R.T. NAHAS COMPANY Since 1947

REAL ESTATE DEVELOPERS AND INVESTORS

20630 PATIO DRIVE CASTRO VALLEY, CALIFORNIA 94546 TELEPHONE (510) 538-9600 FAX (510) 881-7618

October 24, 2003

Mr. Scott Seery Hazardous Materials Specialist Alameda County Health Care Services 1131 Harbor Bay Pkwy., Room 250 Oakland, CA 94502

Dear Scott:

Alameda County

Environmental Mealth Enclosed is the 8th semi-annual groundwater report for the former Unocal 76 service station on Redwood Road in Castro Valley.

While there are still contaminants in the ground and their concentrations are diminishing, I'm having a very difficult time understanding why I continue to spend \$5000+ per year to produce reports that are obviously being filed away in a dead file somewhere in the Alameda County Health Department, the same way they're being deadfiled in our office. If no further remediation is necessary, and we know there are no more pollution generators adding to the plumb, why are we wasting money and time continuing to monitor when we know what the ultimate outcome is? From the thousands and thousands of wells that have been monitored, we should know what the half life of these chemicals are and therefore be able to predict where the concentrations are going and eliminate this waste of money, for us personally, and the State of California.

I am going to ask our consultants to prepare a closure report as soon as possible. If I had come to this conclusion five years ago, I would have saved the State a lot of money. As in the past, I don't expect any response from you, as I have not received any for as long as I can remember. Perhaps a cessation of the monitoring will get somebody's attention.

Sincerely.

Randall E. Nahas

Enclosure REN/tar

Report – Eighth Semi-Annual Groundwater Monitoring (Third Quarter of 2003) Former Unocal 76 Service Station 20405 and 20629 Redwood Road Castro Valley, California

Shulonne da County

BSK ASSOCIATES

BSK JOB NO. P92057.3

Submitted to: R.T. Nahas Company Castro Valley, California

October 21, 2003

1181 Quarry Lane, Building 300 Pleasanton, CA 94566 (925) 462-4000 • FAX (925) 462-6283

October 21, 2003

BSK JOB NO. P92057.3

R. T. Nahas Company/Eden Managements 20630 Patio Drive Castro Valley, CA 94546

Attention: Mr. Randy T. Nahas

Subject: Report

Eighth Semi-Annual Groundwater Monitoring

(Third Quarter of 2003)

Former Unocal 76 Service Station 20405 and 20629 Redwood Road

Castro Valley, California

Dear Mr. Nahas:

As requested and authorized, we have performed groundwater monitoring well sampling at the above-referenced site. This report presents the groundwater data obtained during this and previous sampling events, conclusions based on the data collected during this event, and recommendations for further action. The site location is shown on Figure 1, Vicinity Map. The well locations are shown on Figure 2, Site Plan.

GROUNDWATER MONITORING ACTIVITIES - SEPTEMBER 2003

General

The Eighth semi-annual monitoring of groundwater monitoring wells at the project site (Figure 2, Site Plan) was performed on September 17, 2003. *Groundwater monitoring wells MW-2 and MW-7 could not be accessed during this sampling event as these wells were covered with fill soil and paved over, respectively.* Groundwater monitoring well MW-4 was abandoned during the remediation activities carried out in 1999 by others at the site. The semi-annual sampling schedule – with monitoring activities in the first and third quarter of each year – was requested by Mr. Scott Seery, case officer for the Alameda County Department of Environmental Health (ACDEH), in a letter addressed to the R. T. Nahas Company, dated November 2, 1999. Further, in accordance with Mr. Seery's letter of April 24, 2001, sampling of well MW-5 was discontinued as of the Fourth sampling round. Field procedures and observations are provided in the following text.

Field Work

All wells sampled were purged using an electric submersible pump. Three to four well casing volumes of water were removed from each well. Purge effluent was field monitored for pH, temperature and conductivity during purging to assess the influx of fresh formation water into the well. Purged water was

Eighth Semi-Annual Groundwater Monitoring Report (Third Quarter of 2003) Former Unocal 76 Service Station Castro Valley, California BSK Job No. P92057.3 October 21, 2003 Page 2

transferred to 55-gallon, DOT-approved steel drums for holding. Each drum was labeled according to its content, content source, and date of accumulation.

Prior to purging, the depth to water in each well was measured using a Solinst Electric Well Sounder, marked in twentieths of a foot. The water depth was then interpolated to the 0.01 foot increment from the tape. Each well was subsequently checked for floating and sinking immiscible product layers and sheen, using a clear bailer having dual check valves for point-source sampling. The piezometric contour and elevation, and well water elevations, are presented on Figure 3, Groundwater Elevation Contour Map.

Upon purge completion, each well was again measured to confirm a minimum of 80 percent well recovery prior to sampling. Water sampling was then performed with a disposable bailer. Sampling for contaminants was performed in the order of decreasing contaminant volatility. Each water sample was decanted into the appropriate container with preservative (as necessary), sealed, labeled and refrigerated for delivery to our State-certified laboratory.

A Well Field Log was prepared for each well sampled, recording the water depth, well volume, pH, water temperature, conductivity and other data. The Well Field Logs are presented as Figures 4.1 through 4.6.

Site Hydrology

The groundwater level was measured in four (4) wells on September 17, 2003, to assess the flow direction and gradient. On that date, groundwater flow was generally in a direction slightly east of south, with a gradient of 0.012 ft/ft (Figure 3).

Chemical Analyses

Water samples obtained from each of the sampled wells were analyzed for constituents related to gasoline, Total Petroleum Hydrocarbons as Gasoline (TPHg), Benzene, Toluene, Ethylbenzene and Xylene (BTEX) and Methyl-t-Butyl Ether (MTBE).

The contaminants tested for are those specified by ACDEH in their letter dated November 2, 1999. Current and prior analytical results are presented for comparison in Table 1. Records of past and present concentrations of BTEX and MTBE in the groundwater samples from MW-2 and MW-3 are graphically presented on Figures 5 and 6, respectively (no current data is available for MW-2 as it could not be accessed during this sampling event). The Chemical Test Data Sheets are presented in Appendix A along with the Project Chain-of-Custody record and QA/QC Summary Report.

BSK Job No. P92057.3 October 21, 2003 Page 3

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Compared to the previous results (from the March 2003 sampling event), trace contaminant concentrations associated with gasoline (BTEX compounds) are at lower concentrations in well MW-101, and somewhat lower concentrations in well MW-6. The Total Petroleum Hydrocarbons as Gasoline detected in previous events in well MW-7 probably represents Perchloroethane.

MTBE was detected in wells MW-3, MW-6 and MW-101. The MTBE detected in well W-101 (highest reading) was confirmed using EPA Method 8260 as requested by ACDEH.

Recommendations

Since, with the exception of a trace concentration of MTBE, no Total Petroleum Hydrocarbons as Gasoline and BTEX have been detected in well MW-3 for the last two and one-half years (see Table 1) and the TPH-g detected in previous events in well MW-7 is Perchloroethane-related, as indicated before, we recommend that monitoring and testing of these wells be discontinued. However, the remaining three groundwater monitoring wells (MW-2, MW-101 and MW-6) located at the site should be sampled on a semi-annual basis as requested by ACDEH (letter dated April 24, 2001). The next semi-annual sampling event is scheduled for March 2004.

REPORT DISTRIBUTION

Copies of this report should be submitted to the Alameda County Department of Environmental Health for their review. We are providing you with extra copies for this purpose. We understand that copies of the report may be forwarded by ACDEH to the Regional Water Quality Control Board in Oakland for their review.

Alameda County Department of Environmental Health 1181 Harbor Bay Parkway Alameda, CA 94502

LIMITATIONS

The findings and conclusions presented in this report are based on field review and observations, and from the limited testing program described in this report. This report has been prepared in accordance with generally accepted methodologies and standards of practice in the area. No other warranties, expressed or implied, are made as to the findings, conclusions and recommendations included in the report.

The findings of this report are valid as of the present. The passage of time, natural processes or human intervention on the property or adjacent property can cause changed conditions which can invalidate the findings and conclusions presented in this report.

* * *

BSK is pleased to continue to be of service to you during this project. If you have questions concerning the contents of the report, please do not hesitate to contact us.

The following are attached and complete this report:

TABLE	1	Summary of Groundwater Analysis
FIGURE	1	Vicinity Map
FIGURE	2	Site Plan
FIGURE	3	Groundwater Elevation Contour Map
FIGURES	4.1-4.6	Well Field Logs
FIGURE	5	BTEX/MTBE Concentrations in Groundwater - MW-2
FIGURE	6	BTEX/MTBE Concentrations in Groundwater - MW-3
Appendix '	"A"	Laboratory Chemical Test Data Sheets and Project Chain-of-Custody Record (4 pages), and Level II QC Summary Report (7 pages)

Respectfully submitted,

BSK Associates

Bob Yukinari, P.E., G.E. Senior Project Engineer C 35720, G.E. 2086

Bub Galman

Y. Alex Eskandari, P.E.

Project Manager

C 38101

YAE/BY:bv

(G:\Environmental\Projects\NAHAS\2003-q3\Report (Q3 - 2003).wpd)

Distribution:

R. T. Nahas Company (4 copies)

TABLE 1, SUMMARY OF GROUNDDWATER ANALYSIS, Results in ug/L

Sample	Well	Benzene	Toloene	Ethyl-	Xvienes	Methyl-f-Butyl	TPH	TPH:	Total	EPA 600
Date	Number	· · · · · · · · · · · · · · · · · · ·				Ether				
				44 3 November 7 1937 3 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
September	MW-2 ***									
2003	MW-3	ND	ND	ND	ND	13	ND			
	MW-5 *									
	MW-6	ND	ND	ND	ND	440	140			
	MW-7 **									
	MW-101	150	ND	100	110	850 ¹ /1100 ²	3000			
March	MW-2 ***									
2003	MW-3 ***					H=4				
	MW-5 *									
	MW-6	ND	ND	ND	ND	200	61			
	MW-7 **					1 0				 -
	MW-101	330	ND	440	370	1400 ¹ /840 ²	6300			
October	MW-2	ND	ND	ND	ND	280	92			
2002	MW-3	ND	ND	ND	ND	15	ND			
	MW-5 *			**-						
	MW-6	ND	ND	ND	ND	260	83			
	MW-7 **									
	MW-101	240	0.74	230	76	1500 ¹ /1400 ²	5200			
March	MW-2	2.6	0.31	2	1.7	420	140		W-7-	-
2002	MW-3	ND	ND	ND	ND	26	ND			
	MW-5 *					****				
	MW-6	ND	ND	ND	ND	370	91	***		
	MW-7	0.35	ND	0.91	2.2	7.7	280			
	MW-101	600	25	1600	3100	1600 ¹ /870 ²	19000			_4_
August	MW-2	ND	ND	ND	ND	$690^1/820^2$	160			
2001	MW-3	ND	ND	ND	ND	26	ND			
	MW-5 *									div se na
	MW-6	ND	ND	ND	ND	$280^{1}/350^{2}$	79			
	MW-7	ND	ND	ND	ND	$7.3^{1}/ND^{2}$	800			
	MW-101	630	ND	1500	480	1400	12000			
March	MW-2	22	1.5	17	27	1300 ¹ /1200 ²	1000			
2001	MW-3	ND	ND	ND	ND	190	ND			
	MW-5	ND	ND	ND	ND	ND	ND			
	MW-6	ND	ND	ND	ND	440	130			
	MW-7	ND	ND	ND	ND	ND	630			
	MW-101	1400	62	3400	7700	970	34000	***		

TABLE 1, SUMMARY OF GROUNDDWATER ANALYSIS, Results in ug/L

Sample	a Well			The State of the S		Methyl-t-Buryl	Control of the second	TPH	Total	FPA 601
Date	Number		od, or a	Benzene		Ether		Diesel	Oil & Grease	
September	MW-2	0.89	ND	1	0.65	620	180			
2000	MW-3	ND	ND	ND	ND	98	ND			
 	MW-5	ND	ND	ND	ND	ND	ND			
	MW-6	ND	ND	ND	ND	170	54			
	MW-7	3	0.32	13	27	ND	770			
	MW-101	1100	35	2900	400	$1600^{1}/1800^{2}$	12000		***	~~~
March	MW-2	14	0.92	16	24	1400	560			
2000	MW-3	0.61	ND	ND	ND	240	96			
	MW-5	ND	ND	ND	ND	ND	ND			
	MW-6	ND	0.49	ND	ND	260	78			
	MW-7	890	ND	ND	ND	ND	ND			
	MW-101	2500	490	4300	10000	$2400^{1}/1400^{2}$	40000			
November	MW-2	6.8	0.64	4.7	8.2	1200	360			
1997	MW-3	1.7	1.4	2.3	8.3	65	62			
	MW-4	ND	ND	ND	ND	ND	ND	ND		
	MW-5	ND	ND	ND	ND	ND	ND	ND		
	MW-6	ND	ND	ND	ND	9	ND	ND		40 mm da
	MW-7					= w ==				
April	MW-2	23	1.6	21	31.4	1800	470			
1997	MW-3	7.3	ND	3.3	5.4	230	120			
	MW-4	ND	ND	ND	ND	ND	ND	ND		
 	MW-5	ND	ND	ND	ND	ND	ND			
	MW-6	ND	ND	ND	ND	ND	ND			
 	MW-7									
October	MW-2	9.4	0.5	7.2	9.4	1400	180			
1996	MW-3	3.8	1.5	2.1	6.8	55	79			
l	MW-4	ND	ND	ND	ND	ND	ND	ND		
 	MW-5	ND	ND	ND	ND	ND	ND			
	MW-6	ND	ND	ND	ND	17	ND			
	MW-7									
April	MW-2	41	2.8	27	50		690			
1996	MW-3	8.4	1.6	4.7	14		170			
	MW-4	ND	ND	ND	ND		ND	ND		
	MW-5	ND	ND	ND	ND		ND			
	MW-6	2.9	2.9	ND	ND		ND			
	MW-7	ND	ND	ND	ND					

TABLE 1, SUMMART OF GROUND WATER ANALTSIS, Results in tight										(x age 3 01 0
Sample	Well	Benzene	Foluene	Ethyl-	Xylenes	Methyl-t-Bulyl	TPH	TPH	Total	EPA-601
Date	Number	3.94				Ether		Diesel	Oil & Grease	
October	MW-2	7.4	ND	5.1	5.5		450			
1995	MW-3	9	3.9	8.5	34		340			
	MW-4	ND	ND	ND	ND		ND	ND		
 	MW-5	ND	ND	ND	ND		ND			
	MW-6	ND	ND	ND	ND		ND			
	MW-7	ND	ND	ND	ND					
September	MW-101	170	94	150	710		9400			
1995										
April	MW-2	72	2.8	47	22		480			
1995	MW-3	26	0.6	40	19		450			
	MW-4	ND	ND	ND	ND		ND	ND	ND	
	MW-5	ND	ND	ND	ND		ND			
	MW-6	ND	ND	ND	ND		ND			
	MW-7	ND	ND	ND	ND				***	
January	MW-2	48	2.8	15	27		440			
1995	MW-3	26	0.6	14	45		250			
	MW-4	ND	ND_	ND	ND		ND	ND	2000	
October	MW-2	2.8	ND	2.9	1.8		97			
1994	MW-3	0.9	ND	ND	ND		ND			
	MW-4	ND	36	ND	1.3		70	ND	ND	
	MW-5	ND	71	0.4	1.7		87			
	MW-6	0.4	140	0.5	2.3	·	160			
July	MW-2	14	0.7	5.8	12		180		ent the titl	
1994	MW-3	7.2	0.4	1.6	4.6		52			
	MW-4	ND	0.6	ND	ND_		ND	86	ND	
April	MW-2	23	1.1	8.2	17		270			
1994	MW-3	17	1	4.9	24		62			
 	MW-4	ND	ND	ND	0.4		ND	ND	ND	
	MW-5	ND	0.4	ND	1	***	ND			
	MW-6	ND	0.3	ND	0.4		ND		e	***
	MW-7	ND	ND	ND	ND		3603			
January	MW-2	13	3.4	4.9	9.2		130		***	
1994	MW-3	5.5	2.1	2.6	14		69			
	MW-7	ND	ND	ND	ND		3303			

TABLE 1, SUMMARY OF GROUNDDWATER ANALYSIS, Results in ug/L

Sample	Well	Benzene	Tolnene	Affhyl-	Xvlenes	Methyl-t-Butyl	TPH	TPH	- Total	EPA 601
b-Date	Number			Benzene					Oil & Grease	
October	MW-2	4	ND	2.3	3.1		98			
1993	MW-3	5	ND	0.6	1.2		ND			
	MW-4	0.4	ND	ND	0.4	*	ND	ND	ND	Tetrachloroethene 0.7
										Trichloroethene 0.9
	MW-5	ND	ND	ND	ND		ND			
<u> </u>	MW-6	ND	ND	ND	ND		ND			
∥	MW-7	ND	ND	ND	0.7		3603			
July	MW-2	17	1.1	6	12		220			
1993	MW-3	24	11	14	82	~==	330			
	MW-4	ND	ND	ND	ND		ND	ND	1000	
	MW-5	ND	ND	ND	ND		ND			
]	MW-6	ND	ND	ND	ND		ND			
	MW-7	ND	ND	ND	ND		6803			
March	MW-2	110	32	67	28		720			1,2-Dichloroethane 0.6
1993	MW-3	32	0.9	64	13		330			
	MW-4	ND	ND	ND	ND		ND	ND	ND	ND
	MW-5	ND	ND	ND	ND		ND			Tetrachloroethane 0.8
	MW-6	ND	ND	ND	ND		ND			Tetrachloroethane 3.5
	MW-7	ND	ND	ND	ND		8303			Tetrachloroethene 3,700
								21543	21543	Trichloroethene 210
January	MW-2	11	5.1	1.4	6.3		170			
1993	MW-3	1.2	1	0.6	4.1		ND	•••		
ļ	MW-4	ND	ND	ND	ND	***	ND	ND	ND	
1	MW-5	ND	ND	ND	ND		ND			ye to see
	MW-6	ND	ND	ND	ND		ND			
	MW-7	ND	ND	ND	ND		19003			C111
November	MW-7						27003	ND		Chlorobenzene 2.0 Chloroform 2.0
1992										cis-1,2-Dichloroethene 180
										trans-1,2-Dichloroethene 1.5
	# * *									Tetrachloroethene 14,000
										Trichloroethene 660
October	MW-2	2.3	ND	2.3	3		ND			Themorocatene dod
1992	MW-3	2.1	ND	ND	0.3		ND			
1992	MW-4	ND	ND ND	ND ND	ND		ND ND	120	ND	
	MW-5	ND	0.4	ND	ND		ND	120 - - -	7.17.	
	MW-6	ND	ND	ND	ND		ND			
	MW-7	ND	ND	ND	ND		39003		****	

TABLE 1, SUMMARY OF GROUNDDWATER ANALYSIS, Results in ug/L

Sample	Well	Benzene	Toluene	* Ethyl-	Xylenes	Methyl-t-But	vi TPH	TPH-	Total	EPA 601 # 150
Date	Number			Benzene		Ether	Gasoline	Diesel	Oil & Grease	reasons and solitons in a second problem in the substitute of the soliton in the soliton of the
July	MW-2	10	ND	0.6	2.3		84			
1992	MW-3	1.3	0.4	ND	1.3		ND			
	MW-5	ND	ND	ND	ND		ND			
	MW-6	ND	ND	ND	ND		ND			
	MW-7	ND	ND	ND	ND		8303			
April	MW-2	70	0.3	15	7		300			
1992	MW-3	1	0.4	ND	0.9		ND			
	MW-4	ND	ND	ND	ND		ND	ND	ND	***
	MW-5	ND	ND	ND	ND		ND			
	MW-6	ND	0.3	ND	ND		ND		***	
	MW-7	0.4	0.3	0.3	0.9		13003			
January	MW-2	480	870	160	860		5200			
1992	MW-3	4	10	2	8		60			***
October	MW-2	2.9	ND	2.5	6		170			
1991	MW-3	ND	ND	ND	ND		ND	ND	ND	
	MW-4	ND	ND	ND	ND		ND	ND	ND	
July	MW-2	14	1	17	8		220			
1991	MW-3	14	14	33	8		220			
April	MW-2	640	520	170	790		4800			
1991	MW-3	4 50	270	150	760		3600			
	MW-4	ND	ND	ND	ND		ND	ND	ND	
January	MW-2	50	33	22	110		430			
1991	MW-3	29	3.3	9.7	34		110			
August	MW-2	21	3.9	7.2	28		180			
1990	MW-3	55	3.8	20	5 9		290			
	MW-4	ND	ND	ND	ND		ND	ND	ND	
MCL		1	150	700	1750	NA	NA	NA	NA	Chlorobenzene - NA
										Chloroform - NA
										cis-1,2-Dichloroethene 6.0
										trans-1,2-Dichloroethene 10.0
										1,2-Dichloroethane 0.5
										Tetrachloroethene 5.0
										Trichloroethene 5.0

TABLE 1, SUMMARY OF GROUNDDWATER ANALYSIS, Results in ug/L

(Page 6 of 6)

	Bútyl TPH TPH Total EPA 601
	Butyl TPH TPH Total EPA 601
	Gasoline Diesel Oil & Grease
Sample Well's Benzene Toluene Ethyl- Xylenes Methyl-t- Dave Number - Benzene Ether	

NOTES:

- ND = None Detected
- --- = Not Analyzed
- * = Water level souinding only. No sampling.
- ** = Unable to sample. Well box has been paved over.
- *** = Unable to sample. Well covered with pile of construction material.
- NA = Not Available
 - 1 = MTBE by EPA 8015 / 8020
 - 2 = MTBE by EPA 8260
 - 3 = TPHg values serve to demonstrate the presence of Perchloroethane.
- MCL = Maximum Contaminant Level from California Code of Regulations, Title 22, Article 5.5.

Semi-Annual Groundwater Monitoring Report Former Unocal 76 Service Station 20405 and 20629 Redwood Road Castro Valley, California

VICINITY MAP FIGURE 1 BSK Job No. P92057.3

Figure No. 4.1

WELL FIELD LOG

Well Observation:

Date: 09/17/2003

Sample Collection:

Date:

Project Name:

Groundwater Monitoring

Location:

Nahas/Former Union 76

Personnel:

WDP

Weather:

Sunny, Warm

WELL INFORMATION:

- Well Number	MW-2	Date Purged	N/A
Depth to Water - feet(TOC)		Purge Method	
Well Depth (feet)	28.85		
Water Volume (gallons)		Purge Begin	
Reference Elevation - feet(TOC)	+183.47	Purge End	
Groundwater Elevation (feet)	<u> </u>	Purge Rate	
Measurement Technique		Solinst Electric Well Sounde	er

IMMISCIBLE LAYERS:

Top:

Bottom:

Detection Method:

Collection Method:

WELL DEVELOPMENT/PURGE DATA:

TIME	=REMOVED =	ELECTRICAL CONDUCTIVITY (micromhos)	ρĦ	TEMP. (°F)	COLORCOMMENTS
		·			

SAMPLE COLLECTION DATA

Sampling Equipment:

TIME		
	AMOUNT/CONTAINER USED	SAMPLE INTERVAL

Field Notes: Sampling not possible — well covered with soil and can not be located.

Figure No. 4.2

WELL FIELD LOG

Well Observation: X Date: 09/17/2003 Sample Collection: X Date: 09/17/2003

Project Name: Groundwater Monitoring **Location:** Nahas/Former Union 76

Personnel: WDP

Weather: Sunny, Warm

WELL INFORMATION:

Well Number	MW-3	Date Purged	09/17/2003			
Depth to Water - feet(TOC)	10.00	Purge Method	Electric Submersible Pump			
Well Depth (feet)	28.85					
Water Volume (gallons):	3.07	Purge Begin	18:37			
Reference Elevation - feet(TOC)	+184.03	Purge End	18:55			
Groundwater Elevation (feet)	174.03	Purge Rate	0.70 gpm			
Measurement Technique	Solinst Electric Well Sounder					

IMMISCIBLE LAYERS:

Top: None Observed
Bottom: None Observed
Detection Method: Visual
Collection Method: Bailer

WELL DEVELOPMENT/PURGE DATA:

TIME	VOLUME REMOVED (gallons)	ELECTRICAL CONDUCTIVITY (micromhos)	На	TEMP.	COLOR/COMMENTS
18:42	3	-584	6.35	19.4	Clear, No Odor
18:47	6	574	6.40	18,6	
18:52	9	581	6.40	18.3	í
18:55	12	576	6.36	18.4	6

SAMPLE COLLECTION DATA

Sampling Equipment: Electric submersible pump

Cartain Land		a to the second of the second	
and the second contract of the second	alian pakamangan alian mangalan Padi ya Persi		and a distance is a deliberate contain
TIME	ANALYSIS	AMOUNT/CONTAINER USED	SAMPIJE INTERVAL
18:55	BTEX/MTBE & TPHg	4-40 ml glass VOA's with HCl	

Figure No. 4.3

WELL FIELD LOG

Well Observation: X

Date: 09/17/2003

Sample Collection: X

Date: 09/17/2003

Project Name: Groundwater Monitoring **Location:** Nahas/Former Union 76

Personnel:

WDP

Weather:

Sunny, Warm

WELL INFORMATION:

Well Number	MW-101	Date Purged	09/17/2003
Depth to Water - feet(TOC)	9.80	Purge Method	Electric Submersible Pump
Well Depth (feet)	29.50		
Water Volume (gallons)	19.2	Purge Begin	19:18
Reference Elevation - feet(TOC)		Purge End	19:50
Groundwater Elevation (feet)		Purge Rate	1.9 gpm
Measurement Technique	Solinst Electric Well Sounder		

IMMISCIBLE LAYERS:

Top: Odor, No Sheen Observed

Bottom: None Observed
Detection Method: Visual
Collection Method: Bailer

WELL DEVELOPMENT/PURGE DATA:

TIME	VOLUME REMOVED (gallons)	ELECTRICAL CONDUCTIVITY (micromhos)	Щ	TEMP. (°C)	COLOR/COMMENTS
19:26	13	507	6.35	19.2	Clear, With Oder
19:35	26	502	6.36	19.5	46
19:44	39	529	6.35	18.8	66
19:50	57	525	6.34	19.1	٠

SAMPLE COLLECTION DATA

Sampling Equipment: Electric Submersible Pump

TIME	ANALYSIS	AMOUNT/CONTAINER USED	SAMPLEINTERVAL
19:50	BTEX/MTBE & TPHg	4-40 ml glass VOA's with HCl	

Field Notes:

Figure No. 4.4

WELL FIELD LOG

Well Observation: X

Date: 09/17/2003

Sample Collection:

Date:

Project Name: Groundwater Monitoring **Location:** Nahas/Former Union 76

Personnel:

WDP

Weather:

Sunny, Cool

WELL INFORMATION:

Well Number	MW-5	Date Purged	N/A
Depth to Water = feet(TOC) = 1.0 82 / 2005	11.03	Purge Method	<u> </u>
Well Depth (feet)	34.5		
Water Volume (gallons)		Purge Begin	_
Reference Elevation - feet(TOC)	+183.92	Purge End	<u> </u>
Groundwater Elevation (feet)	172.89	Purge Rate	
Measurement Technique	Solinst Electric Well Sounder		

IMMISCIBLE LAYERS:

Top:

Bottom:

Detection Method: Collection Method:

WELL DEVELOPMENT/PURGE DATA:

thick the state of	VOLUME REMOVED (gallons)	ELECTRICAL -CONDUCTIVITY (micrombos)	pH	TEMP:	COLOR/COMMENTS
	-				
<u> </u>					

SAMPLE COLLECTION DATA

Sampling Equipment:

·· ·· — [· · · · ·] · · · · · · · · · · · · ·		
TIME ANALYSIS	AMOUNT/CONTAINER USED	
TIME ANALYSIS		

Field Notes: Groundwater Level Reading Only

Figure No. 4.5

WELL FIELD LOG

Well Observation:

Date: 09/17/2003

Sample Collection:

Date: 09/17/2003

Project Name: Groundwater Monitoring Location: Nahas/Former Union 76

Personnel:

WDP

Weather:

Sunny, Cool

X

X

WELL INFORMATION:

Well Number	MW-6	Date Purged	09/17/2003
Depth to Water - feet(TOC)	11.50	Purge Method	Electric Submersible Pump
Well Depth (feet)	26.78		•
Water Volume (gallons)	2.49	Purge Begin	17:45
Reference Elevation - feet(TOC)	+183.60	Purge End	18:02
Groundwater Elevation (feet)	172.10	Purge Rate	1.0 gpm
Measurement Fechnique	Solinst Electric Well Sounder		

IMMISCIBLE LAYERS:

Top: None Observed
Bottom: None Observed
Detection Method: Visual
Collection Method: Bailer

WELL DEVELOPMENT/PURGE DATA:

TIME	VOLUME REMOVED (gallons)	ELECTRICAL CONDUCTIVITY (micromhos)	ng lagarian	TEMP.	COLOR/COMMENTS
17:50	3.0	535	7.17	21.0	Cloudy, No Odor
17:55	6.0	559	6.63	20,2	Clear, No Odor
18:00	9.0	574	6.39	20.1	Clear
18:02	9,5	579	6.30	20.0	Clear

SAMPLE COLLECTION DATA

Sampling Equipment: Electric Submersible Pump

TIME	ANACYSIS	AMOUNT/CONTAINER I	USED SAMPLE INTERVAL
18:02	BTEX/MTBE & TPHg	4-40 ml glass VOA,s with	HCl

Field Notes:

Figure No. 4.6

WELL FIELD LOG

Well Observation: X

Date: 09/17/2003

Sample Collection:

Date:

Project Name: Groundwater Monitoring **Location:** Nahas/Former Union 76

Personnel:

WDP

Weather:

Sunny, Cool

WELL INFORMATION:

Well Number	MW-7	Date Purged	N/A
Depth to Water - feet(TOC)		Purge Method	
Well Depth (feet)	28.0		
Water Yolume (gallons)	_	Purge Begin	
Reference Elevation - feet(TOC)	+182.42	Purge End	
Groundwater Elevation (feet)		Purge Rate	
Measurement Technique	Solinst Electric Well Sounder		nder

IMMISCIBLE LAYERS:

Top:

Bottom:

Detection Method:

Collection Method:

WELL DEVELOPMENT/PURGE DATA:

REMOVED	ELECTRICAL CONDUCTIVITY	. ТЕМР: pH (°C)	COLOR/COMMENTS

SAMPLE COLLECTION DATA

Sampling Equipment:

		::::::::::::::::::::::::::::::::::::::		
	THE RESERVE OF THE PARTY OF THE			
			ONTAINER US	MPEE INTERVAL
TIME				

Field Notes: Unable to sample - well has been paved over (?)

APPENDIX "A"

CHEMICAL TEST DATA SHEETS
AND
PROJECT CHAIN-OF-CUSTODY RECORD
(4 PAGES)
AND
LEVEL II QA/QC SUMMARY REPORT
(7 PAGES)

BSK-Pleasanton

OCT 2 1 2003

RECEIVED

Cover Letter

10/10/2003

Alex Y. Eskandari BSK and Associates - Pleasanton 1181 Quarry Lane Suite 300 Pleasanton, CA 94566

BSK Submission Number: 2003091180

Dear Alex Y. Eskandari:

BSK Analytical Laboratories adheres to a quality assurance plan that has been approved by the State of California Department of Health Services. Our Environmental Laboratory Accreditation Program (ELAP) certification number is 1180.

BSK Analytical Laboratories has prepared this certificate of analysis in response to your request for analytical services. All information was taken from your Chain of Custody or related correspondence. BSK completed all sample handling and analytical procedures within the Laboratory's standard acceptability criteria with any exceptions noted below.

Sample Comments

Submission Order Test / Analyte Comment

2003091180 369272 Methyl-t-Butyl Ether

MTBE result determined by single point calibration.

If additional clarification of any information is required, please contact your Client Services Representative, Amber Shirey at (800)877-8310 or (559)497-2888.

Sincerely,

BSK Analytical Laboratories

Authorizing Signature(s)

Amber Shirey

Client Services Representative

ynalia Hamilton Cynthia Hamilton

QA/QC Supervisor

Alex Y. Eskandari BSK and Associates - Pleasanton 1181 Quarry Lane Suite 300 Pleasanton, CA 94566 Certificate of Analysis ELAP Certificate #1180

Report Issue Date: 10/10/2003

BSK Submission #: 2003091180

BSK Sample ID #: 369272

Project ID: P920573

Project Desc: Nahas/ Union 76

Submission Comments:

Sample Type: Sample Description: Liquid MW-6

Sample Comments:

Date Sampled: 09/17/2003

Time Sampled: 0602

Date Received: 09/18/2003

				Prep	Analysis
nits PQ	QL Di	lution I	DLR	Date	Date
g/L 50	0 1	5	0 (09/30/03	09/30/03
g/L 5	1	5	•	09/30/03	09/30/03
g/L 0.3	.3 1	0),3	09/30/03	09/30/03
g/L 0.3	.3 1	0),3	09/30/03	09/30/03
g/L 0.3	.3 1	0),3	09/30/03	09/30/03
g/L 0.3	.3 1	0).3	09/30/03	09/30/03
6 Rec -	1	N	√A (09/30/03	09/30/03
 5]	Rec -	Rec - 1	Rec - 1 1	Rec - 1 N/A	Rec - 1 N/A 09/30/03

TPH as Gasoline

Individual peaks inconsistent with fuel fingerprint

mg/L: Milligrams/Liter (ppm) mg/Kg: Milligrams/Kilogram (ppm) µg/L: Micrograms/Liter (ppb)

μg/Kg: Micrograms/Kilogram (ppb) %Rec: Percent Recovered (surrogates) PQL: Practical Quantitation Limit

DLR: Detection Limit for Reporting : PQL x Dilution

ND: None Detected at DLR

- H: Analyzed outside of hold time
- P: Preliminary result
- S: Suspect result. See Cover Letter for comments.
- E: Analysis performed by External laboratory. See External Laboratory Report attachments.

Alex Y. Eskandari BSK and Associates - Pleasanton 1181 Quarry Lane Suite 300 Pleasanton, CA 94566

Certificate of Analysis ELAP Certificate #1180

Report Issue Date: 10/10/2003

BSK Submission #: 2003091180

BSK Sample ID #: 369273

Project ID: P920573

Project Desc: Nahas/Union 76

Submission Comments:

Sample Type: Sample Description:

Liquid MW-3

Sample Comments:

Date Sampled: 09/17/2003

Time Sampled: 0655

Date Received: 09/18/2003

Organics							Prep	Analysis
Analyte	Method	Result	Units	PQL	Dilution	DLR	Date	Date
TPH as Gasoline	EPA 8015(M)	ND	μg/L	50	1	50	09/30/03	09/30/03
Methyl-t-Butyl Ether	EPA 8015/8020	13	μg/L	5	1	5	09/30/03	09/30/03
Benzene	EPA 8020	ND	μg/L	0.3	1	0.3	09/30/03	09/30/03
Ethylbenzene	EPA 8020	ND	μg/L	0.3	1	0.3	09/30/03	09/30/03
Toluene	EPA 8020	ND	μg/L	0.3	1	0.3	09/30/03	09/30/03
Total Xylenes	EPA 8020	ND	μg/L	0.3	1	0.3	09/30/03	09/30/03
Surrogate								
Fluorobenzene	EPA 8020	85.5	% Rec	-	1	N/A	09/30/03	09/30/03

mg/L: Milligrams/Liter (ppm) mg/Kg: Milligrams/Kilogram (ppm) μg/L: Micrograms/Liter (ppb)

μg/Kg: Micrograms/Kilogram (ppb)

%Rec: Percent Recovered (surrogates)

POL: Practical Quantitation Limit

DLR: Detection Limit for Reporting : PQL x Dilution

ND: None Detected at DLR

H: Analyzed outside of hold time

P: Preliminary result

S: Suspect result. See Cover Letter for comments.

E: Analysis performed by External laboratory. See External Laboratory Report attachments.

Alex Y. Eskandari BSK and Associates - Pleasanton 1181 Quarry Lane Suite 300 Pleasanton, CA 94566 Certificate of Analysis ELAP Certificate #1180

Report Issue Date: 10/10/2003

BSK Submission #: 2003091180

BSK Sample ID #: 369274

Project ID: P920573

Project Desc: Nahas/ Union 76

Submission Comments:

Sample Type: Sample Description: Liquid MW-101

Sample Comments:

Date Sampled: 09/17/2003

Time Sampled: 0750

Date Received: 09/18/2003

Organics							Prep	Analysis	
Analyte	Method	Result	Units	PQL	Dilution	DLR	Date	Date	
TPH as Gasoline	EPA 8015(M)	3000	μg/L	50	10	500	10/01/03	10/01/03	
Methyl-t-Butyl Ether	EPA 8015/8020	850	μg/L	5	10	50	10/01/03	10/01/03	
Benzene	EPA 8020	150	μ g/ L	0.3	10	3.0	10/01/03	10/01/03	
Ethylbenzene	EPA 8020	100	μ g/ L	0.3	10	3.0	10/01/03	10/01/03	
Toluene	EPA 8020	ND	μg/L	0.3	10	3.0	10/01/03	10/01/03	
Total Xylenes	EPA 8020	110	μg/L	0.3	10	3.0	10/01/03	10/01/03	
Methyl-t-Butyl Ether	EPA 8260	1100	μg/L	5	25	120	10/09/03	10/09/03	Н
Surrogate									
Fluorobenzene	EPA 8020	97.3	% Rec	-	10	N/A	10/01/03	10/01/03	

mg/L: Milligrams/Liter (ppm) mg/Kg: Milligrams/Kilogram (ppm) µg/L: Micrograms/Liter (ppb)

μg/Kg: Micrograms/Kilogram (ppb)

%Rec: Percent Recovered (surrogates)

PQL: Practical Quantitation Limit

DLR: Detection Limit for Reporting

: PQL x Dilution

ND: None Detected at DLR

H: Analyzed outside of hold time

P: Preliminary result

S: Suspect result. See Cover Letter for comments.

E: Analysis performed by External laboratory. See External Laboratory Report attachments.

1414 Stanislaus Street Fresno, CA 93706-1623 (559) 497-2888, 800 877-8310 (559) FAX 485-6935

2003091180 BSK P 918011

09/18/2003

TAT: Standard

Analyses Request Chain of Custody

Requested Analyses

Comment of Sample Description Contains and Sample Description	()))) 49/-2000, 00	UV 077-0JI	υ (<i>))</i> /// 1Ω	.A 40)-0	737				18161 23			1	1	1	1	1	ı	1 1	1 1
Copy to Summer of Sumpled Sampled Sampled Sampled Sample Description/Location Sample Date Sampled Sampled Sampled Sample Description/Location Sample Description/Locat	JVA:H	45/1	mian	76	1 14	led +5K	andri		938)	462-4000			,						
Sample Date Sampled Sampled Sample Description/Location Station Code Sample Description/Location Sample Description/Location/Location/Location/Location/Location/Location/Location/Location/Location/Location/Location/Location/Location/Location/Loca	90 BSK-	fless	andon			p900	573		925	462-628	<u> </u>	<u> </u>	米						
Sampled Sampled Sampled Sampled Sampled Sample Description/Location Sample Sampled Sampled Sample Description/Location	City, State, Zity	8 1/9/le	er, Ck	7					System w			$[\cdot]_{i \in \mathcal{S}}$	jij		ŀ				
Matrix Types L. Liquid S. solid G. Gas Type of Hazards Associated with Samples: Received / Relinquished by: Signature Print Name Company Date Time Received / Relinquished by: Receive	P1+1-4-1-1-1-1			Sample	dby: Men Sample) Pannoff Description/L	ocation				12/	N/V	MIK	}					
Marix Type, L. Liquid S. Solid G. Gae Type of Hazarda Associated with Samples: Received / Relanquished by: Received / Relanquished	1689	11/186	. Q	MA	-6				369	272	X	\mathbb{X}	X						
Marix Type, L. Liquid S. Solid G. Gae Type of Hazarda Associated with Samples: Received / Relanquished by: Received / Relanquished	$2 \cdot \omega$	17 6	<i>;5</i> 5	mis	-3				1	23	\nearrow	X	X	,					
Matrix Type: L - Liquid \$ - Solid G - Gas Type of Hazards Associated with Samples: Rush Priority: [L-2] Day [] - 5 Day T-QC Data package Legarit, Ill or IV (circle one) [] - Formal Chain of Custody Signature Print Name Company Date Time Received / Relinquished by: Rece	$(30)\mu$	1 1	7:50	MW	-101					74	X	X	X	- (الماتحة	crt 1	YTB	Ł	b S
Matrix Type: L Liquid S - Solid G - Gas Type of Hazards Associated with Samples: Rush Priority: [1-2] Day [] - 5 Day PQC Data package Legarit, Ill or IV (circle one) [] - Formal Chain of Custody Signature Print Name Company Date Time Received / Relinquished by: Rece				,						_			7		\perp				
Matrix Type: L - Liquid 5 - Solid G - Gas Type of Hazards Associated with Samples: Rush Priority: [1-2 Day [] - 5 Day Pec Data package Legar II, III or IV (circle one) [] - Formal Chain of Custody Signature Print Name Company Date Time Received / Relinquished by: Recei																			
Matrix Type: L - Liquid 5 - Solid G - Gas Type of Hazards Associated with Samples: Rush Priority: [1-2 Day [] - 5 Day Per Data package Legal II, III or IV (circle one) [] - Formal Chain of Custody Signature Print Name Company Date Time Received / Relinquished by: Recei	本件基本基本。 第二章 主题是一段工程之间。 2 本本本學學學學學																		
Matrix Type: L - Liquid 5 - Solid G - Gas Type of Hazards Associated with Samples: Rush Priority: [1-2 Day [] - 5 Day Per Data package Legal II, III or IV (circle one) [] - Formal Chain of Custody Signature Print Name Company Date Time Received / Relinquished by: Recei																			
Matrix Type: L - Liquid 5 - Solid G - Gas Type of Hazards Associated with Samples: Rush Priority: [1-2 Day [] - 5 Day Pec Data package Legar II, III or IV (circle one) [] - Formal Chain of Custody Signature Print Name Company Date Time Received / Relinquished by: Recei																			
Matrix Type: L - Liquid 5 - Solid G - Gas Type of Hazards Associated with Samples: Rush Priority: [1-2 Day [] - 5 Day Per Data package Legal II, III or IV (circle one) [] - Formal Chain of Custody Signature Print Name Company Date Time Received / Relinquished by: Recei					· · · · · · · · · · · · · · · · · · ·														
Matrix Type: L - Liquid S - Solid G - Gas Type of Hazards Associated with Samples: Rush Priority: [1-2 Day [] - 5 Day Pec Data package Legal II, III or IV (circle one) [] - Formal Chain of Custody Signature Print Name Company Date Time Received / Relinquished by: Recei			 										<u> </u>						
Matrix Type: L - Liquid 5 - Solid G - Gas Type of Hazards Associated with Samples: Rush Priority: [1-2 Day [] - 5 Day Pec Data package Legar II, III or IV (circle one) [] - Formal Chain of Custody Signature Print Name Company Date Time Received / Relinquished by: Recei			·					K	He Hidaa	LMIREL					\top				
Matrix Type: L - Liquid S - Solid G - Gas Type of Hazards Associated with Samples: Rush Priority: [L-2 Day [] - 5 Day T-QC Data package Level II, III or IV (circle one) [] - Formal Chain of Custody Signature Print Name Company Date Time Received / Reliaquished by: Recei				X = -	The High	of Hit 1	antim h		8260	i ii i							<u> </u>		
Signature Print Name Company Date Time Received / Relinquished by: R			d G - Gas			Additional Service	ces:	Ade	ditional Services	/ Charges Authorize	ed By:	<u>'</u>	Date:		بالمراجع الما	Am	ount \$		學 以此时间在
Received / Relinquished by: Received / Relin				V	[]-F	ormal Chain of	Custody	, <u>, </u>	G	Signature)						ist is a			
Received / Relinquished by: Referred / Relinquished by: Received / Relin	Passived / Deliconished		.,			Print Na	ame			Company				1	D	ate		Ti	ime
Referred / Reilinguistry by: Referred / Reilinguistry by: Referred / Reilinguistry by: 1/8/03 0942		-	The same of the sa								_			_				_	
Received in proportions by the state of the	The second second		10		1	— ————————————————————————————————————	, ,							4)/.	1~	\angle	76	700
	Received top Caboratory	Mrs.			Lagre	n I Ta	med	$- \mid \mathcal{A}$	166		W PER			Ž	44	103 11 -	7	711	12
	Aladian Value at 1	A TOO	An acted be-	in are due	in full within 30 do	e from wheatings		Elizabeth Statement of	are deemed de	dinguent Delinguent	halancee	are eub	iect to	nonthiu	4/8	/0.5	Charce	e end	interest o

QC Summary Report

10/14/2003

BSK Submission:

2003091180

Client:

BSK and Associates - Pleasanto

Date Submitted:

09/18/2003 P920573

Project ID:
Project Desc:

Nahas/ Union 76

BSK StarLims Run #: 61977 Analyst Initials: IMTIAZA						Instrume Method 1		GC1 BTEX_L	L			
Analyte Results Analyte	QC Type	Matrix Spike ID	Result	Units	% Rec or RPD	Spike RPD	Spk Conc	Matrix Conc	UCL	LCL	Date	
Benzene	LCS	N/A	9.8435	μg/L	98		10	ND	130	70	09/30/03	Acceptable
Ethylbenzene	LCS	N/A	9.5873	μg/L	95		10	ND	130	70	09/30/03	Acceptable
Methyl-t-Butyl Ether	LCS	N/A	40.7392	μg/L	101		40	ND	130	70	09/30/03	Acceptable
Toluene	LCS	N/A	9.7928	μg/L	97		10	ND	130	70	09/30/03	Acceptable
Total Xylenes	LCS	N/A	28.8767	μg/L	96		30	ND	130	70	09/30/03	Acceptable
Benzene	LCSD	N/A	9.9033	μg/L	99	0.61	10	ND	130	70	09/30/03	Acceptable
Ethylbenzene	LCSD	N/A	9.7703	μg/L	97	1.9	10	ND	130	70	09/30/03	Acceptable
Methyl-t-Butyl Ether	LCSD	N/A	40.1039	μg/L	100	1.6	40	ND	130	70	09/30/03	Acceptable
Toluene	LCSD	N/A	9.6140	μg/L	96	1.9	10	ND	130	70	09/30/03	Acceptable
Total Xylenes	LCSD	N/A	29.3939	μg/L	97	1.8	30	ND	130	70	09/30/03	Acceptable
Benzene	RBLK	N/A		μg/L	< 0.3				0.3	N/A	09/30/03	Acceptable
Ethylbenzene	RBLK	N/A	0	μg/L	< 0.3				0.3	N/A	09/30/03	Acceptable
Methyl-t-Butyl Ether	RBLK	N/A	0	μg/L	< 5				5	N/A	09/30/03	Acceptable
Toluene	RBLK	N/A	0	μg/L	< 0.3				0.3	N/A	09/30/03	Acceptable
Total Xylenes	RBLK	N/A	0	μg/L	< 0.3				0.3	N/A	09/30/03	Acceptable
TPH as Gasoline	RBLK	N/A	0	μg/L	< 50				50	N/A	09/30/03	Acceptable
Surrogate Results												
Analyte	QC Type		Surr. R	esult					UCL	LCL	Date	
Fluorobenzene	LCS	N/A	89.1	% Rec				89.3	130	70	09/30/03	Acceptable
Fluorobenzene	LCSD	N/A	98.0	% Rec				89.3	130	70	09/30/03	Acceptable
Fluorobenzene	RBLK		89.3	% Rec					N/A	N/A	09/30/03	Acceptable

BSK StarLims Run #: 61978							nt ID:	GC1				
Analyst Initials: IMTIAZA Analyte Results		Matrix			% Rec	Method l Spike	Number: Spk	BTEX_ Matrix	LL			
Analyte	QC Type	Spike ID	Result	Units	or RPD	RPD	Conc	Conc	UCL	LCL	Date	
Benzene	LCS	N/A	9.9854	μg/L	99		10	ND	130	70	10/01/03	Acceptable
Ethylbenzene	LCS	N/A	9.7137	μg/L	97		10	ND	130	70	10/01/03	Acceptable
Methyl-t-Butyl Ether	LCS	N/A	43.6815	μg/L	109		40	ND	130	70	10/01/03	Acceptable
Toluene	LCS	N/A	9.9695	μg/L	99		10	ND	130	70	10/01/03	Acceptable
Total Xylenes	LCS	N/A	29.6931	μ g /L	98		30	ND	130	70	10/01/03	Acceptable
Benzene	LCSD	N/A	10.0062	μg/L	100	0.2	10	ND	130	70	10/01/03	Acceptable
Ethylbenzene	LCSD	N/A	9.7732	μg/L	97	0.62	10	ND	130	70	10/01/03	Acceptable
Methyl-t-Butyl Ether	LCSD	N/A	43.1160	μg/L	107	1.3	40	ND	130	70	10/01/03	Acceptable
Toluene	LCSD	N/A	9.7573	$\mu \text{g}/L$	97	2.1	10	ND	130	70	10/01/03	Acceptable

%Rec: Percent Recovered

RPD: Relative Percent Difference

UCL: Upper Control Limit LCL: Lower Control Limit

LCS: Laboratory Control Sample

LCSD: Laboratory Control Sample Duplicate

Parent Sample: Sample used as background matrix for MS/MSD OOS-High: QC Result Above UCL

OOS-High: OOS-Low:

QC Result Below LCL

MS:

Matrix Spike Matrix Spike Duplicate

MSD: RBLK:

Reagent (Method) Blank

Page 1 of 7

QC Summary Report

10/14/2003

BSK Submission:

2003091180

Client:

BSK and Associates - Pleasanto

Date Submitted: Project ID:

09/18/2003 P920573

ningt D

Project Desc: Na	has/ Union 76											
BSK StarLims Run #: 61 Analyst Initials: IMTIA						Instrument ID: Method Number:			L			
Analyte Results Analyte	QC Type	Matrix Spike ID	Result	Units	% Rec or RPD	Spike RPD	Spk Conc	Matrix Conc	UCL	LCL	Date	
Total Xylenes	LCSD	N/A	29.8674	μ g /L	99	0.59	30	ND	130	70	10/01/03	Acceptable
Benzene	RBLK	N/A		μg/L	< 0.3				0.3	N/A	10/01/03	Acceptable
Ethylbenzene	RBLK	N/A	0	μg/L	< 0.3				0.3	N/A	10/01/03	Acceptable
Methyl-t-Butyl Ether	RBLK	N/A	0	μg/L	< 5				5	N/A	10/01/03	Acceptable
Toluene	RBLK	N/A	0	μg/L	< 0.3				0.3	N/A	10/01/03	Acceptable
Total Xylenes	RBLK	N/A	0	$\mu g/L$	< 0.3				0.3	N/A	10/01/03	Acceptable
TPH as Gasoline	RBLK	N/A	0	μg/L	< 50				50	N/A	10/01/03	Acceptable
Surrogate Results												
Analyte	QC Туре		Surr. R	esult					UCL	LCL	Date	
Fluorobenzene	LCS	N/A	97.5	% Rec				86.3	130	70	10/01/03	Acceptable
Fluorobenzene	LCSD	N/A	97.2	% Rec				86.3	130	70	10/01/03	Acceptable
Fluorobenzene	RBLK		86.3	% Rec					N/A	N/A	10/01/03	Acceptable

BSK StarLims Run #: 62386 Analyst Initials: CHERYLC				Instrument ID: VGCMS2 Method Number: 8260				IS2				
Analyte Results Analyte	QC Type	Matrix Spike ID	Result	Units	% Rec or RPD	Spike RPD	Spk. Conc	Matrix Conc	UCL	LCL	Date	
1,1-Dichloroethene	LCS	N/A	9.0	μg/L	72		12.5	ND	111.4	72.8	10/09/03	OOS-Low
Benzene	LCS	N/A	12.9	$\mu g/L$	103		12.5	ND	118	84	10/09/03	Acceptable
Chlorobenzene	LCS	N/A	13.3	μg/L	106		12.5	ND	117.8	83.6	10/09/03	Acceptable
Toluene	LCS	N/A	13.1	μg/L	104		12.5	ND	119.2	76.4	10/09/03	Acceptable
Trichloroethene (TCE)	LCS	N/A	13.1	μg/L	104		12.5	ND	121.9	83.8	10/09/03	Acceptable
1,1-Dichloroethene	LCSD	N/A	9.2	μg/L	73	2.1	12.5	ND	111.4	72.8	10/09/03	Acceptable
Benzene	LCSD	N/A	12.8	μg/L	102	0.78	12.5	ND	118	84	10/09/03	Acceptable
Chlorobenzene	LCSD	N/A	13.3	μg/L	106	0.0	12.5	ND	117.8	83.6	10/09/03	Acceptable
Toluene	LCSD	N/A	12.4	μg/L	99	5.4	12.5	ND	119.2	76.4	10/09/03	Acceptable
Trichloroethene (TCE)	LCSD	N/A	13.7	μg/L	109	4.4	12.5	ND	121.9	83.8	10/09/03	Acceptable
1,1,1,2-Tetrachloroethane	LDUP	372279	0	μ <u>e</u> /L	N/A			ND	30	N/A	10/09/03	Acceptable
1,1,1-Trichloroethane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,1,2,2-Tetrachloroethane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,1,2-Trichloroethane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,1-Dichloro-2-propanone	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,1-Dichloroethane	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
1,1-Dichloroethene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,1-Dichloropropene	LDUP	372279	0	μ g /L	N/A			ND	30	N/A	10/09/03	Acceptable

%Rec: Percent Recovered

RPD: Relative Percent Difference UCL: Upper Control Limit

LCL: Lower Control Limit LCS: Laboratory Control Sample

LCSD: Laboratory Control Sample Duplicate

Parent Sample: Sample used as background matrix for MS/MSD

OOS-High: OOS-Low: MS:

QC Result Above UCL QC Result Below LCL Matrix Spike

MSD: RBLK: Matrix Spike Duplicate Reagent (Method) Blank Page 2 of 7

QC Summary Report

10/14/2003

BSK Submission:

2003091180

Client: Date Submitted: BSK and Associates - Pleasanto

Project ID:

09/18/2003 P920573

Project Desc:

Nahas/ Union 76

BSK StarLims Run #: 62386			JULO HERRO PARI HERRO I			Instrume		VGCM	S2			
Analyst Initials: CHERYLO	7					Method						
Analyte Results Analyte	QC Туре	Matrix Spike ID	Result	Units	% Rec or RPD	Spike RPD	Spk Conc	Matrix Conc	UCL	LCL	Date	
1,2,3-Trichlorobenzene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,2,3-Trichloropropane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,2,4-Trichlorobenzene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,2,4-Trîmethylbenzene	LDUP	372279	95.7	μg/L	4			100	30	N/A	10/09/03	Acceptable
1,2-Dibromo-3-chloropropane (DB	CI LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,2-Dibromoethane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,2-Dichlorobenzene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,2-Dichloroethane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,2-Dichloropropane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,3,5-Trimethylbenzene	LDUP	372279	26.9	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,3-Dichlorobenzene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,3-Dichloropropane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,4-Dichlorobenzene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1-Chlorobutane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
2,2-Dichloropropane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
2-Butanone	LDUP	372279	138	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
2-Chlorotoluene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
2-Hexanone	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
3-Chloropropene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
4-Chlorotoluene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
4-Methyl-2-pentanone	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Acetone	LDUP	372279	753	μg/L	11			670	30	N/A	10/09/03	Acceptable
Benzene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Bromobenzene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Bromochloromethane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Bromodichloromethane	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
Bromoform	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
Bromomethane	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
Carbon Disulfide	LDUP	372279	. 0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
Carbontetrachloride	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Chlorobenzene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Chloroethane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Chloroform	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Chloromethane	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
cis-1,2-Dichloroethene	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
cis-1,3-Dichloropropene	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
Dibromochloromethane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable

%Rec: Percent Recovered

RPD: Relative Percent Difference UCL: Upper Control Limit

LCL: Lower Control Limit LCS: Laboratory Control Sample LCSD: Laboratory Control Sample Duplicate OOS-High:

Parent Sample: Sample used as background matrix for MS/MSD

OOS-Low: MS:

QC Result Above UCL QC Result Below LCL Matrix Spike

MSD: RBLK: Matrix Spike Duplicate Reagent (Method) Blank Page 3 of 7

QC Summary Report

10/14/2003

BSK Submission:

2003091180

Client:

BSK and Associates - Pleasanto

Date Submitted: Project ID:

09/18/2003 P920573

Project Desc:

Nahas/ Union 76

Project Desc : Nahas	/ Union 76											
BSK StarLims Run #: 62386						Instrume	nt ID:	VGCM	S2			
Analyst Initials: CHERYLO	C					Method 1		8260				
Analyte Results		Matrix			% Rec	Spike	Spk	Matrix				
Analyte	QC Туре	Spike ID	Result	Units	or RPD	RPD	Conc	Conc	UCL	LCL	Date	
Dibromomethane	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
Dichlorodifluoromethane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Diethyl ether	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
Ethylbenzene	LDUP	372279	5.60	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Ethylmethacrylate	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Hexachlorobutadiene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Hexachloroethane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
lodomethane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Isopropylbenzene	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
m,p-Xylenes	LDUP	372279	20.8	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Methyl-t-Butyl Ether	LDUP	372279	0	μ g /L	N/A			ND	30	N/A	10/09/03	Acceptable
Methylacrylate	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
Methylene Chloride	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
Methylmethacrylate	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
n-Butylbenzene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
n-Propylbenzene	LDUP	372279	14.6	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Naphthalene	LDUP	372279	13.7	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Nitrobenzene	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
o-Xylene	LDUP	372279	9.20	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
p-Isopropyltoluene	LDUP	372279	5.80	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
Pentachloroethane	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
sec-Butylbenzene	LDUP	372279	0	μ g /1.	N/A			ND	30	N/A	10/09/03	Acceptable
Styrene	LDUP	372279	0	$\mu g/L$	N/A			ND	30	N/A	10/09/03	Acceptable
tert-Butylbenzene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Tetrachloroethene (PCE)	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Toluene	LDUP	372279	31.3	$\mu g/L$	N/A			ИD	30	N/A	10/09/03	Acceptable
trans-1,2-Dichloroethene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
trans-1,3-Dichloropropene	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Trichloroethene (TCE)	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Trichloroflouromethane	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
Vinyl Chloride	LDUP	372279	0	μg/L	N/A			ND	30	N/A	10/09/03	Acceptable
1,1,1,2-Tetrachloroethane	RBLK			μg/L			— -		5	N/A	10/09/03	Acceptable
1,1,1-Trichloroethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1,1,2,2-Tetrachloroethane	RBLK	N/A	0	μg/L	< 5				5			Acceptable
1,1,2-Trichloroethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1,1-Dichloro-2-propanone	RBLK	N/A	0	μg/L	< 25				25	N/A	10/09/03	Acceptable
1,1-Dichloroethane	RBLK	N/A	0	μg/L	< 5				5			Acceptable
				_								

%Rec: Percent Recovered

RPD: Relative Percent Difference

UCL: Upper Control Limit

LCL: Lower Control Limit LCS: Laboratory Control Sample LCSD: Laboratory Control Sample Duplicate Parent Sample: Sample used as background matrix for MS/MSD

OOS-High:

QC Result Above UCL

OOS-Low: MS:

QC Result Below LCL Matrix Spike

MSD: RBLK:

Matrix Spike Duplicate Reagent (Method) Blank Page 4 of 7

QC Summary Report

10/14/2003

BSK Submission:

2003091180

Client:

BSK and Associates - Pleasanto

Date Submitted: Project ID:

09/18/2003 P920573

Project Desc:

Nahas/ Union 76

BSK StarLims Run #: 62386	Union 70			1		Instrume	at IDi	VGCM	(62			
Analyst Initials: CHERYLO	1	11111111	IIII (I FE A (DIH IUU		Method		8260	152			
Analyte Results		Matrix			% Rec	Spike	Spk	Matrix				
Analyte	QC Туре	Spike ID	Result	Units	or RPD	RPD	Conc	Cone	UCL	LCL	Date	
1,1-Dichloroethene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1,1-Dichloropropene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1,2,3-Trichlorobenzene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1,2,3-Trichloropropane	RBLK	N/A	0	μg/L	< 5	•			5	N/A	10/09/03	Acceptable
1,2,4-Trichlorobenzene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1,2,4-Trimethylbenzene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1,2-Dibromo-3-chloropropane (DB-	CI RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1,2-Dibromoethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1,2-Dichlorobenzene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1,2-Dichloroethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1,2-Dichloropropane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1,3,5-Trimethylbenzene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1,3-Dichlorobenzene	RBLK	N/A	. 0	μ g /L	< 5				5	N/A	10/09/03	Acceptable
1,3-Dichloropropane	RBLK	N/A	0	$\mu g/L$	< 5				5	N/A	10/09/03	Acceptable
1,4-Dichlorobenzene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
1-Chlorobutane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
2,2-Dichloropropane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
2-Butanone	RBLK	N/A	0	μg/L	< 25				25	N/A	10/09/03	Acceptable
2-Chlorotoluene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
2-Hexanone	RBLK	N/A	0	μg/L	< 25				25	N/A	10/09/03	Acceptable
3-Chloropropene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
4-Chlorotoluene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
4-Methyl-2-pentanone	RBLK	N/A	0	μg/L	< 25				25	N/A	10/09/03	Acceptable
Acetone	RBLK	N/A	0	μg/L	< 25				25	N/A	10/09/03	Acceptable
Benzene	RBLK	N/A	0	$\mu g/L$	< 5				5	N/A	10/09/03	Acceptable
Bromobenzene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Bromochloromethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Bromodichloromethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Bromoform	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Bromomethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Carbon Disulfide	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Carbontetrachloride	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Chlorobenzene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Chloroethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Chloroform	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Chloromethane	RBLK	N/A	0	$\mu g/L$	< 5				5	N/A	10/09/03	Acceptable
cis-1,2-Dichloroethene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable

%Rec: Percent Recovered

RPD: Relative Percent Difference

UCL: Upper Control Limit LCL: Lower Control Limit

LCS: Laboratory Control Sample LCSD: Laboratory Control Sample Duplicate

Parent Sample: Sample used as background matrix for MS/MSD

OOS-High: OOS-Low: QC Result Above UCL

MS:

QC Result Below LCL

MSD:

Matrix Spike Matrix Spike Duplicate

RBLK:

Reagent (Method) Blank

QC Summary Report

10/14/2003

BSK Submission:

2003091180

Client:

BSK and Associates - Pleasanto

Date Submitted:

09/18/2003 P920573

Project ID: Project Desc:

Nahas/ Union 76

BSK StarLims Run #: 62386 Analyst Initials: CHERYLC		3 INCLIER DIJIA NOOD ELIDI ERIM RIJA ERA				Instrument ID: Method Number:		VGCMS2 8260				
Analyte Results Analyte	QC Type	Matrix Spike ID	Result	Units	% Rec or RPD	Spike RPD	Spk Conc	Matrix Conc	UCL	LCL	Date	
cis-1,3-Dichloropropene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Dibromochloromethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Dibromomethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Dichlorodifluoromethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Diethyl ether	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Ethylbenzene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Ethylmethacrylate	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Hexachlorobutadiene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Hexachloroethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Iodomethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Isopropylbenzene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
m,p-Xylenes	RBLK.	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Methyl-t-Butyl Ether	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Methylacrylate	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Methylene Chloride	RBLK	N/A	0	μ g /L	< 25				25	N/A	10/09/03	Acceptable
Methylmethacrylate	RBLK	N/A	0	μ g /L	< 5				5	N/A	10/09/03	Acceptable
n-Butylbenzene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
n-Propylbenzene	RBLK	N/A	0	μg/L	< 5				5			Acceptable
Naphthalene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Nitrobenzene	RBLK	N/A	0	μg/L	< 25				25	N/A	10/09/03	Acceptable
o-Xylene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
p-Isopropyltoluene	RBLK	N/A	0	μg/I	< 5				5	N/A	10/09/03	Acceptable
Pentachloroethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
sec-Butylbenzene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Styrene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
tert-Butylbenzene	RBLK	N/A	0	μg/L	< 5				5			Acceptable
Tetrachloroethene (PCE)	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Toluene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
trans-1,2-Dichloroethene	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
trans-1,3-Dichloropropene	RBLK	N/A	0	μg/I	< 5				5	N/A	10/09/03	Acceptable
Trichloroethene (TCE)	RBLK	N/A	0	μg/L	< 5				5			Acceptable
Trichloroflouromethane	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
Vinyl Chloride	RBLK	N/A	0	μg/L	< 5				5	N/A	10/09/03	Acceptable
												-

Run Comments

Recovery of one LCS low for 1,1DCE; data accepted based on duplicate LCS.

%Rec: Percent Recovered

RPD: Relative Percent Difference

UCL: Upper Control Limit

LCL: Lower Control Limit

LCS: Laboratory Control Sample LCSD: Laboratory Control Sample Duplicate

Parent Sample: Sample used as background matrix for MS/MSD

OOS-High: OOS-Low:

QC Result Above UCL

MS:

QC Result Below LCL

MSD: RBLK: Matrix Spike Matrix Spike Duplicate Reagent (Method) Blank Page 6 of 7

QC Summary Report

10/14/2003

BSK Submission:

2003091180

Client:

BSK and Associates - Pleasanto

Date Submitted:

09/18/2003 P920573

Project ID: Project Desc:

Nahas/ Union 76

BSK StarLims Run #: 62386 Analyst Initials: CHERYLC Surrogate Results	I INBILE IIINA TIAND FRINI INJIA DIIC IINJ				Instrument ID: Method Number:	VGCM 8260	S2			
Analyte	QC Type	Surr. Result					UCL	LCL	Date	
Bromofluorobenzene	LCS	N/A	101.5	% Rec		100	130	70	10/09/03	Acceptable
Dibromofluoromethane	LCS	N/A	83.8	% Rec		90	130	70	10/09/03	Acceptable
Toluene-d8	LCS	N/A	99.8	% Rec		100	130	70	10/09/03	Acceptable
Bromofluorobenzene	LCSD	N/A	100.8	% Rec		100	130	70	10/09/03	Acceptable
Dibromofluoromethane	LCSD	N/A	98.1	% Rec		90	130	70	10/09/03	Acceptable
Toluene-d8	LCSD	N/A	98.9	% Rec		100	130	70	10/09/03	Acceptable
Bromofluorobenzene	LDUP	372279	166	% Rec		171	130	70	10/09/03	OOS-High
Dibromofluoromethane	LDUP	372279	99	% Rec		70	130	70	10/09/03	Acceptable
Toluene-d8	LDUP	372279	86	% Rec		85	130	70	10/09/03	Acceptable
Bromofluorobenzene	RBLK	N/A	103	% Rec			N/A	N/A	10/09/03	Acceptable
Dibromofluoromethane	RBLK	N/A	90	% Rec			N/A	N/A	10/09/03	Acceptable
Toluene-d8	RBLK	N/A	102	% Rec			N/A	N/A	10/09/03	Acceptable

Approved by: Cynollia Hamilton

%Rec: Percent Recovered RPD: Relative Percent Difference

UCL: Upper Control Limit LCL: Lower Control Limit LCS: Laboratory Control Sample LCSD: Laboratory Control Sample Duplicate

Parent Sample: Sample used as background matrix for MS/MSD

OOS-High: OOS-Low: MS:

QC Result Above UCL QC Result Below LCL Matrix Spike

MSD: Matrix Spike Duplicate RBLK: Reagent (Method) Blank