

RECEIVED

10:10 am, Oct 20, 2011

Alameda County Environmental Health

Groundwater Monitoring Report
Fall 2010 Semiannual Sampling Event
Municipal Service Center
7101 Edgewater Drive
Oakland, California

October 19, 2011 LC010060.0013

Prepared for: City of Oakland, Public Works Agency Environmental Services Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California

October 19, 2011 LC010060.0013

Mr. Gopal Nair City of Oakland, Public Works Department Environmental Sciences Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California 94612

Subject: Groundwater Monitoring Report, Fall 2010 Semiannual Sampling Event, Municipal

Service Center, 7101 Edgewater Drive, Oakland, California

Dear Mr. Nair:

ARCADIS U.S., Inc. (ARCADIS) is pleased to present this report summarizing data collected during the Fall 2010 semiannual groundwater monitoring event at the Municipal Service Center, located at 7101 Edgewater Drive in Oakland, California ("the Site"). These activities were performed in a manner consistent with previous sampling events conducted at the Site.

If you have any questions regarding this report, please call me at (510) 596-9536.

Sincerely,

Charles H. Pardini, P.G. (6444)

Vice President, Principal Geologist

Attachment

CONTENTS

CEI	RTIFICATION	III
1.0	INTRODUCTION	1
2.0	SITE BACKGROUND AND CORRECTIVE ACTION MEASURES	1
3.0	FALL 2010 SEMIANNUAL MONITORING ACTIVITIES	2
	3.1 Field Activities	2
	3.2 Sample Analyses	3
4.0	MONITORING RESULTS	4
	4.1 Shallow Groundwater Topography	4
	4.2 Occurrence of Separate-Phase Hydrocarbons	4
	4.3 Contaminant Distribution in Groundwater	5
	4.3.1 Screening Criteria	5
	4.3.2 Benzene	6
	4.3.3 Toluene	6
	4.3.4 Ethylbenzene	7
	4.3.5 Total Xylenes	7
	4.3.6 MTBE	7
	4.3.7 TPHg	7
	4.3.8 TPHd	8
	4.3.9 TPHmo	8
	4.3.10TPHk	8
	4.4 Laboratory Analysis	9
5.0	LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL	9
	5.1 Method Holding Times	9
	5.2 Blanks	9
	5.3 Laboratory Control Samples	9
	5.4 Surrogates	10
	5.5 False-Positive Petroleum Hydrocarbon Identification	10

6.0 CONCLUSIONS AND RECOMMENDATIONS
7.0 LIMITATIONS
8.0 SELECTED REFERENCES 12
TABLE
1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
FIGURES
1 Site Vicinity Map
2 Groundwater Elevation Contour Map and Hydrocarbon Concentrations in Shallow Groundwater, October 2010
3 Detail Plume Map, October 2010
A DDENIDICEG

APPENDICES

- A City of Oakland MSC Schedule and Protocol
- B Groundwater Sampling Field Data Sheets
- C Laboratory Results and Chain-of-Custody Documentation
- D Historical Tables

CERTIFICATION

All hydrogeologic and geologic information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by an ARCADIS U.S., Inc., California Professional Geologist.*

Charles H. Pardini Principal Geologist

California Professional Geologist (6444)

Judun

october 19, 2011

^{*} A professional geologist's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

1.0 INTRODUCTION

This report presents the results of the Fall 2010 semiannual groundwater monitoring event conducted on October 19, 2010 ("the current monitoring event") at the Municipal Service Center (MSC), located at 7101 Edgewater Drive in Oakland, California ("the Site"; Figure 1). ARCADIS U.S., Inc. (ARCADIS) conducted monitoring activities at the Site in accordance with Assignment No. G08-LFR-08.

This report summarizes the monitoring activities conducted during the current monitoring event as well as the analytical results, distribution of contaminants in groundwater, conclusions, and recommendations. Also discussed are the anticipated annual monitoring activities to be performed in Fall 2011.

2.0 SITE BACKGROUND AND CORRECTIVE ACTION MEASURES

Eighteen 2-inch-diameter groundwater monitoring wells (MW-1 through MW-18) were installed on and off site to depths ranging from 13 feet below ground surface (bgs) to 20 feet bgs, at various times from 1989 to 2003. These wells have been monitored regularly since their installation. MW-3 and MW-4 were abandoned and sealed in 1999 (Ninyo & Moore 2004). In addition, six 6-inch-diameter wells (TBW-1 through TBW-6) were installed during backfilling of the excavation of former fuel hydrant lines in the early 1990s. TBW-1 through TBW-4 were abandoned and sealed in June 2007 by Baseline Environmental Consulting ("Baseline").

Eighteen 4-inch-diameter remediation wells and four 2-inch-diameter test/observation wells were installed on site to depths ranging from 13 feet bgs to 17 feet bgs, in December 2001 and January 2002 by others, according to Uribe & Associates' ("Uribe's") "Test/Observation Well Installation Report, U & A Project 291-03," dated April 2, 2002 (Uribe 2002). Seven of the wells (RW-Al, RW-A2, OB-A1, RW-B1, RW-B2, RW-B3, and RW-B4) were installed in the vicinity of Plumes A and B. Fifteen of the wells (RW-C1, RW-C2, RW-C3, RW-C4, RW-C5, RW-C6, RW-C7, OB-C1, RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, OB-D1, and OB-D2) were installed in the vicinity of Plumes C and D. Each well, except OB-A1, was surveyed subsequent to the installation event. Six additional extraction wells (RW-D6 through RW-D11) were installed within the Plume D area in March 2007 by URS Corporation. These six wells are 6 inches in diameter and installed to an approximate depth of 20 feet bgs. The well locations are shown on Figures 2 and 3. The plume locations are shown on Figure 3.

According to the "Second Quarter 2003 Monitoring Report" (Uribe 2003), approximately 10,000 gallons of a groundwater/free product mixture were removed from on-site wells RW-B3 and RW-B4 (Plume B) in September and October 2002, using a trailer-mounted, dual-phase extraction (DPE) unit with a 10-horsepower vacuum pump. Additionally, approximately 10,000 gallons of liquid were removed

from wells RW-C3, RW-C4, RW-C5, and RW-C7 (Plume C) through five daily extractions over a two-month period. The liquid was pumped into a 21,000-gallon aboveground storage tank to allow separation of oil from water and drained through three 2,000-pound granular-activated carbon filters (in series). After filtration, the wastewater was discharged into a local storm drain. A National Pollutant Discharge Elimination System (NPDES) permit was issued prior to discharge.

Within the same time period, hydrogen peroxide, followed by water, was injected periodically into wells OB-Al, RW-Al, RW-A2, TBW-3, and TBW-4 (Plume A); MW-16 and MW-17 (Plume B); and MW-5 (active tank area), to promote in situ bioremediation. Hydrogen peroxide was also injected periodically into wells in the Plume C area from July 2004 through January 2009.

Construction of an extraction system to remove separate-phase hydrocarbons (SPH) within the vicinity of Plume D began in March 2006. Seven existing wells (RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, TBW-5, and RW-1) were converted to extraction wells by URS Corporation. The extraction system was completed in April 2006, and the system began operation in mid-May 2006. Groundwater extracted from the seven wells was treated through an oil/water separator, followed by three 2,000-pound liquid-phase activated carbon units in series, and was discharged into the local storm drain via an NPDES permit. Extracted soil vapor was treated through a thermal oxidizer and discharged into the atmosphere via a permit issued by the Bay Area Air Quality Management District. Six additional wells were installed within the vicinity of Plume D in March 2007 (RW-D6, RW-D7, RW-D8, RW-D9, RW-D10, and RW-D11) and were connected to the extraction system on June 11, 2007. In addition, six existing wells in the Plume C area (RW-C2, RW-C4 through RW-C7, and OB-C1) were connected to the DPE system in May 2009, and extraction from these wells commenced on May 26, 2009.

The extraction remediation system was shut down on December 23, 2009. The system may be restarted if free-phase product is again detected or significant rebound of dissolved concentration of petroleum hydrocarbons is determined in subsequent groundwater monitoring events. Quarterly remediation system performance reports were submitted separately from this monitoring report to Alameda County Environmental Health (ACEH) and the Regional Water Quality Control Board – San Francisco Bay Region (RWQCB).

3.0 FALL 2010 SEMIANNUAL MONITORING ACTIVITIES

3.1 Field Activities

The field activities, which included depth-to-groundwater/product measurement and well sampling, were conducted in accordance with the revised City of Oakland MSC Schedule and Protocol Table that was included in the November 6, 2009 letter to

Alameda County Environmental Health Services proposing a revised groundwater monitoring schedule (Appendix A).

On October 19, 2010, ARCADIS personnel measured depth to water and depth to SPH using an electric oil/water interface probe in the following wells: MW-1, MW-2, MW-5 through MW-17, TBW-5, TBW-6, RW-1, RW-A1, RW-A2, OB-A1, RW-B1 through RW-B4, RW-C1 through RW-C7, OB-C1, RW-D1 through RW-D11, OB-D1, and OB-D2. A number of monitoring wells have been eliminated from the monitoring program. Monitoring wells MW-3 and MW-4 have been abandoned and sealed (Ninyo & Moore 2004). Wells TBW-1, TBW-2, TBW-3, and TBW-4 were abandoned and sealed by Baseline in June 2007.

The oil/water interface probe was decontaminated with liquinox and distilled water before use in each well to avoid potential cross contamination. Current and historical product thickness measurements, depth-to-groundwater measurements, and groundwater elevations calculated from groundwater measurements are presented in Table 1. Monitoring and remediation well locations are shown on Figures 2 and 3.

On October 19, 2010, ARCADIS personnel collected groundwater samples from monitoring wells MW-6, MW-9, MW-13, and MW-14.

Prior to sampling, a clean, disposable, polyvinyl chloride (PVC) sampling bailer was used to purge a minimum of three well-casing volumes of groundwater from each of the four monitoring wells sampled during the current monitoring event. The wells were allowed to recover to at least 80 percent of their original static groundwater levels before sampling. Dissolved oxygen, temperature, pH, conductivity, and oxidation-reduction potential (ORP) were measured for each well volume purged. Additionally, characteristics of the water (color, turbidity, odor, sheen) were noted on the field data sheets, which are included in Appendix B.

After the wells were purged, samples were collected using the disposable, PVC, bottom-discharging bailer that was used to purge the well. The samples were transferred from the bailer to the appropriate sample containers, labeled, and placed in a "wet chilled" cooler containing ice, under chain-of-custody protocol. The samples were secured in the cooler and transferred to Curtis & Tompkins, Ltd., Analytical Laboratories (C&T), a California Department of Health Services-certified environmental laboratory located in Berkeley, California. Purged and decontamination water generated during sampling activities was transferred into an on-site storage tank that was part of the on-site extraction and treatment system maintained by the City of Oakland.

3.2 Sample Analyses

The groundwater samples were analyzed by C&T for the following parameters:

- total petroleum hydrocarbons (TPH) as gasoline (TPHg) using U.S. Environmental Protection Agency (U.S. EPA) Method 8260B
- TPH as kerosene (TPHk), TPH as diesel (TPHd), and TPH as motor oil (TPHmo) using U.S. EPA Method 8015B, with a silica-gel cleanup
- the aromatic hydrocarbons benzene, toluene, ethylbenzene, and total xylenes (collectively known as BTEX) and methyl tertiary-butyl ether (MTBE) using U.S. EPA Method 8260B

4.0 MONITORING RESULTS

4.1 Shallow Groundwater Topography

Depth to groundwater was measured on October 19, 2010, using a Solinst oil/water interface meter (Table 1). Prior to groundwater measurement, the well caps were removed from all wells to allow the water column within each well to come into equilibrium with atmospheric pressure. Groundwater elevations were determined using well survey data from the "Second Quarter 2003 Monitoring Report" (Uribe 2003).

Groundwater elevations in the monitoring wells ranged from 1.24 feet mean sea level (msl) at MW-16 to 5.10 feet msl at MW-6 (Figure 2). Groundwater flow direction, measured between wells MW-1 and MW-10, is toward the northwest in the northern section of the Site at approximately 0.005 foot/foot (ft/ft), and toward the southwest (measured between wells MW-11 and MW-15) at approximately 0.011 ft/ft in the southern portion of the Site. A groundwater high (groundwater elevation of 5.97 feet msl) is observed in the vicinity of remediation well RW-A1, located in the vicinity of Plume A in the southern portion of the Site (Figure 3). The variation in the groundwater gradient may be due to differences in lithologic characteristics in the subsurface or preferential pathways (possibly due to backfilled utility trenches and underground storage tank pits). The groundwater flow direction for this sampling period was similar to that reported by Ninyo & Moore in its July 14, 2004 Spring Semiannual Groundwater Monitoring Report for the Site, and in more recent ARCADIS monitoring reports.

4.2 Occurrence of Separate-Phase Hydrocarbons

Floating SPH was not observed in any wells where depth-to-water and depth-to-SPH were measured during this monitoring event. The results of the SPH assessment are presented in Table 1. Although no SPH or sheen was observed in the remediation wells, an odor was noted in the water purged from Plume C remediation well RW-C5 and Plume D remediation well RW-D6 (Table 1). The lack of SPH or sheen observed during this monitoring event represents a significant decrease in the lateral extent of SPH in Plumes B, C, and D compared to the April 2004 monitoring event. SPH has not been detected in the Plume A wells historically.

4.3 Contaminant Distribution in Groundwater

The analytical data from this groundwater monitoring event are presented in Table 1, along with historical analytical results. Laboratory analytical data reports are included in Appendix C. Historical data for volatile organic compounds, semivolatile organic compounds, leaking underground fuel tank metals, and other metals are provided in Appendix D (Tables D-1, D-2, D-3, and D-4, respectively).

For quality assurance/quality control (QA/QC), ARCADIS collected a duplicate sample from well MW-6 on October 19, 2010 and analyzed it for TPHg, TPHk, TPHd, TPHmo, BTEX, and MTBE. Analytical results for the duplicate sample were consistent with those for the primary samples collected from well MW-6 for all analytes.

4.3.1 Screening Criteria

In the June 12, 2009 semiannual monitoring report, LFR Inc. recommended that groundwater quality results be compared to the RWQCB Environmental Screening Levels (ESLs) for Groundwater Screening Levels (groundwater is not a current or potential drinking water resource; RWQCB 2008; Table F-1b) because they are the most applicable screening criteria for the current site conditions. The groundwater quality results had previously been compared to the San Francisco Airport Ecological Protection Zone (SFAEPZ) Tier I Standard and the RWQCB ESL for Surface Water Screening Levels Marine Habitats. These standards/screening levels both relate to the quality of the water in San Francisco Bay but not groundwater.

A comparison of the previous screening criteria and the recommended screening criteria is included in the table below. The groundwater quality results will be compared to the recommended screening criteria in this semiannual monitoring report.

Analyte	Previous Scre	eening Criteria	Recommended Screening Criteria
,	SFAEPZ Tier 1 Standard (µg/)	ESL Surface Water (Table F-2b) (µg/)	ESL Groundwater (Table F-1b) (µg/)
Benzene	71	71	46
Toluene	NA	40	130
Ethylbenzene	29,000	30	43
Total Xylenes	NA	100	100
MTBE	NA	180	1800

Analyte	Previous Scre	ening Criteria	Recommended Screening Criteria
,	SFAEPZ Tier 1 Standard (µg/)	ESL Surface Water (Table F-2b) (µg/)	ESL Groundwater (Table F-1b) (µg/)
ТРНд	3700	210	210
TPHd	640	210	210
TPHmo	640	210	210
TPHk	NA	NA	210

Notes:

 $\mu g/l = micrograms per liter$

NA = screening criteria not previously applied to analyte

4.3.2 Benzene

Benzene concentrations detected above laboratory analytical detection limits (LADLs) were reported in groundwater samples collected from one of the four monitoring wells sampled during the current monitoring event. Benzene was detected in well MW-6 at concentrations of 100 μ g/l and 110 μ g/l (primary and duplicate samples).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for benzene is 46 μ g/l (RWQCB 2008; Table F-1b). The benzene concentration present in well MW-6 during the current monitoring event is above the RWQCB ESL for benzene.

The benzene concentration detected in well MW-6 during the current monitoring period is consistent with concentrations detected since 2008. The benzene concentration in well MW-9 decreased from 5.0 μ g/l in April 2010. Benzene has been below the LADL of 0.5 μ g/l during the fall sampling events since 2008.

4.3.3 Toluene

Toluene was reported in groundwater samples collected from one of the four monitoring wells sampled during the current monitoring event. Toluene was detected in well MW-6 at concentrations of 1.7 μ g/l and 1.6 μ g/l (primary and duplicate samples).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for toluene is 130 μ g/l (RWQCB 2008; Table F-1b). The toluene concentrations present in MW-6 were well below the ESL of 130 μ g/l during the current monitoring event.

The toluene concentration measured in well MW-6 decreased relative to the last sample collected (4.1 μ g/l in October 2009).

4.3.4 Ethylbenzene

Ethylbenzene was not detected above the LADL in groundwater samples collected during the current monitoring event.

4.3.5 Total Xylenes

Total xylenes were reported in groundwater samples collected from two of the four monitoring wells sampled during the current monitoring event. Total xylenes were detected in monitoring wells MW-6 (2.0 μ g/l and 1.7 μ g/l; primary and duplicate concentrations) and MW-9 (0.51 μ g/l).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for total xylenes is 100 μ g/l (RWQCB 2008; Table F-1b). The concentrations of total xylenes detected in MW-6 and MW-9 during the current monitoring event were well below the ESL of 100 μ g/l .

Total xylenes concentrations measured in both MW-6 and MW-9 slightly decreased from the October 2009 monitoring event.

4.3.6 MTBE

MTBE was reported in the groundwater sample collected from one of the four monitoring wells sampled during the current monitoring event. MTBE was detected in well MW-6 at concentrations of 3.3 μ g/l and 3.1 μ g/l (primary and duplicate samples).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for MTBE is 1,800 μ g/l (RWQCB 2008; Table F-1b). Concentrations of MTBE were not detected above the ESL of 1,800 μ g/l in samples collected from the monitoring wells during the current monitoring event.

The MTBE concentration present in well MW-6 during this event was lower than the concentration in the last monitoring event (5.0 μ g/l in October 2009).

4.3.7 TPHg

TPHg was reported in groundwater samples collected from two of the four monitoring wells sampled during the current monitoring event. TPHg was detected in monitoring wells MW-6 (620 μ g/l and 610 μ g/l; primary and duplicate concentrations) and MW-14 (54 μ g/l).

smr-MSC-gw-Fall 2010-LC010060.doc

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHg is 210 μ g/l (RWQCB 2008; Table F-1b). The TPHg concentration detected in well MW-6 was above the ESL of 210 μ g/l.

The TPHg concentrations present in both MW-6 and MW-14 were slightly higher compared to the concentrations detected in October 2009.

4.3.8 TPHd

TPHd was reported in groundwater samples collected from three of the four monitoring wells sampled during the current monitoring event. The maximum TPHd concentrations were detected in well MW-6 at 400 μ g/l and 370 μ g/l (primary and duplicate samples). TPHd was also detected in wells MW-13 (150 μ g/l) and MW-14 (210 μ g/l).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHd (middle distillates) is 210 μ g/l (RWQCB 2008; Table F-1b). TPHd concentrations were at or above the ESL of 210 μ g/l in samples collected from two monitoring wells (MW-6 and MW-14).

The TPHd concentrations detected during the current monitoring event were all higher than the TPHd concentrations detected in October 2009.

4.3.9 TPHmo

TPHmo was reported in the groundwater sample collected from one of the four monitoring wells sampled during the current monitoring event. TPHmo was detected in well MW-13 at a concentration of 940 μ g/l.

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHmo (middle distillates) is 210 μ g/l (RWQCB 2008; Table F-1b). The TPHmo concentration was above the ESL of 210 μ g/l in the sample collected from well MW-13.

The TPHmo concentration measured in well MW-13 increased relative to the concentration detected in April 2010 (330 μ g/l).

4.3.10 TPHk

TPHk was reported in groundwater samples collected from two of the four monitoring wells sampled during the current monitoring event. TPHk was detected in monitoring wells MW-6 (420 μ g/l and 400 μ g/l; primary and duplicate concentrations) and MW-14 (110 μ g/l).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHk (middle distillates) is 210 μ g/l (RWQCB

2008; Table F-1b). The TPHk concentrations present in well MW-6 during the current monitoring event are above the RWQCB ESL for TPHk.

The TPHk concentration present in well MW-6 decreased from the concentration detected in October 2009 (1,000 μ g/l). TPHk increased in well MW-14 from below the LADL of 50 μ g/l in April 2010 and is the highest concentration of TPHk detected in the well since August 2000.

4.4 Laboratory Analysis

Current laboratory analytical results and historical results are presented in Table 1. Copies of laboratory data sheets and chain-of-custody documents are included in Appendix C.

5.0 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

A laboratory QA/QC review was performed on the laboratory analytical data to evaluate the quality and usability of the analytical results. The following sections summarize the QA/QC review.

5.1 Method Holding Times

The procedures used to extract and analyze the collected samples were reviewed by ARCADIS personnel and were found to be within the appropriate holding times for all samples.

5.2 Blanks

One field blank (MW-6-FB) was collected along with the corresponding groundwater sample and was analyzed for TPHg, TPHk, TPHd, TPHmo, BTEX, and MTBE. Additionally, laboratory method blank results were reviewed for detection of target analytes. Total xylenes were detected at a concentration of $0.51~\mu g/l$ in MW-6-FB. In response to the detection of total xylenes in the field blank, all detections of total xylenes were qualified to identify that the analyte was detected in the associated field blank.

5.3 Laboratory Control Samples

Laboratory quality control samples were analyzed by C&T for TPHg, TPHd, TPHk, TPHmo, and BTEX. All samples were within the percentage recovery range required by the laboratory.

smr-MSC-gw-Fall 2010-LC010060.doc

5.4 Surrogates

All surrogates, including o-terphenyl for TPHd, TPHk, and TPHmo, and bromofluorobenzene, 1,2-dichloroethane-d4, dibromofluoromethane, and toluene-d8 for TPHg, BTEX, and MTBE were used for laboratory QA/QC analysis. All of the surrogates were within the acceptable laboratory recovery limits.

5.5 False-Positive Petroleum Hydrocarbon Identification

Qualifiers were reported in the laboratory analytical reports and noted in Table 1 and Figure 2.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The following summarizes the data collected during the Fall 2010 sampling event and presents the recommendations for the Fall 2011 monitoring period.

- Groundwater elevations in the monitoring wells ranged from 1.24 feet msl at MW-16 to 5.10 feet msl at MW-6. The direction of shallow groundwater flow is toward the northwest in the northern section of the Site at a horizontal gradient of 0.005 ft/ft toward the southwest in the southern portion of the Site at 0.011 ft/ft. A groundwater high was observed in the vicinity of well RW-A1 (Plume A) in the southern portion of the Site. This groundwater high is probably the result of higher subsurface permeability in areas of excavation backfill.
- SPH was not observed in any wells where depth-to-SPH was measured during this monitoring event.
- Benzene was detected above LADL in one of the four wells sampled. Benzene was detected in monitoring well MW-6 at concentrations of 100 μg/l and 110 μg/l (primary and duplicate samples). These benzene concentrations exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for benzene of 46 μg/l during the current monitoring event.
- Toluene was detected above LADL in one of the four wells sampled. Toluene was detected in monitoring well MW-6 at concentrations of 1.7 μg/l and 1.6 μg/l (primary and duplicate samples). No concentrations of toluene exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for toluene of 130 μg/l during the current monitoring event.
- Ethylbenzene was not detected above LADL in the four wells sampled.
- Total xylenes were detected above LADL in two of the four wells sampled. The maximum concentrations of total xylenes detected in shallow groundwater were $2.0~\mu g/l$ and $1.7~\mu g/l$ (primary and duplicate samples) in well MW-6. No concentrations of total xylenes exceeded the RWQCB ESL Groundwater Screening

- Level (groundwater is not a current or potential drinking water resource) for ethylbenzene of 100 μ g/l during the current monitoring event.
- MTBE was detected above LADL in one of the four wells sampled. MTBE was detected in well MW-6 at concentrations of 3.3 μg/l and 3.1 μg/l (primary and duplicate samples). No concentrations of MTBE exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for MTBE of 1,800 μg/l during the current monitoring event.
- TPHg was detected above LADL in two of the four wells sampled. The maximum concentrations of TPHg detected in shallow groundwater were 620 μg/l and 610 μg/l (primary and duplicate samples) in well MW-6. TPHg concentrations were above the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHg of 210 μg/l in one of the wells sampled.
- TPHd was detected above LADL in three of the four wells sampled. The maximum concentrations detected were present in well MW-6 at concentration of 400 μ g/l and 370 μ g/l (primary and duplicate samples). TPHd concentrations were at or above the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHd (middle distillates) of 210 μ g/l in two of the wells sampled.
- TPHmo was detected above LADL in one of the four wells sampled (MW-13) at a concentration of 940 μ g/l. The TPHmo concentration detected in MW-13 was above the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHd (middle distillates) of 210 μ g/l.
- TPHk was detected above LADL in two of the four wells sampled. The maximum concentrations of TPHk detected were 420 μg/l and 400 μg/l (primary and duplicate samples) in well MW-6. TPHk concentrations were above the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHk (middle distillates) of 210 μg/l in one of the wells sampled.

Based on the results of the Fall 2010 groundwater monitoring event, ARCADIS makes the following recommendations:

- Continue annual groundwater monitoring on site due to the elevated concentrations of TPHg, TPHd, TPHmo, and benzene reported during the current monitoring event.
- Continue monitoring SPH.

7.0 LIMITATIONS

The environmental services described in this report have been conducted in general accordance with current regulatory guidelines and the standard of care exercised by environmental consultants performing similar work in the project area. No other

warranty, expressed or implied, is made regarding the professional opinions presented in this report. Please note this study did not include an evaluation of geotechnical conditions or potential geologic hazards.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions and the referenced literature. It should be understood that the conditions of a site can change with time as a result of natural processes or the activities of man at the site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which ARCADIS has no control.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. ARCADIS should be contacted if the reader requires any additional information or has questions regarding the content, interpretations presented, or completeness of this document.

8.0 SELECTED REFERENCES

- California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB). 2002. Authorization to Discharge Treated Groundwater Under the Requirements of Order No. 01-100, NPDES Permit No. CAG 912002. April 23.
- ———. 2007. Notice of General Permit Coverage for Discharge from the City of Oakland Municipal Service Center located at 7101 Edgewater Drive, Oakland, Alameda County, CA 94621, under the Requirements of Order No. R2-2006-0075, NPDES Permit No. CAG912002 (Fuel General Permit), March 12.
- 2008. Screening for Environmental Concerned Sites with Contaminated Soil and Groundwater. Interim Final – November 2007 (Revised May 2008).
 May.
- LFR Inc. (LFR). 2009. Groundwater Monitoring Report, Spring Semiannual, Municipal Service Center 7101 Edgewater Drive, Oakland, California. June 12.
- Ninyo & Moore. 2004. Groundwater Monitoring Report, Spring Semiannual, Municipal Service Center, 7101 Edgewater Drive, Oakland, California, Assignment No. G03-N&M-10. July 14.

Uribe & Associates (Uribe). 2002. Test/Observation Well Installation Report, U & A Project 291-03. April 2.

———. 2003. Final Report, Second Quarter 2003 Monitoring Report, City of Oakland Municipal Service Center. May.

smr-MSC-gw-Fall 2010-LC010060.doc Page 13

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	TPH-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	MTBE (µg/l)
	(feet)	(feet)	(feet)				7 0				, ,	(µg/l)	(μg/l)	
MW-1														
10/4/89	10.20			8020					540	65	26	14	22	
10/4/89	10.20			8240						120	46	43	78	
4/27/93	10.20			8020					<1,000	< 1.0	< 1.0	< 1.0	< 1.0	
4/19/95	10.20			8020					3,200	880	15	23	21	
7/27/95	10.20	4.62	5.58	8020					980	130	3.6	1.4	5.6	
11/20/95	10.20	6.08	4.12	8020					400	99	2.8	1.1	4.6	
2/21/96	10.20	4.62	5.58	8020					1,700	340	8.4	5.3	16	
5/13/96	10.20	4.33	5.87	8020					7,300	2,000	30	42	38	
8/27/96	10.20	5.25	4.95	8020					380	61	2.4	< 0.5	4.2	
2/23/98	10.20	1.75	8.45	8020		< 50	< 500	< 50	820	160	4.9	3	9.7	
8/19/98	10.20	4.78	5.42	8020	SGC	1,200			780	69	4.1	0.84	8.5	< 5.0
11/11/98	10.20	5.64	4.56											
2/23/99	10.20	3.41	6.79	8020	SGC	1,200	1,600	< 50	1,100	190	5	3	12	< 5.0
5/27/99	10.20	3.96	6.24											
8/24/99	10.20	4.92	5.28	8020	SGC	640	1,900	< 50	370	37	0.9	< 0.5	1.9	< 5.0
11/22/99	10.20	5.46	4.74											
1/18/00	10.05	5.41	4.64											
1/19/00	10.05			8020	SGC	50	< 200	< 50	660	43	2.3	1.1	6	< 5.0
5/11/00	10.05	4.63	5.42											
8/24/00	10.05	5.07	4.98											
8/25/00	10.05			8020	SGC	340	< 250	290	480	53	1.4	< 0.5	2.9	< 5.0
11/28/00	10.05	5.60	4.45											
2/27/01	10.05	3.95	6.10	8020	Filtered+SGC	270	< 250	< 61	1,500	110	6.3	< 1.5	9.9	< 15
5/17/01	10.05	4.00	6.05											
8/16/01	10.05	4.17	5.88		Filtered+SGC	280	< 200B	< 100	4,000	640	9.7	5.7	13	< 5.0
12/15/01	10.05	5.52	4.53											
4/9/02	10.05	3.78	6.27	8021	SGC	1,100	1,000		2,000	320	5.38	3.08	6.24	< 5
6/21/02	10.05	4.92	5.13											
9/13/02	10.05	5.52	4.53	8021	SGC	88 b,c	< 300	88	260	9.6	< 0.5	< 0.5	1.0	<2
4/22/03	10.05	4.41	5.64	8021B	SGC	570 L Y	< 300	660	1,900 Z	400.0	9.6	5.4	8.1	< 2.0
4/28/04	10.05	3.95	6.10	8260B	SGC	< 100	< 400	< 100	154	20	< 1.0	< 1.0	2.3	< 1.0
10/29/04	10.05	5.68	4.37	8260B	SGC	230 L Y	< 300	240	340 H Z	6.4	0.6	< 0.5	1.4	< 0.5
9/2/05 (1)	10.05	4.35	5.70	8260B	SGC	140 L Y	< 300	170	350	6.6	1.0	< 0.5	2.3	< 0.5
4/4/2006 (3)	10.05	2.24	7.81	8260B	SGC	830 L Y	< 300	1,100 L Y	3,700	470	13	7.8	6.3	<3.6
9/6/06	10.05	4.98	5.07	8260B	SGC	3,400 H L	400 L	3,100 H	480	4.2	1.0	< 0.5	1.9	< 0.5
4/5/07	10.05	3.56	6.49	8260B	SGC	500 L Y	< 300	490 L Y	1,500 Y	170	7.2	3.6	5.7	<1.3
10/2/07	10.05	5.59	4.46	8260B	SGC	600 Y	< 300	710 Y	460 Y	6.1	1.1	< 0.5	1.2	< 0.5
3/20/08 (8)	10.05	3.53	6.52	8260B	SGC	1,000 Y	< 300	960	1,600 Y	53	4.1	1.2	6.3	< 0.5
3120100	10.03	3.33	0.32	0200D	300	1,000 1	\ 300	200	1,000 1	33	7.1	1.4	0.5	~ 0.3

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µ g/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(μg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
11/21/08 (10)	10.05	5.48	4.57	8260B	SGC	110 Y	< 300	87 Y	210 Y	2.4	0.52	< 0.50	1.3	< 0.50
4/1/09	10.05	3.30	6.75	8260B	SGC	480 Y	< 300	540	1,300 Y	79	6.40	2.9	5.1	< 0.50
10/30/09	10.05	4.52	5.53	8260B	SGC	810Y	< 300	820Y	1,800Y	59	9.40	3.5	10.7	< 0.50
4/8/10	10.05	2.90	7.15	8260B	SPH: None; Odor	210 Y	< 300	190 Y	380	2.4	0.71	< 0.50	1.6	< 0.50
10/19/10	10.05	5.48	4.57		SPH: None									
MW-2														
10/4/89	10.47			8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89	10.47			8240						2	< 2.0	< 2.0	< 2.0	
4/27/93	10.47			8020					< 1,000	< 1.0	< 1.0	< 1.0	< 1.0	
4/19/95	10.47			8020					< 50	1.8	< 0.5	< 0.5	< 0.5	
7/27/95	10.47	6.22	4.25	8020					< 50	2.3	< 0.5	< 0.5	< 0.5	
11/20/95	10.47	7.49	2.98	8020					< 50	2.2	< 0.5	< 0.5	< 0.5	
2/12/96	10.47	6.68	3.79	8020					< 50	1.7	< 0.5	< 0.5	0.5	
5/13/96	10.47	6.32	4.15	8020						2	< 0.5	< 0.5	< 0.5	
8/27/96	10.47	6.84	3.63	8020						2.4	< 0.5	< 0.5	< 0.5	
2/24/98	10.47	5.44	5.03	8020		< 50	< 500	< 50		1.6	< 0.5	< 0.5	< 0.5	
8/19/98	10.47	6.56	3.91	8020	SGC	330			< 50	4.1	3.4	0.8	2.6	< 5.0
11/11/98	10.47	7.37	3.10											
2/23/99	10.47	8.68	1.79	8020	SGC	200	900	< 50	< 50	3.5	0.6	0.6	1.2	< 5.0
5/27/99	10.47	5.20	5.27											
8/24/99	10.47	6.75	3.72	8020	SGC	140	700	< 50	< 50	2.6	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99	10.47	7.58	2.89											
1/18/00	10.47	7.41	3.06	8020	SGC	60 a	660	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	10.47	6.43	4.04											
8/24/00	10.47	8.91	1.56	8020	SGC	170	440	130	< 50	2.4	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.47	7.35	3.12											
2/27/01	10.47	6.70	3.77	8020	Filtered+SGC	< 59	< 240	< 59	< 50	3.6	< 0.5	< 0.5	< 0.5	< 5
5/17/01	10.47	6.90	3.57											
8/16/01	10.47	6.95	3.52		Filtered+SGC	< 50	200B	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/15/01	10.47	7.21	3.26											
4/5/02	10.47	6.02	4.45	8021	SGC	200	400		< 50	2.9	< 0.5	< 0.5	< 0.5	< 5
6/21/02	10.47	8.07	2.40											
9/17/02	10.47	7.12	3.35	8021	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	<2
4/23/03	10.47	6.36	4.11	8021B	SGC	< 50	< 300	< 50	< 50	1.6	<.50	<.50	<.50	< 2.0
4/28/04	10.47	5.99	4.48	8260B	SGC	< 100	< 400	< 100	< 100	< 0.5	<1.0	< 1.0	1.3	< 1.0
9/1/05 (1)	10.47	6.08	4.39	8260B	SGC	< 50	< 300	< 50	< 50	2.8	< 0.5	< 0.5	< 0.5	0.8
4/4/2006 (3)	10.47	4.96	5.51	8260B	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	0.5	0.5
9/6/06	10.47	9.31	1.16											

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µ g/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(μg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
4/5/07	10.47	9.21	1.26	8260B	SGC	< 50	< 300	< 50	< 50	1.6	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07	10.47	10.81	-0.34											
3/20/08 (8)	10.47	12.36	-1.89	8260B	SGC	< 50	< 300	< 50	< 50	1.5	< 0.5	< 0.5	< 0.5	< 0.5
11/18/08	10.47	11.07	-0.60	8260B										
4/1/09	10.47	10.80	-0.33	8260B	SGC	< 50	< 300	< 50	< 50	1.3	< 0.5	< 0.5	< 0.5	< 0.5
4/1/09 dup				8260B	SGC	< 50	< 300	< 50	< 50	1.5	< 0.5	< 0.5	< 0.5	< 0.5
10/29/09	10.47	9.88	0.59											
4/8/10	10.47	8.00	2.47		SPH: None									
10/19/10	10.47	7.02	3.45		SPH: None									
MW-3														
10/4/89				8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89				8020 8240					< 30 	< 2.0	< 2.0	<2.0	< 2.0	
2/23/98				0240		< 50	< 500	< 50						
11/11/98		5.83												
2/23/99		J.63 			Submerged									
5/27/99		1.68			Submerged									
8/24/99		4.76												
11/22/99		6.46												
11/22/99		0.40			Destroyed									
11/22/99					Destroyed									
MW-4														
10/4/89	7.89			8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89	7.89			8240						< 2.0	< 2.0	< 2.0	< 2.0	
11/11/98	7.89	6.25	1.64											
2/23/99	7.89	3.10	4.79											
5/27/99	7.89	4.03	3.86											
8/24/99	7.89	5.07	2.82											
11/22/99	7.89	6.32	1.57											
11/22/99					Destroyed									
MW-5														
12/13/91	11.15			8020		1,900			13,000	1,500	190	970	2,500	
12/13/91	11.15			8020	Dup				16,000	1,400	180	870	2,500	
12/13/91	11.15			8240	-r					1,800	<250	1,000	3,800	
12/13/91	11.15			8240	Dup					1,600	<250	980	3,500	
4/27/93	11.15			8240	F	12,000			35,000	2,100	< 1.0	1,800	2,700	
4/19/95	11.15			8240		880	4,700		14,000	490	51	610	1,200	
7/27/95	11.15	6.29	4.86	8240		590	5,000		22,000	1,300	54	1,500	2,400	
		~· - /				370	-,000		,000	-,200	٠.	-,500	_,	

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
11/20/95	11.15	6.98	4.17	8020		< 50	< 50	< 50	8,900	430	31	610	880	
2/21/96	11.15	5.97	5.18	8020		480	< 50	< 50	1,000	540	65	700	970	
5/13/96	11.15	6.25	4.90	8020		< 50	< 50	< 50	5,900	430	26	580	760	
5/13/96	11.15			8020	Dup	< 50	< 50	< 50	7,300	360	22	49	640	
8/27/96	11.15	6.40	4.75	8020		2,000	< 51	< 51	6,600	430	27	600	650	
8/27/96	11.15			8020	Dup	6,600	< 51	< 51	6,300	410	25	580	620	
2/23/98	11.15	4.22	6.93	8020		< 50	< 500	< 50	740	19	1.4	41	34	
8/19/98	11.15	6.14	5.01	8020		1,400	< 250	1700	5,800	500	25	730	300	5,900
8/19/98	11.15	6.14	5.01	8260	SGC									6,700
11/11/98	11.15	6.51	4.64											
2/23/99	11.15	3.59	7.56	8020	SGC	2,000	700	< 50	6,700	300	26	800	690	1,600
5/27/99	11.15	5.71	5.44											
8/24/99	11.15	6.02	5.13	8020	SGC	220	2,000	< 50	2,100 e	190 e	5.5	340 e	78	380 e
11/22/99	11.15	6.16	4.99											
1/18/00	11.15	6.60	4.55											
1/19/00	11.15			8020	SGC	100	320	< 50	3,000	66 e	6.3	400 e	90	300 E (1,300)
5/11/00	11.15	5.62	5.53											
8/24/00	11.15	6.32	4.83	8020	SGC	4,800	560	6,600	12,000	220	21	430	91	1,200 (1,400)
11/28/00	11.15	6.47	4.68											
2/27/01	11.15	4.40	6.75	8020	Filtered+SGC	230	< 250	<61	6,300	150	7	350	55	830
5/17/01	11.15	5.77	5.38	8020	Filtered+SGC	190	< 200	< 50	7,500	140	7	580	101	170
8/16/01	11.15	4.87	6.28		Filtered+SGC	320	500B	< 100	2,300	46	< 5	110	24	850
12/15/01	11.15	5.50	5.65											
4/9/02	11.15	5.15	6.00	8021	SGC	480	260		8,000	110	5.95	650	53.9	166
6/21/02	11.15	6.01	5.14	8021	SGC	200 a,b,c	< 300	190	4,600	130	33	380	56	440
9/12/02	11.15	6.40	4.75	8021	SGC	620 b,c	< 300	650	4,000 J	120	< 0.5	260	16	580
4/22/03	11.15	4.69	6.46	8021B	SGC	1600 L Y	< 300	1800	6000	91	< 1.0	870	59.4	150 C
4/28/04	11.15	5.70	5.45	8260B	SGC	< 650	< 400	< 810	4780	34	< 1.0	560	44	47
10/29/04	11.15	5.73	5.42	8260B	SGC	840 L Y	< 300	940	3000	18	2.1	280	16.1	94
9/2/05 (1)	11.15	6.08	5.07	8260B	SGC	510 L Y	< 300	640	1600	13	1.4	55	8.6	92
4/5/06 (3)	11.15	3.64	7.51	8260B	SGC	840 L Y	< 300	850 H	3,400	14	2.1	280	13	31
9/6/06	11.15	6.21	4.94	8260B	SGC	340 Y	< 300	400 Y	2000	8.3	1.1	8.2	6.8	50
4/5/07	11.15	5.31	5.84	8260B	SGC	340 L Y	< 300	310 L Y	3,100 Y	9.3	< 2.0	230	13	38
10/2/07	11.15	6.51	4.64	8260B	SGC	400 Y	< 300	440	3,000 Y	11	1.4	100	6.8	46
3/20/08 (8)	11.15	5.37	5.78	8260B	SGC	1,400 Y	< 300	1,400	4,100 Y	8.4	1.7	270	12	23
11/21/08 (10)	11.15	6.51	4.64	8260B	SGC	660 Y	< 300	690 Y	2,600	11	1.7	240	6.5	20
4/2/09 (12)	11.15	4.89	6.26	8260B	SGC	730 Y	<300	840	4,800 Y	8.8	2.5	380	13.3	
10/30/09	11.15	4.89 5.86	5.29	8260B 8260B	SGC	1,100Y	< 300 < 300	1,100Y	4,800 f 3,100	8.8 5.2	2.5 <1.7	200	8.1	15 23
10/30/09dup				8260B	Dup	600Y	< 300	620Y	3,300	5.3	<1.7	210	8.7	20

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
4/0/10	11.15	4.16	6.00	92600	CDII N	1200 W	1200	1400 37	4.500	6.5	2.4			0.4
4/8/10	11.15	4.16	6.99	8260B	SPH: None	1300 Y	< 300	1400 Y	4,500	6.5	2.4	240	12	8.4
10/19/10	11.15	6.44	4.71		SPH: None									
MW-6														
12/13/91	10.98			8020		520			780	110	2.7	< 2.5	5.5	
12/13/91	10.98			8240						95	5	< 5	< 5	
4/27/93	10.98			8020		<1,000			<1,000	430	4	5	10	
4/19/95	10.98			8020		6,700			5,700	40	< 0.8	3.9	29	
4/19/95	10.98			8020	Dup	3,700			3,000	310	3.1	2.7	100	
7/27/95	10.98	7.09	3.89	8020		3,900			6,100	430	15	200	600	
7/27/95	10.98			8020	Dup	2,600			6,300	420	15	200	600	
11/20/95	10.98	7.89	3.09	8020		850			6,800	160	4.6	8	240	
11/20/95	10.98			8020	Dup				3,600	130	11	4.4	200	
2/21/96	10.98	7.40	3.58	8020	Filtered+SGC	1,700			2,800	230	2.8	3.8	44	
2/21/96	10.98			8020	Dup	2,500			2,200	280	3	4	4.6	
5/13/96	10.98	7.10	3.88	8020		400	< 50	< 50	3,100	430	12	5.2	67	
8/27/96	10.98	7.42	3.56	8020		3,100			4,200	300	9.3	110	110	
8/19/98	10.98				SPH: 0.125 ft.									
11/11/98	10.98	7.09	3.93		SPH: 0.05 ft.									
2/23/99	10.98	7.31	3.67		SPH: NM									
5/27/99	10.98	6.91	4.25		SPH: 0.20 ft.									
8/24/99	10.98	7.46	3.72		SPH: 0.03 ft.									
11/22/99	10.98	7.96	3.15		SPH: 0.16 ft.									
1/18/00	10.98	8.08	3.05		SPH: 0.19 ft.									
5/11/00	10.98	7.52	4.47		SPH: 0.01 ft.									
8/24/00	10.98	7.50	3.53		SPH: 0.06 ft.									
11/28/00	10.98	6.39	4.62		SPH: 0.04 ft.									
2/26/01	10.98	7.80	3.50	8020	SPH: 0.40 ft., f	820	< 240	< 60	6,100	181	< 5	14.2	< 5	< 50
2/26/01	10.98			8260B						270	3	9	3	(19)
5/17/01	10.98	7.57	3.66		SPH: 0.32 ft.									
8/16/01	10.98	7.75	3.49		SPH: 0.32 ft., f	740	200B	< 100	4,200	360	4.6	13	12	14
12/15/01	10.98	7.58	3.40		SPH: 0.07 ft.									
4/3/02	10.98	6.92	4.06		SPH: 0.11 ft.									
6/21/02	10.98	7.05	3.93		SPH: 0.19 ft.									
9/12/02	10.98	7.22	4.02		SPH: 0.33 ft.									
4/22/03	10.98	4.71	6.27		SPH: 0.16 ft.									
4/28/04	10.98	5.09	5.89		SPH: 0.23 ft.									
10/27/04	10.98	6.12	4.86		SPH: product on probe									

7101 Edgewater Drive, Oakland, California

Name	Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
1727/106 10.98 4.11 SPH: 0.57 ft.	Date	Elevation (feet)	Groundwater (feet)	Elevation (feet)	Method		(µg/l)	(µg/l)	(µg/l)	(µ g/l)	(µg/l)	(µg/l)	benzene (µg/l)	Xylenes (μg/l)	(µg/l)
1727/106 10.98 4.11 SPH: 0.57 ft.		<u> </u>				<u> </u>									
96066 10.98															
96/66 10.98															
44407 10.98										,					
10/2/07 10.98 7.25 3.73 82/08 SGC 2.400 340 Y 2000 890 Y 270 3.8 5.5 3 7.8															
SPH: Residual Product noted while bailings SPH: None S															
Note	10/2/07	10.98	7.25	3.73	8260B		2,400	340 Y	2000	890 Y	270	3.8	5.5	3	7.8
3/20/08															
11/21/08 10.98	(0)														
11/21/08 10.98	3/20/08 (8)	10.98	6.59	4.39	8260B			820	5,900	1,100 Y	500	3.5	5.9	3.1	7.7
11/21/08 (***) 10.98															
4/1/09 10.98 4.48 6.50 SPH: 0.03 ft	11/21/08 (10)	10.98	6.06	4.92	8260B		1,500 Y	< 300	1,200 Y	450 Y	96	1.9	< 0.50	1.2	5.7
10/30/09 10/98 4.20 6.78 SPH: None -															
A X 10 10.98 4.20 6.78 SPH: None					8260B	SGC	1.200Y	< 300	1.000Y	560Y	98	4.1	3.0	4.76	5.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							*		*						
MW-7	10/19/10				8260B	SPH: None; SGC	400	< 300	420	620	100	1.7	< 1.0	2.0 B1	3.3
MW-7 12/13/91 11.51 8020 <50						SGC	370	< 300							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MW-7														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12/13/91	11.51			8020		< 50			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12/13/91	11.51			8240						< 5	< 5	< 5	< 5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4/27/93	11.51			8240		< 1,000			< 1,000	< 1.0	< 1.0	< 1.0	< 1.0	
11/20/95 11.51 8.48 3.03 8020 <50	4/19/95	11.51			8240		< 50	< 1,000		< 50	< 2.0	< 2.0	< 2.0	< 2.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7/27/95	11.51	6.87	4.64	8240		< 50	< 1,000		< 50	< 2.0	< 2.0	< 2.0	< 2.0	
5/13/96 11.51 6.95 4.56 8020 <50	11/20/95	11.51	8.48	3.03	8020		< 50			< 50	< 0.5	< 0.5	< 0.5	1.5	
8/27/96 11.51 6.80 4.71 8020	2/21/96	11.51	6.29	5.22	8020		< 50			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
8/19/98 11.51 6.88 4.63	5/13/96	11.51	6.95	4.56	8020		< 50				< 0.5	< 0.5	< 0.5	< 0.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8/27/96	11.51	6.80	4.71	8020						< 0.5	< 0.5	< 0.5	< 0.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8/19/98	11.51	6.88	4.63											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11/11/98	11.51	7.40	4.11											
8/24/99 11.51 6.29 5.22 8020 SGC <50	2/23/99	11.51	5.57	5.94	8020		< 50	< 200	< 50	80	< 0.5	< 0.5	< 0.5	1	< 5.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5/27/99	11.51	6.56	4.95											
1/18/00 11.51 7.31 4.20 <t< td=""><td>8/24/99</td><td>11.51</td><td>6.29</td><td>5.22</td><td>8020</td><td>SGC</td><td>< 50</td><td>< 200</td><td>< 50</td><td>< 50</td><td>< 0.5</td><td>< 0.5</td><td>< 0.5</td><td>< 0.5</td><td>5</td></t<>	8/24/99	11.51	6.29	5.22	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	5
1/18/00 11.51 7.31 4.20 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
1/19/00 11.51 8020 SGC <50															
8/24/00 11.51 7.11 4.40 8020 <50 <50 <50 <0.5 <0.5 <0.5 <5.0	1/19/00	11.51			8020	SGC	< 50	< 200	< 50	54	1.5	1.5	2.4	3.8	< 5.0
	5/11/00	11.51	6.41	5.10											
					8020		< 50	< 250	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
		11.51	7.30	4.21											

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	ΤΡΗ-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	MTBE (μg/l)
Date	(feet)	(feet)	(feet)	Method		(µg/1)	(µg/I)	(µg/I)	(µg/I)	(µg/I)	(µg/I)	(μg/l)	γylenes (μg/l)	(µg/I)
2/27/01	11.51	5.75	5.76	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
5/17/01	11.51	6.65	4.86											
8/16/01	11.51	5.97	5.54		Filtered+SGC	< 50	600B	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/15/01	11.51	6.43	5.08											
4/8/02	11.51	6.17	5.34	8021	SGC	80	< 200		< 50	< 0.5	0.5	0.6	< 0.5	< 5
6/21/02	11.51	6.75	4.76	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.3
9/12/02	11.51	7.05	4.46	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.6
4/22/03	11.51	6.24	5.27	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	4 C
4/28/04	11.51	6.61	4.90	8260B	SGC	< 100	< 400	< 100	< 100	1.6	<1.0	< 1.0	< 1.0	< 1.0
9/2/05 (1)	11.51	6.56	4.95	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.2
4/5/06 (3)	11.51	4.58	6.93	8260B	SGC	< 50	< 300	< 50	< 50	2.7	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	11.51	6.67	4.84											
4/5/07	11.51	6.13	5.38	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.7
10/2/07	11.51	7.07	4.44											
3/20/08 (8)	11.51	6.24	5.27	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.7
3/20/08 dup				8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.6
11/18/08	11.51	7.40	4.11											
4/2/09 (12)	11.51	6.95	4.56	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	1.3
10/29/09	11.51	6.60	4.91	8260B	SGC									
4/8/10	11.51	5.11	6.4		SPH: None									
10/19/10	11.51	7.05	4.46		SPH: None									
MW-8														
11/20/96	12.22			8020		880			< 50	0.66	< 0.5	< 0.5	< 0.5	
11/20/97	12.22	9.59	2.63	8020		200			< 50	< 0.5	< 0.5	< 0.5	< 0.5	2
2/24/98	12.22	8.42	3.80	8020		< 50	< 500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
6/8/98	12.22	9.57	2.65	8020		1,200	1,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
8/19/98	12.22	9.49	2.73	8020	SGC	< 50	< 250	< 50	< 50	1.6	3.4	1	2.8	< 5.0
11/11/98	12.22	9.64	2.58	8020	SGC	< 50	< 200	< 50	< 50	0.9	0.8	0.6	2.3	< 5.0
2/23/99	12.22	11.53	0.69	8020		700	1,500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99	12.22	9.65	2.57	8020		< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/24/99	12.22	9.62	2.60	8020	SGC	70	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99	12.22	9.64	2.58	8020	SGC	57	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
1/18/00	12.22	8.31	3.91	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	12.22	9.69	2.53	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	1.3	< 0.5	2.1	< 5.0
8/24/00	12.22	9.40	2.82											
8/25/00	12.22			8020	SGC	85	<250	< 50	< 50					
11/28/00	12.22	9.40	2.83	8020	SGC	< 50	910	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01	12.22	9.50	2.72	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
5/17/01	12.22	9.71	2.51											
5/18/01	12.22			8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	12.22	9.80	2.42		Filtered+SGC	< 50	< 200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/15/01	12.22	9.28	2.94	8021	SGC	390	1,300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/8/02	12.22	9.55	2.67	8021	SGC	440	800		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
6/21/02	12.22	9.71	2.51											
9/18/02	12.22	9.86	2.36	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/22/03	12.22	9.54	2.68	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2
4/28/04	12.22													
10/27/04	12.22	$NM^{(4)}$												
4/5/06 (3)	12.22	8.73	3.49	8260B	SGC	54 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	12.22	9.50	2.72	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/3/07	12.22	9.58	2.64	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	12.22	9.54	2.68	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/21/08 (8)	12.22	9.61	2.61	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08 (10)	12.22	9.58	2.64	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 (12)	12.22	9.54	2.68	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	12.22	9.67	2.55	8260B	SGC	< 50	<300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/8/10	12.22	9.57	2.65		SPH: None									
10/19/10	12.22	9.61	2.61		SPH: None									
MW-9				0000		4 000								
11/20/96	10.77	 5 01		8020		1,900			240	21	0.81	1.8	2.2	
11/20/97	10.77	7.91	2.86	8020					300	20	< 0.5	< 0.5	1.8	<1.0
2/24/98	10.77	6.11	4.66	8020		< 50	< 500	< 50	2,200	540	5.6	1.6	4.9	
6/8/98	10.77	7.14	3.63	8020	000	1,800	890	< 50	840	450	6.1	3.3 0.99	5.3	
8/19/98	10.77	7.88	2.89	8020	SGC SGC	190	<250	160	740	370	8.6		7.3	< 5.0
11/11/98 2/23/99	10.77 10.77	8.23 6.65	2.54 4.12	8020 8020	SGC	< 50 1,100	230 3,700	<50 <50	700 1,100	130 620	4.3 9.7	< 0.5 1.5	3.9 7.7	<5.0 <5.0
5/27/99	10.77	7.70	3.07	8020	SGC	70	3,700	< 50 < 50	950	470	9.7 11	1.5	9.2	< 5.0 < 5.0
8/24/99	10.77	8.12	2.65	8020	SGC	890	1,700	< 50	290		2.8	< 0.5	3	< 5.0 < 5.0
11/22/99	10.77	8.33	2.44	8020	SGC	1,000	6,000	< 50 < 50	170	45 12	1.8	< 0.5	2	<5.0 <5.0
1/18/00	10.77	8.63	2.44	8020	SGC	200 a	2,300	< 50 < 50	160	5.7	1.8	0.6	4.2	
5/11/00	10.77	8.63 7.70	3.07	8020 8020	SGC	200 a 180 a	2,300 980	< 100	1,050	280	7.0	<2.5	4.2 5.9	<5.0 <25
8/24/00	10.77	8.31	2.46	8020 	300	160 a	980	< 100 	1,030	280	7.0	< 2.3 	3.9 	
8/25/00	10.77	0.31	2.40	8020	SGC	580	2,200	170	180	23	2.4	< 0.5	2.7	< 5.0
11/28/00	10.77	8.45	2.32	8020	SGC	200	1,600	< 50	130	1.9	< 0.5	< 0.5	< 0.5	<5.0 <5.0
11/28/00	10.77	8.45	2.32		Filtered+SGC	< 50	<200	< 50		1.9				< 5.0
2/26/01	10.77	6.40	4.37	8020	Filtered+SGC	120	<200	< 50	142	33	1.8	< 0.5	< 0.5	< 5.0
2/20/01	10.77	0.70	١٠.٦	0020	I litered SGC	120	\200	\30	174	33	1.0	\0. 5	\0. 3	₹3.0

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
5/17/01	10.77	9.88	0.89											
5/18/01	10.77			8020	Filtered+SGC	< 50	< 200	< 50	74	4.6	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.77	8.05	2.72		Filtered+SGC	< 50	< 200	< 100	70	0.62	< 0.5	< 0.5	< 0.5	< 5
12/16/01	10.77	7.75	3.02	8021	SGC	1,400	4,100	< 50	210	15	1.6	< 0.5	2.2	< 5
4/5/02	10.77	7.50	3.27	8021	SGC	870	1,000		1,498	367	11	2.1	7.8	< 5
6/20/02	10.77	8.27	2.50	8021	SGC	< 50	< 300	< 50	430	180	5.7	2.4	4.15	< 2
9/18/02	10.77	8.25	2.52	8021	SGC	63 b,c	< 300	60	250	49	5.8	< 0.5	3.1	<2
4/22/03	10.77	7.25	3.52	8021B	SGC	< 50	< 300	< 50	69	4.1 C	< 0.5	< 0.5	0.9	<2
4/28/04	10.77													
10/27/04	10.77	$NM^{(4)}$												
9/6/06	10.77	8.44	2.33	8260B	SGC	210 Y	< 300	150 Y	240	58	5.3	< 0.5	5.68	< 0.5
4/3/07	10.77	8.28	2.49	8260B	SGC	180 H Y	< 300	140 H	240 Z	27	4.2	< 0.5	5.32	< 0.5
4/3/07	10.77			8260B	Dup	190 H Y	< 300	160 H	260 Z	28	4.5	< 0.5	5.87	< 0.5
10/3/07	10.77	8.58	2.19	8260B	SGC	110 Y	< 300	110 Y Z	240 Y	1	2.4	< 0.5	3.53	< 0.5
3/20/08 (8)	10.77	8.46	2.31	8260B	SGC	170 Y	< 300	150 Y	230	65	4.2	< 0.5	5.13	< 0.5
3/20/08 dup				8260B	SGC	190 Y	< 300	180 Y	250	66	4.4	< 0.5	5.5	< 0.5
11/21/08 (10)	10.77	8.63	2.14	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 (12)	10.77	8.08	2.69	8260B	SGC	130 Y	380	53 Y	70 Y	82	1.4	< 0.50	1.0	< 0.50
10/30/09	10.77	8.91	1.86	8260B	SGC	220Y	< 300	130Y	< 50	< 0.50	< 0.50	< 0.50	0.61	< 0.50
4/8/10	10.77	7.37	3.4	8260B	SPH: None	110 Y, F	< 300	52 Y, F						
4/8/10 dup				8260B		250 Y, F	< 300	170 Y, F						
4/29/10	10.77	7.3	3.47	8260B	SPH: None	90 Y, F	< 300	< 50	87	5.0	1.2	< 0.50	1.8	< 0.50
4/29/10 dup				8260B		<50 F	< 300	< 50	98	4.9	1.2	< 0.50	1.7	< 0.50
10/19/10	10.77	8.37	2.40	8260B	SPH: None; SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	0.51 B1	< 0.50
MW-10														
11/20/96	10.59			8020		940			< 50	49	0.59	0.54	1.2	
11/20/97	10.59	7.70	2.89	8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	
2/24/98	10.59	4.39	6.20	8020		< 50	< 500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
6/8/98	10.59	6.94	3.65	8020		500	< 500	< 50	< 50	7.3	< 0.5	< 0.5	< 0.5	
8/19/98	10.59	6.99	3.60	8020	SGC	240	520	110	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/11/98	10.59	7.57	3.02	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/23/99	10.59	5.51	5.08	8020		170	1,200	< 50	< 50	1.3	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99	10.59	6.72	3.87	8020	SGC	< 50	< 200	< 50	350	170	1.5	0.5	2.3	< 5.0
8/24/99	10.59	7.27	3.32	8020	SGC	140	300	< 50	380	160 e	< 0.5	< 0.5	2.6	< 5.0
11/22/99	10.59	7.71	2.88	8020	SGC	570	3,400	< 50	110	5.1	< 0.5	< 0.5	0.72	< 5.0
1/18/00	10.59	7.77	2.82											
1/19/00	10.59			8020	SGC	120 a,b	1,200	< 50	100	< 0.5	< 0.5	0.8	< 0.5	< 5.0
5/11/00	10.59	7.00	3.59	8020	SGC	110 a	990	< 50	145	1.62	0.5	0.5	0.9	< 5.0

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µ g/l)	(µg/l)	benzene	Xylenes	(µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
8/24/00	10.59	7.31	3.28											
8/25/00	10.59			8020	SGC	430	1,300	110	< 50	1.0	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.59	7.90	2.69	8020	SGC	220	1,500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01	10.59	5.80	4.79	8020	Filtered+SGC	85	< 230	< 57	< 50	1.3	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.59	6.27	4.32											
5/18/01	10.59			8020	Filtered+SGC	< 50	< 200	< 50	< 50	0.7	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.59	8.75	1.84		Filtered+SGC	< 50	< 200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/16/01	10.59	6.97	3.62	8021	SGC	410	2,100	< 50	< 50	2.4	< 0.5	< 0.5	< 0.5	< 5
4/8/02	10.59	6.51	4.08	8021	SGC	220	300		< 50	1.1	< 0.5	< 0.5	< 0.5	< 5
6/20/02	10.59	8.10	2.49	8021	SGC	1,100 a,c	6,200	< 50	120	34	< 0.5	< 0.5	< 0.5	<2
9/17/02	10.59	7.66	2.93	8021	SGC	150 a,c	880	< 50	130 a,c,j	32	< 0.5	2.3	< 0.5	<2
4/22/03	10.59	6.81	3.78	8021B	SGC	< 50	< 300	< 50	51	1.0 C	<.50	1.2	<.50	<2
4/28/04	10.59	6.70	3.89	8260B	SGC	< 100	<400	< 100	114	14	<1.0	6.9	5.2	3.5
10/28/04	10.59	6.98	3.61	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	10.59	6.76	3.83	8260B	SGC	< 50	< 300	< 50	110	2.4	< 0.5	< 0.5	0.7	< 0.5
4/5/06 (3)	10.59	4.86	5.73	8260B	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.59	9.01	1.58	8260B	SGC	98 H Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/07	10.59	8.99	1.60	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	10.59	9.78	0.81	8260B	SGC	< 50	< 300	< 50	< 50	30	< 0.5	< 0.5	< 0.5	< 0.5
3/21/08 (8)	10.59	10.20	0.39	8260B	SGC	< 50	< 300	< 50	< 50	3.9	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08 (10)	10.59	9.55	1.04	8260B	SGC	< 50	< 300	< 50	< 50	11	< 0.50	< 0.50	< 0.50	< 0.50
11/19/08 dup				8260B	SGC	< 50	< 300	< 50	< 50	11	< 0.50	< 0.50	< 0.50	< 0.50
4/1/09	10.59	7.52	3.07	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	10.59	8.80	1.79	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/8/10	10.59	6.23	4.36		SPH: None	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/19/10	10.59	7.38	3.21		SPH: None									
MW-11														
1/18/00	11.60	7.08	4.52											
1/19/00	11.60			8020	SGC	< 50	500	< 50	220	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	11.60	5.95	5.65	8020	SGC	< 50	430	< 50	600	23	2.1	18	15	< 5.0
8/24/00	11.60	6.58	5.02	8020		< 50	< 250	< 50	110	5.9	< 0.5	0.73	0.64	< 5.0
11/28/00	11.60	6.91	4.69	8020	SGC	< 50	< 200	< 50	180	4	< 0.5	1.9	< 0.5	< 5.0
2/27/01	11.60	5.65	5.95	8020	Filtered+SGC	86	< 240	< 60	720	29	5.2	38	36	< 5.0
5/17/01	11.60	6.85	4.75	8020	Filtered+SGC	< 50	< 200	< 50	720	36	3.4	15	18	9.7
8/16/01	11.60	6.01	5.59		Filtered+SGC	< 50	500B	< 100	110	4.8	< 0.5	1.4	< 0.5	< 5
12/15/01	11.60	6.26	5.34	8021	SGC	200	300	< 50	170	1.7	0.6	2.4	1.8	< 2
4/5/02	11.60	5.47	6.13	8021	SGC	160	< 200		330	8.9	2.0	6.9	8.7	< 5
6/21/02	11.60	6.17	5.43	8021	SGC	< 50	< 300	< 50	280	16	1.8	8.7	9.6	3.6

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	TPH-d (μg/l)	TPH-mo (µg/l)	TPH-k (μg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	MTBE (μg/l)
	(feet)	(feet)	(feet)									(µg/l)	(μg/l)	
9/12/02	11.60	6.60	5.00	8021	SGC	< 50	< 300	< 50	93	< 0.5	< 0.5	1.1	< 0.5	2.1
4/24/03	11.60	5.71	5.89	8021B	SGC	< 50	< 300	< 50	320	21	2.1	12	6.13	8.9
4/28/04	11.60	5.92	5.68	8260B	SGC	< 100	< 400	< 100	360	18	< 1.0	6.5	4.5	4
10/27/04	11.60	6.59	5.01	8260B	SGC									
9/2/05 (1)	11.60	6.22	5.38	8260B	SGC	< 50	< 300	< 50	85	< 0.5	< 0.5	< 0.5	< 0.5	4.5
4/4/06 (3)	11.60	4.17	7.43	8260B	SGC	71 LY	< 300	75 L Y	230	5.7	0.9	14	7.0	6.5
4/4/06	11.60			8260B	dup	< 50	< 300	55 L Y	220	6.5	1.0	15	7.3	7.4
9/6/06	11.60	6.46	5.14											
4/5/07	11.60	5.60	6.00	8260B	SGC	66 Y	< 300	55 Y	270 Y	9.6	0.7	7.3	2.4	11
10/2/07	11.60	6.83	4.77											
3/20/08 (8)	11.60	6.83	4.77	8260B	SGC	< 50	< 300	< 50	160	3.5	< 0.5	5.4	0.92	13
11/18/08	11.60	7.00	4.60											
4/2/09 (12)	11.60	5.24	6.36	8260B	SGC	< 50	< 300	< 50	94 Y	0.98	< 0.50	2.9	< 0.50	13
10/29/09	11.60	6.33	5.27	8260B	SGC									
4/8/10	11.60	4.51	7.09		SPH: None									
10/19/10	11.60	6.67	4.93		SPH: None									
MW-12														
1/18/00	10.43	8.11	2.32											
1/19/00	10.43			8020	SGC	1,800 a	11,000	< 50	200	< 0.5	3.4	1.5	8.4	< 5.0
5/11/00	10.43	6.78	3.65	8020	SGC	2,400 a	4,900	< 100	370	< 0.5	< 0.5	< 0.5	0.9	< 5.0
8/24/00	10.43	7.56	2.87											
8/25/00	10.43			8020	SGC	3,500	5,000	3,700	170	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.43	8.13	2.30	8020	SGC	2,100	14,000	< 50	290	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.43	8.13	2.30		Filtered+SGC	50	< 200	< 50						
2/27/01	10.43	6.00	4.43	8020	Filtered+SGC	320	< 250	66	110	1.4	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.43	7.01	3.42	8020	Filtered+SGC	< 50	< 200	< 50	220	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.43	8.47	1.96	8020	Filtered+SGC	200	300B	< 100	160	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/8/02	10.43	6.65	3.78	8021	SGC	500	500		180	< 0.5	< 0.5	0.7	<1.5	< 5
6/21/02	10.43	7.10	3.33	8021	SGC	1,100 a,b,c	3,000 h	640	180	< 0.5	< 0.5	0.63	1.62	<2
9/17/02	10.43	7.75	2.68	8021 8021P	SGC	220 a,b,c	360	190	130	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/22/03	10.43	6.60	3.83	8021B	SGC	140 L Y	< 300	120	150	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04	10.43	6.60	3.83	8260B	SGC	<550	1,020	< 100	< 100	< 0.5	< 1.0	< 1.0	<1.0	<1.0
10/29/04	10.43	7.87	2.56	8260B	SGC	240 H L Y	460	180	170 H	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05 (1)	10.43	7.04	3.39	8260B	SGC	< 50	< 300	< 50	170	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05 (1)	10.43	7.04	3.39	8260B	SGC	110 L Y	< 300	120	150	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/06 (3)	10.43	4.49	5.94	8260B	SGC	110 Y	< 300	110 Y	110	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.43	7.43	3.00	8260B	SGC	230 Y	< 300	200 Y	120	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation (feet)	Groundwater (feet)	Elevation (feet)	Method		(µ g/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes (µg/l)	(µg/l)
	(reet)	(reet)	(reet)									(µg/l)	(µg/1)	
4/5/07	10.43	6.58	3.85	8260B	SGC	340 H Y	360 H L	230 H Y	160 Y	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07	10.43	8.14	2.29	8260B	SGC	290 Y	< 300	230	160 Y	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/19/08	10.43	6.45	3.98	8260B	SGC	620 Y	340	430	130 Y	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/21/08 (10)	10.43	8.27	2.16	8260B	SGC	170 Y	< 300	120 Y	59 Y	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/1/09	10.43	6.30	4.13	8260B	SGC	330 Y	< 300	300	100 Y	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/29/09	10.43	7.73	2.70	8260B	SGC	280Y	< 300	220Y	160Y	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/8/10	10.43	6.07	4.36	8260B	SPH: None	320 Y	< 300	250	140	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/19/10	10.43	7.85	2.58		SPH: None									
MW-13														
1/18/00	11.34	9.63	1.71	8020	SGC	8,800 a	120,000	< 50	< 50	< 0.5	0.8	< 0.5	< 0.5	< 5.0
5/11/00	11.34	10.12	1.22	8020	SGC	11,000 a	110,000	< 500	70	1.6	5.4	1.2	7.6	< 5.0
8/24/00	11.34	10.22	1.12											
8/25/00	11.34			8020	SGC	3,100	13,000	1,200	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	11.34	10.50	0.84	8020	SGC	2,400	36,000	< 1300	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	11.34	10.50	0.84		Filtered+SGC	280	1,100	< 50						
2/26/01	11.34	9.60	1.74	8020	Filtered+SGC	100	< 260	< 64	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	11.34	10.10	1.24											
5/18/01	11.34			8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	11.34	10.50	0.84		Filtered+SGC	< 50	300B	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/16/01	11.34	9.43	1.91	8021	SGC	1,900	18,000	< 250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/8/02	11.34	10.24	1.10	8021	SGC	440	900		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
6/20/02	11.34	10.75	0.59	8021	SGC	270 a,c	1,500 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	11.34	10.60	0.74	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/22/03	11.34	10.46	0.88	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
4/28/04	11.34	10.22	1.12	8260B	SGC	< 100	799	< 100	< 100	< 0.5	< 1.0	< 1.0	<1.0	< 1.0
10/28/04	11.34	9.50	1.84	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	11.34	9.56	1.78	8260B	SGC	< 50	320	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/5/06 (3)	11.34	7.86	3.48	8260B	SGC	180 H Y	910	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	11.34	10.53	0.81	8260B	SGC	150 H Y	730	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/07	11.34	9.73	1.61	8260B	SGC	58 H Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	11.34	10.18	1.16	8260B	SGC	120 Y	460	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/20/08 (8)	11.34	9.54	1.80	8260B	SGC	53 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/21/08 (10)	11.34	10.41	0.93	8260B	SGC	120 Y	630	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 (12)	11.34	10.41	0.93	8260B	SGC	110 Y	610	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	11.34	9.65	1.69	8260B	SGC	81Y	650	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/8/10	11.34	9.96	1.38	8260B	SPH: None	61 Y	330	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/19/10	11.34	9.50	1.84	8260B	SPH: None; SGC	150 Y	940	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation (feet)	Groundwater (feet)	Elevation (feet)	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene (µg/l)	Xylenes (µg/l)	(/ g/l)
MW-14		ı				ı								
1/18/00	10.05	7.37	2.68	8020	SGC	1,700 a	22,000	< 50	120	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	10.05	6.73	3.32	8020	SGC	360 a	4,300	< 100	120	< 0.5	< 0.5	< 0.5	0.5	<5.0
8/24/00	10.05	7.30	2.75		550									
8/25/00	10.05			8020	SGC	1,000	3,100	460	90	6.3	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.05	7.40	2.65	8020	SGC	380	6,400	< 250	140	7.4	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.05	7.40	2.65		Filtered+SGC	< 50	< 200	< 50						
2/26/01	10.05	6.20	3.85	8020	Filtered+SGC	150	<230	< 58	73	2.3	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.05	7.74	2.31											
5/18/01	10.05			8020	Filtered+SGC	120	< 200	< 50	100	11	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.05	7.85	2.20		Filtered+SGC	< 50	< 200	< 100	60	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/16/01	10.05	6.60	3.45	8021	SGC	1,110	3,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/9/02	10.05	6.58	3.47	8021	SGC	870	1,100		250	< 0.5	< 0.5	< 0.5	< 0.5	< 5
6/20/02	10.05	7.52	2.53	8021	SGC	< 50	310 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	10.05	7.55	2.50	8021	SGC	< 50	< 300	< 50	< 50	1.3	< 0.5	0.80	< 0.5	<2
4/22/03	10.05	6.71	3.34	8021B	SGC	< 50	< 300	< 50	61	4.2	< 0.5	1.0	< 0.5	12.0
4/28/04	10.05	6.81	3.24	8260B	SGC	< 230	< 400	< 100	241	1.4	< 1.0	< 1.0	< 1.0	< 1.0
10/28/04	10.05	6.99	3.06	8260B	SGC	< 50	< 300	< 50	56	3.5	< 0.5	< 0.5	< 0.5	0.5
10/28/04	10.05			8260B	dup	< 50	< 300	< 50	53	1.9	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	10.05	7.60	2.45	8260B	SGC	< 50	< 300	< 50	79	6.7	< 0.5	< 0.5	< 0.5	0.7
4/5/06 (3)	10.05	5.91	4.14	8260B	SGC	50 Y	< 300	< 50	< 50	1.7	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.05	7.70	2.35	8260B	SGC	140 H Y	< 300	79 H Y	60	< 0.5	< 0.5	< 0.5	< 0.5	0.51
4/4/07	10.05	7.52	2.53	8260B	SGC	100 H Y	< 300	50 H Y	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/07	10.05			8260B	Dup	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	10.05	8.45	1.60	8260B	SGC	61 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/20/08 (8)	10.05	7.80	2.25	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/21/08 (10)	10.05	8.45	1.60	8260B	SGC	150 Y	660	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 (12)	10.05	7.20	2.85	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	10.05	9.11	0.94	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/8/10	10.05	6.62	3.43	8260B	SPH: None	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/19/10	10.05	7.23	2.82	8260B	SPH: None; SGC	210	< 300	110	54	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-15														
1/18/00	12.36	10.56	1.80	8020	SGC	12,000 a	89,000	< 50	110	3.8	2.1	1	4.6	< 5.0
5/11/00	12.36	10.03	2.33	8020	SGC	120 a	590	< 50	90	0.9	0.9	< 0.5	3.3	< 5.0
8/24/00	12.36	10.22	2.14											
8/25/00	12.36			8020	SGC	1,900	8,600	1,000	< 50	1.9	< 0.5	< 0.5	1.5	< 5.0
11/28/00	12.36	10.30	2.06	8020	SGC	2,500	36,000	< 1300	80	1.7	< 0.5	< 0.5	1.6	< 5.0
11/28/00	12.36	10.30	2.06		Filtered+SGC	73	< 200	< 50						

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
2/26/01	12.36	9.30	3.06	8020	Filtered+SGC	190	< 240	< 60	55	0.6	< 0.5	< 0.5	0.5	< 5.0
5/17/01	12.36	10.09	2.27											
5/18/01	12.36			8020	Filtered+SGC	210	<230	< 57	66	1.5	< 0.5	< 0.5	2.1	< 5.0
8/16/01	12.36	10.20	2.16		Filtered+SGC	< 50	B500	< 100	< 50	< 0.5	< 0.5	< 0.5	2.4	< 5
12/16/01	12.36	9.80	2.56	8021	SGC	3,800	15,000	< 250	< 50	< 0.5	< 0.5	< 0.5	2	< 5
4/5/02	12.36	9.58	2.78	8021	SGC	1,000	1,400		< 50	< 0.5	< 0.5	< 0.5	2.3	< 5
6/20/02	12.36	10.24	2.12	8021	SGC	670 a,c	2,700 h	95 c,i	< 50	0.83	< 0.5	< 0.5	2.20	<2
9/18/02	12.36	9.89	2.47	8021	SGC	70 a,c	< 300	< 50	< 50	< 0.5	< 0.5	1.5	1.71	<2
4/22/03	12.36	9.55	2.81	8021B	SGC	< 50	< 300	< 50	< 50	1 C	<.50	1.4	1.9	<2
4/28/04	12.36	9.68	2.68	8260B	SGC	< 250	567	< 100	< 100	< 0.5	< 1.0	< 1.0	< 1.0	2.8
10/28/04	12.36	9.58	2.78	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	2.2	< 0.5
9/1/05 (1)	12.36	9.56	2.80	8260B	SGC	420 Y	< 300	120 H Y	55	< 0.5	< 0.5	< 0.5	2.0	< 0.5
4/5/06 (3)	12.36	8.76	3.60	8260B	SGC	300 H Y	760	87 H Y	< 50	< 0.5	< 0.5	< 0.5	2.4	< 0.5
9/6/06	12.36	9.98	2.38	8260B	SGC	220 H Y	400	80 H Y	< 50	< 0.5	< 0.5	< 0.5	2.06	< 0.5
4/3/07	12.36	10.05	2.31	8260B	SGC	130 H Y	< 300	63 H Y	< 50	< 0.5	< 0.5	< 0.5	2.38	< 0.5
10/3/07	12.36	10.16	2.20	8260B	SGC	150 Y	550	< 50	55 Y	< 0.5	< 0.5	< 0.5	1.96	< 0.5
3/20/08 (8)	12.36	10.08	2.28	8260B	SGC	88 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	2.02	< 0.5
11/19/08 (10)	12.36	10.28	2.08	8260B	SGC	110 Y	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	1.78	< 0.50
4/2/09 (12)	12.36	9.91	2.45	8260B	SGC	85 Y	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	0.82	< 0.50
10/30/09	12.36	10.24	2.12	8260B	SGC	110Y	< 300	< 50	81Y	< 0.50	< 0.50	< 0.50	2.41	< 0.50
4/8/10	12.36	9.59	2.77		SPH: None									
10/19/10	12.36	10.21	2.15		SPH: None									
MW-16														
1/18/00	13.57	10.22	3.43		SPH: 0.1 ft.									
5/11/00	13.57	13.31	0.27		SPH: 0.01 ft.									
8/24/00	13.57	8.91	4.66		SPH: NM									
11/28/00	13.57	13.05	0.86		SPH: 0.42 ft.									
2/26/01	13.57	13.10	0.79		SPH: 0.40 ft.									
5/17/01	13.57	12.62G			SPH: NM									
8/16/01	13.57	11.94G			SPH: NM									
12/15/01	13.57	NM			SPH: NM									
4/3/02	13.57	12.88	0.69		an									
6/21/02	12.22	NM			SPH: NM									
4/22/03	12.22	12.40	0.26	02.600	Well cap stuck	1000	1020	1260	2000	150	.1.0	46	-1.0	.1.0
4/28/04	12.22	12.48	-0.26	8260B	SGC	<230	1030	< 260	2000	150	<1.0	46	<1.0	< 1.0
10/28/04	12.22	11.97	0.25	8260B	SGC	450 L Y	< 300	480	1100	18	1.7	29	1.7	< 0.5
8/31/05	12.22	12.09	0.13		SPH: None									
4/5/06 (3)	12.22	3.80	8.42	8260B	SGC	95 H Y	420	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation (feet)	Groundwater (feet)	Elevation (feet)	Method		(μ g/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µ g/l)	benzene (µg/l)	Xylenes (µg/l)	(µg/l)
	(ICCI)	(leet)	(icei)									(P5/1)	(με/1)	
9/6/06	12.22				Dry									
4/4/07 (5)	12.22	10.72	1.5	8260B	SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	12.22	10.92	1.3	8260B	SGC	2,300 Y	4300	1700	480 Y	31	1.7	4.5	1.6	< 0.5
3/19/08 (9)	12.22	10.72	1.5											
11/19/08 (10)	12.22	12.33	-0.11	8260B	SGC	52,000 Y	110,000	31,000	150 Y	21	1.7	2.7	1.1	< 0.50
4/2/09 (12)	12.22	11.25	0.97	8260B	SGC				59 Y	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/30/09	12.22	11.37	0.85	8260B	SGC	5,600Y	12,000	4,100Y	590	59	3.5	3.1	3.03	< 0.50
4/8/10	12.22	10.45	1.77		SPH: None									
10/19/10	12.22	10.98	1.24		SPH: None									
MW-17														
1/18/00	9.86	5.35	4.51	8020	SGC	850 a	21,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	9.86	9.85	0.01	8020	SGC	150 a	2,900	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/24/00	9.86	8.59	1.27		000									
8/25/00	9.86			8020	SGC	190	610	71	< 50	0.58	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.86	9.25	0.61	8020	SGC	<250	2,400	< 250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.86	9.25	0.61	9020	Filtered+SGC Filtered+SGC	< 50	<200	<50	 50					
2/26/01 5/17/01	9.86 9.86	9.40 8.32	0.46 1.54	8020	rillered+3GC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/18/01	9.86	6.32	1.54	8020	Filtered+SGC	< 50	<200	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
8/16/01	9.86	10.35	-0.49	8020	Filtered+SGC	< 50	400B	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
12/16/01	9.86	8.01	1.85	8021	SGC	940	1,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
4/9/02	9.86	9.76	0.10	8021	SGC	590	880		60	< 0.5	< 0.5	1.6	< 0.5	<5.0
6/21/02	9.86	9.79	0.07	8021	SGC	99 a,c	650 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	9.86	8.25	1.61	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/23/03	9.86	9.75	0.11	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04	9.86	8.90	0.96	8260B	SGC	< 100	< 400	< 100	< 100	< 0.5	< 1.0	2.4	< 1.0	< 1.0
10/28/04	9.86	8.32	1.54		SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	9.86	8.38	1.48	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/5/06 (3)	9.86	6.86	3.00	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	9.86	9.85	0.01	8260B	SGC	< 50	<300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/3/07	9.86	7.67	2.19	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	9.86	7.97	1.89	8260B	SGC	< 50	<300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07 dup				8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/20/08 (8)	9.86	6.70	3.16	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08 (10)	9.86	9.53	0.33	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 (12)	9.86	9.56	0.30	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	9.86 9.86	7.21	2.65	8260B 8260B	SGC	< 50 < 50	< 300	< 50 < 50	< 50 < 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	9.00	1.41	2.03	0200D	300	< 30	< 300	< 30	< 30	< 0.50	<0.50	< 0.50	< 0.50	< 0.50

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
4/8/10	9.86	9.15	0.71	8260B	SPH: None	< 50	< 300	< 50	77	2.3	< 0.50	2.2	< 0.50	< 0.50
10/19/10	9.86	6.82	3.04		SPH: None									
MW-18														
4/24/03 4/28/04		6.49		8021B	SGC Developed to monitor a utility trench, not sampled	< 50	< 300	< 50	< 50	<0.5	<0.5	2.4	< 0.5	<2
8/31/05					sampleu 									
3/27/06														
9/6/06														
TBW-1														
2/23/99		6.25			SPH: 0.10 ft.									
5/27/99		5.29			SPH: 0.01 ft.									
8/24/99		6.99			SPH: 0.18 ft.									
11/22/99					Inaccessible									
1/18/00					Inaccessible									
5/11/00		6.90			SPH: 0.10 ft.									
8/24/00		7.12			SPH: NM									
11/28/00		7.75			SPH: 0.36 ft.									
2/27/01		9.06			SPH: 0.51 ft.									
5/17/01		6.98			SPH: 0.28 ft.									
8/16/01		6.62			SPH: 0.66 ft., f	1,100	700B	< 100	17,000	2,100	75	730	850	<1
12/15/01		6.86			SPH 0.35 ft.									
4/3/02		6.14			SPH: None									
9/12/02		7.52			SPH: None									
4/22/03		6.41			SPH: None									
4/28/04		6.33			SPH: None									
10/28/04		NM												
8/31/05		6.50			Well cap smashed 6"									
3/27/06		5.20			SPH: None									
9/6/06		NM			SPH: None									
4/4/07		8.26												
10/2/07		NM			Abandoned									
TBW-2														
6/21/02		8.28												
4/22/03		6.70			SPH globules									

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	ΤΡΗ-k (μg/l)	TPH-g	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	MTBE (µg/l)
Date	(feet)	(feet)	(feet)	Method		(µg/1)	(µ g/1)	(µg/1)	(µg/l)	(µg/1)	(µg/1)	(µg/l)	(µg/l)	(µg/1)
4/28/04		6.61			SPH: None									
10/28/04		7.31			SPH: None									
8/31/05		NM												
3/27/06		$NM^{(4)}$												
9/6/06		$NM^{(4)}$			SPH: None									
4/4/07		$NM^{(4)}$												
10/2/07		NM			Abandoned									
TBW-3														
8/19/98		2.67		8020	SGC	810,000			920	3.2	< 0.5	< 0.5	0.77	< 10
8/19/98		2.67		8260	560									< 5.0
2/23/98		1.25		8020		3,800	3,000	< 50	110	1.6	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99					DTW: NM									
8/24/99		3.25			SPH globules									
11/22/99		3.68			C									
1/18/00	9.92	3.73	6.19		SPH globules									
5/11/00	9.92	2.07	7.85		-									
8/24/00	9.92	2.82	7.10		SPH: sheen	44,000	13,000	34,000	570	4.7	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.92													
2/27/01	9.92	1.29	8.63	8020	Filtered+SGC	560	< 230	< 57	120	1.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.92	2.47	7.45											
8/16/01	9.92	1.81	8.11		Filtered+SGC	1,500	400B	< 100	180	< 0.5	< 0.5	< 0.5	< 0.5	<1
12/15/01	9.92	2.52			SPH: 0.02 ft.									
4/3/02	9.92	1.50			SPH: None									
6/21/02	9.92	2.37	7.55		SPH: None									
9/12/02	9.92	3.48	6.44		SPH: None									
4/22/03	9.92	1.45	8.47		Sheen									
4/28/04	9.92	2.26	7.66		SPH: None									
10/28/04	9.92	3.42	6.50		Sheen									
8/31/05	9.92	2.99	6.93		SPH: None									
3/27/06	9.92	0.49	9.43		SPH: None									
9/6/06	9.92	3.42	6.50		SPH:0.01 ft.									
4/4/07	9.92	1.93	7.99		Abondanad									
10/2/07		NM			Abandoned									
TBW-4														
2/27/01		1.35		8020	Filtered+SGC	410	< 230	< 57	250	1.9	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01		2.52												
8/16/01		1.88			Filtered+SGC	2,600	700B	< 100	390	< 0.5	< 0.5	< 0.5	< 0.5	< 5

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µ g/l)	(µg/l)	benzene	Xylenes	(µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
6/21/02		2.32												
4/22/03		1.41			Sheen									
4/28/04		2.21												
10/27/04		3.37			Sheen									
8/31/05		2.92												
3/27/06		0.49			SPH: None									
9/6/06		3.37			SPH:0.01 ft.									
4/4/07		1.88												
10/2/07		NM			Abandoned									
TBW-5														
2/23/99		9.72			SPH: 1.45 ft.									
5/27/99		7.03			SPH: 1.43 ft.									
8/24/99		6.52			SPH: 1.33 ft.									
11/22/99		8.31			SPH: 1.29 ft.									
1/18/00	10.22	6.20	4.74		SPH: 0.90 ft.									
5/11/00	10.22	9.41	1.05		SPH: 0.30 ft.									
8/24/00	10.22	9.62	0.81		SPH: 0.26 ft.									
11/28/00	10.22	10.25	0.34		SPH: 0.46 ft.									
2/27/01	10.22	9.06	1.45		SPH: 0.36 ft.									
5/17/01	10.22	8.75	1.47		SPH: 0.67 ft.									
8/16/01	10.22	8.32	2.51	8020	SPH: 0.76 ft., f	550	400B	< 100	30,000	2,900	100	1,500	5,100	<1
12/15/01	10.22	9.09	1.13		SPH: 0.36 ft.									
4/3/02 (6)														
6/21/02	10.22	7.87	2.35		SPH: 0.03 ft.									
9/12/01	10.22	7.26	2.97		SPH: 0.01 ft.									
4/22/03	10.22	6.22	4.00		SPH: 0.06 ft.									
4/28/04	10.22	6.26	3.96		SPH: 0.21 ft.									
10/27/04	10.22	3.62	6.60		SPH: None									
8/31/05	10.22	6.41			SPH: 0.30 ft.									
3/27/06	10.22	$NM^{(2)}$												
9/6/06	10.22	$NM^{(2)}$												
4/4/07	10.22	$NM^{(2)}$												
10/2/07		NM			SPH: viscous residual									
3/19/08		NM			SPH: None									
11/18/08	10.22	9.32	0.9											
4/1/09		NM			NA									
10/29/09	10.22	8.50	1.72											
4/8/10	10.22	5.54	4.68		SPH: None									
., 0, 10	19.22	2.21			5111.110110									

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes	MTBE (µg/l)
	(leet)	(leet)	(leet)									(µg/1)	(µg/l)	
10/19/10	10.22	6.91	3.31		SPH: None									
TBW-6														
2/23/99		2.09		8020		160	600	< 50	60	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99		3.31												
8/24/99		7.29		8020	SGC	180	400	< 50	130	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99		4.37												
1/18/00	9.49	3.83	5.66											
1/19/00	9.49			8020	SGC	55 C	< 200	< 50	170	0.6	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	9.49	2.51	6.98											
8/24/00	9.49	4.34	5.15											
8/25/00	9.49			8020	SGC	320	< 250	200	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.49	4.74	4.75											
2/27/01	9.49	2.30	7.19	8020	Filtered+SGC	< 57	< 230	< 57	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.49	3.35	6.14											
8/16/01	9.49	3.85	5.64		Filtered+SGC	< 50	< 200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/15/01	9.49	3.96	5.53											
4/3/02	9.49	2.51	6.98											
6/21/02	9.49	3.58	5.91											
9/12/02	9.49	6.07	4.56		SPH: 1.42 ft.									
4/23/03	9.49	2.42	7.07											
4/28/04	9.49	3.21	6.28											
10/27/04	9.49	4.49	5.00		SPH: None									
8/31/05	9.49	4.43			SPH: 0.52 ft.									
3/27/06	9.49	1.90	7.59		SPH: None									
9/6/06	9.49	4.33	5.16		SPH:0.01 ft.									
4/4/07	9.49	3.08	6.41											
10/2/07	9.49	4.98	4.51		SPH: None									
3/19/08	9.49	3.16	6.33		SPH: None									
11/18/08	9.49	5.32	4.17		SPH: None									
4/1/09	9.49	2.87	6.62		SPH: sheen									
10/29/09					No Access									
4/8/10	9.49	1.87	7.62		SPH: None									
10/19/10	9.49	4.79	4.70		SPH: None									
RW-A1														
4/22/03		1.81												
4/28/04	10.09	2.52	7.57											
10/27/04	10.09	3.03	7.06		SPH: None									

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation (feet)	Groundwater (feet)	Elevation (feet)	Method		(µg/l)	(µg/l)	(µ g/l)	(µg/l)	(µg/l)	(µ g/l)	benzene (µg/l)	Xylenes (μg/l)	(µg/l)
	(IEEI)	(leet)	(leet)									(µg/1)	(µg/1)	
8/31/05	10.09	3.31	6.78		SPH: None									
3/27/06	10.09	0.62	9.47		SPH: None									
9/6/06	10.09	3.52	6.57		SPH: None									
4/3/07	10.09	2.93	7.16											
10/2/07	10.09	$NM^{(7)}$												
3/19/08	10.09	3.16	6.93		SPH: None									
11/20/08 (10)	10.09	4.49	5.60	8260B	SGC	56 Y	< 300	< 50	< 50	8.8	< 0.50	< 0.50	< 0.50	4.5
4/1/09	10.09	2.48	7.61		SPH: None									
10/29/09	10.09	3.49	6.60											
4/8/10	10.09	1.54	8.55		SPH: None									
10/19/10	10.19	4.22	5.97		SPH: None									
RW-A2														
4/22/03		1.22			Sheen									
4/28/04	9.67	2.01	7.66											
10/27/04	9.67	3.20	6.47		SPH: None									
8/31/05	9.67	2.75	6.92		SPH: None									
3/27/06	9.67	0.30	9.37		SPH: None									
9/6/06	9.67	3.19	6.48		SPH: 0.01 ft.									
4/4/07	9.67	1.70	7.97	8260B	SGC	200 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07	9.67	3.81	5.86		SPH: None									
3/19/08	9.67	1.71	7.96		SPH: None									
11/20/08 (10)	9.67	3.96	5.71	8260B	SGC	590 Y	< 300	160 Y	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/1/09	9.67	1.58	8.09		SPH: None									
10/29/09	9.67	2.89	6.78											
4/8/10	9.67	0.93	8.74		SPH: None									
10/19/10	9.67	3.72	5.95		SPH: None									
OB-A1														
		2.24			SPH: .01 ft.									
4/22/03 4/28/04		2.24 3.01			SPH: .01 it. SPH: None									
4/28/04		3.01			SPH: None (strong									
10/27/04		5.11			odor)									
8/31/05		4.10			SPH: None									
3/27/06		1.25			SPH: None									
9/7/06		4.49												
4/4/07		2.72												
10/2/07		5.34												
3/19/08		2.73			SPH: None									

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	ΤΡΗ-d (μg/l)	TPH-mo (µg/l)	TPH-k (μg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	MTBE (µg/l)
	(feet)	(feet)	(feet)			V -8-7	V -8-7	V -8-7	4 -8-9	V-8-7	V -8-7	(μg/l)	(μg/l)	4-8-7
11/18/08		5.31												
4/1/09		2.61												
10/29/09		4.68												
4/8/10		1.95			SPH: None									
10/19/10		5.09			SPH: None									
RW-B1														
4/22/03		7.26			Sheen									
4/28/04	11.22	7.20	4.02											
10/27/04	11.22	7.80	3.42		SPH: None									
8/31/05	11.22	7.14	4.08		SPH: None									
3/27/06	11.22	6.10	5.12		SPH: None									
9/6/06	11.22	7.39	3.83		SPH:0.01 ft.									
4/4/07	11.22	7.06	4.16	8260B	SGC	130 L	< 300	100 H	220	410	23	9.4	16	6.3
10/2/07	11.22	7.70	3.52		SPH: None									
3/19/08	11.22	7.06	4.16		SPH: None									
11/18/08	11.22	7.90	3.32		SPH: None									
4/1/09	11.22	7.15	4.07		SPH: None									
10/29/09	11.22	7.76	3.46											
4/8/10	11.22	6.78	4.44		SPH: None									
10/19/10	11.22	7.66	3.56		SPH: None									
RW-B2														
4/22/03		7.29			Sheen, Odor									
4/28/04	11.23	7.20	4.03											
10/27/04	11.23	7.81	3.42		SPH: None									
8/31/05	11.23	7.14	4.09		SPH: None									
3/27/06	11.23	6.09	5.14		SPH: None									
9/6/06	11.23	7.39	3.84		SPH: None									
4/4/07	11.23	9.84	1.39	8260B	SGC	500 L Y	< 300	500 L	11000	3400	2700	190	1100	< 10
10/2/07	11.23	7.71	3.52		SPH: None									
					SPH: None (strong									
3/19/08	11.23	7.07	4.16		odor)									
11/20/08 (10)	11.23	7.92	3.31	8260B	SGC	190 Y	< 300	150 Y	7,900 Y	3,200	2,100	140	720	< 25
4/1/09	11.23	7.16	4.07		SPH: None									
10/29/09	11.23	7.78	3.45											
4/8/10	11.23	6.80	4.43		SPH: None									
10/19/10	11.23	7.67	3.56		SPH: None									

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(μg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
RW-B3														
4/22/03		9.90			visible Product									
4/28/04	11.14	13.20	-2.06		SPH: 3.09									
10/27/04	11.14	9.33	1.81		SPH: None									
8/31/05	11.14	9.60	1.54		SPH: 0.01									
3/27/06	11.14	9.08	2.06		SPH: None									
9/6/06	11.14	9.61	1.53		SPH: None									
4/4/07	11.14	9.84	1.30	8260B	SGC	3,600 L Y	880	4,000 L	7900	4300	130	520	357	< 31
10/2/07	11.14	9.56	1.58		SPH: None									
3/19/08		$NM^{(7)}$			NM									
11/18/08	11.14	9.57	1.57											
4/1/09	11.14	9.80	1.34											
10/29/09	11.14	9.61	1.53											
4/8/10	11.14	9.61	1.53		SPH: None									
10/19/10	11.14	9.50	1.64		SPH: None									
RW-B4														
4/22/03		10.55			SPH: .55 ft.									
4/28/04	11.29	10.22	1.07		SPH: None									
10/27/04	11.29	9.55	1.74		SPH: None									
8/31/05	11.29	9.70	1.59		SPH: None									
3/27/06	11.29	9.23	2.06		SPH: None									
9/6/06	11.29	9.69	1.60		SPH: None									
4/4/07	11.29	10.04	1.25	8260B	SGC	3,500 Y	360	4,000 L	16000	3200	150	460	1430	< 8.3
10/2/07	11.29	9.72	1.57		SPH: None									
3/19/08	11.29	9.87	1.42		SPH: None (odor)									
11/20/08 (10)	11.29	9.75	1.54	8260B	SGC	3,100 Y	2,900	930	6,000 Y	3,100	100	270	679	< 25
4/1/09	11.29	9.87	1.42		SPH: None									
10/29/09	11.29	9.85	1.44											
4/8/10	11.29	9.72	1.57		SPH: None									
10/19/10	11.29	9.80	1.49		SPH: None									
RW-C1														
4/24/03		8.34												
4/28/04	10.44	8.00	2.44											
10/27/04	10.44	7.59	2.85		SPH: None									
8/31/05	10.44	5.81	4.63		SPH: None									
3/27/06	10.44	1.94	8.50		SPH: None									
9/6/06	10.44	6.71	3.73		SPH: 0.01 ft.									

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation (feet)	Groundwater (feet)	Elevation (feet)	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene (µg/l)	Xylenes (µg/l)	(µg/l)
4/5/07	10.44	6.66	3.78	8260B		220 H Y	1300	63 H Y	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/2/07	10.44	8.48	1.96		SPH: 0.01 ft.									
3/19/08	10.44	8.56	1.88		SPH: None									
11/20/08 (10)	10.44	8.29	2.15	8260B	SGC	290 Y	1,200	76 Y	< 50	6.4	< 0.50	< 0.50	0.51	< 0.50
4/1/09	10.44	8.16	2.28		SPH: None									
10/29/09	10.44	8.64	1.80											
4/8/10	10.44	5.62	4.82		SPH: None									
10/19/10	10.44	5.57	4.87		SPH: None									
RW-C2														
4/24/03		6.22			SPH: .03 ft.									
4/28/04	10.58	6.19	4.39		SPH: 0.06 ft									
10/27/04	10.58	7.00	3.58		SPH: Present									
8/31/05	10.58	6.30	4.28		SPH: 0.01 ft.									
3/27/06	10.58	5.10	5.48		SPH: None									
9/6/06	10.58	8.19	2.39		SPH: 0.12 ft.									
4/4/07	10.58	8.28	2.30											
10/2/07	10.58	9.75	0.83		SPH: 0.015 ft.									
10/3/07	10.58	9.39	1.19		SPH: None									
11/18/08	10.58	9.38	1.20											
4/1/09	10.58	7.64	2.94											
10/29/09	10.58	8.90	1.68											
4/8/10	10.58	5.86	4.72		SPH: None									
10/19/10	10.58	6.59	3.99		SPH: None									
RW-C3														
4/24/03		6.36												
4/28/04	10.71	6.25	4.46											
10/27/04	10.71	7.10	3.61		SPH: None									
8/31/05	10.71	6.39	4.32		SPH: None									
3/27/06	10.71	5.30	5.41		SPH: None									
9/6/06	10.71	8.10	2.61		SPH: 0.01 ft.									
4/5/07	10.71	7.97	2.74	8260B	SPH: None	540 H L Y	360 H L	430 H L Y	520	13	14	32	54	< 0.5
10/2/07	10.71	8.59	2.12		SPH: 0.01 ft.									
3/19/08	10.71	8.38	2.33		SPH: None									
11/20/08 (10)	10.71	8.61	2.10	8260B	SGC	720 Y $^{(11)}$	1600 (11)	170 Y (11)	< 50	1.1	< 0.50	0.67	< 0.50	< 0.50
4/1/09	10.71	6.98	3.73		SPH: None									
10/29/09	10.71	8.56	2.15											
4/8/10	10.71	5.93	4.78		SPH: None									

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation (feet)	Groundwater (feet)	Elevation (feet)	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene (µg/l)	Xylenes (µg/l)	(µg/l)
	(ICCI)	(icci)	(icci)									(P 5/1)	(P5/1)	
10/19/10	10.71	6.82	3.89		SPH: None									
RW-C4														
4/22/03		7.15			Strong odor									
4/28/04	11.32	6.95	4.37		SPH: 0.01 ft									
10/27/04	11.32	7.45	3.87		SPH: None									
8/31/05	11.32	6.71	4.61		SPH: None									
3/27/06	11.32	6.47	4.85		SPH: None									
9/6/06	11.32	8.16	3.16		SPH: 0.01 ft.									
4/4/07	11.32	8.50	2.82											
10/2/07	11.32	8.62	2.70		SPH: None									
3/19/08	11.32	9.13	2.19		SPH: None									
11/18/08	11.32	8.99	2.33											
4/1/09	11.32	8.52	2.80											
10/29/09	11.32	8.53	2.79											
4/8/10	11.32	NM			Could not open									
4/29/10	11.32	6.07	5.25		SPH: None									
10/19/10	11.32	6.84	4.48		SPH: None									
RW-C5														
4/22/03		6.46												
4/28/04	10.79	6.39	4.40											
10/27/04	10.79	7.21	3.58		SPH: Present									
8/31/05	10.79	6.51	4.28		SPH: None									
3/27/06	10.79	5.33	5.46		SPH: None									
9/6/06	10.79	8.03	2.76		SPH: 0.01 ft.									
4/4/07	10.79	8.27	2.52	8260B	SGC	3,800 Y	310	4,100 L	12000	3400	170	520	1300	< 25
10/2/07	10.79	8.95	1.84		SPH: None									
3/19/08	10.79	8.82	1.97		SPH: 0.01 ft.									
11/20/08 (10)	10.79	8.92	1.87	8260B	SPH: None/ SGC	3,700 Y	430	3,300	5,800 Y	2,900	91	120	437	< 20
11/20/08 dup				8260B	SGC: Oder	3,400 Y	< 300	3,100	3,900 Y	2,700	78	91	358	< 25
4/1/09	10.79	7.88	2.91		SPH: None									
10/29/09					No Access									
4/8/10	10.79	NM			Could not open									
4/29/10	10.79	5.59	5.2		SPH: None									
10/19/10	10.79	6.54	4.25		SPH: None, odor									
RW-C6														
4/22/03		6.05			SPH: 0.07 ft.									

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
4/28/04	10.31	6.30	4.01		SPH: 0.05 ft.									
10/27/04	10.31	6.85			SPH: 0.15 ft.									
8/31/05	10.31	6.81			SPH: 0.93 ft.									
3/27/06	10.31	5.66			SPH: 0.96 ft.									
9/6/06	10.31	7.96	2.35		SPH: 0.18ft.									
4/4/07	10.31	$NM^{(4)}$												
10/2/07	10.31	8.45	1.86		SPH: residual									
3/19/08	10.31	8.32	1.99		SPH: None									
11/18/08	10.31	8.42	1.89		SPH: Oder									
4/1/09	10.31	7.36	2.95		SPH: None									
10/29/09					No Access									
4/8/10	10.31	NM			Could not open									
4/29/10	10.31	5.43	4.88		SPH: None									
10/19/10	10.31	6.4	3.91		SPH: None									
RW-C7														
4/22/03		6.51			visible Product									
4/28/04	10.12	6.60	3.52		SPH: 0.02 ft.									
10/27/04	10.12	NM												
8/31/05	10.12	NM												
3/27/06	10.12	$NM^{(4)}$												
9/6/06	10.12	8.34	1.78		SPH: 0.01 ft.									
4/4/07	10.12	$NM^{(4)}$												
10/2/07	10.12	9.01	1.11		SPH: None									
3/19/08	10.12	8.85	1.27		SPH: None									
11/18/08	10.12	8.97	1.15											
4/1/09	10.12	7.89	2.23		SPH: 0.01 ft.									
10/29/09		9.23												
4/8/10	10.12	NM			Could not open									
4/29/10	10.12	5.71	4.41		SPH: None									
10/19/10	10.12	6.68	3.44		SPH: None									
OB-C1														
4/22/03		6.26												
4/28/04	10.39	7.39	3.00		SPH: 1.27 ft.									
10/27/04	10.39	8.06	2.33		SPH: 1.08 ft.									
8/31/05	10.39	7.84			SPH: 1.55 ft.									
3/27/06	10.39	6.15			SPH: 1.05 ft.									
9/6/06		$NM^{(4)}$			Buried									

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation (feet)	Groundwater (feet)	Elevation (feet)	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µ g/l)	benzene (µg/l)	Xylenes (µg/l)	(μg/l)
	(leet)	(leet)	(leet)									(µg/1)	(µg/1)	
4/4/07	10.39	7.78	2.61											
10/2/07	10.39	8.67	1.72		SPH: 0.02 ft.									
3/19/08	10.39	8.49	1.90		SPH: 0.29 ft.									
11/18/08	10.39	8.57	1.82		SPH: 0.03 ft.									
4/1/09	10.39	7.96	2.43		SPH: 0.64 ft.									
10/29/09					No Access									
4/8/10	10.39	NM			Could not open									
4/29/10	10.39	5.95	4.44		SPH: None									
10/19/10	10.39	6.37	4.02		SPH: None									
RW-D1														
4/22/03		6.97												
4/28/04	10.18	5.62	4.56											
10/27/04	10.18	6.67	3.51		SPH: Present									
8/31/05	10.18	5.75			SPH: 0.02 ft.									
3/27/06	10.18	$NM^{(2)}$												
9/6/06	10.18	$NM^{(2)}$			No Access									
4/4/07	10.18	$NM^{(2)}$												
10/2/07	10.18	$NM^{(2)}$												
3/19/08		$NM^{(2)}$												
11/19/08	10.18	11.29	-1.11	6260B	SGC	11,000 Y	4,900	9,400	5,100 Y	270	85	150	710	< 2.0
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10	10.18	7.70	2.48		SPH: None									
10/19/10	10.18	6.85	3.33		SPH: None									
RW-D2														
4/22/03		7.15			SPH 1.25 ft.									
4/28/04	10.33	7.45	2.88		SPH: 0.1 ft.									
10/27/04	10.33	6.41	3.92		SPH: Present									
8/31/05	10.33	8.44			SPH: 3.12 ft.									
3/27/06	10.33	NM ⁽²⁾												
9/6/06	10.33	$NM^{(2)}$			No Access									
4/4/07	10.33	NM ⁽²⁾												
10/2/07	10.33	NM ⁽²⁾												
3/19/08	10.55	NM ⁽²⁾												
11/18/08	10.33	10.95	-0.62											
4/1/09	10.55	NM ⁽²⁾	-0.02											
4/1/09		IAIAI												

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center

7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
10/29/09		NM ⁽²⁾			SPH: None									
4/8/10	10.33	7.21	3.12		SPH: None									
10/19/10	10.33	6.35	3.98		SPH: None									
RW-D3														
4/22/03		6.89			SPH: 1.58 ft.									
4/28/04	10.07	8.18	1.89		SPH: 3.25 ft.									
10/27/04	10.07	6.37	3.70		SPH: Present									
8/31/05	10.07	7.72			SPH: 2.46									
3/27/06	10.07	NM ⁽²⁾												
9/6/06	10.07	$NM^{(2)}$			No Access									
4/4/07	10.07	$NM^{(2)}$												
10/2/07	10.07	$NM^{(2)}$												
3/19/08		$NM^{(2)}$												
11/18/08	10.07	10.10	-0.03											
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10	10.07	7.43	2.64		SPH: None									
10/19/10	10.07	6.97	3.10		SPH: None									
RW-D4														
4/22/03		8.11			SPH: 1.98 ft.									
4/28/04	10.22	7.99	2.23		SPH: 2.09 ft.									
10/27/04	10.22	6.49	3.73		SPH: Present									
8/31/05	10.22	8.09			SPH: 2.12 ft.									
3/27/06	10.22	NM ⁽²⁾												
9/6/06	10.22	NM ⁽²⁾			No Access									
4/4/07	10.22	NM ⁽²⁾												
10/2/07	10.22	NM ⁽²⁾												
3/19/08		$NM^{(2)}$												
11/19/08 (10)	10.22	9.10	1.12	8260B	SGC	55,000	9,700	46,000	7,600 Y	210	17	270	280	< 1.7
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10	10.22	5.00	5.22		SPH: None									
10/19/10	10.22	6.37	3.85		SPH: None									

RW-D5

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
4/22/03		6.04			SPH: 0.07 ft.									
4/28/04	9.99	5.96	4.03		SPH: None									
10/27/04	9.99	6.48	3.51		SPH: Present									
8/31/05	9.99	7.02*			SPH: 1.01 ft.									
3/27/06	9.99	$NM^{(2)}$												
9/6/06	9.99	$NM^{(2)}$			No Access									
4/4/07	9.99	$NM^{(2)}$												
10/2/07	9.99	$NM^{(2)}$												
3/19/08		$NM^{(2)}$												
11/18/08	9.99	9.45	0.54											
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10	9.99	4.97	5.02		SPH: None									
10/19/10	9.99	6.30	3.69											
RW-D6														
11/18/08		11.10												
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10		7.10			SPH: None; Odor									
10/19/10		6.45			SPH: None; Odor									
RW-D7														
11/19/08 (10)		9.62		8260B	SGC	54,000 Y	59,000	43,000	3,400	100	54	13	830	< 3.1
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10		5.55			SPH: None									
10/19/10		6.45			SPH: None									
RW-D8														
11/18/08		8.48												
4/1/09		NM ⁽²⁾												
10/29/09		NM ⁽²⁾			SPH: None									
4/8/10		4.27			SPH: None									
10/19/10		5.19			SPH: None									
RW-D9														
11/18/08		9.70												

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
4/1/09		$NM^{(2)}$												
10/29/09		NM ⁽²⁾			SPH: None									
4/8/10		6.92			SPH: None									
10/19/10		6.34			SPH: None									
					W									
RW-D10														
11/18/08		8.84		8260B	SGC	1,000 Y	650	760	640 Y	2.7	0.69	5.6	17.71	< 0.50
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10		4.87			SPH: None									
10/19/10		6.22			SPH: None									
RW-D11														
11/18/08		8.66												
4/1/09		$NM^{(2)}$												
10/29/09		$NM^{(2)}$			SPH: None									
4/8/10		4.71			SPH: Sheen									
10/19/10		6.04			SPH: None									
OB-D1														
4/22/03		5.41			Strong Odor									
4/28/04	9.46	5.31	4.15		Strong Odor									
10/27/04	9.46	5.89	3.57		CDIL N									
8/31/05	9.46	5.42			SPH: None SPH: None									
3/27/06 9/6/06	9.46 9.46	3.09 8.31	6.37 1.15		SPH: None SPH: 0.01 ft.									
4/4/07	9.46	7.77	1.69		3FH. 0.01 II.									
10/2/07	9.46	8.66	0.80		SPH: None									
3/19/08	9.46	8.90	0.56		SPH: None									
11/18/08	9.46	8.41	1.05											
4/1/09	9.46	8.50	0.96		SPH: sheen									
10/29/09	9.46	7.65	1.81		SPH: None									
4/8/10	9.46	4.71	4.75		Strong Odor									
10/19/10	9.46	6.10	3.36		SPH: None									
OB-D2														
4/22/03		5.14												
4/28/04	9.95	5.25	4.70											
10/27/04	9.95	6.42	3.53		SPH: None									

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µ g/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	benzene	Xylenes	(µg/l)
	(feet)	(feet)	(feet)									(µ g/l)	(µg/l)	
8/31/05	9.95	5.71			SPH: 0.01 ft.									
3/27/06	9.95	2.32	7.63		SPH: None									
9/6/06	9.95	8.39	1.56		SPH: 0.01 ft.									
4/4/07	9.95	7.94	2.01											
10/2/07	9.95	9.07	0.88		SPH: None									
3/19/08	9.95	8.64	1.31		SPH: None									
11/18/08	9.95	8.94	1.01											
4/1/09	9.95	7.00	2.95		SPH: None									
10/29/09	9.95	8.24	1.71		SPH: None									
4/8/10	9.95	5.38	4.57		SPH: None									
10/19/10	9.95	6.55	3.40		SPH: None									
RW-1														
4/22/03		6.43												
4/28/04		5.73												
10/27/04		6.34			SPH: None									
8/31/05		5.83			SPH: None									
3/27/06		NM ⁽²⁾												
9/6/06		NM ⁽²⁾			No Access									
		NM ⁽²⁾												
4/4/07														
10/2/07		NM ⁽²⁾												
3/19/08		NM ⁽²⁾												
11/18/08		8.81												
4/1/09		NM ⁽²⁾												
10/29/09		8.17												
4/8/10		5.21			SPH: None									
10/19/10		6.60			SPH: None									
Field Blank														
10/28/04				8260B					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05				8260B					< 50					
4/4/06				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/7/06				8260B		< 50	<300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/3/07				8260B		<50	< 300	< 50	< 50	< 0.5	0.54	< 0.5	< 0.5	<0.5
10/2/07				8260B		< 50	< 300	< 50	< 50	< 0.5	0.5	< 0.5	< 0.5	< 0.5
3/20/08				8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08				8260B	SGC	< 50	<300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
11/20/08				8260B	SGC	< 50	<300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
11,20,00				02000	230	-50	- 500	-20	- 50	- 5.50	- 3.50	- 3.50	- 5.50	-0.50

7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
11/21/08				8260B	SGC	< 50	<300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/1/09				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09				8260B	SGC	< 50	<300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/8/10				8260B	SGC	< 50	<300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/19/10				8260B	SGC	< 50	<300	< 50	< 50	< 0.50	< 0.50	< 0.50	0.51	< 0.50
Trip Blank														
8/19/98				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01				8020	Filtered+SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01				8020	SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/16/01				8021					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
4/5/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/5/02				8021	Trip Blank 2				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
6/21/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
9/12/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/13/02				8021	Trip Blank 2				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2
4/23/03				8021B	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04				8260B	Trip Blank 1				< 100	< 0.5	< 1.0	< 1.0	< 1.0	< 1.0
10/29/04				8260B	Trip Blank 2				< 50					
4/3/07				8260B	Trip Blank 1					< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07				8260B	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Groundwater elevations corrected for the presence of free product according to the calculation: GW Elevation = TOC - DTW + (0.8 x SPH thickness)

^{(1) =} Depth to groundwater measured on August 31, 2005.

^{(2) =} Converted to an extraction well, and access port is too small for the oil/water probe.

^{(3) =} Depth to groundwater measured on March 27, 2006.

⁽⁴⁾ = Could not locate well.

⁽⁵⁾ = Well dewatered, field staff unable to collect all samples.

⁽⁶⁾ = Well has active remediation unit/recovery.

⁽⁷⁾ = Well was covered by car or heavy equipment.

⁽⁸⁾ = Depth to groundwater measured on March 19, 2008.

^{(9) =} Well dewatered, field staff unable to collect samples.

^{(10) =} Depth to groundwater measured on November 18, 2008.

^{(11) =} Low surrogate recovery was observed for hexacosane. The sample was re-extracted, but was outside the EPA recommended hold time.

Table 1

Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center

7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Ī	Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (μg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	ΜΤΒΕ (μg/l)
		(feet)	(feet)	(feet)									(µ g/l)	(µg/l)	

(12) = Depth to groundwater measured on April 1, 2009.

--- = Not measured/analyzed

BTEX = Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8020 or 8240/8260

DTW = Depth to water

Dup = Duplicate sample

Filtered = Groundwater samples were filtered through a 0.45-micron glass membrane filter.

ID = Identification

MTBE = Methyl tertiary-butyl ether by EPA Method 8020 or 8260. Confirmation 8260 results shown in parentheses.

NM = Not measured. Well obstructed or could not be located.

RPD = Relative percent difference

SPH = Separate-phase hydrocarbons; measured thickness

SGC = Silica gel cleanup based on Method 3630B prior to TPH-d, TPH-k, or TPH-mo analysis, following California Regional Water Quality Control Board February 16, 1999 memorandum

TBW = Tank backfill well

TOC = Top of casing

TPH-d = Total petroleum hydrocarbons quantitated as diesel - analyzed by EPA Method 8015B

TPH-g = Total petroleum hydrocarbons quantitated as gasoline - analyzed by EPA Method 8015B

TPH-k = Total petroleum hydrocarbons quantitated as kerosene - analyzed by EPA Method 8015B

TPH-mo = Total petroleum hydrocarbons quantitated as motor oil - analyzed by EPA Method 8015B

- a = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range actually resemble heavier fuels at the front end of the motor oil pattern.
- b = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range actually resemble lighter fuels; the response looks like lower carbon chain compounds close to the gasoline range.
- c = The analytical laboratory reviewed the data and noted that the sample exhibits a fuel pattern that does not resemble the standard.
- e = Results are estimated due to concentrations exceeding the calibration range.
- f= Filtration with 0.45-micron glass membrane filter and silica gel treatment.
- h = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the motor oil range are actually from the front end of the kerosene oil pattern.
- i= The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the motor oil range are actually from the back end of the kerosene oil pattern.
- j= The analytical laboratory reviewed the data and noted that the sample exhibited an unknown peak or peaks.
- B= Results flagged with "B" indicate motor oil was detected in the method blank.
- B1=Analyte detected in associated equipment blank.
- C = Footnote assigned by Ninyo and Moore, not defined in their historical tables.
- E= Footnote assigned by Ninyo and Moore, not defined in their historical tables.
- F = Original and duplicate sample results RPD was greater than 30 percent.
- H = Heavier hydrocarbons contributed to the quantitation.
- J= Value qualified as "estimated."
- L= Lighter hydrocarbons contributed to the quantitation.
- Y = Sample exhibits chromatographic pattern that does not resemble standard.
- Z = Sample exhibits unknown single peak or peaks.

MUNICIPAL SERVICE CENTER 7101 EDGEWATER DRIVE, OAKLAND, CALIFORNIA

SITE VICINITY MAP

FIGURE 1

NOTE: ALL DIMENSIONS, DIRECTIONS, AND LOCATIONS ARE APPROXIMATE SOURCE: NINYO & MOORE - JULY 2004

MUNICIPAL SERVICE CENTER 7101 EDGEWATER DRIVE, OAKLAND, CALIFORNIA

> **DETAIL PLUME MAP OCTOBER 2010**

APPENDIX A

City of Oakland MSC Schedule and Protocol

CITY OF OAKLAND

DALZIEL BUILDING • 250 FRANK H. OGAWA PLAZA, SUITE 5301 • OAKLAND, CALIFORNIA 94612-2034

Public Works Agency Environmental Services FAX (510) 238-7286 TDD (510) 238-7644

November 6, 2009

Mr. Paresh Khatri Hazardous Materials Specialist Alameda-County- Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: Revised Groundwater Monitoring Schedule- Fuel Leak Case No. RO0000293-7101 Edgewater Drive, Municipal Service Center, Oakland, CA

Dear Mr. Khatri:

Thank you very much for our meeting on October 7, 2009 related to the above referenced project. Based on our discussions, we have reviewed the groundwater monitoring program, and have revised the sampling schedule. The recommendations for the revised sampling schedule are based on the contaminants concentrations, the site history, and the well locations.

Please see the attached table (Table 1) showing the revised monitoring schedule. It shows the proposed groundwater monitoring schedule for the sampling events in March 2010, September 2010, and September 2011 (annual) and thereafter. I have also attached a well location map as well as the existing monitoring schedule (Table 2) for comparison. Groundwater elevation and floating product (if any) measurements will be continued at all well locations, including the locations proposed for reduction in groundwater sampling and analysis. I request you to review and approve this revised monitoring plan.

If you have any questions, or would like additional information, please call me at (510) 238-6361.

Sincerely,

Gopal Nair

Environmental Specialist

Lopal Nais

cc: Charles Pardini, LFR, Inc. (sent via email)

			Table	1 - Revised				ocol				
	···			City of Oak	and Municip							
Well ID			·		··ş·······		Parameters t				,	Notes
	March-2010		Sept-2011	Elevation	Floating	рН	Dissolved	Temp.	Specific	TPH gas	TPH	
	semi-annual	semi-annuai	annual thereafter		Product Thickness		Oxygen		Conduct.	BTEX & MTBE	d/k/mo	
MW-1	X	gauge only	X	Х	X	Х	X	X	Х	X	Х	benzene at 79 ug/L in April 09; interior well
MW-2	gauge only		gauge only	· · · · · · · · · · · · · · · · · · ·	X	^		^				up/cross gradient well, benzene <2 ug/L since 07
MW-3	closed/destro		gaage omy									de la companya de la
MW-4	closed/destro											
MW-5	X	gauge only	X	Х	Χ	Χ	Х	Χ	X	Χ	Х	TPH-g still over 2,000 ug/L; near active USTs
MW-6	gauge only	X	X	Х	Χ	Χ	Х	Χ	Х	Χ	Х	0.03" free-phase product in April 09
MW-7	gauge only	gauge only	gauge only		Χ							upgradient well, only MTBE around 2 ug/L since 06
MW-8	gauge only	gauge only	gauge only		Χ							ND for all constituents since Sept 02
MW-9	X	X	Χ	Χ	X	Χ	X	X	Χ	Χ	X	benzene still at 82 ug/L in April 09; perimeter/sentinel well
MW-10	X	gauge only	X	Х	Х	X	Х	Х	Χ	X	X	ND for everything except benzene around 10 ug/L since 08
MW-11	gauge only	gauge only	gauge only		X				<u> </u>			interior/upgradient well, only benzene around 5 ug/L since 05
MW-12	X	gauge only	gauge only		X	X	X	X	X	X	X	TPH-g around 150 ug/L, benzene ND (<0.5) since 2002
MW-13 MW-14	X	X	X X	X X	X	X	X	X	X	X X	X	only TPH-d around 100 ug/L, TPH-mo 600 ug/L since 06; perimeter/sentinel well all ND in April 09, but TPHmo at 660 ug/l in Nov 08; perimeter/sentinel well
MW-15	gauge only	gauge only	gauge only		X	X	X	X	X	X	X	only TPH-d around 100 ug/L since Sept 02; bezene ND since 04
MW-16	gauge only	gauge only	gauge only	····	X		^	^	^	^	_ ^	often dry/no water, MW-17 directly downgradient as sentinel well
MW-17	X X	gauge only	X X	X	X	Х	Х	Х	Х	Х	Х	ND for all since 02, but directly downgredient of Plume B; perimeter/sentinel well
MW-18	gauge only		gauge only	~~~ ` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X	<u> </u>		1			<u> </u>	not located since 2003, seach & apply for closure in 2010
TBW-1	closed/destro											
TBW-2	closed/destro	yed										
TBW-3	closed/destro	yed										
TBW-4	closed/destro											
TBW-5	gauge only		gauge only		X							remediation well
TBW-6	gauge only		gauge only		X							excavation backfill well
RW-A1	gauge only		gauge only		X			-				remediation well
RW-A2 OB-A1	gauge only	gauge only	gauge only gauge only		X							remediation well remediation observation well
RW-B1	gauge only gauge only	gauge only gauge only	gauge only		X			·				remediation vell
RW-B2	gauge only	gauge only	gauge only	· · · · · · · · · · · · · · · · · · ·	X		-					remediation well
RW-B3	gauge only		gauge only		X			<u> </u>				remediation well
RW-B4	gauge only	gauge only	gauge only	····	Χ							remediation well
RW-C1	gauge only	gauge only	gauge only	X	Χ							remediation well
RW-C2	gauge only	gauge only	gauge only		Χ							remediation well
RW-C3	gauge only		gauge only		Х							remediation well
RW-C4	gauge only		gauge only		X							remediation well
RW-C5	gauge only		gauge only		X				_			remediation well
RW-C6 RW-C7	gauge only		gauge only		X		-	ļ				remediation well
OB-C1	gauge only gauge only	gauge only gauge only	gauge only gauge only		X							remediation observation well
RW-D1	gauge only		gauge only	~~~	X			-				remediation well
RW-D2	gauge only	gauge only	gauge only	~~ ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X	·		1				remediation well
RW-D3	gauge only	gauge only	gauge only		Χ							remediation well
RW-D4	gauge only	gauge only	gauge only		Χ							remediation well
RW-D5	gauge only	gauge only	gauge only		Χ							remediation well
RW-D6	gauge only	gauge only	gauge only		Χ			ļ				remediation well
RW-D7	gauge only	· · · · · · · · · · · · · · · · · · ·	gauge only		Х							remediation well
RW-D8		gauge only			X	ļ	-	ļ				remediation well
RW-D9	gauge only		gauge only		X			1				remediation well
RW-D10 RW-D11	gauge only gauge only		gauge only gauge only		X	-		-				remediation well remediation well
RW-1	gauge only		gauge only	····•	X	-		†	<u> </u>		-	remediation well
OB-D1	gauge only		gauge only		X							remediation observation well
OB-D2	gauge only		gauge only	~~~	X		\	1				remediation observation well
Notes:	9 9 7 7 7 7	33	ggy	+		+		-			-	
	/ = measure gr	l oundwater ele	vation and flo	nating produc	ct thickness	only					-	
	o = total petrol						a gel cleanu	D.			-	
	the column m							<u> </u>				
						*						

	lab	le 2 - Existin						tober 2009	9	
			City of Oa	ıkland Muni	cipal Se	ervices Cen	ter			
Well ID	Monitoring	g Schedule			Dar	ameters to	ha Mani	torod		
עוווט	March	September	Flevation	Floating	рН	Dissolved		Specific	TPH gas	TPH
	Water	Ocpterriber	Licvation	Product	рп	Oxygen	Temp.	Conduct.	BTEX &	d/k/mo
				Thickness		Охуден		Corradot.	MTBE	G/101110
MW-1	Х	Χ	Х	X	Χ	Х	Х	Х	X	Х
MW-2	X	gauge only	X	X	X	X	X	X	X	X
MW-3	closed/dest				, ,		, ,			
MW-4	closed/dest									
MW-5	Х	X	Х	Х	Х	Х	Х	Х	Х	Х
MW-6	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
MW-7	Х	gauge only	Х	Х	Х	Х	Х	Х	Х	Х
MW-8	Х	Х	Х	X	Х	Х	Х	Х	Х	Х
MW-9	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
MW-10	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
MW-11	Х	gauge only	Х	Х	Х	Х	Х	Х	Х	Х
MW-12	Х	X	Х	Х	X	Х	Х	Х	Х	Х
MW-13	X	X	X	X	X	X	Χ	X	Χ	Х
MW-14	X	X	X	X	X	X	Χ	X	Χ	Х
MW-15	X	X	X	X	X	X	X	X	X	Х
MW-16	X	X	X	X	X	X	X	X	X	Х
MW-17	Χ	Χ	X	Х	X	X	X	Х	X	Х
MW-18		gauge only	X	X						
TBW-1		gauge only	X	Χ						
TBW-2		gauge only	X	X						
TBW-3		gauge only	X	X						
TBW-4		gauge only	X	X						
TBW-5		gauge only		X						-
TBW-6		gauge only	X	X						
RW-A1		gauge only	X	X						
RW-A2		gauge only	X	X						
OB-A1		gauge only		X						
RW-B1		gauge only		X						
RW-B2		gauge only		X						
RW-B3 RW-B4		gauge only	X	X						
RW-C1				X						
RW-C1		gauge only gauge only	X	X						
RW-C3		gauge only	X	X						
RW-C4		gauge only	X	X						
RW-C5		gauge only		X						
RW-C6		gauge only		X						
RW-C7		gauge only		X						
OB-C1		gauge only		X						
RW-D1		gauge only		X						-
RW-D2		gauge only	X	X						
RW-D3		gauge only	X	X						
RW-D4	• • •	gauge only	X	X						1
RW-D5		gauge only		X						1
OB-D1		gauge only		X						1
OB-D2		gauge only		X						
Notes:	3~~9° 01119	39- 0111y	,,	,						
	/ = measure	groundwate	r elevation	and floatin	g produ	ct thicknes	s only			
		roleum hydr						silica ael	cleanup.	
		,								

APPENDIX B

Groundwater Sampling Field Data Sheets

	200	'400000	-	-	-		
0	Λ	n		Λ			
	<u> </u>	ĸ		ш	1 1	1	
W 100 100 100 100 100 100 100 100 100 10	# 1			* *	1.0		

WATER-LEVEL MEASUREMENTS LOG

Project No	LC010060.0013.00001	_ Date	Octob	oer 19, 2010	Page <u>1</u> of <u>2</u>			
Project Name	Oakland MSC	_ Day: □ S	un 🗆 Mor	Tues	□ Weds	☐ Thurs	□ Fri	□ Sa
Field Personnel _	Andrea Valdivia and Brian Prowd							
General Observa	tions MW-18 not found since	2003-4	bruo	rell th	ot we	& thou	ent t	Z.
	a (see det balan)					- <	Ú	

Time Measured										
WELL	Time		O WATER	-WATER	WELL SI		REMARKS			
NO.	Opened	1	2	- ELEVATION	Υ	N	(UNITS = FEET)			
MW-1	0810	5.48	5.48	1014	X_		*			
MW-2	0910	7.02	7.02	1109	×					
MM-3							CLOSED/DESTROYED			
MW-4							CLUSED/DESTROYED			
MW-5	0905	6.44'	6.44'	1100	X		Ne bottos			
MM-C	C853	5.88	5,88	105°4A	X		TD= 13.95			
MW-7	0902	7.05	7.05	1058	$^{\sim} \times$		No botto			
MW-8	C928	9.61'	9,61	1132	X					
MW-9	0921	8.37	8.37	1123	\times		I bold missing TD=H.15			
MW-10	0914	7.38	7.38	1114	\sim		I bolt missing			
MM-11	0852	6.67	6.67	1102	\sim		15/16			
MW-12	0916	7.85	7 <i>8</i> 5′	1016	X					
MW-13	0917	9.50'	9.50	3111	\times		Nobalts TD=20.25			
MW-14	0920	7.23	7.23	1138	X		I had b missing TD=14.38'			
MW-15	0924	10.21	10.21'	1125	\times		I bold missing			
WW-16	0925	10.98'	10.98	1128	\times		No bolts			
MM-17	0926	6.82	6.82'	1129	\times		No bolts			
MN-18	1107	10.78	6.78	1414	×		Boltz rebedin box a lab			
TBN-1							CLOSED/DESTROYED			
TBN-2		e					CLOSED/DESTROYED			
TBW-3							CLOSED/DESTROYED			
TBN-4						-	CLCSED/DESTROYED			
TBW-5	08-46	6911	6.91	1033	X					
TBW-C	C&52	4.791	4.791	1012	×					
RW-A1	0902	4.22'	4.22'	1056	X		*			
RN-A2	09043	4.22'	MODEL	1057	X					
OB-Al	0901	5.091	5.09'	1055	\times					
RW-BI	0855	7.66	7.66	10583						
RW-R2	08 5h	7.67	7.67	10512	$\sqrt{\infty}$,			
RW-B2 RW-B3	0857	9.50	1,67' 9.50'	10520						
RW-BA	C8 ≤ 8	9.80	9,80'	105%	X					
RW-BA RW-CI	0948	5.57	5.57	0958	X					
	- 10	J. J.	0.0	100	/	1				

WELL NO.	WELL ELEVATION	DEPTH TO	O WATER	WATER ELEVATION	WELL SI	ECURE?	REMARKS (UNITS = FEET)
RW-C2	0854	6.591	6.59	1001	\propto		
RW-C3	0855	6.82	6.82	1002	×		
RNGA	0853	6.8A'	6.84	1003	X		
RW-C5	0940	6.5A'	6.56	1004	X		Strong oder - product NM
RN-C6	0941	6.40'	6.40	1009	X		The passes in the same of the
RW-C7	0943	6.68	්රීම. ම	1000	X		
OB-CI	0945	6.37	6.31'	1006	X		Well filled w/sediment 2"well
RW-DI	0837	6.85	6.85	1024	X		
RW-D2	0840	635	6.35	1025	X		
RNYDS	0842	6,97	6.97'	1027	X		-97-43-41-31-31-31-31-31-31-31-31-31-31-31-31-31
RN-DA	0844	637	6.371	1030	X		
RW-D5	0845	6.30	6.30	1032	X		
RN-DG	0851	6.45	6.45	1045	X		Strong oder
RW-DT	0850	6.45	6.45	1043	X		
RW-D8	0849	5,191	5.19'	1041	X		
RW-D9	0835	6.3A'	6.3A)	1023	X		
RW-DIO	9830	6.22	6.22'	1020	X		
RW-DII	0832	6.04	6,0A	1027	X		
RW-1	CEST	6.60	6.60	1035	X		· ·
OB-DI	3430	6.101	6.10'	1038	X	×+	·
OB-D2	0849	6.55	6.55	1040	X		

					. *		
						-	
							,
,			-				
					,		

Project No. <u>LC010060.0013.00001</u>	Date: October	Date: October 19,2016 Page 1 of					
Project Name: MSC Oakland Edgewater		,					
Sampler's Name: Brian Proud/							
Sampling Plan By:DCR	Dated: 10/18/10	C.O.C. No.:	DUP				
Purge Method: ☐ Centrifugal Pump ☐ Disposat	ole Bailer □ Hand Bail □ Submersible Pur	np ☐ Teflon Bailer ☐ Other					
Purge Water Storage Container Type:55 gallo	n drum Storage Location:	On-site					
Date Purge Water Disposed:	Where Disposed:	On-site					
Analyses Requested TPHg / BTEX / MTBE by 8260 TPHd / TPHmo / TPHk by 8010 with silica gel clear Lab Name: Curtis and Tompkins Delivery By Courier	an-up 1 Liter Amber						
Well No	Depth of Water 9.50′ Well Depth 20.25′ Water Column Height 10.75′ Well Volume 1.72 gallars						

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Turb NTU	Remarks
1236		9.50	Ø	2.51	21.1	676	11.3	-53	110,0	
1239			2.0	2.74	20,0	6.93	15,0	-63	-	
1242			~4.0	274	19.4	6,98	15.6	-23	_	
1245			~5.5	2.70	194	6.93	16.2	-76		
1255	End							→	Samo	de Collected
									ì	
									-	

Continue remarks on reverse, if needed.

										•
Project No	LC010	0060.0013.00	0001		Date: _	10/	19/1	O		Page 1 of
Project Name	: MSC Oal	kland Edgew	ater		Sampl	ing Location	n: <u>7101 E</u>	Edgewater	Drive, Oakland	d, Ca
Sampler's Na	ne: Br	ian Pro	wd/A.	asida	514		Sampl	e No.:	MW-14	├ □ FB
Sampling Plan	n By:	DCR _			Dated:	10/18/10		C.O.C. N	lo.:	DUP
Purge Method	l: 🗆 Centri	fugal Pump [Disposable E	Bailer □ Ha	and Bail 🗆 Su	bmersible F	Pump □ Te	flon Bailer	□ Other	
Purge Water	Storage Cont	tainer Type:	55 gallon dr	<u>um</u>	Stor	age Location	on:(On-site		-
Date Purge W	ater Dispose	ed:		d: On-site						
TPHd / TPHm Lab Name: Delivery By	o / TPHk by Curtis □ Courier _	8010 with sil	ica gel clean-u nsX ι	3 VOAs	1 Liter Amber	servative _				
Well Diamete	r: 2" gal/feet)				80% [DTW				
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Turb. (NTU)	Remarks
1300	Start	1.23	Ø	2.25	7.56	144	-111	1936		

Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	てた。 (パン) Remarks	
Start	1.23	Ø	2.25	20,4	7.56	14.4	-111	16936	
		1.5	2.19	20.7	7.59	14.0	-151	4,000	
		2.75	2.21	20.7	7.62	H.0	-154		
		3.5		20,8	7,64	140	-151	*******	
End							\longrightarrow	Sample	
								•	
-									
_	Depth Start	Depth to Water Start 1.23	Depth to Water Purged (gal) Start 1.23	Depth to Water Purged (gal) (mg/L) Sbxt 7.23	Depth to Water Purged (gal) (mg/L) (c°) Sbort 7.23	Depth to Water Purged (gal) (mg/L) (c°) (SU) Sbort 7.23' \(\text{ 2.25 20.4 7.56} \) - 1.5 2.19 20.7 7.59 - 2.15 2.21 20.1 7.62 - 3.5 2.15 20.8 7.64	Depth to Water Purged (gal) (mg/L) (c°) (SU) (uS/cm C) Sbx4 1.23' 2.25 20.4 7.56 14.4 - 1.5 2.19 20.7 7.59 14.6 - 2.15 2.21 20.7 7.62 14.0 - 3.5 2.15 20.8 7.64 14.0	Depth to Water Purged (gal) (mg/L) (C°) (SU) (uS/cm C) (mV) Sbort 7.23	Depth to Water Purged (gal) (mg/L) (C°) (SU) (uS/cm C) (mV) (NTU) Remarks Sbx+b 1.23 0 2.25 20.4 7.56 14.4 -111 14.93.6 - 1.5 2.19 20.7 7.59 14.6 -151 - - 2.15 2.21 20.7 7.62 14.0 -154 - - 3.5 2.15 20.8 7.64 140 -151 -

Continue remarks on reverse, if neede

Project No. <u>LC010060.0013.00001</u>	Date:	Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location: _	7101 Edgewater Drive, Oakland, Ca
Sampler's Name: Bran Praud /A	ndrea Valdivia	Sample No.: MW-G DFB
Sampling Plan By:DCR	Dated: <u>10/18/10</u>	C.O.C. No.: DUP
Purge Method: ☐ Centrifugal Pump ☑ Disposal	ole Bailer □ Hand Bail □ Submersible Pun	np □ Teflon Bailer □ Other
Purge Water Storage Container Type:55 gallo	n drum Storage Location:	On-site
Date Purge Water Disposed:	Where Disposed:	On-site
Analyses Requested TPHg / BTEX / MTBE by 8260 TPHd / TPHmo / TPHk by 8010 with silica gel clear Lab Name: Curtis and Tompkins	an-up 1 Liter Amber	
Delivery By Courier	X Hand	
Well No	Depth of Water 8.37 Well Depth 14.15 Water Column Height 5.78 Well Volume 0.92	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Turb (NTU)	Remarks
1318	Start	e.37'	Ø	2:40	21.4	7.14	19.9 -	12,9	my se	21.4
1322			1.0	2.01	21.2	7.09	201	-132	186.0	
1324			2.0	201	21.0	7.11	21,4	-133	336.0	
1326			3.0	2.04	20,6	7.13	22.1	-134	2008	
1330	End							→	8600 Samp	sle
						,			,	

Continue remarks on reverse, if needed.

0	AF	RC/	4D	IS	
---	----	-----	----	----	--

										Page 1 of _
										nd, Ca
										\$\fig FB@V
Sampling Plan	n By:	DCR _			Dated:	<u>10/18/10</u>		C.O.C. N	lo.:	X DUP MW-
_							,			
Date Purge W	ater Dispose	ed:			Wh	ere Dispose	ed: On-site			
	Analyses Re	equested		No. a	and Type of Bot	tles Used				
TPHg / BTE	EX/MTBE b	oy 8260		3 VOAs	with HCl pre	servative _				
TPHd / TPHm	o / TPHk by	8010 with si	ica gel clean-u	p	1 Liter Amber					
Lab Name:										
Delivery By	☐ Courier _			Hand						
Well Diamete	r: 2"		De	ell Depth _	13,95	o'				
	gal/feet) gal/feet)		al/feet) W al/feet) W		n Height			80% [OTW	
Time	inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm ⋬)	ORP (mV)	Turb (NTU)	Remarks
1431	Start	5,88	Ø	2A3	228	7,13	3,52	-33	116	
1434			1,5	2,39	22.8	7,69	3.27	-68		
1436		-	3,6	2.46	22.5	7.16	3,32	-48	_	
1438			4.0	2.49	22.4	7,06	3,30	-5		
1438	End							>	Sam	.ple
1450								>	Sam	rabe
									•	

Continue remarks on reverse, if needed.

APPENDIX C

Laboratory Results and Chain-of-Custody Documentation

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 223317 ANALYTICAL REPORT

Arcadis Project : LC010060.0013.00001

1900 Powell St. Location: MSC Oakland

Emeryville, CA 94608 Level : II

Sample ID	<u>Lab ID</u>
TRIP BLANK	223317-001
MW-13	223317-002
MW-14	223317-003
MW-9	223317-004
MW-6-FB	223317-005
MW-6	223317-006
MW-6-DUP	223317-007

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Date: <u>10/26/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 223317 Client: Arcadis

Project: LC010060.0013.00001

Location: MSC Oakland
Request Date: 10/19/10
Samples Received: 10/19/10

This data package contains sample and QC results for six water samples, requested for the above referenced project on 10/19/10. The samples were received cold and intact. All data were e-mailed to Daren Roth on 10/26/10.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

MW-6 (lab # 223317-006) and MW-6-DUP (lab # 223317-007) had pH greater than 2. No other analytical problems were encountered.

Curtis & Tompkins, Ltd.

Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 Phone (510) 486-0532 Fax

CHAIN OF CUSTODY

Page of

Analysis

Projec	Project No.: LCO\co\co\co\co\co\co\co\co\co\co\co\co\co\							EPA 8266	1 1			
Turnar	ound Time: Standard	Fax:				<u> </u>		XAMTE		-		
			M	latrix		Preserv	ative	BIEX				
Lab No.	Sample ID.	Sampling Date Time	Soil	Waste	# of Containers	15 % 10° %	OE	THE B				
1	Trip Blank	19/19/10	X	1	1	X		X	-	++	++	
2	MW-13	10/19/10 1755	>		A	X		XX			-	
3	MW-14	10/19/10 13/5	T	1	4	X	$ \hat{\mathbf{x}} $	XX				_
- 4	MW-9	10/19/10/1330	×		4	X	X	XX				_
5	MW-6-FB	10/19/10 1420	×		A	X	X	XX		11		
<u>b</u>	MW-6	10/19/10 1445			4	×		XX		T		
7	MW-G-Dup	10/19/10 1450	X		4	X	X	XX				
		ļ									11	
			-	-								
1	İ	1	1 1		i	1 1 1	1 1 1	1 1	1 1	1 1		

Notes: USE SILICA GEL CLEANUP ON THE TPHd/mo/k SAMPLES PRICE TO ANALYSIS

SAMPLE RECEIPT						
Intact	Cold					
On Ice	Ambient					

Preservative Correct?

RELINQUISHED BY: Andfu Valeanie

RECEIVED BY: 10/4/10/164 DATE / TIME

+	Device Titrault
=	World Strains

10/19/10 1644 DATE / TIME

HOLD

Yes No N/A

DATE / TIME

DATE / TIME

DATE / TIME

DATE / TIME

SIGNATURE

Login # 227517	Date Received	shalis	Normalian of an al	
Client AXCOUS			Number of cools	ers (
Date Opened _ lo//1/10 By (p			May	2
Did cooler come with a shipp Shipping info	ing slip (airbill, etc)		YE	S ONO
2A. Were custody seals present How many	Name			
2B. Were custody seals intact up 3. Were custody papers dry and 4. Were custody papers filled ou 5. Is the project identifiable from 6. Indicate the packing in cooler	intact when received at properly (ink, sign on custody papers? (I	ed, etc)? If so fill out to	XE XO	S NO
☐ Bubble Wrap ☐ Cloth material ☐ 7. Temperature documentation:	Foam blocks Cardboard	□ Bags □ Styrofoam	☐ None ☐ Paper to	owels
Type of ice used: We	et 🔲 Blue/Gel	□None	Temp(°C)_Z.	2
☐ Samples Received on	ice & cold without a	temperature 1	olank	
☐ Samples received on i		_		m
8. Were Method 5035 sampling If YES, what time were t	containers present?		process had begu	YES 😿
9. Did all bottles arrive unbroker	n/unopened?			YES NO
10. Are samples in the appropria	ate containers for inc	licated tests?_		BS NO
11. Are sample labels present, in	good condition and	complete? _		XES NO
12. Do the sample labels agree w	71th custody papers?			YES NO
13. Was sufficient amount of san14. Are the samples appropriatel	npie sent for tests re	quested?	7.05 h	YES NO
17 4 1 111			——————————————————————————————————————	NO N/A
16. Was the client contacted cond	cerning this sample	felivery?	Y&	NO N/A
15. Are bubbles > 6mm absent in16. Was the client contacted condIf YES, Who was called?	cerning uns sample (By	Date:	YES NO
COMMENTS				

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Rev. 6 Number 1 of 3

Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Total Extractable Hydrocarbons MSC Oakland EPA 3520C Lab #: 223317 Location: Client: Arcadis Prep: LC010060.0013.00001 Project#: Analysis: EPA 8015B 10/19/10 10/19/10 Matrix: Water Sampled: Units: ug/L Received: Diln Fac: 1.000 10/20/10 Prepared: Batch#: 168172 10/21/10 Analyzed:

Field ID: MW-13 Lab ID: 223317-002 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	150 Y	50	
Motor Oil C24-C36	940	300	

Surrogate	%REC	Limits	
o-Terphenyl	87	60-129	

Field ID: MW-14 Lab ID: 223317-003 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	110	50	
Diesel C10-C24	210	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits	
o-Terphenyl	94	60-129	

Field ID: MW-9 Lab ID: 223317-004 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	94	60-129

Field ID: MW-6-FB Lab ID: 223317-005 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	92	60-129

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

3.0

	Total Extra	actable Hydrocar	rbons
Lab #:	223317	Location:	MSC Oakland
Client:	Arcadis	Prep:	EPA 3520C
Project#:	LC010060.0013.00001	Analysis:	EPA 8015B
Matrix:	Water	Sampled:	10/19/10
Units:	ug/L	Received:	10/19/10
Diln Fac:	1.000	Prepared:	10/20/10
Batch#:	168172	Analyzed:	10/21/10

Field ID: MW-6 Lab ID: 223317-006 SAMPLE Cleanup Method: EPA 3630C Type:

Analyte	Result	RL	
Kerosene C10-C16	420	50	
Diesel C10-C24	400	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits	
bullogate	-9KEC	птштср	
o-Terphenyl	92	60-129	
O ICI DIICII I	24		

Field ID: MW-6-DUP Lab ID: 223317-007 SAMPLE Cleanup Method: EPA 3630C Type:

Analyte	Result	RL	
Kerosene C10-C16	400	50	
Diesel C10-C24	370	50	
Motor Oil C24-C36	ND	300	

BLANK QC565146 Cleanup Method: EPA 3630C Type:

Lab ID:

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	98	60-129

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	Total Extra	actable Hydrocar	rbons
Lab #:	223317	Location:	MSC Oakland
Client:	Arcadis	Prep:	EPA 3520C
Project#:	LC010060.0013.00001	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	168172
Units:	ug/L	Prepared:	10/20/10
Diln Fac:	1.000	Analyzed:	10/21/10

Type: BS Cleanup Method: EPA 3630C

Lab ID: QC565147

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	1,957	78	54-125

Surrogate	%REC	Limits
o-Terphenyl	100	60-129

Type: BSD Cleanup Method: EPA 3630C

Lab ID: QC565148

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,118	85	54-125	8	53

Surrogate	%REC	Limits	
o-Terphenyl	103	60-129	

\Lims\gdrive\ezchrom\Projects\GC15B\Data\294b020, B

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\294b021, B

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\294b024, B

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\294b025, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\294b012, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\294b015, B

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\294b013, B

	Gasoline by GC/MS					
Lab #:	223317	Location:	MSC Oakland			
Client:	Arcadis	Prep:	EPA 5030B			
Project#:	LC010060.0013.00001	Analysis:	EPA 8260B			
Matrix:	Water	Sampled:	10/19/10			
Units:	ug/L	Received:	10/19/10			

Field ID: MW-13 Diln Fac: 1.000
Type: SAMPLE Batch#: 168144
Lab ID: 223317-002 Analyzed: 10/20/10

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	90	80-122
1,2-Dichloroethane-d4	111	71-140
Toluene-d8	95	80-120
Bromofluorobenzene	89	80-121

Field ID: MW-14 Diln Fac: 1.000
Type: SAMPLE Batch#: 168144
Lab ID: 223317-003 Analyzed: 10/20/10

Analyte	Result	RL	
Gasoline C7-C12	54	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	87	80-122	
1,2-Dichloroethane-d4	109	71-140	
Toluene-d8	96	80-120	
Bromofluorobenzene	90	80-121	

ND= Not Detected

RL= Reporting Limit

Page 1 of 5

6.1

	Gasoline by GC/MS					
Lab #:	223317	Location:	MSC Oakland			
Client:	Arcadis	Prep:	EPA 5030B			
Project#:	LC010060.0013.00001	Analysis:	EPA 8260B			
Matrix:	Water	Sampled:	10/19/10			
Units:	ug/L	Received:	10/19/10			

Field ID: MW-9 Diln Fac: 1.000
Type: SAMPLE Batch#: 168144
Lab ID: 223317-004 Analyzed: 10/20/10

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	0.51	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	88	80-122
1,2-Dichloroethane-d4	109	71-140
Toluene-d8	98	80-120
Bromofluorobenzene	90	80-121

Field ID: MW-6-FB Diln Fac: 1.000
Type: SAMPLE Batch#: 168144
Lab ID: 223317-005 Analyzed: 10/20/10

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	88	80-122	
1,2-Dichloroethane-d4	109	71-140	
Toluene-d8	95	80-120	
Bromofluorobenzene	90	80-121	

ND= Not Detected

RL= Reporting Limit

Page 2 of 5

Gasoline by GC/MS					
Lab #:	223317	Location:	MSC Oakland		
Client:	Arcadis	Prep:	EPA 5030B		
Project#:	LC010060.0013.00001	Analysis:	EPA 8260B		
Matrix:	Water	Sampled:	10/19/10		
Units:	ug/L	Received:	10/19/10		

Diln Fac: Field ID: MW-6 2.000 168289 Batch#: Type: SAMPLE Lab ID: 223317-006 Analyzed: 10/25/10

Analyte	Result	RL	
Gasoline C7-C12	620	100	
MTBE	3.3	1.0	
Benzene	100	1.0	
Toluene	1.7	1.0	
Ethylbenzene	ND	1.0	
m,p-Xylenes o-Xylene	2.0	1.0	
o-Xylene	ND	1.0	

Surrogate	%REC	Limits
Dibromofluoromethane	90	80-122
1,2-Dichloroethane-d4	102	71-140
Toluene-d8	97	80-120
Bromofluorobenzene	90	80-121

Field ID: Diln Fac: MW-6-DUP 2.000 168236 Type: SAMPLE Batch#: Lab ID: 223317-007 Analyzed: 10/22/10

Analyte	Result	RL	
Gasoline C7-C12	610	100	
MTBE	3.1	1.0	
Benzene	110	1.0	
Toluene	1.6	1.0	
Ethylbenzene	ND	1.0	
m,p-Xylenes	1.4	1.0	
o-Xylene	ND	1.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	87	80-122	
1,2-Dichloroethane-d4	107	71-140	
Toluene-d8	97	80-120	
Bromofluorobenzene	89	80-121	

ND= Not Detected

RL= Reporting Limit

Page 3 of 5 6.1

Gasoline by GC/MS				
Lab #:	223317	Location:	MSC Oakland	
Client:	Arcadis	Prep:	EPA 5030B	
Project#:	LC010060.0013.00001	Analysis:	EPA 8260B	
Matrix:	Water	Sampled:	10/19/10	
Units:	ug/L	Received:	10/19/10	

Type: BLANK Batch#: 168144
Lab ID: QC565105 Analyzed: 10/20/10

Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	92	80-122
1,2-Dichloroethane-d4	110	71-140
Toluene-d8	96	80-120
Bromofluorobenzene	91	80-121

Type: BLANK Batch#: 168236 Lab ID: QC565399 Analyzed: 10/22/10

Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	89	80-122	
1,2-Dichloroethane-d4	114	71-140	
Toluene-d8	96	80-120	
Bromofluorobenzene	92	80-121	

ND= Not Detected

RL= Reporting Limit

Page 4 of 5

6.1

Gasoline by GC/MS				
Lab #:	223317	Location:	MSC Oakland	
Client:	Arcadis	Prep:	EPA 5030B	
Project#:	LC010060.0013.00001	Analysis:	EPA 8260B	
Matrix:	Water	Sampled:	10/19/10	
Units:	ug/L	Received:	10/19/10	

Batch#: Type: BLANK 168289 Lab ID: Analyzed: 10/25/10 QC565619

Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	89	80-122
1,2-Dichloroethane-d4	106	71-140
Toluene-d8	98	80-120
Bromofluorobenzene	89	80-121

ND= Not Detected RL= Reporting Limit

Page 5 of 5

Gasoline by GC/MS				
Lab #:	223317	Location:	MSC Oakland	
Client:	Arcadis	Prep:	EPA 5030B	
Project#:	LC010060.0013.00001	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	168144	
Units:	ug/L	Analyzed:	10/20/10	
Diln Fac:	1.000			

Type: BS Lab ID: QC565058

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	20.98	84	66-120
Benzene	25.00	23.63	95	80-122
Toluene	25.00	24.81	99	80-120
Ethylbenzene	25.00	24.92	100	80-123
m,p-Xylenes	50.00	52.17	104	80-126
o-Xylene	25.00	25.86	103	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	90	80-122
1,2-Dichloroethane-d4	106	71-140
Toluene-d8	97	80-120
Bromofluorobenzene	89	80-121

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	20.27	81	66-120	3	20
Benzene	25.00	22.89	92	80-122	3	20
Toluene	25.00	24.09	96	80-120	3	20
Ethylbenzene	25.00	24.51	98	80-123	2	20
m,p-Xylenes	50.00	50.50	101	80-126	3	20
o-Xylene	25.00	24.94	100	80-122	4	20

Surrogate	%REC	Limits
Dibromofluoromethane	88	80-122
1,2-Dichloroethane-d4	106	71-140
Toluene-d8	97	80-120
Bromofluorobenzene	90	80-121

	Gasol	line by GC/MS	
Lab #:	223317	Location:	MSC Oakland
Client:	Arcadis	Prep:	EPA 5030B
Project#:	LC010060.0013.00001	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	168144
Units:	ug/L	Analyzed:	10/20/10
Diln Fac:	1.000		

Type: BS Lab ID: QC565103

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,051	105	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	90	80-122
1,2-Dichloroethane-d4	107	71-140
Toluene-d8	96	80-120
Bromofluorobenzene 8	89	80-121

Analyte	Spiked	Result	%REC	Limits	RPD L	im
Gasoline C7-C12	1,000	1,013	101	80-120		20

Surrogate	%REC	Limits
Dibromofluoromethane	87	80-122
1,2-Dichloroethane-d4	108	71-140
Toluene-d8	96	80-120
Bromofluorobenzene	90	80-121

	Gasol	ine by GC/MS		
Lab #:	223317	Location:	MSC Oakland	
Client:	Arcadis	Prep:	EPA 5030B	
Project#:	LC010060.0013.00001	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	168236	
Units:	ug/L	Analyzed:	10/22/10	
Diln Fac:	1.000			

Type: BS Lab ID: QC565397

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	20.42	82	66-120
Benzene	25.00	23.50	94	80-122
Toluene	25.00	24.06	96	80-120
Ethylbenzene	25.00	25.07	100	80-123
m,p-Xylenes	50.00	51.32	103	80-126
o-Xylene	25.00	25.10	100	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	90	80-122
1,2-Dichloroethane-d4	109	71-140
Toluene-d8	98	80-120
Bromofluorobenzene	89	80-121

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	21.57	86	66-120	5	20
Benzene	25.00	24.21	97	80-122	3	20
Toluene	25.00	24.82	99	80-120	3	20
Ethylbenzene	25.00	25.65	103	80-123	2	20
m,p-Xylenes	50.00	52.18	104	80-126	2	20
o-Xylene	25.00	25.93	104	80-122	3	20

Surrogate	%REC	Limits
Dibromofluoromethane	91	80-122
1,2-Dichloroethane-d4	108	71-140
Toluene-d8	97	80-120
Bromofluorobenzene	90	80-121

	Gasol	ine by GC/MS		
Lab #:	223317	Location:	MSC Oakland	
Client:	Arcadis	Prep:	EPA 5030B	
Project#:	LC010060.0013.00001	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	168236	
Units:	ug/L	Analyzed:	10/22/10	
Diln Fac:	1.000			

Type: BS Lab ID: QC565442

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,107	111	80-120

Surrogate	%REC	Limits
Dibromofluoromethane 8	89	80-122
1,2-Dichloroethane-d4 1	110	71-140
Toluene-d8 9	97	80-120
Bromofluorobenzene 8	89	80-121

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	989.7	99	80-120	11	20

Surrogate	%REC	Limits
Dibromofluoromethane	90	80-122
1,2-Dichloroethane-d4	107	71-140
Toluene-d8	96	80-120
Bromofluorobenzene	91	80-121

	Gasol	ine by GC/MS	
Lab #:	223317	Location:	MSC Oakland
Client:	Arcadis	Prep:	EPA 5030B
Project#:	LC010060.0013.00001	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	168289
Units:	ug/L	Analyzed:	10/25/10
Diln Fac:	1.000		

Type: BS Lab ID: QC565617

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	20.20	81	66-120
Benzene	25.00	22.63	91	80-122
Toluene	25.00	23.57	94	80-120
Ethylbenzene	25.00	23.80	95	80-123
m,p-Xylenes	50.00	49.44	99	80-126
o-Xylene	25.00	24.50	98	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	88	80-122
1,2-Dichloroethane-d4	103	71-140
Toluene-d8	96	80-120
Bromofluorobenzene	88	80-121

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	19.82	79	66-120	2	20
Benzene	25.00	22.16	89	80-122	2	20
Toluene	25.00	23.32	93	80-120	1	20
Ethylbenzene	25.00	23.62	94	80-123	1	20
m,p-Xylenes	50.00	48.09	96	80-126	3	20
o-Xylene	25.00	24.37	97	80-122	1	20

Surrogate	%REC	Limits
Dibromofluoromethane	89	80-122
1,2-Dichloroethane-d4	101	71-140
Toluene-d8	98	80-120
Bromofluorobenzene	88	80-121

Gasoline by GC/MS								
Lab #:	223317	Location:	MSC Oakland					
Client:	Arcadis	Prep:	EPA 5030B					
Project#:	LC010060.0013.00001	Analysis:	EPA 8260B					
Matrix:	Water	Batch#:	168289					
Units:	ug/L	Analyzed:	10/25/10					
Diln Fac:	1.000							

Type: BS Lab ID: QC565645

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,073	107	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	89	80-122
1,2-Dichloroethane-d4	104	71-140
Toluene-d8	97	80-120
Bromofluorobenzene	90	80-121

Analyte	Spiked	Result	%REC	Limits	RPD L
Gasoline C7-C12	1,000	1,044	104	80-120	3 20

Surrogate	%REC	Limits
Dibromofluoromethane	88	80-122
1,2-Dichloroethane-d4	104	71-140
Toluene-d8	98	80-120
Bromofluorobenzene	89	80-121

Page 2

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\102010.b\\JJK14TVH.D

Date : 20-0CT-2010 15:52 Client ID: DYNA P&T Sample Info: S,223317-003,

Instrument: MSVOA10.i

Operator: VOA

Column phase: Column diameter: 2.00

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\102510.b\JJP20.D

Date : 25-0CT-2010 19:38 Client ID: DYNA P&T Sample Info: ib

Purge Volume: 5.0

Column phase: RTx Volatiles

Instrument: MSVOA10.i

Operator: VOA

Column diameter: 0.32

Page 2

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\102210.b\\JJM14TVH.D

Date : 22-0CT-2010 16:35 Client ID: DYNA P&T

Instrument: MSVOA10.i

Sample Info: 223317-007,

Operator: VOA

Column phase: Column diameter: 2.00

Page 2

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\102010.b\\JJK09TVH.D

Date : 20-0CT-2010 12:41 Client ID: DYNA P&T

Sample Info: CCV/BS,QC565103,168144,S14540,

Operator: VOA

Column phase: Column diameter: 2.00

Instrument: MSVOA10.i

APPENDIX D

Historical Tables

Table D-1
Summary of Groundwater Analytical Data, VOCs
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Well ID/ Date	Benzene (µg/l)	n-Butyl- benzene (µg/l)	,	tert-Butyl- benzene (µg/l)	Chloro- ethane (µg/l)	Chloro- form (µg/l)	Methyl Chloride (µg/l)	1,2- DCA (µg/l)	cis-1,2- DCE (µg/l)	1,2- DCP (µg/l)	Ethyl- benzene (µg/l)	Isopropyl- benzene (µg/l)	p-Isopropyl- toluene (µg/l)	MTBE (µg/l)	Napthalene (µg/l)	n-Propyl- benzene (µg/l)	Toluene (µg/l)	1,2,4- TMB (µg/l)	1,3,5- TMB (µg/l)	Xylenes (µg/l)
MW-5 2/27/01	180	9	4	ND	3	ND	ND	7	ND	3	260	23	6	1,100	43	68	7	1	11	53
MW-6																				
2/27/01	270	11	3	ND	< 1	ND	ND	7	ND	< 1	9	6.0	1.0	19.0	62	21	3	1	< 1	3
8/20/01	E280	14	<1	<1	< 1	3	2	<1	<1	<1	11	4.0	<1	14.0	E82	14	4	<1	<1	9
TBW-1 8/20/01	E530	30	<1	54	<1	4	10	<1	2	<1	E540	36	54	<1	E300	E120	79	E430	<1	E790
TBW-3 8/20/01	10	<1	<1	<1	<1	<1	<1	<1	<1	<1	6	<1	<1	<1	5	<1	<1	<1	<1	3
TBW-5 8/20/01	E620	<1	<1	E160	<1	3	<1	<1	<1	<1	E730	40	E160	<1	E450	E140	E110	<1	<1	E3100

Notes:

cis-1,2-DCE = cis-1,2-dichloroethene

E = Estimated concentration.

MTBE = methyl tertiary-butyl ether

ND = Not detected.

VOCs = Volatile organic compounds by EPA Method 8260. Sample not subject to silica gel cleanup or filtration prior to analysis.

1,2-DCA = 1,2-dichloroethane

1,2-DCP = 1,2-dichloropropane

1,2,4-TMB = 1,2,4-trimethylbenzene

1,3,5-TMB = 1,3,5-trimethylbenzene

Table D-2 Summary of Groundwater Analytical Data, SVOCs Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Well ID/ Date	Napthalene (µg/l)	Pyrene (µg/l)	Other SVOCs (µg/l)
MW-6			
2/27/01	19	ND	ND
8/20/01	52	<5	39
MW-9			
11/28/00	ND	ND	ND
MW-13			
11/28/00	ND	10	ND
MW-17			
11/28/00	ND	ND	ND
TBW-1			
8/20/01	140	8	387
TBW-3			
8/20/01	< 5	<5	5
TBW-5			
8/20/01	220	<5	73

Notes:

SVOCs = Semivolatile organic compounds by EPA Method 8270.

ND = Not detected

Samples not subject to silica gel cleanup or filtration before analysis.

Table D-3
Summary of Groundwater Analytical Data, LUFT Metals
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in milligrams per liter (mg/l)

Well ID/ Date	Cadmium (mg/l)	Chromium (mg/l)	Lead (mg/l)	Nickel (mg/l)	Zinc (mg/l)	Notes
MW-2						
8/19/98			< 100			a
MW-6						
2/28/01	< 0.001	0.035	0.23	0.046	0.19	non-filtered
8/16/01	< 0.001	0.020	0.12	0.032	0.11	
TBW-1						
8/16/01	< 0.001	0.017	0.042	0.034	0.10	0.1*
TBW-3						
8/16/01	< 0.001	0.008	0.01	0.019	< 0.02	
TBW-5						
8/16/01	< 0.001	< 0.005	0.01	0.008	0.03	
0/10/01	\0.001	V 0.003	0.01	0.000	0.03	

Notes:

LUFT = Leaking Underground Fuel Tank

LUFT metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise.

^{--- =} Not measured/analyzed.

^{* =} Note was indicated but not defined in historical data tables.

a = Analyzed for organic lead.

Table D-4 Summary of Groundwater Analytical Data, Additional Metals Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in milligrams per liter (mg/l)

Sample ID/ Date	Antimony (mg/l)	Arsenic (mg/l)	Beryllium (mg/l)	Copper (mg/l)	Selenium (mg/l)	Silver (mg/l)	Thallium (mg/l)
MW-6							
8/16/01	< 0.01	0.033	< 0.001	0.025	< 0.01	< 0.003	< 0.01
TBW-1							
8/16/01	< 0.01	0.015	< 0.001	0.017	< 0.01	< 0.003	< 0.01
TDXX 2							
TBW-3							
8/16/01	< 0.01	0.009	< 0.001	0.008	< 0.01	< 0.003	< 0.01
TBW-5							
8/16/01	< 0.01	0.020	< 0.001	< 0.005	< 0.01	< 0.003	< 0.01

Notes:

Metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise.