RECEIVED

By dehloptoxic at 8:27 am, Nov 16, 2006

SELF-MONITORING REPORT – SECOND QUARTER 2006 NPDES PERMIT NO. CAG912002

GROUNDWATER REMEDIATION AT CITY OF OAKLAND MUNICIPAL SERVICES CENTER 7101 EDGEWATER DRIVE OAKLAND, CALIFORNIA

Prepared for

City of Oakland Public Works Agency Environmental Services Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, CA94612

July 2006

Prepared by

OTG

Enviroengineering Solutions, Inc.

464 19th Street, Suite 206 Oakland, CA 94612

July 14, 2006

Mr. Farhad Azimzadeh Regional Water Quality Control Board 1515 Clay Street, Suite 1400 Oakland, CA 94612

Reference: RWQCB Order No. 01-100, NPDES Permit #CAG912002

Subject: Self-Monitoring Report – Second Quarter 2006

Groundwater Remediation at 7101 Edgewater Drive, Oakland, CA

Dear Mr. Azimzadeh:

On behalf of the City of Oakland, OTG Enviroengineering Solutions, Inc. (OTG) is pleased to submit this Self-Monitoring Report for a groundwater extraction, treatment and discharge system at the City of Oakland Municipal Services Center (MSC) located at 7101 Edgewater Drive, Oakland, California. No violations of RWQCB Order No. 01-100 and NPDES Permit #CAG912002 were identified during this reporting period of time.

Certification

I certify under penalty of law that this document and all attachments are prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Please contact the undersigned at (510) 465-8982 if you have questions or comments.

Sincerely,

OTG EnviroEngineering Solutions, Inc.

Xinggang Tong, PhD, PE Project Manager

Project Manager

cc: Mr. Gopal Nair, City of Oakland

Mr. Barney Chan, Alameda County Department of Environmental Health

464 19th Street, Suite 206, Oakland, CA 94612 (510) 465-8982, fax (510) 868-0667

Mailing Address: P.O. Box 70125, Oakland, CA 94612

E:\OTG\Oakland MSC\NPDES monitoring\2nd qtr rpt\Cover

TABLE OF CONTENTS

SEC	CTION	Page
1.	INTRODUCTION	1
2.	DESCRIPTION OF REMEDIATION SYSTEM	2
3.	OPERATIONS AND MAINTENANCE	2
4.	DISCHARGE MONITORING	4
5	REFERENCES	5

FIGURES

- 1. Site Location and Discharge Location Map
- 2. Identification of Free-Phase Petroleum Product Locations
- 3. Identification of Extraction Wells and Trench Layout
- 4. Remediation System Process & Instrumentation Diagram
- 5. Schematic of Groundwater Treatment System and Sampling Locations

TABLES

- 1 Summary of Laboratory Analytical Procedures
- 2 Summary of Operational Data and Field Measured Parameters
- 3 Summary of Petroleum Hydrocarbon Analytical Data
- 4 Summary of Analytical Data for Inorganic Constituents and Fish Bioassay
- 5 Summary of Analytical Data for Organic Constituents

APPENDICES

A. Laboratory Analytical Reports for June 26, 2006 Samples

1 INTRODUCTION

The City of Oakland Municipal Services Center (MSC) is located at 7101 Edgewater Drive, Oakland, CA (Figure 1). The site was originally part of a waterfront tidal marsh complex, which was filled between 1950 and 1971. The MSC occupies an area of approximately 17 acres. The City leased the land from the Port of Oakland for use as a corporation yard. Bordering the MSC site to the west and the north is the Martin Luther King Regional Shoreline Park. This park land is also owned by the Port of Oakland. Damon Slough is located to the north, and commercial developments are located to the east and south.

The MSC site has been the subject of numerous environmental investigations starting in about 1989. The suspected sources of on-site contamination include releases from underground storage tanks (USTs), gasoline and diesel fuel hydrant system, and the floor drain waste collection pits formerly located adjacent to Building No. 5. In addition, some or all of the material used to fill the site may have been waste or contaminated prior to placement at the site. A comprehensive investigation conducted by Baseline in 2000 identified the existence of free-phase petroleum hydrocarbon product at four separate areas within the MSC. They are labeled as Plumes A through D on Figure 2. Baseline's investigation is documented in the report of *Site History and Characterization* (January 2001).

Groundwater monitoring has been conducted quarterly from the fourth Quarter of 1989 through the third quarter of 2002 and then semi-annually to current. Shallow groundwater elevation varies from 2 to 10 feet below ground surface and is partially subject to tidal influence. Shallow groundwater flow is toward the southwest to the nearest shoreline along San Leandro Bay across much of the site. In the northern portion of the MSC, groundwater flows in a more northerly direction toward the curving shoreline and Damon Slough (Baseline, January 2001)

Pilot-scale Dual-Phase Extraction (DPE) tests were conducted in 2002 to enhance the removal of free-phase petroleum product from the four identified areas (Cambria, August 13, 2002 and URS, August 29, 2002). Extracted groundwater was treated on-site through two 2,000-lb granular activated carbon units connected in series and discharged to on-site storm drain via a NPDES permit granted by the San Francisco Bay Regional Water Quality Control Board (NPDES Permit No. CAG912002). Based on the pilot test result, the City retained Cambria in May 2003 to design a full-scale application of product recovery and groundwater/soil vapor extraction at Plumes C and D. Cambria's design was revised in October 2005 by Groundwater and Environmental Services (GES) to focus the first phase of product removal in Plume D. The final design drawings were included in Appendix A of the Startup Report (OTG, June 2006). Chemical oxidation and enhanced bioremediation through periodic injections of hydrogen peroxide have been implemented in Plumes A, B and C since July 2004.

In March 2006, the City retained URS Corporation and its subcontractor ERRG to construct the GES' revised remediation system of product recovery and groundwater/soil vapor extraction. The construction was completed in early May 2006. On May 22, 2006, the product recovery and groundwater extraction portion of the remediation system was turned on.

2. DESCRIPTION OF REMEDIATION SYSTEM

The remediation system consists of extraction of liquid (petroleum product and groundwater) and soil vapor from seven (7) wells located in Plume D area (Figure 3), separation of petroleum product from groundwater, treatment of groundwater by activated carbon, discharge of treated water to local storm drain via a NPDES permit, treatment of soil vapor, and discharge of treated vapor to the atmosphere via an air discharge permit. A process and instrumentation diagram of the remediation system is illustrated on Figure 4. Design details were included in Appendix A of the Startup Report (OTG, June 2006).

The seven wells are: RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, TBW-5 and RW-1. Their locations are shown on Figure 3. RW-D1 through RW-D5 were constructed in December 2001 specifically for remediation purposes, and RW-1 and TBW-5 were placed during backfilling of the excavation of former fuel hydrant lines in the early 1990s. Each well is equipped with a total fluid recovery pneumatic pump specifically designed for viscous petroleum product recovery. The pump is manufactured by Clean Environment Equipment in Oakland and has the Model # AP-Custom. An Ingersoll-Rand air compressor (model # SSR UP6-10) provides compressed air to the pneumatic pumps. Each well is also piped into a high vacuum extraction unit that can produce up to 28 inches of mercury vacuum. This vacuum unit can be operated at either mode of soil vapor extraction only or soil vapor and liquid simultaneous extraction. The pneumatic pumps and the vacuum extraction unit can be operated independently.

The liquid extracted by the pneumatic pumps and the vacuum unit is pumped into an oil/water separator (Model # AGM-3SS-90V, Hydro Quip, Inc.). Recovered oil is contained in 55-gallon drums, which are sent to an off-site oil recycling facility. Groundwater is treated through three (3) granular activated carbon (GAC) units connected in series (Model #ASC-2000, U.S.Filter/Westates Carbons) before been discharged into local storm drain. Each GAC unit contains 2,000 lbs of GAC. Figure 5 illustrates the groundwater treatment portion of the remediation system and identifies sampling ports.

A 40 hp liquid-ring vacuum pump capable of 500 ACFM and up to 28" Hg extracts soil vapor and liquid from the seven wells. The vapor is abated by a combination of thermal and catalytic oxidizer. At low vapor organic concentrations, activated carbon can also be used for vapor abatement.

3 OPERATIONS AND MAINTENANCE

On May 22, 2006, the pneumatic pumps were turned on to start the remediation process. The vacuum extraction portion remained off line. Because the free-phase product appears to be a mixture of gasoline, diesel, and some other highly viscous organics (petroleum tank bottom or coal tar like material), the vacuum extraction, if turned on, will vaporize gasoline and a portion of the diesel and will make the removal of the viscous product even more difficult. The plan is to first use the pneumatic pumps to remove the free-phase product as much as practically achievable and then to use the vacuum extraction system to enhance the removal of the remaining petroleum hydrocarbons.

The liquid extraction by the pneumatic pumps started at approximately 7:00 am of May 22, 2006. The extracted liquid was first processed through the oil/water separator, where oil is automatically skimmed into an oil reservoir. The groundwater was pumped out of the oil/water separator and treated through the three carbon units in sequence. The treated water was stored in an effluent holding tank. Water samples were collected between 11:30 am and 12:00 noon at the sampling port of E-1 (effluent, after the third carbon unit), Btw-1 (after the first carbon unit), and I-1 (influent) for the NPDES permit required and system performance monitoring. On-site measurement included temperature, pH, and electric conductivity using an Oakton pH/Con 10 meter (Serial #311648) and turbidity using an Oakton T-100 meter (Serial #316738). Before measurement, the pH probe was calibrated with standard solutions of pH 4.00, 7.00, and 10.00; the electric conductivity probe calibrated with 1413 ug/cm standard solution; and the turbidity meter calibrated with standards of 0.02, 20.0, 100, and 800 NTUs. The system was turned off at 2:15 pm when the effluent holding tank was near its capacity of 1,100 gallons.

Chemical analyses for the Day 1 samples were performed by Curtis & Tompkins, Ltd of Berkeley and Caltest of Napa. Both laboratories are certified by the State of California for water, wastewater and solid wastes analyses. Curtis & Tompkins provided the critical analyses for TPH gas, diesel, BTEX, and MTBE within 48-hour turnaround time, which is required by the NPDES permit. Caltest was unable to provide 48-hr turnaround time analysis, but was able to achieve lower detection limits for metals and cyanide and thus provided these analyses.

On May 24, 2006, the pneumatic pumps were turned on again after the result of the Day 1 samples met the discharge limit (details discussed in Section 4). The system ran continuously for another five days and was then sampled again following the NPDES permit requirement (Day 5 sampling). Curtis & Tompkins again provided the analysis for TPH gas, diesel, BTEX, MTBE, VOCs (EPA 8260), fuel oxygenates, effluent hardness and influent metals within 48-hr turnaround time and Caltest conducted the analysis for cyanide, SVOCs (EPA 625), PAHs (EPA 610), and effluent metals. The pneumatic pumps and the treatment system have been operated continuously and the treated groundwater discharged into the storm drain since receiving the Day 1 sample results.

Operations and maintenance (O&M) of the remediation system were performed following the instruction of *Operation &Maintenance Manual for Groundwater Remediation System at City of Oakland Municipal Services Center, Draft* (OTG, July 2006), which included daily check of air compressor's oil & pressure levels, functions of liquid level sensors and pumps, draining condensate from air tank, removing oil from the oil/water separator, and other tasks necessary for maintaining proper functions of the remediation system. Monthly sampling for the month of June and quarterly sampling for the second quarter were conducted on June 26, 2006. Fish toxicity bioassay was performed by Block Environmental Services of Pleasant Hill, California, and all other analyses by Curtis & Tompkins, Ltd.

The data received from laboratories were found to be of acceptable quality with qualifications as noted in the laboratory reports.

4 DISCHARGE MONITORING

Field measured data and laboratory analysis results are summarized in the following tables:

- Table 1 Summary of Laboratory Analytical Procedures
- Table 2 Summary of Operational Data and Field Measured Parameters
- Table 3 Summary of Petroleum Hydrocarbon Analytical Data
- Table 4 Summary of Analytical Data for Inorganic Constituents & Fish Bioassay
- Table 5 Summary of Analytical Data for Organic Constituents

Liquid extraction by the seven pneumatic pumps ran continuously from May 24 (after receiving laboratory results for Day 1 samples collected on May 22) through June 30, 2006 for this reporting period (Second Quarter 2006). A total of 121,471 gallons of groundwater was extracted within the plume D area, treated, and discharged into the local storm drain, resulting in the average monthly flow rate of 1.705 gallons per minute (gpm) for May and 2.405 gpm for June (Table 2). Approximately 100 gallons of floating product was recovered by the oil/water separator.

As summarized in Table 3, the Day 1 effluent sample (E-1) had TPH gas, diesel, BTEX, and MTBE concentrations below their respective laboratory reporting limits. The influent (I-1) is saturated with floating product and had TPH gas of 52 mg/L, TPH diesel of 25 mg/L, and benzene of 6.1 mg/L. MTBE was below the reporting limit in both the influent and the effluent samples. TPH gas, BTEX and MTBE were again below their reporting limits in the Day 5 effluent sample (E-1). However, non-standard, but within diesel range TPH was reported in the Day 5 effluent sampling at 130 ug/L. The activated carbon has much stronger adsorption affinity with diesel than with gasoline. If it were an adsorption breakthrough of the carbon columns, benzene and TPH gas would be first detected in the effluent. Since BTEX and TPH gas were below their reporting limits in the same effluent sample, the reported low level of TPH diesel was suspected to be either a laboratory error or cross contamination from the influent sample. Nevertheless, confirmation samples were collected immediately after receiving the Day 5 laboratory data. Three additional samples, one from each of E-1 (effluent), Btw-1 (after the first carbon unit), and Btw-2 (after the second carbon unit), were collected on June 2 and were analyzed for TPH diesel under 48-hr turnaround schedule. TPH diesel was below the reporting limit of 50 ug/L in each of the three confirmation samples. The confirmation sampling result is also summarized in Table 3. It is, therefore, concluded that the discharge did not violate the limit imposed by the NPDES permit for TPH diesel. The monthly sample collected on June 26 again confirmed that TPH diesel was below the 50 ug/L reporting limit at E-1 and Btw-1. In fact, there was no breakthrough from the first carbon vessel and the groundwater already met the discharge criteria after the treatment of the first carbon vessel.

Metals and other inorganic constituents (cyanide and hardness) are presented in Table 4. The gram per day discharge for each inorganic constituent was calculated based on the actual measured effluent concentration of the constituent and the monthly average discharge rate

(gallons per minute, Table 2). None of the inorganic constituents had daily mass discharge exceed its limit for the category of less than 10 gallon per minute (gpm).

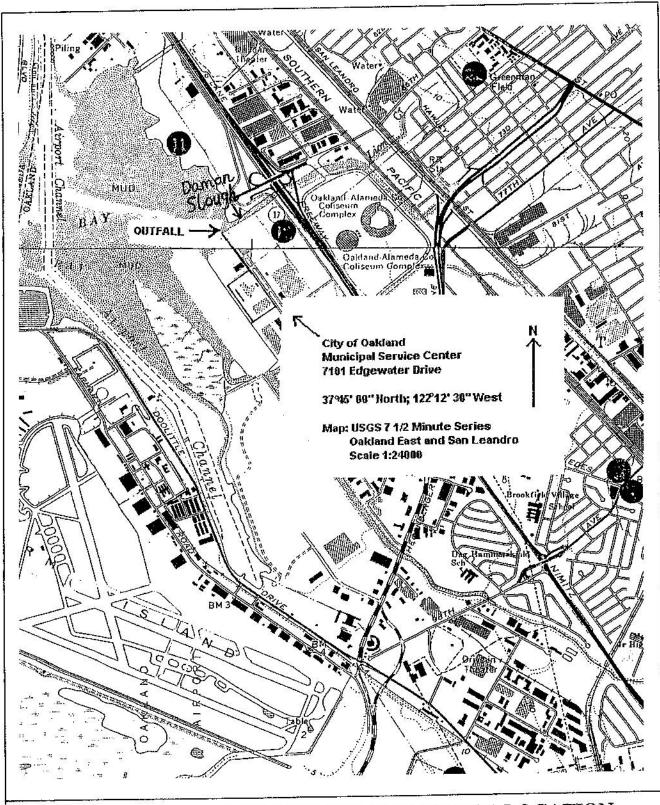
Fish bioassay data is included in Table 4. The rainbow trout survival was 100% in the 96-hour static renewal bioassay conducted on the June 26 sample.

Organic chemicals analyzed by EPA Methods 8260, 8310 (610), and 8270 (625) are listed in Table 5. Those organic chemicals that have defined discharge limits given in Table B.1 of the NPDES permit (Page 7) are first listed in the Table 5, followed by fuel oxygenates, PAHs, and other SVOCs. No organic chemicals were detected at or above their respective reporting limits in the May 30 effluent sample (E-1). All organic chemicals detected in the May 30 influent sample (I-1) were related to either gasoline or diesel and no fuel oxygenates were reported. A sample collected from Btw-1 (after the first carbon unit) on May 30 was also analyzed for VOCs by EPA 8260 and none of the VOCs was reported at or above its reporting limit. Breakthrough at the first carbon vessel has not yet to occur.

In summary, a total of 121,471 gallons of groundwater was extracted within plume D area, treated, and discharged into the local storm drain in compliance with the NPDES permit requirement in the Second Quarter 2006. Approximately 100 gallons of floating product was recovered, which will be sent to an offsite recycling facility for final disposition.

5 REFERENCES

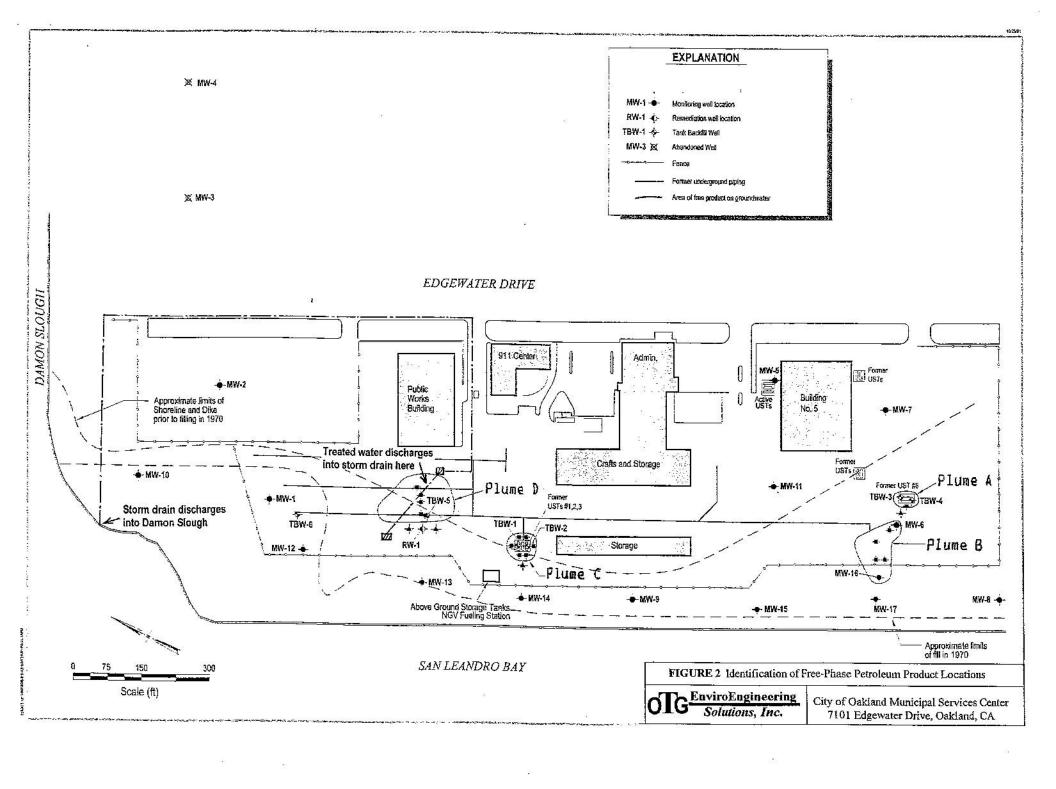
Baseline Environmental Consulting, Site History and Characterization, January 2001

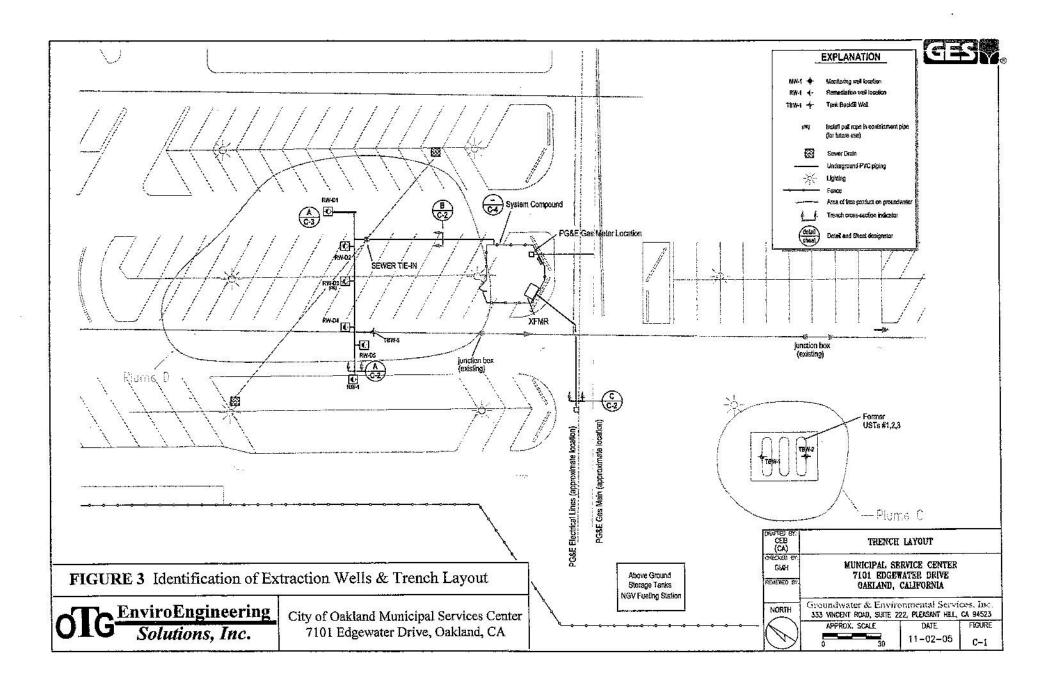

Cambria Environmental Technology, Inc. *TPE Pilot Test and Feasibility Report*, August 13, 2002.

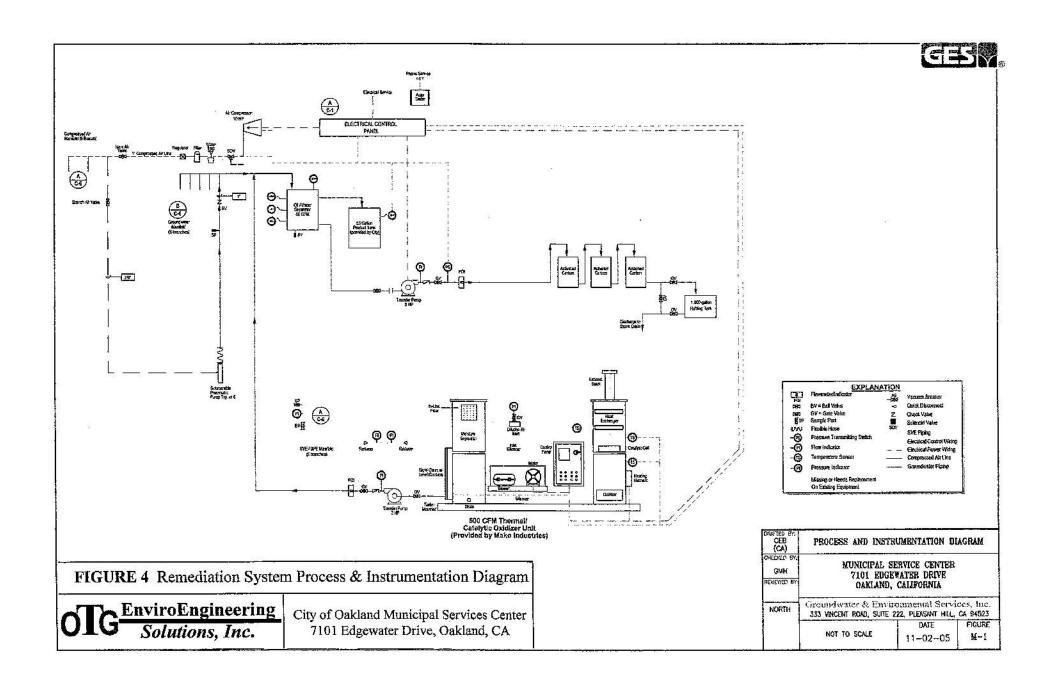
California Regional Water Quality Control Board – San Francisco Bay Region, *Authorization to Discharge Treated Groundwater Under the Requirements of Order No. 01-100, NPDES Permit No. CAG 912002*, April 23, 2002.

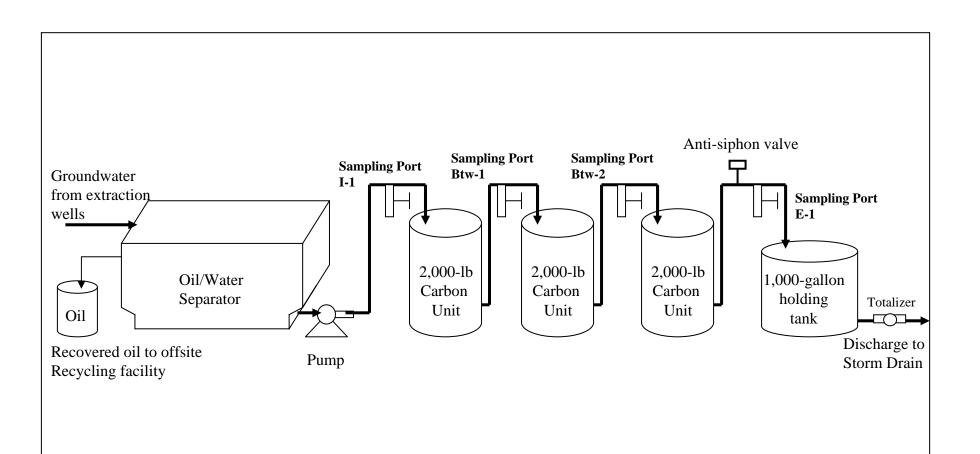
OTG Enviroengineering Solutions, Inc. Operation & Maintenance Manual for Groundwater Remediation System at City of Oakland Municipal Services Center, Draft, July 2006

OTG Enviroengineering Solutions, Inc. Startup Report, Groundwater Remediation at City of Oakland Municipal Services Center, June 2006


URS Corporation, Results of Dual-Phase Extraction Pilot Test for Plumes A & B, City of Oakland Municipal Services Center, August 29, 2002.




FIGURE 1 SITE LOCATION AND DISCHARGE LOCATION


Solutions, Inc.

City of Oakland Municipal Service Center 7101 EdgeWater Drive, Oakland, CA

FIGURE 5 Schematic of Groundwater Treatment System and Sampling Locations

EnviroEngineering

Solutions, Inc.

City of Oakland Municipal Services Center 7101 Edgewater Drive, Oakland, CA

Table 1 - Summary of Laboratory Analytical Procedures City of Oakland Municipal Services Center Groundwater Remediation Project

	5/22/06	5/30/06	6/26/06	7/25/06	9/5/06	
	0/22/00	0/00/00	0/20/00	& 8/11/06	3/3/33	
Flow rate	onsite totalizer	onsite totalizer	onsite totalizer		onsite totalizer	
Turbidity	on-site	on-site	on-site	on-site	on-site	
Fish bioassay	orr one	OII OILO	EPA/821/R-02/012	orr one	EPA/821/R-02/012	
pH	on-site	on-site	on-site	on-site	on-site	
DO	OIT-SILC	OII-SILC	OIT-SILC	OIT-SILC	OIT-SILC	
Temperature	on-site	on-site	on-site	on-site	on-site	
E. conductivity		on-site	on-site	on-site	on-site	
L. Coridactivity	OH-Site	OIT-SILC	OH-Site	OIT-SILC	OII-Site	
Benzene	EPA 8021B	EPA 8021B	EPA 8021B	EPA 8021B	FPA 8260B	
Toluene	EPA 8021B	EPA 8021B	EPA 8021B	EPA 8021B		
Ethylbenzene		EPA 8021B	EPA 8021B	EPA 8021B		
Total xylenes	EPA 8021B	EPA 8021B	EPA 8021B	EPA 8021B		
MTBE	EPA 8021B	EPA 8021B	EPA 8021B	EPA 8021B		
TPH g&d	EPA 8015B	EPA 8015B	EPA 8015B	EPA 8015B		
EDB	LI / OO TOD	EPA 8260B	LITTOTOD	LI / COTOB	EPA 8260B	
VOCs		EPA 8260B			EPA 8260B	
TAME		EPA 8260B			EPA 8260B	
DIPE		EPA 8260B			EPA 8260B	
ETBE		EPA 8260B			EPA 8260B	
TBA		EPA 8260B			EPA 8260B	
Ethanol		EPA 8015B			EPA 8260B	
Methanol		EPA 8015B			EPA 8015B	
SVOCs		EPA 625			EPA 8270C	
PAHs		EPA 610			EPA 8310	
Hardness	SM 2340B	SM 2340B	SM 2340B		SM 2340B	
Antimony	EPA 200.8	EPA 200.8	EPA 6020		EPA 6020	
Arsenic	EPA 200.8	EPA 200.8	EPA 6020		EPA 6020	
Beryllium	EPA 200.8	EPA 200.8	EPA 6020		EPA 6020	
Cadmium	EPA 200.8	EPA 200.8	EPA 6020		EPA 6020	
Chromium	EPA 200.8	EPA 200.8	EPA 6020		EPA 6020	
Cr +6	EPA 7196	EPA 7196	EPA 7199		EPA 7199	
Copper	EPA 7190 EPA 200.8	EPA 7 190 EPA 200.8	EPA 7199 EPA 6020			
Copper	EPA 200.6 EPA 335.2	EPA 200.6 EPA 335.2	EPA 335.2		EPA 6020 EPA 335.2	
Lead			EPA 6020			
	EPA 200.8 EPA 245.1	EPA 200.8			EPA 6020	
Mercury Nickel		EPA 245.1 EPA 200.8	EPA 7470A		EPA 7470A	
	EPA 200.8		EPA 6020		EPA 6020	
Selenium	EPA 200.8	EPA 200.8	EPA 6020		EPA 6020	
Silver	EPA 200.8	EPA 200.8	EPA 6020		EPA 6020	
Thallium	EPA 200.8	EPA 200.8	EPA 6020		EPA 6020	
Zinc	EPA 200.8	EPA 200.8	EPA 6020		EPA 6020	
pH/Conductivit	 y/Tempt were n	l neasured on-site	l e using a Oakton p	H/Con 10 m	eter, Serial #311648	,
calibrated daily						
Turbidity was r	neasured on-sit	e using a Oakto	n T-100 meter, Se	erial #316738	, calibrated daily bet	fore us

Table 2 - Summary of Operational Data and Field Measured Parameters City of Oakland Municipal Services Center Groundwater Remediation Project

Date	Time		Efflu	uent (E-1)		lı	nfluent	(I-1)	Btw-1	Btw-2	Totalizer	Monthly	Monthly	Product	Notes
		рН	Tempt	E. conduc	Turbidity	рН	Tempt	E. cond.			Reading	Treated	ave. rate	recovered	b
			(°C)	(ms/cm)	(NTU)		(°C)	(ms/cm)			(gallons)	(gallons)	(gal/min)	(gallons)	
			, ,	,	,		` '	,				,	,	, ,	
5/22/2006	7:00										1,389				Before turn on system
5/22/2006	11:25	8.3	20.4	8.81	0.2	7.12	21.4	10.2	sampled		2,050				treated water held in tank
5/22/2006	14:15										2,414				stopped, waiting for analy data
5/24/2006	13:00										2,414				system on, start discharge
5/30/2006	12:30	7.48	19.4	8.25	0.04	6.98	23.1	8.32	sampled		14,230	12,841		20	
5/31/2006	10:00										18,980	17,591	1.705		
6/2/2006	16:30								sampled	sampled	31,080				
6/9/2006	8:30										48,610				
6/16/2006	10:20										67,755				
6/19/2006	9:40										74,670				
6/22/2006	11:00										90,480				
6/26/2006	9:00	7.32	22.3	13	0.1	7.37	23.3	13.4	sampled	sampled	106,950				Monthly monitoring
6/30/2006	9:00									·	122,860	103,880	2.405	100	
7/5/2006	10:00										140,500				two full drums of product
7/12/2006	9:30								sampled	sampled	163,230				·
7/19/2006	9:30									·	182,740				
7/25/2006	9:30	7.35	23.6	12.5	0.04	7.4	24.2	13.1	sampled		197,030				Monthly monitoring
7/31/2006	19:30										212,010	89,150	1.997	155	
8/2/2006	19:30										216,790			165	three full drums of product
8/9/2006	9:00										233,260				Morgan removed 3 drums pro-
8/11/2006	9:30	6.95	21.5	12.8	0.1	7.25	22.3	12.6	sampled	sampled	238,380				Monthly monitoring
8/14/2006	8:00									·	246,180				lowered pumps in wells
8/17/2006	11:30										255,030				
8/28/2006	11:30										283,080				
9/1/2006	18:30										294,910	82,900	1.801	220	one full drum of product
9/5/2006	11:00	7	19.7	12.3	0.1	7.1	22.8	11.5	sampled	sampled	301,450				Monthly & Qtrly monitoring
9/9/2006	18:00										310,750				
9/17/2006	13:00										333,310				
9/22/2006	13:30										349,210				
9/27/2006	10:00										364,350				
9/29/2006	15:00										371,290				
10/2/2006	14:30										380,360	85,450	1.925	245	
10/4/2006	11:00	7.1	19.4	12.67	0.04	7.3	21.5	12.22	sampled	sampled					monthly monitoring

Table 3 - Summary of Petroleum Hydrocarbon Analytical Data City of Oakland Municipal Services Center Groundwater Remediation Project

Date			E	ffluent (E-	1)					lı	nfluent (I-1	· f		
	TPH gas	TPHdiesel	benzene	toluene	ethyl benz	xylenes	MTBE	TPH gas	TPHdiesel	benzene	toluene	ethyl benz	xylenes	MTBE
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Eff. Limit	50	50			5		13							
5/22/2006		, ,		` '	ND (0.5)	ND (0.5)	ND (2.0)		25,000 (h,l)	6,100	5,200	1,200		ND (100)
5/30/2006		130 (y, a1)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	57,000	9,200 (l,y)	4900	5300	1100	7100	ND (36)
6/2/2006		ND (50)												
6/26/2006	ND (50)	ND (50)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (2.0)	50,000	10,000(h,l,y)	4800	6900	1100	7200	ND (50)
					>									
7/25/2006		. ,			ND (0.5)	ND (0.5)	ND (2.0)		4,000(l,y)	5800	8800	1100		ND (80)
8/11/2006		` '	ND (0.5)	, ,	ND (0.5)	ND (0.5)	4.6 (a1a)		4,100 (l,y)	4900	7300			ND (100)
9/5/2006	ND (50)	ND (50)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (2.0)	44,000	4,800 (l,y)	4700	4800	1200	5400	ND (50)
(a1) - false	oositive dete	ection, confi	irmed ND o	n 6/2/06 sa	mples at E-	1. Btw-1 &	Btw-2	(a1a) - fals	e positive, co	nfirmed NI	D on 9/5/06	sample		
(h) - heavier						, 🗴	T	,			21. 3, 3, 3			
(I) - lighter h														
(y) - sample	•				not resemb	ole standar	d							

Table 3 - Summary of Petroleum Hydrocarbon Analytical Data City of Oakland Municipal Services Center Groundwater Remediation Project

Date	After 1st Carbon Unit (Btw-1) After 2nd Carbon Unit (Btw-2)										byl benz xylenes M g/L) (ug/L)			
	TPH gas	TPHdiesel	benzene	toluene	ethyl benz	xylenes	MTBE	TPH gas	TPHdiesel	benzene	toluene	ethyl benz	xylenes	MTBE
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Eff. Limit	50	50			_	_		50	50	5	5	5	5	13
5/22/2006	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			· · ·	, ,	ND (0.5)	ND (2.0)							
5/30/2006	ND (50)		ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)							
6/2/2006	ND (50)	ND (50)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)		NA	ND (50)					
6/26/2006	ND (50)	ND (50)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (2.0)	ND (50)	NA	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (2.0)
7/12/2006	ND (50)	ND (50)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (2.0)	ND (50)	NA	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	3.9 (a2)
7/25/2006	ND (50)		ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	2.7							
8/11/2006	ND (50)	ND (50)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	5.1 (a2a)	ND (50)	NA	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	5.4 (a2a)
9/5/2006	ND (50)	ND (50)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (2.0)	NA	NA	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (2.0)
(a2) - false p	positive de	tection, con	firmed ND a	after the firs	t carbon un	it	(a2a) - fals	e positive d	etection, co	nfirmed ND	on 9/5/06	sample		
(h) - heavier							, ,	•	,					
(I) - lighter h	,			•										
(y) - sample	•				s not resem	ble standar	d							

Table 4 - Summary of Analytical Data for Inorganic Constituents and Fish Bioassay City of Oakland Municipal Services Center Groundwater Remediation Project

Constituen	Unit	Eff Limit	Effluei	nt (E-1)						
		(<10 gpm)	5/22/06	5/30/06	6/26/06	9/5/06				
Antimony	ua/l		2.3	1.8	0.12	0.13				
7 didiiiiony	g/day	3	0.02137		0.001572					
Arsenic	ug/L	- 0	36		7	3				
7 (1001110	g/day	1	0.33444		0.0917					
Beryllium	ug/L				ND (0.055)					
Dorymann	g/day	3	(0.00)	(0.0)	(0.000)	(0.12)				
Cadmium	ug/L		1	0.5	ND (0.14)	ND (0.17)				
•	g/day	1	0.00929		(011.)	(0111)				
Total Cr	ug/L	-		ND (0.5)	0.62	0.86				
	g/day	2	0.0288		0.008122					
Cr +6	ug/L		ND (1.0)			ND (0.5)				
	g/day	2		. ,	\ /					
Copper	ug/L		1.3	0.9	1.3	1.5				
	g/day	3	0.01208	0.00836	0.01703	0.01589				
Lead	ug/L		ND (0.1)	ND (0.25)	0.26	0.3				
	g/day	5			0.003406	0.00318				
Mercury	ug/L		ND(0.008)	ND(0.2)	ND (0.2)	ND (0.06)				
	g/day	0.01								
Nickel	ug/L		11	67	15	9.6				
	g/day	5	0.10219	0.62243	0.1965	0.10166				
Selinium	ug/L		3	3	1.2	ND (0.35)				
	g/day	2	0.02787	0.02787	0.01572					
Silver	ug/L		ND (0.02)	ND (0.1)	ND (0.041)	ND (0.07)				
	g/day	1								
Thallium	ug/L			ND (0.1)		ND (0.03)				
	g/day	3	0.00056		0.002751					
Zinc	ug/L			ND (10)	44					
	g/day	10	0.01858		0.5764					
Cyanide	ug/L		ND (0.8)	ND (3)	ND (10)	ND (10)				
	g/day									
Hardness			560	960	1100	1100				
Fish Bioas										
% surviva	I of Rainbo	w Trout			100%	100%				

Table 4 - Summary of Analytical Data for Inorganic Constituents and Fish Bioassay City of Oakland Municipal Services Center Groundwater Remediation Project

Inorganic	Unit	Eff Limit	Influe					
		(<10 gpm)	5/22/06	5/30/06				
Antimony	ug/L		ND (60)	ND (1)				
•	g/day	3	, ,					
Arsenic	ug/L		7.2	8.5				
	g/day	1	0.06689	0.07897				
Beryllium	ug/L		ND (2)	ND (1)				
	g/day	3						
Cadmium	ug/L		34	10				
	g/day	1	0.31586	0.0929				
Total Cr	ug/L		ND (10)	ND (1)				
	g/day	2						
Cr +6	ug/L		ND (0.5)	ND (0.5)				
	g/day	2						
Copper	ug/L		250					
	g/day	3	2.3225					
Lead	ug/L		28	21				
	g/day	5	0.26012					
Mercury	ug/L		ND (0.2)	ND (0.2)				
	g/day	0.01						
Nickel	ug/L		68					
	g/day	5		0.17651				
Selinium	ug/L			ND (1)				
	g/day	2	0.08733					
Silver	ug/L		ND (5)	ND (1)				
	g/day	1						
Thallium	ug/L			ND (1)				
	g/day	3	0.23225					
Zinc	ug/L		31	57				
	g/day	10	0.28799					
Cyanide	ug/L		10	10				
	g/day		0.0929	0.0929				

		Effluent (E	:_1\			
		Linuent (E	ı <i>)</i>			
	Max Daily	5/30/06	9/5/06			
	Eff. Limit	5/30/06	9/5/06			
		/ua/L\	/ua/L\			
Danasa	(ug/L)		(ug/L)			
Benzene Corbon totalonido	5		ND (0.5)			
Carbon tetrachloride	5		ND (0.5)			
Chloroform	5		ND (0.5)			
1,1-Dichloroethane	5		ND (0.5)			
1,2-Dichloroethane	5		ND (0.5)			
1,1-dichloroethylene	5		ND (0.5)			
Ethylbenzene	5		ND (0.5)			
Methylene chloride	5		ND (0.5)			
Tetrachloroethylene	5		ND (0.5)			
Toluene	5		ND (0.5)			
c-1,2-Dichloroethylene	5		ND (0.5)			
t-1,2-Dichloroethylene	5		ND (0.5)			
1,1,1-Trichloroethane	5		ND (0.5)			
1,1,2-Trichloroethane	5		ND (0.5)			
Trichloroethylene	5		ND (0.5)			
vinyl chloride	5		ND (0.5)			
total xylenes	5		ND (0.5)			
MTBE	13		ND (0.5)			
Ethylene dibromide	5		ND (0.5)			
Trichlorotrifluoroethane	5		ND (5)			
TPH gas	50		ND (50)			
TPH diesel	50	ND (50)	ND (50)			
TANA		ND (0.5)	ND (0.5)			
TAME			ND (0.5)			
DIPE			ND (0.5)			
ETBE			ND (0.5)			
TBA			ND (10)			
Ethanol		ND(1000)				
Methanol		, ,	ND(1000)			
Other VOCs (EPA 8260)		ND	ND			
PAHs (EPA 8310 or 610)						
All analytes		ND (1.0)	ND (0.1)			
SVOCs(EPA8270 or625)						
All analytes		ND (5.0)	ND (9.4)			

	Influent (I-1)				
	5/30/06				
	(ug/L)				
Benzene	4900				
Carbon tetrachloride	ND (36)				
Chloroform	ND (36)				
1,1-Dichloroethane	ND (36)				
1,2-Dichloroethane	ND (36)				
1,1-dichloroethylene	ND (36)				
Ethylbenzene	1100				
Methylene chloride	ND (36)				
Tetrachloroethylene	ND (36)				
Toluene	5300				
c-1,2-Dichloroethylene	ND (36)				
t-1,2-Dichloroethylene	ND (36)				
1,1,1-Trichloroethane	ND (36)				
1,1,2-Trichloroethane	ND (36)				
Trichloroethylene	ND (36)				
vinyl chloride	ND (36)				
total xylenes	7100				
MTBE	ND (36)				
Ethylene dibromide	ND (36)				
Trichlorotrifluoroethane					
Thurson	ND (360) 57000				
TPH gas					
TPH diesel	9200 ND (26)				
TAME	ND (36)				
DIPE	ND (36)				
ETBE	ND (36)				
TBA	ND (710)				
Ethanol	ND(1000)				
Methanol	ND(1000)				
Other VOCs (EPA 8260)					
Isopropylbenzene	40				
Propylbenzene	120				
1,3,5-Trimethylbenzene	410				
1,2,4-Trimethylbenzene	1500				
Naphthalene	370				
PAHs (EPA 8310 or 610)					
Benzo(a)anthracene	1.7				
Benzo(a)pyrene	1.6				
Chrysene	2.6				
Fluoranthene	3.8				
Naphthalene	130				
Pyrene	3.3				
SVOCs(EPA8270 or625)					
Dimethylphthalate	28				
bis(2-Ethylhexyl)phthalate	12				
Naphthalene	290				
Phenol	13				
-					
		 1	1	1	1

		After First	Carbon Unit (Btw-	1)		
	Max Daily	5/30/06	9/5/06			
	Eff. Limit					
	(ug/L)	(ug/L)				
Benzene	5	ND (0.5)	ND (0.5)			
Carbon tetrachloride	5	ND (0.5)	NA			
Chloroform	5	ND (0.5)	NA			
1,1-Dichloroethane	5	ND (0.5)	NA			
1,2-Dichloroethane	5	ND (0.5)	NA			
1,1-dichloroethylene	5	ND (0.5)	NA			
Ethylbenzene	5	ND (0.5)	ND (0.5)			
Methylene chloride	5	ND (0.5)	NA			
Tetrachloroethylene	5	ND (0.5)	NA			
Toluene	5	ND (0.5)	ND (0.5)			
c-1,2-Dichloroethylene	5	ND (0.5)	NA			
t-1,2-Dichloroethylene	5	ND (0.5)	NA			
1,1,1-Trichloroethane	5	ND (0.5)	NA			
1,1,2-Trichloroethane	5	ND (0.5)	NA			
Trichloroethylene	5	ND (0.5)	NA			
vinyl chloride	5	ND (0.5)	NA			
total xylenes	5	ND (0.5)	ND (0.5)			
MTBE	13	ND (0.5)	ND (2)			
Ethylene dibromide	5	ND (0.5)	NA			
Trichlorotrifluoroethane	5	ND (5)	NA			
TPH gas	50	ND (50)	ND (50)			
TPH diesel	50	ND (50)	ND (50)			
11 11 010001	- 00	112 (00)	(00)			
TAME		ND (0.5)	NA			
DIPE		ND (0.5)	NA			
ETBE		ND (0.5)	NA			
TBA		ND (10)	NA			
Ethanol		NA	NA			
Methanol		NA	NA			
Other VOCs (EPA 8260)		ND	NA			
Ctrict VCC3 (E1 7/ 0200)		IVE	1471			
PAHs (EPA 8310 or 610)		NA				
7.113 (=17.0010 01 010)		14/1				
SVOCs(EPA8270 or625)		NA				
0 V 003(L1 M0210 01023)		1 4/7				

		After Second Carbon	Unit (Btw-2)			
	Max Daily	9/5/06				
	Eff. Limit					
	(ug/L)	(ug/L)				
Benzene	5	ND (0.5)				
Carbon tetrachloride	5	ND (0.5)				
Chloroform	5	ND (0.5)				
1,1-Dichloroethane	5	ND (0.5)				
1,2-Dichloroethane	5	ND (0.5)				
1,1-dichloroethylene	5	ND (0.5)				
Ethylbenzene	5	ND (0.5)				
Methylene chloride	5	ND (0.5)				
Tetrachloroethylene	5	ND (0.5)				
Toluene	5	ND (0.5)				
c-1,2-Dichloroethylene	5	ND (0.5)				
t-1,2-Dichloroethylene	5	ND (0.5)				
1,1,1-Trichloroethane	5	ND (0.5)				
1,1,2-Trichloroethane	5	ND (0.5)				
Trichloroethylene	5	ND (0.5)				
vinyl chloride	5	ND (0.5)				
total xylenes	5	ND (0.5)				
MTBE	13	ND (0.5)				
Ethylene dibromide	5	ND (0.5)				
Trichlorotrifluoroethane	5	ND (5)				
TPH gas	50	NA				
TPH diesel	50	NA				
TAME		ND (0.5)				
DIPE		ND (0.5)				
ETBE		ND (0.5)				
TBA		ND (10)				
Ethanol		ND (1000)				
Methanol		NA				
Other VOCs (EPA 8260)		ND				
DALIa (EDA 0040 a 040)		NIA				
PAHs (EPA 8310 or 610)		NA				
C\/OCo/EDA0070 ==005\		NI A		_		
SVOCs(EPA8270 or625)		NA			1	

APPENDIX A

Laboratory Analytical Reports for June 26, 2006 Samples