac{11100 \times 3.0}{11100 \times 3.0} \times \frac{11100 \times 3.0}{11000 \times 3.0} \times \frac{111000 \times 3.0}{110000 \times 3.0} \times \frac{111000 \times 3.0}{11000 \times 3.0} \times \frac{111000 \times 3.0}{110000 \times 3.0} \times \frac{111000 \times 3.0}{11000 \times 3.0} \times \frac{1110000 \times 3.0}{110000 \times 3.0} \times \frac{11100000 \times 3.0}{110000 \times 3.0} \times \frac{111000000 \times 3.0}{11000000 \times 3.0} \times 1110000000000000000000000000000000000$	(coal)
Purge Disposable Bailer Sampling Equipment: Disposable Bailer Disposable Bailer	
Stack Baller	•
Suction Fressure Baller Grundfos Grab Sample	
Other:	
Starting Time: 10:20 Weather Conditions: SUMNY Sampling Time: 10:43 Water Color: CLEAR Odor: Purging Flow Rate: ~ 1 apm. Sediment Description: Did well de-water? ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	(gal.)
Did well de-water? If yes; Time: Volume:	
Tune yourse of consecutive activities	calinity (ppm)
10:23 3 6:48 915 113.8	
6 6.45 956 72.9	
10:31 9 6.41 948 73.1	
LABORATORY INFORMATION SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES	
MW-4 3 VOA Y HCL SEQUOIA G/BTEXM	TBE
	· ·
COMMENTS:	

9/97-fieldet.frm

TOSC Trace Marketing C 2000 Dear Carpeta Ban Ranton, Galder	-	Conet	Address 6747 Sierra Court, Suite I, Dublin, CA 94568 Project Contact (Name) Deanna L. Harding						Collection Dite					B.K							
Sample Number	Lab Sample Number	Number of Containers	Metrix S = Soll A = Air Y = Water C = Charmal	Type G == Grab C == Composite D == Discrete	Time	Somple Preservation	load (Yee or No)	TPH Gas - BTDX w/MTBE (8015) (8020)	1PH Dissel (8015)	Off and Greats (5520)	Purpeable Halocarbons (8010)	Purgeable Aromatice (8020)	Purgeoble Organice ps (82.40)	solice .	Meditie Cd,Cr,Pb,Zn,Nii (CdP or AA)	TOTAL CHROMIUM	CXYS JENS				TB-LB ANALYSIS
	OÏA	-	W	G		HCL	YES	V										-			
MW-1	mil	3	w		11:52			V							<u>. </u>						
MW-2	MAL	3	W		12:30			1					ļ,			 	_	<u> </u>			
MW-3	041-H	8	W	G	11:15	415074		V	1	1			1	V		1	V_				
MW-4	05/10	3	W.	G	10:43	HCL	V	1		<u> </u>			 			 _		-			
<u> </u>							<u> </u>	<u> </u>		 	 	<u> </u>	 		 `	 	 	 	 		
							ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>				-		├	-	 		
			<u> </u>	<u> </u>				-	-	-	 	<u> </u>	╁──	-	-	┼─	-	 	┼		
			ļ	<u> </u>	ļ	 	 	 	╂	 	├─	├	╁─	-	 	 	 	 		1	
			1	1	1	·	<u>. </u>		<u> </u>	 	 	├ ─-	 	+-	 	1-	╅	╁	 	1	

	. I /Y\/A.	1 1 1	·	<u> </u>			- 1 - (Ol-ala Obalea)
Authorise had By Sano		Organization	Date/Time	Received By (Signature)	Organization	Date/Time	Turn Around Time (Circle Choice),
TIQUITY	ZOS AL HITT	X-R Inc.		·		_	24 Hrs.
Relinquiched By (Signa	ture)	organization	Date/Time	Received By (Signature)	Organization	Date/Time	48 Hrs. 5 Doys
		Secondardian	Date/Time	Recieved For Laboratory By (Sign	ature) LVC	Date/Time	10 Days
Relinquished By (Signs	rture)	Organization	Dately time	Remaide ser		7/28/00	

15 August, 2000

Deanna L. Harding Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Tosco Sequoia Report W007599

Enclosed are the results of analyses for samples received by the laboratory on 28-Jul-00 14:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Charlie Westwater Project Manager

CA ELAP Certificate #1271

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Deanna L. Harding

Reported: 15-Aug-00 09:20

ANALYTICAL REPORT FOR SAMPLES

Samula ID	Laboratory ID	Matrix	Date Sampled	Date Received
Sample ID				20 T-1 00 14:15
TB-LB	W007599-01	Water	28-Jul-00 00:00	28-Jul-00 14:15
MW-1	W007599-02	Water	28-Jul-00 11:52	28-Jul-00 14:15
MW-2	W007599-03	Water	28-Jul-00 12:30	28-Jul-00 14:15
MW-3	W007599-04	Water	28-Jul-00 11:15	28-Jul-00 14:15
MW-4	W007599-05	Water	28-Jul-00 10:43	28-Jul-00 14:15

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Charlie Westwater, Project Manager

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625

Reported: 15-Aug-00 09:20

Project Manager: Deanna L. Harding

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-LB (W007599-01) Water	Sampled: 28-Jul-00 00:00	Receive	d: 28-Jul-	00 14:15					
Purgeable Hydrocarbons	ND	50	ug/l	1	0H03001	03-Aug-00	03-Aug-00	EPA 8015M/8020	
Benzene	ND	0.50	n	*	*	Ħ	"	**	
Toluene	ND	0.50	**	"	77	Ħ	11		
Ethylbenzene	ND	0.50	"	**	**	**	**	**	
Xylenes (total)	ND	0.50		н	ir.	n	Ħ		
Methyl tert-butyl ether	ND	2.5	**	11	"	H	#		
Surrogate: a,a,a-Trifluorotoluer	ne .	98.3 %	70-	130	n	fr .	n.	*	
MW-1 (W007599-02) Water	Sampled: 28-Jul-00 11:52	Received	l: 28 -Jul -	00 14:15					
Purgeable Hydrocarbons	ND	50	ug/l	1	0H03001	03-Aug-00	03-Aug-00	EPA 8015M/8020	
Benzene	ND	0.50	*1	11	11	Ħ	"	•	
Toluene	ND	0.50	n	tt	#	n	н	•	
Ethylbenzene	ND	0.50	"	11	п	*	н		
Xylenes (total)	ND	0.50	11	17	п		#	"	-
Methyl tert-butyl ether	21	2.5	n	n	Ħ		"	**	
Surrogate: a,a,a-Trifluorotoluer	ne	87.7 %	70-	130	"	,,	m	#	
MW-2 (W007599-03) Water	Sampled: 28-Jul-00 12:30	Received	l: 28-Jul-	90 14:15 ⁻					P-01
Purgeable Hydrocarbons	2200	250	ug/l	5	0H03001	03-Aug-00	03-Aug-00	EPA 8015M/8020	
Benzene	680	2.5			H	#	n	-	
Toluene	4.1	2.5		**	n	•	"	•	
Ethylbenzene	57	2.5	•	**	- 17	**	*	Ħ	
Xylenes (total)	270	2.5	*	u	•	44.	n	11	
Methyl tert-butyl ether	24	13	*	W	n	н	**	11	
Surrogate: a,a,a-Trifluorotoluer		116%	70-		"	"			

6747 Sierra Court Suite J

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 15-Aug-00 09:20

Dublin CA, 94568

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT

Analyte	Result	leporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W007599-04) Water	Sampled: 28-Jul-00 11:15	Received	: 28-Jul-	00 14:15					
Purgeable Hydrocarbons	ND	50	ug/l	1	0H03001	03-Aug-00	03-Aug-00	EPA 8015M/8020	
Benzene	ND	0.50	41	π	**	Ħ	11	11	
Toluene	ND	0.50	Ħ			**	11	и	
Ethylbenzene	ND	0.50	11	. "	Ħ	Ħ	u	"	
Xylenes (total)	ND	0.50	"	#	"	"	11	ıπ	
Methyl tert-butyl ether	ND	2.5	*	,	H	W	π	19	
Surrogate: a,a,a-Trifluorotolue	me	96.7%	70-	130	r	"	rr	tt	
MW-4 (W007599-05) Water	Sampled: 28-Jul-00 10:43	Received	: 28-Jul-	00 14:15					
Purgeable Hydrocarbons	ND	50	ug/l	1	0Н03001	03-Aug-00	03-Aug-00	EPA 8015M/8020	
Benzene	ND	0.50	Ħ	**	**	Ħ	•		
Toluene	ND	0.50	n	#	11	Ħ	Ħ	w	
Ethylbenzene	ND	0.50		Ħ	и	**	**		
Xylenes (total)	ND	0.50		n	**	**	41		
Methyl tert-butyl ether	ND	2.5	#	H	н	H	11	ri .	
Surrogate: a,a,a-Trifluorotolue	ene	102 %	70-	-130	"	"	.,	"	

6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported:

15-Aug-00 09:20

Diesel Hydrocarbons (C9-C24) by DHS LUFT

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W007599-04) Water	Sampled: 28-Jul-90 11:15	Received	l: 28-Jul-0	0 14:15					
Diesel Range Hydrocarbons	ND	100	ug/l	1	0Н09011	09-Aug-00	13-Aug-00	EPA 8015M	
Surrogate: n-Pentacosane		88.1 %	50-1	50	"	"	**	"	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 15-Aug-00 09:20

MTBE Confirmation by EPA Method 8260A

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (W007599-02) Water Sampled	: 28-Jul-00 11:52	Received	: 28-Jul-00	14:15					
Methyl tert-butyl ether	19	2.0	ug/l	1	0H09016	09-Aug-00	09-Aug-00	EPA 8260B	
Surrogate: Dibromofluoromethane		110 %	50-13	i0	"	"	"	11	
Surrogate: 1,2-Dichloroethane-d4		104 %	50-15	50	n	"	*	. п	
MW-2 (W007599-03) Water Sampled	: 28-Jul-00 12:30	Received	: 28-Jul-00	14:15					
Methyl tert-butyl ether	ND	2.0	ug/i	1	0Н09016	09-Aug-00	09-Aug-00	EPA 8260B	
Surrogate: Dibromofluoromethane		108 %	50-13	50	n	"	"	R	
Surrogate: 1,2-Dichloroethane-d4		94.0 %	50-15	50	rr rr	"	#	"	

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Deanna L. Harding

Reported:

15-Aug-00 09:20

Total Metals by EPA 200 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W007599-04) Water	Sampled: 28-Jul-00 11:15	Received	: 28-Jul-	00 14:15					
Chromium	1.8	0.010	mg/l	1	0H07006	07-Aug-00	08-Aug-00	EPA 200.7	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding **Reported:** 15-Aug-00 09:20

Volatile Organic Compounds by EPA Method 8240B

Sequoia Analytical - Walnut Creek

		100 / KIIGH	,						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W007599-04) Water 5	Sampled: 28-Jul-00 11:15	Received	l: 28-Jul-	00 14:15					
Chloromethane	ND	2.0	ug/l	1	0H01017	03-Aug-00	04-Aug-00	EPA 8240B	
Vinyl chloride	ND	2.0	н		#	**	"		
Bromomethane	ND	5.0	17	n	-	11	H	**	
Chloroethane	ND	2.0	"		•	11	••	•	
Trichlorofluoromethane	ND	2.0		*	*	It	11	*	
1,1-Dichloroethene	ND	2.0			Ħ		-		
Acetone	ND	10		*	"	**	ÝF	**	
Carbon disulfide	ND	2.0	**	n	41	W	m	•	
Methylene chloride	ND	10	11		н	**	**	#	
Methyl tert-butyl ether	ND	2.0	**	•"	n	11	11	n	
trans-1,2-Dichloroethene	ND	2.0	Ħ	"	Ħ	11	11	11	
Vinyl acetate	ND	5.0	**	Ħ	H	n	91	**	
1,1-Dichloroethane	ND	2.0	"	Ħ	11	**	Ħ	"	
cis-1,2-Dichloroethene	ND	2.0	H	Ħ	n	11	**	11	
2-Butanone	ND	10		H		T	Ħ	n	•
Chloroform	ND	2.0		"	**	n	"	н	
1,1,1-Trichloroethane	ND	2.0		ti-	•	н	n	n	
Carbon tetrachloride	ND	2.0		Ħ	*	Hr.	W.	n	
Benzene	ND	2.0	**	•	#		•		
1,2-Dichloroethane	ND	2.0	п	**	11	Ħ	10	'u	
Trichloroethene	ND	2.0	. 11	11	н	71	•	m .	
1,2-Dichloropropane	ND	2.0	н	"	"	₹1			
Bromodichloromethane	ND	2.0	#	**	Ħ	71	**		
2,2,5,5-Tetramethyltetrahydrofu		2.0	н	Ħ	TÎ	н	u	*	
cis-1,3-Dichloropropene	ND	2.0		H	**	u	"		
4-Methyl-2-pentanone	ND	10		11	11	#	11	**	
Toluene	ND	2.0	н	11	н	Ħ	11	и	
trans-1,3-Dichloropropene	ND	5.0				n	Ħ	•	
1,1,2-Trichloroethane	ND	2.0	44		**		n	11	
Tetrachloroethene	2.7	2.0		*	-	*	tt	н	
2-Hexanone	ND	10	Ħ		#		,	. #	
Dibromochloromethane	ND	2.0	n	п	11		**	Ħ	
Chlorobenzene	ND	2.0	н	gi.	a	•		H	
Ethylbenzene	ND	2.0	n	11	"	#		n	
Total Xylenes	ND	2.0	**	**	Ħ	11	**	· .	
Styrene Styrene	ND ND	2.0		n	H	**	п	н	
Bromoform	ND	2.0	Ħ	"	H	31	п	#	
1,1,2,2-Tetrachloroethane	ND ND	2.0				Ħ	n		
1,1,±,±-1etrachioroculane	ND	2.0							

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported:

15-Aug-00 09:20

Volatile Organic Compounds by EPA Method 8240B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W007599-04) Water San	npled: 28-Jul-00 11:15	Received	: 28-Jul-00	14:15					
1,3-Dichlorobenzene	ND	2.0	ug/l	1	OH01017	03-Aug-00	04-Aug-00	EPA 8240B	
1,4-Dichlorobenzene	ND	2.0	"	**	**	11	**	11	
1,2-Dichlorobenzene	ND	2.0	u	н	я	17	ŧŧ	н	
Surrogate: Dibromofluoromethane		94.0 %	50-15	<u> </u>	н	"	"	п	
Surrogate: 1,2-Dichloroethane-d4		102 %	50-15	50	#	#	"	н	
Surrogate: Toluene-d8		100 %	50-15	50	u	"	п	"	
Surrogate: 4-Bromofluorobenzene		102 %	50-13	ī <i>0</i>	"	"	n	"	

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding **Reported:** 15-Aug-00 09:20

Semivolatile Organic Compounds by EPA Method 8270B

Sequoia Analytical - Walnut Creek

Analyte	F Result	leporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W007599-04) Water	Sampled: 28-Jul-00 11:15	Received	: 28-Jul-	00 14:15					
Acenaphthene	ND	5.0	ug/l	1	0H01009	01-Aug-00	03-Aug-00	EPA 8270B	
Acenaphthylene	ND	5.0		**	77	**	**	•	
Aniline	ND	5.0			11 1	11	u	41	
Anthracene	ND	5.0	**		"	**	11	H	
Benzoic acid	ND	10	"	**	Ħ	**	11	"	
Benzo (a) anthracene	ND	5.0	**	11	Ħ ,	Ħ	**	**	
Benzo (b) fluoranthene	ND	5.0	н	tī.	H			**	
Benzo (k) fluoranthene	ND	5.0	**	"	**		n	n	
Benzo (ghi) perylene	ND	5.0	n				11	•	
Benzo[a]pyrene	ND	5.0	tr			W	п	n	
Benzyl alcohol	ND	5.0	*	*	**	*	H	H	
Bis(2-chloroethoxy)methane	ND	5.0	#	**	"	*	**		
Bis(2-chloroethyl)ether	ND	5.0	11	11		н	n		
Bis(2-chloroisopropyl)ether	ND	5.0	"	**	**	4	•	-	
Bis(2-ethylhexyl)phthalate	ND	10	11	**	11	"		"	
4-Bromophenyl phenyl ether	ND	5.0	. #	Ħ	H	n	**	11	
Butyl benzyl phthalate	ND	5.0		**	"	Ħ	Ħ	u	•
4-Chloroaniline	ND	10	18	n	11	"	n	"	
2-Chloronaphthalene	ND	5.0				11	n	Ħ	
4-Chloro-3-methylphenol	ND	5.0	•	•	11	Ħ		**	
2-Chlorophenol	ND	5.0	**		n	₩.		H	
4-Chlorophenyl phenyl ether	ND	5.0	**	11	"	п			
Chrysene	ND	5.0	#	π	#	II .	71	Ħ	
Dibenz (a,h) anthracene	ND	5.0	"	**	,	Ħ	**	•	
Dibenzofuran	ND	5.0	te .	"	n	Ħ	**		
Di-n-butyl phthalate	ND	10		H		н	11	**	
1,2-Dichlorobenzene	ND	5.0	**	н		h	Ħ	•	
1,3-Dichlorobenzene	ND	5.0		•	77	H	11		
1,4-Dichlorobenzene	ND	5.0	#	п	11	-	11	Ħ	
3,3'-Dichlorobenzidine	ND	10	17	**	"	•	11	n	
2,4-Dichlorophenol	ND	5.0	n	"	#	•		**	
Diethyl phthalate	ND	5.0		Ħ	,,	H	**	**	
2,4-Dimethylphenol	ND	5.0		n	H	11	11	н	
Dimethyl phthalate	ND	5.0		11		Ħ	**		
4,6-Dinitro-2-methylphenol	ND	J.0 10	**	н		н	**		
2,4-Dinitrophenol	ND	10	**	-		ır	11		
2,4-Dinitrotoluene	ND ND	5.0	**	**	u	**	n	#	
2,6-Dinitrotoluene	ND	5.0	79			_	h		

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 15-Aug-00 09:20

Semivolatile Organic Compounds by EPA Method 8270B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W007599-04) Water	Sampled: 28-Jul-00 11:15	Received	: 28-Jul-00	14:15					
Di-n-octyl phthalate	ND	5.0	ug/l	1	0H01009	01-Aug-00	03-Aug-00	EPA 8270B	
Fluoranthene	ND	5.0	17	Ħ	11	"	, "	11	
Fluorene	ND	5.0	11	"	17	*	H	11	
Hexachlorobenzene	ND	5.0	11	"	**	н	T	п	
Hexachlorobutadiene	ND	5.0	۳.		**	**	11	*1	
Hexachlorocyclopentadiene	ND	10	"		п	Ħ	Ħ	· n	
Hexachloroethane	ND	5.0	n	•		₩	**	#	
Indeno (1,2,3-cd) pyrene	ND	5.0	.,	**	и	-	u	. #	
Isophorone	ND	5.0	**	•	и	•	**	. "	
2-Methylnaphthalene	ND	5.0	-	**	и	Ħ	u	**	
2-Methylphenol	ND	5.0		*	"	**	**	"	
4-Methylphenol	ND	5.0	**	**	11	**	"	#	
Naphthalene	ИD	5.0	41	11	tr	11		**	
2-Nitroaniline	ND	10	11	"	**	11	**	41	
3-Nitroaniline	ND	10	н	"	**	"	"	"	
4-Nitroaniline	ND	10	81	**	"	**	"	#	
Nitrobenzene	ND	5.0	n	**	11	H .	н	n	
2-Nitrophenol	ND	5.0	tt	**		11	11	11	
4-Nitrophenol	ND	10	#	*	*	H	v	11	
N-Nitrosodimethylamine	ND	5.0	n	**		**	n	**	
N-Nitrosodiphenylamine	ND	5.0	11	**	**	tt	11	tt	
N-Nitrosodi-n-propylamine	ND	5.0	**	"	•	H	• 0	n	
Pentachlorophenol	ND	10	11		**	"	Tr .	#	
Phenanthrene	ND	5.0		Ħ	#1	"	**	Ħ	
Phenol	ND	5.0	**		44		n	++	
Pyrene	ND	5.0	₩	n	11	н.	"	n	
1,2,4-Trichlorobenzene	ND	5.0	47	-	11	10	**	π	
2,4,5-Trichlorophenol	ND	10	77	**	•		**	. #1	
2,4,6-Trichlorophenol	ND	5.0	11	**	11	•,	n	**	
Surrogate: 2-Fluorophenol		40.3 %	21-1	10	п -	"	**	tt .	
Surrogate: Phenol-d6		27.3 %	10-1	10	. "	"	"	rr	
Surrogate: Nitrobenzene-d5		74.9 %	35-1	14	н	"	"	n	
Surrogate: 2-Fluorobiphenyl	•	77.2 %	43-1		rr	,,	"	**	
Surrogate: 2,4,6-Tribromophe	nol	63.7 %	10-1		**	*	#	н	
Surrogate: p-Terphenyl-d14		45.0 %	33-1		Ħ	#	"	. "	

6747 Sierra Court Suite J

Project: Tosco

Project Number: Tosco # 4625

Reported:

Dublin CA, 94568

Project Manager: Deanna L. Harding

15-Aug-00 09:20

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W007599-04) Water	Sampled: 28-Jul-00 11:15	Received	: 28-Jul	-00 14:15					
TRPH	ND	5.0	mg/l	1	OH10013	10-Aug-00	10-Aug-00	SM 5520B/F	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 15-Aug-00 09:20

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0H03001 - EPA 5030B [P/T]	,			•				•		
Blank (0H03001-BLK1)				Prepared	& Analyzo	ed: 03-Au	g-00			
Purgeable Hydrocarbons	ND	50	ug/i					·		
Benzene	ND	0.50	11						*	
Toluene	ND	0.50	P	•						
Ethylbenzene	ND	0.50	*							
Xylenes (total)	ND	0.50	**							
Methyl tert-butyl ether	ND	2.5	**							
Surrogate: a,a,a-Trifluorotoluene	29.5		"	30.0		98.3	70-130			
LCS (0H03001-BS1)				Prepared	& Analyz	ed: 03-Au	g-00	÷		
Benzene	17.4	0.50	ug/l	20.0		87.0	70-130			
Toluene	19.5	0.50		20.0		97.5	70-130			
Ethylbenzene	17.8	0.50	**	20.0		89.0	70-130			
Xylenes (total)	64.3	0.50		60.0		107	70-130			
Surrogate: a,a,a-Trifluorotoluene	26.0		"	30.0		86.7	70-130			
Matrix Spike (0H03001-MS1)	So	urce: W0075	90-02	Prepared	& Analyzo	ed: 03-Au	g-00			
Benzene	17.6	0.50	ug/l	20.0	ND	88.0	70-130			
Toluene	19.4	0.50	**	20.0	ND	97.0	70-130			
Ethylbenzene	22.4	0.50	*	20.0	ND	112	70-130			
Xylenes (total)	63.4	0.50	**	60.0	ND	106	70-130			
Surrogate: a,a,a-Trifluorotoluene	25.3		н	30.0		84.3	70-130			·
Matrix Spike Dup (0H03001-MSD1)	Sc	urce: W0075	90-02	Prepared	& Analyze	ed: 03-Au	g-00			
Benzene	17.4	0.50	ug/l	20.0	ND	87.0	70-130	1.14	. 20	
Toluene	19.2	0.50	**	20.0	ND	96.0	70-130	1.04	20	
Ethylbenzene	21.1	0.50	"	20.0	ND	106	70-130	5.98	20	
Xylenes (total)	61.9	0.50	. 11	60.0	ND	103	70-130	2.39	20	
Surrogate: a, a, a-Trifluorotoluene	25.6		p	30.0		85.3	70-130		· ·	<u></u>

€₿

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625

Reported: 15-Aug-00 09:20

Project Manager: Deanna L. Harding

Diesel Hydrocarbons (C9-C24) by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0H09011 - EPA 3510B										
Blank (0H09011-BLK1)			-	Prepared	: 09-Aug-0	00 Analyz	ed: 14-Au	g-00		
Diesel Range Hydrocarbons	ND	50	ug/i							
Surrogate: n-Pentacosane	23.0		11	33.3		69.1	50-150			
LCS (0H09011-BS1)				Prepared	: 09-Aug-(0 Analyz	ed: 14-Au	g-00		•
Diesel Range Hydrocarbons	312	50	ug/l	500		62.4	60-140	•		
Surrogate: n-Pentacosane	28.3		- "	33,3		85.0	50-150			
LCS Dup (0H09011-BSD1)				Prepared	: 09-Aug-0	00 Analyz	ed: 14-Au	g-00		
Diesel Range Hydrocarbons	293	50	ug/i	500		58.6	60-140	6.28	50	Q-01
Surrogate: n-Pentacosane	26.7		'n	33.3		80.2	50-150			

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding

Reported: 15-Aug-00 09:20

MTBE Confirmation by EPA Method 8260A - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0H09016 - EPA 5030B [P/T]								<u>,</u>		
Blank (0H09016-BLK1)		<u> </u>		Prepared:	08-Aug-0	00 Analyzo	ed: 09-Aug	g-00		
Methyl tert-butyl ether	ND	2.0	ug/l		-	-				
Surrogate: Dibromofluoromethane	53.0	·	"	50.0		106	50-150		•	
Surrogate: 1,2-Dichloroethane-d4	53.0		"	50.0		106	50-150			
Blank (0H09016-BLK2)				Prepared	& Analyz	ed: 09-Au	g-00			
Methyl tert-butyl ether	ND	2.0	ug/l							
Surrogate: Dibromofluoromethane	52.0	··-	"	50.0		104	50-150			
Surrogate: 1,2-Dichloroethane-d4	50.0		"	50.0		100	50-150			
LCS (0H09016-BS1)				Prepared	& Analyz	ed: 08-Au	g-00			•
Methyl tert-butyl ether	43.6	2.0	ug/l	50.0		87.2	70-130			
Surrogate: Dibromofluoromethane	49.0		"	50.0		98.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	44.0		"	50.O		88.0	50-150			
LCS Dup (0H09016-BSD1)				Prepared:	08-Aug-(00 Analyz	ed: 09-Au	g -0 0		
Methyl tert-butyl ether	47.3	2.0	ug/i	50.0		94.6	70-130	8.14	25	-
Surrogate: Dibromofluoromethane	53.0		. "	50.0		106	50-150			
Surrogate: 1,2-Dichlaroethane-d4	52.0		"	50.0		104	50-150			

&

Page 14 of 24

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 15-Aug-00 09:20

Total Metals by EPA 200 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0H07006 - 200.7/ No Digest										
Blank (0H07006-BLK1)				Prepared	: 07-Aug-0	00 Analyz	ed: 08-Au	g-00		
Chromium	ND	0.010	mg/l	·			-			
LCS (0H07006-BS1)				Prepared	: 07-Aug-0	00 Analyz	ed: 08-Au	g-00		
Chromium	1.03	0.010	mg/l	1.00		103	80-120			
LCS Dup (0H07006-BSD1)				Prepared	: 07-Aug-0	00 Analyz	ed: 08-Au	g-00		
Chromium	1.02	0.010	mg/l	1.00		102	80-120	0.976	20	
Matrix Spike (0H07006-MS1)	Se	ource: W0075	96-03	Prepared	: 07-Aug-0	00 Analyz	ed: 08-Au	g-00		
Chromium	1.04	0.010	mg/l	1.00	0.042	99,8	80-120			
Matrix Spike Dup (0H07006-MSD1)	S	ource: W0075	596-03	Prepared	: 07-Aug-1	00 Analyz	ed: 08-Au	g-00		
Chromium	1.03	0.010	mg/l	1.00	0.042	98,8	80-120	0.966	- 20	

Page 15 of 24

6747 Sierra Court Suite J Dublin CA, 94568

Batch 0H01017 - EPA 5030B [P/T]

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported:

15-Aug-00 09:20

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
							-	***		

Blank (0H01017-BLK3)				Prepared & Analyzed: 03-Aug-00
Chloromethane	ND	2.0	ug/l	
Vinyl chloride	ND	2.0	11	
Bromomethane	ND	5.0	•	
Chloroethane	ND	2.0	ч ,	
Trichlorofluoromethane	ND	2.0	#	
1,1-Dichloroethene	ND	2.0	"	•
Acetone	ND	10	"	
Carbon disulfide	ND	2.0	*	
Methylene chloride	ND	10	•	
Methyl tert-butyl ether	ND	2.0	"	
trans-1,2-Dichloroethene	ND	2.0	11	
Vinyl acetate	ND	5.0	H	
1,1-Dichloroethane	ND	2.0		
cis-1,2-Dichloroethene	ND	2.0	•	·
2-Butanone	ND	10	*	
Chloroform	ND	2.0	**	
1,1,1-Trichloroethane	ND	2.0	11	
Carbon tetrachloride	ND	2.0	"	·
Benzene	ND	2.0		
1,2-Dichloroethane	ND	2.0	•	
Trichloroethene	ND	2.0	**	
1,2-Dichloropropane	ND	2.0	11	
Bromodichloromethane	ND	2.0	H	
2,2,5,5-Tetramethyltetrahydrofuran	ND	2.0	**	
cis-1,3-Dichloropropene	ND	2.0	H	
4-Methyl-2-pentanone	ND	10	**	
Toluene	ND	2.0	**	
trans-1,3-Dichloropropene	ND	5.0	**	·
1,1,2-Trichloroethane	, ND	2.0	11	
Tetrachioroethene	ND	2.0	н	
2-Hexanone	ND	10	H	
Dibromochloromethane	ND	2.0	**	·
Chlorobenzene	ND	2.0	11	
Ethylbenzene	ND	2.0	***	•

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625

Project Manager: Deanna L. Harding

Reported:

15-Aug-00 09:20

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0H01017 - EPA 5030B [P/T]										
Blank (0H01017-BLK3)				Prepared	& Analyz	ed: 03-Au	g-00			
Total Xylenes	ND	2.0	ug/l							
Styrene	ND	2.0	# .							
Bromoform	ND	2.0	Ħ						•	
1,1,2,2-Tetrachloroethane	ND	2.0	"							
1,3-Dichlorobenzene	ND	2.0	n							
1,4-Dichlorobenzene	ND	2.0	. н							
1,2-Dichlorobenzene	ND	2.0	**							
Surrogate: Dibromofluoromethane	49.0		*	50.0		98.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	50.0		. "	50.0		100	50-150			
Surrogate: Toluene-d8	52.0		"	50.0		104	50-150			
Surrogate: 4-Bromofluorobenzene	51.0		#	50.0		102	50-150		•	
LCS (0H01017-BS3)				Prepared	& Analyz	ed: 03-Au	g-00			
1,1-Dichloroothene	45.1	2.0	ug/l	50.0		90.2	65-135			·
Methyl tert-butyl ether	40.9	2.0	91	50.0		81.8	70-130			
Benzene	44.9	2.0	п	50.0		89.8	70-130	-		
Trichloroethene	44.1	2.0	n	50.0		88.2	70-130			
Toluene	43.7	2.0	"	50.0		87.4	70-130			
Chlorobenzene	44.2	2.0	n	50.0		88.4	70-130			
Surrogate: Dibromofluoromethane	49.0	······	"	50.0	-	98.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	50.0		"	50.0		100	50-150			
Surrogate: Toluene-d8	51.0		•	50.0		102	50-150			
Surrogate: 4-Bromofluorobenzene	53.0		"	50.0		106	50-150			
Matrix Spike (0H01017-MS1)	S	ource: W0075	547-04	Prepared	: 01-Aug-(00 Analyz	ed: 02-Au	g-00		
1,1-Dichloroethene	50.3	2.0	ug/l	50.0	ND	101	60-140			
Methyl tert-butyl ether	41.9	2.0	п	50.0	ND	83.8	60-140			
Benzene	48.1	2.0	Ħ	50.0	ND	96.2	60-140			
Trichloroethene	46.4	2.0	н	50.0	ND	92.8	60-140			
Toluene	47.4	2.0	n	50.0	ND	94.8	60-140		4	
Chlorobenzene	46.5	2.0	n	50.0	ND	93.0	60-140			
Surrogate: Dibromofluoromethane	50,0		#	50.0		100	50-150			
Surrogate: 1,2-Dichloroethane-d4	50.0		"	50.0		100	50-150			
Surrogate: Toluene-d8	48.0		"	50.0		96.0	50-150			
Surrogate: 4-Bromofluorobenzene	51.0		"	50.0		102	50-150			

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.cpm

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625

Reported: 15-Aug-00 09:20

Project Manager: Deanna L. Harding
Volatile Organic Compounds by EPA Method 824

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0H01017 - EPA 5030B [P/T]										
Matrix Spike Dup (0H01017-MSD1)	Sou	rce: W0075	47-04	Prepared:	01-Aug-0	0 Analyz	ed: 02-Aug	g-00		
1,1-Dichloroethene	58.3	2.0	ug/l	50.0	ND	117	60-140	14.7	25	
Methyl tert-butyl ether	52.8	2.0	*	50.0	ND	106	60-140	23.0	25	
Benzene	56.6	2.0		50.0	ND	113	60-140	16.2	25	
Trichloroethene	55.9	2.0	**	50.0	ND	112	60-140	18.6	25	
Toluene	56.6	2.0	Ħ	50.0	ND	113	60-140	17.7	25	
Chlorobenzene	55.6	2.0	#1	50.0	ND	111	60-140	17.8	25	
Surrogate: Dibromofluoromethane	50.0		it	50.0		100	50-150			
Surrogate: 1,2-Dichloroethane-d4	51.0		"	50.0		102	50-150			
Surrogate: Toluene-d8	49.0		**	50.0		98.0	50-150			
Surrogate: 4-Bromofluoroberzene	51.0		"	50.0		102	50-150			

Project: Tosco

Project Number: Tosco # 4625

Reported: 15-Aug-00 09:20

6747 Sierra Court Suite J Dublin CA, 94568

Project Manager: Deanna L. Harding

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

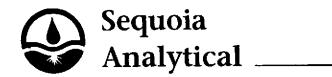
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0H01009 - EPA 3510B										
Blank (0H01009-BLK1)				Prepared:	01-Aug-0	0 Analyz	ed: 03-Aug	g - 00		
Acenaphthene	ND	5.0	ug/l							
Acenaphthylene	ND	5.0	Ħ							
Aniline	ND	5.0								
Anthracene	ND	5.0								
Benzoic acid	ND	10	q							
Benzo (a) anthracene	ND	5.0	11							•
Benzo (b) fluoranthene	ND	5.0	н							
Benze (k) fluoranthene	ND	5.0	"							
Benzo (ghi) perylene	ND	5.0								
Benzo[a]pyrenc	ND	5.0	11							
Benzyl alcohol	ND	5.0	**							
Bis(2-chloroethoxy)methane	ND	5.0	n							
Bis(2-chloroethyl)ether	ND	5.0								
Bis(2-chloroisopropyl)ether	ND	5.0								
Bis(2-ethylhexyl)phthalate	ND	10	**							
4-Bromophenyl phenyl ether	ND	5.0	**							
Butyl benzyl phthalate	ND	5.0								
4-Chloroaniline	ND	10	•							
2-Chloronaphthalene	ND	5.0	11							
4-Chioro-3-methylphenol	ND	5.0	Ħ							
2-Chlorophenol	ND	5.0	**							
4-Chlorophenyl phenyl ether	ND	5.0	•							
Chrysene	ND	5.0	**							
Dibenz (a,h) anthracene	ND	5.0	1)							
Dibenzofuran	ND	5.0	11							
Di-n-butyl phthalate	ND	10	n							
1,2-Dichlorobenzene	ND	5.0	**							
1,3-Dichlorobenzene	ND	5.0	"							
1,4-Dichlorobenzenc	ND	5.0	11							
3,3'-Dichlorobenzidine	ND	10	н							
2,4-Dichlorophenol	ND	5.0								
Diethyl phthalate	ND	5.0	н							
2,4-Dimethylphenol	ND	5.0	**							
Dimethyl phthalate	ND	5.0								

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: Tosco

6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Tosco # 4625 Project Manager: Deanna L. Harding **Reported:** 15-Aug-00 09:20


Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0H01009 - EPA 3510B		· · · · · · · · · · · · · · · · · · ·			•					· • · · · · · · · · · · · · · · · · · ·
Blank (0H01009-BLK1)	· ·			Prepared:	01-Aug-0	0 Analyze	d: 03-Aug	-00		
1,6-Dinitro-2-methylphenol	ND	10	ug/l				·			
,4-Dinitrophenol	ND	10	11							
,4-Dinitrotoluene	ND	5.0	77							
,6-Dinitrotoluene	ND	5.0	Ħ							
i-n-octyl phthalate	ND	5.0	H							
luoranthene	ND	5.0	**							
horene	ND	5.0	**							
lexachlorobenzene	ND	5.0	**							
[exachlorobutadiene	ND	5.0	*							
Iexachlorocyclopentadiene	ND	10	77							
[exachloroethane	ND	5.0	**							
ndeno (1,2,3-cd) pyrene	ND	5.0	n							
ophorone	ND	5.0	**							
-Methylnaphthalene	ND	5.0	44							
-Methylphenoi	ND	5.0	11							
-Methylphenol	ND	5.0	11							
aphthalene	ND	5.0	Ħ							
-Nitroaniline	ND	10	"							
-Nitroaniline	ND	10	h							
-Nitroaniline	ND	10	11							
litrobenzene	ND	5.0	н							
-Nitrophenol	ND	5.0								
-Nitrophenol	ND	10							•	
I-Nitrosodimethylamine	ND	5.0								
I-Nitrosodiphenylamine	ND	5.0	*							
I-Nitrosodi-n-propylamine	ND	5.0	•							
entachlorophenol	ND	10								
henanthrene	ND	5.0	**							
thenol	ND	5.0	•							
yrene	ND	5.0	**							
,2,4-Trichlorobenzene	ND	5.0	#							
,4,5-Trichlorophenol	ND	10	11							
4,4,6-Trichlorophenol	ND	5.0	"							
Surrogate: 2-Fluorophenol	63.7			150		42.5	21-110			

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: Tosco

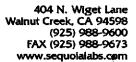
Project Number: Tosco # 4625

Reported:

Dublin CA, 94568

Project Manager: Deanna L. Harding

15-Aug-00 09:20


Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0H01009 - EPA 3510B										
Blank (0H01009-BLK1)				Prepared:	01-Aug-0	0 Analyze	:d: 03-Aug	;- 00		
Surrogate: Phenol-d6	41.4		ug/l	150		27.6	10-110			
Surrogate: Nitrobenzene-d5	71.1		"	100		71.1	35-114			
Surrogate: 2-Fluorobiphenyl	69.5		n	100		69.5	43-116			
Surrogate: 2,4,6-Tribromophenol	95.0		77	150		63.3	10-123			
Surrogate: p-Terphenyl-dl4	78.2		"	100		78.2	33-141			
LCS (0H01009-BS1)				Prepared:	01-Aug-0	0 Analyz	d: 03-Aug	ş-00		
Acenaphthene	73.2	5.0	ug/l	100		73.2	46-118			
4-Chloro-3-methylphenol	90.9	5.0	**	150		60.6	23-97			
2-Chlorophenol	90.2	5.0		150		60.1	27-123			
1,4-Dichlorobenzene	62.6	5.0	*	100		62.6	36-97			
2,4-Dinitrotoluene	69.8	5.0		100		69.8	24-96			
4-Nitrophenol	30.4	10	#	150		20.3	10-80			
N-Nitrosodi-n-propylamine	78.7	5.0	**	100		78.7	41-116			
Pentachiorophenol	123	10		150		82.0	9-103			
Phenol	38.0	5.0	ч	150		25.3	12-110			
Pyrene	80.0	5.0	**	100		80.0	26-127			
1,2,4-Trichlorobenzene	58.0	5.0	**	100		58.0	39-98			
Surrogate: 2-Fluorophenol	58.0		#	150		38.7	21-110			
Surragate: Phenol-d6	37.9		*	150		25.3	10-110			
Surrogate: Nitrobenzene-d5	76.3		#	100		76.3	35-114			
Surrogate: 2-Fluorobiphenyl	73.3		"	100		73.3	43-116			
Surrogate: 2,4,6-Tribromophenol	104		"	150		69.3	10-123			
Surrogate: p-Terphenyl-d14	71.3		u	100		71.3	33-[4]			
LCS Dup (0H01009-BSD1)				Prepared:	01-Aug-(ed: 03-Aug		<u>.</u>	
Acenaphthene	74.3	5.0	ug/l	100		74.3	46-118	1.49	30	
4-Chloro-3-methylphenol	92.9	5.0	"	150		61.9	23-97	2.18	30	
2-Chlorophenol	93.5	5.0	#	150		62.3	27-123	3.59	30	
1,4-Dichlorobenzene	66.1	5.0	n	100		66.1	36-97	5.44	30	
2,4-Dinitrotoluene	69.7	5.0	n	100		69.7	24-96	0.143	30	
4-Nitrophenol	33.4	10	n	150		22.3	10-80	9.40	30	
N-Nitrosodi-n-propylamine	77.9	5.0	n	100		77.9	41-116	1.02	30	
Pentachlorophenol	130	10		150		86.7	9-103	5.53	30	
Phenoi	44.0	5.0	н	150		29.3	12-110	14.6	30	
Pyrene	78.3	5.0	. •	100		78.3	26-127	2.15	30	

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

€

Notes

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568

Surragate: 2,4,6-Tribromophenol

Surrogate: p-Terphenyl-dl 4

Analyte

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported:

15-Aug-00 09:20

RPD

Limit

%REC

Limits

10-123

33-141

RPD

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Units

Spike

Level

150

100

Source

Result

%REC

68.0

69.2

Reporting

Limit

Result

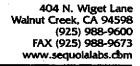
102

69.2

Batch 0H01009 - EPA 3510B											
LCS Dup (0H01009-BSD1)	Prepared: 01-Aug-00 Analyzed: 03-Aug-00										
1,2,4-Trichlorobenzene	60.4	5.0	ug/l	100	60,4	39-98	4.05	30			
Surrogate: 2-Fluorophenol	64.6		,,	150	43,1	21-110					
Surrogate: Phenol-d6	41.7		"	150	27.8	10-110					
Surrogate: Nitrobenzene-d5	74.3		Ħ	100	74.3	35-114					
Surrogate: 2-Fluorobiphenyl	<i>73</i> .8		п	100	<i>73.8</i>	43-116					

Dublin CA, 94568

Project: Tosco


Project Number: Tosco # 4625

Project Manager: Deanna L. Harding

Reported: 15-Aug-00 09;20

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0H10013 - EPA 3510B					, -			·		
Blank (0H10013-BLK1)		-		Prepared	& Analyz	ed: 10-Au	g-00			
TRPH	ND	5.0	mg/l							
LCS (0H10013-BS1)				Prepared	& Analyz	ed: 10-Au	g - 00			
TRPH	86.6	5.0	mg/l	100		86.6	70-130			
LCS Dup (0H10013-BSD1)				Prepared	& Analyz	ed: 10-Au	g-00			
TRPH	85.1	5.0	mg/l	100		85.1	70-130	1.75	30	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported:

15-Aug-00 09:20

Notes and Definitions

P-01 Chromatogram Pattern: Gasoline C6-C12

Q-01 The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the

recovery for this analyte does not represent an out-of-control condition for the batch.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

13 October, 2000

Deanna L. Harding Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Tosco

Enclosed are the results of analyses for samples received by the laboratory on 28-Jul-00 14:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Charlie Westwater Project Manager

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.cdm

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Deanna L. Harding

Report Revised:

13-Oct-00 10:44

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-3	W007599-04	Water	28-Jul-00 11:15	28-Jul-00 14:15

Sequoia Analytical - Walnut Creek

harlie Westwater, Project Manager

This report represents a revision of the original document. The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

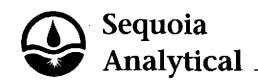
Page 1 of 4

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Report Revised: 13-Oct-00 10:44

Volatile Organic Compounds by EPA Method 8240B Sequoia Analytical - Walnut Creek

Analyte	Result	keporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W007599-04) Water	Sampled: 28-Jul-90 11:15	Received	: 28-Jul	-00 14:15					
Di-isopropyl ether	ND	2.0	ug/l	1	0H01017	03-Aug-00	04-Aug-00	EPA 8240B	
Ethyl tert-butyl ether	ND	2.0	n	#	a	**	Ħ	•	
Ethylene dibromide	ND	2.0	47	11	Ħ	**	**	**	
ert-Amyl methyl ether	ND	2.0	n	н	H	11		11	
tert-Butyl alcohol	ND	50	Ц	**	H	"	Ħ	. и	
Chloromethane	ND	2.0	11	77	"	11	**		
Vinyl chloride	ND	2.0	н	u	H	n	11	17	
Bromomethane	ND	5.0	H	"	*	H	"	H	
Chloroethane	ND	2.0	11	**	**		"	n	
Trichlorofluoromethane	ND	2.0	17	Ħ	u	**	. #		
1,1-Dichloroethene	ND	2.0	Ħ	n	,,	n	Ħ	•	
Acetone	ND	10	н	u	Ħ	**			
Carbon disulfide	ND	2.0	"	.,	Ħ		17	41	
Methylene chloride	ND ND	10	Ħ		Ħ	H	**	41	
Methyl tert-butyl ether	ND	2.0	n	**	w	**	**	н	
trans-1,2-Dichloroethene	ND	2.0	"	11		11	•	"	
Vinyl acetate	ND	5.0	II .	H	п	n.	**	"	
1,1-Dichloroethane	ND	2.0	*	n	77	H	II .	Ħ	
cis-1,2-Dichloroethene	ND	2.0	11	H	11	н	11	n	
2-Butanone	ND	10		,,	**	19	Ħ	"	
Chloroform	ND	2.0	11	11	**	н	Ħ	n	
1,1,1-Trichloroethane	ND	2.0	Ħ	ır	н	•	n	"	
Carbon tetrachloride	ND	2.0	11		H	n	11		
Benzene	ND	2.0		11	n	**		**	
1,2-Dichloroethane	ND	2.0	*	и	ч	Ħ		11	
Trichloroethene	ND	2.0	u	**	**		**	•	
1,2-Dichloropropane	ND	2.0	11	H	n	n	u	u	
Bromodichloromethane	ND	2.0	11	"		n	ij.	**	
2,2,5,5-Tetramethyltetrahydroi		2.0	Ħ	10	11	*	11	Ħ	
cis-1,3-Dichloropropene	ND	2.0	n		11	**	**	n	
4-Methyl-2-pentanone	ND	10	"	77	· n	п	н	11	
Toluene	ND	2.0	**	**	n	**	**		
trans-1,3-Dichloropropene	ND	5.0	n	**	u	11	*	•	
1,1,2-Trichloroethane	ND	2.0	u	**	**	Ħ			
Tetrachloroethene	2.7	2.0	11	#	*	**	Ħ	. •	
2-Hexanone	ND	10	п	**		**	**	77	
Dibromochloromethane	ND	2.0	n	n	11		"	**	
Chlorobenzene	ND	2.0	Ir	11		R	*1		


d dy

Sequoia Analytical - Walnut Creek

Westwater, Project Manager

This report represents a revision of the original document. The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6747 Sierra Court Suite J **Dublin CA**, 94568

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Report Revised: 13-Oct-00 10:44

Volatile Organic Compounds by EPA Method 8240B

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W007599-04) Water	Sampled: 28-Jul-00 11:15	Received: 28-Jul-00 14:15						_	
Ethylbenzene	ND	2.0	ug/l	1	0Н01017	03-Aug-00	04-Aug-00	EPA 8240B	
Total Xylenes	ND	2.0	ii	77	**	#	#	**	
Styrene	ND	2.0	tt	"	"	Ħ	#1	**	
Bromoform	ND	2.0	H.	#	"	11	11		
1,1,2,2-Tetrachloroethane	ND	2.0	n	11	"	#	Ħ	*1	
1,3-Dichlorobenzene	ND	2.0	m	11	,,	11	17	•	
1,4-Dichlorobenzene	ND	2.0	n '	н	#1	*	rt	π	
1,2-Dichlorobenzene	ND	2.0	#	Ħ	11	Ħ	17	**	
Surrogate: Dibromofluorometh	ane	94.0 %	50-1.	50	"	Ħ	"	"	
Surrogate: 1,2-Dichloroethane	·d4	102 %	50-1.	50	#	N	π	**	
Surrogate: Toluene-d8		100 %	50-13	50	"	#	п	*	
Surrogate: 4-Bromofluorobenz	zne	102 %	50-1.	50	π	"	*	"	

Sequoia Analytical - Walnut Creek

Charlie Westwater, Project Manager

This report represents a revision of the original document. The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Deanna L. Harding

Report Revised: 13-Oct-00 10:44

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Sequoia Analytical - Walnut Creek

Westwater, Project Manager

This report represents a revision of the original document. The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 4 of 4

