CITY OF OAKLAND

DALZIEL BUILDING • 250 FRANK H. OGAWA PLAZA • SUITE 5301 • OAKLAND, CALIFORNIA 94612-2034

Public Works Agency Environmental Services Divison

RECEIVED

FAX (510) 238-7286 TDD (510) 238-3254

9:15 am, Mar 01, 2012

Alameda County
Environmental Health

February 29, 2012

Mr. Paresh Khatri
Hazardous Materials Specialist
Alameda County Environmental Health Services
1131 Harbor Bay Parkway, Suite 250
Alameda, CA 94502

Subject:

Groundwater Monitoring Report (Fall & Winter Quarterly Reports 2011)

Municipal Services Center (MSC) site 7101 Edgewater Drive, Oakland, California

Reference:

ACEH Fuel Leak Case No. RO0000293, GeoTracker Global ID T0600100375

Dear Mr. Khatri:

The City of Oakland is pleased to submit the attached Groundwater Monitoring Report (Fall & Winter 2011 quarterly reports) prepared by Arcadis Inc. (Arcadis). The City is submitting this report as part of the ongoing remediation and obtaining a "No Further Action" status to the above referenced site. Arcadis prepared this report as a consultant to the City.

Certification

I certify under penalty of law that this document and attachments are prepared under my direction or supervision in accordance with the system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing the violations.

Please contact me at (510)238-6361 if you have questions or comments.

Sincerely

Gopal Nair

Environmental Program Specialist

SopulNZ

Groundwater Monitoring Report
(Fall and Winter 2011 Quarterly Sampling Events)
Municipal Service Center Site
7101 Edgewater Drive
Oakland, California

February 29, 2012 LC010060.0016

Prepared for: City of Oakland, Public Works Agency Environmental Services Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California

February 29, 2012

LC010060.0016.00001

Mr. Gopal Nair City of Oakland, Public Works Department Environmental Sciences Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California 94612

Subject: Groundwater Monitoring Report (Fall and Winter 2011 Quarterly Sampling Events),

Municipal Service Center Site, 7101 Edgewater Drive, Oakland, California

Dear Mr. Nair:

ARCADIS U.S., Inc. (ARCADIS) is pleased to present this report summarizing data collected during the Fall and Winter 2011 quarterly groundwater monitoring events at the Municipal Service Center, located at 7101 Edgewater Drive in Oakland, California ("the Site"). These activities were performed in a manner consistent with previous sampling events conducted at the Site.

If you have any questions regarding this report, please call me at (510) 596-9536.

Sincerely,

Charles H. Pardini, P.G. (6444) Vice President, Principal Geologist

Attachment

CONTENTS

CEI	RTIFICATION	III
1.0	INTRODUCTION	1
2.0	SITE BACKGROUND AND CORRECTIVE ACTION MEASURES	1
3.0	FALL AND WINTER 2011 QUARTERLY MONITORING ACTIVITIES	3
	3.1 Field Activities	3
	3.2 Sample Analyses	4
4.0	MONITORING RESULTS	4
	4.1 Shallow Groundwater Topography	4
	4.2 Occurrence of Separate-Phase Hydrocarbons	5
	4.3 Contaminant Distribution in Groundwater	6
	4.3.1 Screening Criteria	6
	4.3.2 Benzene	7
	4.3.3 Toluene	8
	4.3.4 Ethylbenzene	9
	4.3.5 Total Xylenes	9
	4.3.6 MTBE	10
	4.3.7 TPHg	11
	4.3.8 TPHd	12
	4.3.9 TPHmo	13
	4.3.10 TPHk	13
	4.4 Laboratory Analysis	14
5.0	LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL	14
	5.1 Method Holding Times	14
	5.2 Blanks	15
	5.3 Laboratory Control Samples	15
	5.4 Surrogates	
	5.5 False-Positive Petroleum Hydrocarbon Identification	

6.0	CONCLUSIONS AND RECOMMENDATIONS	15
7.0	LIMITATIONS	19
8.0	SELECTED REFERENCES	19

TABLE

1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons

FIGURES

- 1 Site Vicinity Map
- 2 Groundwater Elevation Contour Map and Hydrocarbon Concentrations in Shallow Groundwater, September 2011
- 3 Detail Plume Map and Hydrocarbon Concentrations in Remediation Wells, September 2011
- 4 Groundwater Elevation Contour Map and Hydrocarbon Concentrations in Shallow Groundwater, December 2011
- 5 Detail Plume Map and Hydrocarbon Concentrations in Remediation Wells, December 2011

APPENDICES

- A City of Oakland MSC Schedule and Protocol
- B Groundwater Sampling Field Data Sheets
- C Laboratory Results and Chain-of-Custody Documentation
- D Historical Tables

CERTIFICATION

All hydrogeologic and geologic information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by an ARCADIS U.S., Inc., California Professional Geologist.*

Charles H. Pardini

Principal Geologist

California Professional Geologist (6444) CAL

February 29, 2012

^{*} A professional geologist's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

1.0 INTRODUCTION

This report presents the results of the Fall and Winter 2011 quarterly groundwater monitoring events conducted September 12 through 14, 2011 ("the September monitoring event") and December 21 through 22, 2011 ("the December monitoring event") at the Municipal Service Center (MSC), located at 7101 Edgewater Drive in Oakland, California ("the Site"; Figure 1). ARCADIS U.S., Inc. (ARCADIS) conducted monitoring activities at the Site in accordance with Assignment No. G08-LFR-08.

This report summarizes the monitoring activities conducted during the September and December monitoring events as well as the analytical results, distribution of contaminants in groundwater, conclusions, and recommendations. Also discussed are the anticipated quarterly monitoring activities to be performed during Spring and Summer 2012.

2.0 SITE BACKGROUND AND CORRECTIVE ACTION MEASURES

Eighteen 2-inch-diameter groundwater monitoring wells (MW-1 through MW-18) were installed on and off site to depths ranging from 13 feet below ground surface (bgs) to 20 feet bgs, at various times from 1989 to 2003. These wells have been monitored regularly since their installation. Wells MW-3 and MW-4 were abandoned and sealed in 1999 (Ninyo & Moore 2004). In addition, six 6-inch-diameter wells (TBW-1 through TBW-6) were installed during backfilling of the excavation of former fuel hydrant lines in the early 1990s. TBW-1 through TBW-4 were abandoned and sealed in June 2007 by Baseline Environmental Consulting ("Baseline").

Eighteen 4-inch-diameter remediation wells and four 2-inch-diameter test/observation wells were installed on site to depths ranging from 13 feet bgs to 17 feet bgs, in December 2001 and January 2002 by others, according to Uribe & Associates' ("Uribe's") "Test/Observation Well Installation Report, U & A Project 291-03," dated April 2, 2002 (Uribe 2002). Seven of the wells (RW-Al, RW-A2, OB-A1, RW-B1, RW-B2, RW-B3, and RW-B4) were installed in the vicinity of Plumes A and B. Fifteen of the wells (RW-C1, RW-C2, RW-C3, RW-C4, RW-C5, RW-C6, RW-C7, OB-C1, RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, OB-D1, and OB-D2) were installed in the vicinity of Plumes C and D. Each well, except OB-A1, was surveyed subsequent to the installation event. Six additional extraction wells (RW-D6 through RW-D11) were installed within the Plume D area in March 2007 by URS Corporation. These six wells are 6 inches in diameter and installed to an approximate depth of 20 feet bgs. The well locations are shown on Figures 2 and 3. The plume locations are shown on Figure 3.

According to the "Second Quarter 2003 Monitoring Report" (Uribe 2003), approximately 10,000 gallons of a groundwater/free product mixture were removed

from on-site wells RW-B3 and RW-B4 (Plume B) in September and October 2002, using a trailer-mounted, dual-phase extraction (DPE) unit with a 10-horsepower vacuum pump. Additionally, approximately 10,000 gallons of liquid were removed from wells RW-C3, RW-C4, RW-C5, and RW-C7 (Plume C) through five daily extractions over a two-month period. The liquid was pumped into a 21,000-gallon aboveground storage tank to allow separation of oil from water and drained through three 2,000-pound granular-activated carbon filters (in series). After filtration, the wastewater was discharged into a local storm drain. A National Pollutant Discharge Elimination System (NPDES) permit was issued prior to discharge.

Within the same time period, hydrogen peroxide, followed by water, was injected periodically into wells OB-Al, RW-Al, RW-A2, TBW-3, and TBW-4 (Plume A); MW-16 and MW-17 (Plume B); and MW-5 (active tank area), to promote in situ bioremediation. Hydrogen peroxide was also injected periodically into wells in the Plume C area from July 2004 through January 2009.

Construction of an extraction system to remove separate-phase hydrocarbons (SPH) within the vicinity of Plume D began in March 2006. Seven existing wells (RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, TBW-5, and RW-1) were converted to extraction wells by URS Corporation. The extraction system was completed in April 2006, and the system began operation in mid-May 2006. Groundwater extracted from the seven wells was treated through an oil/water separator, followed by three 2,000-pound liquid-phase activated carbon units in series, and was discharged into the local storm drain via an NPDES permit. Extracted soil vapor was treated through a thermal oxidizer and discharged into the atmosphere via a permit issued by the Bay Area Air Quality Management District. Six additional wells were installed within the vicinity of Plume D in March 2007 (RW-D6, RW-D7, RW-D8, RW-D9, RW-D10, and RW-D11) and were connected to the extraction system on June 11, 2007. In addition, six existing wells in the Plume C area (RW-C2, RW-C4 through RW-C7, and OB-C1) were connected to the DPE system in May 2009, and extraction from these wells commenced on May 26, 2009.

The extraction remediation system was shut down on December 23, 2009. The system may be restarted if free-phase product is again detected or significant rebound of dissolved concentration of petroleum hydrocarbons is determined in subsequent groundwater monitoring events. Quarterly remediation system performance reports were submitted separately from this monitoring report to Alameda County Environmental Health (ACEH) and the Regional Water Quality Control Board – San Francisco Bay Region (RWQCB).

A number of monitoring wells have been also eliminated from the monitoring program since their installation. Monitoring wells MW-3 and MW-4 have been abandoned and sealed (Ninyo & Moore 2004). Wells TBW-1, TBW-2, TBW-3, and TBW-4 were abandoned and sealed by Baseline in June 2007.

3.0 FALL AND WINTER 2011 QUARTERLY MONITORING ACTIVITIES

3.1 Field Activities

The September 2011 field activities, which included depth-to-groundwater/product measurement and well sampling, were conducted in accordance with the revised City of Oakland MSC Schedule and Protocol Table that was included in the November 6, 2009 letter to ACEH proposing a revised groundwater monitoring schedule during the September monitoring event. On December 14, 2011, a revised monitoring plan was submitted to ACEH proposing a change to quarterly monitoring at the Site. This revised monitoring plan was implemented in the December monitoring event (Appendix A).

In the September and December monitoring events, ARCADIS personnel measured depth to water and depth to SPH using an electric oil/water interface probe in the following wells: MW-1, MW-2, MW-5 through MW-17, TBW-5, TBW-6, RW-1, RW-A1, RW-A2, OB-A1, RW-B1 through RW-B4, RW-C1 through RW-C7, OB-C1, RW-D1 through RW-D11, OB-D1, and OB-D2. Depth to water and depth to SPH measurements were conducted on September 12 and 13, 2011 and December 21 and 22, 2011.

In the September monitoring event, depth to water and depth to SPH in OB-C1 was measured on September 30, 2011 by OTG EnviroEngineering Solutions because the well could not be accessed on September 12 and 13, 2011.

During the measurement of depth to water and depth to SPH in both monitoring events, the oil/water interface probe was decontaminated with liquinox and distilled water before use in each well to avoid potential cross-contamination. Current and historical product thickness measurements, depth-to-groundwater measurements, and groundwater elevations calculated from groundwater measurements are presented in Table 1. Monitoring and remediation well locations are shown on Figures 2 and 3.

On September 12 through September 14, 2011, ARCADIS personnel collected groundwater samples from monitoring wells MW-1, MW-5, MW-6, MW-9, MW-10, MW-13, MW-14, and MW-17. Samples were also collected from remediation wells RW-C6, RW-C7, RW-D3, RW-D5, RW-D6, RW-D8, RW-D9, and RW-1.

On December 21 and December 22, 2011, ARCADIS personnel collected groundwater samples from monitoring wells MW-1, MW-5, MW-10, MW-13, MW-14, and MW-17. Samples were also collected from remediation wells RW-A2, RW-B1, RW-B4, RW-C6, RW-C7, RW-D5, RW-D9, and RW-1.

Prior to sampling the monitoring wells during both monitoring events, a clean, disposable, polyvinyl chloride (PVC) sampling bailer was used to purge a minimum of three well-casing volumes of groundwater from each of the eight monitoring wells sampled during the current monitoring event. Due to the larger diameter of the

remediation wells, a down-hole Monsoon pump was used to purge a minimum of three well-casing volumes of groundwater. New disposable tubing was used at each remediation well. All wells were allowed to recover to at least 80 percent of their original static groundwater levels before sampling. Dissolved oxygen, temperature, pH, conductivity, and oxidation-reduction potential (ORP) were measured for each well volume purged. Additionally, characteristics of the water (color, turbidity, odor, sheen) were noted on the field data sheets, which are included in Appendix B.

After the wells were purged, samples were collected using the disposable PVC, bottom-discharging bailer that was used to purge the well. A disposable bailer was also used to sample the remediation wells after being purged with the Monsoon pump. The samples were transferred from the bailer to the appropriate sample containers, labeled, and placed in a "wet chilled" cooler containing ice, under chain-of-custody protocol. The samples were secured in the cooler and transferred to Curtis & Tompkins, Ltd., Analytical Laboratories (C&T), a California Department of Health Services–certified environmental laboratory located in Berkeley, California. Purged and decontamination water generated during sampling activities was transferred into an on-site storage tank that was part of the on-site extraction and treatment system maintained by the City of Oakland.

3.2 Sample Analyses

The groundwater samples in both the September and December monitoring events were analyzed by C&T for the following parameters:

- total petroleum hydrocarbons (TPH) as gasoline (TPHg) using U.S. Environmental Protection Agency (U.S. EPA) Method 8260B
- TPH as kerosene (TPHk), TPH as diesel (TPHd), and TPH as motor oil (TPHmo) using U.S. EPA Method 8015B, with a silica-gel cleanup
- the aromatic hydrocarbons benzene, toluene, ethylbenzene, and total xylenes (collectively known as BTEX) and methyl tertiary-butyl ether (MTBE) using U.S. EPA Method 8260B

4.0 MONITORING RESULTS

4.1 Shallow Groundwater Topography

Depth to groundwater was measured on September 12 and 13, 2011 using a Solinst oil/water interface meter (Table 1). Prior to groundwater measurement, the well caps were removed from all wells to allow the water column within each well to come into equilibrium with atmospheric pressure. Groundwater elevations were determined using well survey data from the "Second Quarter 2003 Monitoring Report" (Uribe 2003).

Groundwater elevations in the monitoring wells ranged from 0.52 foot mean sea level (msl) at MW-17 to 5.36 feet msl at MW-6 (Figure 2). Groundwater flow direction, measured between wells MW-1 and MW-10, is toward the northwest in the northern section of the Site at approximately 0.0056 foot/foot (ft/ft), and toward the southwest (measured between wells MW-11 and MW-15) at approximately 0.011 ft/ft in the southern portion of the Site. A groundwater high (groundwater elevation of 6.76 feet msl) is observed in remediation well RW-A1, located in the vicinity of Plume A in the southern portion of the Site (Figure 3). The variation in the groundwater gradient may be due to differences in lithologic characteristics in the subsurface or preferential pathways (possibly due to backfilled utility trenches and underground storage tank pits). The groundwater flow direction for this sampling period was similar to that reported by Ninyo & Moore in its July 14, 2004 Spring Semiannual Groundwater Monitoring Report for the Site, and in more recent ARCADIS monitoring reports.

Depth to groundwater was measured on December 21 and 22, 2011, using a Solinst oil/water interface meter (Table 1). Prior to groundwater measurement, the well caps were removed from all wells to allow the water column within each well to come into equilibrium with atmospheric pressure. Groundwater elevations were determined using well survey data from the "Second Quarter 2003 Monitoring Report" (Uribe 2003).

Groundwater elevations in the monitoring wells ranged from 1.28 feet msl at MW-17 to 5.48 feet msl at MW-6 (Figure 2). Groundwater flow direction, measured between wells MW-1 and MW-10, is toward the northwest in the northern section of the Site at approximately 0.0069 foot/foot (ft/ft), and toward the southwest (measured between wells MW-11 and MW-15) at approximately 0.011 ft/ft in the southern portion of the Site. A groundwater high (groundwater elevation of 7.43 feet msl) is observed in remediation well RW-A2, located in the vicinity of Plume A in the southern portion of the Site (Figure 3). The variation in the groundwater gradient may be due to differences in lithologic characteristics in the subsurface or preferential pathways (possibly due to backfilled utility trenches and underground storage tank pits). The groundwater flow direction for this sampling period was similar to that reported by Ninyo & Moore in its July 14, 2004 Spring Semiannual Groundwater Monitoring Report for the Site, and in more recent ARCADIS monitoring reports.

4.2 Occurrence of Separate-Phase Hydrocarbons

Floating SPH was not observed in any wells where depth to water and depth to SPH were measured during the September or December monitoring events. The results of the SPH assessment are presented in Table 1. Although no SPH or sheen was observed in the remediation wells, an odor was noted in the water purged from Plume C remediation wells RW-C5 and RW-C6, and Plume D remediation wells RW-D9 and RW-D10 (Table 1) during the September monitoring event. The lack of SPH or sheen observed during these monitoring events represents a significant decrease in the lateral extent of SPH in Plumes B, C, and D compared to the April 2004 monitoring event. SPH has not been detected in the Plume A wells historically.

4.3 Contaminant Distribution in Groundwater

The analytical data from this groundwater monitoring event are presented in Table 1, along with historical analytical results. Laboratory analytical data reports are included in Appendix C. Historical data for volatile organic compounds, semivolatile organic compounds, leaking underground fuel tank metals, and other metals are provided in Appendix D (Tables D-1, D-2, D-3, and D-4, respectively).

The following sections summarize the analytical data collected in the September and December monitoring events as well as chemical concentration trends within monitoring wells that exceed the applicable screening criteria. Concentration trends for remediation wells are not discussed in this report because of the limited data available. A more thorough discussion of concentration trends in both monitoring and remediation wells will be conducted in the annual monitoring report to be submitted in August 2012.

For quality assurance/quality control (QA/QC), ARCADIS collected a duplicate sample in the September and December monitoring events and analyzed them for TPHg, TPHk, TPHd, TPHmo, BTEX, and MTBE. On September 13, 2011, a duplicate sample was collected from remediation well RW-D5. The analytical results for the duplicate sample were consistent with those for the primary samples collected from well RW-D5 for all analytes, with the exception of TPHd, which was greater than a 20 percent difference. This result in Table 1 has been qualified to state this difference.

On December 22, 2011, a duplicate sample was collected from remediation well RW-B4. The analytical results for the duplicate sample were consistent with those for the primary samples collected from well RW-B4 for all analytes, with the exception of TPHmo, which was greater than a 20 percent difference. The analytical laboratory stated this difference was the result of sediment in the duplicate sample that was not present in the primary sample. This result in Table 1 has been qualified to state this difference.

4.3.1 Screening Criteria

In the June 12, 2009 semiannual monitoring report, LFR Inc. recommended that groundwater quality results be compared to the RWQCB Environmental Screening Levels (ESLs) for Groundwater Screening Levels (groundwater is not a current or potential drinking water resource; RWQCB 2008; Table F-1b) because they are the most applicable screening criteria for the current site conditions. The groundwater quality results had previously been compared to the San Francisco Airport Ecological Protection Zone (SFAEPZ) Tier I Standard and the RWQCB ESL for Surface Water Screening Levels Marine Habitats. These standards/screening levels both relate to the quality of the water in San Francisco Bay but not groundwater.

A comparison of the previous screening criteria and the recommended screening criteria is included in the table below. The groundwater quality results will be compared to the recommended screening criteria in this semiannual monitoring report.

Analyte	Previous Scr	eening Criteria	Recommended Screening Criteria
,	SFAEPZ Tier 1 Standard (µg/l)	ESL Surface Water (Table F-2b) (µg/l)	ESL Groundwater (Table F-1b) (µg/l)
Benzene	71	71	46
Toluene	NA	40	130
Ethylbenzene	29,000	30	43
Total Xylenes	NA	100	100
MTBE	NA	180	1800
TPHg	3700	210	210
TPHd	640	210	210
TPHmo	640	210	210
TPHk	NA	NA	210

Notes:

 $\mu g/l = micrograms per liter$

NA = screening criteria not previously applied to analyte

4.3.2 Benzene

Benzene concentrations detected above laboratory analytical reporting limits (LRLs) were reported in groundwater samples collected from four of the eight monitoring wells sampled during the September monitoring event. Benzene concentrations in the monitoring wells ranged from 0.99 μ g/l (MW-9) to 140 μ g/l (MW-6).

Benzene was detected above the LRLs in seven of the eight groundwater samples collected from remediation wells during the September monitoring event. Benzene concentrations in the remediation wells ranged from 3.1 μ g/l (RW-C7) to 1,100 μ g/l/1,200 μ g/l (RW-D5; primary/duplicate sample).

Benzene concentrations detected above LRLs were reported in groundwater samples collected from three of the six monitoring wells sampled during the December

monitoring event. Benzene concentrations in the monitoring wells ranged from 0.53 μ g/l (MW-1) to 2.6 μ g/l (MW-10).

Benzene was detected above the LRLs in five of the eight groundwater samples collected from remediation wells during the December monitoring event. Benzene concentrations in the remediation wells ranged from 8.3 μ g/l (RW-C7) to 1,100 μ g/l/1,100 μ g/l (RW-B4; primary/duplicate sample).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for benzene is $46 \mu g/l$ (RWQCB 2008; Table F-1b). The benzene concentrations in one monitoring well (MW-6) and five remediation wells (RW-C6, RW-D3, RW-D5, RW-D6, RW-D9) during the September monitoring event were above the RWQCB ESL for benzene. In the December monitoring event, benzene concentrations in three remediation wells (RW-B4, RW-C6, and RW-D5) were above the RWQCB ESL for benzene. The benzene concentrations in monitoring wells sampled in the December monitoring event were below the ESL for benzene.

Of the monitoring wells sampled in the September and December monitoring events, only the September sample from well MW-6 contained a benzene concentration exceeding the ESL for benzene. This benzene concentration was a slight increase from the previous MW-6 sample collected in October 2010 (100 μ g/l/ 110 μ g/l; primary/duplicate sample). In general, the benzene in MW-6 has decreased since the well was installed, although it has displayed a relatively stable trend since Fall 2008.

4.3.3 Toluene

Toluene was reported above the LRLs in groundwater samples collected from three of the eight monitoring wells sampled during the September monitoring event. Toluene concentrations in the monitoring wells ranged from 0.84 μ g/l (MW-9) to 4.6 μ g/l (MW-6).

Toluene was detected above the LRLs in six of the eight groundwater samples collected from remediation wells during the September monitoring event. Toluene concentrations in the remediation wells ranged from 1.5 μ g/l (RW-D8) to 100 μ g/l (RW-D6).

Toluene was reported above the LRLs in the groundwater sample collected from one of the six monitoring wells sampled during the December monitoring event. Toluene was detected in monitoring well MW-5 at a concentration of 0.75 μ g/l.

Toluene was detected above the LRLs in five of the eight groundwater samples collected from remediation wells during the December monitoring event. Toluene concentrations in the remediation wells ranged from 1.5 μ g/l (RW-D9) to 35 μ g/l (RW-B1).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for toluene is 130 μ g/l (RWQCB 2008; Table F-1b).

The toluene concentrations were below the ESL of 130 μ g/l in all the monitoring and remediation wells during the September and December monitoring events.

The toluene concentrations in monitoring wells sampled in the September and December monitoring events displayed relatively stable concentration trends over the last few monitoring events.

4.3.4 Ethylbenzene

Ethylbenzene was reported above the LRLs in groundwater samples collected from two of the eight monitoring wells sampled during the September monitoring event. Ethylbenzene was detected in monitoring wells MW-5 and MW-6 at concentrations of $62 \mu g/1$ and $0.82 \mu g/1$, respectively.

Ethylbenzene was detected above the LRLs in six of the eight groundwater samples collected from remediation wells during the September monitoring event. Ethylbenzene concentrations in the remediation wells ranged from 2.8 μ g/l (RW-D8) to 200 μ g/l (RW-D6).

Ethylbenzene was reported above the LRLs in the groundwater samples collected from one of the six monitoring wells sampled during the December monitoring event. Ethylbenzene was detected in monitoring well MW-5 at a concentration of 65 μ g/l.

Ethylbenzene was detected above the LRLs in six of the eight groundwater samples collected from remediation wells during the current monitoring event. Ethylbenzene concentrations in the remediation wells ranged from 0.98 μ g/l (RW-C7) to 64 μ g/l/63 μ g/l (RW-B4; primary/duplicate sample).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for ethylbenzene is 43 μ g/l (RWQCB 2008; Table F-1b). The ethylbenzene concentration in one monitoring well (MW-5) and one remediation well (RW-D6) during the September monitoring event were above the RWQCB ESL for ethylbenzene. In the December monitoring event, the ethylbenzene concentrations in one monitoring well (MW-5) and one remediation well (RW-B4) were above the RWQCB ESL for ethylbenzene.

Well MW-5 was the only monitoring well sampled in the September and December monitoring events with concentrations exceeding the ESL for ethylbenzene. Even though this well exceeded the ESL, the September and December ethylbenzene concentrations significantly decreased from the last sample collected in April 2010 (240 μ g/l).

4.3.5 Total Xylenes

Total xylenes were reported above the LRLs in groundwater samples collected from four of the eight monitoring wells sampled during the September monitoring event.

Total xylenes concentrations in monitoring wells ranged from 0.54 μ g/l (MW-1) to 7.48 μ g/l (MW-5).

Total xylenes were detected above the LRLs in six of the eight groundwater samples collected from remediation wells during the September monitoring event. Total xylenes concentrations in the remediation wells ranged from 31 μ g/l (RW-D9) to 480 μ g/l (RW-D6).

Total xylenes were reported above the LRLs in groundwater samples collected from two of the six monitoring wells sampled during the December monitoring event. Total xylenes were detected in monitoring wells MW-1 and MW-5 at concentrations of 0.69 μ g/l and 5.74 μ g/l, respectively.

Total xylenes were detected above the LRLs in five of the eight groundwater samples collected from remediation wells during the December monitoring event. Total xylenes concentrations in the remediation wells ranged from 12.3 μ g/l (RW-D5) to 176 μ g/l/198 μ g/l (RW-B4; primary/duplicate sample).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for total xylenes is $100~\mu g/l$ (RWQCB 2008; Table F-1b). The concentrations of total xylenes detected in monitoring wells during the September monitoring event were well below the ESL of $100~\mu g/l$. The total xylenes concentrations in two remediation wells (RW-C6 and RW-D6) were above the RWQCB ESL for total xylenes in the September monitoring event. In the December monitoring event, the total xylenes concentration in remediation well RW-B4 was above the RWQCB ESL for total xylenes. The total xylenes concentrations in monitoring wells sampled during the December monitoring event were below the ESL for total xylenes.

The total xylenes concentrations in monitoring wells sampled during the September and December monitoring events were below the ESL for total xylenes and displayed relatively stable concentration trends over the last few monitoring events.

4.3.6 MTBE

MTBE was reported above the LRLs in groundwater samples collected from two of the eight monitoring wells sampled during the September monitoring event. MTBE was detected in wells MW-5 and MW-6 at concentrations of 12 μ g/l and 2.9 μ g/l, respectively.

MTBE was not detected above the LRLs in eight remediation wells sampled during the September monitoring event.

MTBE was reported above the LRLs in the groundwater sample collected from one of the six monitoring wells sampled during the December monitoring event. MTBE was detected in well MW-5 at a concentration of 9.9 μ g/l.

MTBE was reported above the LRLs in the groundwater sample collected from one of the eight remediation wells sampled during the December monitoring event. MTBE was detected in well RW-C6 at a concentration of $0.51 \mu g/l$.

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for MTBE is 1,800 μ g/l (RWQCB 2008; Table F-1b). Concentrations of MTBE were not detected above the ESL of 1,800 μ g/l in samples collected from the monitoring wells and remediation wells during the September and December monitoring events.

The MTBE concentrations in monitoring wells sampled in the September and December monitoring events displayed relatively stable concentration trends over the last few monitoring events.

4.3.7 TPHg

TPHg was reported above the LRLs in groundwater samples collected from five of the eight monitoring wells sampled during the September monitoring event. TPHg concentrations in monitoring wells ranged from 68 μ g/l (MW-9) to 2,900 μ g/l (MW-5).

TPHg was detected above the LRLs in seven of the eight groundwater samples collected from remediation wells during the September monitoring event. TPHg concentrations in the remediation wells ranged from 150 μ g/l (RW-C7) to 8,700 μ g/l (RW-D6).

TPHg was reported above the LRLs in groundwater samples collected from two of the six monitoring wells sampled during the December monitoring event. TPHg was detected in monitoring wells MW-1 and MW-5 at concentrations of 230 μ g/l and 2,800 μ g/l, respectively.

TPHg was detected above the LRLs in five of the eight groundwater samples collected from remediation wells during the December monitoring event. TPHg concentrations in the remediation wells ranged from 380 μ g/l (RW-C7) to 5,400 μ g/l/5,600 μ g/l (RW-D6; primary/duplicate sample).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHg is 210 μ g/l (RWQCB 2008; Table F-1b). The TPHg concentrations in two monitoring wells (MW-5 and MW-6) and six remediation wells (RW-C6, RW-D3, RW-D5, RW-D6, RW-D8, and RW-D9) during the September monitoring event were above the RWQCB ESL for TPHg. The TPHg concentrations in two monitoring wells (MW-1 and MW-5) and five remediation wells (RW-B4, RW-C6, RW-C7, RW-D5, and RW-D9) during the December monitoring event were above the RWQCB ESL for TPHg.

In the September and December monitoring events, TPHg concentrations in monitoring wells MW-1, MW-5, and MW-6 exceeded the ESL for TPHg. Although these wells exceeded the ESL, the September and December TPHg concentrations either decreased or remained relatively stable compared to those detected in the last few sampling events. The TPHg detected in MW-1 and MW-5 decreased from the last samples collected in these wells in April 2010 (380 μ g/l and 4,500 μ g/l, respectively). The TPHg concentration in MW-6 was relatively consistent with the October 2010 TPHg concentrations (620 μ g/l/610 μ g/l; primary/duplicate sample).

4.3.8 TPHd

TPHd was reported above the LRLs in groundwater samples collected from six of the eight monitoring wells sampled during the September monitoring event. TPHd concentrations in monitoring wells ranged from 51 μ g/l (MW-13) to 1,800 μ g/l (MW-6).

TPHd was detected above the LRLs in seven of the eight groundwater samples collected from remediation wells during the September monitoring event. TPHd concentrations in the remediation wells ranged from 70 μ g/l (RW-D9) to 6,000 μ g/l (RW-D8).

TPHd was reported above the LRLs in groundwater samples collected from two of the six monitoring wells sampled during the December monitoring event. TPHd was detected in monitoring wells MW-1 and MW-5 at concentrations of 100 μ g/l and 1,400 μ g/l.

TPHd was detected above the LRLs in seven of the eight groundwater samples collected from remediation wells during the December monitoring event. TPHd concentrations in the remediation wells ranged from 120 μ g/l (RW-B1) to 8,100 μ g/l (RW-C7).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHd (middle distillates) is $210~\mu g/l$ (RWQCB 2008; Table F-1b). The TPHd concentrations in two monitoring wells (MW-5 and MW-6) and four remediation wells (RW-C6, RW-D5, RW-D6, and RW-D8) during the September monitoring event were above the RWQCB ESL for TPHd. The TPHd concentrations in one monitoring well (MW-5) and six remediation wells (RW-A2, RW-B4, RW-C6, RW-C7, RW-D5, and RW-D9) during the December monitoring event were above the RWQCB ESL for TPHd.

In the September and December monitoring events, TPHd concentrations in monitoring wells MW-5 and MW-6 exceeded the ESL for TPHd. The TPHd concentration in MW-6 increased from the last sample collected in October 2010 (400 μ g/l/370 μ g/l; primary/duplicate sample), but has generally decreased since 2006. The TPHd concentration in MW-5 was generally consistent with the last sample collected in April 2010 (1,300 μ g/l).

4.3.9 TPHmo

TPHmo was reported above the LRLs in groundwater samples collected from one of the eight monitoring wells sampled during the September monitoring event. TPHmo was detected in monitoring well MW-9 at a concentration of 500 μ g/l.

TPHmo was detected above the LRLs in two of the eight groundwater samples collected from remediation wells during the September monitoring event. TPHmo was detected in RW-C6 and RW-D8 at concentrations of 70 μ g/l and 11,000 μ g/l, respectively.

TPHmo was not detected above the LRLs in the six monitoring wells sampled during the December monitoring event.

TPHmo was detected above the LRLs in five of the eight groundwater samples collected from remediation wells during the December monitoring event. TPHmo concentrations in the remediation wells ranged from 400 μ g/l (RW-D9) to 1,700 μ g/l (RW-C7).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHmo (middle distillates) is 210 μ g/l (RWQCB 2008; Table F-1b). The TPHmo concentrations in one monitoring wells (MW-9) and two remediation wells (RW-C6 and RW-D8) during the September monitoring event were above the RWQCB ESL for TPHmo. The TPHmo concentrations in five remediation wells (RW-B4 duplicate sample, RW-C6, RW-C7, RW-D5, and RW-D9) during the December monitoring event were above the RWQCB ESL for TPHmo. The TPHmo concentrations in monitoring wells sampled in the December monitoring event were below the ESL for TPHmo.

Well MW-9 was the only monitoring well sampled in the September and December monitoring events with concentrations exceeding the ESL for TPHmo. The September 2011 TPHmo concentration is the highest detected in MW-9 since 2002, as the concentrations are typically below the LRL of 300 μ g/l.

4.3.10 TPHk

TPHk was reported above the LRLs in groundwater samples collected from three of the eight monitoring wells sampled during the September monitoring event. TPHk concentrations in monitoring wells ranged from 120 μ g/l (MW-1) to 1,600 μ g/l (MW-6).

TPHk was detected above the LRLs in six of the eight groundwater samples collected from remediation wells during the September monitoring event. TPHk concentrations in the remediation wells ranged from 72 μ g/l (RW-D9) to 5,000 μ g/l (RW-D8).

TPHk was reported above the LRLs in groundwater samples collected from two of the six monitoring wells sampled during the December monitoring event. TPHk was detected in monitoring wells MW-1 and MW-5 at concentrations of 120 μ g/l and 1,600 μ g/l, respectively.

TPHk was detected above the LRLs in seven of the eight groundwater samples collected from remediation wells during the December monitoring event. TPHk concentrations in the remediation wells ranged from 78 μ g/l (RW-B1) to 5,900 μ g/l (RW-C7).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHk (middle distillates) is 210 μ g/l (RWQCB 2008; Table F-1b). The TPHk concentrations in two monitoring wells (MW-5 and MW-6) and four remediation wells (RW-C6, RW-D5, RW-D6, and RW-D8) during the September monitoring event were above the RWQCB ESL for TPHk. The TPHk concentrations in one monitoring well (MW-5) and five remediation wells (RW-B4, RW-C6, RW-C7, RW-D5, and RW-D9) during the December monitoring event were above the RWQCB ESL for TPHk.

In the September and December monitoring events, TPHk concentrations in monitoring wells MW-5 and MW-6 exceeded the ESL for TPHk. The TPHk concentration in MW-6 increased from the last sample collected in October 2010 (420 μ g/l/400 μ g/l; primary/duplicate sample), but has generally decreased since 2006. The TPHk concentration in MW-5 was generally consistent with the last sample collected in April 2010 (1,400 μ g/l).

4.4 Laboratory Analysis

Current laboratory analytical results and historical results are presented in Table 1. Copies of laboratory data sheets and chain-of-custody documents are included in Appendix C.

5.0 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

A laboratory QA/QC review was performed on the laboratory analytical data to evaluate the quality and usability of the analytical results. The following sections summarize the QA/QC review.

5.1 Method Holding Times

The procedures used to extract and analyze the collected samples were reviewed by ARCADIS personnel and were found to be within the appropriate holding times for all samples in both the September and December monitoring events.

5.2 Blanks

One field blank was collected in the September (MW-10-FB) and December (RW-1-FB) monitoring events along with the corresponding groundwater sample and was analyzed for TPHg, TPHk, TPHd, TPHmo, BTEX, and MTBE. No analytes were detected above LRLs in the field blanks from the September and December monitoring events.

Additionally, laboratory method blank results were reviewed for detection of target analytes. In the September monitoring event, diesel C10-C24 and motor oil C24-C36 were detected above the LRL in the method blank for batch 178996. The associated samples have been qualified in Table 1. No analytes were detected in the method blanks above the LRL in the December monitoring event.

5.3 Laboratory Control Samples

Laboratory quality control samples were analyzed by C&T for TPHg, TPHd, TPHk, TPHmo, and BTEX. All samples were within the percentage recovery range required by the laboratory in the September and December monitoring events.

5.4 Surrogates

All surrogates, including o-terphenyl for TPHd, TPHk, and TPHmo; and bromofluorobenzene, 1,2-dichloroethane-d4, dibromofluoromethane, and toluene-d8 for TPHg, BTEX, and MTBE were used for laboratory QA/QC analysis. All of the surrogates were within the acceptable laboratory recovery limits in the September and December monitoring events with the exception of the following:

- High surrogate recovery was observed for o-terphenyl in RW-1 in the September monitoring event, but no target analytes were detected in the sample.
- Low surrogate recoveries were observed for o-terphenyl in RW-C6 and RW-D5 during the December monitoring event.

5.5 False-Positive Petroleum Hydrocarbon Identification

Qualifiers were reported in the laboratory analytical reports and noted in Table 1 for the September and December monitoring events.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The following summarizes the data collected during the September and December monitoring events and presents the recommendations for the Spring and Summer 2012 monitoring periods.

- In the September monitoring event, groundwater elevations in the monitoring wells ranged from 0.52 feet msl at MW-17 to 5.36 feet msl at MW-6. The direction of shallow groundwater flow is toward the northwest in the northern section of the Site at a horizontal gradient of 0.0056 ft/ft toward the southwest in the southern portion of the Site at 0.011 ft/ft. A groundwater high was observed in the vicinity of well RW-A1 (Plume A) in the southern portion of the Site. This groundwater high is probably the result of higher subsurface permeability in areas of excavation backfill.
- In the December monitoring event, groundwater elevations in the monitoring wells ranged from 1.28 feet msl at MW-17 to 5.48 feet msl at MW-6. The direction of shallow groundwater flow is toward the northwest in the northern section of the Site at a horizontal gradient of 0.0069 ft/ft toward the southwest in the southern portion of the Site at 0.011 ft/ft. A groundwater high was observed in the vicinity of well RW-A2 (Plume A) in the southern portion of the Site. This groundwater high is probably the result of higher subsurface permeability in areas of excavation backfill.
- SPH was not observed in any wells where depth to SPH was measured in the September and December monitoring events.
- In the September monitoring event, benzene was detected above the LRL in four of the eight monitoring wells and seven of the eight remediation wells sampled. Of these detections, benzene concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for benzene of 46 μg/l in one monitoring well (MW-6) and five remediation wells (RW-C6, RW-D3, RW-D5, RW-D6, RW-D9).
- In the December monitoring event, benzene was detected above the LRL in three of the six monitoring wells and five of the eight remediation wells sampled. Of these detections, benzene concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for benzene of 46 μg/l in three remediation wells (RW-B4, RW-C6, and RW-D5).
- In the September monitoring event, toluene was detected above the LRL in three of the eight monitoring wells and six of the eight remediation wells sampled. No concentrations of toluene exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for toluene of 130 μg/l.
- In the December monitoring event, toluene was detected above the LRL in one of the six monitoring wells and five of the eight remediation wells sampled. No concentrations of toluene exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for toluene of 130 µg/l.
- In the September monitoring event, ethylbenzene was detected above the LRL in two of the eight monitoring wells and six of the eight remediation wells sampled. Of these detections, ethylbenzene concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking

- water resource) for ethylbenzene of 43 μ g/l in one monitoring well (MW-5) and one remediation well (RW-D6).
- In the December monitoring event, ethylbenzene was detected above the LRL in one of the six monitoring wells and six of the eight remediation wells sampled. Of these detections, ethylbenzene concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for ethylbenzene of 43 μg/l in one monitoring well (MW-5) and one remediation well (RW-B4).
- In the September monitoring event, total xylenes were detected above the LRL in four of the eight monitoring wells and six of the eight remediation wells sampled. Of these detections, total xylenes concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for total xylenes of $100 \mu g/l$ in two remediation wells (RW-C6 and RW-D6).
- In the December monitoring event, total xylenes were detected above the LRL in two of the six monitoring wells and five of the eight remediation wells sampled. Of these detections, total xylenes concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for total xylenes of 100 µg/l in one remediation well (RW-B4).
- In the September monitoring event, MTBE was detected above the LRL in two of the eight monitoring wells sampled. MTBE was not detected above the LRL in any of the eight remediation wells sampled. No concentrations of MTBE exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for MTBE of 1800 μg/l.
- In the December monitoring event, MTBE was detected above the LRL in one of the six monitoring wells and one of the eight remediation wells sampled. No concentrations of MTBE exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for MTBE of 1800 μg/l.
- In the September monitoring event, TPHg was detected above the LRL in five of the eight monitoring wells and seven of the eight remediation wells sampled. Of these detections, TPHg concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHg of 210 μg/l in two monitoring wells (MW-5 and MW-6) and six remediation wells (RW-C6, RW-D3, RW-D5, RW-D6, RW-D8, and RW-D9).
- In the December monitoring event, TPHg was detected above the LRL in two of the six monitoring wells (MW-1 and MW-5) and five of the eight remediation wells sampled (RW-B4, RW-C6, RW-C7, RW-D5, and RW-D9). All of these TPHg concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHg of 210 μg/l.
- In the September monitoring event, TPHd was detected above the LRL in six of the eight monitoring wells and seven of the eight remediation wells sampled. Of these

- detections, TPHd concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHd of 210 μ g/l in two monitoring wells (MW-5 and MW-6) and four remediation wells (RW-C6, RW-D5, RW-D6, and RW-D8).
- In the December monitoring event, TPHd was detected above the LRL in two of the six monitoring wells and seven of the eight remediation wells sampled. Of these detections, TPHd concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHd of 210 μg/l in one monitoring well (MW-5) and six remediation wells (RW-A2, RW-B4, RW-C6, RW-C7, RW-D5, and RW-D9).
- In the September monitoring event, TPHmo was detected above the LRL in one of the eight monitoring wells (MW-9) and two of the eight remediation wells sampled (RW-C6 and RW-D8). All of these TPHmo concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHmo of 210 μg/l.
- In the December monitoring event, TPHmo was not detected above the LRL in the six monitoring and eight remediation wells sampled.
- In the September monitoring event, TPHk was detected above the LRL in three of the eight monitoring wells and six of the eight remediation wells sampled. Of these detections, TPHk concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHk of 210 μg/l in two monitoring wells (MW-5 and MW-6) and four remediation wells (RW-C6, RW-D5, RW-D6, and RW-D8).
- In the December monitoring event, TPHk was detected above the LRL in two of the six monitoring wells and seven of the eight remediation wells sampled. Of these detections, TPHk concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHk of 210 μg/l in one monitoring well (MW-5) and five remediation wells (RW-B4, RW-C6, RW-C7, RW-D5, and RW-D9).

Based on the results of the September and December 2011 monitoring events, ARCADIS makes the following recommendations:

- Continue quarterly SPH and groundwater monitoring on site as proposed in the December 2011 letter to ACEH.
- Conduct a concentration trend evaluation for all monitoring and remediation wells sampled as part of the quarterly monitoring from September 2011 through June 2012 in the Annual Monitoring Report to be submitted in August 2012.

7.0 LIMITATIONS

The environmental services described in this report have been conducted in general accordance with current regulatory guidelines and the standard of care exercised by environmental consultants performing similar work in the project area. No other warranty, expressed or implied, is made regarding the professional opinions presented in this report. Please note this study did not include an evaluation of geotechnical conditions or potential geologic hazards.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions and the referenced literature. It should be understood that the conditions of a site can change with time as a result of natural processes or the activities of man at the site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which ARCADIS has no control.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. ARCADIS should be contacted if the reader requires any additional information or has questions regarding the content, interpretations presented, or completeness of this document.

8.0 SELECTED REFERENCES

Baseline Environmental Consulting (Baseline). 2001. Site History and Characterization. January.

May.

- LFR Inc. (LFR). 2009. Groundwater Monitoring Report, Spring Semiannual, Municipal Service Center 7101 Edgewater Drive, Oakland, California. June 12.
- Ninyo & Moore. 2004. Groundwater Monitoring Report, Spring Semiannual, Municipal Service Center, 7101 Edgewater Drive, Oakland, California, Assignment No. G03-N&M-10. July 14.
- Uribe & Associates (Uribe). 2002. Test/Observation Well Installation Report, U & A Project 291-03. April 2.
- ——. 2003. Final Report, Second Quarter 2003 Monitoring Report, City of Oakland Municipal Service Center. May.

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (μg/l)	ΤΡΗ-g (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
	, ,	, ,		<u> </u>								, ,	• 0 /	
MW-1	10.20			9030					<i>5</i> 40	65	26	1.4	22	
10/4/89 10/4/89	10.20			8020					540	65	26	14	22 78	
4/27/93	10.20			8240 8020					<1,000	120	46	43		
4/27/93	10.20 10.20			8020					3,200	< 1.0 880	<1.0 15	<1.0 23	<1.0	
7/27/95	10.20	4.62	5.58	8020					980	130	3.6	1.4	21 5.6	
11/20/95	10.20	6.08	4.12	8020					400	99	2.8	1.4	3.6 4.6	
2/21/96	10.20	4.62	5.58	8020					1,700	340	2.8 8.4	5.3	4.6 16	
5/13/96	10.20	4.02	5.87	8020					7,300	2,000	30	3.3 42	38	
8/27/96	10.20	5.25	4.95	8020					380	•	2.4	< 0.5	36 4.2	
2/23/98	10.20	3.23 1.75	4.95 8.45	8020		< 50	< 500	< 50	820	61 160	4.9	3	4.2 9.7	
8/19/98	10.20	4.78	5.42	8020	SGC	1,200			780	69	4.9	0.84	8.5	<5.0
11/11/98	10.20	5.64	4.56		300	1,200					4.1		6.5	< 3.0
2/23/99	10.20	3.41	6.79	8020	SGC	1,200	1,600	< 50	1,100	190	5	3	12	< 5.0
5/27/99	10.20	3.96	6.24		300	1,200								
8/24/99	10.20	4.92	5.28	8020	SGC	640	1,900	< 50	370	37	0.9	< 0.5	1.9	< 5.0
11/22/99	10.20	5.46	4.74		300		1,900	< 30	370	37	0.9	< 0.5	1.9	₹3.0
1/18/00	10.20	5.41	4.64											
1/19/00	10.05	J.41 		8020	SGC	50	< 200	< 50	660	43	2.3	1.1	6	< 5.0
5/11/00	10.05	4.63	5.42		SGC						2.3			
8/24/00	10.05	5.07	4.98											
8/25/00	10.05	3.07		8020	SGC	340	< 250	290	480	53	1.4	< 0.5	2.9	< 5.0
11/28/00	10.05	5.60	4.45		bde	J-10 								
2/27/01	10.05	3.95	6.10	8020	Filtered+SGC	270	< 250	<61	1,500	110	6.3	< 1.5	9.9	< 15
5/17/01	10.05	4.00	6.05		T INCICA I DOC									
8/16/01	10.05	4.17	5.88		Filtered+SGC	280	< 200B	< 100	4,000	640	9.7	5.7	13	< 5.0
12/15/01	10.05	5.52	4.53		T MOTOR T DOC									
4/9/02	10.05	3.78	6.27	8021	SGC	1,100	1,000		2,000	320	5.38	3.08	6.24	< 5
6/21/02	10.05	4.92	5.13											
9/13/02	10.05	5.52	4.53	8021	SGC	88 b,c	< 300	88	260	9.6	< 0.5	< 0.5	1.0	<2
4/22/03	10.05	4.41	5.64	8021B	SGC	570 L Y	< 300	660	1,900 Z	400.0	9.6	5.4	8.1	< 2.0
4/28/04	10.05	3.95	6.10	8260B	SGC	< 100	< 400	< 100	154	20	< 1.0	< 1.0	2.3	< 1.0
10/29/04	10.05	5.68	4.37	8260B	SGC	230 L Y	< 300	240	340 H Z	6.4	0.6	< 0.5	1.4	< 0.5
9/2/05 (1)	10.05	4.35	5.70	8260B	SGC	140 L Y	< 300	170	350	6.6	1.0	< 0.5	2.3	< 0.5
4/4/2006 (3)	10.05	2.24	7.81	8260B	SGC	830 L Y	< 300	1,100 L Y	3,700	470	13	7.8	6.3	<3.6
9/6/06	10.05	4.98	5.07	8260B	SGC	3,400 H L	400 L	3,100 L 1	480	4.2	1.0	< 0.5	1.9	< 0.5
4/5/07	10.05	3.56	6.49	8260B	SGC	500 L Y	< 300 L	490 L Y	1,500 Y	170	7.2	3.6	5.7	<1.3
10/2/07	10.05	5.59	4.46	8260B	SGC	600 Y	< 300	710 Y	460 Y	6.1	1.1	< 0.5	1.2	< 0.5
3/20/08 (8)	10.05	3.53	6.52	8260B	SGC	1,000 Y	< 300	960	1,600 Y	53	4.1	1.2	6.3	< 0.5
						-								
11/21/08 ⁽¹⁰⁾ 4/1/09	10.05 10.05	5.48 3.30	4.57 6.75	8260B 8260B	SGC SGC	110 Y 480 Y	<300 <300	87 Y 540	210 Y 1,300 Y	2.4 79	0.52 6.40	<0.50 2.9	1.3 5.1	<0.50 <0.50

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
10/30/09	10.05	4.52	5.53	8260B	SGC	810Y	< 300	820Y	1,800Y	59	9.40	3.5	10.7	< 0.50
4/8/10	10.05	2.90	7.15	8260B	SPH: None; Odor	210 Y	< 300	190 Y	380	2.4	0.71	< 0.50	1.6	< 0.50
10/19/10	10.05	5.48	4.57		SPH: None									
9/12/11	10.05	4.91	5.14		SPH: None									
9/13/11	10.05			8260B	SGC	110 Y	< 300	120	200	< 0.5	< 0.5	< 0.5	0.54	< 0.50
12/21/11	10.05	4.63	5.42		SPH: None									
12/22/11	10.05			8260B	SGC	100 Y	< 310	120 Y	230	0.53	< 0.50	< 0.50	0.69	< 0.50
MW-2														
10/4/89	10.47			8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89	10.47			8240						2	< 2.0	< 2.0	< 2.0	
4/27/93	10.47			8020					< 1,000	< 1.0	< 1.0	< 1.0	< 1.0	
4/19/95	10.47			8020					< 50	1.8	< 0.5	< 0.5	< 0.5	
7/27/95	10.47	6.22	4.25	8020					< 50	2.3	< 0.5	< 0.5	< 0.5	
11/20/95	10.47	7.49	2.98	8020					< 50	2.2	< 0.5	< 0.5	< 0.5	
2/12/96	10.47	6.68	3.79	8020					< 50	1.7	< 0.5	< 0.5	0.5	
5/13/96	10.47	6.32	4.15	8020						2	< 0.5	< 0.5	< 0.5	
8/27/96	10.47	6.84	3.63	8020						2.4	< 0.5	< 0.5	< 0.5	
2/24/98	10.47	5.44	5.03	8020		< 50	< 500	< 50		1.6	< 0.5	< 0.5	< 0.5	
8/19/98	10.47	6.56	3.91	8020	SGC	330			< 50	4.1	3.4	0.8	2.6	< 5.0
11/11/98	10.47	7.37	3.10											
2/23/99	10.47	8.68	1.79	8020	SGC	200	900	< 50	< 50	3.5	0.6	0.6	1.2	< 5.0
5/27/99	10.47	5.20	5.27											
8/24/99	10.47	6.75	3.72	8020	SGC	140	700	< 50	< 50	2.6	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99	10.47	7.58	2.89											
1/18/00	10.47	7.41	3.06	8020	SGC	60 a	660	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	10.47	6.43	4.04											
8/24/00	10.47	8.91	1.56	8020	SGC	170	440	130	< 50	2.4	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.47	7.35	3.12											
2/27/01	10.47	6.70	3.77	8020	Filtered+SGC	< 59	< 240	< 59	< 50	3.6	< 0.5	< 0.5	< 0.5	< 5
5/17/01	10.47	6.90	3.57											
8/16/01	10.47	6.95	3.52		Filtered+SGC	< 50	200B	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/15/01	10.47	7.21	3.26											
4/5/02	10.47	6.02	4.45	8021	SGC	200	400		< 50	2.9	< 0.5	< 0.5	< 0.5	< 5
6/21/02	10.47	8.07	2.40											
9/17/02	10.47	7.12	3.35	8021	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 2
4/23/03	10.47	6.36	4.11	8021B	SGC	< 50	< 300	< 50	< 50	1.6	<.50	< .50	< .50	< 2.0
4/28/04	10.47	5.99	4.48	8260B	SGC	< 100	< 400	< 100	< 100	< 0.5	<1.0	< 1.0	1.3	<1.0
9/1/05 (1)	10.47	6.08	4.39	8260B	SGC	< 50	< 300	< 50	< 50	2.8	< 0.5	< 0.5	< 0.5	0.8
4/4/2006 (3)	10.47	4.96	5.51	8260B	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	0.5	0.5
9/6/06	10.47	9.31	1.16											

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	ΤΡΗ-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
4/5/07	10.47	9.21	1.26	8260B	SGC	< 50	< 300	< 50	< 50	1.6	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07	10.47	10.81	-0.34											
3/20/08 (8)	10.47	12.36	-1.89	8260B	SGC	< 50	< 300	< 50	< 50	1.5	< 0.5	< 0.5	< 0.5	< 0.5
11/18/08	10.47	11.07	-0.60	8260B										
4/1/09	10.47	10.80	-0.33	8260B	SGC	< 50	< 300	< 50	< 50	1.3	< 0.5	< 0.5	< 0.5	< 0.5
4/1/09 dup				8260B	SGC	< 50	< 300	< 50	< 50	1.5	< 0.5	< 0.5	< 0.5	< 0.5
10/29/09	10.47	9.88	0.59											
4/8/10	10.47	8.00	2.47		SPH: None									
10/19/10	10.47	7.02	3.45		SPH: None									
9/12/11	10.47	6.67	3.80		SPH: None									
12/21/11	10.47	7.12	3.35		SPH: None									
MW-3														
10/4/89				8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89				8240						< 2.0	< 2.0	< 2.0	< 2.0	
2/23/98						< 50	< 500	< 50						
11/11/98		5.83												
2/23/99					Submerged									
5/27/99		1.68												
8/24/99		4.76												
11/22/99		6.46												
11/22/99					Destroyed									
MW-4														
10/4/89	7.89			8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89	7.89			8240						< 2.0	< 2.0	< 2.0	< 2.0	
11/11/98	7.89	6.25	1.64											
2/23/99	7.89	3.10	4.79											
5/27/99	7.89	4.03	3.86											
8/24/99	7.89	5.07	2.82											
11/22/99	7.89	6.32	1.57											
11/22/99					Destroyed									
MW-5				0.5							46-	05-		
12/13/91	11.15			8020	_	1,900			13,000	1,500	190	970	2,500	
12/13/91	11.15			8020	Dup				16,000	1,400	180	870	2,500	
12/13/91	11.15			8240	_					1,800	< 250	1,000	3,800	
12/13/91	11.15			8240	Dup				25.000	1,600	< 250	980	3,500	
4/27/93	11.15			8240		12,000			35,000	2,100	< 1.0	1,800	2,700	
4/19/95	11.15			8240		880	4,700		14,000	490	51	610	1,200	
7/27/95	11.15	6.29	4.86	8240		590	5,000		22,000	1,300	54	1,500	2,400	

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
11/20/95	11.15	6.98	4.17	8020		< 50	< 50	< 50	8,900	430	31	610	880	
2/21/96	11.15	5.97	5.18	8020		480	< 50	< 50	1,000	540	65	700	970	
5/13/96	11.15	6.25	4.90	8020		< 50	< 50	< 50	5,900	430	26	580	760	
5/13/96	11.15			8020	Dup	< 50	< 50	< 50	7,300	360	22	49	640	
8/27/96	11.15	6.40	4.75	8020		2,000	< 51	< 51	6,600	430	27	600	650	
8/27/96	11.15			8020	Dup	6,600	< 51	< 51	6,300	410	25	580	620	
2/23/98	11.15	4.22	6.93	8020		< 50	< 500	< 50	740	19	1.4	41	34	
8/19/98	11.15	6.14	5.01	8020		1,400	< 250	1700	5,800	500	25	730	300	5,900
8/19/98	11.15	6.14	5.01	8260	SGC									6,700
11/11/98	11.15	6.51	4.64											
2/23/99	11.15	3.59	7.56	8020	SGC	2,000	700	< 50	6,700	300	26	800	690	1,600
5/27/99	11.15	5.71	5.44											
8/24/99	11.15	6.02	5.13	8020	SGC	220	2,000	< 50	2,100 e	190 e	5.5	340 e	78	380 e
11/22/99	11.15	6.16	4.99											
1/18/00	11.15	6.60	4.55											
1/19/00	11.15			8020	SGC	100	320	< 50	3,000	66 e	6.3	400 e	90	300 E (1,300)
5/11/00	11.15	5.62	5.53											
8/24/00	11.15	6.32	4.83	8020	SGC	4,800	560	6,600	12,000	220	21	430	91	1,200 (1,400)
11/28/00	11.15	6.47	4.68											
2/27/01	11.15	4.40	6.75	8020	Filtered+SGC	230	< 250	<61	6,300	150	7	350	55	830
5/17/01	11.15	5.77	5.38	8020	Filtered+SGC	190	< 200	< 50	7,500	140	7	580	101	170
8/16/01	11.15	4.87	6.28		Filtered+SGC	320	500B	< 100	2,300	46	< 5	110	24	850
12/15/01	11.15	5.50	5.65											
4/9/02	11.15	5.15	6.00	8021	SGC	480	260		8,000	110	5.95	650	53.9	166
6/21/02	11.15	6.01	5.14	8021	SGC	200 a,b,c	< 300	190	4,600	130	33	380	56	440
9/12/02	11.15	6.40	4.75	8021	SGC	620 b,c	< 300	650	4,000 J	120	< 0.5	260	16	580
4/22/03	11.15	4.69	6.46	8021B	SGC	1600 L Y	< 300	1800	6000	91	< 1.0	870	59.4	150 C
4/28/04	11.15	5.70	5.45	8260B	SGC	< 650	< 400	< 810	4780	34	< 1.0	560	44	47
10/29/04	11.15	5.73	5.42	8260B	SGC	840 L Y	< 300	940	3000	18	2.1	280	16.1	94
9/2/05 (1)	11.15	6.08	5.07	8260B	SGC	510 L Y	< 300	640	1600	13	1.4	55	8.6	92
4/5/06 (3)	11.15	3.64	7.51	8260B	SGC	840 L Y	< 300	850 H	3,400	14	2.1	280	13	31
9/6/06	11.15	6.21	4.94	8260B	SGC	340 Y	< 300	400 Y	2000	8.3	1.1	8.2	6.8	50
4/5/07	11.15	5.31	5.84	8260B	SGC	340 L Y	< 300	310 L Y	3,100 Y	9.3	< 2.0	230	13	38
10/2/07	11.15	6.51	4.64	8260B	SGC	400 Y	< 300	440	3,000 Y	11	1.4	100	6.8	46
3/20/08 (8)	11.15	5.37	5.78	8260B	SGC	1,400 Y	< 300	1,400	4,100 Y	8.4	1.7	270	12	23
11/21/08 (10)	11.15	6.51	4.64	8260B	SGC	660 Y	< 300	690 Y	2,600	11	1.7	240	6.5	20
4/2/09 (12)	11.15	4.89	6.26	8260B	SGC	730 Y	< 300	840	4,800 Y	8.8	2.5	380	13.3	15
10/30/09	11.15	5.86	5.29	8260B	SGC	1,100Y	< 300	1,100Y	3,100	5.2	<1.7	200	8.1	23
10/30/09dup				8260B	Dup	600Y	< 300	620Y	3,300	5.3	<1.7	210	8.7	20
4/8/10	11.15	4.16	6.99	8260B	SPH: None	1300 Y	< 300	1400 Y	4,500	6.5	2.4	240	12	8.4
10/19/10	11.15	6.44	4.71		SPH: None									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	ΜΤΒΕ (μg/l)
9/12/11	11.15	5.98	5.17		SPH: None									
9/14/11	11.15			8260B	SGC	1,200 Y	< 300	1,400	2,900	3.20	1.0	62	7.48	12
12/21/11	11.15	5.86	5.29		SPH: None									
12/22/11	11.15			8260B	SGC	1,400 Y	<310	1,600 Y	2,800	1.50	0.75	65	5.74	9.9
MW-6														
12/13/91	10.98			8020		520			780	110	2.7	< 2.5	5.5	
12/13/91	10.98			8240						95	5	< 5	< 5	
4/27/93	10.98			8020		<1,000			<1,000	430	4	5	10	
4/19/95	10.98			8020		6,700			5,700	40	< 0.8	3.9	29	
4/19/95	10.98			8020	Dup	3,700			3,000	310	3.1	2.7	100	
7/27/95	10.98	7.09	3.89	8020	Бир	3,900			6,100	430	15	200	600	
7/27/95	10.98			8020	Dup	2,600			6,300	420	15	200	600	
11/20/95	10.98	7.89	3.09	8020	2 up	850			6,800	160	4.6	8	240	
11/20/95	10.98			8020	Dup				3,600	130	11	4.4	200	
2/21/96	10.98	7.40	3.58	8020	Filtered+SGC	1,700			2,800	230	2.8	3.8	44	
2/21/96	10.98			8020	Dup	2,500			2,200	280	3	4	4.6	
5/13/96	10.98	7.10	3.88	8020	Бир	400	< 50	< 50	3,100	430	12	5.2	67	
8/27/96	10.98	7.42	3.56	8020		3,100			4,200	300	9.3	110	110	
8/19/98	10.98	7.42	3.30		SPH: 0.125 ft.	3,100			4,200		9.J 			
11/11/98	10.98	7.09	3.93		SPH: 0.05 ft.									
2/23/99	10.98	7.31	3.67		SPH: NM									
5/27/99	10.98	6.91	4.25		SPH: 0.20 ft.									
8/24/99	10.98	7.46	3.72		SPH: 0.03 ft.									
11/22/99	10.98	7.96	3.15		SPH: 0.16 ft.									
1/18/00	10.98	8.08	3.05		SPH: 0.10 ft.									
5/11/00	10.98	7.52	4.47		SPH: 0.01 ft.									
8/24/00	10.98	7.50	3.53		SPH: 0.06 ft.									
11/28/00	10.98	6.39	4.62		SPH: 0.04 ft.									
2/26/01	10.98	7.80	3.50	8020	SPH: 0.40 ft., f	820	< 240	<60	6,100	181	< 5	14.2	<5	< 50
2/26/01	10.98	7.60	3.30	8260B	SFH. 0.40 II., I					270	3	9	3	(19)
5/17/01	10.98	7.57	3.66	0200B	SPH: 0.32 ft.									
8/16/01		7.75			SPH: 0.32 ft., f	740	200B					13	12	
12/15/01	10.98	7.58	3.49		SPH: 0.32 ft., 1 SPH: 0.07 ft.			< 100	4,200	360	4.6	13	12	14
	10.98		3.40											
4/3/02	10.98	6.92	4.06		SPH: 0.11 ft.									
6/21/02	10.98	7.05	3.93		SPH: 0.19 ft.									
9/12/02	10.98	7.22	4.02		SPH: 0.33 ft.									
4/22/03	10.98	4.71	6.27		SPH: 0.16 ft.									
4/28/04	10.98	5.09	5.89		SPH: 0.23 ft.									
10/27/04	10.98	6.12	4.86		SPH: product on probe									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	ΤΡΗ-g (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
8/31/05	10.98	6.11	4.87		SPH: 0.95 ft.									
3/27/06	10.98	4.11			SPH: 0.57 ft.									
9/6/06	10.98	5.42	5.56	8260B	SPH: 0.01 ft.	180 Y	< 300	200 Y	1,300	330	3.9	< 1.7	3.7	4.8
9/6/06	10.98			8260B	Dup	2,400 H L	< 300	2,300 H	1,200	350	3.6	< 1.3	3.4	4.7
4/4/07	10.98	4.37	6.61	8260B	SGC	3,300	< 300	3,000 H	1,400 H Y	520	< 4.2	< 4.2	< 4.2	4.5
10/2/07	10.98	7.25	3.73	8260B	SGC	2,400	340 Y	2000	890 Y	270	3.8	5.5	3	7.8
					SPH: Residual Product noted while bailing/									
3/20/08 (8)	10.98	6.59	4.39	8260B	SGC	7,200	820	5,900	1,100 Y	500	3.5	5.9	3.1	7.7
					SPH: Residual Product noted while bailing/			,						
11/21/08 (10)	10.98	6.06	4.92	8260B	SGC	1,500 Y	< 300	1,200 Y	450 Y	96	1.9	< 0.50	1.2	5.7
4/1/09	10.98	4.48	6.50		SPH: 0.03 ft.									
10/30/09	10.98	6.97	4.01	8260B	SGC	1,200Y	< 300	1,000Y	560Y	98	4.1	3.0	4.76	5.0
4/8/10	10.98	4.20	6.78		SPH: None									
10/19/10	10.98	5.88	5.10	8260B	SPH: None; SGC	400	< 300	420	620	100	1.7	< 1.0	2.0 B1	3.3
10/19/10 dup				8260B	SGC	370	< 300	400	610	110	1.6	< 1.0	1.4 B1	3.1
9/12/11	10.98	5.62	5.36		SPH: None									
9/14/11	10.98			8260B	SGC	1,800 Y	< 300	1,600	690	140	4.6	0.82	4.38	2.9
12/21/11	10.98	5.5	5.48		SPH: None									
MW-7														
12/13/91	11.51			8020		< 50			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/13/91	11.51			8240						< 5	< 5	< 5	< 5	
4/27/93	11.51			8240		< 1,000			< 1,000	< 1.0	< 1.0	< 1.0	< 1.0	
4/19/95	11.51			8240		< 50	< 1,000		< 50	< 2.0	< 2.0	< 2.0	< 2.0	
7/27/95	11.51	6.87	4.64	8240		< 50	< 1,000		< 50	< 2.0	< 2.0	< 2.0	< 2.0	
11/20/95	11.51	8.48	3.03	8020		< 50			< 50	< 0.5	< 0.5	< 0.5	1.5	
2/21/96	11.51	6.29	5.22	8020		< 50			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
5/13/96	11.51	6.95	4.56	8020		< 50				< 0.5	< 0.5	< 0.5	< 0.5	
8/27/96	11.51	6.80	4.71	8020						< 0.5	< 0.5	< 0.5	< 0.5	
8/19/98	11.51	6.88	4.63											
11/11/98	11.51	7.40	4.11											
2/23/99	11.51	5.57	5.94	8020		< 50	< 200	< 50	80	< 0.5	< 0.5	< 0.5	1	< 5.0
5/27/99	11.51	6.56	4.95											
8/24/99	11.51	6.29	5.22	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	5
11/22/99	11.51	6.80	4.71											
1/18/00	11.51	7.31	4.20											
1/19/00	11.51			8020	SGC	< 50	< 200	< 50	54	1.5	1.5	2.4	3.8	< 5.0
5/11/00	11.51	6.41	5.10											
8/24/00	11.51	7.11	4.40	8020		< 50	< 250	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	MTBE (µg/l)
	(feet)	(feet)	(feet)				, ,	, ,	, ,			(µg/l)	(µg/l)	
11/28/00	11.51	7.30	4.21											
2/27/01	11.51	5.75	5.76	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
5/17/01	11.51	6.65	4.86											
8/16/01	11.51	5.97	5.54		Filtered+SGC	< 50	600B	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/15/01	11.51	6.43	5.08											
4/8/02	11.51	6.17	5.34	8021	SGC	80	< 200		< 50	< 0.5	0.5	0.6	< 0.5	< 5
6/21/02	11.51	6.75	4.76	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.3
9/12/02	11.51	7.05	4.46	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.6
4/22/03	11.51	6.24	5.27	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	4 C
4/28/04	11.51	6.61	4.90	8260B	SGC	< 100	< 400	< 100	< 100	1.6	< 1.0	< 1.0	< 1.0	< 1.0
9/2/05 (1)	11.51	6.56	4.95	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.2
4/5/06 (3)	11.51	4.58	6.93	8260B	SGC	< 50	< 300	< 50	< 50	2.7	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	11.51	6.67	4.84											
4/5/07	11.51	6.13	5.38	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.7
10/2/07	11.51	7.07	4.44											
3/20/08 (8)	11.51	6.24	5.27	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.7
3/20/08 dup				8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.6
11/18/08	11.51	7.40	4.11											
4/2/09 (12)	11.51	6.95	4.56	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	1.3
10/29/09	11.51	6.60	4.91	8260B	SGC									
4/8/10	11.51	5.11	6.4		SPH: None									
10/19/10	11.51	7.05	4.46		SPH: None									
9/12/11	11.51	6.60	4.91		SPH: None									
12/21/11	11.51	6.68	4.83		SPH: None									
MW-8														
11/20/96	12.22			8020		880			< 50	0.66	< 0.5	< 0.5	< 0.5	
11/20/97	12.22	9.59	2.63	8020		200			< 50	< 0.5	< 0.5	< 0.5	< 0.5	2
2/24/98	12.22	8.42	3.80	8020		< 50	< 500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
6/8/98	12.22	9.57	2.65	8020		1,200	1,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
8/19/98	12.22	9.49	2.73	8020	SGC	< 50	< 250	< 50	< 50	1.6	3.4	1	2.8	< 5.0
11/11/98	12.22	9.64	2.58	8020	SGC	< 50	< 200	< 50	< 50	0.9	0.8	0.6	2.3	< 5.0
2/23/99	12.22	11.53	0.69	8020		700	1,500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99	12.22	9.65	2.57	8020		< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/24/99	12.22	9.62	2.60	8020	SGC	70	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99	12.22	9.64	2.58	8020	SGC	57	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
1/18/00	12.22	8.31	3.91	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	12.22	9.69	2.53	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	1.3	< 0.5	2.1	< 5.0
8/24/00	12.22	9.40	2.82											
8/25/00	12.22			8020	SGC	85	< 250	< 50	< 50					
11/28/00	12.22	9.40	2.83	8020	SGC	< 50	910	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
2/27/01	12.22	9.50	2.72	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	12.22	9.71	2.51											
5/18/01	12.22			8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	12.22	9.80	2.42		Filtered+SGC	< 50	< 200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/15/01	12.22	9.28	2.94	8021	SGC	390	1,300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/8/02	12.22	9.55	2.67	8021	SGC	440	800		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
6/21/02	12.22	9.71	2.51											
9/18/02	12.22	9.86	2.36	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2
4/22/03	12.22	9.54	2.68	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04	12.22													
10/27/04	12.22	$NM^{(4)}$												
4/5/06 (3)	12.22	8.73	3.49	8260B	SGC	54 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	12.22	9.50	2.72	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/3/07	12.22	9.58	2.64	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	12.22	9.54	2.68	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/21/08 (8)	12.22	9.61	2.61	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08 (10)	12.22	9.58	2.64	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 (12)	12.22	9.54	2.68	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	12.22	9.67	2.55	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/8/10	12.22	9.57	2.65		SPH: None									
10/19/10	12.22	9.61	2.61		SPH: None									
9/12/11	12.22	9.61	2.61		SPH: None									
12/21/11	12.22	8.97	3.25		SPH: None									
MW-9														
11/20/96	10.77			8020		1,900			240	21	0.81	1.8	2.2	
11/20/97	10.77	7.91	2.86	8020					300	20	< 0.5	< 0.5	1.8	< 1.0
2/24/98	10.77	6.11	4.66	8020		< 50	< 500	< 50	2,200	540	5.6	1.6	4.9	
6/8/98	10.77	7.14	3.63	8020		1,800	890	< 50	840	450	6.1	3.3	5.3	
8/19/98	10.77	7.88	2.89	8020	SGC	190	< 250	160	740	370	8.6	0.99	7.3	< 5.0
11/11/98	10.77	8.23	2.54	8020	SGC	< 50	230	< 50	700	130	4.3	< 0.5	3.9	< 5.0
2/23/99	10.77	6.65	4.12	8020		1,100	3,700	< 50	1,100	620	9.7	1.5	7.7	< 5.0
5/27/99	10.77	7.70	3.07	8020	SGC	70	300	< 50	950	470	11	1.5	9.2	< 5.0
8/24/99	10.77	8.12	2.65	8020	SGC	890	1,700	< 50	290	45	2.8	< 0.5	3	< 5.0
11/22/99	10.77	8.33	2.44	8020	SGC	1,000	6,000	< 50	170	12	1.8	< 0.5	2	< 5.0
1/18/00	10.77	8.63	2.14	8020	SGC	200 a	2,300	< 50	160	5.7	1.9	0.6	4.2	< 5.0
5/11/00	10.77	7.70	3.07	8020	SGC	180 a	980	< 100	1,050	280	7.0	< 2.5	5.9	< 25
8/24/00	10.77	8.31	2.46											
8/25/00	10.77			8020	SGC	580	2,200	170	180	23	2.4	< 0.5	2.7	< 5.0
11/28/00	10.77	8.45	2.32	8020	SGC	200	1,600	< 50	130	1.9	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.77	8.45	2.32		Filtered+SGC	< 50	< 200	< 50						

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
2/26/01	10.77	6.40	4.37	8020	Filtered+SGC	120	< 200	< 50	142	33	1.8	< 0.5	< 0.5	< 5.0
5/17/01	10.77	9.88	0.89											
5/18/01	10.77			8020	Filtered+SGC	< 50	< 200	< 50	74	4.6	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.77	8.05	2.72		Filtered+SGC	< 50	< 200	< 100	70	0.62	< 0.5	< 0.5	< 0.5	< 5
12/16/01	10.77	7.75	3.02	8021	SGC	1,400	4,100	< 50	210	15	1.6	< 0.5	2.2	< 5
4/5/02	10.77	7.50	3.27	8021	SGC	870	1,000		1,498	367	11	2.1	7.8	< 5
6/20/02	10.77	8.27	2.50	8021	SGC	< 50	< 300	< 50	430	180	5.7	2.4	4.15	<2
9/18/02	10.77	8.25	2.52	8021	SGC	63 b,c	< 300	60	250	49	5.8	< 0.5	3.1	<2
4/22/03	10.77	7.25	3.52	8021B	SGC	< 50	< 300	< 50	69	4.1 C	< 0.5	< 0.5	0.9	<2
4/28/04	10.77													
10/27/04	10.77	$NM^{(4)}$												
9/6/06	10.77	8.44	2.33	8260B	SGC	210 Y	< 300	150 Y	240	58	5.3	< 0.5	5.68	< 0.5
4/3/07	10.77	8.28	2.49	8260B	SGC	180 H Y	< 300	140 H	240 Z	27	4.2	< 0.5	5.32	< 0.5
4/3/07	10.77			8260B	Dup	190 H Y	< 300	160 H	260 Z	28	4.5	< 0.5	5.87	< 0.5
10/3/07	10.77	8.58	2.19	8260B	SGC	110 Y	< 300	110 Y Z	240 Y	1	2.4	< 0.5	3.53	< 0.5
3/20/08 (8)	10.77	8.46	2.31	8260B	SGC	170 Y	< 300	150 Y	230	65	4.2	< 0.5	5.13	< 0.5
3/20/08 dup				8260B	SGC	190 Y	< 300	180 Y	250	66	4.4	< 0.5	5.5	< 0.5
11/21/08 (10)	10.77	8.63	2.14	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 (12)	10.77	8.08	2.69	8260B	SGC	130 Y	380	53 Y	70 Y	82	1.4	< 0.50	1.0	< 0.50
10/30/09	10.77	8.91	1.86	8260B	SGC	220Y	< 300	130Y	< 50	< 0.50	< 0.50	< 0.50	0.61	< 0.50
4/8/10	10.77	7.37	3.4	8260B	SPH: None	110 Y, F	< 300	52 Y, F						
4/8/10 dup				8260B	5111.110110	250 Y, F	< 300	170 Y, F						
4/29/10	10.77	7.3	3.47	8260B	SPH: None	90 Y, F	< 300	< 50	87	5.0	1.2	< 0.50	1.8	< 0.50
4/29/10 dup				8260B		<50 F	< 300	< 50	98	4.9	1.2	< 0.50	1.7	< 0.50
10/19/10	10.77	8.37	2.40	8260B	SPH: None; SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	0.51 B1	< 0.50
9/12/11	10.77	8.04	2.73	8260B	SPH: None; SGC	180 Y	500	< 50	68	0.99	0.84	< 0.50	1.1	< 0.50
12/21/11	10.77	8.09	2.68		SPH: None									
MW-10														
11/20/96	10.59			8020		940			< 50	49	0.59	0.54	1.2	
11/20/97	10.59	7.70	2.89	8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	
2/24/98	10.59	4.39	6.20	8020		< 50	< 500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
6/8/98	10.59	6.94	3.65	8020		500	< 500	< 50	< 50	7.3	< 0.5	< 0.5	< 0.5	
8/19/98	10.59	6.99	3.60	8020	SGC	240	520	110	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/11/98	10.59	7.57	3.02	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/23/99	10.59	5.51	5.08	8020		170	1,200	< 50	< 50	1.3	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99	10.59	6.72	3.87	8020	SGC	< 50	< 200	< 50	350	170	1.5	0.5	2.3	< 5.0
8/24/99	10.59	7.27	3.32	8020	SGC	140	300	< 50	380	160 e	< 0.5	< 0.5	2.6	< 5.0
11/22/99	10.59	7.71	2.88	8020	SGC	570	3,400	< 50	110	5.1	< 0.5	< 0.5	0.72	< 5.0
1/18/00	10.59	7.77	2.82											
1/19/00	10.59			8020	SGC	120 a,b	1,200	< 50	100	< 0.5	< 0.5	0.8	< 0.5	< 5.0

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
5/11/00	10.59	7.00	3.59	8020	SGC	110 a	990	< 50	145	1.62	0.5	0.5	0.9	< 5.0
8/24/00	10.59	7.31	3.28											
8/25/00	10.59			8020	SGC	430	1,300	110	< 50	1.0	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.59	7.90	2.69	8020	SGC	220	1,500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01	10.59	5.80	4.79	8020	Filtered+SGC	85	< 230	< 57	< 50	1.3	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.59	6.27	4.32											
5/18/01	10.59			8020	Filtered+SGC	< 50	< 200	< 50	< 50	0.7	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.59	8.75	1.84		Filtered+SGC	< 50	< 200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/16/01	10.59	6.97	3.62	8021	SGC	410	2,100	< 50	< 50	2.4	< 0.5	< 0.5	< 0.5	< 5
4/8/02	10.59	6.51	4.08	8021	SGC	220	300		< 50	1.1	< 0.5	< 0.5	< 0.5	< 5
6/20/02	10.59	8.10	2.49	8021	SGC	1,100 a,c	6,200	< 50	120	34	< 0.5	< 0.5	< 0.5	<2
9/17/02	10.59	7.66	2.93	8021	SGC	150 a,c	880	< 50	130 a,c,j	32	< 0.5	2.3	< 0.5	<2
4/22/03	10.59	6.81	3.78	8021B	SGC	< 50	< 300	< 50	51	1.0 C	<.50	1.2	<.50	<2
4/28/04	10.59	6.70	3.89	8260B	SGC	< 100	< 400	< 100	114	14	<1.0	6.9	5.2	3.5
10/28/04	10.59	6.98	3.61	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	10.59	6.76	3.83	8260B	SGC	< 50	< 300	< 50	110	2.4	< 0.5	< 0.5	0.7	< 0.5
4/5/06 (3)	10.59	4.86	5.73	8260B	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.59	9.01	1.58	8260B	SGC	98 H Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/07	10.59	8.99	1.60	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	10.59	9.78	0.81	8260B	SGC	< 50	< 300	< 50	< 50	30	< 0.5	< 0.5	< 0.5	< 0.5
3/21/08 (8)	10.59	10.20	0.39	8260B	SGC	< 50	< 300	< 50	< 50	3.9	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08 (10)	10.59	9.55	1.04	8260B	SGC	< 50	< 300	< 50	< 50	11	< 0.50	< 0.50	< 0.50	< 0.50
11/19/08 dup				8260B	SGC	< 50	< 300	< 50	< 50	11	< 0.50	< 0.50	< 0.50	< 0.50
4/1/09	10.59	7.52	3.07	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	10.59	8.80	1.79	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/8/10	10.59	6.23	4.36		SPH: None	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/19/10	10.59	7.38	3.21		SPH: None									
9/12/11	10.59	7.05	3.54		SPH: None									
9/14/11	10.59			8260B	SGC	< 50	< 300	< 50	< 50	24	< 0.50	< 0.50	< 0.50	< 0.50
12/21/11	10.59	7.13	3.46		SPH: None									
12/22/11	10.59			8260B	SGC	< 50	< 300	< 50	< 50	2.6	< 0.50	< 0.50	< 0.50	< 0.50
MW-11														
1/18/00	11.60	7.08	4.52											
1/19/00	11.60			8020	SGC	< 50	500	< 50	220	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	11.60	5.95	5.65	8020	SGC	< 50	430	< 50	600	23	2.1	18	15	< 5.0
8/24/00	11.60	6.58	5.02	8020		< 50	< 250	< 50	110	5.9	< 0.5	0.73	0.64	< 5.0
11/28/00	11.60	6.91	4.69	8020	SGC	< 50	< 200	< 50	180	4	< 0.5	1.9	< 0.5	< 5.0
2/27/01	11.60	5.65	5.95	8020	Filtered+SGC	86	< 240	< 60	720	29	5.2	38	36	< 5.0
5/17/01	11.60	6.85	4.75	8020	Filtered+SGC	< 50	< 200	< 50	720	36	3.4	15	18	9.7
8/16/01	11.60	6.01	5.59		Filtered+SGC	< 50	500B	< 100	110	4.8	< 0.5	1.4	< 0.5	< 5

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
12/15/01	11.60	6.26	5.34	8021	SGC	200	300	< 50	170	1.7	0.6	2.4	1.8	<2
4/5/02	11.60	5.47	6.13	8021	SGC	160	< 200		330	8.9	2.0	6.9	8.7	<5
6/21/02	11.60	6.17	5.43	8021	SGC	< 50	< 300	< 50	280	16	1.8	8.7	9.6	3.6
9/12/02	11.60	6.60	5.00	8021	SGC	< 50	< 300	< 50	93	< 0.5	< 0.5	1.1	< 0.5	2.1
4/24/03	11.60	5.71	5.89	8021B	SGC	< 50	< 300	< 50	320	21	2.1	12	6.13	8.9
4/28/04	11.60	5.92	5.68	8260B	SGC	< 100	< 400	< 100	360	18	< 1.0	6.5	4.5	4
10/27/04	11.60	6.59	5.01	8260B	SGC									
9/2/05 (1)	11.60	6.22	5.38	8260B	SGC	< 50	< 300	< 50	85	< 0.5	< 0.5	< 0.5	< 0.5	4.5
4/4/06 (3)	11.60	4.17	7.43	8260B	SGC	71 LY	< 300	75 L Y	230	5.7	0.9	14	7.0	6.5
4/4/06	11.60			8260B	dup	< 50	< 300	55 L Y	220	6.5	1.0	15	7.3	7.4
9/6/06	11.60	6.46	5.14											
4/5/07	11.60	5.60	6.00	8260B	SGC	66 Y	< 300	55 Y	270 Y	9.6	0.7	7.3	2.4	11
10/2/07	11.60	6.83	4.77											
3/20/08 (8)	11.60	6.83	4.77	8260B	SGC	< 50	< 300	< 50	160	3.5	< 0.5	5.4	0.92	13
11/18/08	11.60	7.00	4.60											
4/2/09 (12)	11.60	5.24	6.36	8260B	SGC	< 50	< 300	< 50	94 Y	0.98	< 0.50	2.9	< 0.50	13
10/29/09	11.60	6.33	5.27	8260B	SGC									
4/8/10	11.60	4.51	7.09		SPH: None									
10/19/10	11.60	6.67	4.93		SPH: None									
9/12/11	11.60	6.28	5.32		SPH: None									
12/21/11	11.60	6.22	5.38		SPH: None									
MW-12														
1/18/00	10.43	8.11	2.32											
1/19/00	10.43			8020	SGC	1,800 a	11,000	< 50	200	< 0.5	3.4	1.5	8.4	< 5.0
5/11/00	10.43	6.78	3.65	8020	SGC	2,400 a	4,900	< 100	370	< 0.5	< 0.5	< 0.5	0.9	< 5.0
8/24/00	10.43	7.56	2.87											
8/25/00	10.43			8020	SGC	3,500	5,000	3,700	170	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.43	8.13	2.30	8020	SGC	2,100	14,000	< 50	290	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.43	8.13	2.30		Filtered+SGC	50	< 200	< 50						
2/27/01	10.43	6.00	4.43	8020	Filtered+SGC	320	< 250	66	110	1.4	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.43	7.01	3.42	8020	Filtered+SGC	< 50	< 200	< 50	220	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.43	8.47	1.96	8020	Filtered+SGC	200	300B	< 100	160	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/8/02	10.43	6.65	3.78	8021	SGC	500	500		180	< 0.5	< 0.5	0.7	<1.5	< 5
6/21/02	10.43	7.10	3.33	8021	SGC	1,100 a,b,c	3,000 h	640	180	< 0.5	< 0.5	0.63	1.62	<2
9/17/02	10.43	7.75	2.68	8021	SGC	220 a,b,c	360	190	130	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/22/03	10.43	6.60	3.83	8021B	SGC	140 L Y	< 300	120	150	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04	10.43	6.60	3.83	8260B	SGC	< 550	1,020	< 100	< 100	< 0.5	<1.0	< 1.0	<1.0	<1.0
10/29/04	10.43	7.87	2.56	8260B	SGC	240 H L Y	460	180	170 H	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05 (1)	10.43	7.04	3.39	8260B	SGC	< 50	< 300	< 50	170	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
9/2/05 (1)	10.43	7.04	3.39	8260B	SGC	110 L Y	< 300	120	150	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/06 (3)	10.43	4.49	5.94	8260B	SGC	110 Y	< 300	110 Y	110	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.43	7.43	3.00	8260B	SGC	230 Y	< 300	200 Y	120	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/5/07	10.43	6.58	3.85	8260B	SGC	340 H Y	360 H L	230 H Y	160 Y	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07	10.43	8.14	2.29	8260B	SGC	290 Y	< 300	230	160 Y	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/19/08	10.43	6.45	3.98	8260B	SGC	620 Y	340	430	130 Y	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/21/08 (10)	10.43	8.27	2.16	8260B	SGC	170 Y	< 300	120 Y	59 Y	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/1/09	10.43	6.30	4.13	8260B	SGC	330 Y	< 300	300	100 Y	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/29/09	10.43	7.73	2.70	8260B	SGC	280Y	< 300	220Y	160Y	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/8/10	10.43	6.07	4.36	8260B	SPH: None	320 Y	< 300	250	140	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/19/10	10.43	7.85	2.58		SPH: None									
9/12/11	10.43	7.33	3.10		SPH: None									
12/21/11	10.43	7.56	2.87		SPH: None									
MW-13														
1/18/00	11.34	9.63	1.71	8020	SGC	8,800 a	120,000	< 50	< 50	< 0.5	0.8	< 0.5	< 0.5	< 5.0
5/11/00	11.34	10.12	1.22	8020	SGC	11,000 a	110,000	< 500	70	1.6	5.4	1.2	7.6	< 5.0
8/24/00	11.34	10.22	1.12											
8/25/00	11.34			8020	SGC	3,100	13,000	1,200	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	11.34	10.50	0.84	8020	SGC	2,400	36,000	< 1300	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	11.34	10.50	0.84		Filtered+SGC	280	1,100	< 50						
2/26/01	11.34	9.60	1.74	8020	Filtered+SGC	100	< 260	< 64	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	11.34	10.10	1.24											
5/18/01	11.34			8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	11.34	10.50	0.84		Filtered+SGC	< 50	300B	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/16/01	11.34	9.43	1.91	8021	SGC	1,900	18,000	< 250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/8/02	11.34	10.24	1.10	8021	SGC	440	900		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
6/20/02	11.34	10.75	0.59	8021	SGC	270 a,c	1,500 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	11.34	10.60	0.74	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/22/03	11.34	10.46	0.88	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
4/28/04	11.34	10.22	1.12	8260B	SGC	< 100	799	< 100	< 100	< 0.5	< 1.0	< 1.0	< 1.0	< 1.0
10/28/04	11.34	9.50	1.84	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	11.34	9.56	1.78	8260B	SGC	< 50	320	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/5/06 (3)	11.34	7.86	3.48	8260B	SGC	180 H Y	910	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	11.34	10.53	0.81	8260B	SGC	150 H Y	730	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/07	11.34	9.73	1.61	8260B	SGC	58 H Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	11.34	10.18	1.16	8260B	SGC	120 Y	460	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/20/08 (8)	11.34	9.54	1.80	8260B	SGC	53 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/21/08 (10)	11.34	10.41	0.93	8260B	SGC	120 Y	630	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 (12)	11.34	10.41	0.93	8260B	SGC	110 Y	610	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	ΤΡΗ-d (μg/l)	TPH-mo (µg/l)	ΤΡΗ-k (μg/l)	ΤΡΗ-g (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
10/30/09	11.34	9.65	1.69	8260B	SGC	81Y	650	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/8/10	11.34	9.96	1.38	8260B	SPH: None	61 Y	330	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/19/10	11.34	9.50	1.84	8260B	SPH: None; SGC	150 Y	940	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
9/12/11	11.34	10.33	1.01	8260B	SPH: None; SGC	51 Y	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
12/21/11	11.34	10.01	1.33	8260B	SPH: None; SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-14														
1/18/00	10.05	7.37	2.68	8020	SGC	1,700 a	22,000	< 50	120	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	10.05	6.73	3.32	8020	SGC	360 a	4,300	< 100	120	< 0.5	< 0.5	< 0.5	0.5	< 5.0
8/24/00	10.05	7.30	2.75											
8/25/00	10.05			8020	SGC	1,000	3,100	460	90	6.3	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.05	7.40	2.65	8020	SGC	380	6,400	< 250	140	7.4	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.05	7.40	2.65		Filtered+SGC	< 50	< 200	< 50						
2/26/01	10.05	6.20	3.85	8020	Filtered+SGC	150	< 230	< 58	73	2.3	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.05	7.74	2.31											
5/18/01	10.05			8020	Filtered+SGC	120	< 200	< 50	100	11	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.05	7.85	2.20		Filtered+SGC	< 50	< 200	< 100	60	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/16/01	10.05	6.60	3.45	8021	SGC	1,110	3,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/9/02	10.05	6.58	3.47	8021	SGC	870	1,100		250	< 0.5	< 0.5	< 0.5	< 0.5	< 5
6/20/02	10.05	7.52	2.53	8021	SGC	< 50	310 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	10.05	7.55	2.50	8021	SGC	< 50	< 300	< 50	< 50	1.3	< 0.5	0.80	< 0.5	<2
4/22/03	10.05	6.71	3.34	8021B	SGC	< 50	< 300	< 50	61	4.2	< 0.5	1.0	< 0.5	12.0
4/28/04	10.05	6.81	3.24	8260B	SGC	< 230	< 400	< 100	241	1.4	< 1.0	< 1.0	< 1.0	< 1.0
10/28/04	10.05	6.99	3.06	8260B	SGC	< 50	< 300	< 50	56	3.5	< 0.5	< 0.5	< 0.5	0.5
10/28/04	10.05			8260B	dup	< 50	< 300	< 50	53	1.9	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	10.05	7.60	2.45	8260B	SGC	< 50	< 300	< 50	79	6.7	< 0.5	< 0.5	< 0.5	0.7
4/5/06 (3)	10.05	5.91	4.14	8260B	SGC	50 Y	< 300	< 50	< 50	1.7	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.05	7.70	2.35	8260B	SGC	140 H Y	< 300	79 H Y	60	< 0.5	< 0.5	< 0.5	< 0.5	0.51
4/4/07	10.05	7.52	2.53	8260B	SGC	100 H Y	< 300	50 H Y	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/07	10.05			8260B	Dup	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	10.05	8.45	1.60	8260B	SGC	61 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/20/08 (8)	10.05	7.80	2.25	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/21/08 (10)	10.05	8.45	1.60	8260B	SGC	150 Y	660	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 (12)	10.05	7.20	2.85	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	10.05	9.11	0.94	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/8/10	10.05	6.62	3.43	8260B	SPH: None	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/19/10	10.05	7.23	2.82	8260B	SPH: None; SGC	210	< 300	110	54	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
9/12/11	10.05	7.11	2.94	8260B	SPH: None; SGC	63 Y	< 300	< 50	72	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
12/21/11	10.05	7.00	3.05	8260B	SPH: None; SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

MW-15

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
1/18/00	12.36	10.56	1.80	8020	SGC	12,000 a	89,000	< 50	110	3.8	2.1	1	4.6	< 5.0
5/11/00	12.36	10.03	2.33	8020	SGC	120 a	590	< 50	90	0.9	0.9	< 0.5	3.3	< 5.0
8/24/00	12.36	10.22	2.14											
8/25/00	12.36			8020	SGC	1,900	8,600	1,000	< 50	1.9	< 0.5	< 0.5	1.5	< 5.0
11/28/00	12.36	10.30	2.06	8020	SGC	2,500	36,000	< 1300	80	1.7	< 0.5	< 0.5	1.6	< 5.0
11/28/00	12.36	10.30	2.06		Filtered+SGC	73	< 200	< 50						
2/26/01	12.36	9.30	3.06	8020	Filtered+SGC	190	< 240	< 60	55	0.6	< 0.5	< 0.5	0.5	< 5.0
5/17/01	12.36	10.09	2.27											
5/18/01	12.36			8020	Filtered+SGC	210	< 230	< 57	66	1.5	< 0.5	< 0.5	2.1	< 5.0
8/16/01	12.36	10.20	2.16		Filtered+SGC	< 50	500 B	< 100	< 50	< 0.5	< 0.5	< 0.5	2.4	< 5
12/16/01	12.36	9.80	2.56	8021	SGC	3,800	15,000	< 250	< 50	< 0.5	< 0.5	< 0.5	2	< 5
4/5/02	12.36	9.58	2.78	8021	SGC	1,000	1,400		< 50	< 0.5	< 0.5	< 0.5	2.3	< 5
6/20/02	12.36	10.24	2.12	8021	SGC	670 a,c	2,700 h	95 c,i	< 50	0.83	< 0.5	< 0.5	2.20	<2
9/18/02	12.36	9.89	2.47	8021	SGC	70 a,c	< 300	< 50	< 50	< 0.5	< 0.5	1.5	1.71	<2
4/22/03	12.36	9.55	2.81	8021B	SGC	< 50	< 300	< 50	< 50	1 C	<.50	1.4	1.9	<2
4/28/04	12.36	9.68	2.68	8260B	SGC	< 250	567	< 100	< 100	< 0.5	< 1.0	< 1.0	< 1.0	2.8
10/28/04	12.36	9.58	2.78	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	2.2	< 0.5
9/1/05 (1)	12.36	9.56	2.80	8260B	SGC	420 Y	< 300	120 H Y	55	< 0.5	< 0.5	< 0.5	2.0	< 0.5
4/5/06 (3)	12.36	8.76	3.60	8260B	SGC	300 H Y	760	87 H Y	< 50	< 0.5	< 0.5	< 0.5	2.4	< 0.5
9/6/06	12.36	9.98	2.38	8260B	SGC	220 H Y	400	80 H Y	< 50	< 0.5	< 0.5	< 0.5	2.06	< 0.5
4/3/07	12.36	10.05	2.31	8260B	SGC	130 H Y	< 300	63 H Y	< 50	< 0.5	< 0.5	< 0.5	2.38	< 0.5
10/3/07	12.36	10.16	2.20	8260B	SGC	150 Y	550	< 50	55 Y	< 0.5	< 0.5	< 0.5	1.96	< 0.5
3/20/08 (8)	12.36	10.08	2.28	8260B	SGC	88 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	2.02	< 0.5
11/19/08 (10)	12.36	10.28	2.08	8260B	SGC	110 Y	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	1.78	< 0.50
4/2/09 (12)	12.36	9.91	2.45	8260B	SGC	85 Y	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	0.82	< 0.50
10/30/09	12.36	10.24	2.12	8260B	SGC	110Y	< 300	< 50	81Y	< 0.50	< 0.50	< 0.50	2.41	< 0.50
4/8/10	12.36	9.59	2.77		SPH: None									
10/19/10	12.36	10.21	2.15		SPH: None									
9/12/11	12.36	9.96	2.40		SPH: None									
12/21/11	12.36	10.04	2.32		SPH: None									
MW-16														
1/18/00	13.57	10.22	3.43		SPH: 0.1 ft.									
5/11/00	13.57	13.31	0.27		SPH: 0.01 ft.									
8/24/00	13.57	8.91	4.66		SPH: NM									
11/28/00	13.57	13.05	0.86		SPH: 0.42 ft.									
2/26/01	13.57	13.10	0.79		SPH: 0.40 ft.									
5/17/01	13.57	12.62G			SPH: NM									
8/16/01	13.57	11.94G			SPH: NM									
12/15/01	13.57	NM			SPH: NM									
4/3/02	13.57	12.88	0.69											

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	ΜΤΒΕ (μg/l)
6/21/02	12.22	NM			SPH: NM									
4/22/03	12.22				Well cap stuck									
4/28/04	12.22	12.48	-0.26	8260B	SGC	<230	1030	< 260	2000	150	< 1.0	46	< 1.0	< 1.0
10/28/04	12.22	11.97	0.25	8260B	SGC	450 L Y	< 300	480	1100	18	1.7	29	1.7	< 0.5
8/31/05	12.22	12.09	0.13		SPH: None									
4/5/06 (3)	12.22	3.80	8.42	8260B	SGC	95 H Y	420	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	12.22				Dry									
4/4/07 (5)	12.22	10.72	1.5	8260B	SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	12.22	10.92	1.3	8260B	SGC	2,300 Y	4300	1700	480 Y	31	1.7	4.5	1.6	< 0.5
3/19/08 (9)	12.22	10.72	1.5											
11/19/08 (10)	12.22	12.33	-0.11	8260B	SGC	52,000 Y	110,000	31,000	150 Y	21	1.7	2.7	1.1	< 0.50
4/2/09 (12)	12.22	11.25	0.97	8260B	SGC				59 Y	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/30/09	12.22	11.37	0.85	8260B	SGC	5,600Y	12,000	4,100Y	590	59	3.5	3.1	3.03	< 0.50
4/8/10	12.22	10.45	1.77		SPH: None									
10/19/10	12.22	10.98	1.24		SPH: None									
9/12/11	12.22	10.75	1.47		SPH: None									
12/21/11	12.22	10.66	1.56		SPH: None									
MW-17														
1/18/00	9.86	5.35	4.51	8020	SGC	850 a	21,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	9.86	9.85	0.01	8020	SGC	150 a	2,900	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/24/00	9.86	8.59	1.27											
8/25/00	9.86			8020	SGC	190	610	71	< 50	0.58	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.86	9.25	0.61	8020	SGC	< 250	2,400	< 250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.86	9.25	0.61		Filtered+SGC	< 50	< 200	< 50						
2/26/01	9.86	9.40	0.46	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.86	8.32	1.54											
5/18/01	9.86			8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	9.86	10.35	-0.49		Filtered+SGC	< 50	400B	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/16/01	9.86	8.01	1.85	8021	SGC	940	1,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
4/9/02	9.86	9.76	0.10	8021	SGC	590	880		60	< 0.5	< 0.5	1.6	< 0.5	< 5.0
6/21/02	9.86	9.79	0.07	8021	SGC	99 a,c	650 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	9.86	8.25	1.61	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/23/03	9.86	9.75	0.11	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04	9.86	8.90	0.96	8260B	SGC	< 100	< 400	< 100	< 100	< 0.5	< 1.0	2.4	<1.0	< 1.0
10/28/04	9.86	8.32	1.54		SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	9.86	8.38	1.48	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/5/06 (3)	9.86	6.86	3.00	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	9.86	9.85	0.01	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/3/07	9.86	7.67	2.19	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
10/3/07	9.86	7.97	1.89	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07 dup				8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/20/08 (8)	9.86	6.70	3.16	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08 (10)	9.86	9.53	0.33	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 (12)	9.86	9.56	0.30	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	9.86	7.21	2.65	8260B	SGC	< 50	< 300	<50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/8/10	9.86	9.15	0.71	8260B	SPH: None	< 50	< 300	<50	77	2.3	< 0.50	2.2	< 0.50	< 0.50
10/19/10	9.86	6.82	3.04	0200B	SPH: None					2.3				
9/12/11	9.86	9.34	0.52	8260B	SPH: None; SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
12/21/11	9.86	8.58	1.28	8260B	SPH: None; SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW 10														
MW-18 4/24/03		6.49		8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	2.4	< 0.5	<2
		0.49		8021B	Developed to monitor a utility trench, not	₹30	₹300	₹30	< 30	₹0.3	₹0.3	2.4	₹0.3	~ 2
4/28/04					sampled									
8/31/05														
3/27/06														
9/6/06														
TBW-1														
2/23/99		6.25			SPH: 0.10 ft.									
5/27/99		5.29			SPH: 0.01 ft.									
8/24/99		6.99			SPH: 0.18 ft.									
11/22/99					Inaccessible									
1/18/00					Inaccessible									
5/11/00		6.90			SPH: 0.10 ft.									
8/24/00		7.12			SPH: NM									
11/28/00		7.75			SPH: 0.36 ft.									
2/27/01		9.06			SPH: 0.51 ft.									
5/17/01		6.98			SPH: 0.28 ft.									
8/16/01		6.62			SPH: 0.66 ft., f	1,100	700B	< 100	17,000	2,100	75	730	850	<1
12/15/01		6.86			SPH 0.35 ft.									
4/3/02		6.14			SPH: None									
9/12/02		7.52			SPH: None									
4/22/03		6.41			SPH: None									
4/28/04		6.33			SPH: None									
10/28/04		NM												
8/31/05		6.50			Well cap smashed 6"									
3/27/06		5.20			SPH: None									
9/6/06		NM			SPH: None									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
4/4/07		8.26												
10/2/07		NM			Abandoned									
TBW-2														
6/21/02		8.28												
4/22/03		6.70			SPH globules									
4/28/04		6.61			SPH: None									
10/28/04		7.31			SPH: None									
8/31/05		NM												
3/27/06		$NM^{(4)}$												
9/6/06		$NM^{(4)}$			SPH: None									
4/4/07		$NM^{(4)}$												
10/2/07		NM			Abandoned									
TBW-3														
8/19/98		2.67		8020	SGC	810,000			920	3.2	< 0.5	< 0.5	0.77	< 10
8/19/98		2.67		8260	500									< 5.0
2/23/98		1.25		8020		3,800	3,000	< 50	110	1.6	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99					DTW: NM									
8/24/99		3.25			SPH globules									
11/22/99		3.68			C									
1/18/00	9.92	3.73	6.19		SPH globules									
5/11/00	9.92	2.07	7.85		· ·									
8/24/00	9.92	2.82	7.10		SPH: sheen	44,000	13,000	34,000	570	4.7	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.92													
2/27/01	9.92	1.29	8.63	8020	Filtered+SGC	560	< 230	< 57	120	1.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.92	2.47	7.45											
8/16/01	9.92	1.81	8.11		Filtered+SGC	1,500	400B	< 100	180	< 0.5	< 0.5	< 0.5	< 0.5	<1
12/15/01	9.92	2.52			SPH: 0.02 ft.									
4/3/02	9.92	1.50			SPH: None									
6/21/02	9.92	2.37	7.55		SPH: None									
9/12/02	9.92	3.48	6.44		SPH: None									
4/22/03	9.92	1.45	8.47		Sheen									
4/28/04	9.92	2.26	7.66		SPH: None									
10/28/04	9.92	3.42	6.50		Sheen									
8/31/05	9.92	2.99	6.93		SPH: None									
3/27/06	9.92	0.49	9.43		SPH: None									
9/6/06	9.92	3.42	6.50		SPH:0.01 ft.									
4/4/07	9.92	1.93	7.99											
10/2/07		NM			Abandoned									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	ΤΡΗ-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	ΜΤΒΕ (μ g/l)
TBW-4														
2/27/01		1.35		8020	Filtered+SGC	410	< 230	< 57	250	1.9	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01		2.52												
8/16/01		1.88			Filtered+SGC	2,600	700B	< 100	390	< 0.5	< 0.5	< 0.5	< 0.5	<5
6/21/02		2.32												
4/22/03		1.41			Sheen									
4/28/04		2.21												
10/27/04		3.37			Sheen									
8/31/05		2.92												
3/27/06		0.49			SPH: None									
9/6/06		3.37			SPH:0.01 ft.									
4/4/07		1.88												
10/2/07		NM			Abandoned									
TBW-5														
2/23/99		9.72			SPH: 1.45 ft.									
5/27/99		7.03			SPH: 1.13 ft.									
8/24/99		6.52			SPH: 1.33 ft.									
11/22/99		8.31			SPH: 1.29 ft.									
1/18/00	10.22	6.20	4.74		SPH: 0.90 ft.									
5/11/00	10.22	9.41	1.05		SPH: 0.30 ft.									
8/24/00	10.22	9.62	0.81		SPH: 0.26 ft.									
11/28/00	10.22	10.25	0.34		SPH: 0.46 ft.									
2/27/01	10.22	9.06	1.45		SPH: 0.36 ft.									
5/17/01	10.22	8.75	1.47		SPH: 0.67 ft.									
8/16/01	10.22	8.32	2.51	8020	SPH: 0.76 ft., f	550	400B	< 100	30,000	2,900	100	1,500	5,100	<1
12/15/01	10.22	9.09	1.13		SPH: 0.36 ft.									
4/3/02 (6)														
6/21/02	10.22	7.87	2.35		SPH: 0.03 ft.									
9/12/01	10.22	7.26	2.97		SPH: 0.01 ft.									
4/22/03	10.22	6.22	4.00		SPH: 0.06 ft.									
4/28/04	10.22	6.26	3.96		SPH: 0.21 ft.									
10/27/04	10.22	3.62	6.60		SPH: None									
8/31/05	10.22	6.41			SPH: 0.30 ft.									
3/27/06	10.22	NM ⁽²⁾												
9/6/06	10.22	NM ⁽²⁾												
4/4/07	10.22	$NM^{(2)}$												
10/2/07		NM			SPH: viscous residual									
3/19/08		NM			SPH: None									
11/18/08	10.22	9.32	0.9											
4/1/09		NM			NA									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
10/29/09	10.22	8.50	1.72											
4/8/10	10.22	5.54	4.68		SPH: None									
10/19/10	10.22	6.91	3.31		SPH: None									
9/12/11	10.22	6.55	3.67		SPH: None									
12/21/11	10.22	6.75	3.47		SPH: None									
TBW-6														
2/23/99		2.09		8020		160	600	< 50	60	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99		3.31												
8/24/99		7.29		8020	SGC	180	400	< 50	130	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99		4.37												
1/18/00	9.49	3.83	5.66											
1/19/00	9.49			8020	SGC	55 C	< 200	< 50	170	0.6	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	9.49	2.51	6.98											
8/24/00	9.49	4.34	5.15											
8/25/00	9.49			8020	SGC	320	< 250	200	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.49	4.74	4.75											
2/27/01	9.49	2.30	7.19	8020	Filtered+SGC	< 57	< 230	< 57	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.49	3.35	6.14											
8/16/01	9.49	3.85	5.64		Filtered+SGC	< 50	< 200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/15/01	9.49	3.96	5.53											
4/3/02	9.49	2.51	6.98											
6/21/02	9.49	3.58	5.91											
9/12/02	9.49	6.07	4.56		SPH: 1.42 ft.									
4/23/03	9.49	2.42	7.07											
4/28/04	9.49	3.21	6.28											
10/27/04	9.49	4.49	5.00		SPH: None									
8/31/05	9.49	4.43			SPH: 0.52 ft.									
3/27/06	9.49	1.90	7.59		SPH: None									
9/6/06	9.49	4.33	5.16		SPH:0.01 ft.									
4/4/07	9.49	3.08	6.41											
10/2/07	9.49	4.98	4.51		SPH: None									
3/19/08	9.49	3.16	6.33		SPH: None									
11/18/08	9.49	5.32	4.17		SPH: None									
4/1/09	9.49	2.87	6.62		SPH: sheen									
10/29/09					No Access									
4/8/10	9.49	1.87	7.62		SPH: None									
10/19/10	9.49	4.79	4.70		SPH: None									
9/12/11	9.49	4.17	5.32		SPH: None									
12/21/11	9.46	3.81	5.65		SPH: None									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	ΜΤΒΕ (μ g/l)
RW-A1														
4/22/03		1.81												
4/28/04	10.09	2.52	7.57											
10/27/04	10.09	3.03	7.06		SPH: None									
8/31/05	10.09	3.31	6.78		SPH: None									
3/27/06	10.09	0.62	9.47		SPH: None									
9/6/06	10.09	3.52	6.57		SPH: None									
4/3/07	10.09	2.93	7.16											
10/2/07	10.09	NM ⁽⁷⁾												
3/19/08	10.09	3.16	6.93		SPH: None									
11/20/08 (10)	10.09	4.49	5.60	8260B	SGC	56 Y	< 300	< 50	< 50	8.8	< 0.50	< 0.50	< 0.50	4.5
4/1/09	10.09	2.48	7.61		SPH: None									
10/29/09	10.09	3.49	6.60											
4/8/10	10.09	1.54	8.55		SPH: None									
10/19/10	10.19	4.22	5.97		SPH: None									
9/12/11	10.19	3.43	6.76		SPH: None									
12/21/11	10.19	3.02	7.17		SPH: None									
RW-A2														
4/22/03		1.22			Sheen									
4/28/04	9.67	2.01	7.66											
10/27/04	9.67	3.20	6.47		SPH: None									
8/31/05	9.67	2.75	6.92		SPH: None									
3/27/06	9.67	0.30	9.37		SPH: None									
9/6/06	9.67	3.19	6.48		SPH: 0.01 ft.									
4/4/07	9.67	1.70	7.97	8260B	SGC	200 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07	9.67	3.81	5.86		SPH: None									
3/19/08	9.67	1.71	7.96		SPH: None									
11/20/08 (10)	9.67	3.96	5.71	8260B	SGC	590 Y	< 300	160 Y	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/1/09	9.67	1.58	8.09		SPH: None									
10/29/09	9.67	2.89	6.78											
4/8/10	9.67	0.93	8.74		SPH: None									
10/19/10	9.67	3.72	5.95		SPH: None									
9/12/11	9.67	2.94	6.73		SPH: None									
12/21/11	9.67	2.24	7.43		SPH: None									
12/22/11	9.67			8260B	SGC	360 Y	< 300	84 Y	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
OB-A1														
4/22/03		2.24			SPH: .01 ft.									
4/28/04		3.01			SPH: None									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
	<u> </u>				SPH: None (strong	ı	<u>I</u>		<u>I</u>				, ,	
10/27/04		5.11			odor)									
8/31/05		4.10			SPH: None									
3/27/06		1.25			SPH: None									
9/7/06		4.49												
4/4/07		2.72												
10/2/07		5.34												
3/19/08		2.73			SPH: None									
11/18/08		5.31												
4/1/09		2.61												
10/29/09		4.68												
4/8/10		1.95			SPH: None									
10/19/10		5.09			SPH: None									
9/12/11		4.28			SPH: None									
12/21/11		3.28			SPH: None									
RW-B1														
4/22/03		7.26			Sheen									
4/28/04	11.22	7.20	4.02											
10/27/04	11.22	7.80	3.42		SPH: None									
8/31/05	11.22	7.14	4.08		SPH: None									
3/27/06	11.22	6.10	5.12		SPH: None									
9/6/06	11.22	7.39	3.83		SPH:0.01 ft.									
4/4/07	11.22	7.06	4.16	8260B	SGC	130 L	< 300	100 H	220	410	23	9.4	16	6.3
10/2/07	11.22	7.70	3.52		SPH: None									
3/19/08	11.22	7.06	4.16		SPH: None									
11/18/08	11.22	7.90	3.32		SPH: None									
4/1/09	11.22	7.15	4.07		SPH: None									
10/29/09	11.22	7.76	3.46		SFH. Noile									
4/8/10	11.22	6.78	4.44		SPH: None									
10/19/10	11.22	7.66	3.56		SPH: None									
9/12/11	11.22	7.45	3.77		SPH: None									
12/21/11	11.22	7.61	3.61		SPH: None									
12/22/11	11.22			8260B	SGC	120	< 300	78	< 310	530	35	7.9	18.5	< 3.1
RW-B2														
4/22/03		7.29			Sheen, Odor									
4/28/04	11.23	7.20	4.03											
10/27/04	11.23	7.81	3.42		SPH: None									
8/31/05	11.23	7.14	4.09		SPH: None									
3/27/06	11.23	6.09	5.14		SPH: None									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
9/6/06	11.23	7.39	3.84		SPH: None									
4/4/07	11.23	9.84	1.39	8260B	SGC	500 L Y	< 300	500 L	11000	3400	2700	190	1100	< 10
10/2/07	11.23	7.71	3.52		SPH: None SPH: None									
3/19/08	11.23	7.07	4.16		(strong odor)									
11/20/08 (10)	11.23	7.92	3.31	8260B	SGC	190 Y	< 300	150 Y	7,900 Y	3,200	2,100	140	720	< 25
4/1/09	11.23	7.16	4.07		SPH: None									
10/29/09	11.23	7.78	3.45											
4/8/10	11.23	6.80	4.43		SPH: None									
10/19/10	11.23	7.67	3.56		SPH: None									
9/12/11	11.23	7.47	3.76		SPH: None									
12/21/11	11.23	7.63	3.60		SPH: None									
RW-B3 4/22/03		9.90			visible Product									
4/28/04	11.14	13.20	-2.06		SPH: 3.09									
10/27/04	11.14	9.33	1.81		SPH: None									
8/31/05	11.14	9.60	1.54		SPH: 0.01									
3/27/06	11.14	9.08	2.06		SPH: None									
9/6/06	11.14	9.61	1.53		SPH: None									
4/4/07	11.14	9.84	1.30	8260B	SGC	3,600 L Y	880	4,000 L	7900	4300	130	520	357	< 31
10/2/07	11.14	9.56	1.58		SPH: None									
3/19/08		NM ⁽⁷⁾			NM									
11/18/08	11.14	9.57	1.57											
4/1/09	11.14	9.80	1.34											
10/29/09	11.14	9.61	1.53											
4/8/10	11.14	9.61	1.53		SPH: None									
10/19/10	11.14	9.50	1.64		SPH: None									
9/12/11	11.14	9.40	1.74		SPH: None									
12/21/11	11.14	9.44	1.70		SPH: None									
RW-B4														
4/22/03		10.55			SPH: .55 ft.									
4/28/04	11.29	10.22	1.07		SPH: None									
10/27/04	11.29	9.55	1.74		SPH: None									
8/31/05	11.29	9.70	1.59		SPH: None									
3/27/06	11.29	9.23	2.06		SPH: None									
9/6/06	11.29	9.69	1.60		SPH: None									
4/4/07	11.29	10.04	1.25	8260B	SGC	3,500 Y	360	4,000 L	16000	3200	150	460	1430	< 8.3
10/2/07	11.29	9.72	1.57		SPH: None									
3/19/08	11.29	9.87	1.42		SPH: None (odor)									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
11/20/08 (10)	11.29	9.75	1.54	8260B	SGC	3,100 Y	2,900	930	6,000 Y	3,100	100	270	679	<25
4/1/09	11.29	9.87	1.42		SPH: None									
10/29/09	11.29	9.85	1.44											
4/8/10	11.29	9.72	1.57		SPH: None									
10/19/10	11.29	9.80	1.49		SPH: None									
9/12/11	11.29	9.62	1.67		SPH: None									
12/21/11	11.29	9.58	1.71		SPH: None									
12/22/11	11.29			8260B	SGC	2,000 Y	<300 F	2,200	5,400	1,100	29	64	176	< 5.0
12/22/11 dup	11.29			8260B	SGC	2,300 Y	830 F	2,600	5,600	1,100	30	63	198	< 5.0
RW-C1														
4/24/03		8.34												
4/28/04	10.44	8.00	2.44											
10/27/04	10.44	7.59	2.85		SPH: None									
8/31/05	10.44	5.81	4.63		SPH: None									
3/27/06	10.44	1.94	8.50		SPH: None									
9/6/06	10.44	6.71	3.73		SPH: 0.01 ft.									
4/5/07	10.44	6.66	3.78	8260B		220 H Y	1300	63 H Y	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/2/07	10.44	8.48	1.96		SPH: 0.01 ft.									
3/19/08	10.44	8.56	1.88		SPH: None									
11/20/08 (10)	10.44	8.29	2.15	8260B	SGC	290 Y	1,200	76 Y	< 50	6.4	< 0.50	< 0.50	0.51	< 0.50
4/1/09	10.44	8.16	2.28		SPH: None									
10/29/09	10.44	8.64	1.80											
4/8/10	10.44	5.62	4.82		SPH: None									
10/19/10	10.44	5.57	4.87		SPH: None									
9/13/11	10.44	5.89	4.55		SPH: None									
12/21/11	10.44	5.87	4.57		SPH: None									
RW-C2														
4/24/03		6.22			SPH: .03 ft.									
4/28/04	10.58	6.19	4.39		SPH: 0.06 ft									
10/27/04	10.58	7.00	3.58		SPH: Present									
8/31/05	10.58	6.30	4.28		SPH: 0.01 ft.									
3/27/06	10.58	5.10	5.48		SPH: None									
9/6/06	10.58	8.19	2.39		SPH: 0.12 ft.									
4/4/07	10.58	8.28	2.30											
10/2/07	10.58	9.75	0.83		SPH: 0.015 ft.									
10/3/07	10.58	9.39	1.19		SPH: None									
11/18/08	10.58	9.38	1.20											
4/1/09	10.58	7.64	2.94											
10/29/09	10.58	8.90	1.68											

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	ΤΡΗ-k (μg/l)	ΤΡΗ-g (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
4/8/10	10.58	5.86	4.72		SPH: None									
10/19/10	10.58	6.59	3.99		SPH: None									
9/12/11	10.58	6.07	4.51		SPH: None									
12/21/11	10.58	6.46	4.12		SPH: None									
RW-C3														
4/24/03		6.36												
4/28/04	10.71	6.25	4.46											
10/27/04	10.71	7.10	3.61		SPH: None									
8/31/05	10.71	6.39	4.32		SPH: None									
3/27/06	10.71	5.30	5.41		SPH: None									
9/6/06	10.71	8.10	2.61		SPH: 0.01 ft.									
4/5/07	10.71	7.97	2.74	8260B	SPH: None	540 H L Y	360 H L	430 H L Y	520	13	14	32	54	< 0.5
10/2/07	10.71	8.59	2.12		SPH: 0.01 ft.									
3/19/08	10.71	8.38	2.33		SPH: None									
11/20/08 (10)	10.71	8.61	2.10	8260B	SGC	720 Y (11)	1600 (11)	170 Y (11)	< 50	1.1	< 0.50	0.67	< 0.50	< 0.50
4/1/09	10.71	6.98	3.73		SPH: None									
10/29/09	10.71	8.56	2.15											
4/8/10	10.71	5.93	4.78		SPH: None									
10/19/10	10.71	6.82	3.89		SPH: None									
9/12/11	10.71	6.32	4.39		SPH: None									
12/21/11	10.71	6.74	3.97		SPH: None									
RW-C4														
4/22/03		7.15			Strong odor									
4/28/04	11.32	6.95	4.37		SPH: 0.01 ft									
10/27/04	11.32	7.45	3.87		SPH: None									
8/31/05	11.32	6.71	4.61		SPH: None									
3/27/06	11.32	6.47	4.85		SPH: None									
9/6/06	11.32	8.16	3.16		SPH: 0.01 ft.									
4/4/07	11.32	8.50	2.82											
10/2/07	11.32	8.62	2.70		SPH: None									
3/19/08	11.32	9.13	2.19		SPH: None									
11/18/08	11.32	8.99	2.33											
4/1/09	11.32	8.52	2.80											
10/29/09	11.32	8.53	2.79											
4/8/10	11.32	NM			Could not open									
4/29/10	11.32	6.07	5.25		SPH: None									
10/19/10	11.32	6.84	4.48		SPH: None									
9/13/11	11.32	6.26	5.06		SPH: None									
12/22/11	11.32	7.06	4.26		SPH: None									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	TPH-d (μg/l)	TPH-mo (µg/l)	ΤΡΗ-k (μg/l)	ΤΡΗ-g (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	ΜΤΒΕ (μ g/l)
Dute	(feet)	(feet)	(feet)	Method		V-8/1/	(p. g)	(µ.g/.)	(p. g/1/	V2.8/1/	(J. g. 1)	(µg/l)	(µ g/l)	(P-8/1)
RW-C5														
4/22/03		6.46												
4/28/04	10.79	6.39	4.40											
10/27/04	10.79	7.21	3.58		SPH: Present									
8/31/05	10.79	6.51	4.28		SPH: None									
3/27/06	10.79	5.33	5.46		SPH: None									
9/6/06	10.79	8.03	2.76		SPH: 0.01 ft.									
4/4/07	10.79	8.27	2.52	8260B	SGC	3,800 Y	310	4,100 L	12000	3400	170	520	1300	< 25
10/2/07	10.79	8.95	1.84		SPH: None									
3/19/08	10.79	8.82	1.97		SPH: 0.01 ft.									
11/20/08 (10)	10.79	8.92	1.87	8260B	SPH: None/ SGC	3,700 Y	430	3,300	5,800 Y	2,900	91	120	437	< 20
11/20/08 dup				8260B	SGC: Oder	3,400 Y	< 300	3,100	3,900 Y	2,700	78	91	358	<25
4/1/09	10.79	7.88	2.91		SPH: None									
10/29/09					No Access									
4/8/10	10.79	NM			Could not open									
4/29/10	10.79	5.59	5.20		SPH: None									
10/19/10	10.79	6.54	4.25		SPH: None, odor									
9/13/11	10.79	6.04	4.75		SPH: None, odor									
12/22/11	10.79	6.51	4.28		SPH: None									
RW-C6														
4/22/03		6.05			SPH: 0.07 ft.									
4/28/04	10.31	6.30	4.01		SPH: 0.05 ft.									
10/27/04	10.31	6.85			SPH: 0.15 ft.									
8/31/05	10.31	6.81			SPH: 0.93 ft.									
3/27/06	10.31	5.66			SPH: 0.96 ft.									
9/6/06	10.31	7.96	2.35		SPH: 0.18ft.									
4/4/07	10.31	$NM^{(4)}$												
10/2/07	10.31	8.45	1.86		SPH: residual									
3/19/08	10.31	8.32	1.99		SPH: None									
11/18/08	10.31	8.42	1.89		SPH: Oder									
4/1/09	10.31	7.36	2.95		SPH: None									
10/29/09					No Access									
4/8/10	10.31	NM			Could not open									
4/29/10	10.31	5.43	4.88		SPH: None									
10/19/10	10.31	6.40	3.91		SPH: None									
9/13/11	10.31	5.89	4.42	8260B	SPH: None, odor; SCG	870 Yb1	410 b1	760	2,500	270	54	18	420	< 2.5
12/22/11	10.31	6.36	3.95	8260B	SPH: None; SCG	1,200	710	830	810	74	6.2	7.9	79	0.51

RW-C7

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
4/22/03		6.51			visible Product									
4/28/04	10.12	6.60	3.52		SPH: 0.02 ft.									
10/27/04	10.12	NM												
8/31/05	10.12	NM												
3/27/06	10.12	NM ⁽⁴⁾												
9/6/06	10.12	8.34	1.78		SPH: 0.01 ft.									
4/4/07	10.12	NM ⁽⁴⁾												
10/2/07	10.12	9.01	1.11		SPH: None									
3/19/08	10.12	8.85	1.11		SPH: None									
11/18/08	10.12	8.97	1.15		SFH. None									
4/1/09	10.12	7.89	2.23		SPH: 0.01 ft.									
10/29/09	10.12	9.23	2.23		3F11. 0.01 ft.									
4/8/10	10.12	NM			Could not open									
4/29/10	10.12	5.71	4.41		SPH: None									
10/19/10	10.12	6.68	3.44		SPH: None									
9/13/11	10.12	6.16	3.96	8260B	SPH: None; SCG	83 Yb1	< 300	< 50	150	3.1	< 0.50	< 0.50	< 0.50	< 0.50
12/22/11	10.12	6.62	3.50	8260B	SPH: None; SCG	8,100	1,700	5,900	380	8.3	< 0.50	0.98	< 0.50	< 0.50
12/22/11	10.12	0.02	3.30	0200B	or in mone, see	0,100	1,700	3,700	300	0.5	10.50	0.50	10.50	10.50
OB-C1														
4/22/03		6.26												
4/28/04	10.39	7.39	3.00		SPH: 1.27 ft.									
10/27/04	10.39	8.06	2.33		SPH: 1.08 ft.									
8/31/05	10.39	7.84			SPH: 1.55 ft.									
3/27/06	10.39	6.15			SPH: 1.05 ft.									
9/6/06		$NM^{(4)}$			Buried									
4/4/07	10.39	7.78	2.61											
10/2/07	10.39	8.67	1.72		SPH: 0.02 ft.									
3/19/08	10.39	8.49	1.90		SPH: 0.29 ft.									
11/18/08	10.39	8.57	1.82		SPH: 0.03 ft.									
4/1/09	10.39	7.96	2.43		SPH: 0.64 ft.									
10/29/09					No Access									
4/8/10	10.39	NM			Could not open									
4/29/10	10.39	5.95	4.44		SPH: None									
10/19/10	10.39	6.37	4.02		SPH: None									
9/30/11 ⁽¹³⁾	10.39	NM			SPH: None									
12/22/11	10.39	Dry			SPH: None									
RW-D1														
4/22/03		6.97												
4/28/04	10.18	5.62	4.56											
10/27/04	10.18	6.67	3.51		SPH: Present									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
8/31/05	10.18	5.75			SPH: 0.02 ft.									
3/27/06	10.18	$NM^{(2)}$												
9/6/06	10.18	$NM^{(2)}$			No Access									
4/4/07	10.18	$NM^{(2)}$												
10/2/07	10.18	$NM^{(2)}$												
3/19/08		$NM^{(2)}$												
11/19/08	10.18	11.29	-1.11	6260B	SGC	11,000 Y	4,900	9,400	5,100 Y	270	85	150	710	< 2.0
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10	10.18	7.70	2.48		SPH: None									
10/19/10	10.18	6.85	3.33		SPH: None									
9/12/11	10.18	6.53	3.65		SPH: None									
12/21/11	10.18	6.92	3.26		SPH: None									
RW-D2														
4/22/03		7.15			SPH 1.25 ft.									
4/28/04	10.33	7.15	2.88		SPH: 0.1 ft.									
10/27/04	10.33	6.41	3.92		SPH: Present									
8/31/05	10.33	8.44			SPH: 3.12 ft.									
3/27/06	10.33	$NM^{(2)}$												
9/6/06	10.33	$NM^{(2)}$			No Access									
4/4/07	10.33	$NM^{(2)}$												
10/2/07	10.33	NM ⁽²⁾												
3/19/08		$NM^{(2)}$												
11/18/08	10.33	10.95	-0.62											
4/1/09		$NM^{(2)}$												
10/29/09		NM ⁽²⁾			SPH: None									
4/8/10	10.33	7.21	3.12		SPH: None									
10/19/10	10.33	6.35	3.98		SPH: None									
9/12/11	10.33	6.02	4.31		SPH: None									
12/21/11	10.33	6.42	3.91		SPH: None									
RW-D3														
4/22/03		6.89			SPH: 1.58 ft.									
4/28/04	10.07	8.18	1.89		SPH: 3.25 ft.									
10/27/04	10.07	6.37	3.70		SPH: Present									
8/31/05	10.07	7.72			SPH: 2.46									
3/27/06	10.07	$NM^{(2)}$												
9/6/06	10.07	$NM^{(2)}$			No Access									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
4/4/07	10.07	NM ⁽²⁾												
10/2/07	10.07	$NM^{(2)}$												
3/19/08		$NM^{(2)}$												
11/18/08	10.07	10.10	-0.03											
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10	10.07	7.43	2.64		SPH: None									
10/19/10	10.07	6.97	3.10		SPH: None									
9/13/11	10.07	6.64	3.43	8260B	SPH: None; SGC	100 Y	< 300	110	780	140	46	13	69	< 1.3
12/21/11	10.07	7.04	3.03		SPH: None									
RW-D4														
4/22/03		8.11			SPH: 1.98 ft.									
4/28/04	10.22	7.99	2.23		SPH: 2.09 ft.									
10/27/04	10.22	6.49	3.73		SPH: Present									
8/31/05	10.22	8.09			SPH: 2.12 ft.									
3/27/06	10.22	$NM^{(2)}$												
9/6/06	10.22	$NM^{(2)}$			No Access									
4/4/07	10.22	$NM^{(2)}$												
10/2/07	10.22	$NM^{(2)}$												
3/19/08		$NM^{(2)}$												
11/19/08 (10)	10.22	9.10	1.12	8260B	SGC	55,000	9,700	46,000	7,600 Y	210	17	270	280	< 1.7
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10	10.22	5.00	5.22		SPH: None									
10/19/10	10.22	6.37	3.85		SPH: None									
9/12/11	10.22	5.92	4.30		SPH: None									
12/21/11	10.22	6.14	4.08		SPH: None									
RW-D5														
4/22/03		6.04			SPH: 0.07 ft.									
4/28/04	9.99	5.96	4.03		SPH: None									
10/27/04	9.99	6.48	3.51		SPH: Present									
8/31/05	9.99	7.02*			SPH: 1.01 ft.									
3/27/06	9.99	$NM^{(2)}$												
9/6/06	9.99	$NM^{(2)}$			No Access									
4/4/07	9.99	$NM^{(2)}$												
10/2/07	9.99	$NM^{(2)}$												
3/19/08		$NM^{(2)}$												

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
11/18/08	9.99	9.45	0.54											
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10	9.99	4.97	5.02		SPH: None									
10/19/10	9.99	6.30	3.69											
9/12/11	9.99	5.89	4.10		SPH: None									
9/13/11	9.99			8260B	SGC	230 YF	< 300	210	810	1,100	11	21	26.9	< 5.0
9/13/11 (Dup)	9.99			8260B	SGC	320 YF	< 300	260	800	1,200	12	19	24.1	< 5.0
12/21/11	9.99	6.10	3.89		SPH: None									
12/22/11	9.99			8260B	SGC	1,200	730	740	400	150	2.5	4.4	12.3	< 0.50
RW-D6														
11/18/08		11.10												
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10		7.10			SPH: None; Odor									
10/19/10		6.45			SPH: None; Odor									
9/12/11		6.11			SPH: None									
9/13/11				8260B	SGC	1100 Y	< 300	1,300	8,700	580	100	200	480	< 5.0
12/21/11		6.50			SPH: None									
RW-D7														
11/19/08 (10)		9.62		8260B	SGC	54,000 Y	59,000	43,000	3,400	100	54	13	830	< 3.1
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10		5.55			SPH: None									
10/19/10		6.45			SPH: None									
9/12/11		5.99			SPH: None									
12/21/11		6.61			SPH: None									
RW-D8														
11/18/08		8.48												
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10		4.27			SPH: None									
10/19/10		5.19			SPH: None									
9/12/11		4.59			SPH: None									
9/13/11				8260B	SGC	6,000 Y	11,000	5,000	790	14	1.5	2.8	49	< 0.5
12/21/11		5.04			SPH: None									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (μg/l)	TPH-mo (µg/l)	ΤΡΗ-k (μg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	ΜΤΒΕ (μ g/l)
RW-D9														
11/18/08		9.70												
4/1/09		$NM^{(2)}$												
10/29/09		NM ⁽²⁾			SPH: None									
4/8/10		6.92			SPH: None									
10/19/10		6.34			SPH: None									
9/12/11		5.79			SPH: None, odor;									
9/14/11				8260B	SGC	70 Y	< 300	72	450	85	3.5	3.9	31	< 0.50
12/21/11		6.75			SPH: None									
12/22/11				8260B	SGC	730 Y	400	830	1,300	25	1.5	4.1	34	< 0.50
RW-D10														
11/18/08		8.84		8260B	SGC	1,000 Y	650	760	640 Y	2.7	0.69	5.6	17.71	< 0.50
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10		4.87			SPH: None									
10/19/10		6.22			SPH: None									
9/12/11		5.82			SPH: None, odor									
12/21/11		5.99			SPH: None									
RW-D11														
11/18/08		8.66												
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10		4.71			SPH: Sheen									
10/19/10		6.04			SPH: None									
9/12/11		5.68			SPH: None									
12/21/11		5.84			SPH: None									
OB-D1														
4/22/03		5.41			Strong Odor									
4/28/04	9.46	5.31	4.15		Strong Odor									
10/27/04	9.46	5.89	3.57											
8/31/05	9.46	5.42			SPH: None									
3/27/06	9.46	3.09	6.37		SPH: None									
9/6/06	9.46	8.31	1.15		SPH: 0.01 ft.									
4/4/07	9.46	7.77	1.69											
10/2/07	9.46	8.66	0.80		SPH: None									
3/19/08	9.46	8.90	0.56		SPH: None									
11/18/08	9.46	8.41	1.05											

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
4/1/09	9.46	8.50	0.96		SPH: sheen									
10/29/09	9.46	7.65	1.81		SPH: None									
4/8/10	9.46	4.71	4.75		Strong Odor									
10/19/10	9.46	6.10	3.36		SPH: None									
9/12/11	9.46	5.69	3.77		SPH: None									
12/21/11	9.46	5.9	3.56		SPH: None									
OB-D2														
4/22/03		5.14												
4/28/04	9.95	5.25	4.70											
10/27/04	9.95	6.42	3.53		SPH: None									
8/31/05	9.95	5.71			SPH: 0.01 ft.									
3/27/06	9.95	2.32	7.63		SPH: None									
9/6/06	9.95	8.39	1.56		SPH: 0.01 ft.									
4/4/07	9.95	7.94	2.01											
10/2/07	9.95	9.07	0.88		SPH: None									
3/19/08	9.95	8.64	1.31		SPH: None									
11/18/08	9.95	8.94	1.01											
4/1/09	9.95	7.00	2.95		SPH: None									
10/29/09	9.95	8.24	1.71		SPH: None									
4/8/10	9.95	5.38	4.57		SPH: None									
10/19/10	9.95	6.55	3.40		SPH: None									
9/12/11	9.95	5.59	4.36		SPH: None									
12/21/11	9.95	6.21	3.74		SPH: None									
RW-1														
4/22/03		6.43												
4/28/04		5.73												
10/27/04		6.34			SPH: None									
8/31/05		5.83			SPH: None									
3/27/06		$NM^{(2)}$												
9/6/06		NM ⁽²⁾			No Access									
4/4/07		$NM^{(2)}$												
10/2/07		NM ⁽²⁾												
3/19/08		$NM^{(2)}$												
11/18/08		8.81												
4/1/09		$NM^{(2)}$												
10/29/09		8.17												
4/8/10		5.21			SPH: None									
10/19/10		6.60			SPH: None									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	ΤΡΗ-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
9/12/11		6.21			SPH: None									
9/13/11				8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
12/21/11		6.41			SPH: None									
12/22/11				8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Field Blank														
10/28/04				8260B					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05				8260B					< 50					
4/4/06				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/7/06				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/3/07				8260B		< 50	< 300	< 50	< 50	< 0.5	0.54	< 0.5	< 0.5	< 0.5
10/2/07				8260B		< 50	< 300	< 50	< 50	< 0.5	0.5	< 0.5	< 0.5	< 0.5
3/20/08				8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
11/20/08				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
11/21/08				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/1/09				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/8/10				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/19/10				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	0.51	< 0.50
9/14/11				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
12/22/11				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Trip Blank														
8/19/98				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01				8020	Filtered+SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01				8020	SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/16/01				8021					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
4/5/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/5/02				8021	Trip Blank 2				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
6/21/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
9/12/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/13/02				8021	Trip Blank 2				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/23/03				8021B	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04				8260B	Trip Blank 1				< 100	< 0.5	< 1.0	< 1.0	< 1.0	< 1.0
10/29/04				8260B	Trip Blank 2				< 50					
4/3/07				8260B	Trip Blank 1					< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07				8260B	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Table 1

Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	ΤΡΗ-d (μg/l)	TPH-mo (µg/l)	ΤΡΗ-k (μg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
------------------	----------------------------	-----------------------------------	------------------------------------	----------------	-------	-----------------	------------------	-----------------	-----------------	-------------------	-------------------	-----------------------------	----------------------------	----------------

Notes:

Groundwater elevations corrected for the presence of free product according to the calculation: GW Elevation = TOC - DTW + (0.8 x SPH thickness)

- (1) = Depth to groundwater measured on August 31, 2005.
- (2) = Converted to an extraction well, and access port is too small for the oil/water probe.
- (3) = Depth to groundwater measured on March 27, 2006.
- (4) = Could not locate well.
- (5) = Well dewatered, field staff unable to collect all samples.
- (6) = Well has active remediation unit/recovery.
- (7) = Well was covered by car or heavy equipment.
- (8) = Depth to groundwater measured on March 19, 2008.
- (9) = Well dewatered, field staff unable to collect samples.
- (10) = Depth to groundwater measured on November 18, 2008.
- (11) = Low surrogate recovery was observed for hexacosane. The sample was re-extracted, but was outside the EPA recommended hold time.
- (12) = Depth to groundwater measured on April 1, 2009.
- (13) = Well checked for SPH by OTG EniroEngineering Solutions on September 30, 2011
- --- = Not measured/analyzed
- BTEX = Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8020 or 8240/8260
- DTW = Depth to water
- Dup = Duplicate sample
- EPA = Environmental Protection Agency
- Filtered = Groundwater samples were filtered through a 0.45-micron glass membrane filter.
- ID = Identification
- MTBE = Methyl tertiary-butyl ether by EPA Method 8020 or 8260. Confirmation 8260 results shown in parentheses.
- NM = Not measured. Well obstructed or could not be located.
- RPD = Relative percent difference
- SPH = Separate-phase hydrocarbons; measured thickness
- SGC = Silica gel cleanup based on Method 3630B prior to TPH-d, TPH-k, or TPH-mo analysis, following California Regional Water Quality Control Board February 16, 1999 memorandum
- TBW = Tank backfill well
- TOC = Top of casing
- TPH-d = Total petroleum hydrocarbons quantitated as diesel analyzed by EPA Method 8015B
- TPH-g = Total petroleum hydrocarbons quantitated as gasoline analyzed by EPA Method 8015B
- TPH-k = Total petroleum hydrocarbons quantitated as kerosene analyzed by EPA Method 8015B
- TPH-mo = Total petroleum hydrocarbons quantitated as motor oil analyzed by EPA Method 8015B
- a = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range actually resemble heavier fuels at the front end of the motor oil pattern.
- b = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range actually resemble lighter fuels; the response looks like lower carbon chain compounds close to the gasoline range.
- b1 = Analyte decrected above the reporting limit in the laboratory method blank.
- c = The analytical laboratory reviewed the data and noted that the sample exhibits a fuel pattern that does not resemble the standard.

Table 1

Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	ΤΡΗ-k (μg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (μg/l)
------------------	----------------------------	-----------------------------------	------------------------------------	----------------	-------	-----------------	------------------	-----------------	-----------------	-------------------	-------------------	-----------------------------	----------------------------	----------------

- e = Results are estimated due to concentrations exceeding the calibration range.
- f= Filtration with 0.45-micron glass membrane filter and silica gel treatment.
- h = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the motor oil range are actually from the front end of the kerosene oil pattern.
- i = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the motor oil range are actually from the back end of the kerosene oil pattern.
- j = The analytical laboratory reviewed the data and noted that the sample exhibited an unknown peak or peaks.
- B = Results flagged with "B" indicate motor oil was detected in the method blank.
- B1 = Analyte detected in associated equipment blank.
- C = Footnote assigned by Ninyo and Moore, not defined in their historical tables.
- E= Footnote assigned by Ninyo and Moore, not defined in their historical tables.
- F = Original and duplicate sample results RPD was greater than 30 percent.
- H = Heavier hydrocarbons contributed to the quantitation.
- J = Value qualified as "estimated."
- L= Lighter hydrocarbons contributed to the quantitation.
- Y = Sample exhibits chromatographic pattern that does not resemble standard.
- Z = Sample exhibits unknown single peak or peaks.

MUNICIPAL SERVICE CENTER 7101 EDGEWATER DRIVE, OAKLAND, CALIFORNIA

SITE VICINITY MAP

FIGURE 1

TPHmo 410 b

270

TPHmo < 300

3.1

EXPLANATION

RW-D1 EXTRACTION WELL LOCATION RW-A1 + TEST/OBSERVATION WELL LOCATION **OBSERVATION WELL LOCATION** MONITORING WELL LOCATION REMEDIATION WELL LOCATION TANK BACKFILL WELL ¤ ABANDONED WELL **FENCE** ----- FORMER UNDERGROUND PIPING SAMPLE EXHIBITS CHROMATOGRAPHIC PATTERN THAT DOES NOT RESEMBLE STANDARD ANALYTES DETECTED ABOVE THE REPORTING LIMITS

IN THE LABORATORY METHOD BLANK

ORIGINAL AND DUPLICATE SAMPLE RESULTS

RELATIVE PERCENT DIFFERENCE WAS GREATER

REMEDIATION WELL ID

TOTAL PETROLEUM HYDROCARBONS IN GAS
TOTAL PETROLEUM HYDROCARBONS IN KEROSINE
TOTAL PETROLEUM HYDROCARBONS IN DIESEL
TOTAL PETROLEUM HYDROCARBONS IN MOTOR OIL
BENZENE

SAMPLE ____ DUPLICATE

NOTES:

THAN 30%

SPH WAS NOT DETECTED IN ANY WELLS WHERE DEPTH-TO-SPH MEASUREMENTS WERE COLLECTED IN SEPTEMBER 2011

SPH = SEPARATE-PHASE HYDROCARBONS

MUNICIPAL SERVICE CENTER 7101 EDGEWATER DRIVE, OAKLAND, CALIFORNIA

DETAIL PLUME MAP AND HYDROCARBON CONCENTRATIONS IN REMEDIATION WELLS SEPTEMBER 2011

74

8.3

PLUME A

SAMPLE

RW-B1 RW-B2 TPHg < 310 **TPHk** 78 **TPHd** 120 TPHmo < 300 RW-B3 В 530 RW-B4 5,400 / 5,600 TPHg TPHk 2,200 / 2,600 TPHd 2,000 Y / 2,300 Y PLUME B TPHmo < 300 F / 830 F 1,100 /1,100

RW-A2

EXPLANATION

EXTRACTION WELL LOCATION

RW-A1
TEST/OBSERVATION WELL LOCATION

OB-A1
OBSERVATION WELL LOCATION

MW-A6
MONITORING WELL LOCATION

RW-1
TANK BACKFILL WELL

X ABANDONED WELL

X ABANDONED WELL

FENCE

FORMER UNDERGROUND PIPING

Y SAMPLE EXHIBITS CHROMATOGRAPHIC PATTERN THAT DOES NOT RESEMBLE STANDARD

RW-B4

TPHg / TPHg

TPHk / TPHk

TPHd / TPHd

TPHmo / TPHmo

B / B

REMEDIATION WELL ID

TOTAL PETROLEUM HYDROCARBONS IN GAS
TOTAL PETROLEUM HYDROCARBONS IN KEROSINE
TOTAL PETROLEUM HYDROCARBONS IN DIESEL
TOTAL PETROLEUM HYDROCARBONS IN MOTOR OIL
BENZENE

ORIGINAL AND DUPLICATE SAMPLE RESULTS

RELATIVE PERCENT DIFFERENCE WAS GREATER

____ DUPLICATE

NOTES:

THAN 30%

SPH WAS NOT DETECTED IN ANY WELLS WHERE DEPTH-TO-SPH MEASUREMENTS WERE COLLECTED IN DECEMBER 2011

SPH = SEPARATE-PHASE HYDROCARBONS

MUNICIPAL SERVICE CENTER 7101 EDGEWATER DRIVE, OAKLAND, CALIFORNIA

DETAIL PLUME MAP AND HYDROCARBON CONCENTRATIONS IN REMEDIATION WELLS DECEMBER 2011

APPENDIX A

City of Oakland MSC Schedule and Protocol

CITY OF OAKLAND

DALZIEL BUILDING • 250 FRANK H. OGAWA PLAZA, SUITE 5301 • OAKLAND, CALIFORNIA 94612-2034

Public Works Agency Environmental Services FAX (510) 238-7286 TDD (510) 238-7644

November 6, 2009

Mr. Paresh Khatri Hazardous Materials Specialist Alameda-County- Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: Revised Groundwater Monitoring Schedule- Fuel Leak Case No. RO0000293-7101 Edgewater Drive, Municipal Service Center, Oakland, CA

Dear Mr. Khatri:

Thank you very much for our meeting on October 7, 2009 related to the above referenced project. Based on our discussions, we have reviewed the groundwater monitoring program, and have revised the sampling schedule. The recommendations for the revised sampling schedule are based on the contaminants concentrations, the site history, and the well locations.

Please see the attached table (Table 1) showing the revised monitoring schedule. It shows the proposed groundwater monitoring schedule for the sampling events in March 2010, September 2010, and September 2011 (annual) and thereafter. I have also attached a well location map as well as the existing monitoring schedule (Table 2) for comparison. Groundwater elevation and floating product (if any) measurements will be continued at all well locations, including the locations proposed for reduction in groundwater sampling and analysis. I request you to review and approve this revised monitoring plan.

If you have any questions, or would like additional information, please call me at (510) 238-6361.

Sincerely,

Gopal Nair

Environmental Specialist

Lopal Nais

cc: Charles Pardini, LFR, Inc. (sent via email)

			Table	1 - Revised				ocol				
City of Oakland Municipal Services Center												
Well ID			·				Parameters t				,	Notes
	March-2010		Sept-2011	Elevation	Floating	рН	Dissolved	Temp.	Specific	TPH gas	TPH	
	semi-annual	semi-annuai	annual thereafter		Product Thickness		Oxygen		Conduct.	BTEX & MTBE	d/k/mo	
MW-1	X	gauge only	X	Х	X	Х	X	Х	Х	X	Х	benzene at 79 ug/L in April 09; interior well
MW-2	gauge only		gauge only	· · · · · · · · · · · · · · · · · · ·	X			^				up/cross gradient well, benzene <2 ug/L since 07
MW-3	closed/destro		gaage omy									ap diodo gradidit woll, Dollzono 12 dg/2 diido di
MW-4	closed/destro					-						
MW-5	X	gauge only	X	Х	Χ	Χ	X	Χ	X	Χ	Х	TPH-g still over 2,000 ug/L; near active USTs
MW-6	gauge only	X	X	Х	Χ	Χ	X	Χ	X	Χ	Х	0.03" free-phase product in April 09
MW-7	gauge only	gauge only	gauge only		Χ							upgradient well, only MTBE around 2 ug/L since 06
MW-8	gauge only	gauge only	gauge only		Χ							ND for all constituents since Sept 02
MW-9	X	X	Χ	Χ	X	Χ	X	X	Χ	Х	X	benzene still at 82 ug/L in April 09; perimeter/sentinel well
MW-10	X	gauge only	X	Х	Х	X	Х	Х	Χ	Х	X	ND for everything except benzene around 10 ug/L since 08
MW-11	gauge only	gauge only	gauge only		X		ļ		<u> </u>			interior/upgradient well, only benzene around 5 ug/L since 05
MW-12	X	gauge only	gauge only		X	X	X	X	X	X	X	TPH-g around 150 ug/L, benzene ND (<0.5) since 2002
MW-13 MW-14	X	X	X X	X	X	X	X	X	X	X X	X	only TPH-d around 100 ug/L, TPH-mo 600 ug/L since 06; perimeter/sentinel well all ND in April 09, but TPHmo at 660 ug/l in Nov 08; perimeter/sentinel well
MW-15	gauge only	gauge only	gauge only		X	X	X	X	X	X	X	only TPH-d around 100 ug/L since Sept 02; bezene ND since 04
MW-16	gauge only	gauge only	gauge only	····	X	^	_^	^	^	1 ^	_ ^	often dry/no water, MW-17 directly downgradient as sentinel well
MW-17	X X	gauge only	X X	X	X	Х	Х	Х	Х	Х	Х	ND for all since 02, but directly downgredient of Plume B; perimeter/sentinel well
MW-18	gauge only		gauge only	~~~ ` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X		1				<u> </u>	not located since 2003, seach & apply for closure in 2010
TBW-1	closed/destro											
TBW-2	closed/destro	yed								Ì		
TBW-3	closed/destro	yed										
TBW-4	closed/destro											
TBW-5	gauge only		gauge only		Х							remediation well
TBW-6	gauge only		gauge only		X							excavation backfill well
RW-A1	gauge only		gauge only		X							remediation well
RW-A2 OB-A1	gauge only	gauge only	gauge only gauge only		X	<u> </u>						remediation well remediation observation well
RW-B1	gauge only gauge only	gauge only gauge only	gauge only		X		_					remediation vell
RW-B2	gauge only	gauge only	gauge only	· · · · · · · · · · · · · · · · · · ·	X		-					remediation well
RW-B3	gauge only		gauge only		X							remediation well
RW-B4	gauge only	gauge only	gauge only	····	Χ							remediation well
RW-C1	gauge only	gauge only	gauge only	X	Χ							remediation well
RW-C2	gauge only	gauge only	gauge only		Χ							remediation well
RW-C3	gauge only		gauge only		Χ							remediation well
RW-C4	gauge only		gauge only		X							remediation well
RW-C5	gauge only		gauge only		X				_			remediation well
RW-C6	gauge only		gauge only		X		-			-		remediation well
RW-C7 OB-C1	gauge only gauge only	gauge only gauge only	gauge only gauge only		X		-					remediation observation well
RW-D1	gauge only		gauge only	~~~	X							remediation well
RW-D2	gauge only	gauge only	gauge only	~~ ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X	<u> </u>	1					remediation well
RW-D3	gauge only	gauge only	gauge only		X			1	<u> </u>			remediation well
RW-D4	gauge only	gauge only	gauge only		Х							remediation well
RW-D5	gauge only	gauge only	gauge only		Χ							remediation well
RW-D6	gauge only	gauge only	gauge only		Χ							remediation well
RW-D7	gauge only	· · · · · · · · · · · · · · · · · · ·	gauge only		Х							remediation well
RW-D8		gauge only			X	ļ	-	-				remediation well
RW-D9	gauge only		gauge only		X	ļ	_					remediation well
RW-D10 RW-D11	gauge only		gauge only		X	-	-			-		remediation well remediation well
RW-1	gauge only gauge only		gauge only gauge only	····•	X		-	+		-		remediation well
OB-D1	gauge only		gauge only		X		-					remediation observation well
OB-D1	gauge only		gauge only	~~~	X	<u> </u>		+			-	remediation observation well
	gaage ciny	gaagoony	gaage only			-	_					
Notes:	/ = measure or	L oundwater ele	vation and flo	nating produc	ct thickness	only	+	+		-		
gauge only = measure groundwater elevation and floating product thickness only TPH d/k/mo = total petroleum hydrocarbons as diesel, kerosene, and motor oil after silica gel cleanup.												
	the column m					ao. oc	_ gc. 510a110	τ.				
							-	-		•		· · · · · · · · · · · · · · · · · · ·

	labi	le 2 - Existin						tober 2009	9	
			City of Oa	ıkland Muni	cipal Se	ervices Cen	ter			
Well ID	Monitoring	Schedule			Dar	ameters to	ha Mani	torod		
Well ID	March	September	Flevation	Floating	рН	Dissolved		Specific	TPH gas	TPH
	Water	Ocpterriber	Licvation	Product	рп	Oxygen	Temp.	Conduct.	BTEX &	d/k/mo
				Thickness		Охуден		Corradot.	MTBE	G/101110
MW-1	Х	Χ	Х	X	Χ	Х	Х	Х	X	Х
MW-2	X	gauge only	X	X	X	X	X	X	X	X
MW-3	closed/dest				, ,		, ,			
MW-4	closed/dest									
MW-5	Х	X	Х	Х	Х	Х	Х	Х	Х	Х
MW-6	Х	X	Х	Х	Х	Х	Х	Х	Х	Х
MW-7	Х	gauge only	Х	Х	Х	Х	Х	Х	Х	Х
MW-8	Х	Х	Х	X	Х	Х	Х	Х	Х	Х
MW-9	X	Х	Х	Х	Х	Х	Х	Х	Х	Х
MW-10	X	Х	Х	Х	Х	Х	Х	Х	Х	Х
MW-11	X	gauge only	Х	Х	Х	Х	Х	Х	Х	Х
MW-12	X	Х	Х	Х	X	Х	Х	Х	Х	Х
MW-13	X	X	X	X	X	X	Χ	X	X	Х
MW-14	X	X	X	X	X	X	Χ	X	X	Х
MW-15	X	X	X	X	X	X	X	X	X	Х
MW-16	X	X	X	X	X	X	X	X	X	Х
MW-17	X	Χ	X	Х	X	X	X	Х	X	Х
MW-18		gauge only	X	X						
TBW-1		gauge only	X	Χ						
TBW-2		gauge only	X	X						
TBW-3		gauge only	X	X						
TBW-4		gauge only	X	X						
TBW-5		gauge only		X						-
TBW-6		gauge only	X	X						
RW-A1		gauge only	X	X						
RW-A2		gauge only	X	X						
OB-A1		gauge only		X						
RW-B1		gauge only		X						-
RW-B2		gauge only		X						-
RW-B3 RW-B4		gauge only gauge only	X	X						
RW-C1		gauge only		X						
RW-C2		gauge only	X	X						
RW-C3		gauge only	X	X						
RW-C4		gauge only	X	X						
RW-C5		gauge only		X						
RW-C6		gauge only		X						
RW-C7		gauge only		X						
OB-C1		gauge only		X						
RW-D1		gauge only		X						
RW-D2		gauge only	X	X						
RW-D3		gauge only	X	X						+
RW-D4	• • •	gauge only	X	X						
RW-D5		gauge only		X						
OB-D1		gauge only		X						
OB-D2		gauge only		X						
Notes:	3 · · · · · · · · · · · · · · · · ·	J gy								
	/ = measure	groundwate	r elevation	and floatin	g produ	ct thicknes	sonly			
	o = total pet							silica gel	cleanup.	
		,		,				. 3 .	- I	1

CITY OF OAKLAND

DALZIEL BUILDING • 250 FRANK H. OGAWA PLAZA • SUITE 5301 • OAKLAND, CALIFORNIA 94612-2034

Public Works Agency Environmental Services Divison FAX (510) 238-7286 TDD (510) 238-3254

December 14, 2011

Mr. Paresh Khatri Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, Ca 94502

Re: Fuel Leak Case No. RO0000293 and GeoTracker Global ID T0600100375, City of Oakland Municipal Service Center, 7101 Edgewater Drive, Oakland, CA- Revised Groundwater Monitoring Plan

Dear Mr. Khatri:

The City of Oakland is pleased to submit this revised groundwater monitoring plan for the above referenced site. The report has been prepared by Arcadis, Inc. under a consultant service contract with the City of Oakland.

Certification

I certify under penalty of law that this document and attachments are prepared under my direction or supervision in accordance with the system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing the violations.

If you have questions or comments, please contact me at (510)238-6361.

Sincerely

Gopal Nair

Environmental Program Specialist

opal New

Mr. Paresh Khatri Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, Ca 94502

Subject:

Revised Groundwater Monitoring Plan for Fuel Leak Case No. RO0000293 and GeoTracker Global ID T0600100375, City of Oakland Municipal Service Center, 7101 Edgewater Drive, Oakland, California 94621

Dear Mr. Khatri:

ARCADIS U.S., Inc. (ARCADIS) is submitting this revised groundwater monitoring plan on behalf of the City of Oakland ("the City") Public Works Agency, Environmental Services Division (ESD) for the City of Oakland Municipal Service Center, located at 7101 Edgewater Drive, Oakland, California ("the Site"). This letter is being submitted in response to the November 3, 2011 Alameda County Environmental Health Services' (ACEHS) "Post-Remediation Monitoring for Fuel Leak Case No. RO0000293 and GeoTracker Global ID T0600100375, City of Oakland Municipal Service Center, 7101 Edgewater Drive, Oakland, CA 94621" (the "ACEHS Letter").

The ACEHS letter included the response to the human health risk assessment conducted for the Site, as well as recent groundwater monitoring reports. ARCADIS understands that you had a phone conversation with Mr. Gopal Nair of the City on November 4, 2011. Based on this conversation and the ACEHS letter, you have concurred with the conclusions of the Site risk assessment, but have indicated that the frequency of groundwater sampling should be increased at the MSC to demonstrate the concentrations and mobility of the contaminants of concerns have stabilized. We further understand that the ACEHS anticipates this increased monitoring frequency will allow for the better definition of chemical concentration trends, including potential seasonal variations, and will facilitate an expedited path towards the Site closure consideration.

In response to the ACEHS letter and November 4, 2011 phone conversation between Mr. Khatri and Mr. Nair, ARCADIS proposes monitoring of select wells to

ARCADIS U.S., Inc.
2000 Powell Street
Suite 700
Emeryville
California 94608
Tel 510 652 4500
Fax 510 652 4906
www.arcadis-us.com

SER4

Date:

December 14, 2011

Contact:

Chuck Pardini

Phone:

(510) 596-9536

Email:

Chuck.pardini@arcadisus.com

Our ref:

LC010060.0016.00001

ARCADIS

Mr. Paresh Khatri

December 14, 2011

take place on a quarterly basis for one year: in September 2011 (already completed as part of the 2011 annual monitoring event); December 2011; March 2012; and June 2012.

The proposed groundwater monitoring program is summarized in Attachment 1 and includes the sampling of 8 monitoring wells and 8 remediation wells in the third quarter of 2011 and 6 monitoring wells and 8 remediation wells in each quarterly event thereafter. The monitoring and remediation wells to be sampled were selected based on location and historical chemical concentrations. In general wells were selected to monitor the potential for offsite contaminant migration and provide representative samples from within each of the identified plumes at the Site. Groundwater elevations and floating product (if any) will continue to be measured in all monitoring and remediation wells during the quarterly monitoring events. Attachments 2 and 3 provide maps showing the monitoring and remediation well locations.

Groundwater monitoring reports will be prepared semiannually and discuss the previous two quarterly sampling events. ARCADIS anticipates the semiannual reports will be submitted to ACEHS in February and August 2012. The August 2012 report will also include a discussion of the chemical concentration trends observed over the previous four quarters and provide a request for site closure if the trends are stable and/or decreasing.

ARCADIS would appreciate an expedited review and approval of this proposed monitoring plan as we would like to conduct the December 2011 sampling event the week of December 19, 2011.

If you have any questions, please contact the undersigned at (510) 596-9536 or Gopal Nair at (510) 238-6361.

Sincerely,

ARCADIS U.S., Inc.

Charles Pardini, P.G.

Vice President, Principal Geologist

ARCADIS

Mr. Paresh Khatri

December 14, 2011

Attachments:

Attachment 1 – Proposed Sample Matrix

Attachment 2 - Site Map

Attachment 3 – Detailed Plume Map

Copies:

Mr. Gopal Nair - City of Oakland, Public Works Agency, Environmental Services

Mr. Xinggang Tong - OTG EnviroEngineering Solutions, Inc

Ms. Amy Goldberg-Day - ARCADIS

			•	Table 1 - Ne	w Well Sa	mpling Sche	edule and	Protocol						
						unicipal Serv								
Well ID				J., J.				Parameters to	ha Manit	orod			Notes	
Well ID	3rd Quarter	4th Quarter	1st Quarter	2nd Quarter	Flevation	Floating	рH	Dissolved		Specific	TPH gas	TPH	Notes	
	2011	2011	2012	2012	Lievation	Product	ргг	Oxygen	i emp.		BTEX &	d/k/mo		
	2011	2011	2012	2012		Thickness		Oxygen		Conduct.	MTBE	U/N/IIIO		
MW-1	X	Х	Х	Х	Х	X	Х	X	Х	Х	X	X	benzene at 79 ug/L in April 09; interior well	
MW-2		gauge only			X	X							up/cross gradient well, benzene <2 ug/L since 07	
MW-3		losed/destroye		gauge only									aprofess gradient wen, benzene <2 agree since or	
MW-4		losed/destroye												
MW-5	Х	X	X	Х	Х	Х	Х	Х	Х	Х	X	Х	TPH-g still over 2,000 ug/L; near active USTs	
MW-6	X	gauge only	gauge only	gauge only	X	X			,,	7.	, ,		y s 2,000 ag/2, active 50.10	
MW-7	gauge only		gauge only	gauge only	Х	Х							upgradient well, only MTBE around 2 ug/L since 06	
MW-8		gauge only	gauge only	gauge only	Х	Х							ND for all constituents since Sept 02	
MW-9	X	gauge only			Х	Х							benzene still at 82 ug/L in April 09; perimeter/sentinel well	
MW-10	Х	X	X	X	Х	X	Х	Х	Х	X	X	Х	ND for everything except benzene around 10 ug/L since 08	
MW-11	gauge only	gauge only	gauge only	gauge only	Х	X							interior/upgradient well, only benzene around 5 ug/L since 05	
MW-12		gauge only	gauge only	gauge only	Х	X							TPH-g around 150 ug/L, benzene ND (<0.5) since 2002	
MW-13	X	X	Х	X	Χ	Х	Х	X	Х	Х	Х	Х	only TPH-d around 100 ug/L, TPH-mo 600 ug/L since 06; perimeter/s	
MW-14	Х	Х	X	Х	Χ	Х	Х	X	Х	X	Х	X	all ND in April 09, but TPHmo at 660 ug/l in Nov 08; perimeter/sentine	
MW-15	gauge only	gauge only	gauge only	gauge only	Х	X							only TPH-d around 100 ug/L since Sept 02; bezene ND since 04	
MW-16	gauge only	gauge only	gauge only	gauge only	Х	Х							often dry/no water, MW-17 directly downgradient as sentinel well	
MW-17	X	X	X	X	Χ	X	X	X	X	X	X	X	ND for all since 02, but directly downgredient of Plume B; perimeter/se	entinel well
MW-18		gauge only		gauge only	Χ	Х							not located since 2003, seach & apply for closure in 2010	
TBW-1		losed/destroye												
TBW-2		losed/destroye												
TBW-3		losed/destroye												
TBW-4		losed/destroye												
TBW-5		gauge only		gauge only	Х	X							remediation well	
TBW-6		gauge only		gauge only	X	X							excavation backfill well	
RW-A1		gauge only			Χ	Х							remediation well	
RW-A2	gauge only		X	X	Х	X	Х	X	Х	Х	X	X	remediation well	
OB-A1		gauge only		gauge only	X	X							remediation observation well	
RW-B1	gauge only		X	X	X	X	Х	X	Х	X	X	X	remediation well	
RW-B2		gauge only	gauge only	gauge only	X	X							remediation well	
RW-B3	gauge only		gauge only	gauge only	X	X		- V					remediation well	
RW-B4	gauge only		X	X	X	X	Х	X	Х	X	X	X	remediation well	
RW-C1	gauge only		gauge only	gauge only	X	X							remediation well	
RW-C2		gauge only			X	X							remediation well	
RW-C3		gauge only			X	X							remediation well	
RW-C4		gauge only			X	X							remediation well	
RW-C5 RW-C6	gauge only X	gauge only	gauge only X	gauge only X	X	X	X	X	X	X	X	X	remediation well remediation well	
RW-C6 RW-C7	X	X	X	X	X	X	X	X	X	X	X	X	remediation well	
OB-C1		gauge only	gauge only	gauge only	X	X	^	^	^	^	_ ^	^	remediation well	
RW-D1		gauge only			X	X							remediation well	
RW-D1 RW-D2		gauge only			X	X							remediation well	
RW-D3	yauge only	gauge only	gauge only	gauge only	X	X		-					remediation well	
RW-D3	gauge only		gauge only		X	X							remediation well	
RW-D5	X X	X X	X X	X X	X	X	X	X	Х	Х	X	X	remediation well	
RW-D6	X	gauge only	gauge only	gauge only	X	X					^		remediation well	
RW-D7		gauge only	gauge only		X	X							remediation well	
RW-D7	X	gauge only			X	X							remediation well	
RW-D9	X	X	X	X	X	X	Х	X	Х	Х	X	X	remediation well	
RW-D10	gauge only		gauge only	gauge only	X	X		1	,				remediation well	
RW-D11		gauge only			X	X							remediation well	
RW-1	X	X	X	X	X	X	Х	X	Х	Х	X	Х	remediation well	
OB-D1		gauge only	gauge only	gauge only	X	X							remediation observation well	
OB-D2		gauge only			X	X							remediation observation well	
	3g- 0111y	33g- 0111y	3gc 0111y	330 01119		- '`								
Notes:	/ - magg::==	arounductes -	lovation and	looting product	at this last = = =	o only								
				floating produc			0 00 01 -15 -	nun						
				sel, kerosene,	and motor	UII alter silic	a yei ciea	nup.						
an A'm	ine column l	means the w	en will be sal	mpiea.		1								

NOTE: ALL DIMENSIONS, DIRECTIONS, AND LOCATIONS ARE APPROXIMATE SOURCE: NINYO & MOORE - JULY 2004

MUNICIPAL SERVICE CENTER 7101 EDGEWATER DRIVE, OAKLAND, CALIFORNIA

> **DETAIL PLUME MAP OCTOBER 2010**

APPENDIX B

Groundwater Sampling Field Data Sheets

-				
9	·AD	CA		C
	AK		W	
B. C.C.	/ 111			

WATER-LEVEL MEASUREMENTS LOG

Project No. LC010060.0016.00001		Date		Septer	mber 12, 2011	Page <u>l</u> of	
Project Name	Oakland MSC		Day: □ Sun	Mon	□ Tues □ Weds	☐ Thurs	□ Fri □ Sat
Field Personnel	Andrea Valdivia and Miljan Draganic	2011			NUT I	real s	
General Observation	ns	3		. 1 3	Telephone and	A-TON	I wat b

	Today Sopre Ass.		1000	Time Messur	100			٦٥
WELL NO.	Time Opened	DEPTH T	O WATER 2	WATER ELEVATION	WELL SE	CURE?	REMARKS (UNITS = FEET)	B
MW-10	0747	7,05	1.05	1012	X	1 114	2/3 botts; flooded	0
MW-13	0754	10.33	10.33	1018	X	Iva is	Tricky lid - don't over tighten	1
MW-IA	0751	7.11	7.11	1020	X)	AND DESCRIPTION OF A STREET	1
MW-9	0802	8.04	8.04	1024	X	1-1/4x	2/3 bolts	1
MW-15	0805	9.96	9.96	1027	X		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1
MW-17	0807	98.75	978.75	1029		X	No Nd	1
MW-16	crease	10,75	10.75	1029	\times	i e c		1
8-WM	0817	9.61	9.61	1035	X	8.1		1
MW-2	U827	6.67	6.67	1658	×		the Lot was closed most of day	1
MW-1	0834	4.91	4,91'	1059	X	Trans.	Flooded	1
MW-12	0836	7,33	1.33	1103	X.			1
RW-DO	0849	5.82	5.82'	1111	X		3/4 bolts; strong oder	1
MRW-D9	2.70	5.79	5.79'	1113	X	N. L.	34 botts; strangodar	1
W-D2	0855	602'	6.02	1120	X	I resid	3/4 botts	1
M-DI	0856	653	6.53	1117	X		34 bolts	1
an-Do	ප් ජ්	6.11'	6.11	1125	×		3/4 bolts	1
W-D7	08551	5.99	5,99	1127	X		3/4 bolts .	1
W-D8	1000	4.59	4.591	1131	X		3/4 bolts	1
SW-DB	0902	6.64	6.64	1123	X		3/4 bolts	1
RW-D5	09.03	5.891	5.891	1135	X		34 bolts	1
TBW-5	0904	6.55	6.55	1133	X		34 balls	1
RW-1	0906	6.21'	6.21	1148	X		34 bolts: has a 2" adapter - 1'5" higher	
RW-DII	७९७८	5.68	5.68	1144	×		34 bolts than the	
RW-DA	0100	5.92	5.92	1140	X		3/4 bolts	þ
B-DI	11100	5.691	5.691	1146	X			
B-D2	0912	5.59'	5.59	1152	X			ŀ
BW-6	1 10.72	4.17	4.17	1101	X		0/2 bolts	ŀ
W-C3	The same of the same of the same	6.32'	6.32	1157	X			1
3N-C2	0927	6.07'	6.07	1158	X		3/4 bolts	ŀ
W-AZ	0934	2.94	2941	1207	X			ŀ
W-Al	0936	3,43	3,43	1209	X		Au]
OB-A1	0937	4.28	4.28'	1211	X			1

TO THE PERSON OF	the second of the second	- Manager	0.144	1 - 7 - 1			Parties and the State of State			
WELL NO.	WELL ELEVATION	DEPTH T	O WATER 2	WATER -	WELL S	ECURE?	REMARKS (UNITS = FEET)			
MW-6	0938	5.62'	5,62	1212	X		0/2 botts			
RW-BI	0938	7.45'	145	1213	X		THOUGHT DO NOT HOUSE			
RW-B2	0939	7.47	747'	1214	X		CONTROL AND			
RW-B3	0942	9.40'	9.40'	1216	X		and within 17 180 by a set of			
RW-BA	0940	9.62'	9,62	1215	X	ex/10/116	Washe with a sum of the sum of th			
MW-7	0946	6,60	6.60'	1221	×		0/2 bolts			
W-5	0950	5,98	5,98'	1224	X		0/2 bolts			
11-WN	0452	6.20	6.28	1227	×		02 2013			
		Act to the second second second second	re assign			113/1	I due to limited access (MSCholiday			
RW-C4	0818	6.26	6.26	0247	V	76.	j-plug broken sange			
RW-C5	0831	604	6.04	0849	X	1 en	Strong hydrocarbon oder pressure in u			
aw-CI	0842	5.89	5,89'	085A	X		Flooded ASTO CLEWM			
2W-C-1	0870	6.16	6.16	0900	X	1 17	The same of the sa			
2W-C6		5,891	5,891	0858	X	12	Hydrocarban odor			
B-CI		317,033			X		Unable to open			
20 CI		AV.	Jul IX	1 49	D. Land	Lyzar	The cooper			
2220	VIIGUS		=-(f-d) == 2-12-1		Levers		al Val Pues Law			
					1.5	1 173	P I IN P CARD R WAT			
1.1	an I		144		S-272		(a) F3 (b) (c) (c) (c)			
JUNE KINE	ALM NO. ALL SEA				DAG-SVV	1 1770	the 1 to the 1 to the 1 to the 1			
		(10.67	100 76L		5-1871		The state of the s			
	- F	F - 10 - 10 - 1	EQ[- X - C	1171	I Vest	THE COLUMN TWO IS NOT THE			
	A MORA GENTAL	Star Filliant	AG R	100	5-11-2	1 112	- a Phone a Property of the same			
	arailles neves	1002 1 Car 1 Car	41 A		5 (5) I					
		2/100	4850 E	98		1 1 4				
	-77	27100	-A36.)		1.1.1.1.1	1 1 1	State State of Control of Control			
		actions				1. 16	C PEC / CRO TO A			
HER NAME	200	2	NET .		2 / /	1.7				
2.0		-thesa	ASSI	1 5/1	15.7 6	14	A PSA 1080 SEME			
V. Internal		eu/inel/	366	1 200	(C) 3-2, 1/4	1 /	10 1 10 10 10 10 10 10 10 10 10 10 10 10			
	-	331-w/	-282		10.00	1 / 5	10 1 109 A 30 PO 25 WA			
		Mark	7861			L C.4	bal sidnal tupal i wat la			
) - xxk	sts Sa a	al 1 25/44	100			1 12	TRN-1 GEROW (C.) (C.)			
		El Lest	AC 1		HP11		ICI 80 CL AND VICTOR A			
	VBC 2 22-0		The !		017 7/1		SP3 SIDO AJWA			
- K					S) F11	1 / 1	13 Pad 110 10 10			
					4 11	1 / 3	2 1 75 3 1 Strot 50 July			
The state of		श्रीकर्ष	5,0		12/1	1- 1	It I I A BOOK STREET			
	1				15411		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	- K		18/2	XI	SHL	1 13	a land trap summer			
1936/32						1 1/8	INVESTIGATION OF THE PROPERTY			
					POW	1. 10	8 36 4 1 15/05 /A-80 6			

1	AR	CA	D	10
		ιΔ	Ш	
PEUL	Δ II	$lue{}$		

Project No. <u>LC010060.0016.00001</u>	Date: Septem	ber 13,2011	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location: _	7101 Edgewater Drive, Oaklan	d, Ca
Sampler's Name: Andrew Valdiviz		_ Sample No.:	🗆 FB
Sampling Plan By: DCR	Dated: 9/9/11	C.O.C. No.:	DUP
Purge Method:	Bailer ☐ Hand Bail ☐Submersible Pu	mp ☐ Teflon Bailer ☐ Other	
Purge Method: Centrifugal Pump Disposable Florage Purge Water Storage Container Type: 55 gallon de	Storage Location:	On-site_	
Date Purge Water Disposed:	Where Disposed:_	On-site	
Analyses Requested	No. and Type of Bottles Used		
TPHg/BTEX/MTBE by 8260			
TPHd / TPHmo / TPHk by 8010 with silica gel clean-u	2-5000 L D -1 Liter Amber		
Lab Name: Curtis and Tompkins			
Delivery By	Hand	_	
Well No. MN- De	pth of Water		
Well Diameter: 2" We	ell Depth 15.82'		
¹□(2" (0.16 gal/feet) □ 5" (1.02 gal/feet) Wa	ater Column Height 1692	9	8
	ell Volume 1,75op/	80% DTW	*

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (dS/cm C)	ORP (mV)	Remarks
1509	Starto	490						->	Start purge
1524		9.12'	3.5	0,33	22,31	682	12,48	-121,1	
1529	070	9,97	4.0	0.32	21,93	683	12,11	-124,0	
1533		10,98'	4.5	036	21.68	6.84	12.66	-116.3	
1536	8-11	11.83	5.0	0.36	21.33	6.82	12.05	-124.2	
1340		12.52'	5.5	0,37	21.17	6.82	12.08	-123.9	• 383
1545	End							>	Sample
			- SUIT PC	0.41=	4,000				
				484-				L MIII	
									W.S.
		-							
			= 8						

9	AR	CA	D	15
PERC	/ 111			

Project No. <u>LC010060.0016.00001</u>	Date:		Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland	Ca
Sampler's Name: Milian Draganic		_ Sample No.:	G FB
Sampling Plan By: DCR	Dated: 9/9/11	C.O.C. No.:	DUP
Purge Method: ☐ Centrifugal Pump ☐ Disposable Bailer ☐ Har	nd Bail 🗷 Submersible Pu	mp ☐ Teflon Bailer ☐ Other	
Purge Water Storage Container Type: 55 gallon down	Storage Location:	On-site	
Date Purge Water Disposed:	Where Disposed:_	On-site	
Analyses Requested No. and	d Type of Bottles Used		
TPHg / BTEX / MTBE by 8260 3 VOAs v			
TPHd / TPHmo / TPHk by 8010 with silica gel clean-up	Liter Amber	<u> </u>	
Lab Name: Curtis and Tompkins			
Delivery By			
Well No	6.01'		
Well Diameter: 2" Well Depth			
□ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet) Water Column H	leight <u>8.29'</u>		
	1.33 gal.	80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1045	14.30	6.01	ф					\rightarrow	Start purging.
1048	14.30	6.07	i	0.77	21.45	6.93	2459	-46.2	100
1050	14.30	6.05	Z	0.76	21.47	6.92	2218	-44.2	
1054	14.30	6.06	3	0.77	21.50	6.90	2069	-40.1	
1056	14.30	6.04	4	0.74	21.52	6.89	2042	-38.8	
1058	14.30	6.05	5	0.71	21.50	6.88	2015	-37.9	
1105								\rightarrow	Sampling
		No.							
		***	1,000						iy
2									
									100000000000000000000000000000000000000
					72 —2		WW 1845		

9	ARCAI)IS

Project No. <u>LC010060.0016.00001</u>	Date: 911	4/1)	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location: _	7101 Edgewater Drive, Oaklan	d, Ca
Sampler's Name: Miljan Draganic		Sample No.:MW-6	□ FB
Sampling Plan By:	Dated:9/9/11	C.O.C. No.:	DUP
Purge Method: ☐ Centrifugal Pump ☐ Disposable B		mp □ Teflon Bailer □ Other	
Purge Water Storage Container Type: -55 gallon eru	Storage Location:	On-site_	7 Au
Date Purge Water Disposed:		On-site	
Analyses Requested TPHg / BTEX / MTBE by 8260 TPHd / TPHmo / TPHk by 8010 with silica gel clean-up Lab Name: Curtis and Tompkins	No. and Type of Bottles Used 3 VOAs with HCl preservative 2-500 mL 1 Liter Amber	used 11nch ba	ulor.
Delivery By	and	_	
Well Diameter: 2 '' Well 2" (0.16 gal/feet) □ 5" (1.02 gal/feet) Wat	th of Water	7' 80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
0920	14.17	5.59	ϕ					\longrightarrow	Start purge
0930	14.17	6.13	ì	1.14	21.76	6.76	2871	-39.6	
0938	14.17	6.19	Z	1.01	21.53	7.00	3129	-96-2	
0946	14.17	6.22	3	0.92	21.07	7.10	3367	-105.9	
0952	14.17	6.24	4	0.94	21.31	7.13	3365	-110.1	
1000	14.17	6.25	5	0.90	21.56	7.17	3363	-113.7	
1007	14.17	6.23	6	0.92	21.51	7.16	3351	-108.4	
1010								\rightarrow	Sampling
	Y								
					2				
				-					

6	AR	CA	ח	IC
Lun	VU		V	IJ

Project NoLC010060.0016.00001	Date: Septen	ember 12,2011 Page 1 of 1			
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oak	dand, Ca		
Sampler's Name: Anches VILONIZ		_ Sample No.: _MW-Q	□ FB		
Sampling Plan By:DCR	Dated: 9/9/11	C.O.C. No.:	DUP		
Purge Method:	ailer □ Hand Bail 🕱 Submersible Pu	ımp ☐ Teflon Bailer ☐ Other	1 1		
Purge Water Storage Container Type: <u>55 gallon dren</u>	Storage Location:	On-site			
Date Purge Water Disposed: September 12,20		On-site	- X (P)		
Analyses Requested	No. and Type of Bottles Used				
TPHg / BTEX / MTBE by 8260	2-500 mL	<u></u>			
TPHd / TPHmo / TPHk by 8010 with silica gel clean-up	1 Liter Amber S	== - \ = - \			
Lab Name: Curtis and Tompkins		//	<i>**</i>		
Delivery By	and		×		
Well No. MW-9 Dept	h of Water _ と, つの				
	Depth 14.43	THE STATE OF THE S			
2" (0.16 gal/feet) ☐ 5" (1.02 gal/feet) Water	er Column Height 46.43				
	Volume 1.02gal	80% DTW			

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1337	Starto	8,00	_ O	c .				->	Start purge
1342		892'	1.0	251	22.94	6.62	1175	-63	
1349		9.24	2.0	2.37	21.65	7,15	16316	-97.9	
1353			25	3,48		7.33	169	~>	Readings not stabilize
				(55 TE)				w= = =	Readings not stabilizm
1428	==	8.30	2.75	0.56	20.77	7.13	14.49	-154.8	
H39		872°	3.5	0.81	19.88	7.12	13.85	-131.3	
1443		8.84'	4.0	0.84	20.14	7,18	13.49	-111.3	
1448		8.76	4.25	0.85	20.08	7.18	13,46	-119.8	100
1454		8.72'	4.5	0.82	20.10	7.16	13:47	-126.2	
1500	End								Sample
					1 1==				
		150							

9	A	R	C	ΔΓ	21(
P.S.S.			~		

Project No. <u>LC010060.0016.00001</u>	Date: 9 /14/1		Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location: _	7101 Edgewater Drive, Oakla	and, Ca
Sampler's Name: Miljan Draganic		_ Sample No.:	[#-FB] MFB
Sampling Plan By:	Dated:9/9/11	C.O.C. No.:	DUP
Purge Method: ☐ Centrifugal Pump ☐ Disposable Bailer		mp □ Teflon Bailer □ Other	
Purge Water Storage Container Type:	Storage Location:	On-site_	
Date Purge Water Disposed:	Where Disposed:_	On-site	
Analyses Requested	No. and Type of Bottles Used	_	
TPHg/BTEX/MTBE by 8260 3 \	/OAs with HCl preservative		
TPHd / TPHmo / TPHk by 8010 with silica gel clean-up	2-500 mL -1 Liter Amber		
Lab Name: Curtis and Tompkins			
Delivery By			
Well Diameter: 2" Well Dep TSJ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet) Water Co	olumn Height 8.15	80% DTW	
☐ 4" (0.65 gal/feet) ☐ 6" (1.47 gal/feet) Well Volu	ime 1.3 gal.		

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
0800								\rightarrow	MW-10-FB Collected
0820	15.15	7.00	φ					>	Begin purge
0824	15.15	7-47	i	0.54	18.52	7.05	8910	-71.8	0 . 0
0827	15.15	7.50	2	0.50	18.51	7.05	7114	-84.2	
0830	15.15	7.44	3	0.51	18.47	7.06	6536	-91.7	
0833	15.15	7.53	4	0.49	18.41	7.05			
0837	15.15	7.59	5	0.49	18.36	7.06	6253	-100-4	
0840	15.15	7.56	6	0.47	18.42	7.05	6142	-99.9	
0845								>	Sampling
									, 0.
	=1		1,25 9,0				105010 - 11		
									*
26	Q						107		
	10 State 1 Sta								

1	-	D	~	B	10
9	A	K	U	٩U	12

Project No. <u>LC010060.0016.00001</u>	Date: Septem	ber 12,2011	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland	l, Ca
Sampler's Name: Andrea Valda	Siv	_ Sample No.: _MW-13	
Sampling Plan By:DCR	Dated:9/9/11	C.O.C. No.:	DUP
Purge Method:	able Bailer □ Hand Bail 20Submersible Pu case +ank Storage Location:	mp □ Teflon Bailer □ Other On-site	
Date Purge Water Disposed:	Where Disposed:	On-site	V v
Analyses Requested TPHg / BTEX / MTBE by 8260 TPHd / TPHmo / TPHk by 8010 with silica gel cle Lab Name: Curtis and Tompkins	2-500mL		
Delivery By	Hand		
Well No	Depth of Water 19.49 Well Depth 19.46 Water Column Height 9.64 Well Volume 1.54 gal	80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (u8/cm C)	ORP (mV)	Remarks
1559	Start	9.84	0	1			1	>	Start purge
1613		10.68	4.0	0.41	19.50	6,98	12,95	-125.7	
1618		10.70		0.56	19.38	6.96	13.25	-123.1	
1624		10.63	4.5	0.44	19.31	6,95	13.23	-119.1	V
1629		10.60'	4.75	0.45	19.29	6.97	13.21	-117.3	
1635	End							\rightarrow	Sample
				787					= =
		==-				30.			
				7/	= =	## ·			
				===					
									,

6	A	n	~	A	D	IC
9	A	K	L	A	U	12

Project No. <u>LC010060.0016.00001</u>	Date:9/12	2/1) Page 1 of
Project Name: MSC Oakland Edgewater		7101 Edgewater Drive, Oakland, Ca
Sampler's Name: Milian Dra	ganic	_ Sample No.: <u>MW - 14</u> □ FB
Sampling Plan By:DCR	Dated: 9/9/11	C.O.C. No.: DUP
Purge Method: ☐ Centrifugal Pump ☐ Disposab		mp □ Teflon Bailer □ Other
Purge Water Storage Container Type: Storage S	ge tank Storage Location:	On-site
Date Purge Water Disposed:	Where Disposed:	On-site
Analyses Requested	No. and Type of Bottles Used	
TPHg/BTEX/MTBE by 8260		
TPHd / TPHmo / TPHk by 8010 with silica gel clear	2500 m L n-up 1 Liter Amber	
Lab Name: Curtis and Tompkins		
Delivery By	X Hand	
	Depth of Water	
	Water Column Height 7.58	900/ DTM
☐ 4" (0.65 gal/feet) ☐ 6" (1.47 gal/feet)	Well Volume 1.2 gal	80% DTW

Time	Inlet Depth	Depth to Water	Volume we Purged (gal)	L DO (mg/L)	Temperature (C°)	PH (SU)	Cond (AS/cm C)	ORP (mV)	Remarks
1530	14.65	7.07	\$					\rightarrow	Start hand bail
1535	- u	7.19	1	0.75	20.97	7.67	11.26	-180.8	Water is black.
1540	11	7.14	2	0.66	21.16	7.70	11.10	-183.2	11
1545	16	7.18	3	0.71		7.72		-179.4	1)
1550	a N	7.17	4 gal.	0.68	20.25	7.71	11.10	-187.6	1)
1555		=======================================	0	<u> </u>				\rightarrow	Sampling
L.,		= =							
					=		Υ.		
= "								-	
	*							- 111	
		= =							
									W ====

9	AD	CA	n	IC
Mil	ΗN		W	IJ

Project No. <u>LC010060.0016.00001</u>	Date:	(1)	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland,	Са
Sampler's Name: Miljan Draganic		_ Sample No.: <i>MW-17</i> _	□ FB
Sampling Plan By:DCR		C.O.C. No.:	
Purge Method: ☐ Centrifugal Pump ☐ Disposable Bailer ☐ Han	d Bail Submersible Pu	mp □ Teflon Bailer □ Other	<u> </u>
Purge Water Storage Container Type:	Storage Location:	On-site_	
Date Purge Water Disposed:		On-site	
Analyses Requested No. and	Type of Bottles Used		
	ith HCl preservative		
TPHd / TPHmo / TPHk by 8010 with silica gel clean-up	iter Ambers		
Lab Name: Curtis and Tompkins			
Delivery By			
Well No. MW-17 Depth of Water	6.74		
Well Diameter: Well Depth	17.38		
▶\$3.2" (0.16 gal/feet) ☐ 5" (1.02 gal/feet) Water Column F	leight		
☐ 4" (0.65 gal/feet) ☐ 6" (1.47 gal/feet) Well Volume	/	80% DTW	

Time	Inlet Depth	Depth to Water	Volume (JC) Purged (ggd)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (S/cm C)	ORP (mV)	Remarks
1354	17.38	6.74 B	۹					\Rightarrow	Start hand bail
1359	11	6.87	1	1.32	21.49	6-82	29.94	-251.4	
1405	t)	6.92	2	0.86	21.11	7.42	29.99	-273.4	
1410	11	6.89	_3	0.80	20.69	7.46	30.04	-276.	
1413	(1)	6.87	6 gal	0.84	20.80	7.46		-274.9	
1418	n	6.89	6.2 gal	0.87	20.79	7.45	30.02	-268-8	
1420	1,	6.90	6.4 gal	0.89	20.97	7.46	30.00	-265.1	
1425		2.							Sampling
	*		"						' 0
				GRANGE CO.	**************************************				
	\								

6	AF	10	A D	10
9	Ar	(U	Αυ	12

Project NoLC010060.0016.00001	Date: 9/13/	11	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland,	Ca
Sampler's Name: Miljon Draganic		Sample No.: RW-1	D FB
Sampling Plan By: DCR	Dated: <u>9/9/11</u>	C.O.C. No.:	DUP
Purge Method: ☐ Centrifugal Pump ☐ Disposable Bailer ☐ Hand	d Bail 🖎 Submersible Pum	np □ Teflon Bailer □ Other	
Purge Water Storage Container Type:	Storage Location: _	On-site	
Date Purge Water Disposed:	Where Disposed:	On-site	
	Type of Bottles Used ith HCl preservative OOML iter-Amber		
Lab Name: Curtis and Tompkins			
Delivery By			
Well No Depth of Water Well Diameter: Well Depth □ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet) Water Column H □ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet) Well Volume	22- 1	80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
0948	16-73	6.19	ø					\rightarrow	Start purging
1000	16.73	9.69	7'	0.78	22.45	6.85	8080	-77.4	
1016	16.73	11.51	14	0.39	22.41	6.87	10430	-87-2	
1026	16.73	12.14	21	0.48	21.98	6.90	13220	-94.3	
1030	16.73	12-15	22	0.51	22.07	6.90	13330	-98.3	decrease flow
1033	16.73	12.17	23	0.50	22.10	6.92	13410	-100.2	
1036	16.73	12.18	24	0.53	22.13	6.94	13510	-102.6	
1040								>	Sampling
			- 40-24 PM						, 0
n _{to} =			80-20				= = = = = = = = = = = = = = = = = = = =		N=20 N=2 N=2
									5 L
	- 3%				F				
			16				- 6		4

9	ΔR	CA	n	IC
Tive	Δ IN	LA	V	

Project No. <u>LC010060.0016.00001</u>	Date:9/13	/11	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland	, Ca
Sampler's Name: Miljan Draganic		_ Sample No.:	□ FB
Sampling Plan By:DCR	Dated: 9/9/11	C.O.C. No.:	DUP
Purge Method: ☐ Centrifugal Pump ☐ Disposable Bailer ☐ H	land Bail Submersible Pu	ımp ☐ Teflon Bailer ☐ Other	
Purge Water Storage Container Type:	Storage Location:	On-site	
Date Purge Water Disposed:	Where Disposed:	On-site	
TPHg/BTEX/MTBE by 8260 3 VOAs	and Type of Bottles Used s with HCl preservative		
TPHd / TPHmo / TPHk by 8010 with silica gel clean-up	-500 mL 1 Liter Amber	<u></u>	
Lab Name: Curtis and Tompkins			
Delivery By		18-11-0-2	
Well Diameter: 4' Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth	er <u>5-88'</u> 13-43' h Height <u>7-55'</u>	80% DTW	
□ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet) Well Volume	<u>4.9 gal</u>		

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
13:37	13.43	5.88	ф					>	Start purging
1345	13.43	5.92	5	0.44	25.05	6.77	8402	-87.3	
1352	13.43	5.90	10	0.33	24.13	6.61	7076	-91.1	
1400	13.43	5.91	15	0.38	23.42		6997	-94.8	
1403	13.43	5.90	17	0.40	23.57	6.67	7034	-95.6	
1406	13.43	5.92	19	0.36	23-49	6.62	7009	-97.7	
1410						Н		→	Sampling
						11			
10									
			*						
		T 112-2-2-			17 8				
			11						
						N			

(AD	CA	DI	C
M	AR	LA	V	2

Project No. <u>LC010060.0016.00001</u>	Date: 9/13/11	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location: 7101 Edgewater Drive, Oakland, C	Ca
Sampler's Name: Miljan Draganic	Sample No.: RW-C7	□ FB
Sampling Plan By: DCR D	Dated: 9/9/11 C.O.C. No.:	DUP
Purge Method: ☐ Centrifugal Pump ☐ Disposable Bailer ☐ Hand B	Bail 🗷 Submersible Pump 🛘 Teflon Bailer 🗘 Other	
Purge Water Storage Container Type:	Storage Location: On-site	
Date Purge Water Disposed:	Where Disposed: On-site	
Analyses Requested No. and Ty	ype of Bottles Used	
TPHg / BTEX / MTBE by 8260 3 VOAs with		
TPHd / TPHmo / TPHk by 8010 with silica gel clean-up	Sm C FAmber	
Lab Name: Curtis and Tompkins		
Delivery By		
Well No. RW-C7 Depth of Water	6.14.	
Well Diameter: 4" Well Depth		
☐ 2" (0.16 gal/feet) ☐ 5" (1.02 gal/feet) Water Column Heig		
🔼 4" (0.65 gal/feet) 🗆 6" (1.47 gal/feet) Well Volume	5-3 gal 80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1454	14.28	6.14	φ						Start purging
1500	14.28	6.15	5	0.30	23.91	6.70	9249	-68.2	100
1507	14.28	6.15	10	0.37	24.01	6.66	8845	-63.0	
1514	14.28	6.15	15	0.40	24.13	6.71	8919	-65.9	
1521	14.28	6.15	20	0.35	24.18	6.69	9022	-67.4	
1525								>	Sampling
									8 3322
						//			
3									
						- 100.00			
					72.314			17	900 U

_						
8	-	D		-		10
6 0 30	л	IJ		л		
No.	$\boldsymbol{\mu}$	П	1 A	Н		7
PERC					v	

Project NoLC010060.0016.00001	Date: Septem	nber 13,2011	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location: _	7101 Edgewater Drive, Oaklan	d, Ca
Sampler's Name: Andrea Valdivia		_ Sample No.: _ RW-D?	□ FB
Sampling Plan By:DCR	Dated:9/9/11	C.O.C. No.:	DUP
Purge Method:	Storage Location:	On-site	Monscon Pump
Analyses Requested TPHg / BTEX / MTBE by 8260 3 TPHd / TPHmo / TPHk by 8010 with silica gel clean-up Lab Name: Curtis and Tompkins	2-500mL	Voltage outf	26≈ 08.5
Delivery By			
Well Diameter: Well Dep □ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet) Water C	f Water <u>6.61</u> pth <u>14.57</u> olumn Height <u>1.96</u>	80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (µS/cm C)	ORP (mV)	Remarks
1121	Start	6.61	0					_>	Start Purge.
1145		9.02	10.0	0,20	23,58	6.89	8,915	10.6	
1150		9.091	120	0,21		1		-17.3	8
1154		9.05	14.0	0.18	23.46	6.91		-21.3	
1157		9.06	16.0	0.22	23,30	6.91	9,120		
1205	End							->	Somple
					- :-				
HII D									9 .7
=									16
									3
					_				
***************************************						-			

9	Δ	R	C	חו	15
Peec	$\boldsymbol{\Gamma}$		acksim	W	IJ

Project No. <u>LC010060.0016.00001</u>	Date: September 13,	2011 Page 1 of 1
Project Name: MSC Oakland Edgewater	Sampling Location:7101 Edg	gewater Drive, Oakland, Ca
Sampler's Name: Andres Valdivia	Sample N	Vo.: RW-D5 □ FB
Sampling Plan By:DCR	Dated: 9/9/11	C.O.C. No.: DUP RW-D
Purge Method: Centrifugal Pump Disposable Storage Purge Water Storage Container Type: 55 gallen d Date Purge Water Disposed: September	rum Storage Location: On	-site
Analyses Requested TPHg / BTEX / MTBE by 8260 TPHd / TPHmo / TPHk by 8010 with silica gel clean-u Lab Name: Curtis and Tompkins	2-500mL	Voltage output 2 07.7
Delivery By	Hand	
Well Diameter:	epth of Water _5,90' ell Depth _11.93' ater Column Height _6.03' ell Volume _3,91aal	80% DTW

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (us/cm C)	ORP (mV)	Remarks
0941	Start	5,90	0			¥		>	Startpurge
0954		6.21	6.0	039	2300	6.90	5,644	-1000	
0958		6.20'	8,0	0.36	23.70	6.89	3,424	-1069	n fig.
69 1/002	E#	6.24	10.0	0.37	23,80	6.88	5.343	-102,4	
1006		6.24	12.0	0.34	23.93	687	5.288	103,3	
1010		6.24	13.0	0.29	23,50	6.87	5.286	-103.6	
1025	End					n.So		->	Sample
1030			114		HAMPIN SAND		0	1	Duplicabe
Un .		2000	* 1		采胜人的				
	1 = 92					The second	т-		
						-74			
			10 - A 11 -		11				
	D		ij.						
-	Ø	70%			-				
				<u>a</u> .					

9	A	D	A T	١	C
rece	A	N	71	IJ)

Project No. <u>LC010060.0016.00001</u>		Date:9/	13/11		Page 1 of
Project Name: MSC Oakland Edgewater		_Sampling Location:	7101 Edgewa	ter Drive, Oakland,	Са
Sampler's Name: Miljan Dragan	ic		_ Sample No.:	PW-D6	
Sampling Plan By: DCR	Da	ated: <u>9/9/11</u>	C.O.	C. No.:	_ DUP
Purge Method: ☐ Centrifugal Pump ☐ Disposa	ble Bailer □ Hand B	ail 🛛 Submersible Pu	mp □ Teflon B	ailer Other	unit i
Purge Water Storage Container Type: -55 gallo	age tank	Storage Location:	On-site		
Date Purge Water Disposed:		Where Disposed:	On-site	-11 -	
Analyses Requested	No. and Typ	pe of Bottles Used			
TPHg/BTEX/MTBE by 8260	3 VOAs with				
TPHd / TPHmo / TPHk by 8010 with silica gel clea	2-5° an-up <u>-1 Liter</u>		<u> </u>		
Lab Name: Curtis and Tompkins					
Delivery By	X Hand				
Well No. RW-D6	Depth of Water	6.08`			
Well Diameter: 6 11	Well Depth				
☐ 2" (0.16 gal/feet) ☐ 5" (1.02 gal/feet)	Water Column Heig				
☐ 4" (0.65 gal/feet) 🔀 6" (1.47 gal/feet)	Well Volume	1	80	% DTW	
		U			

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (IS/cm C)	ORP (mV)	Remarks
1126	19.60	6.08	ø					>	Start purge
1135	19.60	6.94	10	0.52	22.84	6.68	18.45	-84.5	11
1144	19.60	7.15	20	0.58	23.19	6.81	13.40	73.9	11
1152	19.60	7.18	30				_		
1200	19.60	7.21	40	0.38	24.07	6.77	15.56	-72.1	
1210	19.60	7.25	50	0.40	24.39	6.80	15.85	-73.5	1
1218	19.60	7.28	60	0.38	24.62	681	2011-201	-74.0	
1220	19.60	7.30	65	0.39	24.57	681	16.12	-77.3	
1230			- UE					\rightarrow	Sampling.

		11.00000						ς.	
							A.		
		5							

9	Al	RC	AΠ	15
B.A.A.	/ 1			

Project NoLC010060.0016.00001	Date: <i>9//</i>	13/11	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland	d, Ca
Sampler's Name: Miljan Draganic		_ Sample No.:	<u>3</u> □ FB
Sampling Plan By: DCR	Dated: 9/9/11	C.O.C. No.:	DUP
Purge Method: ☐ Centrifugal Pump ☐ Disposable Bailer ☐ Hand	d Bail Submersible Pu	ımp □ Teflon Bailer □ Other	AUT
Purge Water Storage Container Type: 55 gallon Stum	_ Storage Location:	On-site	7 - 8
Date Purge Water Disposed:	Where Disposed:_	On-site	
TPHg / BTEX / MTBE by 8260 3 VOAs wi	iter Amber		r of 5 gal s purged.
Delivery By			
Well Diameter: 6 th Well Depth	4.58' 19.88' eight <u>15.30'</u> 22.5 gal	80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
0815	19.88	4.58	Ø					>	Begin purge
0845	19.88	14-21	22.5	0.94	21.81	6.78	6974	-104-6	111/2 = 22.5 gal
0905	19.88	19.84	35-0	0.63	21.17	6.80			±11=12.5 gal.
Well s	purged	dry							V
1105	19.88	16.40	********	_		-	_	-	
1320	19.88	10.77							
1610	19-88	6.04	36.0	0.46	22.19	6.81	15174	-152.4	Sampling.
	- 1-1	let.				<u></u>			, 0
8									
			W - 1						
							= = =		
				=					
=(=====)									

9	A	D	λ	n	ic
PULL	Н	N	Н	U	IJ

		14-continued.
Project No. <u>LC010060.0016.00001</u>	Date: September	-13 2011 Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:7101	Edgewater Drive, Oakland, Ca
Sampler's Name: Andrea Valdiv	2 Miljan Dragonicsam	ple No.: RW-Da □ FB
Sampling Plan By:DCR		C.O.C. No.: DUP
Purge Method: ☐ Centrifugal Pump ☐ Dispos	sable Bailer □ Hand Bail⁄⊠ Submersible Pump □	Teflon Bailer Tother Mensoon Pump
Purge Water Storage Container Type: 55 gal	ordrum Storage Location:	On-site
Date Purge Water Disposed:	Where Disposed: On-si	te
Analyses Requested TPHg / BTEX / MTBE by 8260 TPHd / TPHmo / TPHk by 8010 with silica gel cle Lab Name: Curtis and Tompkins Delivery By Courier	ean-up 2-500-L 1 Liter Amber X Hand	Voltage output 2 12.5 At Runp stopped working after troubleshooting and calling PM, decided to use other pump at another time.
Well No. RW-D9		
Well Diameter:	Well Depth 19.90	
☐ 2" (0.16 gal/feet) ☐ 5" (1.02 gal/feet)	Water Column Height 14.15	80% DTW
☐ 4" (0.65 gal/feet) 🖾 6" (1.47 gal/feet)	Well Volume 20,80 gal	00 /0 D1 VV

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (aS/cm C)	ORP (mV)	Remarks
1318	Starto	5.75	\circ					>	Starts purge
1330		9.52	10.0	-		= 11.5			, 0
1342		12.22	20.0	1.38	22.15	6.36	13,33	130	
1340		4.05	26.0					`	Pump stops working
Continu	ed on	9/14/	2011						
1230	19.90	8.17	Ф					\longrightarrow	Start purge
1244	19.90	10.67	10	0.75	21.42	6.48	15.54	-21.5	
1300	19.90	12.76	20	0.83	21.51	6.49	15.77	-26.8	
1316	19.90	14.55	30	0.82	21.37	6.51	15.94	-31.5	
1331	19.90	16.39	40	0.87	2143	6.50	15.97	-24.6	11
	1		66						
1335								*	Sampling
						*		=====	
		=				1			
		12		He # =			6		

-			120000	
	-		D I	
4 00	$\Lambda \mathbf{D}$	<i>.</i> ^	111	
Manusco II	AR		1 71	
B. B. B. C.	AR		$\boldsymbol{\nu}$	

WATER-LEVEL MEASUREMENTS LOG

Project No	LC010060.0016.00002	Date	Decem	nber 21, 2011	T SUF P	Page <u>1</u> of <u>2</u>	
Project Name	Oakland MSC	_ Day: □ S	Sun □ Mon	□ Tues 🔀	Weds □ Thur	s □ Fri □ S	
Field Personnel	Miljan Draganic and Ahmad Abdallah	1 2 2 2 2				JCE WALL	
General Observation	ons	I Ewa	100	I Galaci	Lattle	ten jadi	

				TIME ,	-132		
WELL	Time		O WATER	measured WATER		ECURE?	REMARKS
NO.	Opened	130%	2	ELEVATION	Y	N	(UNITS = FEET)
MW-8	0905	8-97	8.97	1208	×		MUST 1 1/3 / 1/2 2 1 / 1/2 B
MW-16	0910	10-66	10.66	1214		X	No bolts
MW-17	0913	8.58	8.58	1217	X	1	1 81-194
MW-15	0916	10.04	10-04	1220	\times		Takyon en
mw-9	0919	8-09	8.09	1223	Sec. 2	X	One bolt missing, two stripped
MW-14	0922	7-00	7.00	1226	X		Missing one bolt
MW-13	0925	10.01	10.01	1228	×	1,4	
MW-10	0935	7.13	7-13	1233	X	1 -	Missing one bolt; wellbox fladed
MW-2	0939	7-12	7-12	1245	×	1 3	
MW-1	0948	4-63	4.63	1251	×	A A	Wellbox floodes; Pressurized
MW-12	0953	7.56	7.56	1256	×		
RW-DI	10007	6.92	6.92	1316	×		
RW-DZ		6.42	6-42	1314	X	4	
RW-D3		7-04	7-04	1311	X		
PW-D4	- 5	6-14	6.14	1310	X		
RW-D5		6.10	6-10	1307	X	g	
RW-D6		6.50	6.50	1319	X	1	
2W-D7		6-61	6.61	1325	X	11.	
2W-D8		5.04	5.04	1322	×		
2W-D9		6.75	6.75	1336	×		
PW-DID		5.99	5.99	1333	×	ale V	
W-DII		5.84	5-84	1329	×		
B-DI		5.90	5.90	1302	X		
0B-D2		6-21	6.21	1259	×		
RW-1		6.41	6-41	1304	×		
1BW-5	1	6.75	6.75	1306	×		
TBW-6	L 1036 J	3-81	3-81	1254	×		
RW-CZ	1040	6-46	6.46	1341		×	No bolts
2W-C3	1043	6.74	6.74	1345	×	1	NO UO(1)
RW-CI	1047	5-87	5.87	1348		×	Lid broken
			4 11117 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	1	·		(Jammed)
				Nume Car			Jammeo

8

		Opened			iime Measure	d	Įv.	2/2
	WELL NO.	-WELL- ELEVATION-	DEPTH T	O WATER	-WATER		SECURE?	REMARKS (UNITS = FEET)
П	RW-B3	1110	9.44	9.44	1358	×	1 71, 7	Wellhox flooded
	RW-B4	1112	9.58	9.58	1400	×		Wellbox flooded
1	RW-B2	1114	7.63	7-63	1402	×		SEE HOLD IIS
	RW-B1	1113	7-61	7-61	1404	×	H. Yw	
	MW-6	1115	5.50	5.50	1406		×	No botts
	OB-MAI	1116	3.28	3-28	1407	×		
١	RW-AI	1118	3.02	3.02	1408	X		
	RW-AZ	1120	2-24	2-24	1409	\times		
	MW-7	1126	6.68	668	1413		X	No holts; wellbox flooded
	MW-5	1130	5-86	5.86	1418		×	No botts
	mw-11	1134	6.22	6.22	1422	×	120	
1			- 2	1				
	MW-18	A83						well not found
1						III	1 1	
긱	Opening:	remaining	wells a	t Plume	C with	15575+	ence o	fa forklift operator
	RW-CY	1030	7-06	7-06	1044	×		<u>iii la san an Tiri</u>
- 5	PW-C5	1032	6.51	6.51	1046	×	THE	
	PW-C6	1033	6-36	6.36	1054	\times		
ļ	RW-C7	1035	6.62	6.62	1042	×		
ŀ	OB-CI	1037	DRY	DEY	1050	X		Total Depth = 5.45'
ŀ								
ŀ					H 3 T I		7 7	
-								
ŀ	100	-						
ŀ								The state of the s
ŀ								
-							1	
ŀ								
ŀ	E		//		41 1			
ŀ							2	
ŀ						1	- 10 2	
F	<u> </u>						1 2	
ŀ								
ŀ		2 1 2		b =				
ŀ	1. t.				I B	1 16		
-								
1				**		131		
F	10 - 10 - 10		ig"ig			yanı i i		
F					1		11 1 2 11 2	
H	0		u			lent ≥ t	w \$	
L		7/		2 24		4		strength of the second of a little
L						value III		ke sing 3 - o u Bola Marijak di Piliju

9	AR	CA	D	IS
ALL.	$\Delta \Pi$	$oldsymbol{ u}$	V	IJ

Project No. <u>LC010060.0016.00001</u>	Date: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	22-11	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location: _	7101 Edgewater Drive, Oakland	l, Ca
Sampler's Name: AMMAD ABI	DAUAH	Sample No.: MW-1	
Sampling Plan By:DCR	Dated: <u>12/20/11</u>	C.O.C. No.:	DUP
Purge Method: ☐ Centrifugal Pump 🎏 Disposa	ıble Bailer □ Hand Bail □ Submersible Pu	mp ☐ Teflon Bailer ☐ Other	
Purge Water Storage Container Type: Poly Tai	nk Storage Location:	On-site	
Date Purge Water Disposed:	Where Disposed:	On-site	
Analyses Requested TPHg / BTEX / MTBE by 8260 TPHd / TPHmo / TPHk by 8010 with silica gel clear Lab Name: Curtis and Tompkins	an-up 1 Liter Amber		
Delivery By	X Hand	(6)	
Well No	Depth of Water		

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1617	4.81	\$.25	0.1	0:68	17.68	6.86	17.18	-125.1	
1620		7.30	20-	0.63	17.12	6.97	11.73	-13012	
1623		9.05	4.0	0.67	17.81	6.97	12.55	-130	4
1627		11.51	6.0	0.69	17.92	6.95	14.55	-127-	
1630		10.05		0.72	18.07	6.99	1374	-131.2	bailer volume
1631		10.06		0.71	18.51	7.00	13.87	-129.2	-bailer volume
1632		10.05		0.69	18.08	7.00	13.89	-127.	bailer volume
1635		7.7			-27 - 17 - 1 	(F) T		7.18	Sampled.
		- Figelia				V = 1 II	1-4		
				T7 -2 -2					
			7	- X	18	100			
			- "			Far yel			
»+				0,10					

0	ARCA	אות	
m	AUCH	כוע	

Project NoLC010060.0016.00001	Date: 12/2	22/11	Page 1 of 1
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland	I, Ca
Sampler's Name: Miljan Drago	inic	_ Sample No.:MW-5	□FB
Sampling Plan By: DCR	Dated: <u>12/20/11</u>	C.O.C. No.:	DUP
Purge Method: ☐ Centrifugal Pump 🗷 Dispos	sable Bailer 🗆 Hand Bail 🗆 Submersible Pu	mp Teflon Bailer Other	
Purge Water Storage Container Type:Poly T	ank Storage Location:	On-site	
Date Purge Water Disposed:	Where Disposed:_	On-site	No.
Analyses Requested TPHg / BTEX / MTBE by 8260 TPHd / TPHmo / TPHk by 8010 with silica gel cle Lab Name:Curtis and Tompkins	ean-up 1 Liter Amber		
Delivery By			
Well No	4.001	80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1824	14.28	5.95	ø	T. McCo			- 1275	\rightarrow	Start
1627	it	5.97		1.17	16.29	7.23	.857	-67.9	
1630	11	6.01	2	1.10	16-21	7.30	,835	-61.0	
1632	- N	5.98	3	1.07	16.27	7.20	.802	-60.2	
1634	16	5,97	4	1-11	16.34	7.15	.785	-55-1	
1637	н	5.99	5	1-06	16.33	7-11	.778	-56.9	
1640	II.	5.97	6	1.09	16-33	7.13	.769	-53.4	
1643	u	5.98	7	1.05	16.32	7.09	.764	-49.6	
1645								-	Sampling
		Carrier Control		100					
and the second s	, iv					H			

6	-	-		10
9	ΔΙ	Z(ΔΠ	11
PULL	Δ I	1	abla u	כוי

Project No. <u>LC010060.0016.00001</u>	Date: 12/22	2/// Page 1 of _/_	_
Project Name: MSC Oakland Edgewater		7101 Edgewater Drive, Oakland, Ca	
Sampler's Name: Miljan Draga	ınic'	_ Sample No.: □ FB	
Sampling Plan By:DCR	Dated: <u>12/20/11</u>	C.O.C. No.: DUP _	H.
Purge Method:	able Bailer □ Hand Bail □ Submersible Pur	mp □ Teflon Bailer □ Other	
Purge Water Storage Container Type: Poly Ta	ank Storage Location:	On-site_	
Date Purge Water Disposed:	Where Disposed:_	On-site	Į.
Analyses Requested	No. and Type of Bottles Used		
TPHg/BTEX/MTBE by 8260	3 VOAs with HCl preservative		
TPHd / TPHmo / TPHk by 8010 with silica gel cle	an-up 1 Liter Amber		
Lab Name: Curtis and Tompkins	•		
Delivery By	X Hand		
Well No. MW-10	Depth of Water 7-25		
Well Diameter: 2"	Well Depth 15.13		
72° (0.16 gal/feet)	Water Column Height _ 7.88 1		
☐ 4" (0.65 gal/feet) ☐ 6" (1.47 gal/feet)	Well Volume1.26 gal.	80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1500	15-13	7.25							Start
1502	·	7.51		1.05	18.12	7.59	4,944	-87.4	
1505		7.54	2	1.00	18-16	7.70	4.516	103.9	
1508	Commence of	7.56	3	0.97	18.14	7.66	4.564	-107.3	
1510		7-63	4	0.99	18.17	7.72	4.118	-106-4	
1513		7:61	5	1.03	18.13	7.70	4.011	-104.9	
1516		7.59	6	1.00	18.20	7.75	4.071	-105.1	
1519	N 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.67	7	1.02	18.17	7.79	4.137	-102.3	
1520									Sampling
									, 0
		V	Z- 1100						20
			1000						
					000 HW-00	=		W==1 = 1 = 1	

9	Δ	R	(Δ	n	15
Tur	$\boldsymbol{\sqcap}$	111	L		U	IJ

Project NoLC010060.0016.00001	Date: 12/2		Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location: _	7101 Edgewater Drive, Oakland,	Ca
Sampler's Name:		Sample No.: MW-13	□ FB
Sampling Plan By: DCR	Dated: 12/20/11	C.O.C. No.:	DUP
Purge Method:	able Bailer □ Hand Bail □ Submersible Pur	mp □ Teflon Bailer □ Other	21
Purge Water Storage Container Type: Poly Ta	ank Storage Location:	On-site_	
Date Purge Water Disposed:	Where Disposed:_	On-site	
Analyses Requested TPHg / BTEX / MTBE by 8260 TPHd / TPHmo / TPHk by 8010 with silica gel cle Lab Name: Curtis and Tompkins	an-up 1 Liter Amber	3.	
Delivery By			
Well No			
☐ 4" (0.65 gal/feet) ☐ 6" (1.47 gal/feet)	Well Volume 1.45	80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	m Cond (QS/cm C)	ORP (mV)	Remarks
1510	1047	1050	0.1	196	1882	6.85	9.723	37.7	Initial READING
1512		12.40	1.5	1.82	18.61	6.90	11.77	-72.5	
1515		12.51	3.0	1.79	18.85	6.91	13.28	-80.2	
11517		12.40	4.5	2F.1	18.96	6.99	12.62	-77	2
1520	=(xGQ)))=======								sampled.
					eres/dumento				
			Te min					الحارم	
		27 1							
		E 10							
		n. Tri				17.1		4	
				= = ====					
		0 - 10 - 10 -	461				- 9		
			eco mun min		K		8		
			24.0		Ly Ly	D '			

9	A	n	~	A	D	IC
ren	A	ın		H	U	IJ

Project No. <u>LC010060.0016.00001</u>	Date: 12/21		Page 1 of
Project Name: MSC Oakland Edgewater			
Sampler's Name: Miljan Dragan	ic	_ Sample No.: <u>MW-14</u>	
Sampling Plan By: DCR		C.O.C. No.:	
Purge Method: ☐ Centrifugal Pump ☑ Dispos	sable Bailer 🗆 Hand Bail 🗆 Submersible Pu	mp ☐ Teflon Bailer ☐ Other	
Purge Water Storage Container Type: Poly Ta	ank Storage Location:	On-site	
Date Purge Water Disposed:	Where Disposed:	On-site	
Analyses Requested TPHg / BTEX / MTBE by 8260 TPHd / TPHmo / TPHk by 8010 with silica gel cle Lab Name: Curtis and Tompkins	ean-up 1 Liter Amber		
Delivery By	X Hand		
Well No		80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	MS Cond 400/cm C)	ORP (mV)	Remarks
1514	14.66	7.22	1.2	1.64	18.51	6.68	10.98	-97.8	
1518	- 17	7.27	2.5	1.03	18.48	7.24	11.25	-143.7	
1523	17	7.32	3.7	0.94	18-39	7.29	11.29	-150.6	
1525	31	7.30	4.0	0.97	18.42	7.32	11.24	-148.9	
1527	11	7.36	4.5	0.96	18.46	7.33	11-27	-146-2	
1530	0	7.33	5.0	0.89	18.46	7.37	11.30	-149.1	Sampling.
							= [46]=(23=e)		
		4 7 7 Y	38						
				4	1 12 0	4			
					(1) 2 (1) 2 1 2 2 2 2				
						d- 140 - 141 - 141	Personal States		Continue remarks on source if no

9	ΛD	CA	D	IC
mi	AK	LA	V	IJ

Project No. <u>LC010060.0016.00001</u>	Date: <u>12</u>	1/11	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland	, Ca
Sampler's Name: Miljan Dragar	ic	Sample No.: MW-17	□ FB
Sampling Plan By:DCR	Dated:12/20/11	C.O.C. No.:	DUP
Purge Method:	able Bailer ☐ Hand Bail ☐ Submersible Pu	mp □ Teflon Bailer □ Other	
Purge Water Storage Container Type: Poly T	ank Storage Location:	On-site	
Date Purge Water Disposed:	Where Disposed:	On-site	
Analyses Requested	No. and Type of Bottles Used		
TPHg/BTEX/MTBE by 8260	3 VOAs with HCl preservative		
TPHd / TPHmo / TPHk by 8010 with silica gel cle	ean-up 1 Liter Amber		
Lab Name: Curtis and Tompkins			
Delivery By	X Hand		
Well No. MW-17	Depth of Water9.55		
Well Diameter: 2"	Well Depth 17.25		
\$\rightarrow\$2" (0.16 gal/feet) □ 5" (1.02 gal/feet)	Water Column Height 7.70	15	
☐ 4" (0.65 gal/feet) ☐ 6" (1.47 gal/feet)	Well Volume 1.3 gal	80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1612	17.25	9.57	1.5	1.17	18.01	7.00	29.01	-168.7	
1616	ù	9.59	3.0	1.06	17.94	7.03	29.42	-170.1	
1619	ic	19.61	4.5	1.03	17.96	7-11	29.36	-167.4	4
1621	ч	9.58	5.0	0.99	17.91	7.09	29.41	-1623	
1623	11	9.57	6.0	0.95	17.93	7.13	29.39	-166.7	
1625	<u> </u>							\rightarrow	Sampling
			70)						
	الل والأوا								
				3 /4 14 15 15 FF FF	an bran vining	- Ingeneration			

9	Λ	D	~	Λ	n	I	C
rece	A	Π		H	U	П	S

Project No. <u>LC010060.0016.00001</u>	Date:	2/11	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland	i, Ca
Sampler's Name: A.A.		_ Sample No.:RW-A	2 of FB
Sampling Plan By: DCR	Dated: <u>12/20/11</u>	C.O.C. No.:	DUP
Purge Method: ☐ Centrifugal Pump ☒ Dispos	sable Bailer □ Hand Bail □ Submersible Pu	mp □ Teflon Bailer □ Other	
Purge Water Storage Container Type:Poly T	ank Storage Location:	On-site_	
Date Purge Water Disposed:	Where Disposed:	On-site	
Analyses Requested	No. and Type of Bottles Used		
TPHg/BTEX/MTBE by 8260	3 VOAs with HCl preservative		
TPHd / TPHmo / TPHk by 8010 with silica gel cle	ean-up 1 Liter Amber		
Lab Name: Curtis and Tompkins			34
Delivery By	X Hand		
Well No. RW-AZ	Depth of Water 2.28		
Well Diameter: 4"			9
☐ 2" (0.16 gal/feet) ☐ 5" (1.02 gal/feet)	Water Column Height\\ -32		
□ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet)	Well Volume 8.36	80% DTW	4

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	, Remarks
0916	7.38	2:30	2.5	436	15.79	6.81	1.187	194.1	Initial Readu
0922	2	Z-28	8.5	1.66	15.69	6.60	0.70	205.1	
0928		2.28	17.0	1.59	15.98	6.59	0.692	201.2	
0937		2.27	25.5	1.62	16.19	6.74	0.688	194.8	
0938		2.27	e america	1.65	15.72	6.69	0.693	192-1	bailer volume
0939		2.27		1.61	15.61	6.69	0.692	191.2	baile volume
0940	V	2.27		1.63	15.70	6.69	0.693	192.9	Dailer Volume
0945					y wallsame				Sampled
13.	\$ 7								
				ē		x T = 1	<u> </u>		
	31131131	50							
		W SELECTION OF				r i i Sh ri			mer/ n = = = xmm = = = = = = = = = = = = = = =
Ser Uponi ile									
								السميركان	

9	ΔP	CA	ח	IC
Free	HL		ישו	IJ

Project NoLC010060.0016.00001	Date: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2-11	Page 1 of/
Project Name: MSC Oakland Edgewater	Sampling Location: _	7101 Edgewater Drive, Oakland,	Ca
Sampler's Name: AA		Sample No.: RW-BI	
Sampling Plan By:DCR	Dated: 12/20/11	C.O.C. No.:	_ DUP
Purge Method:	able Bailer □ Hand Bail □ Submersible Pu	mp ☐ Teflon Bailer ☐ Other	
Purge Water Storage Container Type: Poly Ta	ank Storage Location:	On-site	
Date Purge Water Disposed:	Where Disposed:_	On-site	
Analyses Requested	No. and Type of Bottles Used	or continue of the continue of	
TPHg / BTEX / MTBE by 8260	3 VOAs with HCl preservative		-
TPHd / TPHmo / TPHk by 8010 with silica gel cle	ean-up 1 Liter Amber		3.10
Lab Name: Curtis and Tompkins			
Delivery By	X Hand		
Well No. RW-B1	Depth of Water		
Well Diameter: \u2214''	Well Depth15 · 85		
☐ 2" (0.16 gal/feet) ☐ 5" (1.02 gal/feet)	Water Column Height 8.07	Эн	
	Well Volume 5 20	80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
0180	7.78	7.78-		24.0 m V					initial.
0815		9.10	5.25	7:71	16.41	7.03	2-764	269.8	
0820	1,	8.95	10.50	7.80	17.77	7.10	4.642	64.2	
0825		9.05	15.75	7.85	17.81	7.15	4.65	34.3	
0826		9.05		7.90	17-85	7-16	4.880	-15.5	on bailer volume
0827		9.05		7.92	17.89	7.18	5.112	-17.2	on bailer volum
0828		9.05		7.93	17.90	7.20	5.211	-15.6	on bailer volum
0830			**			40			sampled.
To the second				u = uy				31.1	
* =			Rt 741	V	1				
				E W 2			Theo in	7	
4						THE P	-		
								10 12 12	

Project No. <u>LC010060.0016.00001</u>	Date:	2/11	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland	Ca
Sampler's Name: Miljan Draga	inic	Sample No.: <u>RW-B4</u>	D FB
Sampling Plan By:DCR		C.O.C. No.:	
Purge Method: ☐ Centrifugal Pump 🗷 Dispos	sable Bailer 🗆 Hand Bail 🗆 Submersible Pu	mp □ Teflon Bailer □ Other	
Purge Water Storage Container Type: Poly T	ank Storage Location:	On-site	•
Date Purge Water Disposed:	Where Disposed:_	On-site	
Analyses Requested TPHg / BTEX / MTBE by 8260 TPHd / TPHmo / TPHk by 8010 with silica gel cle			
Lab Name: Curtis and Tompkins	1 2101 7 111001		
Delivery By	X Hand		
Well No	Well Depth 13.80' Water Column Height 4.03'	80% DTW	
□ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet)	Well Volume 2.6 gal		

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (§S/cm C)	ORP (mV)	Remarks
0819	13.80	9.80	2.5	2.00	16.88	6.35	10.52	50.6	
0825	13.80	9.79	5.0	1.94	17.84	6.53	9.753	20.1	
0830	13.80	9.80	7.15	2.05	18-12	6.54	9.849	13.6	
0834	13.80	9.77	8.5	2.07	18.17	6.55	9.854	6.3	0
0837	13.80	9.81	9.5	2.10	18.22	6.57	9.866	2.5	
0840	13.80	9.79	10	2.14	18.31	6.58	9.872	-0.2	
0840								->	Sampling
0850	10			lesenson e				->	DUP Sampling
1		% .							, 0
			th				v fi		
		•					H B - 1876		
7150-1-			usu basawa	4 74 7					
			enteresta desentata e sed eco.	and the second					

1				
			100	
9	Λ			
-	AB	1 1 1 1		
I APPENDING				I. D

Project No. <u>LC010060.0016.00001</u>	Date: 12 22	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland, Ca
Sampler's Name: Miljan Draga	nic	Sample No.: <u>RW-C6</u> □ FB
Sampling Plan By:DCR		C.O.C. No.: DUP
Purge Method:	able Bailer Hand Bail Submersible Pun	np 🗆 Teflon Bailer 🗆 Other
Purge Water Storage Container Type: Poly T	ank Storage Location: _	On-site
Date Purge Water Disposed:	Where Disposed:	On-site
Analyses Requested TPHg / BTEX / MTBE by 8260 TPHd / TPHmo / TPHk by 8010 with silica gel cle Lab Name: Curtis and Tompkins	ean-up 1 Liter Amber	
Delivery By	_	
Well No	Depth of Water <u>6.38</u> Well Depth <u>13.35</u> Water Column Height <u>6.98</u>	
△ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet)	Well Volume 4.53 gal	80% DTW

Time	inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1120	13.35	6.47	5.0	1-63	18.01	6.38	8.304	38.1	
1129	u	6.40	10.0	1.43	18.14	6.50	7.774	-0.6	
1140	l ₁	6.41	15-0	1.04	17.97	6.70	7.673	-15.5	
1148	ч	6.39	17.0	1.07	18.20	6.63	7.669	-19.6	
1154	4	6.40	19.0	1.09	18.19	6.71	7.664	-14.3	
1159	u	6.42	21.0	1.06	18.24	6.65	7.650	-12.8	
1200		376					1342	>	Sampling
	A Same				· · · · · · · · · · · · · · · · · · ·				
(a)									4
400	10-14								
	DE DE HUBER			-		Accept			
	La guant	- 12 12 01 T							
							15 T C T		
			er never						

9	AF	CA	ID	IS
R. G.G.C				

Project No. <u>LC010060.0016.00001</u>	Date: 12-22	- i \ Page 1 of _ /
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland, Ca
Sampler's Name:		Sample No.: FB
Sampling Plan By: DCR		C.O.C. No.: DUP
Purge Method:	able Bailer □ Hand Bail □ Submersible Pun	np □ Teflon Bailer □ Other
Purge Water Storage Container Type: Poly Ta	ank Storage Location:	On-site_
Date Purge Water Disposed:	Where Disposed:_	On-site
Analyses Requested	No. and Type of Bottles Used	
TPHg/BTEX/MTBE by 8260	3 VOAs with HCl preservative	
TPHd / TPHmo / TPHk by 8010 with silica gel cle	ean-up 1 Liter Amber	
Lab Name: Curtis and Tompkins		_ :
Delivery By	X Hand	
Well No. RW-C7	Depth of Water6.63	
Well Diameter: 4"	Well Depth 14.05	
☐ 2" (0.16 gal/feet) ☐ 5" (1.02 gal/feet)	Water Column Height 7.47	
☐ 4" (0.65 gal/feet) ☐ 6" (1.47 gal/feet)	Well Volume	80% DTW

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1115	6.63	6.63	0.1	0.76	18.19	6.61	9.119	66:7	Initial Reading
1120		6.63	5.0	0.73	19.85	6.66	8.180	19.7)
1125		6.63	10.0	0.71	19.78	6.69	7.02	33.3	
1130		6.63	15-0	0.75	19.67	6.65	8.679	36.1	
1131		6.63		0.75	19.67	6.66	8.102	237.1	bailer volume
1132		6.63		0.74	19.66	6.67	8.112	37.9	4
1132		6,63		0.75	19.69	6.67	8.119	38,2	- 4
1135 -			0 = =	15-00-16-		B-000000000000000000000000000000000000		7	sampled.
R 1 1 2 4 1		V = 1 (V)						Y The	
74					257215				
	77 to 17				11.5				
		# 15 mg					- 110		
rain—Exig					4 - 5 - 10			Lifer No.	
	+ 1						1.5		

9	AR	CA	D	5
N. B.C.C.	, ,,,			

Project No. <u>LC010060.0016.00001</u>	Date:	27-11	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland, (Ca
Sampler's Name: AA		_ Sample No.:RW-DS	
Sampling Plan By:DCR	Dated: 12/20/11	C.O.C. No.:	DUP
Purge Method: ☐ Centrifugal Pump ☑ Dispos	sable Bailer □ Hand Bail □ Submersible Pu	mp ☐ Teflon Bailer ☐ Other	
Purge Water Storage Container Type: Poly T	ank Storage Location:	On-site	
Date Purge Water Disposed:	Where Disposed:	On-site	- Philipped II
Analyses Requested	No. and Type of Bottles Used		
TPHg/BTEX/MTBE by 8260	3 VOAs with HCl preservative		
TPHd / TPHmo / TPHk by 8010 with silica gel cle	ean-up 1 Liter Amber		
Lab Name: Curtis and Tompkins			
Delivery By	X Hand		
Well No. RW-DS	Depth of Water 6.20		4 4
Well Diameter:	Well Depth 11.85		
☐ 2" (0.16 gal/feet) ☐ 5" (1.02 gal/feet)	Water Column Height 5 . 65		
☑ 4" (0.65 gal/feet) ☐ 6" (1.47 gal/feet)	Well Volume3.7.	80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	, Remarks
1235	6.20	620	0.1	0.88	20.61	6.63	5.096	29.3	Initial
1240	6.20	622	4.0	0.91	21.42	6.64	5.338	13.8	
1245	10	623	8.0	0.92	21.68	6.68	5.487	-5.7	
1250	4	623	12.0	0.95	21.80	6.67	5.544	-3.8	
1251	11	623	pailer	0.96	21.75	6.66	5.627	-1.3	bailer volume
1252	4	623	4	0.95	21.75	6.67	5.639	-1.8	
1253	1/	623	- 4	0.97	21.75	6.66	5.647	-0.5	4
1300	12.00							->	SAMPLED.
					#10m - = 40r				
	W-1-2-2-		-			7-1-1	urjasellee j	4-44	
				La Max.					

9	ΔR	CA	ח	15
PEEC	Λ II			

Project No. <u>LC010060.0016.00001</u>	Date: 12-22	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakland, Ca
Sampler's Name: AHMAD ABDAL	NAH -	Sample No.: RW-D9
Sampling Plan By: DCR	Dated: <u>12/20/11</u>	C.O.C. No.: 🗆 DUP
Purge Method: ☐ Centrifugal Pump ☐ Dispos	able Bailer □ Hand Bail 🖾 Submersible Pu	mp ☐ Teflon Bailer ☐ Other
Purge Water Storage Container Type: Poly Ta	ank Storage Location:	On-site On-site
Date Purge Water Disposed:	Where Disposed:	On-site
Analyses Requested	No. and Type of Bottles Used	
TPHg/BTEX/MTBE by 8260	3 VOAs with HCl preservative	
TPHd / TPHmo / TPHk by 8010 with silica gel cle	an-up 1 Liter Amber	<u>L</u> ear we see the see all the see at
Lab Name: Curtis and Tompkins		
Delivery By	X Hand	
Well No.	Well Depth 19.95 Water Column Height 13.10	<u> </u>
☐ 4" (0.65 gal/feet) ☐ 6" (1.47 gal/feet)	Well Volume	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	M Cond	ORP (mV)	Remarks
1415	6.85	7.15	2.0	27.10	1890	6.53	19.29	305.9	Initial
1503		13.05	20.0	18.09	19.88	6.46	13.50		
1530		15.55	30.0	15.27	19.26	6.68	13.95	185.	
1540		16.15				11114			DRY.
1745						ulharate! ==	mana di Tur		sampled.
1745		15-02		7-36	18.47	6.55	14-17	162.5	
			eo sim		2000年世			41:	
								- 91 -1F6	المراجعة والمحادث المراجعة
				4					
			F 4000						
		Y- V117	-7			THE LEGISLA			
					 				
	Lange							44	
						<u></u>			

0	AR	CA	ח	15
FULL	VIV		שו	IJ

Project No. <u>LC010060.0016.00001</u>	Date:	22/11	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location:	7101 Edgewater Drive, Oakla	nd, Ca
Sampler's Name: Miljan Drago	anic	_ Sample No.:RW-1	(≱⊈FB
Sampling Plan By:DCR		C.O.C. No.:	
Purge Method:	sable Bailer □ Hand Bail 🏿 Submersible Pu	mp ☐ Teflon Bailer ☐ Other _	
Purge Water Storage Container Type: Poly T	ank Storage Location:	On-site	2 1
Date Purge Water Disposed:	Where Disposed:	On-site	
Analyses Requested	No. and Type of Bottles Used		
TPHg/BTEX/MTBE by 8260	3 VOAs with HCl preservative		
TPHd / TPHmo / TPHk by 8010 with silica gel cl	ean-up 1 Liter Amber		
Lab Name: Curtis and Tompkins			
Delivery By	X Hand		
Well NoRW-1	Depth of Water 6.60		
Well Diameter:			
☐ 2" (0.16 gal/feet) ☐ 5" (1.02 gal/feet)	10 11		
☑ 4" (0.65 gal/feet) ☐ 6" (1.47 gal/feet)		80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	(QS/cm C)	ORP (mV)	Remarks
1250	16.71	6.60	9					>	Begin purge.
1310	£t.	9.31	7	5.77	20.51	6.68	11.63	31.0	0 1 0
1328	tı	10-70	14	4.47	20.87	6.64	12.20	28.1	
1344	LI	11.81	21	4.06	20.29	6-64	13-40	17.5	
1349	C1	12-19	23	3.92	20.80	6.61	13.67	11.8	
1354	li	12-48	25	3-74	21.09	6.68	13.21	8.2	
1359	u	12.74	27	3.77	21.17	6.70	13.74	9.3	
1405	II.	13.01	29	3.81	21.04	6.69	13.81	6.7	
1409	11	13.27	30	3-72	21.07	6.71	13.97	4.4	Runged with bailor
1410								>	Runged with bailor Sampling (w/bailor)
nas v	most savingers in the left of the state of t	adan hagana an' il an ana ana an	7			- 4	(1-10-141-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
					7 6				
CELLINA CONTRACTOR OF THE CONT	article and the second								

CHAIN OF CUSTODY

ct	Curtis & Tompki	ns Labo	ratorie	es											Ch	gin .	of Cu					2
96	ENVIRONMENTAL ANALYTIC	CAL TESTING L	ABORATO	RY 878	C&T L	OGIN	#					-	A NL	ALVI			REQ					
	ifth Street ey, CA 94710	Phone (5)	10) 486-09 10) 486-05	00					Ť	8260)	(%)		ANZ	AL I		, L	REG	IUE	51			
Project I	No: LC0/0060.0016.000	002 Sai	mpler: Mi	ljan :	D. &	Ahi	mad	A.		EPA 8	(EPA 8015)											
	Name: MSC Oakland Edge					th					EP						1					
Project I				4RCF						光												144
EDD For										H	是											
Turnarou	Ind Time: RUSH	Standard Em	ail:Daren.	Roth	@ dra	adis	-45	con	7	V/								-				
	777 I-M	Ť ·			C)			MICAL		公	1PH mo											
Lab	Sample ID.	SAMPL	ING	MATR	Container			NICAL EVATIV	E	81	出											
No.		Date	Time							a												
		Collected	Time Collected	ate	ō	5	H2504	NaOH	None	五	#											
	MW-13	12-21-11	1520	<i>≯</i> ⊗	* 5	HC	兰	Ž	ž	-	7		\dashv	+	4			\dashv	4		_	
	MW-14	12-21-11	1530	^	5			+	$\Theta = 0$	\mathcal{L}	<u> </u>		\dashv	+-	+	-	\vdash	\dashv	_	\dashv		
	MW-17	V	1625	7	5	X	- Times		$\stackrel{\sim}{\sim}$	$\hat{\mathbf{x}}$	\bigcirc				-		\vdash	-	+	+	+	
	RW-BI	12-22-11	0830	X	5	X			X	×	X		_		+		\vdash	\dashv	\dashv	\dashv	+	
	RW-B4		0840	X	5	X			X	X	X				\top					1	+	
	RW-A2		0945	X	5	×			X	×	×										\top	+
	RW-C7		1135	X	5	X			×	X	X											
	RW-C6		1200	X	5	X	_	\bot	X	X,	×_			\perp	\perp							
	RW-1-FB		1300	X	5	×			X	X	×			\perp	\perp		\sqcup	\dashv	_	\perp		
	RW-1-PD		1245	X	5				$\stackrel{\sim}{\sim}$	X	X Q		_	_	-			\dashv	4	4	4	_
	MW-10		1410	\	5	X	+	+	္	X	×	+	-	+			\vdash		\dashv	+	+	-
	mw-i	1	1635	χ	5	\frac{1}{\times} 			\bigcirc	\bigcirc	<u> </u>	\vdash	-					\dashv	+	+	+	
Notes:		SAMPLE		RE	LINQU	ISHE	BY:							R	FCF	IVE	D BY					Щ.
(A) I	and the second s	RECEIPT		.)	19				ME: 125	20	1	1.		1	-01		1	7/	23/	11	1-	ż.
	ean-up for	M Intact	7	<i>Y</i> -	-/_(()		AIE:	401	ME: /	-	MA	7	1/	5-	_		DA	TE:	7	TIMI	E/2	20
-10	HITPH ITPH	Cold _					DATE:	TI	ME:	_ .							DA	TE:		TIMI	E:	
10	mole malicie	On ice					DATE:	TI	ME:								DA	TE:		TIRA	E .	
DUI	mple analysis	Ambient -								- -			-				DA	IE.		TIMI	E.	
	-88 - Hella - Ohr - Spec William		11/201-201-201-201								20.0155	118										

CHAIN OF CUSTODY

CUITIS & Tompki	ns Labo	oratorio	9 \$																Chai	n o	f Cu		ge _ dy #			2
	in Bu	isiness Since 1	878	C	C&T LC	OGI	N#_				-					AN	ALY	TIC	AL	R	EQ	UES	T			
2323 Fifth Street Berkeley, CA 94710	Phone (5 Fax (5	510) 486-09 510) 486-05	00 32		7						1	(097	5)(8)													
Project No: LC010060.0016.00	002 so	ampler: Mi	lian	\mathcal{I}	1. 8	t A	hm	ad	A		E.F.	A 8.	8015		1											
Project Name: MSC Darland Edge	water R	eport To: I	his		Roth	h						(E)	£65							200						
Project P. O. No:		ompany:	ARC	AI	115						_	111	16													
EDD Format: Report Level	III 🗆 IV Te	elephone:	190)6º	52-4	150	20	No.				181	发													
Turnaround Time: RUSH	Standard Er	mail: Darer	1. Ro	the 6	a) an	pad	15-	45.	- CO	m		m	Ĭ													
	т —				10							X	12													
Lab Sample ID.	SAMP	LING	MA	TRIX	Container		CHE RESE		CAL ATIVE			18	7								-					
No.	Date	Time	<u>.</u> _				94	8	_			0	20	2	1											
	Collected	Time Collected	Wate Solic		# of	H 단	H2S04	HN03	NaOH	None		田	口	H										1	8	
MW-5	12-22-11	1645	X		5	×			_	×		×	X		+	+		0		-32		+	+	422	1	2
RW-D9		1745	X		5	×				X		X	X		十		1	\top		3			-			
RW-B4-D		0850	X		5	X	- 1)	X		X.	X								y					
TB/2221	4	and the same of th	Χ.	Щ.	2	×		_		_				X												
						<u> </u>		_	_	_			_		4	4			4	\perp		4				
		12		-		-		-	\dashv	\dashv		-	4	4	+	4	-	+	\dashv	+	_	\bot	\bot	4	1	
				$\vdash\vdash$				\dashv	+	\dashv		\dashv	-	-	\dashv	\dashv	+	-	+	+	+	+	+	+	-	\perp
								\dashv	-	\dashv			-	+	-+	+	+	+	+	+		+	+	+		+
				H				\dashv	+	-			\dashv	-		+	+	+	+	+	+	+	+	+		\vdash
								\top		\neg	1		_	\dashv	十	\dashv	+	+		-	+	+	+	+	¥	
															十	7	\top			\top	\top			3		\top
																- 1										
Notes:	SAMPLE			RELII	NOUI													REC	CEIV	/ED	BY:					
& Use silica gel clean-up for TPHd/TPHmo/TPHK sample analysis	RECEIPT	Tye?	\leq		14		DATE	. Z	2311	ME:	250	5	/h	M		1	2_		سند		DAT	173 E:	74,	IME	125	0
TPHd/TPHmo/TPHK	⊠ Cold				II L		DATE	:	TI	ME:		_ /		/							DAT	E:		IME:		
sample analysis	On Ice						DATE	:	TII	ME:		_ .									DAT	E:	T	IME:		

APPENDIX C

Laboratory Results and Chain-of-Custody Documentation

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 231057 ANALYTICAL REPORT

Arcadis Project : LC010060.0016.00001 2000 Powell St. Location : MSC Oakland Edgewater

Emeryville, CA 94608 Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-17	231057-001
MW-9	231057-002
MW-14	231057-003
MW-13	231057-004
RW-D5	231057-005
RW-D5-D	231057-006
RW-1	231057-007
RW-D3	231057-008
RW-D6	231057-009
RW-C6	231057-010
RW-C7	231057-011
MW-1	231057-012
RW-D8	231057-013
MW-10-FB	231057-014
MW-10	231057-015
MW-6	231057-016
MW-5	231057-017
RW-D9	231057-018
TRIP BLANK	231057-019

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: Deine 7. Tetrett

Project Manager

Date: <u>09/23/2011</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 231057 Client: Arcadis

Project: LC010060.0016.00001
Location: MSC Oakland Edgewater

Request Date: 09/14/11 Samples Received: 09/14/11

This data package contains sample and QC results for eighteen water samples, requested for the above referenced project on 09/14/11. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015B):

High surrogate recovery was observed for o-terphenyl in RW-1 (lab # 231057-007); no target analytes were detected in the sample. Diesel C10-C24 and motor oil C24-C36 were detected above the RL in the method blank for batch 178996. RW-D8 (lab # 231057-013) was diluted due to the dark and viscous nature of the sample extract. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

CHAIN OF CUSTODY

	Curtis & Tompki	ins Labo	ratoria	20															P	age _		_ of _	2
U	Curtis & Tompk ENVIRONMENTAL ANALYTI	CAL TESTING L	ABORATO	RY			OGIN i)	21		コ					(Chain	of C	usto	dy #	·		
		In Busi	iness Since 1	878	C8	RT LC	OGIN :	#	יע -	0->	ア		Ţ,	Α	NA	YTI	CAL	REC	QUE	ST			
	ifth Street ey, CA 94710	Phone (51 Fax (51	0) 486-09 0) 486-05									O T	2)4										
Project	No: LCO10060.0016.00	0001 Sar	npler: 🎢	D A	E AV	1						8260	SION										
Project	Name: MSC Oakland Edg	rewater Res	port To: T	Dare	Λ 1	P.~	Цh				- }	SS 7	역										
Project I	P. O. No:		mpany:	ARC	AD	15	171				- ,	\\\ z	*	ļ									
EDD For	mat: Report Level□ II [450	20			- (10	Ē										
Turnarou		_	oil: Dare						5.0	ממכי	_	٤,											
		T		· · · · · ·		ers.					_	泛	I L'H we										
Lab	Sample ID.	SAMPLI	ING	MATI	RIX	Containers		HEMI SER\			-	⊐-	_1 [
No.		Date	Time	5 5				3	_		-	मिमु	49										
		Collected	Time Collected	¥aţ Solic		, 0 #	HCI H2SO4		NaOH	None	18	F	17Hd 16LD										
1	MW-17	9-12-11		X	\top	5	X	+	-	ヌ	2	<u> </u>		_	+			+-		-+	+	1	+
Z	MW-9		1500	X		5	X			X	5		रे		T		-	++	\Box	-	+	+	+
3	MW-14		1555	X			X			×	15	〈 〉		\top	+			+	\sqcap	\dashv	+	+	t
4	MW-13	4	1635	X		5	X			X	>		\rightarrow \leftarrow	\top			- -	+		\top	+	+	+
-5	RW-D5	9-13-11	1025	X		5	X			×		〈〉						+ 1		1	\dagger	†	\vdash
6	RW-D5-D		1030	X		5	X			X	>	<!--</b-->			1					1	\top	1	T
7	RW-I		1040	X		5	X			X	>	ΧŹ	<	\neg	1			\Box	\top	+	+	1	\dagger
8	RW-D3		1205	X		5	X			X)	()		\top	\top				\neg	_	+	+-	\vdash
9	RW-D6			X		5	X			X	5	ΧÌ		_	1			+	7		+	+	\vdash
10	RW-C6		1410	X		5	X			X		〈 〉			1		_	+ +	\dashv	_	+	+	
11	RW-C7		1525	X		5	X			X	×	_								+	+	+-	+
12	MW-1		1545	X		5	X			X	7				\top			1		+	+		
13	RW-D8	V	1610	X		5	X			X	7							11		+	+	+	
Notes:		SAMPLE		R	ELING	ລຸບຸເຊ	HED	BY:								. RE	CEIVE	D B'	 Y:				
₩ USE	2 SILICA GEL clean-	RECEIPT 1			14	4		a	lш	IME:	1-1		1	,	H		1		//4/ ATE:	7,,			
up o	in the TPHALTPHAL	MIntact 1					- DA	HE://	17 1	IME:		- ∢	Pa	7	40	~~X	L,	<u>D</u> /	ATÉ!		IIME	: 15	<u>10</u>
IPH	ik samples prior to	Cold _					DA	TE:	T	IME:		_ _					1	D/	ATE:		TIME	:	
anal	yses.	⊠On Ice □ Ambient -					DA	TE:	T	IME:								D.	ATE:	-	TIME		
······································		LI AIIIDIEIII										- -											_

CHAIN OF CUSTODY

ch:	Curtis & Tompki ENVIRONMENTAL ANALYTIC	ns Laboratories
	ENVIRONMENTAL ANALYTIC	CAL TESTING LABORATORY

Page <u>2</u> of <u>2</u>

U	ENVIRONMENTAL ANALYT	ICAL TESTING L	ABORATORY	-		つ	ر ار					Ch	ain of	Cust	ody #	·		
2222 5	Fifth Street		iness Since 1878		&T LOGII	N # <u>/</u>	3/05				ANA	LYTICA	AL R	EQU	ST			
Berkele	ey, CA 94710	Fax (5)	10) 486-090(10) 486-0532						(8258) (8258)									
Project	No: LCO10060.0016.	0000 Sai	mpler: M	DAI	9V				(8015)	1								
Project	Name: MSC Darland Ed	gewater Rei	port To: Da	ren 1	Roth			- 1	ق ارد	3								
Project	P. O. No:		mpany: A	≥CAD	15			_ (Ñ	4								
EDD For		4	ephone: (5	510)65	52-4	500]								
Turnarou	und Time: Rush	Standard Em	ail:Daren				.com											
Lab	Sample ID.	SAMPL	ING N	MATRIX	Container	CHEMI RESERV	CAL ATIVE	-	\rightarrow \vdash	7 1								
No.		Date Collected	Time 50	pilo	5 5	H2SO4 HNO3	NaOH None		2 F	HOLD								
14	MW-10-FB	9-14-11	0800 X	S	* ¥ 5 ×	= =	X	5	\X		+ -		-	-	\vdash	+		\dashv
<u>IS</u>	mw-10		0845 X		SX		X	5	砅	1	11	++-	+		\vdash	+		\dashv
16	MW-6		1010 X		5 X		X	5	\sqrt{X}	1 .	11			1		+		-
17	MW-5		1105 X		5 X		X	7	4X									
18	RW-D9		1335 X		5 X		X	>	Y Y									
19	Trip blank	<u> </u>	X		2 X					X								
									+-				-	_				
								-	+	-	+	+		-	\vdash	+		
																		-
					_			-	-			1	- -		 			_
Notes:		SAMPLE		RELIN	QUISHE	D BY:						PECE	IVED	RV-				_
* U	se SILICA GEL	RECEIPT			7		YTIME:	510	 	0	i U	/ KLOI			14/11			
Clear	mo/TPHx samples	MIntact =	7	/ 	3/-	DATE: 1	17 IIME:	010	۷	α		ar X	$\mathcal{A}_{\mathscr{J}}$	DATÉ:	·/// T	IME:	15	9
Drini Orini	to analyses.	Cold _			- ,	DATE:	TIME:		-					DATE:		TIME:		_
F1101	10 way 10.	Ambient -				DATE:	TIME:							DATE:		TIME:		-
																		ı

COOLER RECEIPT CHECKLIST

Login # 231057 Date Received 91411 Number of coolers_ Client APCADIS Project LC610060, 0016, 000	2
Date Opened 9 19 1 By (print) V. Lie Ctroin (sign) US By (print) By (print) (sign) V	<u>-</u>
1. Did cooler come with a shipping slip (airbill, etc)YES (1. Shipping info	<u> </u>
How many Name Date	NO
2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form) 6. Indicate the packing in cooler: (if other, describe)	0
Bubble Wrap Foam blocks Bags None Cloth material Cardboard Styrofoam Paper towel 7. Temperature documentation: * Notify PM if temperature exceeds 6°C	
Type of ice used: Wet Blue/Gel None Temp(°C) 4. (<u>ر</u>
☐ Samples Received on ice & cold without a temperature blank	
☐ Samples received on ice directly from the field. Cooling process had begun	
8. Were Method 5035 sampling containers present?YE If YES, what time were they transferred to freezer?	
7. 1710 All DOLLICS MILIVE UNDIVIDUAL MICHOLICA.	
	S) NO
11 Are sample labels present, in good condition and complete?	NO S
11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers?	S) NO
11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested?	S) NO S) NO S) NO
11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? (YES) N	S) NO S) NO S) NO O N/A
11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Did you check preservatives for all bottles for each sample? YES N	NO NO NO NO N/A O N/A
11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Did you check preservatives for all bottles for each sample? YES N 16. Did you document your preservative check? YES N	NO NO NO N/A O N/A
11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Did you check preservatives for all bottles for each sample? YES N 16. Did you document your preservative check? YES N 17. Did you change the hold time in LIMS for unpreserved VOAs? YES N	NO NO NO NO NA NA NA NA NA NA NA NA NA NA NA NA NA
11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Did you check preservatives for all bottles for each sample? YES N 16. Did you document your preservative check? YES N 17. Did you change the hold time in LIMS for unpreserved VOAs? YES N 18. Are bubbles > 6mm absent in VOA samples? YES N	NO NO NO NO NA NA NA NA NA NA NA NA NA NA NA NA NA
11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Did you check preservatives for all bottles for each sample? 16. Did you document your preservative check? 17. Did you change the hold time in LIMS for unpreserved VOAs? 18. Are bubbles > 6mm absent in VOA samples? 19. Was the client contacted concerning this sample delivery? YES N	NO NO NO NO N/A O N/A O N/A O N/A
11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Did you check preservatives for all bottles for each sample? 16. Did you document your preservative check? 17. Did you change the hold time in LIMS for unpreserved VOAs? 18. Are bubbles > 6mm absent in VOA samples? 19. Was the client contacted concerning this sample delivery? YES N	NO NO NO NO N/A O N/A O N/A O N/A
11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Did you check preservatives for all bottles for each sample? 16. Did you document your preservative check? 17. Did you change the hold time in LIMS for unpreserved VOAs? 18. Are bubbles > 6mm absent in VOA samples? 19. Was the client contacted concerning this sample delivery? If YES, Who was called? By Date:	NO NO NO NO N/A O N/A O N/A O N/A
11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Did you check preservatives for all bottles for each sample? 16. Did you document your preservative check? 17. Did you change the hold time in LIMS for unpreserved VOAs? 18. Are bubbles > 6mm absent in VOA samples? 19. Was the client contacted concerning this sample delivery? If YES, Who was called? By Date:	NO N
11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Did you check preservatives for all bottles for each sample? 16. Did you document your preservative check? 17. Did you change the hold time in LIMS for unpreserved VOAs? 18. Are bubbles > 6mm absent in VOA samples? 19. Was the client contacted concerning this sample delivery? If YES, Who was called? By Date:	NO N

Total Extractable Hydrocarbons MSC Oakland Edgewater EPA 3520C Lab #: 231057 Location: Client: Arcadis Prep: LC010060.0016.00001 Project#: Analysis: EPA 8015B 09/14/11 Matrix: Water Received: Units: ug/L

09/12/11 Field ID: MW-17Sampled: Type: SAMPLE Prepared: 09/15/11 Lab ID: 231057-001 09/18/11 Analyzed: 1.000 Diln Fac: Cleanup Method: EPA 3630C Batch#: 178988

 Analyte
 Result
 RL

 Kerosene C10-C16
 ND
 50

 Diesel C10-C24
 ND
 50

 Motor Oil C24-C36
 ND
 300

Surrogate %REC Limits
O-Terphenyl 107 68-120

Field ID: MW-9 Sampled: 09/12/11
Type: SAMPLE Prepared: 09/15/11
Lab ID: 231057-002 Analyzed: 09/18/11
Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 178988

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	180 Y	50	
Motor Oil C24-C36	500	300	

Surrogate	%REC	Limits	
o-Terphenyl	103	68-120	

Field ID: MW-1409/12/11 Sampled: Type: SAMPLE Prepared: 09/15/11 Lāb ID: 231057-003 Analyzed: 09/18/11 Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 178988

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	63 Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	109	68-120

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative ND= Not Detected RL= Reporting Limit Page 1 of 7

Total Extractable Hydrocarbons Lab #: 231057 Location: MSC Oakland Edgewater Client: Arcadis Prep: EPA 3520C Project#: LC010060.0016.00001 EPA 8015B Analysis: Matrix: Water Received: 09/14/11 Units: ug/L

Field ID: MW-13Sampled: 09/12/11 Type: SAMPLE Prepared: 09/15/11 09/18/11 Lab ID: 231057-004 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 178988

 Analyte
 Result
 RL

 Kerosene C10-C16
 ND
 50

 Diesel C10-C24
 51 Y
 50

 Motor Oil C24-C36
 ND
 300

Surrogate %REC Limits
O-Terphenyl 102 68-120

Field ID: RW-D5 Sampled: 09/13/11 Prepared: Type: SAMPLE 09/15/11 Lab ID: 231057-005 Analyzed: 09/19/11 Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 178988

 Analyte
 Result
 RL

 Kerosene C10-C16
 210
 50

 Diesel C10-C24
 230 Y
 50

 Motor Oil C24-C36
 ND
 300

Surrogate %REC Limits
O-Terphenyl 117 68-120

Sampled: Field ID: RW-D5-D 09/13/11 SAMPLE Type: Prepared: 09/15/11 231057-006 09/19/11 Lab ID: Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C 178988 Batch#:

 Analyte
 Result
 RL

 Kerosene C10-C16
 260
 50

 Diesel C10-C24
 320 Y
 50

 Motor Oil C24-C36
 ND
 300

 Surrogate
 %REC
 Limits

 o-Terphenyl
 111
 68-120

Page 2 of 7

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative

ND= Not Detected

RL= Reporting Limit

Total Extractable Hydrocarbons Lab #: 231057 Location: MSC Oakland Edgewater Client: Arcadis Prep: EPA 3520C Project#: LC010060.0016.00001 Analysis: EPA 8015B 09/14/11 Matrix: Water Received: Units: ug/L

Field ID: RW-1Sampled: 09/13/11 Type: SAMPLE Prepared: 09/15/11 Lab ID: 09/19/11 231057-007 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 178988

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate %REC Limits 122 o-Terphenyl 68-120

Field ID: RW-D3 Sampled: 09/13/11 09/15/11 SAMPLE Prepared: Type: Lab ID: 231057-008 Analyzed: 09/19/11 Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 178988

Result Analyte RL Kerosene C10-C16 110 50 Diesel C10-C24 100 Y 50 Motor Oil C24-C36 ND 300

%REC Surrogate Limits o-Terphenyl 114

Field ID: RW-D6 Sampled: 09/13/11 SAMPLE Type: Prepared: 09/15/11 231057-009 09/19/11 Lab ID: Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C 178988 Batch#:

Analyte	Result	RL
Kerosene C10-C16	1,300	50
Diesel C10-C24	1,100 Y	50
Motor Oil C24-C36	ND	300

Surrogate	%REC	Limits
o-Terphenyl	117	68-120

ND= Not Detected

RL= Reporting Limit

Page 3 of 7

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative

Total Extractable Hydrocarbons Lab #: 231057 Location: MSC Oakland Edgewater Client: Arcadis Prep: EPA 3520C Project#: LC010060.0016.00001 EPA 8015B Analysis: Matrix: Water Received: 09/14/11 Units: ug/L

Field ID: RW-C6 Sampled: 09/13/11 Type: SAMPLE Prepared: 09/15/11 Lab ID: 231057-010 Analyzed: 09/19/11 Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 178996

 Analyte
 Result
 RL

 Kerosene C10-C16
 760
 50

 Diesel C10-C24
 870 Y b
 50

 Motor Oil C24-C36
 410 b
 300

Surrogate %REC Limits
o-Terphenyl 116 68-120

Field ID: RW-C7 Sampled: 09/13/11 Prepared: 09/15/11 Type: SAMPLE Lab ID: 231057-011 Analyzed: 09/19/11 Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 178996

 Analyte
 Result
 RL

 Kerosene C10-C16
 ND
 50

 Diesel C10-C24
 83 Y b
 50

 Motor Oil C24-C36
 ND
 300

Surrogate %REC Limits
O-Terphenyl 110 68-120

Sampled: Field ID: MW-109/13/11 SAMPLE Type: Prepared: 09/19/11 231057-012 09/20/11 Lab ID: Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C 179094 Batch#:

 Analyte
 Result
 RL

 Kerosene C10-C16
 120
 50

 Diesel C10-C24
 110 Y
 50

 Motor Oil C24-C36
 ND
 300

 Surrogate
 %REC
 Limits

 o-Terphenyl
 106
 68-120

Page 4 of 7

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative

ND= Not Detected

RL= Reporting Limit

Total Extractable Hydrocarbons Lab #: 231057 Location: MSC Oakland Edgewater Client: Arcadis Prep: EPA 3520C Project#: LC010060.0016.00001 EPA 8015B Analysis: 09/14/11 Matrix: Water Received: Units: ug/L

Field ID: RW-D8 Sampled: 09/13/11 Type: SAMPLE Prepared: 09/19/11 09/21/11 Lab ID: 231057-013 Analyzed: Diln Fac: 5.000 Cleanup Method: EPA 3630C Batch#: 179094

 Analyte
 Result
 RL

 Kerosene C10-C16
 5,000
 250

 Diesel C10-C24
 6,000 Y
 250

 Motor Oil C24-C36
 11,000
 1,500

Surrogate	%REC	Limits	
Builogace	<u> </u>		
o-Terphenyl	81	68-120	

Field ID: MW-10-FBSampled: 09/14/11 09/19/11 Prepared: Type: SAMPLE Lab ID: 231057-014 Analyzed: 09/20/11 Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 179094

 Analyte
 Result
 RL

 Kerosene C10-C16
 ND
 50

 Diesel C10-C24
 ND
 50

 Motor Oil C24-C36
 ND
 300

Surrogate	%REC	Limits
o-Terphenyl	103	68-120

Field ID: MW-10Sampled: 09/14/11 09/19/11 Type: SAMPLE Prepared: 231057-015 09/20/11 Lab ID: Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C 179094 Batch#:

Analyte	Result	RL
Kerosene C10-C16	ND	50
Diesel C10-C24	ND	50
Motor Oil C24-C36	ND	300

Surrogate	%REC	Limits
o-Terphenyl	95	68-120

ND= Not Detected

Page 5 of 7

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative

RL= Reporting Limit

Total Extractable Hydrocarbons Lab #: 231057 Location: MSC Oakland Edgewater Client: Arcadis Prep: EPA 3520C Analysis: Received: EPA 8015B 09/14/11 Project#: LC010060.0016.00001 Matrix: Water Units: ug/L

Field ID: MW-6 Sampled: 09/14/11 Type: SAMPLE Prepared: 09/19/11 Lab ID: 09/20/11 231057-016 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 179094

Analyte	Result	RL	
Kerosene C10-C16	1,600	50	
Diesel C10-C24	1,800 Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	95	68-120

Field ID: MW-5Sampled: 09/14/11 SAMPLE Prepared: 09/19/11 Type: Lab ID: 231057-017 Analyzed: 09/20/11 Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 179094

Analyte Result RL Kerosene C10-C16 1,400 50 Diesel C10-C24 50 1,200 Y Motor Oil C24-C36 ND 300

Surrogate	%REC	Limits
o-Terphenyl	95	68-120

Field ID: 09/14/11 RW-D9 Sampled: Type: Prepared: SAMPLE 09/19/11 Lab ID: 231057-018 09/21/11 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 179094

Analyte	Result	RL
Kerosene C10-C16	72	50
Diesel C10-C24	70 Y	50
Motor Oil C24-C36	ND	300

Surrogate	%REC	Limits
o-Terphenyl	106	68-120

ND= Not Detected

RL= Reporting Limit

Page 6 of 7

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative

Total Extractable Hydrocarbons Lab #: 231057 Location: MSC Oakland Edgewater Client: Arcadis Prep: EPA 3520C Project#: LC010060.0016.00001 Analysis: EPA 8015B 09/14/11 Matrix: Water Received: Units: ug/L

Type: BLANK Prepared: 09/15/11
Lab ID: QC609179 Analyzed: 09/19/11
Diln Fac: 1.000 Cleanup Method: EPA 3630C
Batch#: 178988

 Analyte
 Result
 RL

 Kerosene C10-C16
 ND
 50

 Diesel C10-C24
 ND
 50

 Motor Oil C24-C36
 ND
 300

Surrogate	%REC	Limits	
, , , ,	100	CO 100	
o-Terphenyl	109	68-IZU	

Type: BLANK Prepared: 09/15/11
Lab ID: QC609218 Analyzed: 09/21/11
Diln Fac: 1.000 Cleanup Method: EPA 3630C
Batch#: 178996

 Analyte
 Result
 RL

 Kerosene C10-C16
 ND
 50

 Diesel C10-C24
 490 b
 50

 Motor Oil C24-C36
 10,000 b
 300

Beautiful Control of the Control of		
Surrogate	%REC	Limits
241103400		
o-Terphenyl	104	68-120

Type: BLANK Prepared: 09/19/11
Lab ID: QC609646 Analyzed: 09/20/11
Diln Fac: 1.000 Cleanup Method: EPA 3630C
Batch#: 179094

 Analyte
 Result
 RL

 Kerosene C10-C16
 ND
 50

 Diesel C10-C24
 ND
 50

 Motor Oil C24-C36
 ND
 300

Surrogate	%REC	Limits
o-Terphenyl	115	68-120

ND= Not Detected

RL= Reporting Limit

Page 7 of 7

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative

Total Extractable Hydrocarbons						
Lab #:	231057	Location:	MSC Oakland Edgewater			
Client:	Arcadis	Prep:	EPA 3520C			
Project#:	LC010060.0016.00001	Analysis:	EPA 8015B			
Matrix:	Water	Batch#:	178988			
Units:	ug/L	Prepared:	09/15/11			
Diln Fac:	1.000	Analyzed:	09/18/11			

Type: BS Cleanup Method: EPA 3630C

Lab ID: QC609180

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,087	83	61-120

Surrogate	%REC	Limits
o-Terphenyl	101	68-120

Type: BSD Cleanup Method: EPA 3630C

Lab ID: QC609181

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,445	98	61-120	16	20

Surrogate	%REC	Limits	
o-Terphenyl	114	68-120	

Total Extractable Hydrocarbons						
Lab #:	231057	Location:	MSC Oakland Edgewater			
Client:	Arcadis	Prep:	EPA 3520C			
Project#:	LC010060.0016.00001	Analysis:	EPA 8015B			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC609219	Batch#:	178996			
Matrix:	Water	Prepared:	09/15/11			
Units:	ug/L	Analyzed:	09/22/11			

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,397	96	61-120

Surrogate	%REC	Limits
o-Terphenyl	120	68-120

Page 1 of 1 15.0

	Total Extractable Hydrocarbons						
Lab #:	231057	Location:	MSC Oakland Edgewater				
Client:	Arcadis	Prep:	EPA 3520C				
Project#:	LC010060.0016.00001	Analysis:	EPA 8015B				
Field ID:	ZZZZZZZZZ	Batch#:	178996				
MSS Lab ID:	231088-002	Sampled:	09/15/11				
Matrix:	Water	Received:	09/15/11				
Units:	ug/L	Prepared:	09/15/11				
Diln Fac:	1.000	Analyzed:	09/16/11				

Type: MS Lab ID: QC609220

Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	1,406	2,500	4,164	110	33-140

Surrogate	%REC	Limits
o-Terphenyl	118	68-120

Type: MSD Lab ID: QC609221

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	3,872	99	33-140	7	30

Surrogate	%REC	Limits	
o-Terphenyl	119	68-120	

	Total Extra	actable Hydrocar	rbons
Lab #:	231057	Location:	MSC Oakland Edgewater
Client:	Arcadis	Prep:	EPA 3520C
Project#:	LC010060.0016.00001	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	179094
Units:	ug/L	Prepared:	09/19/11
Diln Fac:	1.000	Analyzed:	09/20/11

Type: BS Cleanup Method: EPA 3630C

Lab ID: QC609647

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,112	84	61-120

Surrogate	%REC	Limits
o-Terphenyl	97	68-120

Type: BSD Cleanup Method: EPA 3630C

Lab ID: QC609648

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,177	87	61-120	3	20

Surrogate	%REC	Limits	
o-Terphenyl	102	68-120	

\\Lims\gdrive\ezchrom\Projects\GC26\Data\261a016, A

\Lims\gdrive\ezchrom\Projects\GC26\Data\261a017, A

\\Lims\gdrive\ezchrom\Projects\GC26\Data\261a018, A

\Lims\gdrive\ezchrom\Projects\GC26\Data\261a050, A

\Lims\gdrive\ezchrom\Projects\GC26\Data\261a028, A

\Lims\gdrive\ezchrom\Projects\GC26\Data\261a030, A

\Lims\gdrive\ezchrom\Projects\GC26\Data\261a031, A

\\Lims\gdrive\ezchrom\Projects\GC26\Data\261a048, A

\\Lims\gdrive\ezchrom\Projects\GC26\Data\261a049, A

\\Lims\gdrive\ezchrom\Projects\GC26\Data\263a022, A

\Lims\gdrive\ezchrom\Projects\GC26\Data\264a012, A

\\Lims\gdrive\ezchrom\Projects\GC26\Data\263a025, A

\\Lims\gdrive\ezchrom\Projects\GC26\Data\263a026, A

\Lims\gdrive\ezchrom\Projects\GC26\Data\263a027, A

\Lims\gdrive\ezchrom\Projects\GC26\Data\264a007, A

\Lims\gdrive\ezchrom\Projects\GC15B\Data\259b004, B

\Lims\gdrive\ezchrom\Projects\GC26\Data\261a006, A

\Lims\gdrive\ezchrom\Projects\GC15B\Data\259b017, B

Gasoline by GC/MS						
Lab #:	231057	Location:	MSC Oakland Edgewater			
Client:	Arcadis	Prep:	EPA 5030B			
Project#:	LC010060.0016.00001	Analysis:	EPA 8260B			
Matrix:	Water	Received:	09/14/11			
Units:	ug/L					

Batch#: Sampled: Field ID: MW-17179019 Type: SAMPLE 09/12/11 Type: Lab ID: Diln Fac: Analyzed: 09/16/11 231057-001

1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
m,p-Xylenes o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	97	80-127	
1,2-Dichloroethane-d4	94	73-145	
Toluene-d8	99	80-120	
Bromofluorobenzene	93	80-120	

Batch#: Sampled: MW-9 179019 09/12/11 09/16/11 Field ID: Type: Lab ID: SAMPLE 231057-002 Analyzed: Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	68	50	
MTBE	ND	0.50	
Benzene	0.99	0.50	
Toluene	0.84	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	1.1	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-127
1,2-Dichloroethane-d4	94	73-145
Toluene-d8	94	80-120
Bromofluorobenzene	91	80-120

ND= Not Detected RL= Reporting Limit Page 1 of 11

3.0

Gasoline by GC/MS							
Lab #: Client: Project#:	Client: Arcadis Prep: EPA 5030B						
Matrix: Units:	Water ug/L	Received:	09/14/11				

Field ID: MW-14 Batch#: 179019
Type: SAMPLE Sampled: 09/12/11
Lab ID: 231057-003 Analyzed: 09/16/11

Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	72	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	95	80-127	
1,2-Dichloroethane-d4	94	73-145	
Toluene-d8	96	80-120	
Bromofluorobenzene	93	80-120	

Field ID: MW-13 Batch#: 179019
Type: SAMPLE Sampled: 09/12/11
Lab ID: 231057-004 Analyzed: 09/16/11
Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-127
1,2-Dichloroethane-d4	94	73-145
Toluene-d8	97	80-120
Bromofluorobenzene	92	80-120

ND= Not Detected RL= Reporting Limit

Page 2 of 11

Gasoline by GC/MS							
Lab #: Client: Project#:	Client: Arcadis Prep: EPA 5030B						
Matrix: Units:	Water ug/L	Received:	09/14/11				

Lab ID: 231057-005 Sampled: 09/13/11 Field ID: RW-D5 Type: SAMPLE

Analyte	Result	RL	Diln Fac	Batch# Analyzed
Gasoline C7-C12	810	500	10.00	179019 09/16/11
MTBE	ND	5.0	10.00	179019 09/16/11
Benzene	1,100	10	20.00	179050 09/18/11
Toluene	11	5.0	10.00	179019 09/16/11
Ethylbenzene	21	5.0	10.00	179019 09/16/11
m,p-Xylenes	21	5.0	10.00	179019 09/16/11
o-Xylene	5.9	5.0	10.00	179019 09/16/11

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	97	80-127	10.00	179019 09/16/11
1,2-Dichloroethane-d4	87	73-145	10.00	179019 09/16/11
Toluene-d8	97	80-120	10.00	179019 09/16/11
Bromofluorobenzene	92	80-120	10.00	179019 09/16/11

Field ID: RW-D5-D Lab ID: 231057-006 Sampled: 09/13/11 SAMPLE Type:

Analyte	Result	RL	Diln Fac	Batch# Analyzed
Gasoline C7-C12	800	500	10.00	179019 09/16/11
MTBE	ND	5.0	10.00	179019 09/16/11
Benzene	1,200	10	20.00	179050 09/18/11
Toluene	12	5.0	10.00	179019 09/16/11
Ethylbenzene	19	5.0	10.00	179019 09/16/11
m,p-Xylenes	19	5.0	10.00	179019 09/16/11
o-Xylene	5.1	5.0	10.00	179019 09/16/11

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	96	80-127	10.00	179019 09/16/11
1,2-Dichloroethane-d4	89	73-145	10.00	179019 09/16/11
Toluene-d8	99	80-120	10.00	179019 09/16/11
Bromofluorobenzene	90	80-120	10.00	179019 09/16/11

ND= Not Detected RL= Reporting Limit Page 3 of 11

Gasoline by GC/MS					
Lab #: Client: Project#:	231057 Arcadis LC010060.0016.00001	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B		
Matrix: Units:	Water ug/L	Received:	09/14/11		

179019 09/13/11 09/16/11 Field ID: RW-1Batch#: Type: Lab ID: SAMPLE Sampled: Analyzed: 231057-007

1.000 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-127
1,2-Dichloroethane-d4	92	73-145
Toluene-d8	98	80-120
Bromofluorobenzene	90	80-120

179050 Field ID: RW-D3 Batch#: 09/13/11 09/18/11 Sampled: Analyzed: Type: Lab ID: SAMPLE 231057-008 2.500 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	780	130	
MTBE	ND	1.3	
Benzene	140	1.3	
Toluene	46	1.3	
Ethylbenzene	13	1.3	
m,p-Xylenes	38	1.3	
m,p-Xylenes o-Xylene	31	1.3	

Surrogate	%REC	Limits	
Dibromofluoromethane	95	80-127	
1,2-Dichloroethane-d4	88	73-145	
Toluene-d8	97	80-120	
Bromofluorobenzene	89	80-120	

ND= Not Detected RL= Reporting Limit

Page 4 of 11

Gasoline by GC/MS					
Lab #: Client: Project#:	231057 Arcadis LC010060.0016.00001	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B		
Matrix: Units:	Water ug/L	Received:	09/14/11		

Field ID: RW-D6 Batch#: 179050
Type: SAMPLE Sampled: 09/13/11
Lab ID: 231057-009 Analyzed: 09/18/11
Diln Fac: 10.00

Analyte	Result	RL	
Gasoline C7-C12	8,700	500	
MTBE	ND	5.0	
Benzene	580	5.0	
Toluene	100	5.0	
Ethylbenzene	200	5.0	
m,p-Xylenes	210	5.0	
o-Xylene	270	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	93	80-127
1,2-Dichloroethane-d4	88	73-145
Toluene-d8	96	80-120
Bromofluorobenzene	88	80-120

Field ID: RW-C6 Batch#: 179050
Type: SAMPLE Sampled: 09/13/11
Lab ID: 231057-010 Analyzed: 09/18/11
Diln Fac: 5.000

Analyte	Result	RL	
Gasoline C7-C12	2,500	250	
MTBE	ND	2.5	
Benzene	270	2.5	
Toluene	54	2.5	
Ethylbenzene	18	2.5	
m,p-Xylenes	230	2.5	
o-Xylene	190	2.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	93	80-127	
1,2-Dichloroethane-d4	86	73-145	
Toluene-d8	94	80-120	
Bromofluorobenzene	88	80-120	

ND= Not Detected RL= Reporting Limit Page 5 of 11

3.0

	Gasol	line by GC/MS	
Lab #: Client: Project#:	231057 Arcadis LC010060.0016.00001	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B
Matrix: Units:	Water ug/L	Received:	09/14/11

Field ID: RW-C7 Batch#: 179019
Type: SAMPLE Sampled: 09/13/11
Lab ID: 231057-011 Analyzed: 09/16/11
Diln Fac: 1.000

Result RLAnalyte Gasoline C7-C12 150 50 0.50 0.50 0.50 MTBE ND 3.1 Benzene Toluene ND 0.50 0.50 0.50 Ethylbenzene NDm,p-Xylenes o-Xylene ND ND

Surrogate	%REC	Limits	
Dibromofluoromethane	97	80-127	
1,2-Dichloroethane-d4	98	73-145	
Toluene-d8	98	80-120	
Bromofluorobenzene	90	80-120	

Field ID: MW-1 Batch#: 179019
Type: SAMPLE Sampled: 09/13/11
Lab ID: 231057-012 Analyzed: 09/16/11
Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	200	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	0.54	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	93	80-127	
1,2-Dichloroethane-d4	93	73-145	
Toluene-d8	98	80-120	
Bromofluorobenzene	92	80-120	

ND= Not Detected RL= Reporting Limit Page 6 of 11

3.0

	Gaso	line by GC/MS	
Lab #:	231057	Location:	MSC Oakland Edgewater
Client:	Arcadis	Prep:	EPA 5030B
Project#:	LC010060.0016.00001	Analysis:	EPA 8260B
Matrix:	Water	Received:	09/14/11
Units:	ug/L		

Field ID: 179019 RW-D8 Batch#: 09/13/11 09/16/11 SAMPLE Sampled: Type: Lab ID: 231057-013 Analyzed:

Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	790	50	
MTBE	ND	0.50	
Benzene	14	0.50	
Toluene	1.5	0.50	
Ethylbenzene	2.8	0.50	
m,p-Xylenes	31	0.50	
o-Xylene	18	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	93	80-127
1,2-Dichloroethane-d4	90	73-145
Toluene-d8	95	80-120
Bromofluorobenzene	89	80-120

179050 Field ID: MW-10-FBBatch#: Sampled: Analyzed: 09/14/11 Type: Lab ID: SAMPLE 231057-014 1.000 09/18/11 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	94	80-127	
1,2-Dichloroethane-d4	91	73-145	
Toluene-d8	94	80-120	
Bromofluorobenzene	91	80-120	

ND= Not Detected RL= Reporting Limit

Page 7 of 11

	Gasol	line by GC/MS	
Lab #: Client: Project#:	231057 Arcadis LC010060.0016.00001	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B
Matrix: Units:	Water ug/L	Received:	09/14/11

179050 Field ID: MW-10Batch#: Sampled: 09/14/11 09/18/11 SAMPLE Type: Lab ID: 231057-015 Analyzed: Diln Fac: 1.000

ND

Result RLAnalyte Gasoline C7-C12 ND 50 0.50 0.50 0.50 MTBE ND 24 Benzene Toluene ND 0.50 0.50 0.50 Ethylbenzene NDm,p-Xylenes o-Xylene ND

Surrogate	%REC	Limits	
Dibromofluoromethane	95	80-127	
1,2-Dichloroethane-d4	88	73-145	
Toluene-d8	97	80-120	
Bromofluorobenzene	91	80-120	

MW-6 Field ID: Lab ID: 231057-016 SAMPLE Sampled: 09/14/11 Type:

Analyte	Result	RL	Diln Fac	Batch# Analyzed
Gasoline C7-C12	690	50	1.000	179050 09/18/11
MTBE	2.9	0.50	1.000	179050 09/18/11
Benzene	140	3.6	7.143	179063 09/19/11
Toluene	4.6	0.50	1.000	179050 09/18/11
Ethylbenzene	0.82	0.50	1.000	179050 09/18/11
m,p-Xylenes	3.8	0.50	1.000	179050 09/18/11
o-Xylene	0.58	0.50	1.000	179050 09/18/11

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	97	80-127	1.000	179050 09/18/11
1,2-Dichloroethane-d4	84	73-145	1.000	179050 09/18/11
Toluene-d8	98	80-120	1.000	179050 09/18/11
Bromofluorobenzene	92	80-120	1.000	179050 09/18/11

ND= Not Detected RL= Reporting Limit

Page 8 of 11

3.0

Gasoline by GC/MS						
Lab #: Client: Project#:	231057 Arcadis LC010060.0016.00001	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B			
Matrix: Units:	Water ug/L	Received:	09/14/11			

179063 09/14/11 09/19/11 Batch#: Sampled: Analyzed: MW-5Field ID: Type: Lab ID: SAMPLE 231057-017 1.000 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	2,900	50	
MTBE	12	0.50	
Benzene	3.2	0.50	
Toluene	1.0	0.50	
Ethylbenzene	62	0.50	
m,p-Xylenes	6.5	0.50	
o-Xylene	0.98	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	93	80-127	
1,2-Dichloroethane-d4	90	73-145	
Toluene-d8	92	80-120	
Bromofluorobenzene	88	80-120	

179063 09/14/11 09/19/11 Field ID: RW-D9 Batch#: Sampled: Analyzed: Type: Lab ID: SAMPLE 231057-018 1.000 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	450	50	
MTBE	ND	0.50	
Benzene	85	0.50	
Toluene	3.5	0.50	
Ethylbenzene	3.9	0.50	
m,p-Xylenes	20	0.50	
o-Xylene	11	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	96	80-127	
1,2-Dichloroethane-d4	85	73-145	
Toluene-d8	97	80-120	
Bromofluorobenzene	89	80-120	

ND= Not Detected RL= Reporting Limit Page 9 of 11

3.0

	Gasol	line by GC/MS	
Lab #: Client: Project#:	231057 Arcadis LC010060.0016.00001	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B
Matrix: Units:	Water ug/L	Received:	09/14/11

Type: Lab ID: Diln Fac: BLANK Batch#: 179019 Analyzed: 09/16/11 QC609336 1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	94	80-127	
1,2-Dichloroethane-d4	91	73-145	
Toluene-d8	96	80-120	
Bromofluorobenzene	92	80-120	

Type: BLANK
Lab ID: QC609453
Diln Fac: 1.000 Batch#: 179050 Analyzed: 09/18/11

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	95	80-127	
1,2-Dichloroethane-d4	91	73-145	
Toluene-d8	96	80-120	
Bromofluorobenzene	92	80-120	

ND= Not Detected RL= Reporting Limit
Page 10 of 11

Gasoline by GC/MS							
Lab #: Client: Project#:	231057 Arcadis LC010060.0016.00001	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B				
Matrix: Units:	Water ug/L	Received:	09/14/11				

Type: Lab ID: Diln Fac: BLANK QC609525 1.000 Batch#: Analyzed: 179063 09/19/11

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate %REC	Limits
Dibromofluoromethane 98	80-127
1,2-Dichloroethane-d4 95	73-145
Toluene-d8 101	80-120
Bromofluorobenzene 89	80-120

ND= Not Detected RL= Reporting Limit Page 11 of 11

Gasoline by GC/MS							
Lab #:	231057	Location:	MSC Oakland Edgewater				
Client:	Arcadis	Prep:	EPA 5030B				
Project#:	LC010060.0016.00001	Analysis:	EPA 8260B				
Matrix:	Water	Batch#:	179019				
Units:	ug/L	Analyzed:	09/16/11				
Diln Fac:	1.000						

Type: BS Lab ID: QC609326

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	15.80	79	59-123
Benzene	20.00	19.66	98	80-122
Toluene	20.00	19.58	98	80-120
Ethylbenzene	20.00	20.28	101	80-120
m,p-Xylenes	40.00	38.25	96	80-120
o-Xylene	20.00	19.46	97	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-127
1,2-Dichloroethane-d4	92	73-145
Toluene-d8	99	80-120
Bromofluorobenzene	92	80-120

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	15.05	75	59-123	5	20
Benzene	20.00	18.87	94	80-122	4	20
Toluene	20.00	18.98	95	80-120	3	20
Ethylbenzene	20.00	19.88	99	80-120	2	20
m,p-Xylenes	40.00	36.91	92	80-120	4	20
o-Xylene	20.00	18.45	92	80-120	5	20

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-127
1,2-Dichloroethane-d4	91	73-145
Toluene-d8	98	80-120
Bromofluorobenzene	91	80-120

Gasoline by GC/MS							
Lab #:	231057	Location:	MSC Oakland Edgewater				
Client:	Arcadis	Prep:	EPA 5030B				
Project#:	LC010060.0016.00001	Analysis:	EPA 8260B				
Matrix:	Water	Batch#:	179019				
Units:	ug/L	Analyzed:	09/16/11				
Diln Fac:	1.000						

Type: BS Lab ID: QC609328

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,093	109	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	101	80-127
1,2-Dichloroethane-d4	87	73-145
Toluene-d8	96	80-120
Bromofluorobenzene	92	80-120

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	963.6	96	80-120	13	20

Surrogate	%REC	Limits
Dibromofluoromethane	94	80-127
1,2-Dichloroethane-d4	92	73-145
Toluene-d8	102	80-120
Bromofluorobenzene	92	80-120

Gasoline by GC/MS						
Lab #:	231057	Location:	MSC Oakland Edgewater			
Client:	Arcadis	Prep:	EPA 5030B			
Project#:	LC010060.0016.00001	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	179050			
Units:	ug/L	Analyzed:	09/18/11			
Diln Fac:	1.000					

Type: BS Lab ID: QC609454

Analyte	Spiked	Result	%REC	Limits
MTBE	21.25	16.43	77	59-123
Benzene	21.25	21.29	100	80-122
Toluene	21.25	22.05	104	80-120
Ethylbenzene	21.25	23.02	108	80-120
m,p-Xylenes	42.50	42.81	101	80-120
o-Xylene	21.25	21.07	99	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-127
1,2-Dichloroethane-d4	92	73-145
Toluene-d8	99	80-120
Bromofluorobenzene	92	80-120

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	21.25	14.78	70	59-123	11	20
Benzene	21.25	19.79	93	80-122	7	20
Toluene	21.25	19.94	94	80-120	10	20
Ethylbenzene	21.25	20.04	94	80-120	14	20
m,p-Xylenes	42.50	38.13	90	80-120	12	20
o-Xylene	21.25	19.27	91	80-120	9	20

Surrogate	%REC	Limits
Dibromofluoromethane	94	80-127
1,2-Dichloroethane-d4	91	73-145
Toluene-d8	97	80-120
Bromofluorobenzene	91	80-120

Gasoline by GC/MS						
Lab #:	231057	Location:	MSC Oakland Edgewater			
Client:	Arcadis	Prep:	EPA 5030B			
Project#:	LC010060.0016.00001	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	179050			
Units:	ug/L	Analyzed:	09/18/11			
Diln Fac:	1.000					

Type: BS Lab ID: QC609456

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	850.0	844.6	99	80-120

Surrogate %F	REC	Limits
Dibromofluoromethane 95)	80-127
1,2-Dichloroethane-d4 88	3	73-145
Toluene-d8 100	0	80-120
Bromofluorobenzene 89)	80-120

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	850.0	781.6	92	80-120	8	20

Surrogate	%REC	Limits
Dibromofluoromethane	94	80-127
1,2-Dichloroethane-d4	88	73-145
Toluene-d8	98	80-120
Bromofluorobenzene	89	80-120

Gasoline by GC/MS						
Lab #:	231057	Location:	MSC Oakland Edgewater			
Client:	Arcadis	Prep:	EPA 5030B			
Project#:	LC010060.0016.00001	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	179063			
Units:	ug/L	Analyzed:	09/19/11			
Diln Fac:	1.000					

Type: BS Lab ID: QC609521

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	20.62	82	59-123
Benzene	25.00	26.22	105	80-122
Toluene	25.00	27.15	109	80-120
Ethylbenzene	25.00	27.07	108	80-120
m,p-Xylenes	50.00	52.17	104	80-120
o-Xylene	25.00	27.06	108	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-127
1,2-Dichloroethane-d4	90	73-145
Toluene-d8	100	80-120
Bromofluorobenzene	89	80-120

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	18.12	72	59-123	13	20
Benzene	25.00	23.63	95	80-122	10	20
Toluene	25.00	23.85	95	80-120	13	20
Ethylbenzene	25.00	24.00	96	80-120	12	20
m,p-Xylenes	50.00	47.51	95	80-120	9	20
o-Xylene	25.00	23.62	94	80-120	14	20

Surrogate	%REC	Limits
Dibromofluoromethane	95	80-127
1,2-Dichloroethane-d4	90	73-145
Toluene-d8	97	80-120
Bromofluorobenzene	89	80-120

	Gasol	ine by GC/MS	
Lab #:	231057	Location:	MSC Oakland Edgewater
Client:	Arcadis	Prep:	EPA 5030B
Project#:	LC010060.0016.00001	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	179063
Units:	ug/L	Analyzed:	09/19/11
Diln Fac:	1.000		

Type: BS Lab ID: QC609523

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,115	112	80-120

Surrogate %	%REC	Limits
Dibromofluoromethane 95	5	80-127
1,2-Dichloroethane-d4 89	9	73-145
Toluene-d8 97	7	80-120
Bromofluorobenzene 89	9	80-120

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	966.1	97	80-120	14	20

Surrogate	%REC	Limits
Dibromofluoromethane	95	80-127
1,2-Dichloroethane-d4	89	73-145
Toluene-d8	96	80-120
Bromofluorobenzene	87	80-120

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091611.b\\JIG10TVH.D

Date : 16-SEP-2011 12:57 Client ID: DYNA P&T Sample Info: S,231057-002

Instrument: MSVOA10.i

Operator: VOA

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091611.b\\JIG11TVH.D

Date : 16-SEP-2011 13:34 Client ID: DYNA P&T

Client ID: DYNA P&T Instrument: MSVOA10.i
Sample Info: S,231057-003

Operator: VOA

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091611.b\\JIG18TVH.D

Date : 16-SEP-2011 17:53 Client ID: DYNA P&T Sample Info: S,231057-005

Instrument: MSVOA10.i

Operator: VOA

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091611.b\\JIG19TVH.D

Date : 16-SEP-2011 18:30 Client ID: DYNA P&T

Instrument: MSVOA10.i

Sample Info: S,231057-006

Operator: VOA

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091811.b\JII14TVH.D

Date : 18-SEP-2011 19:22 Client ID: DYNA P&T

Instrument: MSVOA10.i

Sample Info: S,231057-008

Operator: VOA

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091811.b\JII16TVH.D

Date : 18-SEP-2011 20:36 Client ID: DYNA P&T Sample Info: S,231057-009

Instrument: MSVOA10.i

Operator: VOA

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091811.b\\JII15TVH.D

Date : 18-SEP-2011 19:59 Client ID: DYNA P&T

Instrument: MSVOA10.i

Operator: VOA

Sample Info: S,231057-010

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091611.b\\JIG13TVH.D

Date : 16-SEP-2011 14:48 Client ID: DYNA P&T Sample Info: S,231057-011

Instrument: MSVOA10.i

Operator: VOA

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091611.b\\JIG14TVH.D

Date : 16-SEP-2011 15:25 Client ID: DYNA P&T

ient ID: DYNA P&T Instrument: MSVOA10.i

Sample Info: S,231057-012

Operator: VOA

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091611.b\\JIG15TVH.D

Date : 16-SEP-2011 16:02 Client ID: DYNA P&T Sample Info: S,231057-013

Instrument: MSVOA10.i

Operator: VOA

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091811.b\\JII11TVH.D

Date : 18-SEP-2011 17:30 Client ID: DYNA P&T Sample Info: S,231057-016

Instrument: MSVOA10.i

Operator: VOA

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091911.b\\JIJ12TVH.D

Date : 19-SEP-2011 14:16 Client ID: DYNA P&T

Sample Info: S,231057-017

Operator: VOA

Instrument: MSVOA10.i

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091911.b\JIJ13TVH.D

Date : 19-SEP-2011 14:53 Client ID: DYNA P&T Sample Info: S,231057-018

Instrument: MSVOA10.i

Operator: VOA

Page 2

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\091611.b\\JIG05TVH.D

Date : 16-SEP-2011 09:53 Client ID: DYNA P&T

Instrument: MSVOA10.i

Sample Info: CCV/bs,qc609328

Operator: VOA

Column phase: Column diameter: 2.00

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 233497 ANALYTICAL REPORT

Arcadis Project : LC010060.0016.00002 2000 Powell St. Location : MSC Oakland Edgewater

Emeryville, CA 94608 Level : II

Sample ID	<u>Lab ID</u>
MW-13	233497-001
MW-14	233497-002
MW-17	233497-003
RW-B1	233497-004
RW-B4	233497-005
RW-A2	233497-006
RW-C7	233497-007
RW-C6	233497-008
RW-D5	233497-009
RW-1-FB	233497-010
RW-1	233497-011
MW-10	233497-012
MW-1	233497-013
MW-5	233497-014
RW-D9	233497-015
RW-B4-D	233497-016
TB122211	233497-017

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Date: <u>01/05/2012</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 233497 Client: Arcadis

Project: LC010060.0016.00002
Location: MSC Oakland Edgewater

Request Date: 12/23/11 Samples Received: 12/23/11

This data package contains sample and QC results for sixteen water samples, requested for the above referenced project on 12/23/11. The samples were received cold and intact. All data were e-mailed to Daren Roth on 01/05/12.

TPH-Extractables by GC (EPA 8015B):

Low surrogate recoveries were observed for o-terphenyl in RW-C6 (lab # 233497-008) and RW-D5 (lab # 233497-009). No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

CHAIN OF CUSTODY

d	Curtis & Tompk	ins Labo	ratorie	es																	ge _		of	<u>Z</u>
	ENVIRONMENTAL ANALYTI	CAL TESTING L	ABORATO	RY	C	&T LC	Gin	V # `	ד כ	340	97 I					V V			of Cu					
2323 F Berkele	Fifth Street ey, CA 94710	Phone (5	10) 486-09 10) 486-05	00				` " _			/	(60)	(E/H 2015 XX)		ANZ	AL-Y [REQI	JES	ľ			
Project	No: LCO10060.0016.00	002 Sa	mpler: Mi	lian	Д.	đ	A	hme	rd i	4.		0928 HA	25											
Project	No: <u>LC010060.0016.00</u> Name: MSC <i>Darland Edge</i>	ewater Re	port To: I	arer) F	OH	2	,,,,,,	<u> , , , , , , , , , , , , , , , , , ,</u>			E CE	#											
Project	P. O. No:	Co	mpany:	ARG	4D	15						14.1	1			I								
EDD For	mat: Report Level [2]			(50)	65.	2-4	150	20				B	177k											
Turnarou	und Time: Rush	Standard Em	ail:Darer	1. Rol	40	2 arc	ad	15-6	15-0	on		~												
					$\overline{}$			CHE			ا ،	BTEX	7HM0											
Lab	Sample ID.	SAMPL	ING	MATE	!IX	Containers		RESE				50	= =											
No.		Date	Time	ō 7				74	٠.]	8	39											
		Collected	Time Collected	Solic		# of	당	H2SO4	S S S	None		日	₽ ₽ ₽											
14	MW-5	12-22-11	1645	X	\coprod	5	X		1=	×	1	\times				1	T	\Box		+	+-	\vdash	\dashv	
15	RW-D9		1745	\times			X			×	• -	X)	X							十	1			
10	RW-BY-D TB12221)		0850	X + X	++		X		_	X		X >							\Box					
	10144	+ 4		+	+	2	쓰		+				X	_							1		\dashv	
				-	₩			-+	- -	-	} }	-	-			_	-	\sqcup		+	<u> </u>	\sqcup	\dashv	
			1		\forall	-	\dashv		\dashv	-	-			_	\dashv	-	+	+	- $+$	+	+-	\vdash	\dashv	
					\top			\dashv	+		-		+	\dashv	_		+	\vdash	+	+	+		\dashv	
					\prod									T		\top	1		\dashv	+	+-	\Box	\dashv	
					Ц														\top	1	†			
				+	$\!$		\dashv	_	_	\perp	-													
				++	$oldsymbol{+}$			-	+	\perp	-		4	_	_	4	ļ	\sqcup	+	\bot	\bot	1	_	
Notes:		SAMPLE		<u>ן</u> ום	FLIN	QUIS	HEI) RV:				-				ㅗ	<u> </u>	<u> </u>			<u></u>			
Ø U	lse silica gel	RECEIPT		1	7	2013				_ [76.		11 /	,—		7	ECE	IVEL	BY:	in G	···	***		
cl	ean-up for	⊠ Intact +			_(€		[DATE:	12/2	ZIME,	250	- +	M.	7_	/_				DAT	E: -	// _[]	ME!	720	! —
TF		Cold	wy.	//	_		1	DATE	111	TIME	30	_ ′_	/						DAT	<u>E:</u>	<u></u>	ME:		
501	MUIR MINIMISIS	⊠On Ice □ Ambient -						DATE:	····	TIME		- -							DAT	E:	TIF	ME:		_

CHAIN OF CUSTODY

ct	Curtis & Tompk	ins Labo	oratori	<u>es</u>												Ch	ain c	of Cu			<u>_</u> o	i <u>2</u>
	ENVIRONMENTAL ANALYTI	CAL TESTING	LABORATO usiness Since 1	RY 878	C8	RT LO	GIN#	Z	3 34	197				ΔN	ALVI			REQ		_		
2323 F Berkele	ifth Street by, CA 94710	Phone (510) 486-09 510) 486-05	00 532							EM 8260)	(EPA 8015)						1-61	91-51			
Project I	No: LC010060.0016.00	7002 s	ampler: M	lion	D.	£ L	Ahma	1	4		22	8										
Project I	Name: MSC Oakland Edg	pwater R	eport To: J	ara	0 1	2,1	4		<u></u> -		(2)	\$										
Project F	? O. No:		ompany:	ARC	ADI	5				•	M	$ \mathcal{E} $	į									
EDD For	mat: Report Level⊠.II [500		·····		186	X_						.				
Turnarou	nd Time: Rush		nail:Daren					l5. (Or	<u> </u>	<td>Hat /c</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	Hat /c							1			
Lab	Sample ID.	SAMP	LING	MATI	SIX	Containers	CH PRES		CAL ATIVE		8TEX	TPHmo										
No.		Date Collected	Time Collected	Vater		of Cor	HCI H2SO4	HN03	용	None	TPHa/	TEHRY										
1	MW-13	12-21-11	1520	X		# 3 5	- -	- -		Z X	X	X	-	-	+	+	\dashv	+	+-	_	$\vdash \vdash$	-
7	MW-14		1530	V			X	\vdash		X		$\hat{\mathbf{x}}$	+			+	╁	+	+	+		
3	MW-17	1	1625	刘士			2				×	$\overrightarrow{\times}$	+	_	+	+	++	_	+	+	\vdash	
4	RW-BI	12-22-11	0830	N			X			χ̈́	X	X	+	\dashv	_	+-	++	\dashv	+	+	\dashv	-
5	RW-BY		0840	X			X			2	X	×			+	+	+	+	+	╁		
Ġ	RW-AZ		0945	X			<		1	रे	X	X			+	+	+	+	+	+	\dashv	
$-\langle \perp \rangle$	RW-C7		1135	X			X			K	X	Х	11			†	+	+	_	+		
3	RW-C6		1200	X			K			₹	X	X	1 1				1 1	_	+	+	+	
9	RW-D5		1300	X	1	5 7	X		7	<	X	×			1	1	\vdash	\top	\top	+	十	1
10	RW-1-FB		1245	X			X		7	र	×	X				1		7	\top	1	\dashv	
(1)	RW-1			X		5 7	〈			< │	X	\times					\Box	\top	\top	1	十	
13	MW-10			X		5 >	(7	K	X	X						\neg	\top	$\dagger \dagger$	\top	
	MW-1	<u> </u>	1635	X _	<u> </u>	5 D	Κ)		X	×										
Notes:	15	SAMPLE		R	ELING	QUISH	IED B								R	ECE	IVED	BY:		فيببسفر		
₩ Us	se silica-gel	RECEIPT Intact	Dia		1	1	DA T	E: [2	2311	NE: 17	50	Pm	m	1	2	<u> </u>		DAT	1/2	7/11	ne!Z	な
TPI		Cold	[My	_	_		BAT	3//	, .	ME: 5	30		_				-	DATI	E:	TIN	1E:	
Sam	مخبا مامي	Ambient					DAT	<u>E:</u>	TIN	ΛE:								DAT	<u> </u>	TIM	1E:	
			-																			

COOLER RECEIPT CHECKLIST

Login # 233497 Date Received 12/23/4 Number of coole Client Arcadis Project MSC Oakland Ed	rs <u>]</u>
Date Opened 7/73/11 By (print) 4. Moreow (sign) Date Logged in By (print) (sign)	
1. Did cooler come with a shipping slip (airbill, etc) YES Shipping info	s No
2A. Were custody seals present? YES (circle) on cooler on samples Name Date	NO PANO
2B. Were custody seals intact upon arrival?YES	NO NO
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper to 7. Temperature documentation: * Notify PM if temperature exceeds 6°C	
Type of ice used: ☐ Wet ☐ Blue/Gel ☐ None Temp(°C)	1,19
☐ Samples Received on ice & cold without a temperature blank; temp. taken	with IR gun
☐ Samples received on ice directly from the field. Cooling process had begu	n
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Did you change the hold time in LIMS for preserved terracores? 19. Are bubbles > 6mm absent in VOA samples? 20. Are bubbles > 6mm absent in VOA sample delivery?	YES NO YES NO YES NO YES NO N

Total Extractable Hydrocarbons MSC Oakland Edgewater EPA 3520C Lab #: 233497 Location: Client: Arcadis Prep: LC010060.0016.00002 Project#: Analysis: EPA 8015B 1.000 12/23/11 Diln Fac: Matrix: Water Units: ug/L Received:

 Field ID:
 MW-13
 Sampled:
 12/21/11

 Type:
 SAMPLE
 Prepared:
 12/23/11

 Lab ID:
 233497-001
 Analyzed:
 12/28/11

 Batch#:
 182442
 Cleanup Method:
 EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	85	68-120

Field ID: MW-14 Sampled: 12/21/11 Type: SAMPLE Prepared: 12/23/11 Lab ID: 233497-002 Analyzed: 12/28/11 Batch#: 182442 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	104	68-120

 Field ID:
 MW-17
 Sampled:
 12/21/11

 Type:
 SAMPLE
 Prepared:
 12/23/11

 Lab ID:
 233497-003
 Analyzed:
 12/28/11

 Batch#:
 182442
 Cleanup Method:
 EPA 3630C

Analyte	Result	RL
Kerosene C10-C16	ND	50
Diesel C10-C24	ND	50
Motor Oil C24-C36	ND	300

Surrogate	%REC	Limits
o-Terphenyl	93	68-120

ND= Not Detected

RL= Reporting Limit

Page 1 of 6

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

Total Extractable Hydrocarbons 233497 Lab #: Location: MSC Oakland Edgewater Client: Arcadis EPA 3520C Prep: Analysis: Diln Fac: Project#: LC010060.0016.00002 EPA 8015B Water Matrix: 1.000 12/23/11 Units: ug/L Received:

 Field ID:
 RW-B1
 Sampled:
 12/22/11

 Type:
 SAMPLE
 Prepared:
 12/23/11

 Lab ID:
 233497-004
 Analyzed:
 12/28/11

 Batch#:
 182442
 Cleanup Method:
 EPA 3630C

Analyte	Result	RL
Kerosene C10-C16	78	50
Diesel C10-C24	120	50
Motor Oil C24-C36	ND	300

Surrogate	%REC	Limits
o-Terphenyl	71	68-120

 Field ID:
 RW-B4
 Sampled:
 12/22/11

 Type:
 SAMPLE
 Prepared:
 12/23/11

 Lab ID:
 233497-005
 Analyzed:
 12/28/11

 Batch#:
 182442
 Cleanup Method:
 EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	2,200	50	
Diesel C10-C24	2,000 Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	72	68-120

 Field ID:
 RW-A2
 Sampled:
 12/22/11

 Type:
 SAMPLE
 Prepared:
 12/23/11

 Lab ID:
 233497-006
 Analyzed:
 12/28/11

 Batch#:
 182442
 Cleanup Method:
 EPA 3630C

Analyte	Result	RL
Kerosene C10-C16	84 Y	50
Diesel C10-C24	360 Y	50
Motor Oil C24-C36	ND	300

Surrogate	%REC	Limits	
o-Terphenyl	95	68-120	

Page 2 of 6

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Total Extractable Hydrocarbons 233497 Lab #: Location: MSC Oakland Edgewater Client: Arcadis EPA 3520C Prep: Analysis: Diln Fac: Project#: LC010060.0016.00002 EPA 8015B Water Matrix: 1.000 12/23/11 Units: ug/L Received:

 Field ID:
 RW-C7
 Sampled:
 12/22/11

 Type:
 SAMPLE
 Prepared:
 12/23/11

 Lab ID:
 233497-007
 Analyzed:
 12/28/11

 Batch#:
 182442
 Cleanup Method:
 EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	5,900	50	
Diesel C10-C24	8,100	50	
Motor Oil C24-C36	1,700	300	

Surrogate	%REC	Limits
o-Terphenyl	87	68-120

 Field ID:
 RW-C6
 Sampled:
 12/22/11

 Type:
 SAMPLE
 Prepared:
 12/23/11

 Lab ID:
 233497-008
 Analyzed:
 12/28/11

 Batch#:
 182442
 Cleanup Method:
 EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	830	50	
Diesel C10-C24	1,200	50	
Motor Oil C24-C36	710	300	

Surrogate	%REC	Limits
o-Terphenyl	59 *	68-120

Field ID: RW-D5 Sampled: 12/22/11 Type: SAMPLE Prepared: 12/23/11 Lab ID: 233497-009 Analyzed: 01/05/12 Batch#: 182442 Cleanup Method: EPA 3630C

Analyte	Result	RL
Kerosene C10-C16	740	50
Diesel C10-C24	1,200	50
Motor Oil C24-C36	730	300

Surrogate	%REC	Limits	
o-Terphenyl	67 *	68-120	

Page 3 of 6

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Total Extractable Hydrocarbons 233497 Lab #: Location: MSC Oakland Edgewater Client: Arcadis EPA 3520C Prep: Analysis: Diln Fac: Project#: LC010060.0016.00002 EPA 8015B Water Matrix: 1.000 12/23/11 Units: ug/L Received:

 Field ID:
 RW-1-FB
 Sampled:
 12/22/11

 Type:
 SAMPLE
 Prepared:
 12/23/11

 Lab ID:
 233497-010
 Analyzed:
 12/28/11

 Batch#:
 182442
 Cleanup Method:
 EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits	
Bullogace	- OLLIC	TIMITO	
o-Terphenyl	98	58-120	

Field ID: RW-1 Sampled: 12/22/11 Type: SAMPLE Prepared: 12/29/11 Lab ID: 233497-011 Analyzed: 01/03/12 Batch#: 182510 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	77	68-120

Field ID: MW-10 Sampled: 12/22/11 Type: SAMPLE Prepared: 12/29/11 Lab ID: 233497-012 Analyzed: 01/03/12 Batch#: 182510 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	91	68-120

Page 4 of 6

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Total Extractable Hydrocarbons 233497 Lab #: Location: MSC Oakland Edgewater Client: EPA 3520C Arcadis Prep: Analysis: Diln Fac: Project#: LC010060.0016.00002 EPA 8015B Water Matrix: 1.000 Units: ug/L Received: 12/23/11

 Field ID:
 MW-1
 Sampled:
 12/22/11

 Type:
 SAMPLE
 Prepared:
 12/29/11

 Lab ID:
 233497-013
 Analyzed:
 01/03/12

 Batch#:
 182510
 Cleanup Method:
 EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	120 Y	51	
Diesel C10-C24	100 Y	51	
Motor Oil C24-C36	ND	310	

Surrogate	%REC	Limits
o-Terphenyl	101	68-120

 Field ID:
 MW-5
 Sampled:
 12/22/11

 Type:
 SAMPLE
 Prepared:
 12/29/11

 Lab ID:
 233497-014
 Analyzed:
 01/03/12

 Batch#:
 182510
 Cleanup Method:
 EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	1,600	51	
Diesel C10-C24	1,400 Y	51	
Motor Oil C24-C36	ND	310	

Surrogate	%REC	Limits
o-Terphenyl	94	68-120

 Field ID:
 RW-D9
 Sampled:
 12/22/11

 Type:
 SAMPLE
 Prepared:
 12/29/11

 Lab ID:
 233497-015
 Analyzed:
 01/03/12

 Batch#:
 182510
 Cleanup Method:
 EPA 3630C

Analyte	Result	RL
Kerosene C10-C16	830	51
Diesel C10-C24	730 Y	51
Motor Oil C24-C36	400	310

Surrogate	%REC	Limits
o-Terphenyl	8.2	68-120

ND= Not Detected

Page 5 of 6

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

RL= Reporting Limit

Total Extractable Hydrocarbons 233497 Lab #: Location: MSC Oakland Edgewater Client: Arcadis EPA 3520C Prep: Analysis: Diln Fac: Project#: LC010060.0016.00002 EPA 8015B Matrix: Water 1.000 12/23/11 Units: ug/L Received:

 Field ID:
 RW-B4-D
 Sampled:
 12/22/11

 Type:
 SAMPLE
 Prepared:
 12/29/11

 Lab ID:
 233497-016
 Analyzed:
 01/04/12

 Batch#:
 182510
 Cleanup Method:
 EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	2,600	50	
Diesel C10-C24	2,300 Y	50	
Motor Oil C24-C36	830	300	

Surrogate	%REC	Limits
o-Terphenyl	81	68-120

Type: BLANK Prepared: 12/23/11
Lab ID: QC623431 Analyzed: 12/28/11
Batch#: 182442 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate %REC Limi
Terphenyl 101 68-1

Type: BLANK Prepared: 12/29/11
Lab ID: QC623676 Analyzed: 01/03/12
Batch#: 182510 Cleanup Method: EPA 3630C

Analyte	Result	RL
Kerosene C10-C16	ND	50
Diesel C10-C24	ND	50
Motor Oil C24-C36	ND	300

Surrogate	%REC	Limits
o-Terphenyl	102	68-120

Page 6 of 6

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Batch QC Report

	Total Extra	ctable Hydrocar	rbons
Lab #:	233497	Location:	MSC Oakland Edgewater
Client:	Arcadis	Prep:	EPA 3520C
Project#:	LC010060.0016.00002	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	182442
Units:	ug/L	Prepared:	12/23/11
Diln Fac:	1.000	Analyzed:	12/28/11

Type: BS Cleanup Method: EPA 3630C

Lab ID: QC623432

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,123	85	61-120

Surrogate	%REC	Limits
o-Terphenyl	99	68-120

Type: BSD Cleanup Method: EPA 3630C

Lab ID: QC623433

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	1,965	79	61-120	8	20

Surrogate	%REC	Limits	
o-Terphenyl	92	68-120	

Batch QC Report

Total Extractable Hydrocarbons			
Lab #:	233497	Location:	MSC Oakland Edgewater
Client:	Arcadis	Prep:	EPA 3520C
Project#:	LC010060.0016.00002	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	182510
Units:	ug/L	Prepared:	12/29/11
Diln Fac:	1.000	Analyzed:	01/03/12

Type: BS Cleanup Method: EPA 3630C

Lab ID: QC623677

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	1,845	74	61-120

Surrogate	%REC	Limits
o-Terphenyl	89	68-120

Type: BSD Cleanup Method: EPA 3630C

Lab ID: QC623678

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,034	81	61-120	10	20

Surrogate	%REC	Limits	
o-Terphenyl	97	68-120	

\Lims\gdrive\ezchrom\Projects\GC17A\Data\362a013, A

\\Lims\gdrive\ezchrom\Projects\GC17A\Data\362a014, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\362a015, A

\\Lims\gdrive\ezchrom\Projects\GC17A\Data\362a016, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\362a017, A

\Lims\gdrive\ezchrom\Projects\GC26\Data\004a038, A

\\Lims\gdrive\ezchrom\Projects\GC26\Data\001a021, A

\\Lims\gdrive\ezchrom\Projects\GC26\Data\001a022, A

\\Lims\gdrive\ezchrom\Projects\GC26\Data\001a023, A

\Lims\gdrive\ezchrom\Projects\GC26\Data\004a024, A

\\Lims\gdrive\ezchrom\Projects\GC17A\Data\362a003, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\362a005, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\362a004, A

Gasoline by GC/MS					
Lab #: Client: Project#:	233497 Arcadis LC010060.0016.00002	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B		
Matrix: Units:	Water ug/L	Received:	12/23/11		

Batch#: Sampled: 182453 12/21/11 12/28/11 Field ID: MW-13Type: SAMPLE Analyzed: Type: Lab ID: Diln Fac: 233497-001

1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	103	80-127	
1,2-Dichloroethane-d4	112	73-145	
Toluene-d8	100	80-120	
Bromofluorobenzene	107	80-120	

Batch#: Sampled: 182453 12/21/11 12/28/11 Field ID: MW-14Type: Lab ID: SAMPLE 233497-002 Analyzed:

Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	111	80-127	
1,2-Dichloroethane-d4	124	73-145	
Toluene-d8	99	80-120	
Bromofluorobenzene	105	80-120	

ND= Not Detected RL= Reporting Limit

Page 1 of 10

Gasoline by GC/MS					
Lab #: Client: Project#:	233497 Arcadis LC010060.0016.00002	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B		
Matrix: Units:	Water ug/L	Received:	12/23/11		

Batch#: Sampled: Analyzed: 182453 12/21/11 12/28/11 Field ID: MW-17SAMPLE Type: Lab ID: 233497-003

1.000 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	114	80-127
1,2-Dichloroethane-d4	124	73-145
Toluene-d8	106	80-120
Bromofluorobenzene	110	80-120

182486 12/22/11 12/29/11 Field ID: RW-B1 Batch#: Sampled: Analyzed: Type: Lab ID: SAMPLE 233497-004 6.250 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	ND	310	
MTBE	ND	3.1	
Benzene	530	3.1	
Toluene	35	3.1	
Ethylbenzene	7.9	3.1	
m,p-Xylenes	8.9	3.1	
m,p-Xylenes o-Xylene	9.6	3.1	

Surrogate	%REC	Limits	
Dibromofluoromethane	106	80-127	
1,2-Dichloroethane-d4	113	73-145	
Toluene-d8	104	80-120	
Bromofluorobenzene	109	80-120	

ND= Not Detected RL= Reporting Limit

Page 2 of 10

Gasoline by GC/MS						
Lab #: Client: Project#:	233497 Arcadis LC010060.0016.00002	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B			
Matrix: Units:	Water ug/L	Received:	12/23/11			

Field ID: RW-B4 Lab ID: 233497-005 Type: SAMPLE Sampled: 12/22/11

Analyte	Result	RL	Diln Fac	Batch# Analyzed
Gasoline C7-C12	5,400	500	10.00	182486 12/29/11
MTBE	ND	5.0	10.00	182486 12/29/11
Benzene	1,100	7.1	14.29	182522 12/30/11
Toluene	29	5.0	10.00	182486 12/29/11
Ethylbenzene	64	5.0	10.00	182486 12/29/11
m,p-Xylenes	150	5.0	10.00	182486 12/29/11
o-Xylene	26	5.0	10.00	182486 12/29/11

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	107	80-127	10.00	182486 12/29/11
1,2-Dichloroethane-d4	114	73-145	10.00	182486 12/29/11
Toluene-d8	103	80-120	10.00	182486 12/29/11
Bromofluorobenzene	104	80-120	10.00	182486 12/29/11

Field ID: RW-A2 Batch#: 182453
Type: SAMPLE Sampled: 12/22/11
Lab ID: 233497-006 Analyzed: 12/28/11
Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	108	80-127
1,2-Dichloroethane-d4	128	73-145
Toluene-d8	102	80-120
Bromofluorobenzene	114	80-120

ND= Not Detected RL= Reporting Limit

Page 3 of 10

Gasoline by GC/MS						
Lab #: Client: Project#:	233497 Arcadis LC010060.0016.00002	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B			
Matrix: Units:	Water ug/L	Received:	12/23/11			

Field ID: RW-C7 Batch#: 182453 Sampled: 12/22/11 12/28/11 SAMPLE Type: 233497-007 Lab ID: Analyzed: Diln Fac: 1.000

Result RLAnalyte Gasoline C7-C12 380 50 MTBE ND 8.3 Benzene

0.50 0.50 0.50 Toluene ND Ethylbenzene 0.98 0.50 m,p-Xylenes o-Xylene 0.50 0.50 ND ND

Surrogate	%REC	Limits	
Dibromofluoromethane	109	80-127	
1,2-Dichloroethane-d4	125	73-145	
Toluene-d8	103	80-120	
Bromofluorobenzene	112	80-120	

RW-C6 Field ID: Batch#: 182453 SAMPLE Sampled: 12/22/11 Type: 233497-008 1.000 Lab ID: Analyzed: 12/28/11 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	810	50	
MTBE	0.51	0.50	
Benzene	74	0.50	
Toluene	6.2	0.50	
Ethylbenzene	7.9	0.50	
m,p-Xylenes	43	0.50	
o-Xylene	36	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	80-127	
1,2-Dichloroethane-d4	114	73-145	
Toluene-d8	100	80-120	
Bromofluorobenzene	104	80-120	

ND= Not Detected RL= Reporting Limit Page 4 of 10

Gasoline by GC/MS						
Lab #: Client: Project#:	233497 Arcadis LC010060.0016.00002	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B			
Matrix: Units:	Water ug/L	Received:	12/23/11			

Lab ID: 233497-009 Sampled: 12/22/11 Field ID: RW-D5 Type: SAMPLE

Analyte	Result	RL	Diln Fac	Batch# Analyzed
Gasoline C7-C12	400	50	1.000	182453 12/28/11
MTBE	ND	0.50	1.000	182453 12/28/11
Benzene	150	1.0	2.000	182486 12/29/11
Toluene	2.5	0.50	1.000	182453 12/28/11
Ethylbenzene	4.4	0.50	1.000	182453 12/28/11
m,p-Xylenes	9.4	0.50	1.000	182453 12/28/11
o-Xylene	2.9	0.50	1.000	182453 12/28/11

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	100	80-127	1.000	182453 12/28/11
1,2-Dichloroethane-d4	103	73-145	1.000	182453 12/28/11
Toluene-d8	104	80-120	1.000	182453 12/28/11
Bromofluorobenzene	102	80-120	1.000	182453 12/28/11

Field ID: RW-1-FB Type: SAMPLE Lab ID: 233497-0 Batch#: 182453 Sampled: 12/22/11 Analyzed: 12/28/11 SAMPLE 233497-010 1.000 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	100	80-127	
1,2-Dichloroethane-d4	105	73-145	
Toluene-d8	99	80-120	
Bromofluorobenzene	96	80-120	

ND= Not Detected RL= Reporting Limit
Page 5 of 10

Gasoline by GC/MS						
Lab #: Client: Project#:	233497 Arcadis LC010060.0016.00002	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B			
Matrix: Units:	Water ug/L	Received:	12/23/11			

182453 12/22/11 12/28/11 Field ID: RW-1Batch#: SAMPLE Sampled: Type: Lab ID: 233497-011 Analyzed:

1.000 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	101	80-127
1,2-Dichloroethane-d4	101	73-145
Toluene-d8	101	80-120
Bromofluorobenzene	98	80-120

182453 12/22/11 12/28/11 Field ID: MW-10Batch#: Sampled: Analyzed: Type: Lab ID: SAMPLE 233497-012 1.000 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	2.6	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-127
1,2-Dichloroethane-d4	109	73-145
Toluene-d8	102	80-120
Bromofluorobenzene	99	80-120

ND= Not Detected RL= Reporting Limit

Page 6 of 10

Gasoline by GC/MS						
Lab #: Client: Project#:	233497 Arcadis LC010060.0016.00002	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B			
Matrix: Units:	Water ug/L	Received:	12/23/11			

182453 12/22/11 12/28/11 Field ID: MW-1Batch#: SAMPLE Sampled: Type: Lab ID: 233497-013 Analyzed:

1.000 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	230	50	
MTBE	ND	0.50	
Benzene	0.53	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	0.69	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-127
1,2-Dichloroethane-d4	112	73-145
Toluene-d8	106	80-120
Bromofluorobenzene	105	80-120

182522 12/22/11 Field ID: MW-5Batch#: Sampled: Analyzed: Type: Lab ID: SAMPLE 233497-014 1.429 12/30/11 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	2,800	71	
MTBE	9.9	0.71	
Benzene	1.5	0.71	
Toluene	0.75	0.71	
Ethylbenzene	65	0.71	
m,p-Xylenes	4.9	0.71	
o-Xylene	0.84	0.71	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	80-127	
1,2-Dichloroethane-d4	117	73-145	
Toluene-d8	96	80-120	
Bromofluorobenzene	109	80-120	

ND= Not Detected RL= Reporting Limit

Page 7 of 10

Gasoline by GC/MS					
Lab #: Client: Project#:	233497 Arcadis LC010060.0016.00002	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B		
Matrix: Units:	Water ug/L	Received:	12/23/11		

Batch#: Sampled: Analyzed: 182486 12/22/11 12/29/11 Field ID: RW-D9 Type: Lab ID: SAMPLE 233497-015

1.000 Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	1,300	50	
MTBE	ND	0.50	
Benzene	25	0.50	
Toluene	1.5	0.50	
Ethylbenzene	4.1	0.50	
m,p-Xylenes	30	0.50	
o-Xylene	4.0	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	109	80-127
1,2-Dichloroethane-d4	117	73-145
Toluene-d8	108	80-120
Bromofluorobenzene	112	80-120

233497-016 12/22/11 Field ID: RW-B4-D Lab ID: Sampled: SAMPLE Type:

Analyte	Result	RL	Diln Fac	Batch# Analyzed
Gasoline C7-C12	5,600	500	10.00	182486 12/29/11
MTBE	ND	5.0	10.00	182486 12/29/11
Benzene	1,100	7.1	14.29	182522 12/30/11
Toluene	30	5.0	10.00	182486 12/29/11
Ethylbenzene	63	5.0	10.00	182486 12/29/11
m,p-Xylenes	170	5.0	10.00	182486 12/29/11
o-Xylene	28	5.0	10.00	182486 12/29/11

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	108	80-127	10.00	182486 12/29/11
1,2-Dichloroethane-d4	105	73-145	10.00	182486 12/29/11
Toluene-d8	103	80-120	10.00	182486 12/29/11
Bromofluorobenzene	103	80-120	10.00	182486 12/29/11

ND= Not Detected RL= Reporting Limit

Page 8 of 10

Gasoline by GC/MS						
Lab #: Client: Project#:	233497 Arcadis LC010060.0016.00002	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B			
Matrix: Units:	Water ug/L	Received:	12/23/11			

Type: BLANK Batch#: 182453 Lab ID: QC623476 Analyzed: 12/28/11 Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-127
1,2-Dichloroethane-d4	114	73-145
Toluene-d8	99	80-120
Bromofluorobenzene	104	80-120

Type: BLANK Batch#: 182486 Lab ID: QC623586 Analyzed: 12/29/11 Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	80-127	
1,2-Dichloroethane-d4	113	73-145	
Toluene-d8	98	80-120	
Bromofluorobenzene	108	80-120	

ND= Not Detected RL= Reporting Limit Page 9 of 10

of 10 3.0

Gasoline by GC/MS						
Lab #: Client: Project#:	233497 Arcadis LC010060.0016.00002	Location: Prep: Analysis:	MSC Oakland Edgewater EPA 5030B EPA 8260B			
Matrix: Units:	Water ug/L	Received:	12/23/11			

Type: Lab ID: Diln Fac: BLANK QC623725 1.000 Batch#: 182522 Analyzed: 12/30/11

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	105	80-127
1,2-Dichloroethane-d4	117	73-145
Toluene-d8	107	80-120
Bromofluorobenzene	110	80-120

ND= Not Detected RL= Reporting Limit Page 10 of 10

3.0

Gasoline by GC/MS						
Lab #:	233497	Location:	MSC Oakland Edgewater			
Client:	Arcadis	Prep:	EPA 5030B			
Project#:	LC010060.0016.00002	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	182453			
Units:	ug/L	Analyzed:	12/28/11			
Diln Fac:	1.000					

Type: BS Lab ID: QC623474

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	20.98	84	59-123
Benzene	25.00	22.93	92	80-122
Toluene	25.00	22.31	89	80-120
Ethylbenzene	25.00	24.19	97	80-120
m,p-Xylenes	50.00	48.07	96	80-120
o-Xylene	25.00	23.83	95	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	114	80-127	
1,2-Dichloroethane-d4	122	73-145	
Toluene-d8	104	80-120	
Bromofluorobenzene	102	80-120	

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	20.47	82	59-123	2	20
Benzene	25.00	22.47	90	80-122	2	20
Toluene	25.00	23.01	92	80-120	3	20
Ethylbenzene	25.00	25.54	102	80-120	5	20
m,p-Xylenes	50.00	48.18	96	80-120	0	20
o-Xylene	25.00	23.57	94	80-120	1	20

Surrogate	%REC	Limits
Dibromofluoromethane	106	80-127
1,2-Dichloroethane-d4	118	73-145
Toluene-d8	101	80-120
Bromofluorobenzene	98	80-120

Gasoline by GC/MS							
Lab #:	233497	Location:	MSC Oakland Edgewater				
Client:	Arcadis	Prep:	EPA 5030B				
Project#:	LC010060.0016.00002	Analysis:	EPA 8260B				
Matrix:	Water	Batch#:	182453				
Units:	ug/L	Analyzed:	12/28/11				
Diln Fac:	1.000						

Type: BS Lab ID: QC623501

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,054	105	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	110	80-127
1,2-Dichloroethane-d4	120	73-145
Toluene-d8	105	80-120
Bromofluorobenzene	104	80-120

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	1,007	101	80-120	5	20

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-127
1,2-Dichloroethane-d4	120	73-145
Toluene-d8	102	80-120
Bromofluorobenzene	100	80-120

Gasoline by GC/MS							
Lab #:	233497	Location:	MSC Oakland Edgewater				
Client:	Arcadis	Prep:	EPA 5030B				
Project#:	LC010060.0016.00002	Analysis:	EPA 8260B				
Matrix:	Water	Batch#:	182486				
Units:	ug/L	Analyzed:	12/29/11				
Diln Fac:	1.000						

Type: BS Lab ID: QC623584

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	18.66	75	59-123
Benzene	25.00	22.89	92	80-122
Toluene	25.00	24.40	98	80-120
Ethylbenzene	25.00	25.68	103	80-120
m,p-Xylenes	50.00	49.96	100	80-120
o-Xylene	25.00	23.88	96	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	111	80-127
1,2-Dichloroethane-d4	119	73-145
Toluene-d8	110	80-120
Bromofluorobenzene	103	80-120

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	20.34	81	59-123	9	20
Benzene	25.00	24.86	99	80-122	8	20
Toluene	25.00	24.78	99	80-120	2	20
Ethylbenzene	25.00	25.36	101	80-120	1	20
m,p-Xylenes	50.00	53.45	107	80-120	7	20
o-Xylene	25.00	26.35	105	80-120	10	20

Surrogate	%REC	Limits
Dibromofluoromethane	108	80-127
1,2-Dichloroethane-d4	120	73-145
Toluene-d8	109	80-120
Bromofluorobenzene	110	80-120

Gasoline by GC/MS							
Lab #:	233497	Location:	MSC Oakland Edgewater				
Client:	Arcadis	Prep:	EPA 5030B				
Project#:	LC010060.0016.00002	Analysis:	EPA 8260B				
Matrix:	Water	Batch#:	182486				
Units:	ug/L	Analyzed:	12/29/11				
Diln Fac:	1.000						

Type: BS Lab ID: QC623587

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,012	101	80-120

Surrogate %	%REC	Limits
Dibromofluoromethane 10	07	80-127
1,2-Dichloroethane-d4 12	20	73-145
Toluene-d8 10	06	80-120
Bromofluorobenzene 11	12	80-120

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	1,025	102	80-120	1	20

Surrogate	%REC	Limits
Dibromofluoromethane	105	80-127
1,2-Dichloroethane-d4	112	73-145
Toluene-d8	106	80-120
Bromofluorobenzene	101	80-120

	Gasol	ine by GC/MS	
Lab #:	233497	Location:	MSC Oakland Edgewater
Client:	Arcadis	Prep:	EPA 5030B
Project#:	LC010060.0016.00002	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	182522
Units:	ug/L	Analyzed:	12/30/11
Diln Fac:	1.000		

Type: BS Lab ID: QC623723

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	19.02	76	59-123
Benzene	25.00	23.44	94	80-122
Toluene	25.00	21.77	87	80-120
Ethylbenzene	25.00	23.45	94	80-120
m,p-Xylenes	50.00	45.50	91	80-120
o-Xylene	25.00	23.26	93	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	110	80-127
1,2-Dichloroethane-d4	121	73-145
Toluene-d8	104	80-120
Bromofluorobenzene	106	80-120

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	18.94	76	59-123	0	20
Benzene	25.00	23.61	94	80-122	1	20
Toluene	25.00	22.61	90	80-120	4	20
Ethylbenzene	25.00	24.16	97	80-120	3	20
m,p-Xylenes	50.00	44.05	88	80-120	3	20
o-Xylene	25.00	23.06	92	80-120	1	20

Surrogate	%REC	Limits
Dibromofluoromethane	112	80-127
1,2-Dichloroethane-d4	124	73-145
Toluene-d8	100	80-120
Bromofluorobenzene	103	80-120

	Gasol	line by GC/MS	
Lab #:	233497	Location:	MSC Oakland Edgewater
Client:	Arcadis	Prep:	EPA 5030B
Project#:	LC010060.0016.00002	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	182522
Units:	ug/L	Analyzed:	12/30/11
Diln Fac:	1.000		

Type: BS Lab ID: QC623744

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	984.1	98	80-120

Surrogate	%REC	Limits
Dibromofluoromethane 1	105	80-127
1,2-Dichloroethane-d4 1	120	73-145
Toluene-d8	99	80-120
Bromofluorobenzene 1	103	80-120

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	1,017	102	80-120	3	20

Surrogate	%REC	Limits
Dibromofluoromethane	107	80-127
1,2-Dichloroethane-d4	112	73-145
Toluene-d8	103	80-120
Bromofluorobenzene	112	80-120

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\122911.b\HLT19TVH.D

Date : 29-DEC-2011 20:37 Client ID: DYNA P&T

Instrument: MSVOA08.i

Sample Info: s,233497-005 Operator: VOC

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\122811.b\HLS15TVH.D

Date : 28-DEC-2011 18:06 Client ID: DYNA P&T Sample Info: S,233497-007

Instrument: MSVOA08.i

Operator: VOC

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\122811.b\HLS16TVH.D

Date : 28-DEC-2011 18:43 Client ID: DYNA P&T Sample Info: S,233497-008

Instrument: MSVOA08.i

Operator: VOC

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\122811.b\HLS17TVH.D

Date : 28-DEC-2011 19:20 Client ID: DYNA P&T

Instrument: MSVOA08.i

Sample Info: S,233497-009

Operator: VOC

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\122811.b\HLS21TVH.D

Date : 28-DEC-2011 21:48 Client ID: DYNA P&T Sample Info: S,233497-013

Instrument: MSVOA08.i

Operator: VOC

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\123011.b\HLU14TVH.D

Date : 30-DEC-2011 16:49 Client ID: DYNA P&T Sample Info: s,233497-014

Instrument: MSVOA08.i

Operator: VOC

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\122911.b\HLT12TVH.D

Date : 29-DEC-2011 16:18 Client ID: DYNA P&T Sample Info: s,233497-015

Instrument: MSVOA08.i

Operator: VOC

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\122911.b\HLT23TVH.D

Date : 29-DEC-2011 23:04 Client ID: DYNA P&T

Instrument: MSVOA08.i

Sample Info: s,233497-016

Operator: VOC

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\122811.b\HLS06TVH.D

Date : 28-DEC-2011 12:26 Client ID: DYNA P&T

Sample Info: CCV/BS,QC623501,182453,S18583,.01/100

Operator: VOC

Column phase: Column diameter: 2.00

Instrument: MSVOA08.i

APPENDIX D

Historical Tables

Table D-1
Summary of Groundwater Analytical Data, VOCs
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Well ID/ Date	Benzene (µg/l)	n-Butyl- benzene (µg/l)	,	tert-Butyl- benzene (µg/l)	Chloro- ethane (µg/l)	Chloro- form (µg/l)	Methyl Chloride (µg/l)	1,2- DCA (µg/l)	cis-1,2- DCE (µg/l)	1,2- DCP (µg/l)	Ethyl- benzene (µg/l)	Isopropyl- benzene (µg/l)	p-Isopropyl- toluene (µg/l)	MTBE (µg/l)	Napthalene (µg/l)	n-Propyl- benzene (µg/l)	Toluene (µg/l)	1,2,4- TMB (µg/l)	1,3,5- TMB (µg/l)	Xylenes (µg/l)
MW-5 2/27/01	180	9	4	ND	3	ND	ND	7	ND	3	260	23	6	1,100	43	68	7	1	11	53
MW-6																				
2/27/01	270	11	3	ND	< 1	ND	ND	7	ND	< 1	9	6.0	1.0	19.0	62	21	3	1	< 1	3
8/20/01	E280	14	<1	<1	< 1	3	2	<1	<1	<1	11	4.0	<1	14.0	E82	14	4	<1	<1	9
TBW-1 8/20/01	E530	30	<1	54	<1	4	10	<1	2	<1	E540	36	54	<1	E300	E120	79	E430	<1	E790
TBW-3 8/20/01	10	<1	<1	<1	<1	<1	<1	<1	<1	<1	6	<1	<1	<1	5	<1	<1	<1	<1	3
TBW-5 8/20/01	E620	<1	<1	E160	<1	3	<1	<1	<1	<1	E730	40	E160	<1	E450	E140	E110	<1	<1	E3100

Notes:

cis-1,2-DCE = cis-1,2-dichloroethene

E = Estimated concentration.

MTBE = methyl tertiary-butyl ether

ND = Not detected.

VOCs = Volatile organic compounds by EPA Method 8260. Sample not subject to silica gel cleanup or filtration prior to analysis.

1,2-DCA = 1,2-dichloroethane

1,2-DCP = 1,2-dichloropropane

1,2,4-TMB = 1,2,4-trimethylbenzene

1,3,5-TMB = 1,3,5-trimethylbenzene

Table D-2 Summary of Groundwater Analytical Data, SVOCs Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Well ID/ Date	Napthalene (µg/l)	Pyrene (µg/l)	Other SVOCs (µg/l)
MW-6			
2/27/01	19	ND	ND
8/20/01	52	<5	39
MW-9			
11/28/00	ND	ND	ND
MW-13			
11/28/00	ND	10	ND
MW-17			
11/28/00	ND	ND	ND
TBW-1			
8/20/01	140	8	387
TBW-3			
8/20/01	< 5	<5	5
TBW-5			
8/20/01	220	<5	73

Notes:

SVOCs = Semivolatile organic compounds by EPA Method 8270.

ND = Not detected

Samples not subject to silica gel cleanup or filtration before analysis.

Table D-3
Summary of Groundwater Analytical Data, LUFT Metals
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in milligrams per liter (mg/l)

Well ID/ Date	Cadmium (mg/l)	Chromium (mg/l)	Lead (mg/l)	Nickel (mg/l)	Zinc (mg/l)	Notes
MW-2						
8/19/98			< 100			a
MW-6						
2/28/01	< 0.001	0.035	0.23	0.046	0.19	non-filtered
8/16/01	< 0.001	0.020	0.12	0.032	0.11	
TBW-1						
8/16/01	< 0.001	0.017	0.042	0.034	0.10	0.1*
TBW-3						
8/16/01	< 0.001	0.008	0.01	0.019	< 0.02	
TBW-5						
8/16/01	< 0.001	< 0.005	0.01	0.008	0.03	
0/10/01	\0.001	V 0.003	0.01	0.000	0.03	

Notes:

LUFT = Leaking Underground Fuel Tank

LUFT metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise.

^{--- =} Not measured/analyzed.

^{* =} Note was indicated but not defined in historical data tables.

a = Analyzed for organic lead.

Table D-4 Summary of Groundwater Analytical Data, Additional Metals Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in milligrams per liter (mg/l)

Sample ID/ Date	Antimony (mg/l)	Arsenic (mg/l)	Beryllium (mg/l)	Copper (mg/l)	Selenium (mg/l)	Silver (mg/l)	Thallium (mg/l)
MW-6							
8/16/01	< 0.01	0.033	< 0.001	0.025	< 0.01	< 0.003	< 0.01
TBW-1							
8/16/01	< 0.01	0.015	< 0.001	0.017	< 0.01	< 0.003	< 0.01
TDXX 2							
TBW-3							
8/16/01	< 0.01	0.009	< 0.001	0.008	< 0.01	< 0.003	< 0.01
TBW-5							
8/16/01	< 0.01	0.020	< 0.001	< 0.005	< 0.01	< 0.003	< 0.01

Notes:

Metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise.