20293

DALZIEL BUILDING • 250 FRANK H. OGAWA PLAZA, SUITE 5301 • OAKLAND, CALIFORNIA 94612

Public Works Agency Environmental Services

(510) 238-6688 FAX (510) 238-7286 TDD (510) 238-7644

July 17, 2002

Mr. Barney Chan Alameda County Environmental Health Services 1131 Harbor Bay Parkway Alameda, California 94502-6577

JUL 2 3 2002

Subject:

First Quarter 2002 Monitoring Report -City of Oakland Municipal Service Center 7101 Edgewater Drive Oakland, California

Dear Mr. Chan:

Enclosed are copies of the *First Quarter 2002 Monitoring Report* prepared by our consultants, URS Corporation and Aquatus Environmental for the City of Oakland Municipal Service Center at 7101 Edgewater Drive.

Please call me at 238-6259, if you have any questions or require additional information.

Sincerely,

Joseph & Cotton, R.G.

Environmental Program Specialist

cc: Diane Heinz, Port of Oakland, 530 Water St., Oakland, CA 94604 Xinggang Tong, URS Corporation, 500 12th St., Suite 200, Oakland, CA 94607

Aquatus Environmental

731 Talbot Avenue Albany, CA 94706 Phone (510) 527-6299 Fax (510) 527-3009 aquatusenviro@earthlink.net

Ro 243

July 15, 2002

Mr. Joseph Cotton City of Oakland, Public Works Agency Environmental Services Division 250 Frank H. Ogawa Plaza, Ste. 5301 Oakland, California 94612-2034

Subject: First Quarter 2002 Monitoring Report

City of Oakland, Municipal Services Center 7101 Edgewater Drive, Oakland, California

Dear Mr. Cotton:

As required by the Alameda County Department of Environmental Health (ACDEH), Aquatus Environmental has prepared this first quarter 2002 groundwater monitoring report for the above-referenced site. Morgan Environmental Services performed the groundwater monitoring activities.

Aquatus Environmental understands that the City of Oakland will forward a copy of this report to the ACDEH. Please call me if you have questions or comments regarding this report.

Sincerely,

AQUATUS ENVIRONMENTAL

Donna Bodine

Principal Environmental Engineer

Attachments: First Quarter 2002 Monitoring Report

a Dodine

cc: Xinggang Tong- URS Corporation

Tom Morgan-Morgan Environmental Services

FIRST QUARTER 2002 MONITORING REPORT

JUL 2 3 2002

City of Oakland, Municipal Services Center 7101 Edgewater Drive Oakland, California

July 15, 2002

Prepared for:

City of Oakland, Public Works Agency Environmental Services Division 250 Frank H. Ogawa Plaza, Ste. 5301 Oakland, California 94612-2034

Prepared by:

Aquatus Environmental 731 Talbot Avenue Albany, CA 94706

Donna Bodine

Principal Environmental Engineer

FIRST QUARTER 2002 MONITORING REPORT

City of Oakland, Municipal Services Center 7101 Edgewater Drive Oakland, California

July 15, 2002

INTRODUCTION

As required by the Alameda County Department of Environmental Health (ACDEH), Aquatus Environmental has prepared this first quarter 2002 groundwater monitoring report for the City of Oakland Municipal Services Center. Described below are the first quarter 2002 monitoring activities, monitoring results, contaminant distributions in groundwater, corrective action activities, conclusions, recommendations, and anticipated second quarter 2002 activities.

FIRST QUARTER 2002 MONITORING ACTIVITIES

Field Activities: On April 3, 2002, Morgan Environmental Services (Morgan) gauged and inspected site monitoring and tank pit backfill wells for separate-phase hydrocarbons (SPH) in accordance with the ACDEH-approved monitoring protocol shown in Table A. Morgan collected samples from the following wells on April 5, April 8 and April 9, 2002: MW-1, MW-2, MW-5, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-17. Monitoring wells MW-6 and MW-16 were not sampled due to the presence of SPH. Monitoring well locations are shown on Figure 1. Field data sheets are included as Appendix A.

Sample Analyses: The groundwater samples were analyzed for the following parameters:

- Total petroleum hydrocarbons (TPH) as gasoline (TPHg), diesel (TPHd), and motor oil (TPHmo) by United States Environmental Protection Agency (USEPA) Method 8015B. A silica gel cleanup was performed for TPHd and TPHmo (USEPA Method 3630C).
- Benzene, toluene, ethylbenzene, total xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by USEPA Method 8021.

Caltest Analytical Laboratory (Caltest), of Napa, CA, a California Department of Health Services-certified environmental laboratory, performed the chemical analyses. This quarter, Caltest inadvertently did not analyze the groundwater samples for TPH as kerosene, as is typically performed. Project requirements have been updated in the Caltest's project file to prevent future missed analyses.

In an effort to identify sound analytical protocols to remove solids from samples designated for TPH-extractables analysis (i.e., TPHd, TPHmo, TPH as kerosene), Caltest performed a benchscale test to evaluate how centrifuging three groundwater samples would affect the analytical results and the laboratory

C:\AQUATUS\Morgan Env\1QTR 02 Report\CoO-1QRT 02 report.doc

quality control data. Samples from wells MW-9, MW-11 and MW-15 were used for the benchscale test. The rationale for selecting the samples for the test is discussed in the Fourth Quarter 2001 Groundwater Monitoring Report. In addition, a memorandum summarizing required field and laboratory procedures for the centrifuge tests is provided in Appendix B. Centrifuging the samples was investigated in an effort to reduce the turbidity of the groundwater samples because it was proposed that the solids were contributing to the TPH concentrations reported for the samples. Filtering the samples through 0.45-micron synthetic membrane filters was previously performed, and was discontinued because the associated quality control data were found to be unacceptable.

To conduct the centrifuge tests, samples were spilt into two 500-mL disposable glass amber bottles and centrifuged at 1,200 RPM for 20 minutes each. The samples were decanted, leaving solids in the bottle. Visual observations by the analyst indicated the centrifuge process removed most of the fine particulates from the samples. The decanted liquid was then extracted, run through a silica gel column, and analyzed for TPHd and TPHmo. For each sample, diesel, motor oil and ortho-terphenyl were added as matrix spikes or the surrogate compound to evaluate the accuracy of the analytical procedures. Aliquots of MW-9, MW-11 and MW-15 were also extracted, run through a silica gel column, and analyzed without centrifuging (i.e., standard procedures), for comparison to the centrifuge results.

		T	abl					rotocol ipal Sen			r 2002	
Well		Qui	arter		Gauge Every Qtr	DO (field meter)	TPHg/ BTEX/ MTBE* (8015B/	TPH d/k/mo (8015B) silica gel**	VOC (8260)	SVOC (8270)	metals	Comments
	139	2	3	4			8021)		AA44 (1009/47)			
MW-1	Х				Х	Х	Х	Х				4
MW-2	Х				Х	Х	х	х				
MW-5	X				Х	Х	Х	х	 	<u> </u>		
MW-6					Х	Х	Х	Х		 		SPH
MW-7	Х	-		-	х	Х	X	х				present
MW-8	х				х	х	х	х		<u> </u>		<u> </u>
MW-9	Х		 		х	Х	Х	х	<u> </u>	+		
MW-10	X				·x	Х	Х	Х	<u> </u>			
MW-11	х	-			Х	х	Х	х				
MW-12	х				Х	х	Х	х		 		
MW-13	Х				х	Х	Х	Х				
MW-14	Х				х	Х	Х	Х		1		
MW-15	Х				х	Х	Х	Х		 		
MW-16					х	Х	X	х				SPH present
MW-17	X				Х	х	х	×				present
MW-18					De	veloped to	monitor a	utility trench,	not sampl	ed to date	<u> </u>	.l
TBW-1	х					Gauge	thickness	of separate-	ohase hyd	rocarbons		
TBW-3	х	-				Gauge	thickness	of separate-	ohase hyd	rocarbons		<u> </u>
TBW-4	х					Gauge	thickness	of separate-	phase hyd	rocarbons		
TBW-5	Х					Gauge	thickness	of separate-	ohase hyd	rocarbons	;	
TBW-6	X					Gauge	thickness	of separate-	ohase hyd	rocarbons	<u> </u>	
Trip Blank	X				NA	NA	Х				}	

DO = Dissolved Oxygen

^{*} Positive results for MTBE will be confirmed by re-analysis using EPA Method 8260, except for MW-5
** Samples will be centrifuged prior to extraction to remove particulates if laboratory quality control analyses are acceptable for the three test samples. Prior to analysis, the laboratory will run the sample extracts through a silical gel column per EPA Method 3630C. Welts MW-3 and MW-4 were destroyed during the first quarter 1999 Metals: antimony, arsenic, beryllium, cadmium, chromium, copper, lead, nicket, selenium, silver, thallium, and zinc

MONITORING RESULTS

Shallow Groundwater Topography

Groundwater contours indicate flow towards San Leandro Bay and Damon Slough (Figure 1). Apparent groundwater flow directions are consistent with historical measurements. The magnitude of the gradient ranged from 0.02 in the north to 0.027 in the southern portion of the site. Depth-to-water and groundwater elevation data are presented in Table 1.

Occurrence of Separate-Phase Hydrocarbons

Separate-phase hydrocarbons (SPH) were only observed in on-site monitoring well MW-6 (0.11 ft.). Historically, SPH has also been measured in off-site well MW-16, and on-site wells TBW-1, TBW-3,TBW-5 and TBW-6.

SPH thickness measurements in wells frequently may not be representative of true thicknesses in the formation(s) screened by the wells, and are typically several to many times thicker than those actually occurring in the deposits or formation(s) intercepted by the well screens^{1, 2}. This phenomena can also be exaggerated by fluctuating water tables. The extent of SPH is defined in the downgradient direction for each of these areas by other site wells. SPH removal activities are described below in the corrective action section.

Contaminant Distribution in Groundwater

The first quarter 2002 analytical results are summarized in Table 1. The laboratory analytical data reports are included as Appendix C. Historical data for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), Leaking Underground Fuel Tank (LUFT) metals, and other metals are provided in Table 2, Table 3, Table 4, and Table 5, respectively.

Benzene in Groundwater: The maximum benzene concentration detected this quarter was 367 micrograms per liter (µg/l) in offsite perimeter well MW-9. This concentration is higher than historic concentrations and above the acceptable risk thresholds for both the San Francisco Airport Ecological

Wagner, R.B., Hampton, D.R., and Howell, J.A., A New Tool to Determine The Actual Thickness of Free Product in a Shallow Aquifer, Proceedings of the Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection and Restoration, 1989. Published by the National Water Well Association.

² Yaniga, P. M., Hydrocarbon Retrieval and Apparent Hydrocarbon Thickness: Relationship to Recharging/Discharging Aquifer Conditions, presented to the National Water Well Association and the American Petroleum Institute, Houston, TX, 1984.

Protection Zone Tier I Standard³ (71 µg/l) and the City of Oakland Risk-Based Tier I Standard⁴ for inhalation of indoor air vapors (110 µg/l). This concentration also exceeds the acceptable risk threshold of 46 µg/l for ecological toxicity established by the USEPA according to the San Francisco Bay Regional Water Quality Control Board (RWQCB-SFBR)⁵. The elevated concentrations in some of the wells may have been caused by the well redevelopments, which occurred in January and February 2002. The process of repeat surging and pumping may have mobilized oily deposits within the well casing and sand packing.

Benzene was also detected in MW-2 at 2.9 μ g/l, MW-5 at 110 μ g/l, and in MW-10 at 1.1 μ g/l, and MW-11 at 8.9 μ g/l. The concentrations are consistent with historic concentrations for these wells.

MTBE in Groundwater: MTBE was detected in MW-5 at 166 μ g/L. MTBE was not detected above the reporting limit of 5 μ g/l in any other samples this quarter. Historically MTBE has only been detected in wells MW-5 and MW-6. MW-6 was not sampled this quarter due to the presence of SPH.

TPHg in Groundwater: The maximum TPHg concentration detected was 8,000 μ g/l in well MW-5. The highest concentration detected in an offsite perimeter well was 1,498 μ g/l in well MW-9. This concentration is significantly higher than historic concentrations in MW-9, possibly due to the well redevelopment. In addition, the laboratory indicated the results for MW-9 do not match the laboratory gasoline standard, and were only quantified as being in the gasoline range. TPHg was also detected in well MW-1 at 2,000 μ g/l, MW-11 at 330 μ g/l, MW-12 at 180 μ g/l, MW-14 at 250 μ g/l, and MW-17 at 60 μ g/l. The concentrations are generally consistent with historic data, however TPHg was detected for the first time in MW-17. (In addition, ethylbenzene was detected in MW-17 at 1.6 μ g/l for the first time.)

The lab indicated for the following samples, that the results do not match the laboratory gasoline standard: MW-1, MW-5, MW-12 and MW-17. Except for MW-5, the TPHg concentrations are below the San

³ Regional Water Quality Control Board, San Francisco Bay Region (RWQCB-SFBR) Order No. 99-045 for a similar situation at the San Francisco International Airport. Staff comments dated July 16, 1998, signed by Mr. Steven Morse, Chief of the Toxics Cleanup Division, addressed to the SFIA Consolidated Tenant Group.

⁴ Spence, L., and Gomez, M. Oakland Risk-Based Corrective Action: Technical Background Document. Urban Land Redevelopment Program Technical Advisory Committee. May 17, 1999.

⁵ RWQCB-SFBR, Application of Risk-Based Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater. Interim Final. August 2000.

Francisco Airport Ecological Protection Zone Tier I Standard acceptable threshold of 3,700 µg/l.6

TPHd in Groundwater: Many TPHd concentrations were significantly lower than the concentrations reported last quarter, possibly due to well redevelopment. The maximum reported TPHd concentration during this quarter was 1,100 μ g/L in well MW-1. This concentration is above the San Francisco Airport Ecological Protection Zone Tier I Standard of 640 μ g/l for middle distillates. The other wells with TPHd concentrations above the Tier 1 standard include offsite perimeter wells MW-9 (870 μ g/l), MW-13 (900 μ g/l), MW-14 (870 μ g/l), and MW-15 (1,000 μ g/l). The laboratory indicated that the results for all samples do not match the laboratory diesel standard, and represent only hydrocarbons in the diesel range. A discussion of the centrifuge bench scale test results for TPHd is provided in a subsequent section.

TPHmo in Groundwater: Most TPHmo concentrations were also significantly lower than concentrations reported last quarter. The highest TPHmo concentration was reported at 1,400 μg/L in offsite perimeter well MW-15. This concentration is above the San Francisco Airport Ecological Protection Zone Tier I Standard of 640 μg/l for residual fuels. The other wells with TPHmo concentrations above the Tier 1 standard include MW-1 (1,000 μg/l), and offsite perimeter wells MW-9 (1,000 μg/l), MW-13 (900 μg/l), MW-14 (1,100 μg/l), and MW-15 (1,400 μg/l). The laboratory indicated that the results for all samples do not match the laboratory motor oil standard, and represent only hydrocarbons in the motor oil range. A discussion of the centrifuge bench scale test results for TPHmo is provided in the following section.

Evaluation of Centrifuge Bench Scale Test Results

A comparison between TPHd and TPHmo sample results for MW-9, MW-11, MW-15 from the centrifuge and standard analyses is provided in Table B. The difference between individual paired results was evaluated by calculating the relative percent difference (RPD) between the results. The RPD is expressed as follows:

RPD (%) =
$$\frac{|\text{Standard Procedure Result - Centrifuge Result}|}{\frac{1}{2} (\text{Standard Procedure Result + Centrifuge Result})} \times 100\%$$

RPDs are used by the analytical laboratory to evaluate the analytical precision for duplicate results.

⁶ RWQCB-SFBR *Order No. 99-045* for a similar situation at the San Francisco International Airport. Staff comments dated July 16, 1998, signed by Mr. Steven Morse, Chief of the Toxics Cleanup Division, addressed to the SFIA Consolidated Tenant Group.

⁷ Ibid.

S Thid

Therefore, paired standard procedure and centrifuge results that were within acceptable precision limits (25% used for this evaluation) are not considered to be significantly different.

- 100g (B) - 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	法 医动物 网络一种高速能量 化对抗压力 计解码器	een Standard P	the state of the s
and Centrif	uge Test Kesuli Standard	ts-TPHd and	l'Himo
	Procedure	Centrifuge	
Sample	(µg/L)	(µg/L)	RPD
MW-11			
Diesel	160	150	6.5%
Motor Oil	< 200	< 200	
MW-9			
Diesel	870	770	12.2%
Motor Oil	1,000	1,000	0.0%
MW-15		- 'P	
Diesel	1,000	1,200	18.2%
Motor Oil	1,400	1,800	25.0%

Based on the RPDs (range 0% - 25%), there does not appear to be a real difference between the samples that were centrifuged and the samples analyzed under normal procedures. The greatest difference between standard procedure and centrifuge results was observed in sample MW-15. In this case, the centrifuge results were actually <u>higher</u> than the standard procedure results. The laboratory analyst indicated that a significant amount of solids were removed from all samples during the centrifuge process. Consequently, it does not appear that these solids were significantly contributing to the TPHd and TPHmo concentrations in the samples. Moreover, as discussed in more detail in the laboratory QA/QC section, the QC analyses for the centrifuge tests generally did not indicate acceptable analytical accuracy. Therefore, centrifuging is not recommended for the groundwater samples. Aquatus Environmental recommends that TPH-extractable samples are analyzed using standard procedures only, which includes a silica gel cleanup to remove polar hydrocarbons from the extract prior to analysis.

Laboratory Quality Assurance and Quality Control (QA/QC)

A thorough QA/QC review was performed on the analytical data to evaluate the quality and usability of the analytical results. The QA/QC review was performed in accordance with USEPA guidelines⁹. The results of the QA/QC review are summarized below.

⁹ USEPA. 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review. October. C:\AQUATUS\Morgan Env\1QTR 02 Report\CoO-1QRT 02 report.doc

<u>Method Holding Times</u>. Extraction and analysis holding times were reviewed to evaluate exceedances. There were no method holding times exceeded.

<u>Blanks.</u> Trip blank and laboratory method blank results were reviewed for detections of target analytes. There were no target analytes detected in the trip or method blanks, indicating that sample transportation and laboratory procedures were not a source of sample contamination.

<u>Laboratory Control Samples</u>. Laboratory Control Sample (LCS) and LCS duplicate (LCSD) recoveries were reviewed to evaluate analytical accuracy. The recoveries for TPHd/mo analysis ranged from 75% to 82%. LCS recoveries for TPHg, BTEX and MTBE ranged from 88% to 124%. The LCS recoveries were within the laboratory control limits and indicate acceptable analytical accuracy.

LCS duplicate (LCSD) analyses were performed by the laboratory to evaluate analytical precision using RPDs. The RPD for TPHd/mo was 5.4%. The RPDs for TPHg, BTEX and MTBE ranged from 1% to 14%. The RPDs indicate acceptable analytical precision.

Matrix Spike Samples. Matrix Spikes (MSs) were performed for the centrifuge tests and standard procedures for samples used in the centrifuge tests only to evaluate the accuracy of the procedure as well as matrix effects. MS recoveries for TPHd ranged from 20% to 73%. The MS recovery for sample MW-15 was below the control limits of 34% to 136%. MS recoveries for TPHmo ranged from 0% and 40%. There are no established control limits for motor oil spikes, therefore, the diesel control limits were used for comparison. Recoveries for MW-15 for both the standard and centrifuge test were below the control limits.

<u>Surrogates</u>. Surrogate recoveries were reviewed to evaluate sample-specific accuracy. Surrogate recoveries for TPHd/mo standard analyses ranged from 83% to 120%. Surrogate recoveries for TPHg, BTEX and MTBE ranged from 82% to 101%. The surrogate recoveries were within laboratory control limits and indicate acceptable sample-specific accuracy.

Surrogate recoveries for the centrifuge tests ranged from 15% to 75%. The recoveries for MW-9 (30%) and MW-15 (16%) were below the control limits of 40% to 140%. In addition, surrogate recoveries for several centrifuge test matrix spike samples were below the laboratory control limits. The low recoveries would suggest a low bias to the analytical results. A summary of the spike recoveries for the centrifuge tests is provided below:

Sample	Standard	Centrifuge	Centrifuge Diesel spike conc = 1,000 μg/L	Centrifuge Motor oil spike conc = 2,000 µg/L
MW-11				
Surrogate	87%	48%	75%	NC**
Diesel	56%		57%	
Motor Oil				NC**
MW-9				
Surrogate	85%	30%	57%	36%
Diesel	63%		73%	
Motor Oil	40%		**	40%
MW-15			***	
Surrogate	92%	16%	29%	15%
Diesel	40%		20%	
Motor Oil	20%			0%

^{**}NC = Not Completed. Analysis was incomplete due to breakage of the sample container.

Control Limits:

Surrogate (o-terphenyl) = 40% - 140%

Diesel = 34% - 136%

Motor Oil = None established

<u>False-Positive Petroleum Hydrocarbon Identification</u>. The laboratory reported that the TPHd and TPHmo detections reported for all groundwater samples were due to the presence of unidentified petroleum hydrocarbons (PHCs). Upon review of the sample chromatograms with the laboratory, many samples were found to exhibit a pattern resembling weathered motor oil. In addition, some samples do exhibit a pattern resembling weathered diesel. A summary of the chromatogram interpretations is provided below, and sample chromatograms are included with the analytical data reports:

	Evaluation of Chromatograms for TPH-Extractables First QTR 2002
Sample I.D.	Chromatogram Interpretation
MW-1	Weathered diesel, weathered volatiles, possibly weathered motor oil
MW-10	Can't tell from small scale. Last QTR. was weathered motor oil
MW-11	Looks different from last quarter when detects were in the motor oil range. What's in the diesel range is probably gasoline.
MW- 12	Weathered motor oil, cannot identify petroleum in diesel range.
MW- 13	Can't tell due to small scale. Last QTR was weathered motor oil. Can barely see what's in the diesel range.
MW-14	Looks like weathered motor oil. Similar to last QTR, with more in the diesel range (but not diesel)
MW-15	Looks like last QTR (weathered motor oil) possibly degrading into diesel range as it weathers.
MW-17	Looks like last QTR. Doesn't resemble weathered diesel or motor oil.
MW-2	Possibly weathered motor oil, uncertain about diesel range.
MW-5	Weathered diesel. Uncertain about motor oil range (lab standard is not imposed). Could possibly be weathered motor oil.
MW-7	Does not look like weathered diesel
MW-8	Maybe weathered diesel, or could be a light motor oil
MW-9	Looks like weathered motor oil (same as last QTR). Possibly weathered diesel in diesel range (or gasoline), but scale is too small to tell.

In summary, the QA/QC review found the analytical data to be of acceptable quality with no limitations for use, with the exceptions of the centrifuge results. Many surrogate, diesel and motor oil spike recoveries were below laboratory control limits, indicating a low bias to the analytical results and poor analytical accuracy when compared to standard procedures. As such, it is not recommended that samples are centrifuges prior to extraction and analysis. Only the results for standard procedures are reported in Table 1.

Corrective Action Activities

As previously discussed, all newly installed remediation wells and existing monitoring wells were redeveloped in January and February 2002 by repeat surging and pumping in an effort to reduce the turbidity of the groundwater samples.

The dual phase extraction (DPE) pilot test commenced at the site on May 13, 2002. Three groundwater storage units, each with a storage capacity of 21,000 gallons, were placed at free-product plumes B, C, and D to store effluent groundwater and free-product generated during the pilot tests. Effluent is discharged from the storage tank through two 2,000-pound (4,000 lbs. total) carbon chambers placed in series prior to discharge into the on-site storm water system. If deemed necessary, free-product will be skimmed directly from the storage tank and recycled to minimize carbon loading and prolong life of the carbon treatment vessels. Extracted vapors generated during the pilot test were treated through two 400-pound carbon vessels placed in series or by thermal oxidizer. Both NPDES water and BAAQMD air discharge permits were obtained for the site prior to DPE pilot test activities.

CONCLUSIONS AND RECOMMENDATIONS

Aquatus Environmental offers the following conclusions and recommendations regarding the 1st quarter 2002 analytical results:

- SPH was only observed in one well this quarter, MW-6. However, historically SPH has also been measured in off-site well MW-16, and on-site wells TBW-1, TBW-3, TBW-5 and TBW-6.
- The well redevelopment that occurred in January and February 2002 may have been responsible for various concentrations being significantly higher or lower than concentrations reported last quarter and/or historically and the reduction in free-product in wells.
- The TPHg concentration in MW-5 (8,000 µg/l) was above the San Francisco Airport Ecological Protection Zone Tier I Standard acceptable threshold of 3,700 µg/l for TPHg. In addition, TPHg was detected in MW-9 at a concentration much higher than historic concentrations, possibly due to the well redevelopment.
- The maximum benzene concentration detected this quarter was in MW-9 (367 μg/l), and was above the San Francisco Airport Ecological Protection Zone Tier I Standard (71 μg/l); the City of Oakland Risk-Based Tier I Standard for inhalation of indoor air vapors (110 μg/l); and acceptable risk

threshold ecological toxicity established by the USEPA (46 μ g/l). The MW-9 result is significantly higher than historic concentrations. MTBE was only detected in well MW-5.

- Several TPHd and TPHmo concentrations are significantly lower than concentrations detected last quarter. However, several wells still have TPHd and/or TPHmo concentrations that are above the Ecological Protection Zone Tier I Standard of 640 µg/l for middle distillates and residual fuels.
- The results of the centrifuge tests indicated that the procedure, although removing a good deal of solids from the samples, did not significantly reduce the sample TPHd and TPHmo concentrations. Moreover, many of the quality control analyses for the centrifuge tests did not indicate acceptable analytical accuracy. Therefore, Aquatus Environmental recommends that only standard procedures are used for TPH-extractables analyses, which includes a silica get cleanup of the extracts prior to analysis.
- Historical analytical results indicate that hydrocarbon attenuation is occurring at the site with evidence
 that both aerobic and anaerobic biodegradation are taking place. Hydrocarbon attenuation was
 described in prior monitoring reports.

ANTICIPATED FIRST QUARTER 2002 ACTIVITIES

The City of Oakland's consultant will gauge, measure observed SPH, and collect groundwater samples from site wells in accordance with the protocol presented in Appendix D. Following field activities and laboratory analysis, the consultant will tabulate the analytical data and prepare the quarterly monitoring report.

ATTACHMENTS

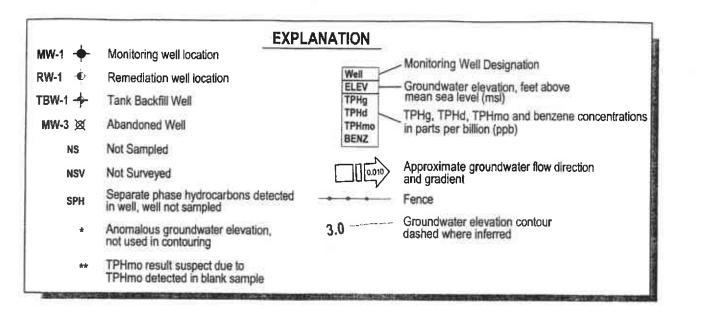
Figure 1 - Groundwater Elevation Contours and Hydrocarbon Concentration Map

Table 1 – Groundwater Elevation Data and Analytical Results – Hydrocarbons

Table 2 - Groundwater Analytical Results - VOCs

Table 3 – Groundwater Analytical Results - SVOCs

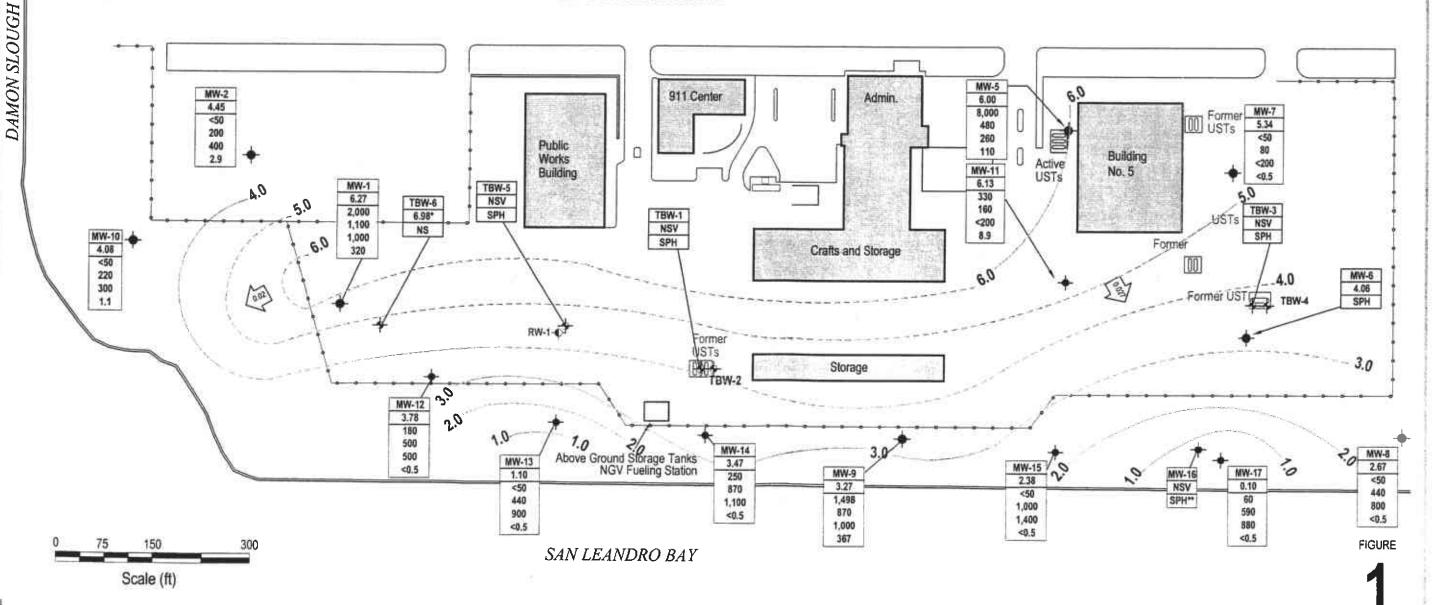
Table 4 – Groundwater Analytical Results – LUFT Metals


Table 5 – Groundwater Analytical Results – Additional Metals

Appendix A - Field Data Sheets

Appendix B – Memorandum Summarizing Requirements for Field and Laboratory Procedures for Centrifuge Tests

Appendix C - Laboratory Analytical Reports


Appendix D – Well Sampling Protocol for 2nd Quarter 2002

EDGEWATER DRIVE

X MW-4

⊠ MW-3

Municipal Service Center 7101 Edgewater Drive Oakland, CA

Table 1.		Ground	lwater E	levation Data	a and Analytic	cal Result	s - Hydroc	arbons -	City of Oa	ıkland Muni	cipal Servic	es Center,	Oakland, C	A
Sample ID/	TOC	DTW	GW	BTEX Note	PS	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	мтве
Date	Elev.		Elev.	Method								benzene		
						_ +				μ <u>g</u> /l			<u> </u>	
MW-1														
10/4/1989	10.20		_	8020					540	65	26	14	22	_
10/4/1989	10.20			8240				_		120	46	43	78	-
4/27/1993	10.20	_		8020					<1,000	<1.0	<1.0	<1.0	<1.0	
4/19/1995	10.20			8020		_	_	_	3,200	880	15	23	21	
7/27/1995	10.20	4.62	5.58	8020					980	130	3.6	1.4	5.6	
11/20/95	10.20	6.08	4.12	8020		_	_	_	400	99	2.8	1.1	4.6	
2/21/1996	10.20	4.62	5.58	8020					1,700	340	8.4	5.3	16	
5/13/1996	10.20	4.33	5.87	8020					7,300	2,000	30	42	38	
8/27/1996	10.20	5.25	4.95	8020		_			380	61	2.4	<0.5	4.2	-
2/23/1998	10.20	1.75	8.45	8020		<50	<500	<50	820	160	4.9	3	9.7	-
8/19/1998	10.20	4.78	5.42	8020	SGC	1,200			780	69	4.1	0.84	8.5	<5.6
11/11/98	10.20	5.64	4.56											-
2/23/1999	10.20	3.41	6.79	8020	SGC	1,200	1,600	<50	1,100	190	5	3	12	<5.0
5/27/1999	10.20	3.96	6.24						_					_
8/24/1999	10,20	4.92	5.28	8020	SGC	640	1,900	<50	370	37	0.9	<0.5	1.9	<5.0
11/22/99	10.20	5.46	4.74						-			***		
1/18/2000	10.05	5.41	4.64			_					_			
1/19/2000				8020	SGC	50	<200	<50	660	43	2.3	1.1	6	<5.0
5/11/2000	10.05	4.63	5.42				-			_				
8/24/2000	10.05	5.07	4.98	-										
8/25/2000				8020	SGC	340	<250	290	480	53	1.4	<0.5	2.9	<5.0
11/28/2000	10.05	5.60	4.45	_					_					
2/27/2001	10.05	3.95	6.10	8020	Filtered+SGC	270	<250	<61	1,500	110	6.3	<1.5	9.9	<15
5/17/2001	10.05	4.00	6.05			-		_	·		***		-	_
8/16/2001	10.05	4.17	5.88		Filtered+SGC	280	<b200< td=""><td><100</td><td>4,000</td><td>640</td><td>9.7</td><td>5.7</td><td>13</td><td><5.0</td></b200<>	<100	4,000	640	9.7	5.7	13	<5.0
12/15/2001	10.05	5.52	4.53						_					_
4/9/2002	10.05	3.78	6.27	8021	SGC	1,100	1,000		2,000	320	5.38	3.08	6.24	<
MW-2														
10/4/1989	10.47			8020					<30	<0.3	<0.3	<0.3	<0.3	_
10/4/1989	10.47			8240						2	<2.0	<2.0	<2.0	_
4/27/1993	10.47		_	8020			,		<1,000	<1.0	<1.0	<1.0	<1.0	_
4/19/1995	10.47			8020				_	<50	1.8	<0.5	<0.5	<0.5	
7/27/1995	10.47	6.22	4.25	8020					< 5 0	2.3	<0.5 <0.5	√ 0.5 ⋖ 0.5	<0.5	
11/20/95	10.47	7.49	2.98	8020					<50	2.2	<0.5 <0.5	<0.5	<0.5	_
2/21/1996	10.47	6.68	3.79	8020					<50	1.7	<0.5	<0.5	0.5	_
5/13/1996	10.47	6.32	4.15	8020					~30	2	<0.5	<0.5	0.5 <0.5	_
3/13/1990 8/27/1996	10.47	6.84	3.63	8020			_	_			· ·			
a/2//1998	10.47	5.44	5.03	8020			~500	~50	****	2.4	<0.5	<0.5	<0.5	_
2/24/1998 8/19/1998	10.47	5.44 6.56	3.91	8020 8020	SGC	<50 330	<500 —	< 5 0	<50	1.6 4.1	<0.5 3.4	<0.5 0.8	<0.5 2.6	 <5.6

Table 1. Sample ID/	тос	DTW	GW	BTEX N	ta and Analytic	TPHd	TPHmo	TPHk	ТРНд	Benzene	Toluene	Ethyl-	Xylenes	мтве
Date	Elev.		Elev.	Method								benzene	•	
						. 4				μ <u>g</u> /l				-
11/11/98	10.47	7.37	3.10							_				_
2/23/1999	10.47	8.68	1.79	8020	SGC	200	900	<50	<50	3.5	0.6	0.6	1.2	<5.0
5/27/1999	10.47	5.20	5.27							_	-	_		
8/24/1999	10.47	6.75	3.72	8020	SGC	140	700	<50	<50	2.6	<0.5	<0.5	<0.5	<5.0
11/22/99	10.47	7.58	2.89	-		_	_							_
1/18/2000	10.47	7.41	3.06	8020	SGC	60 a	660	<50	<50	2.1	<0.5	<0.5	<0.5	<5.0
5/11/2000	10.47	6.43	4.04				-	_	_	_	_			-
8/24/2000	10.47	8.91	1.56	8020	SGC	170	440	130	<50	2.4	<0.5	<0.5	<0.5	<5.0
11/28/2000	10.47	7.35	3.12			_	_				***			
2/27/2001	10.47	6.70	3.77	8020	Filtered+SGC	<59	<240	<59	<50	3.6	<0.5	<0.5	<0.5	<5
5/17/2001	10.47	6.90	3.57				_		_					
8/16/2001	10.47	6.95	3.52		Filtered+SGC	<50	B200	<100	<50	<0.5	< 0.5	<0.5	<0.5	<5
12/15/2001	10.47	7.21	3.26	****				_		_	_			
4/5/2002	10.47	6.02	4.45	8021	SGC	200	400		<50	2.9	<0.5	<0.5	<0.5	<5
MW-3														
10/4/1989	_	_	_	8020					<30	<0.3	< 0.3	<0.3	<0.3	-
10/4/1989	***			8240						<2.0	<2.0	<2.0	<2.0	_
2/23/1998	_	_	•			<50	<500	<50		****		_		
11/11/98		5.83	***						_					_
2/23/1999					Submerged				p	***				
5/27/1999		1.68			_				_			***		
8/24/1999		4.76	_				***							
11/22/99	_	6.46						_	_					_
11/22/99	***			4	Destroyed	_	_				•		_	
MW-4														
10/4/1989	7.89			8020		_	***		<30	<0.3	<0.3	<0.3	<0.3	
10/4/1989	7.89	_		8240		pulse		_	_	<2.0	<2.0	<2.0	<2.0	_
11/11/98	7.89	6.25	1.64	-								_	_	-
2/23/1999	7.89	3.10	4.79					_	_					_
5/27/1999	7.89	4.03	3.86			_								_
8/24/1999	7.89	5.07	2.82								_			<u>.</u>
11/22/99	7.89	6.32	1.57				_				+	***	_	
11/22/99					Destroyed									

Page 2 of 11

Table 1.		Ground	dwater E	levation Data	and Analytic	cal Result	s - Hydroc	arbons -	City of O	akland Muni	icipal Servi	ces Center,	Oakland, 0	CA
Sample ID/	TOC	DTW	GW	BTEX Note	es	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE
Date	Elev.		Elev.	Method				<u> </u>	<u></u>			benzene		
						_				<u>μg/l</u>		*		`
MW-5														
12/13/91	11.15		_	8020	***	1,900	_		13,000	1,500	190	970	2,500	
12/13/91				8020	Dup				16,000	1,400	180	870	2,500	_
12/13/91	11.15	_	***	8240	~		4-1-			1,800	<250	1,000	3,800	
12/13/91				8240	Dup			_	_	1,600	<250	980	3,500	
4/27/1993	11.15		_	8240		12,000			35,000	2,100	<1.0	1,800	2,700	
4/19/1995	11.15		406	8240		880	4,700	_	14,000	490	51	610	1,200	
7/27/1995	11.15	6.29	4.86	8240		590	5,000		22,000	1,300	54	1,500	2,400	
11/20/95	11.15	6.98	4.17	8020		<50	<50	<50	8,900	430	31	610	880	
2/21/1996	11.15	5.97	5.18	8020		480	<50	<50	1,000	540	65	700	970	
5/13/1996	11.15	6.25	4.90	8020	-	<50	<50	<50	5,900	430	26	580	760	=
5/13/1996		_		8020	Dup	<50	<50	<50	7,300	360	22	49	640	
8/27/1996	11.15	6.40	4.75	8020	-	2,000	<51	<51	6,600	430	27	600	650	
8/27/1996				8020	Dup	6,600	<51	<51	6,300	410	25	580	620	
2/23/1998	11.15	4.22	6.93	8020		<50	<500	<50	740	19	1.4	41	34	
8/19/1998	11.15	6.14	5.01	8020		1,400	<250	1700	5,800	500	25	730	300	5,900
8/19/1998	11.15	6.14	5.01	8260	SGC	_	_		_	_	_	_		6,700
11/11/98	11.15	6.51	4.64											
2/23/1999	11.15	3.59	7.56	8020	SGC	2,000	700	<50	6,700	300	26	800	690	1,600
5/27/1999	11.15	5.71	5.44											
8/24/1999	11.15	6.02	5.13	8020	SGC	220	2,000	<50	2,100 e	190 e	5.5	340 e	78	380 (
11/22/99	11.15	6.16	4.99			***	~~~						***	
1/18/2000	11.15	6.60	4.55											
1/19/2000		_	_	8020	SGC	100	320	<50	3,000	66 e	6.3	400 e	90	300 E (1,300)
5/11/2000	11.15	5.62	5.53											
8/24/2000	11.15	6.32	4.83	8020	SGC	4,800	560	6,600	12,000	220	21	430	91	1,200 (1,400)
11/28/2000	11.15	6.47	4.68	_		_	_							·
2/27/2001	11.15	4.40	6.75	8020	Filtered+SGC	230	<250	<61	6,300	150	7	350	55	830
5/17/2001	11.15	5.77	5.38	8020	Filtered+SGC	190	<200	<50	7,500	140	7	580	101	170
8/16/2001	11.15	4.87	6.28		Filtered+SGC	320	B500	<100	2,300	46	<5	110	24	850
12/15/2001	11.15	5.50	5.65							-				
4/9/2002	11.15	5.15	6.00	8021	SGC	480	260		8,000	110	5.95	650	53 .9	166
MW-6										•				
12/13/91	10.98			8020		520	***		780	110	2.7	<2.5	5.5	
12/13/91	10.98			8240				_	_	95	5	<5	<5	
4/27/1993	10.98		_	8020		<1,000	***		<1,000	430	4	5	10	
4/19/1995	10.98	_		8020		6,700	_		5,700	40	<0.8	3.9	29	
4/19/1995	_			8020	Dup	3,700		-	3,000	310	3.1	2.7	100	
7/27/1995	10.98	7.09	3.89	8020	-	3,900	***		6,100	430	15	200	600	
7/27/1995			_	8020	Dup	2,600			6,300	420	15	200	600	_

Sample ID/	TOC	DTW	GW	BTEX N	otae	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	МТВЕ
Date	Elev.	DIW	Elev.	Method	occs	IFIIG	1611030	IFTIN	irng	Denzetje	1 oracue	tanyı- benzene	Aylenes	MIIBE
						4				µg/l	-			
11/20/95	10.98	7.89	3.09	8020		850		_	6,800	160	4.6	8	240	
11/20/95		_		8020	Dup			-	3,600	130	11	4.4	200	
2/21/1996	10.98	7.40	3.58	8020	Filtered+SGC	1,700	_		2,800	230	2.8	3.8	44	
2/21/1996		_		8020	Dup	2,500			2,200	280	3	4	4.6	
5/13/1996	10.98	7.10	3.88	8020		400	<50	<50	3,100	430	12	5.2	67	
8/27/1996	10.98	7.42	3.56	8020		3,100			4,200	300	9.3	110	110	
3/19/1998	10.98	•••			SPH: 0.125 ft							***		
11/11/1998	10,98	7.09	3.93		SPH: 0.05 ft	_								
2/23/1999	10.98	7.31	3.67	_	SPH: NM	***		-		.—				
5/27/1999	10.98	6.91	4.25		SPH: 0.20 ft	_				***		_		
3/24/1999	10.98	7.46	3.72		SPH: 0.03 ft									
1/22/99	10.98	7.96	3.15		SPH: 0.16 ft							_	_	
1/18/2000	10.98	8.08	3.05		SPH: 0.19 ft	_	_							
5/11/2000	10.98	7.52	4.47		SPH: 0.01 ft								_	
3/24/2000	10.98	7.50	3.53		SPH: 0.06 ft	_								
1/28/2000	10.98	6.39	4.62	_	SPH: 0.04 ft						_	_	_	
2/26/2001	10.98	7.80	3.50	8020	SPH: 0.40 ft, f	820	<240	<60	6,100	181	<5	14.2	<5	<
2/26/2001		_		8260B			***		-	270	3	9	3	(1
5/17/2001	10.98	7.57	3.66		SPH: 0.32 ft		-							
3/16/2001	10.98	7.75	3.49		SPH: 0.32 ft, f	740	B200	<100	4,200	360	4.6	13	12	
12/15/2001	10.98	7.58	3.40		SPH: 0.07 ft				4					
1/3/2002	10.98	6.92	4.06	. —	SPH: 0.11 ft		-							
MW-7														
2/13/91	11.51		_	8020		<50	****		<50	<0.5	<0.5	<0.5	<0.5	
2/13/91	11.51		***	8240		_	_	_		<5	<5	<5	<5	
1/27/1993	11.51			8240		<1,000			<1,000	<1.0	<1.0	<1.0	<1.0	
/19/1995	11.51			8240		<50	<1,000		<50	<2.0	<2.0	<2.0	<2.0	
7/27/1995	11.51	6.87	4.64	8240		<50	<1,000		<50	<2.0	<2.0	<2.0	<2.0	
1/20/95	11.51	8.48	3.03	8020		<50		_	<50	<0.5	<0.5	<0.5	1.5	
/21/1996	11.51	6.29	5.22	8020		<50	·		<50	<0.5	<0.5	<0.5	<0.5	
/13/1996	11.51	6.95	4.56	8020		<50	_	_		<0.5	<0.5	<0.5	<0.5	
/27/1996	11.51	6.80	4.71	8020					_	<0.5	<0.5	<0.5	<0.5	
/19/1998	11.51	6.88	4.63	_			_							
1/11/98	11.51	7.40	4.11			*							_	
/23/1999	11.51	5.57	5.94	8020		<50	<200	<50	80	<0.5	<0.5	<0.5	1	<
/27/1999	11.51	6.56	4.95						_	_				
/24/1999	11.51	6.29	5.22	8020	SGC	<50	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	
1/22/99	11.51	6.80	4.71						_	_	_		· —	
/18/2000	11.51	7.31	4.20					_						
/19/2000	11.51		_	8020	SGC	<50	<200	<50	54	1.5	1.5	2.4	3.8	<

Page 4 of 11

Table 1.		Ground	dwater E	levation Da	ita and Analyti	cal Result	s - Hydroc	arbons -	City of O	akland Muni	cipal Service	es Center,	Oakland, C	A
Sample ID/ Date	TOC Elev.	DTW	GW Elev.	BTEX N Method	otes	TPHd	TPHmo	TPHk	ТРНд	Benzene	Toluene	Ethyl- benzene	Xylenes	МТВЕ
Date	Trites.		Dies.	Methon								DENZERE		
5/11/2000	11.51	6.41	5.10											-
8/24/2000	11.51	7.11	4.40	8020		<50	<250	<50	<50	<0.5	<0,5	<0.5	<0.5	<5.0
11/28/2000	11.51	7.30	4.21											
2/27/2001	11.51	5.75	5.76	8020	Filtered+SGC	<50	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	<5
5/17/2001	11.51	6.65	4.86											
8/16/2001	11.51	5.97	5.54		Filtered+SGC	<50	B600	<100	<50	<0.5	<0.5	<0.5	<0.5	<5
12/15/2001	11.51	6.43	5.08	_					***					<u>-</u> -
4/8/2002	11.51	6.17	5.34	8021	SGC	80	<200		<50	<0.5	0.5	0.60	<0.5	<5
MW-8														
11/20/96	12.22		_	8020		880			<50	0.66	<0.5	<0.5	<0.5	_
11/20/97	12.22	9.59	2.63	8020		200			<50	<0.5	<0.5	<0.5	<0.5	2
2/24/1998	12.22	8.42	3.80	8020		<50	<500	<50	<50	<0.5	<0.5	<0.5	<0.5	_
6/8/1998	12.22	9.57	2.65	8020		1,200	1,000	<50	<50	<0.5	< 0.5	<0.5	<0.5	
8/19/1998	12.22	9.49	2.73	8020	SGC	<50	<250	<50	<50	1.6	3.4	1	2.8	<5.0
11/11/98	12.22	9.64	2.58	8020	SGC	<50	<200	<50	<50	0.9	0.8	0.6	2.3	<5,0
2/23/1999	12.22	11.53	0.69	8020		700	1,500	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
5/27/1999	12.22	9.65	2.57	8020		<50	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
8/24/1999	12.22	9.62	2.60	8020	SGC	70	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
11/22/99	12.22	9.64	2.58	8020	SGC	57	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
1/18/2000	12.22	8.31	3.91	8020	SGC	<50	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
5/11/2000	12.22	9.69	2.53	8020	SGC	<50	<200	<50	<50	<0.5	1.3	<0.5	2.1	<5.0
8/24/2000	12.22	9.40	2.82											
8/25/2000				8020	SGC	85	<250	<50	<50					
11/28/2000	12.22	9.40	2.83	8020	SGC	<50	910	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
2/27/2001	12.22	9.50	2.72	8020	Filtered+SGC	<50	<200	<50	<50	<0.5	<0.5	<0.5	< 0.5	<5.0
5/17/2001	12.22	9.71	2.51	_						***				
5/18/2001				8020	Filtered+SGC	<50	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
8/16/2001	12.22	9.80	2.42		Filtered+SGC	<50	<200	<100	<50	<0.5	<0.5	<0.5	<0.5	· <5
12/15/2001	12.22	9.28	2.94	8021	SGC	390	1,300	<50	<50	<0.5	<0.5	<0.5	<0.5	<5
4/8/2002	12.22	9.55	2.67	8021	SGC	440	800	_	<50	<0.5	<0.5	<0.5	<0.5	<5
MW-9														
11/20/96	10.77			8020		1,900			240	21	0.81	1.8	2.2	
11/20/97	10.77	7.91	2.86	8020		_	_	_	300	20	<0.5	<0.5	1.8	<1.0
2/24/1998	10.77	6.11	4.66	8020		<50	<500	<50	2,200	540	5.6	1.6	4.9	
6/8/1998	10.77	7.14	3.63	8020		1,800	890	<50	840	450	6.1	3.3	5.3	
8/19/1998	10.77	7.88	2.89	8020	SGC	190	<250	160	740	370	8.6	0.99	7.3	<5.0
11/11/98	10.77	8.23	2.54	8020	SGC	<50	230	<50	700	130	4.3	<0.5	3.9	<5.0
2/23/1999	10.77	6.65	4.12	8020		1,100	3,700	<50	1,100	620	9.7	1.5	7.7	<5.0
5/27/1999	10.77	7.70	3.07	8020	SGC	70	300	<50	950	470	11	1.5	9.2	<5.0

Sample ID/	TA2													
	TOC	DTW	GW	BTEX No	otes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE
Date	Elev.		Elev.	Method								benzene		
										<u>μg/l</u>				
8/24/1999	10.77	8.12	2.65	8020	SGC	890	1,700	<50	290	45	2.8	<0.5	3	<5.0
11/22/99	10.77	8.33	2.44	8020	SGC	1,000	6,000	<50	170	12	1.8	<0.5	. 2	<5.0
1/18/2000	10.77	8.63	2.14	8020	SGC	200 a	2,300	<50	160	5.7	1.9	0.6	4.2	<5.0
5/11/2000	10.77	7.70	3.07	8020	SGC	180 a	980	<100	1,050	280	7.0	<2.5	5.9	<25
8/24/2000	10.77	8.31	2.46											
8/25/2000		_		8020	SGC	580	2,200	170	180	23	2.4	<0.5	2.7	<5.0
1/28/2000	10.77	8.45	2.32	8020	SGC	200	1,600	<50	130	1.9	<0.5	<0.5	<0.5	<5.0
1/28/2000	10.77	8.45	2.32		Filtered+SGC	<50	<200	<50						Poda 4
2/26/2001	10.77	6.40	4.37	8020	Filtered+SGC	120	<200	<50	142	33	1.8	<0.5	<0.5	<5.0
5/17/2001	10,77	9.88	0.89			_	_	_						
5/18/2001				8020	Filtered+SGC	<50	<200	<50	74	4.6	<0.5	<0.5	<0.5	<5.0
8/16/2001	10,77	8.05	2.72		Filtered+SGC	<50	<200	<100	70	0.62	<0.5	<0.5	<0.5	<5
12/16/2001	10.77	7.75	3.02	8021	SGC	1,400	4,100	<50	210	15	1.6	<0.5	2.2	<5
4/5/2002	10.77	7.50	3.27	8021	SGC	870	1,000		1,498	367	11	2.1	7.8	<5
MW-10														
11/20/96	10.59		**-	8020		940			<50	49	0.59	0.54	1.2	
11/20/97	10.59	7.70	2.89	8020					<50	<0.5	<0.5	<0.5	<0.5	
2/24/1998	10.59	4.39	6.20	8020		<50	<500	<50	<50	<0.5	<0.5	<0.5	<0.5	
6/8/1998	10.59	6.94	3.65	8020		500	<500	<50	<50	7.3	<0.5	<0.5	<0.5	
8/19/1998	10.59	6.99	3.60	8020	SGC	240	520	110	<50	<0.5	<0.5	<0.5	<0.5	<5.0
11/11/98	10.59	7.57	3.02	8020	SGC	<50	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
2/23/1999	10.59	5.51	5.08	8020		170	1,200	<50	<50	1.3	<0.5	<0.5	<0.5	<5.0
5/27/1999	10.59	6.72	3.87	8020	SGC	<50	<200	<50	350	170	1.5	0.5	2.3	<5.0
B/24/1999	10.59	7.27	3.32	8020	SGC	140	300	<50	380	160 e	<0.5	<0.5	2.6	<5.0
11/22/99	10.59	7.71	2.88	8020	SGC	570	3,400	<50	110	5.1	<0.5	<0.5	0.72	<5.0
1/18/2000	10.59	7.77	2.82		-									
1/19/2000				8020	SGC	120 a,b	1,200	<50	100	<0.5	<0.5	0.8	<0.5	<5.0
5/11/2000	10.59	7.00	3.59	8020	SGC	110 a	990	<50	145	1.62	0.5	0.5	0.9	<5.0
8/24/2000	10.59	7.31	3.28		500	_	_		_					
8/25/2000				8020	SGC	430	1,300	110	<50	1.0	<0.5	<0.5	<0.5	<5.0
11/28/2000	10.59	7.90	2.69	8020	SGC	220	1,500	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.(
2/27/2001	10.59	5.80	4.79	8020	Filtered+SGC	85	<230	<57	< 5 0	1.3	<0.5	~0.5 <0.5	~0.5	<5.0 <5.0
5/17/2001	10.59	6.27	4.32	6020	1 114144 1000	-	-250		-50	1.3				~5.C
5/18/2001	10.59	0.27	4.32	8020	Filtered+SGC	 <50	<200	<50	 <50	0.7	<0.5	<0.5	<0.5	<5.0
3/16/2001	10.59	8.75	1.84	3020	Filtered+SGC	<50	<200	<100	<50	0.7 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<5.C
	10.59			8021	SGC									
2/16/2001 /8/2002	10.59 1 0.59	6.97 6.51	3.62 4.08	8021 8021	SGC SGC	410 220	2,100 300	<50 	<50 <50	2.4 1.1	<0.5 <0.5	<0.5 <0.5	<0.5 < 0.5	<5 <5

Page 6 of 11

Table 1.					ta and Analyti				City of O	ikiand Muni	cipai servic	es Center,	Oakland, C	A
Sample ID/	TOC	DTW	GW	BTEX N	otes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE
Date	Elev.		Elev.	Method	<u></u>	·····					. <u></u>	benzene		
						-								>
MW-11														
1/18/2000	11,60	7.08	4.52					_			_			-
1/19/2000				8020	SGC	<50	500	<50	220	<0.5	<0.5	<0.5	<0.5	<5.0
5/11/2000	11.60	5.95	5.65	8020	SGC	<50	430	<50	600	23	2.1	18	15	<5.0
8/24/2000	11.60	6.58	5.02	8020		<50	<250	<50	110	5.9	<0.5	0.73	0.64	<5.6
11/28/2000	11.60	6.91	4.69	8020	SGC	<50	<200	<50	180	4	<0.5	1.9	<0.5	<5.0
2/27/2001	11.60	5.65	5.95	8020	Filtered+SGC	86	<240	<60	720	29	5.2	38	36	<5.0
5/17/2001	11.60	6.85	4.75	8020	Filtered+SGC	· <50	<200	<50	720	36	3.4	15	18	9.7
8/16/2001	11.60	6.01	5.59		Filtered+SGC	<50	B500	<100	110	4.8	<0.5	1.4	<0.5	<5
12/15/2001	11.60	6.26	5.34	8021	SGC	200	300	<50	170	1.7	0.6	2.4	1.8	<
4/5/2002	11.60	5.47	6.13	8021	· SGC	160	<200		330	8.9	2.0	6.9	8.7	<
MW-12											•			
1/18/2000	10.43	8.11	2.32							_				
1/19/2000	***			8020	SGC	1,800 m	11,000	<50	200	<0.5	. 3.4	1.5	8.4	<5.0
5/11/2000	10.43	6.78	3.65	8020	SGC	2,400 a	4,900	<100	370	<0.5	<0.5	<0.5	0.9	<5.6
8/24/2000	10.43	7.56	2.87			_	_	_	_					
8/25/2000	_		_	8020	SGC	3,500	5,000	3,700	170	<0.5	<0.5	<0.5	<0.5	<5.0
11/28/2000	10.43	8.13	2.30	8020	SGC	2,100	14,000	<50	290	<0.5	<0.5	<0.5	<0.5	<5.0
11/28/2000	10.43	8.13	2.30		Filtered+SGC	50	<200	<50			_			_
2/27/2001	10.43	6.00	4.43	8020	Filtered+SGC	320	<250	66	110	1.4	<0.5	<0,5	<0.5	<5.6
5/17/2001	10.43	7.01	3.42	8020	Filtered+SGC	<50	<200	<50	220	<0.5	<0.5	<0.5	<0.5	<5.0
8/16/2001	10.43	8.47	1.96	8020	Filtered+SGC	200	B300	<100	160	<0.5	<0.5	<0.5	<0.5	<5
4/8/2002	10.43	6.65	3.78	8021	SGC	500	500		180	<0.5	<0.5	0.7	<1.5	<5
MW-13														
1/18/2000	11.34	9.63	1.71	8020	SGC	8,800 a	120,000	<50	<50	<0.5	0.8	<0.5	<0.5	<5.0
5/11/2000	11.34	10.12	1.22	8020	SGC	11,000 a	110,000	<500	70	1.6	5.4	1.2	7.6	<5.0
8/24/2000	11.34	10.22	1.12	-		·	_	_						
8/25/2000				8020	SGC	3,100	13,000	1,200	<50	<0.5	<0.5	<0.5	<0.5	<5.6
11/28/2000	11.34	10.50	0.84	8020	SGC	2,400	36,000	<1300	<50	<0.5	<0.5	<0.5	<0.5	<5.0
11/28/2000	11.34	10.50	0.84		Filtered+SGC	280	1,100	<50				_		_
2/26/2001	11.34	9.60	1.74	8020	Filtered+SGC	100	<260	<64	<50	<0.5	<0.5	<0.5	<0.5	<5.0
5/17/2001	11.34	10.10	1.24			_		_				40.5		
5/18/2001				8020	Filtered+SGC	<50	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
8/16/2001	11.34	10.50	0.84	5025	Filtered+SGC	<50	B300	<100	<50	<0.5	<0.5	<0.5 <0.5	<0.5	<5
12/16/2001	11.34	9.43	1.91	8021	SGC	1,900	18,000	<250	<50	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5	<
4/8/2002	11.34	9.43 10.24	1.51 1.10	8021	SGC	1,500 440	900	~230	<50	<0.5	<0.5	<0.5	<0.5	<

Sample ID/	тос	DTW	GW	BTEX No	otes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE
Date	Elev.		Elev.	Method						212111		benzene	11,10000	
						-				µg/l				
MW-14														
1/18/2000	10.05	7.37	2.68	8020	SGC	1,700 a	22,000	<50	120	<0.5	<0.5	<0.5	<0.5	<5.0
5/11/2000	10.05	6.73	3.32	8020	SGC	360 a	4,300	<100	120	<0.5	<0.5	0.5	<0.5	<5.0
8/24/2000	10.05	7,30	2.75	_			-	_						_
8/25/2000				8020	SGC	1,000	3,100	460	90	6.3	<0.5	<0.5	<0.5	<5.0
11/28/2000	10.05	7.40	2.65	8020	SGC	380	6,400	<250	140	7.4	<0.5	<0.5	<0.5	<5.0
11/28/2000	10.05	7.40	2.65		Filtered+SGC	<50	<200	<50						
2/26/2001	10.05	6.20	3.85	8020	Filtered+SGC	150	<230	<58	73	2.3	<0.5	<0.5	<0.5	<5.0
5/17/2001	10.05	7.74	2.31											
5/18/2001				8020	Filtered+SGC	120	<200	<50	100	11	<0.5	<0.5	<0.5	<5. 0
8/16/2001	10.05	7.85	2.20		Filtered+SGC	<50	<200	<100	60	<0.5	<0.5	<0.5	<0.5	<5
12/16/2001	10.05	6.60	3.45	8021	SGC	1,110	3,000	<50	<50	<0.5	< 0.5	<0.5	<0.5	<5
4/9/2002	10.05	6.58	3.47	8021	SGC	870	1,100	100	250	<0.5	<0.5	<0.5	<0.5	<
MW-15														
1/18/2000	12.36	10.56	1.80	8020	SGC	12,000 a	89,000	<50	110	3.8	2.1	1	4.6	<5.6
5/11/2000	12.36	10.03	2.33	8020	SGC	120 a	590	<50	90	0.9	0.9	<0.5	3.3	<5.0
8/24/2000	12.36	10.22	2.14				***				-	-		
8/25/2000	_			8020	SGC	1,900	8,600	1,000	<50	1.9	<0.5	<0.5	1.5	<5.0
11/28/2000	12.36	10.30	2.06	8020	SGC	2,500	36,000	<1300	80	1.7	<0.5	<0.5	1.6	<5.0
11/28/2000	12.36	10.30	2.06		Filtered+SGC	73	<200	<50						_
2/26/2001	12.36	9.30	3.06	8020	Filtered+SGC	190	<240	<60	55	0.6	<0.5	<0.5	0.5	<5.0
5/17/2001	12,36	10.09	2.27								-			
5/18/2001	_		_	8020	Filtered+SGC	210	<230	<57	66	1.5	<0.5	<0.5	2.1	<5.0
8/16/2001	12.36	10.20	2.16		Filtered+SGC	<50	B500	<100	<50	<0.5	<0.5	<0.5	2.4	<5
12/16/2001	12.36	9.80	2.56	8021	SGC	3,800	15,000	<250	<50	<0.5	<0.5	<0.5	2	<5
4/5/2002	12.36	9.58	2.78	8021	SGC	1,000	1,400		<50	<0.5	<0.5	<0.5	2.3	<
MW-16														
1/18/2000	13.57	10.22	3.43		SPH: 0.1 ft			_	_					
5/11/2000	13.57	13.31	0.27		SPH: 0.01 ft					•				_
8/24/2000	13.57	8.91	4.66		SPH: NM			_		***			_	
11/28/2000	13.57	13.05	0.86		SPH: 0.42 ft									
2/26/2001	13.57	13.10	0.79	_	SPH: 0.40 ft			_			_	_		_
5/17/2001	13.57	12.62G	_		SPH: NM									
8/16/2001	13.57	11.94G	*****		SPH: NM									
12/15/2001	13.57	NM			SPH: NM	_								
4/3/2002	13.57	12.88	0.69		O1 11. 14141	-		-				- -	-	

Page 8 of 11

Table 1.		Ground	dwater E	levation Da	ata and Analytic	cal Result	s - Hydroc	arbons -	City of Oa	akland Muni	icipal Servi	ces Center,	Oakland, C	A
Sample ID/	TOC	DTW	GW	BTEX N	otes	ТРНа	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE
Date	Elev.		Elev.	Method								benzene		
								 		μ <u>g/l</u>				`
MW-17														
1/18/2000	9.86	5.35	4.51	8020	SGC	850 a	21,000	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
5/11/2000	9.86	9.85	0.01	8020	SGC	150 a	2,900	<100	<50	<0.5	<0.5	<0.5	<0.5	<5.0
8/24/2000	9.86	8.59	1.27				***						_	_
8/25/2000		***		8020	SGC	190	610	71	<50	0.58	<0.5	<0.5	<0.5	<5.0
11/28/2000	9.86	9.25	0.61	8020	SGC	<250	2,400	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0
11/28/2000	9.86	9.25	0.61		Filtered+SGC	<50	<200	<50	_					
2/26/2001	9.86	9.40	0.46	8020	Filtered+SGC	<50	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
5/17/2001	9.86	8.32	1.54						_	-				
5/18/2001		_		8020	Filtered+SGC	<50	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
8/16/2001	9.86	10.35	-0.49		Filtered+SGC	<50	B400	<100	<50	<0.5	<0.5	<0.5	<0.5	<5.0
12/16/2001	9.86	8.01	1.85	8021	SGC	940	1,000	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
4/9/2002	9.86	9.76	0.10	8021	SGC	590	880		60	<0.5	<0.5	1.6	<0.5	<5.0
TBW-1														
2/23/1999		6.25			SPH: 0.10 ft						***	ren		
5/27/1999	_	5.29	_		SPH: 0.01 ft					_				
8/24/1999		6.99	••••		SPH: 0.18 ft		_							
11/22/99		9,,,,			Inaccessible			_						
1/18/2000					Inaccessible				_		,			
5/11/2000		6.90		_	SPH; 0.10 ft				der					
8/24/2000		7.12			SPH: NM		_	_						
11/28/2000		7.75	_		SPH: 0.36 ft									
2/27/2001		9.06			SPH: 0.51 ft						***			
5/17/2001	_	6.98	_		SPH:0.28 ft									***
8/16/2001		6.62			SPH:0.66 ft, f	1,100	B700	<100	17,000	2,100	75	730	850	 <1
12/15/2001	_	6.86			SPH:0.35 ft	1,100	D.00	-100	17,000	2,700		7.50		-1
4/3/2002	_	6.14		-	SPH: None	_			_			,		
TBW-3									-					
8/19/1998	<u></u>	2.67		8020	SGC	810,000			9 2 0	3,2	<0.5	<0.5	0.77	<10
8/19/1998	_	2.67		8260	500	810,000			920	3.2	~0.5 			<5.0
2/23/1999	_	1.25		8020		3,800	3,000	<50	110	1.6	<0.5	<0.5	- <0.5	
5/27/1999					DTW: NM	•	•							<5.0
8/24/1999		3.25	_	-	SPH globules	-			_					
11/22/99		3.68		_	arn gioudies							_		_
	9.92		6.19		QDU -labales			=	_					
1/18/2000		3.73			SPH globules			-				_	_	
5/11/2000	9.92	2.07	7.85		ontih	44.000	12.000	24.000	 	_			~	 .e.o
8/24/2000	9.92	2.82	7.10		SPH: sheen	44,000	13,000	34,000	570	4.7	<0,5	<0.5	<0.5	<5.0
11/28/2000	**** ** **		0.62		DW 1.00-		-740		_					
2/27/2001	9.92	1.29	8.63	8020	Filtered+SGC	560	<230	_<57	120	1.5	<0.5	<0.5	<0.5	<5.0

Table 1.		Ground	owater E	evation Da	ita and Analyti	cai Kesuit	s - нуагос	arbons - '	City of Oa	akiana Muni	cipai Servic		Oakiand, C	Α
Sample ID/	TOC	DTW	GW	BTEX N	otes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE
Date	Elev.		Elev.	Method							<u> </u>	benzene		
641546001		0.45	7.45							µg/I				
5/17/2001 8/16/2001	9.92 9.92	2.47 1.81	7.45 8.11		Filtered+SGC	1.500	B400	<100	180	<0.5	<0.5	<0.5	<0.5	- <
12/15/2001					SPH: 0.02 ft	1,500								
	_	2.52 1.5			SPH: 0.02 It	P-0-A								_
4/3/2002	_	1.3			SPH: NULE									-
TBW-4														
2/27/2001		1.35		8020	Filtered+SGC	410	<230	<57	250	1.9	<0.5	<0.5	<0.5	<5
5/17/2001		2.52		_			_	_		_		_		_
8/16/2001		1.88			Filtered+SGC	2,600	B700	<100	390.00	<0.5	<0.5	<0.5	<0.5	<
TBW-5														
2/23/1999		9.72	***	-	SPH: 1.45 ft	***				<u></u>				_
5/27/1999		7.03	_		SPH: 1.13 ft	_	_	_				_	_	_
8/24/1999		6.52			SPH: 1.33 ft	***					****			_
11/22/99	_	8.31		_	SPH: 1.29 ft		_			_		_		
1/18/2000	10.22	6.20	4.74		SPH: 0.90 ft									-
5/11/2000	10.22	9.41	1.05	_	SPH: 0.30 ft		_		_	_	_		_	
8/24/2000	10.22	9.62	0.81		SPH: 0.26 ft									
11/28/2000	10.22	10.25	0.34	_	SPH: 0.46 ft		***	_						
2/27/2001	10.22	9.06	1.45		SPH: 0.36 ft					_	_	_	_	_
5/17/2001	10.22	8.75	1.47		SPH: 0.67 ft	4		***						_
8/16/2001	10.22	8.32	2.51	8,020.00	SPH: 0.76 ft, f	550	B400	<100	30,000	2,900	100	1,500	5,100	<
12/15/2001	10.22	9.09	1.13		SPH: 0.36 ft									
4/3/2002	Well has ac	tive reme	distion un	it/recovery										
TBW-6														
2/23/1999	-	2.09		8020		160	600	<50	60	<0.5	<0.5	<0.5	<0.5	<5.
5/27/1999		3.31						-						-
8/24/1999		7.29	_	8020	SGC	180	400	<50	130	<0.5	<0.5	<0.5	<0.5	<5
11/22/99		4.37				-								-
1/18/2000	9.49	3.83	5.66				· —	_	_			_		-
1/19/2000		_		8020	SGC	55 C	<200	<50	170	0.6	<0.5	<0.5	<0.5	<5
5/11/2000	9.49	2.51	6.98				_	_	_	_	_	_		•
8/24/2000	9.49	4.34	5.15	<u></u>									_	-
8/25/2000	-		_	8020	SGC	320	<250	200	<50	<0.5	<0.5	<0.5	<0.5	<5
11/28/2000	9.49	4.74	4.75							•**	***			-
2/27/2001	9.49	2.30	7.19	8020	Filtered+SGC	<57	<230	<57	<50	<0.5	<0.5	<0.5	<0.5	<5
5/17/2001	9.49	3.35	6.14							•				-
8/16/2001	9.49	3.85	5.64		Filtered+SGC	<50	<200	<100	<50	<0.5	<0.5	<0.5	<0.5	<
12/15/2001	9,49	3.96	5.53			. —	_		_			,		
4/3/2002	9.49	2.51	6.98								===	_		

Page 10 of 11

Table 1.		Groundwater Elevation Data and Analytical Results - Hydrocarbons - City of Oakland N									icipal Servic	ces Center,	Oakland, C	CA
Sample ID/	TOC	DTW	GW	BTEX N	otes	TPHd	TPHme	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE
Date	Elev.		Elev.	Method								benzene		
						4				µg/l				
Trip Blank														
8/19/1998				8020		_	_	_	<50	<0.5	<0.5	<0.5	<0.5	<5.0
11/22/99				8020			***		<50	<0.5	<0.5	<0.5	<0.5	<5.0
11/28/2000				8020		_	_	_	<50	<0.5	<0.5	<0.5	<0.5	<5.0
2/27/2001		_	_	8020	Filtered+SGC			****	<50	<0.5	<0.5	<0.5	<0.5	<5.0
5/17/2001				8020	SGC		_	_	<50	<0.5	<0.5	<0.5	<0.5	<5.0
12/16/2001		_	_	8021			Act Age The	*	<50	<0.5	<0.5	<0.5	<0.5	<5.0
4/5/2002				8021	Trip Blank 1				<50	<0.5	<0.5	<0.5	<0.5	<5
4/5/2002				8021	Trip Blank 2				<50	<0.5	< 0.5	<0.5	<0.5	<5

Notes

All concentrations in micrograms per liter (µg/l)

-- = not measured/analyzed

TOC = Top of casing

DTW = Depth to water

DTP = Depth to product (SPH)

Filtered = 0.45 micron glass membrane filter

GW = Groundwater

Groundwater Elevation corrected for the presence of free product according to the calculation: GW Elevation = TOC - DTW + (0.8 x SPH thickness)

BTEX = Benzene, toluene, ethylbenzene, and xylenes - analyzed by EPA Method 8020 or 8240/8260

TPHd = Total petroleum hydrocarbons quantitated as diesel - analyzed by EPA Method 8015B

TPHmo = Total petroleum hydrocarbons quantitated as motor oil - analyzed by EPA Method 8015B

TPHk = Total petroleum hydrocarbons quantitated as kerosene - analyzed by EPA Method 8015B

TPHg = Total petroleum hydrocarbons quantitated as gasoline - analyzed by EPA Method 8015B

MTBE = methyl tert-butyl ether - analyzed by EPA Method 8020 or 8260. Confirmation 8260 results shown in parentheses

DUP = Duplicate sample

SPH = Separate-phase hydrocarbons; measured thickness

SGC = Silica gel cleanup based on Method 3630B prior to TPHd, TPHk, or TPHmo analysis, following CRWQCB February 16, 1999 memorandum

NM = Not measured

TBW = Tank backfill well

- a = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range are actually the front end of the motor oil pattern
- b = The analytical laboratory reviewed the data and noted that the quantitation in the diesel range show no diesel pattern; the response looks like lower carbon chain compounds close to the gasoline range
- c = The analytical laboratory reviewed the data and noted that there is no pattern related to diesel range; the peaks are small and random
- e = Results are estimated due to concentrations exceeding the calibration ranged
- f = Filtration with 0.45 micron glass membrane filter and silica gel treatment
- g = Depth to product, depth to water could not be determined
- B = Results flagged with "B" indicate motor oil was detected in the method blank

Table 2.			_	Results -				-			nicipal Se		er, Oakland,							
Sample IIV Date	Benzene	n-Butyl- benzene	sec-Butyl- benzene	tert-Butyl- benzene	Chioro- ethane	Chloro- form	Methyl Chloride	1,2-DCA	cis-1,2- DCE	1,2-DCP	Ethyl- benzene	isopropyl- benzene	p-Isopropyl- toluene	мтве	Napthalene	n-Propyl- benzene	Toluene	1,2,4-TMB	1,3,5-TMB	Xylenes
			•													·		 		
MW-5 1/27/2001	180	9	4	ND	3	ND	ND	7	ND	3	260	23	6	ì,100	43	68	7	1	11	53
vIW-6																				
/27/2001	270	11	3	ND	<1	ND	ND	7	ND	<1	9	6	1	19	62	21	3	1	<1	3
3/20/2001	E280	14	<1	<1	<1	3	2	<1	<1	<1	11	4	<1	14	E82	14	4	<1	<ł	9
Γ BW-1 3/20/2001	E530	30	<1	54	<]	4	10	<1	2	<1	E540	36	54	ব	E300	E120	79	E430	<1	E790
BW-3 /20/2001	10	<1	<)	<1	<1	<1	<1	<1	<1	<1	6	<1	<1	<1	5	<1	<i< td=""><td><1</td><td><۱</td><td>3</td></i<>	<1	<۱	3
'BW-5 /20/2001	E620	<1	</td <td>E160</td> <td><1></td> <td>3</td> <td><1</td> <td>· <1</td> <td><1</td> <td><1</td> <td>E730</td> <td>40</td> <td>E160</td> <td><1</td> <td>E450</td> <td>E140</td> <td>E110</td> <td><1</td> <td>«1</td> <td>£3100</td>	E160	<1>	3	<1	· <1	<1	<1	E730	40	E160	<1	E450	E140	E110	<1	« 1	£3100

Notes

All concentrations in micrograms per liter (mg/l), E = estimated concentration

μg/l = micrograms per liter

VOCs = Volatile organic compounds by EPA Method 8260. Sample not subject to SCG or filtration prior to analysis.

1,2-DCA = 1,2-dichloroenthane

1,2-DCP = 1,2-dichloropropane

MTBE = methyl tertiary-butyl ether

1,2,4-TMB = 1,2,4-trimethylbenzene

1,3,5-TMB = 1,3,5-trimethylbenzene

Table 3. Groundwater Analytical Results - SVOCs by EPA Method 8270
City of Oakland Municipal Services Center, Oakland, California

Sample ID/	Naphthalene	Pyrene	Other SVOCs	
Date		<u> </u>		
	<	μg/L		
MW-6				
2/27/2001	19	ND	ND	
8/20/2001	52	<5	. 39	
MW-9				
11/28/2000	ND	ND	ND	
MW-13				
11/28/2000	ND	10	ND	
MW-17				
11/28/2000	ND	ND	ND	
TBW-1				
8/20/2001	140	8	387	
TBW-3				
8/20/2001	<5	<5	5	
TBW-5				
8/20/2001	220	<5	73	

Notes

All concentrations in micrograms per liter (µg/l)

SVOCs = Semi-volatile organic compounds by EPA Method 8270.

Samples not subject to filtration or silica gel cleanup prior to analysis.

Table 4. Groundwater Analytical Results - LUFT Metals - City of Oakland Municipal Services Center, Oakland, California

				-	· ·	
Sample ID/	Cadmium	Chromium	Lead	Nickel	Zinc	Notes
Date	<u> </u>		mg/l		>	
MW-2						
8/19/1998			<100		*==	а
MW-6						
2/28/2001	<0.001	0.035	0.23	0,046	0.19	non-filtered
8/16/2001	<0.001	0.020	0.12	0.032	0.11	
TBW-1						
8/16/2001	< 0.001	0.017	0.042	0.034	0.10	
TBW-3						
8/16/2001	<0.001	0.008	0.01	0.019	<0.02	
TBW-5						
8/16/2001	<0,001	<0.005	0.01	800,0	0.03	

Abbreviations and Notes:

LUFT metals by EPA Method 6010. Samples filtered in lab prior to analysis, unless noted otherwise. mg/l = milligrams per liter

^{--- =} not measured/analyzed

a = Analyzed for organic lead

Table 5. Groundwater Analytical Results - Additional Metals - City of Oakland Municipal Services Center, Oakland, California

Sample ID/	Antimony	Arsenic	Beryllium	Copper	Selenium	Silver	Thallium
Date	<			mg/l			>
MW-6							
8/16/2001	< 0.01	0.033	< 0.001	0.025	< 0.01	< 0.003	< 0.01
0,10,2001	-0.02	0.000	-0.001	0.020	-0.01	-0.005	·V.U1
TBW-1							
8/16/2001	<0.01	0.015	< 0.001	0.017	< 0.01	< 0.003	< 0.01
						•	
TBW-3							
8/16/2001	<0.01	0.009	< 0.001	0.008	<0.01	< 0.003	<0.01
TBW-5							
8/16/2001	<0.01	0.020	< 0.001	< 0.005	< 0.01	< 0.003	<0.01
0/10/2001	-0.01	0.020	-0.001	-0.00 <i>D</i>	~0.01	-0.003	~0.01

Abbreviations and Notes:

metals by EPA Method 6010. Samples filtered in lab prior to analysis, unless noted otherwise. mg/l = milligrams per liter

MORGAN ENVIRONMENTAL SERVICES

OAKLAND MUNICIPAL SERVICE CENTER: 7101 EDGEWATER DRIVE WELL DEPTH MEASUREMENTS

Well ID	Time	Product Depth	Water Depth	Product Thickness	Well Depth	Comments
TBW-1	1755	NONE	6.14	NONE	10.01	Plume C
TBW-3	1555	NONG	1.5	NONE	10.50	Plume A
TBW-5	WELL	HAS ACTIO	E REMEDIA		RECOVERY	Plume D
TBW-6	1000	NONE	2.51	NONE	12.01	
MW-1	1150	NONE	3-78	NONE	15.6	
MW-2	1115	NONE	6.0Z	NONE	15:5	-
MW-5	1345	NONE	5.15	NOW 5	14.3	
MW-6	1300	NONE	6.92	0.11	14 29	Phume B
MW-7	1340	NONE	6.17	NONE	14.27	
MW-8	1020	NONE	9-55	NONE	15.15	
MW-9	1000	NONE	7,5	NONE	14.54	
MW-10	9:38	NONE	6.51	Nave	15,2	
MW-11	1350	NONE	5.47	NONE	19.45	
MW-12	1225	NONE	6.65	NONE	14-17	
MW-13	947	NONE	10.24	NONE	20.36	
MW-14	955	NONE	6.58	NONE	14.7	
MW-15	148	NONE	9.58	None	20.5	Di D
MW-16	1030	etate	12.88	inc	14.18	Plume B
MW-17	1530	nene	9,76	nenes	18.15	
MW-18		NONE	6,34	NOAK	13.01	
	1350	nono	1.43	NOW	9.70	

Measured By - 1. SMER / H. CANZ

Date 3 MPLIC 7002

WATER SAMPLE LOG

Project Na	-	akland Municip	al Service Ce	onter		Date:	4/9/	200	2
Project Nu	_	1232				Sampler:	<u></u>	KE/K	
Well Num	ber:	Mu/-			1	Weather:	56	CLOCK	750
Well Loca	tion:	7101 Edge	water Drive, I	Dakland, CA	94621				
Well Cons	truction		•		Sampling E	quipment & (Cleaning		
Date Comp	pleted:	1//4			Sampler Ty	rnac	merce)	يميصر الأم	1150
Total Dept	•	15.60	7		Method of	-	140111-1	14/	Tr 441 /4
Diameter:		211			Pump/Baile	_	17-72/1	1 111	VED
					Method of		1/1/1/-14	11/11	4913/4511
			*****		pH Meter:		187 14	191	seconaes ,
- '		· · · · · · · · · · · · · · · · · · ·	•		Conductivi	ty Meter:	WST /	977	
Ground W	ater Levels:				Comments	•	100177	2000	1127E F
Olodina 17	200 200 200				AHTO.		<u>א משיל או אינו</u>	METE	TEST COL
Initial:	3.5	7			647/6		10		10/1/2
Final:		- 111	7		1014	1 CHILL	<i>SULL , 1</i>	45011	<u> </u>
Reference	Dallat.	17.		- 1 /			,		
	roint: me of Water:	CON CAR	- (JES)	NG					
MEIL AOIN	THE OF MRIGIS	1.70	}				 		
 									
			SAL	MPLING MI	EASUREMI	ents			**
					Spec. C	onductance		:	
		arge (gal.)	[Тепар	(mm	hos/cm)	Cole	or/	1 1
Time	Per Time	Cumulative	pН	-	Pield	Dissolved	Turbi	dity	Odor
40000	Period		ļ.,	00		Oxygen	(NTI	ກາ	
1300	start	0	6.05	17.62		10.29	YELLOW		34114
1350	5700	3.8				T .	137.	0	UK
well	RYANIA	No A	W/5-		X				
REC	1100611			1			· · · · · · ·		
					// \		·		
				SAMPLE.	ANALYSIS	<u> </u>			
San	mple ID	Date	Time	Ana	Jysis	Container	Preserv	ative	Comments
Mal-	-/	4/9/06	14/5			UDA	11/11		الاعراق
mil	-/	4/0/00	14/15		···	ANKE	11111	15	750
1-100		10000	1112	<u> </u>		1178H	10010	<u></u>	~=~
and the second second		<u> </u>	<u> </u>						
Total Disci	horma-	78	CALLON	20	7	111811	110E.	2150	•
	lumes Remov	ind:	willing		4			race	
		<u> DEINEZ</u>	2		101	KE CHA	<u> 186116</u>		
	wisposai	and the contract	usi	<u> </u>					······
	×	AODO 4	N T				er sample		
		MORGA					NICIPAL SER		
	E.R.	ironmental Sei	FY#C @\$		Proje	ot No.	Date	E	Well
					<u> </u>				1

WATER SAMPLE LOG

Project Nar Project Nur Well Numb	nber:	kland Municipa		nter		Date: Sampler: Weather:	4/5/02 -1: 38.5/18 53° 1857	
Well Locati				Dakland, CA	94621			
Well Const	ruction			•	Sampling E	ouipment & C	leaning	
Date Comp Total Depth Diameter:		4/A Z., 15.5	0		Sampler Ty Method of © Pump/Baile Method of © pH Meter:	Cleaning: r Type:	TEFECN SH UGUI-NOX SH TEFECON SH UGUI-NOX (O)	MEL MEL MEL MEG/WEXA
Ground Wa Initial: Final:	iter Levels:	25 25	· · · · · · · · · · · · · · · · · · ·		Conductivit	•	KET GYLC MUT PARK UTP METE DO, TURK	MEJER DITE
Reference I Weli Volur	Point: ne of Water:	1.5	<u> </u>	WG				
			SAN	MPLING MI	Casuremi	NTS		*:
Time	Per Time	rge (gal.) Cumulative	pH	Temp		onductance hos/om) Dissolved	Color/ Turbidity	Odor
1328	Period start	0	5.86	18.2	\ 	0xygen 6.98	(NTU) BBUN / 690	NONG
1855	570/0	15.2	0.00	10-2		6.10	DEWS 1 610	NONCO
		125-2	;		X			<u> </u>
		,			1		·	
			, , , , , , , , , , , , , , , , , , , ,	SAMPLE.	ANALYSIS			
Sam	ple ID	Date	Time	Ana	lysis	Container	Preservative	Comments
Mb) -	Z	4/5/02	1345			UDA	HCK	341
114/-	- 2	1/5/07	1345			MILER	NONE	250
						2116R		
	umes Remov	15- ved: <u>10</u> sec.mess	aus,	776	Comments:			
			<u> </u>			WAT	er sample log	
	N	MORGA	N		0/		NICIPAL SERVICE CI	ENTER
		rironmental Se			Proje	ect No.	Date	Well

spreadWW-8 (MSC)

5102670140

WATER SAMPLE LOG

Project Nam	e: <u>Oakl</u>	and Municipal	Service Cen	iter	_	Date:	4/9/02	,
Project Num	ber:	<u> 1737 </u>				Sampler:	BO KOUL	
Well Numbe		<i>mu</i> /-:	5		•	Weather:	oo coon	
Well Location	on:	7101 Edgew	ater Drive, C	akland, CA	94621			
Well Constr	uction	_			Sampling Eq	uipment & Cl	_	
Date Comple	eteci.	11/4			Sampler Typ	e: _	TETECN BH	KER_
Total Depth		14.50	<u> </u>		Method of C		[160][-40X[d]	<u> </u>
Diameter:	7	111			Pump/Bailer	Type:	TEXCON SH	11.50
Distillation.		<u> </u>			Method of C	jeaning: 4	<u> 1001-101 (01 .</u>	<u>HZCY/HEKA</u>
		•			pH Meter:		KI 6970	
					Conductivity	Meter:	KST 6920	
Ground War	ter Levels:				Comments:		MUT PARA	<u> JETEL</u>
0.000					MATE	L WH	CITY METE	
Initial:	5.30	9			nH,	TEMP.	100 TUBBO	0114
Final:	57	?			7			
Reference F	Point:	130 120	- CA 52	NE				
	ne of Water:	1.4/4						
11-011 1-01-01	ne or were							····
			SA	MPLING M	EASUREME			
						nductance	· C-1 i	1 1.
1	Dischar	ge (gal.)	1	Temp		os/cm)	Color/	Odor
Time	Per Time	Cumulative	PM		Field	Dissolved	Turbidity (NTU)	, cuoi
	Period		100	00	· k	Oxygen	14100 / 78.8	NEE OLE
1403	start	0	6.19	16.89	$H \setminus \neq$	10.11	GRAF 16.0	TOTAL CIRCO
1440	570P	14.4		<u> </u>			6/2//	-
				1	LX_			
	-		1		$\Pi = X$			
	•				17			
			1	SAMPL	ANALYSIS			
San	npie ID	Date	Time	Ar	nei yeis	Container	Preservative	Comments
MIL)-	. 5	4/4/01	1455			WA	ACL	329
mil	-	1/9/12	1455			AMOSE	NONE	ZEA
1.700		111111		1		WILL		
		<u> </u>				<u></u>		البريقة مسابر مسترخوس
Total Disc	harge:	14.4			Comments			
	lumes Remov		2		- 			
_	Disposal:		als	116				
			—- <u>i pre-</u>			WA	TER SAMPLE LOG	
1	7.	IORG	4 N		0,		INICIPAL SERVICE O	ENTER
		ironmental Si				ect No.	Date	Well
1.	211					377		

WATER SAMPLE LOG

Project Nan	^	akland Municips	مار مراسعه ا			Date:	4/9/02	
Project Num	-	1232		1164		Sampler:	LI SEIK	
Well Numb		Mul-	フ			Weather:	550 OUSEE	459-
Well Locati	ion:	7101 Edgev	vater Drive, (Dakland, CA	94621			
Vell Const	ruction				Sampling Ed	uipment & C	caning	
Date Compi	letect:	1//2			Sampler Typ	eni:	TERCON SIL	UER
Total Depth	_	14.	27		Method of C		11001-10X/1	THEO HEN
Diameter:		20			Pump/Bailer		TETICAL SA	UED!
	_				Method of C	leaning:	1/01/1-201/01/	4EO/KEKAN
	_				pH Meter:		KI 6920	
, •			,		Conductivit	y Meter:	45T 6920	
Ground Wa	iter Levels:				Comments:		MLTT PARSI	<u> </u>
					MITE	L alk	CITY METER	
Initial:	<u> </u>	3			All.	<u> 77.5849</u> ,	DO, TUESTA	0/18
Final:	6.	91				.,		
Reference l			- (A52	116	V			
Well Volut	nc of Water	: <u> </u>						<u>.</u>
								
			SA	mpling m	easureme	NTS		
		, 				nductance		
		harge (gal.)		Jemp		nos/cm)	Color/	
Time	Per Time	Cumulative	pН	00	Field	Dissolved Oxygen	Turbidity (NTU)	Odor
1020	Period	1 0	5.81	17.47	\ /	410	BANN /1544	NONE
2021	start	5.5	0.07	77.77	+	7.70	Consider Transfer	1,000
0000		3.3	 		$+ \vee$	 	······································	
0990		1/: 7			$+$ \wedge			-
A430		10	<u> </u>	 	 / 	<u> </u>		
10:05		12.6		<u> </u>	/	4		
					ANALYSIS		<u> </u>	
San	iple ID	Date	Time	la A	lysis	Container	Preservative	Comments
Mw-	7	9/3/00	10-15			UDA	HCL	3/5/
Mul	<i>- 7</i>	4/2/02	10:15	1		ANDER	NONE	254
			I			21168		
					· · · · · · · · · · · · · · · · · · ·			-1
Total Disci	_		ML_			TURBL	OVTY FOULES	<u></u>
-	lumes Remo		, ,		<u></u>	MUSS		
Method of	Disposal:_	<u> ARUMEZ</u>	1 aus	175_				-
				<u> </u>	1	\$17 A T	ER SAMPLE LOG	1
		NACEDA	A TAIT				<u>ER SAMPLE LUG</u> NICIPAL SERVICE CE	NTER
		MORGA				ect No.	Date Date	Well
	Environmental Services					~~~		┥

5102670140

Project Nam	ne: Oal	kland Municipal	Service Cer	iter	1	Date:	4/8/02	,	
Project Num		1252				Sampler:	-1. SE/R		
Vell Numb		Mil-	9			Weather:	430 0000	100	
Veil Locati		7101 Edgew	ater Drive, C	akland, CA	94621			···	
Vell Const	uction		•		Sampling Equipment & Cleaning				
ate Compl	etod-	1/10		4.	Sampler Type:			KER	
Total Depth		15/1		,	Method of Cleaning:		11001-10X /AT HEO /A		
Diameter:	OI WEIL	711	,		Pump/Bailer Type:		TETCCAL AND	UER!	
Maritera.		<u> </u>	 		Method of Cleaning:		1/011-201/01	420/KER	
		-			pH Meter:		18I 69XO		
					Conductivity	y Meter:	18T 6920		
Ground Wa	ter Levels:				Comments:		MUST PARA	METER.	
O) ORING THE					WATE	L WH	UTP METE	2	
Initial:	9.71	ク			sel.	71-11/10	Dr. Tuent	017	
Final:	17	95			-				
r mar. Reference l	9.70	mo ne	CHSI	116					
	ne of Water:	87		W 65					
MCII VOIGI	He or marer								
			\$A1	MPLING M	EASUREME				
						inductance			
		arge (gal.)		Temp		nos/cm)	Color/		
Time	Per Time	Cumulative	pН	مے	Field	Dissolved	Turbidity (NTU)	Odor	
	Period	 	2 22.00	 		Oxygen	Charles I I	MAKE	
1120	start	0	6.35	16.19	$H \longrightarrow$	7.33	PELLOW / EZS	Miles	
1130		3.5							
1150		5.0			L Ă	<u> </u>			
1210		6.0							
11.30		13.7							
				SAMPLE	ANALYSIS				
San	nple ID	Date	Time	An	alysis	Container	Proscrvative	Comments	
mil	مجتو	Malor				1100	11/0/	320	
mil	0	7/0/06		 		AMARO	NONE	200	
11141	0	1/0/06		ļ		11/6/2	100700		
Ĺ			<u> </u>	<u> </u>			<u> </u>		
Total Disc	harge:	8.7			Comments:	l			
	lumes Remo	ved: 10			_				
		arimes	als	75				·	
 	· Vive — All Assessment					WA'T	ER SAMPLE LOG		
1	1	MORGA	N				NICIPAL SERVICE CI	ENTER	
		YLUKUP Vironmental Se			<u> </u>	ect No.	Date	Well	
İ	En	rarvemieniui 30	7 VICES	•		27		 `` - "	

oject Number: cil Number: cil Location: 71	Municipa 2007— 101 Edgew	Service Cer	nter		Date:	4/5/02	
Il Number: Il Location: Il Construction	101 Edgew			-	-	116 712-11	7
ell Construction	101 Edgew				Sampler:		11111119
ell Location: 79 ell Construction ate Completed:	101 Edgew	9		•	Weather:	<u> 50 0000</u>	<u> </u>
		ater Drive, C	Dakland, CA	94621			
te Completed:	•			Samoling En	uioment & C	eanine	
THE CONTRACTOR AND ACCOUNT	1/2			Sampler Type	e:	TETTON SS	WER
tal Depth of Well:	400			Method of C	_	1/601-401/	T K20/
ameter:	/			Pump/Baller	Type:	TETECAL ASS	WED
	_			Method of C	leaning: 💪	<u> </u>	<u>H2Q/KE</u>
				pH Meter:		184 6920	
- *				Conductivity	Meter:	18 1 GYLL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ound Water Levels:		•		Comments:	فراردس محار-	MILI FRAN	
7 111	•	1		MITTE	<u> </u>	NA THE	1170
tial:			· · · · · · · · · · · · · · · · · · ·	-filty-	CHILLY	MILLY MEETS	
ar:	2 00	- CASI	1/60				
il Volume of Water:	1.19		<i>yy</i> 9		<u> </u>		
			1	1 Spec. Co.	nductance		
	gal.) 'umulativa	рН	Temp	, ,	os/om) Dissolved Oxygen	Color/ Turbidity (NTU)	Odor
	umulativa		Temp	(mmh	os/om) Dissolved	Turbidity	Odor 500MAR
Firme Per Time C Period		рН <i>6-50</i>	1	(mmh	os/om) Dissolved	Turbidity (NTU)	
Time Per Time C Period 94/2 start 25/0	Cumulativo 0		1	(mmh	os/om) Dissolved	Turbidity (NTU)	
Time Per Time C Period 94/2 start 25/0	umulativa 0		1	(mmh	os/om) Dissolved	Turbidity (NTU)	
Per Time C Period 947 start 250	Cumulativo 0		1	(mmh	os/om) Dissolved	Turbidity (NTU)	
Per Time C Period 947 start 250	Cumulativo 0		° e 17.29	(mmh	os/om) Dissolved	Turbidity (NTU)	
Time Per Time C Period 942 start 050	Cumulativo 0		SAMPLE.	(mmb Field	os/om) Dissolved	Turbidity (NTU)	
Time Per Time Period	o 2	6.50	SAMPLE.	(mmh Field	os/om) Dissolved Oxygen	Turbidity (NTU) BEOLINI/404. Z	SUMAR
Time Per Time C Period 942 start 050	o 2	6.50 Time	SAMPLE.	(mmh Field	os/om) Dissolved Oxygen 1000 Container	Turbidity (NTU) BEOLINI/404. Z	Comments

spread\MW-8 (MSC)

5102670140

Project Nam Project Num Well Numbe	ber:	and Municipa	Service Cer	nter		Date: Sampler: Weather:	LISTEIR 50° COUDY		
Vell Location			ater Drive, C	akland, CA	94621				
Well Constr						pripment & Cl	eaning		
Oate Complicated Depth Diameter: Ground Was Initial: Final: Reference F	ter Levels:	1 14.9 2 14.9 4 1-33	5		Sampler Typ Method of C Pump/Bailer Method of C pH Meter: Conductivity Comments:	Teaning: Type: Teaning: y Meter:	TETCON SI LEGULA SI TETCAL SI TETCAL SI TETCAL SIT GITO MUT METE SIT METE SIT METE SIT METE	MER MER NEO/NES METER	
			1	i i	See Co	onductance			
Time	Dische Per Time	urge (gal.) Cumulative	Не	Temp	_	Dissolved	Color/ Turbidity	Odor	
1031	Period	0	6.25	16.04		Oxygen J. 85	(NTU) BLACK / 1315.	T SOLAHUR	
100	start	5.5	0.63	10,07	+\-/		/ / / / / / / / / / / / / / / / / / / 	<u> </u>	
1005		10.5			 \\/			- 	
1250		100			+-/\-				
1055		133	ļ		// \			+	
				SAMPLE	ANALYSIS	Y			
Sam	ıple ID	Date	Time		elysis	Container	Preservative	Comments	
MW-	11)	4/4/15	11:05			IDA	1101	325A	
mil	- 117	wioh-	1101	1		AMILE	NONE	750	
11/41	10	19901	17.45		· · · · · · · · · · · · · · · · · · ·	277000	70075		
***	umes Remo	13.3 ved: 10 wee/me/2	i anse	1/5	Comments	WATE	e siack		
, <u>, , , , , , , , , , , , , , , , , , </u>						WAT	er sample log		
· 	γ .	MORGA	N		O.		NICIPAL SERVICE C	ENTER	
		YLUKGE vironmeniai Se				ect No.	Date	Well	
			·· • • • • • • • • • • • • • • • • • •		17	-100		- -1	

roject Name	: Oal	kiand Municipal	Service Ce	nter		Date:	4/5/02	
oject Numb		1232				Sampler:	-1 SE/K	
ell Number		1001-1	7			Weather:	63° WERL	457
eli Location	*****	7101 Edgew	ater <u>Drive,</u> (Dakland, CA	94621			
ell Constru	ction	_			Sampling Ec	wipment & Ci	eaning	
ate Complet	ted:	1/14			Sampler Typ	oe:	TEFECAL BH	KER,
otal Depth o		19.4			Method of C	leaning:	<u> 1001-NOX / 1</u>	01 1/20 /11
Diameter:		211			Pump/Bailer	Type:	TETTICAL SH	WED'
					Method of C	leaning: 📿	[BI]-NOX[D]	<u> </u>
· · · · · · · · · · · · · · · · · · ·		-			pH Meter:		132 6920	
, .					Conductivit	y Meter:	<u> 1857 6920</u>	
Found Wate	r Levels:				Comments:	· -	MLTT PARK	1/2/6/
					NATE	L alla	VITY METE	
nitial:	<u>5.5</u>	<u> </u>		<u> </u>	04	76.PHP	DO, TURBI	10174
Final:	7.0	67					·	
Reference Po	int:	TOO OF	MS2	NG				
Well Volume	of Water:	2.22						·
Time	Dischs Per Time	urge (gal.)	pH	Temp		nductance nos/cm) Dissolved	Color/ Turbidity	Odor
Tidle	Period	Çarboladi45	pri	سے ہ	1.5.0	Oxygen	(אדעי)	
0900	start	0	6.11	17.44	\bigwedge	74./	<u>mars [69. [</u>	SUAION
0905		11.12	_					
				1	X_	ŀ		
					17		*	
	 ,							
			- :	SAMPLE	ANALYSIS			
Samp	le ID	Date	Time	Ana	dysis	Container	Preservative	Comments
Mal-	//	4/5/01				UDA	MCL	359
Mul-	//	1/1/2-				AMESE	NONE	5.64
11/11/		1/3/11/		 		6116K	, - 	
Total Discha	-	11.12			Comments:	04976	R HEREY L	MRK_
Casing Volu								
Method of D	isposal:	AUMEL	acts	175		,		
					·			· · · · · · · · · · · · · · · · · · ·
= .							ER SAMPLE LOG	
•	1	MORGA	N	•			NICIPAL SERVICE C	
-		vironmental Sei			Proj	oct No.	Date	Well #

Project Nan Project Num Well Numb Well Locati	nber: er: ion:	Dakland Municipa 7101 Edgew	I Service Car		94621	Date: Sampler: Weather:	4/8/0/E/K 53° EENY	
Well Consti Date Comp Total Depth Diameter:	leted:	4/A	75		Sampler Typ Method of C Pump/Bailer Method of C pH Meter:	leaning: Type: leaning:	1872CN 84 1891-40X [1] 1873CA SI 1801-40X [0] 1802-6920	NEL THE IN NECTHER
Ground Wa Initial: Final: Reference I Well Volum	G. J G. J Point:	19 100 ac	- CHN	W6	Conductivity Comments:	ا قدر به نخست .	MITT PARTE LITE METE LO, TURBI	NGEL NIP
 -1	-		\$A)	MPLING M	EASUREME	NTS		7
Time	Disc Per Time Period	charge (gal.) Cumulative	рН	Temp		os/cm) Dissolved Oxygen	Color/ Turbidity (NTU)	Odor
1303 1307	start	15.6	6.5	17.4		3.24	SIGTISTACL	NONE
				SAMPLE	ANALYSIS			
San	nple ID	Date	Time	Аπ	alysis	Container	Preservative	Comments
Ma)-	12 -	4/8/02	1315 1315			VOA AMBEL 2118K	NONE	3EA 2EA
Total Disch Casing Vol Method of	lumes Rem		e are	175	Comments:	TÜLEN LENN	OVTS TO M	
	,	MORGA	N				ER SAMPLE LOG NICIPAL SERVICE CE	MTER
	E	IVIUK TA				ct No.	Date Date	Well

Project Na		kiand Municip	al Service Ce	ater	•	Date:	4/8/02	
Project Nu		1757	· ,			Sampler:	-1. SKE/K	· · · · · · · · · · · · · · · · · · ·
Well Numi		//W/-	13			Weather:	60° PARTY	<u> CCOOD</u> 4
Well Locat	tion:	7101 Edger	water Drive,	Dakland, CA	94621		,	
Well Const	truction				Sampling E	uipment & C	Cleaning	•
Date Comp	oleted:	1//4			Sampler Typ	oe:	TEFECON AM	UER .
Total Dept	h of Well:	20.0	3		Method of C	leaning:	110011-101/1	T 1/20/16X
Diameter:	_	211			Pump/Baile	туре:	TETECAL SA	VED!
					Method of (Cleaning: ,	[[0]]-NOX[0] ,	HED/HEKAR
					pH Meter:		132 6920	
. '					Conductivit	y Meter:	18T 69ZC	
Ground Wa	ater Levels:				Comments:		MCTT PARA	<u>NETER</u>
	100	,			affic	L OUR	UTP METE	
Initial:	10.7				11/1	TENNY,	DO, TURBO	<u>01752 </u>
Final:	12.0	5/						
Reference	the state of the s		1197	116				No. of Bulletin, Marine to the property of
Well Volu	me of Water:	1.57						***
		······································						
		<u> </u>	SAI	MPLING MI	easureme	NTS		
	-			_	1	nductance		
Time	Per Time	erge (gal.) Cumulative	_1,	Temp	Field	ios/om) Dissolved	Coler/	2.5
1 11316	Period	Cumulative	ρi-l	مي ه	ricio		Turbidity (NTU)	Odor
1500		+	6.32	17.95	k /	5.6/	BROWN /427.9	
	start	4.1	6.77	//-/5	 \ 	0.07	DRUGN 1761.9	
15/0					 \			
13/10		7.5			$\perp A$			
1530		10.0			//			
1540		12.0			V = V			
				SAMPLE.	ANALYSIS			
San	nple ID	Date	Time		lysis	Container	Preservative	Comments
MU-	13	9/3/07	1610			100	4/0/	341
mil	12	4/8/01	11.11			AMOSK	NONE	الصير حتر
11/4/	 	VIOJOZ	1616	<u> </u>	···	111815	NUNC	K.EA
		4	<u> </u>		<u> </u>			
Total Discl	haree.	15.7			Comments:	1550	14.5	•
	lumes Remov				Comments:		15.7	
		seines	200	112				
,,,cuiqu Ol	~.sposes	CALLY TO L	Circasi	// 65				
					T	31/47	ER SAMPLE LOG	1
	7	MORGA	N		04		NICIPAL SERVICE CEI	NTUD
		VIVIXIA vironmental Se				CT No.	Date	Weil
	₩				773		2015	75"
					1	4		1

spread\MW-8 (MSC)

5102670140

Project Nam	ne: O	akland Municipa	il Service Ce	nter		Date:	4/9/02			
Project Nun		1232				Sampler:	LI SIEIK			
Vell Numbe	er:	11/4/-	74			Weather:	55 MIST	E		
Well Locati	on:	7101 Edgev	ater Drive, C	Dakland, CA	94621	-				
Vell Constr	nction				Sampling Eq	uipment & C	leaning			
Date Compl	cted:	MA			Sampler Typ)e:	TEFTEN AM	KER,		
rotal Depth		14.7		<u> </u>	Method of Cleaning: WWW-AOX / ME					
Diameter:	-	2"	·		Pump/Bailer Type: TETCA/ MILE					
	_				Method of C	lesning:	1/01/10/10/	<u>420/45</u> 0		
					pH Meter:		132 6920	. /		
, -			•		Conductivity	y Meter:	15T 6920			
Ground Wa	ter Levels:				Comments:		MUT PALA	KETE-K		
					MATE	L OUR	CITYMETE	<u> </u>		
initial:	6.6	, E			OH:	TOMP.	DO TUBBI	0179		
Final:	7.0	7								
Reference F	oint:	700 OF	- CAS2	NE						
Weil Volun	ne of Water	1.28								
			SAI	MPLING M	EASUREME					
				<u> </u>	1 '	nductance	A.3/	1		
`_		narge (gal.)		Temp		ios/om)	Color/	Odor		
Time	Per Time	Cumulative	pH	00	Field	Dissolved	Turbidity (NTU)	Oddr		
1100	Period		6.82		\ 	0xygcn	KNIK / 739.2	SUMM		
	start	100	6-01	17.22	$+$ \	77.10	CORK / /2/1/2	3667776-3		
1105		12.8						 		
					$+\Delta$					
					+					
						<u> </u>				
				SAMPLE	ANALYSIS					
Sam	ple ID	Date	Time	Ain	alysis	Container	Preservative	Comments		
Mal-	/4/	4/9/01	1110			101	HCK	3/5/		
Mil	- []	4/0/01	1110			ANGE	NONE	1.60		
1.700	-,	11101		 		11101		-		
		<u></u>	<u> </u>	<u> </u>			1			
Total Disch	iarga:	12.13			Comments:					
	umes Remo		****			*				
-		MENNEZ.	als.	175						
						WAT	ER SAMPLE LOG			
•		MORGA	N		OAKLAND MUNICIPAL SERVICE CENTER					
		rvironmental Se			1111	et No.	_ Date	Well		
					17.			7 I		

Project Nat Project Nut Well Numi	mber:	Oakland Municipa	al Service Ce	nter	,	Date: Sampler: Weather:	4/5/08	ou am bi
Well Locat	tion:	7101 Edgev	vater Drive,	Dakland, CA	94621			
Well Const	truction				Sampling E	quipment & C	leaning	
Date Comp Total Depti Diameter:		1/A 20.1	<u> </u>		Sampler Type Method of Control Method of Control Method of Control Meter:	Cleaning: r Type:	TERREN SIL 1801-NOX 14 TERREN SIL 11011-NOX 101	MEL TALE HEXAN MED KEXAN
					Conductivit	v Motor:	487 6970	
Ground Wa	ater Level:			•	Comments:	•	MUSTI PARA	NETER
Initial: Final: Reference Well Volum		91 30 700 95 er: <u>1-63</u>	<u> </u>	WE_	ph,	A	OTT METE DO, TUBI	0/79
			\$Al	MPLING MI	EASUREME	NTS	· · · · · · · · · · · · · · · · · · ·	·
					1	nductance		
Time	Per Tin Period		pΗ	Temp	Field	Dissolved Oxygen	Color/ Turbidity (NTL)	Odor
1135	start	0	6.7	208		5.55	ANK/BEAD	SULTIUE
1140		4.1						
1141		8.19			X		• • • • • • • • • • • • • • • • • • • •	
		<u> </u>		SAMPLE	ANALYSIS			
San	iple ID	Date	Time		lysis	Container	Preservative	Comments
Ma)-	15	4/5/00	1201			WA	HCL	3,59
Mul-	15	45101	1201			ANDER	NONE	569
						WER		
Total Disch Casing Vol Method of	lumes Ren	8.19 noved: <u>5</u> <i>SEUMEU</i>	ouse	118	Comments:	TURK	IIITY WUU UUG	
	·					TAW	ER SAMPLE LOG	
		MORGA	N	*	OA		NICIPAL SERVICE CE	NTER
	1	Environmental Sei		•		et No.	Date	Weli
					173			

Project Nan	ne: Oai	kland <u>Municips</u>	il Service Co	nter		Date:	4/9/02	
Project Num		1237				Sampler:	-1. SE/K	
Well Numb	-	Mul-	17			Weather:	50° M/51	7
Well Locati			vator Drive, (Dakiand, CA				
Well Constr	ruction				Sampling Ec	uipment & C	leaning	
Date Compl	leted:	1/14			Sampler Typ	ie:	TERCAL SH	WED
Total Depth			3 2		Method of C		11001-104/	T 140 /1
Diameter:		711	<u> </u>		Pump/Bailer		122116/ SH	HED
		3-F			Method of C	• -	11011-101/01	HEO/KEX
					pH Meter:		KSI 6910	
					Conductivity	v Meter:	45T 6920	
Ground Wa	ter Levels:				Comments:	,	MUTT PARA	METER
					63976	L WIA	CITY METE	2
initial:	80	9			1/1	77-17410	Mi TURI	0179
Final:	75					cocker.		
Reference F	Point:	100 100	MS2	NE				
	ne of Water:	155		<u> </u>	·	***		
***************************************			· · · · ·					
······································	Disette				1 .	nductance	Color/	
Time	Per Time	rge (gal.) Cumulative	₽H	Temp	Field	Dissolved	Turbidity	Oder
1 1104	Period	Cummanve	pn.	سي ه	Piero	Oxygen	(NTU)	0001
1020	start	0	641	16.53		24.23	MM2/169.3	DUMINE
1023	2001.5	15.8	6 77	00,00		7.7.20	20 40) / 0/ 10	
Alla)		10.0			 \			1
		 			+	- -		
				 	H / \	 		- [
	·							
				SAMPLE	ANALYSIS			
Sam	pie ID	Date	Time	An	alysis	Container	Preservative	Comments
MU-	/7	4/9/02	1050			UDA	HEL	الفريمير حتى
Mul-	- 17	4/9/02	1030		**	MILLER	NONE	254
		1222	7.00			Willer		
Total Disch Casing Vol	narge: umes Remov	15.8 red: 10	3		Comments:			
_		acimei	als	175				
	·····	<u> </u>			1	WAT	ER SAMPLE LOG	
	1	MORGA	N		OA		NICIPAL SERVICE CE	ENTER
		ironmental Se				ct No.	Date	Well
					7-9			⊣ ¨ ¨ I

Appendix B

Memorandum Summarizing Field and Laboratory Requirements for Centrifuge Tests **Date:** March 22, 2002

To: Tom Morgan (Morgan Environmental Services),

Bill Svoboda (Caltest Analytical Laboratory)

Cc: Joseph Cotton (City of Oakland), Xinggang Tong (URS)

From: Donna Bodine (Aquatus Environmental)

Subject: City of Oakland Municipal Services Center 1st QTR 02 Groundwater Monitoring,

Centrifuge Tests (TPH Extractables), Requirements for Field and Laboratory

Procedures

This quarter, Caltest will investigate a method to remove particulates from groundwater samples before running total petroleum hydrocarbon (TPH)-extractable analyses (diesel/motor oil/kerosene). The samples will be centrifuged before extraction and analysis to reduce sample turbidity. This methodology is an accepted protocol used to separate an extract from a soil (or other solid) sample during a Waste Extraction Test (WET) (CA Code of Regulations, Title 22). The objective is to evaluate if centrifuging the samples reduces turbidity effectively, and if the procedure can be performed within acceptable quality control limits. Groundwater samples representing different concentration ranges have been selected to evaluate matrix effects.

This memorandum summarizes field and laboratory procedures, scheduling and deliverables required to perform and evaluate the centrifuge tests. The Field Procedures section also includes other QC requirements for the quarterly monitoring.

Field Procedures

TPH-gasoline/BTEX/MTBE (EPA Method 8015B/8021B):

One set (3 40-mL VOAs) of Trip Blanks should be placed in each cooler containing VOAs.
If more than one cooler is used for VOAs, label each set of Trip Blanks sequentially. You
may need to augment the sample ID already on the labels. Include each Trip Blank (Trip
Blank 1, Trip Blank 2, etc.) on the chain-of-custody form.

TPH-Extractables (EPA Method 8015B)

- Centrifuge Tests- Table 1 provides the volumes required from each well selected for the
 tests. If sampling occurs over a two-day period, sample MW-9, MW-11 and MW-15 on the
 first day. Arrange for sample pickup by the next morning at the latest. A same-day pickup
 is best because the laboratory will need to turn around results quickly.
- Other Wells- Caltest requested that 2 liters of sample are collected from each well. This is a 1-L increase from last quarter. Collect 2 liters of sample from each of the following wells: MW-1, MW-2, MW-5, MW-7, MW-8, MW-10, MW-12, MW-13, MW-14, and MW-17.

Table 1

Monitoring Wells	Rationale for Selecting Sample (Concentration range is relative)	Total Sample Volume Required per Well	Rationale for Sample Volume
MW-11	Low concentration 4th QTR 01 concentrations: diesel 200 ug/L, motor oil 300 ug/L	5 1-L Glass	2 L – Normal extraction and analysis (no
MW-9	Moderate concentration 4th QTR 01 concentrations: diesel 1,400 ug/L, motor oil 4,100 ug/L	Amber Bottles	 centrifuge) 1 L – Centrifuge, no spike 1 L – Centrifuge, spike with diesel and orthoterphenyl (surrogate)
MW-15	High concentration 4 th QTR 01 concentrations: diesel 3,800 ug/L, motor oil 15,000 ug/L		1 L – Centrifuge, spike with motor oil and ortho-terphenyl (surrogate)

Laboratory Procedures

Caltest will perform the following procedures for the centrifuge test:

- Four TPH-extractable analyses will be performed for each sample (see Table 1):
 - 1. Normal extraction and analysis (no centrifuge). Spike the sample with the surrogate and perform a LCS/LCSD with the batch.
 - 2. Centrifuge, extraction/analysis, no spikes (to obtain the sample concentration)
 - 3. Centrifuge, extraction/analysis, spike with diesel and o-terphenyl (spike before centrifuge)
 - 4. Centrifuge, extraction/analysis, spike with motor oil and o-terphenyl (spike before centrifuge)
- Spikes will be added to each sample in appropriate concentrations to evaluate analytical accuracy. See Table 1 for last quarter's sample concentrations.
- Samples will be centrifuged in disposable glass amber bottles.
- The capacity of the centrifuge is 500 mL. Therefore, Caltest will centrifuge the 1-L samples in 2 500-mL aliquots. The aliquots will be recombined before sample extraction.
- Caltest will perform a LCS/LCSD for each analytical batch. In addition, Caltest will spike the LSC/LSCDs with the surrogate.

Laboratory Schedule and Deliverable Requirements

- The prescribed holding time for TPH-extractables requires extraction within 14 days of sample collection. As such, decisions about the data need to be made quickly, so as not to exceed the holding time for the ten additional groundwater samples.
- Bill Svoboda will fax the sample results and quality control data to Donna Bodine and Joseph Cotton.

Aquatus Environmental

Memorandum

March 22, 2002

Page 3

- If the quality control results for the centrifuge tests are acceptable, Caltest will centrifuge, extract and analyze the remaining 10 groundwater samples within holding time. If the quality control results are not acceptable, the remaining 10 samples will not be centrifuged prior to extraction.
- Caltest will summarize the centrifuge test methods (e.g., apparatus, centrifuge time) in the case narrative that is submitted with the final laboratory report. The final laboratory report has a standard turn around time.

Other Scheduling and Communication

- The tentative dates for sampling are March 25, 2002 or March 26, 2002. Tom will confirm the sampling schedule with Donna. Donna will notify Bill if the schedule changes.
- Tom will let Donna know if he wants her to schedule the sample pickup(s). Or he will let her know when the pickup has been scheduled.
- Tom or Joseph will notify Donna if any deviations have been made to the field procedures.
- Bill will notify Donna if any deviations have been made to the laboratory protocols and schedule provided in this memorandum.

Appendix C

Laboratory Analytical Reports

May 29, 2002

CASE NARRATIVE for Lab order # C040219

On April 5, 2002 Caltest received 4 samples for analyses. Analyses included gasoline (purgeable hydrocarbons) and BTEX and MTBE. Samples were also analyzed for extractable hydrocarbons; this includes diesel and motor oil; however, the instrument was not calibrated for kerosene quantification at the time of these analyses.

Samples -1, -2, -3, -4 were all extracted and analyzed per standard extraction protocol. Surrogate results for all samples were within acceptable ranges.

Samples -5, -6, -7 had surrogates added to the samples and then were split into two bottles and centrifuged*. With an acceptable range of 50-130%, none of these samples had surrogate recoveries with in laboratory control limits; the results of these samples were similar to the comparable samples that had not been centrifuged.

Samples -9, -10, -11 had surrogates and 1000ppb of diesel added to the samples and then were split into two bottles and centrifuged*. The surrogate and the spiked diesel recoveries were within lab control limits for samples MW-11 and MW-9.

Samples -13, -14, -15 had surrogates and 2000ppb of motor oil added to the samples and then were split into two bottles and centrifuged*. The percent recovery for the surrogates were outside lab control limits for all three samples; Caltest does not have any established control limits for motor oil.

*Centrifuge Method:

Samples were injected with their spike and surrogates and shaken to homogenize the sample. The sample was split into two 500ml glass bottles and centrifuged at 1200RPM for 20 min. The samples were decanted, leaving the solids in the bottle. The liquid portion was measured, extracted, concentrated and analyzed. The results reported are from the liquid portion only. No analyses or measurements of the solids were performed.

C040219

Page

1 of 11

(Amended)

REPORT of ANALYTICAL RESULTS

Report Date: Received Date: 23 MAY 2002 05 APR 2002

Client:

City Of Oakland

250 Frank Ogawa Plaza Suite 5301

Oakland, CA 94612

Project: OAKLAND MUNI SERVICE CENTER

Sampled by:

J. SPEAR

<u>Lab Number</u> <u>Sample Identification</u>	<u>Matrix</u>	Sampled Date/Time
C040219-1 MW-11 C040219-2 MW-9 C040219-3 MW-15 C040219-4 MW-2 C040219-5 MW-11 C040219-6 MW-9 C040219-7 MW-15 C040219-9 MW-11 C040219-10 MW-9 C040219-11 MW-15 C040219-13 MW-11 C040219-13 MW-11 C040219-14 MW-9 C040219-15 TRIP BLANK 2 C040219-18 TRIP BLANK 1	AQUEOUS	05 APR 02 09:20 05 APR 02 11:05 05 APR 02 12:01 05 APR 02 09:20 05 APR 02 09:20 05 APR 02 12:01 05 APR 02 12:01 05 APR 02 09:20 05 APR 02 11:05 05 APR 02 12:01 05 APR 02 12:01 05 APR 02 09:20 05 APR 02 12:01

William Svoboda Project Manager CAHOM

Christine Horn Laboratory Director

CALTEST authorizes this report to be reproduced only in its entirety.

Results are specific to the sample as submitted and only to the parameters reported.

All analyses performed by EPA Methods or Standard Methods (SM) 18th Ed. except where noted.

Results of 'ND' mean not detected at or above the listed Reporting Limit (R.L.).

'D.F.' means Dilution Factor and has been used to adjust the listed Reporting Limit (R.L.).

Acceptance Criteria for all Surrogate recoveries are defined in the QC Spike Data Reports.

Caltest collects samples in compliance with CFR 40, EPA Methods, Cal. Title 22, and Standard Methods.

1885 North Kelly Road • Napa, California 94558 (707) 258-4000 • Fax: (707) 226-1001 • e-mail: caltest@caltestlab.com

ENVIRONMENTAL ANALYSES

ORGANIC ANALYTICAL RESULTS	(Aı	mended)	LAB OR	DER No.:		Page	C040219 2 of 11
ANALYTE	RESULT	<u>R.L.</u>	UNITS	D.F.	ANALYZED	QC BATCH	NOTES
LAB NUMBER: C040219-1 SAMPLE ID: MW-11 SAMPLED: 05 APR 02 09:20 - NORM A METHOD: EPA 8015M	L EXTRA	et Ion (De	3)				
TOTAL SEMI-VOLATILE PETROLEUM				1	04.15.02	T020098TPH	1.2
HYDROCARBONS Diesel Fuel TPH-Extractable, quantitated as diesel	ND 160.	50. 50.	ug/L ug/L				
Motor Oil TPH-Extractable, quantitated as Motor Oil	ND ND	200. 200.	ug/L ug/L	-			
Surrogate o-Terphenyl	87.		%				
LAB NUMBER: C040219-1 (continued) SAMPLE ID: MW-11 SAMPLED: 05 APR 02 09:20 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons -	330.	50.	ug/L	1	04.16.02	V020028G9A	3
Gasoline TPH-Purgeable, quantitated as gasoline	ND	50.	ug/L				
Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID]	8.9 2.0 6.9 8.7 ND 97.	0.5 0.5 0.5 0.5	ug/L ug/L ug/L ug/L ug/L				

Surrogate 4-Bromofluorobenzene [PID]

99.

Sample Preparation on 04-09-02 using EPA 3510
 An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.
 Sample Preparation on 04-16-02 using EPA 5030

C040219

3 of 11 Page

ORGANIC ANALYTICAL RESULTS

(Amended)

ORGANIC ANALITICAL RESULTS	(Ait	ieriueu)				, age	· · · ·
ANALYTE	RESULT	<u>R.L.</u>	UNITS	D.F.	ANALYZED	QC BATCH	NOTES
LAB NUMBER: C040219-2 SAMPLE ID: MW-9 SAMPLED: 05 APR 02 11:05 METHOD: EPA 8015M	TRACT ION	(DB)					
TOTAL SEMI-VOLATILE PETROLEUM				1	04.15.02	T020098TPH	1,2,3
HYDROCARBONS Diesel Fuel TPH-Extractable, quantitated as diesel	ND 870.	50. 50.	ug/L ug/L				
Motor Oil TPH-Extractable, quantitated as Motor Oil	ND 1000.	200. 200.	ug/L ug/L				
Surrogate o-Terphenyl	85.		%				
LAB NUMBER: C040219-2 (continued) SAMPLE ID: MW-9 SAMPLED: 05 APR 02 11:05 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL					04.16.02	V020028G9A	4,5,6
PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline	ND	250.	ug/L	5			1
TPH-Purgeable, quantitated as	1498.	250.	ug/L	5			
gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	367. 11. 2.1 7.8 ND 99.	10. 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %	20 1 1 1 1 1 1			

¹⁾ Sample Preparation on 04-09-02 using EPA 3510

²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

³⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.
4) Sample Preparation on 04-16-02 using EPA 5030

⁵⁾ Sample diluted to bring concentration of target analyte(s) within the working range of the instrument, resulting in increased reporting limits.

⁶⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on gasoline standards.

C040219

ORGANIC ANALYTICAL RESULTS

(Amended)

Page 4 of 11

ANALYTE	RESULT	R.L.	<u>UNITS</u>	D.F.	ANALYZED	QC_BATCH	NOTES
LAB NUMBER: C040219-3 SAMPLE ID: MW-15 NORMAL EXT SAMPLED: 05 APR 02 12:01 METHOD: EPA 8015M	tractfon()	⁵⁸)					
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS				1	04.15.02	T020098TPH	1,2,3
Diesel Fuel TPH-Extractable, quantitated as diesel	ND 1000.	50. 50.	ug/L ug/L				
Motor Oil TPH-Extractable, quantitated as Motor Oil	ND 1400.	200. 200.	ug/L ug/L			·	
Surrogate o-Terphenyl	92.		*	·			
LAB NUMBER: C040219-3 (continued) SAMPLE ID: MW-15 SAMPLED: 05 APR 02 12:01 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1	04.17.02	V020028G9A	4
Total Petroleum Hydrocarbons - Gasoline	ND	50.	ug/L				
TPH-Purgeable, quantitated as	ND	50.	ug/L				
gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND ND 2.3 ND 96. 95.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %				

1) Sample Preparation on 04-09-02 using EPA 3510

²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

³⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.
4) Sample Preparation on 04-16-02 using EPA 5030

C040219

5 of 11 Page

ORGANIC ANALYTICAL RESULTS

(Amended)

	•	-			•		
ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	ANALYZED	QC_BATCH	NOTES
LAB NUMBER: C040219-4 SAMPLE ID: MW-2 SAMPLED: 05 APR 02 13:45 METHOD: EPA 8015M	EXTRACT	ION DB)				
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS Diesel Fuel TPH-Extractable, quantitated as diesel	ND 200.	50. 50.	ug/L ug/L	. 1	04.15.02	Т020098ТРН	1.2.3
Motor Oil TPH-Extractable, quantitated as Motor Oil	ND 400.	200. 200.	ug/L ug/L				
Surrogate o-Terphenyl	83.		% 				
LAB NUMBER: C040219-4 (continued) SAMPLE ID: MW-2 SAMPLED: 05 APR 02 13:45 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1	04.16.02	V020028G9A	4
Total Petroleum Hydrocarbons - Gasoline	ND	50.	ug/L				
TPH-Purgeable, quantitated as gasoline	ND	50.	ug/L				
Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	2.9 ND ND ND ND 91. 92.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %				

¹⁾ Sample Preparation on 04-09-02 using EPA 3510 2) An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been

calculated based on Diesel #2 standards.

3) An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

⁴⁾ Sample Preparation on 04-16-02 using EPA 5030

C040219

ORGANIC ANALYTICAL RESULTS.

(Amended)

Page 6 of 11

					•		
ANALYTE	RESULT	<u>R.L.</u>	UNITS	D.F.	ANALYZED	QC BATCH	NOTES
LAB NUMBER: C040219-5 SAMPLE ID: MW-11 SAMPLED: 05 APR 02 09:20 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM				1	04.15.02	T020098TPH	1,2
HYDROCARBONS	N.B.	=0					
Diesel Fuel	ND	50.	ug/L				
TPH-Extractable, quantitated as diesel	150.	50	ug/L				
Motor Oil	ND	200.	ug/L				
TPH-Extractable, quantitated as	ND	200.	ug/L				
Motor Oil	ND	2001	~ . 3. –				
Surrogate o-Terphenyl	48.		*				
LAB NUMBER: C040219-6 SAMPLE ID: MW-9 SAMPLED: 05 APR 02 11:05 METHOD: EPA 8015M				•			
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS				1	04.15.02	T020098TPH	1,2,3
Diesel Fuel	ND	50 <i>.</i>	ug/L				
TPH-Extractable, quantitated as	770.	50.	ug/L				
diesel	•						
Motor Oil	ND	200.	ug/L				
TPH-Extractable, quantitated as Motor Oil	1000.	200.	ug/L				
Surrogate o-Terphenyl	30.		ž				

1) Sample Preparation on 04-09-02 using EPA 3510

2) An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.
 3) An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

C040219

Page 7 of 11

ORGANIC ANALYTICAL RESULTS (AT

(Amended)

URGANIC ANALYTICAL RESULTS	(Amei	naea)				raye	/ 01 11
ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	ANALYZED	QC BATCH	NOTES
LAB NUMBER: C040219-7 SAMPLE ID: MW-15 SAMPLED: 05 APR 02 12:01 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS				1	04.15.02	T020098TPH	1,2,3,4
Diesel Fuel	ND	50.	ug/L				
TPH-Extractable, quantitated as diesel	1200.	100.	ug/L				
Motor Oil	ND	200.	ug/L				
TPH-Extractable, quantitated as Motor Oil	1800.	400.	ug/L				
Surrogate o-Terphenyl	6.		*				
LAB NUMBER: C040219-9 SAMPLE ID: MW-11 SAMPLED: 05 APR 02 09:20 METHOD: EPA 8015M					,		
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS				1	04.16.02	T020098TPH	1,2,3
Diesel Fuel	ND	50.	ug/L				
TPH-Extractable, quantitated as	720.	50.	ug/L				
diesel			41				
Motor Oil	ND	200.	ug/L				
TPH-Extractable, quantitated as Motor Oil	300.	200.	ug/L				

1) Sample Preparation on 04-09-02 using EPA 3510

Surrogate o-Terphenyl

75.

3) An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

4) Sample volumes altered in prep in an effort to reduce matrix effects resulting in (a) higher reporting limit(s).

²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

C040219

ORGANIC ANALYTICAL RESULTS

(Amended)

Page 8 of 11

ANALYTE	RESULT	<u>R.L.</u>	UNITS	D.F.	<u>analyzed</u>	QC BATCH	<u>NOTES</u>
LAB NUMBER: C040219-10 SAMPLE ID: MW-9 SAMPLED: 05 APR 02 11:05 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM				1	04.16.02	T020098TPH	1,2,3
HYDROCARBONS Diesel Fuel	· ND	50.	ug/L				
TPH-Extractable, quantitated as diesel	1500.	50.	ug/L				
Motor Oil	ND	200.	ug/L				
TPH-Extractable, quantitated as Motor Oil	1500.	200.	ug/L				
Surrogate o-Terpheny?	57.		%				
LAB NUMBER: C040219-11 SAMPLE ID: MW-15 SAMPLED: 05 APR 02 12:01 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS				1	04.16.02	T020098TPH	1,2,3
Diesel Fuel	ND	50.	ug/L				
TPH-Extractable, quantitated as diesel	1400.	50 <i>.</i>	ug/L			•	
Motor Oil	ND	200.	ug/L				
TPH-Extractable, quantitated as Motor Oil	1800.	200.	ug/L				
Surrogate o-Terphenyl	29.		*				

Sample Preparation on 04-09-02 using EPA 3510
 An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

3) An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

ORGANIC ANALYTICAL RESULTS

(Amended)

LAB ORDER No.:

C040219

Page 9 of 11

ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	ANALYZED	QC BATCH	NOTES
LAB NUMBER: C040219-13 SAMPLE ID: MW-11 SAMPLED: 05 APR 02 09:20 METHOD: EPA 8015M							·
TOTAL SEMI-VOLATILE PETROLEUM				1	04.16.02	T020098TPH	1.2
HYDROCARBONS Diesel Fuel	ND	50	ua/I				
	ND	50.	ug/L				
TPH-Extractable, quantitated as diesel	ND	100.	ug/L			•	
Motor Oil	ND	200.	ug/L				
TPH-Extractable, quantitated as Motor Oil	ND	400.	ug/L				
Surrogate o-Terphenyl	16.		*				

SAMPLE ID: MW-9

SAMPLED: 05 APR 02 11:05

METHOD: EPA 8015M

TOTAL SEMI-VOLATILE PETROLEUM				1	04.16.02	T020098TPH	1,3,4
HYDROCARBONS							,
Diesel Fuel	ND	50.	ug/L				
TPH-Extractable, quantitated as	1000.	50.	ug/L				!
diesel			J				,
Motor Oil	ND ·	200.	ug/L				ļ
TPH-Extractable, quantitated as	1500.	200.	ug/L				
Motor Oil			-				1
Surrogate o-Terphenyl	36.		%				1

1) Sample Preparation on 04-09-02 using EPA 3510

²⁾ Sample volumes altered in prep in an effort to reduce matrix effects resulting in (a) higher reporting limit(s).

³⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

⁴⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

ORGANIC ANALYTICAL RESULTS	(Ame	ended)	LAB ORD	DER No.:		Page 1	C040219 0 of 11
ANALYTE	RESULT	<u>R.L.</u>	UNITS	D.F.	<u>ANALYZED</u>	QC BATCH	NOTES
LAB NUMBER: C040219-15 SAMPLE ID: MW-15 SAMPLED: 05 APR 02 12:01 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS				1	04.16.02	T020098TPH	1,2,3
Diesel Fuel TPH-Extractable, quantitated as	ND 1100.	50. 50.	ug/L ug/L				
diesel Motor Oil TPH-Extractable, quantitated as	ND 1800.	200. 200.	ug/L ug/L				
Motor Oil Surrogate o-Terphenyl	15.		%			-	
LAB NUMBER: C040219-17 SAMPLE ID: TRIP BLANK 2 SAMPLED: 05 APR 02 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons -	ND	50.	ug/L	1	04.17.02	V020028G9A	4
Gasoline TPH-Purgeable, quantitated as gasoline	ND	50.	ug/L				
Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND ND ND ND 85. 87.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %				
LAB NUMBER: C040219-18 SAMPLE ID: TRIP BLANK 1 SAMPLED: 05 APR 02 METHOD: EPA 8015/8020A	u/ .						
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline	ND	50.	ug/L	1	04.17.02	V020028G9A	4

¹⁾ Sample Preparation on 04-09-02 using EPA 3510

³⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

C040219

Page 11 of 11

ORGANIC ANALYTICAL RESULTS

(Amended)

ANALYTE	RESULT	<u>R.L.</u>	UNITS	<u>D.F.</u>	ANALYZED	QC BATCH	NOTES
LAB NUMBER: C040219-18 (continued) SAMPLE ID: TRIP BLANK 1 SAMPLED: 05 APR 02 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1	04.17.02	V020028G9A	
<pre>(continued) TPH-Purgeable, quantitated as gasoline</pre>	QИ	50.	ug/L			·	
Benzene Toluene	ND ND	0.5 0.5	ug/L ug/L				
Ethylbenzene	ND	0.5	ug/L				
Xylenes (Total) Methyl tert-Butyl Ether (MTBE)	ND ND	0.5 5.	ug/L ug/L				
Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	86.	01	%				
Surrogate 4-bromorrabiobenzene [PID]	85.		7 0				

^{...} notes continued from prior page ...4) Sample Preparation on 04-16-02 using EPA 5030

C040219

Page 1 of

Report Date: Received Date:

23 MAY 2002 05 APR 2002

Client:

City Of Oakland

250 Frank Ogawa Plaza Suite 5301

SUPPLEMENTAL QUALITY CONTROL (QC) DATA REPORT

Oakland, CA 94612

Project: DAKLAND MUNI SERVICE CENTER

QC Batch ID

Method

Matrix

T020098TPH V020028G9A

8015M 8015/8020A

AQUEOUS AQUEOUS

William Svoboda Project Manager

Christine Horn Laboratory Director

CALTEST authorizes this report to be reproduced only in its entirety. Results are specific to the sample as submitted and only to the parameters reported. All analyses performed by EPA Methods or Standard Methods (SM) 18th Ed. except where noted. Results of 'ND' mean not detected at or above the listed Reporting Limit (R.L.). Analyte Spike Amounts reported as 'NS' mean not spiked and will not have recoveries reported. 'RPD' means Relative Percent Difference and RPD Acceptance Criteria is stated as a maximum. 'NC' means not calculated for RPD or Spike Recoveries.

> 1885 North Kelly Road • Napa, California 94558 (707) 258-4000 • Fax: (707) 226-1001 • e-mail: caltest@caltestlab.com

C040219

Page 2 of

METHOD BLANK ANALYTICAL RESUL	.15
-------------------------------	-----

ANALYTE	RESULT	R.L.	UNITS	ANALYZED	<u>Notes</u>
QC BATCH: T020098TPH					
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS Diesel Fuel TPH-Extractable, quantitated as diesel Motor Oil TPH-Extractable, quantitated as Motor Oil Surrogate o-Terphenyl OC BATCH: V020028G9A	ND ND ND ND 86.	50. 50. 200. 200.	ug/L ug/L ug/L ug/L %	04.15.02	
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline TPH-Purgeable, quantitated as gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND ND ND ND ND ND ND 86.	50. 50. 0.5 0.5 0.5 0.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	04.16.02	

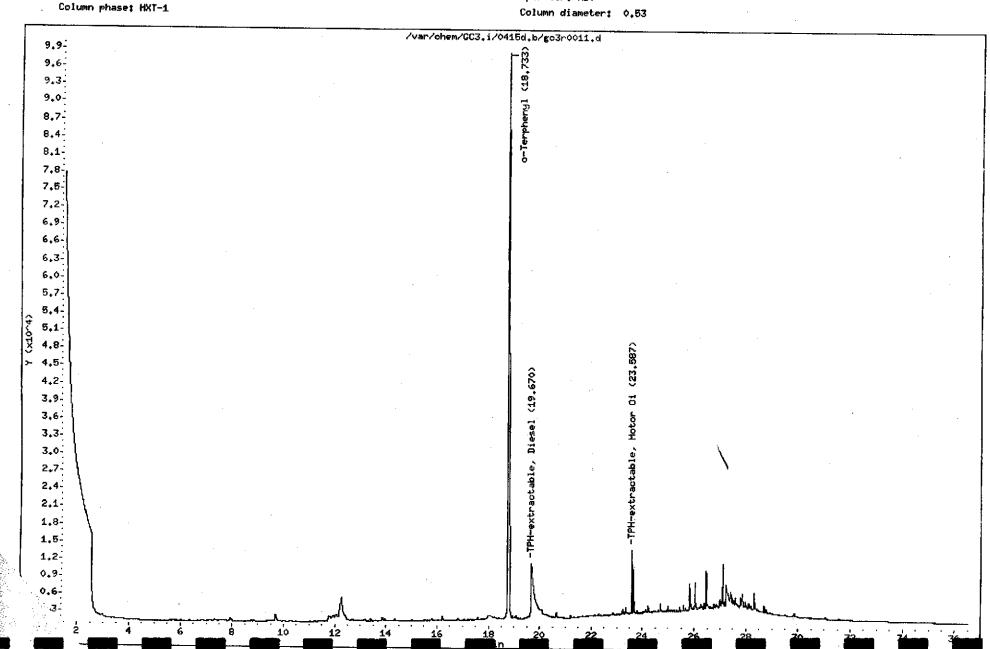
LABORATORY CONTROL SAMPLE ANALYTICAL RESULTS

LAB ORDER No.:

C040219

Page 3 of

ANALYTE	SPIKE AMOUNT	SPIKE\DUP RESULT	SPK\DUP **REC	ACCEPTANCE **REC \RPD	REL% DIFF	ANALYZED	<u>NOTES</u>
QC BATCH: T020098TPH							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS Diesel Fuel Surrogate o-Terphenyl	1000	766.\817. 85.9\91.1	77\82 86\91	36-102\32 50-150\	6.4	04.15.02	
QC BATCH: V020028G9A AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	550. 6.4 38.6 9.2 46.2 10.0 10.0	615.\590. 7.17\6.99 43.6\40.7 11.4\10.6 53.1\49.2 8.95\8.82 10.9\10.4	112\107 112\109 113\105 124\115 115\106 90\88 109\104	50-130\ 50-130\ 50-130\ 50-130\ 49-129\ 50-130\ 50-130\	4.1 2.5 6.9 7.3 7.6	04.16.02	


Data File: /var/chem/GC3.i/0415d.b/go3r0011.d

Date : 15-APR-2002 21:23

Client ID:

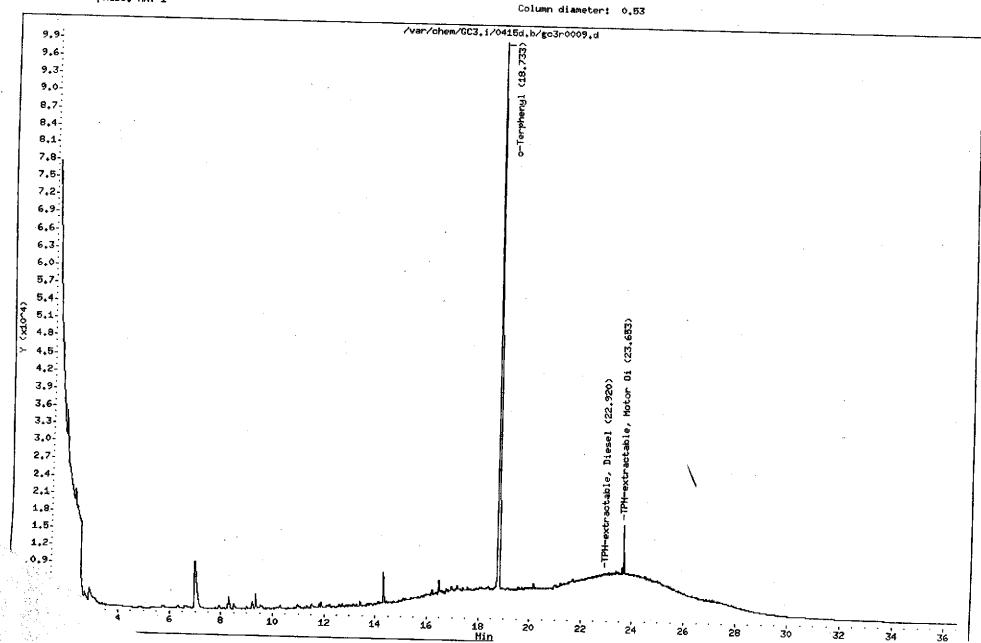
Sample Info: C040219-4;;1X Volume Injected (uL): 1000.0

Instrument: GC3.1

MW-9 Normal extraction

Page 3

Data File: /var/chem/GC3.i/0415d.b/go3r0009.d

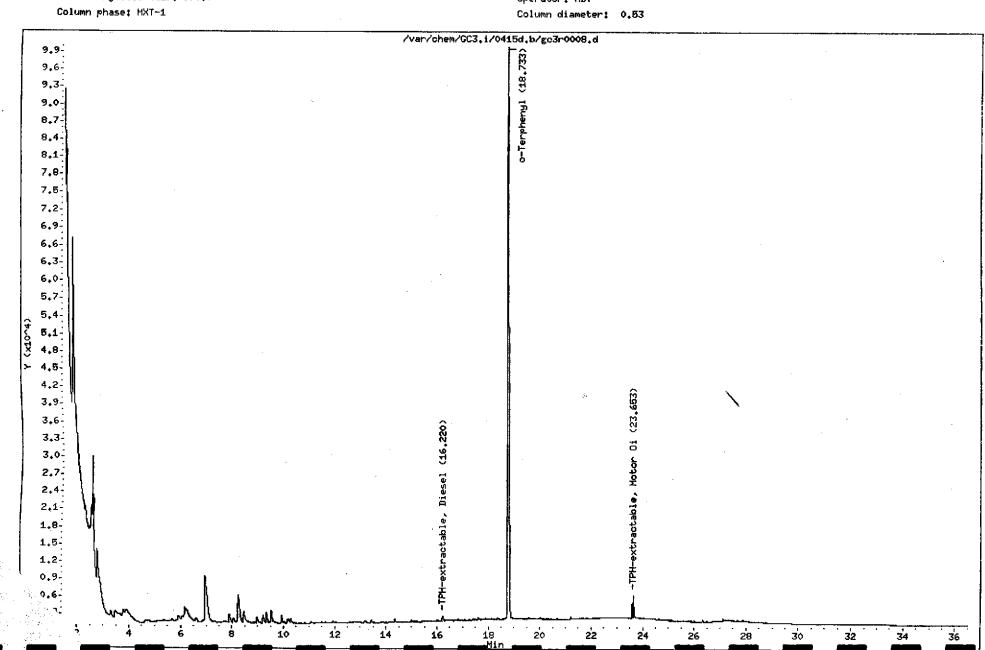

Date : 15-APR-2002 19:50

Client ID:

Sample Info: C040219-2;;1X Volume Injected (uL): 1000.0

Column phase: MXT-1

Instrument: GC3.i


Page 3

Data File: /var/chem/GC3.i/0415d.b/go3r0008.d

Date : 15-APR-2002 19:04

Client ID:

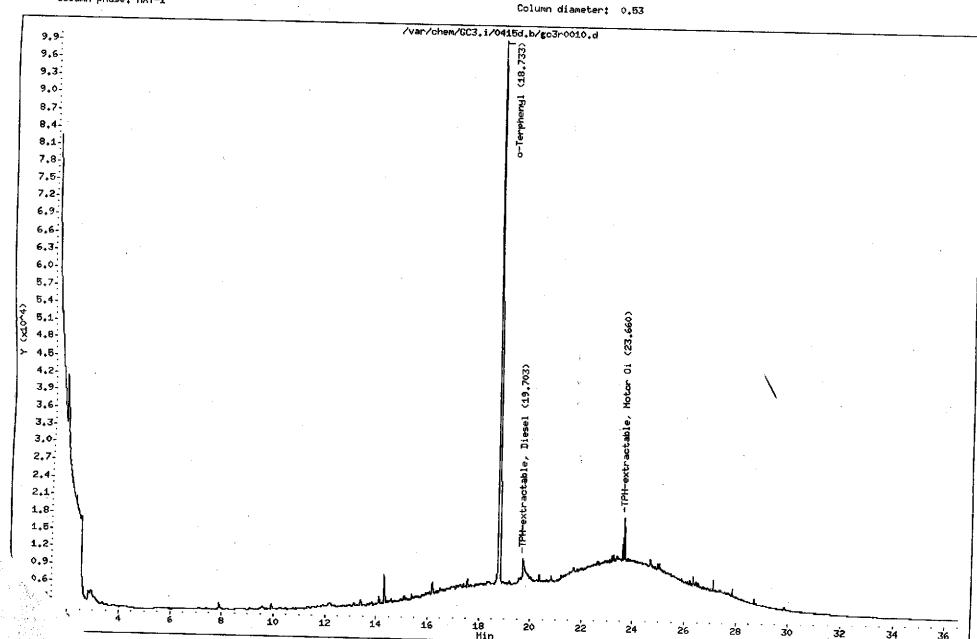
Sample Info: C040219-1;;1X Volume Injected (uL): 970.0 Instrument: GC3.i

MW-15 Normal Extraction

Page 3

Data File: /var/chem/GC3.i/0418d.b/gc3r0010.d

Date : 15-APR-2002 20:37


Client ID:

Sample Info: C040219-3;;1X

Volume Injected (uL): 1000.0

Column phase: MXT-1

Instrument: GC3.i

		Ca	ılte	st			LY ROAL	IN		3 • (707) 258-	4000 •	Fax (707	7) 226-1	100	P	v.calte AGE_	stlab.	- OI -	P.O.	LAB ORDER #: 0040319	
***	4		CAL LABOR				STOD	Υ '	PROJECT #1PR	OJECT NAME	n/M	11 St.	UMC	E	Œ	M	EK	<i>;</i> _			<u>:</u>
	LIEN	7751 1	75 6	146	(A)	10)		REPORT TO:								MA.	LYSI	ES F	TURN-ARI	
=	DDR	ESS: () /// IG ADDRESS:	MM	OGN	CITY: 94.1/1	Pli	111	SUM	STATE: F 5301	ZIP:	94	(b/ /z				- nAl		Y /		TIME STANDAR HUSH	15
		AME					1	annia e c	ION MAIAMES						<u> </u>	.179	Y /	//	/	DUE DATE:	k
1-55	7HOI	1E #. 	FAI 184 S	X PHONE:	: 67 - 01	40		JPAIN 1 0 0	IGN NAME)	74	<u>M</u>				N/		//	//		<u> </u>	
	ALTI	_		1 1		1	PRESERVATIVE	SA	MPLE IDENTI	FICATION BITE		CLIENT LAB #	COMP. OI GRAB	, ,	<u> </u>	<u>y</u> /	/	//	1	REMARKS	
		1/3/12	0910	anth	LITER	15/	nence	Mul	//				600b	^			+			5 ONE LITER COTT	5
100	1	1/5/02							1-// st	1			COM		X	_		-+		3 10AS 1./1161	∠ SINK
70772261001	_	Wislez	صعر دوبر ذ	11.00	AMIS		111111	M	1-9				EUAE	χ		-	! 			S ONE CITER SO	WE S
	7	15/c2 15/c2	1115	HEC	INA	13	MRL.	MW	9 \$	<u> </u>			CUB	,	χ					3 was a freek	NY FINAL
		15/66	75.5	-	1				. **					<u> </u>		_	-		_		
	_ _ 8)-				KA!	5	HEL	72	11 6	ANB			<u> </u>	-			+		-	TON BEANK	 A OT 790
				<u> </u>	<u> </u>				<u></u>					-		-	+				
ANALYTICA!	.—.			-	ļ								-	-			┪		\dashv		ELLOW-L
STA				<u> </u>				<u> </u>			ha sara	rea of thi	le docum	lent	.1		1	J			_/ <u>}</u>
CALTE					nt agrae	s to at	olde by the VTEXTIME	Terms A	nd Condition	s set forth on t	IIB IEVE	REL	MOUISHE	D BY				телім	E	HECEIVED BY	/ / *
FOR	•	/ <i>S//2</i>	LINQUISHE	DBY		15/e	1516	T	6.2	، عکت	F	Car. (ڪن€	20	dc) z	- 14	151			Theca /	re-LABO
Z.	Ţ				ľ								r		1					1	_ #
03:05PM	-	Samples: WC_	MCR	ю	BIO	AA	8V	_VOA	pH? Y/N	TEMP: 4	ר SE	ALED:/)/	N IN	ract;	YIN		FF =14	w R.L.s	. Agu	ueous Nondrinking Water, Øigeste Bous Nondrinking Water, Øigested	Metals;
	ኃ	BD: BIO	wc	AA				OMMENT		11		n 6	ع)طمان	2 5	7		DW = 0	ılınking Y	Water	; SL = Soll, Studge, Solid; FP = Free PES: AL = Amber Liter; AHL = 50	Product
APR-05-2002	E ONLY	GC: AA	sv	AOA				! !	Jan red	<u>o al</u>		<u>,,, </u>				Ta2	Amkar	PT = F	ist (Pi	lastic); QT=Quart (Plastic); HG = F	lalf Gal-
A PR-	B USE	SIL: HP			_VOA			. .							7	, .	ion (Pid VOA =	isite); S. 40 mlV) = 50 (OA; C	il Jar; 84 = 4 oz. BAGT; 8T = Brass OTC = Other Typs Container	: 146 4 ,
	OR LAB	W/HNO _a	H ₂ SO ₄ H ₂ SO ₄ .		IAOH	HCL_											A	PR		M F	
(Ÿ	PIL: HNO.	n ₂ av ₄ .								7		8.01			8					•

Calte	ST SAMP	LE CHAI USTODY	PROJECT AT PROJECT NAME CHILLIP IN 1910	11/1 56		PF	NE)		PO. I
IT: 1/TY OF OH 1ESS: 150 FAMILE	CHAND CITY: OBANA	1 PHILA	REPORT TO: STATE: ZIP: STATE: CIP.	INS 2	,		- 44		TURN-AROUN TIME
NG ADDRESS: SHIPE NE #: FA X61 (134) 57	X PHONE:		PRINT & SIGN NAME):		7				DUE DATE:
	CONTAINER MATRIX AMOUNT/TYPE	T !	SAMPLE IDENTIFICATION SITE	CLIENT LAB#	COMP. or GRAB	NYN			SOME LITER MAS
4/5/12/12/1	HEC LIA/S		MV-15 St		SH3	X			3 usas W/MCL
1 4/5/cz 1848	NOU BRING	nene	MW-2		GUB	X			2 are utel
1 1/3/12/315	H-0 00A/5	HEL	Mh/-2		646	X			3 vans NNEL
Et .	VOA/S	HEL	TRIP BLANK Z						TUP ELANY
	e(s), client agrees to	DATE/TIME	Terms and Conditions set forth on the	reverse of th	la docum	lent.	V/5/	ATE/TIME	HECHVED BY
Samples: WCMICF	RO_BIOAA	sv	VOA PH7 V/N TEMP: 4.3	SEALED: V	N IN	TACT: U/N	MAT	RIX: 40.	Aqueous Nondrinking Water, Digested Med
BD: BIOWC CC: AASV	AA VOA	of:	MMENTS 3 d 3 Ura's rec'd bubble	W/ OUE	R (cn	CON Ambe	Orloking W TAINER T In: PT = Pin Vasilo): 6J :	Aqueous Nondrinking Water, Digested Meter fater; SL = Soil, Shidge, Solid; FP = Fras Prot TYPES: AL = Amber Liter; AHL = 500 m) ht (Plastic); QT = Quart (Plastic); HG = Half Gr = Soil Jar; B4 = 4 oz. BAGT; ŠT = Brass Tube DA; OTC = Other Type Container

May 22, 2002

CASE NARRATIVE for Lab order # C040331

On April 10, 2002 Caltest received 9 samples for analyses.

Samples were analyzed for benzene, ethylbenzene, toluene, xylenes, MTBE and both purgeable and extractable hydrocarbons. Samples contained hydrocarbon patterns; these could not be identified as a specific hydrocarbon pattern or source, but only as the range they appear in. The diesel range (Carbon chain length 12-24) was quantified as diesel #2. The motor oil range (C24-C36) was quantified as motor oil. The instrument was calibrated for diesel and motor oil; the instrument was not calibrated for kerosene. The gasoline range (purgeable) was quantified as gasoline.

All samples were extracted and analyzed within holdtime.

LED ADDED I

LAB ORDER No.:

C040331

Page 1 of 10

REPORT of ANALYTICAL RESULTS

Report Date: Received Date: 30 MAY 2002 10 APR 2002

Client:

City Of Oakland

250 Frank Ogawa Plaza Suite 5301

Oakland, CA 94612

Project: MUNI SERVICE CENTER

Sampled by:

J SPEIR

<u>Lab Number</u>	Sample Identification	Matrix	Sampled Date/Time
C040331-1 C040331-2 C040331-3 C040331-4 C040331-5 C040331-6 C040331-7 C040331-8 C040331-9	MW-7 MW-8 MW-10 MW-12 MW-13 MW-14 MW-1 MW-5 MW-17	AQUEOUS	08 APR 02 10:15 08 APR 02 12:37 08 APR 02 11:05 08 APR 02 13:15 08 APR 02 16:10 09 APR 02 11:10 09 APR 02 14:15 09 APR 02 14:55 09 APR 02 10:30

William Svoboda Project Manager Christine Horn Laboratory Director

CALTEST authorizes this report to be reproduced only in its entirety.
Results are specific to the sample as submitted and only to the parameters reported.
All analyses performed by EPA Methods or Standard Methods (SM) 18th Ed. except where noted.
Results of 'ND' mean not detected at or above the listed Reporting Limit (R.L.).
'D.F.' means Dilution Factor and has been used to adjust the listed Reporting Limit (R.L.).
Acceptance Criteria for all Surrogate recoveries are defined in the QC Spike Data Reports.
Caltest collects samples in compliance with CFR 40, EPA Methods, Cal. Title 22, and Standard Methods.

C040331

Page 2 of 10

ANALYTE	RESULT	R.L	_UNITS	<u>D.F.</u>	ANALYZED	QC_BATCH_	NOTES
IAD NUMBED, COAC221 1							

LAB NUMBER: C040331-1 SAMPLE ID: MW-7

SAMPLED: 08 APR 02 10:15

ORGANIC ANALYTICAL RESULTS

METHOD: EPA 8015M

METHOD. LFA GOISH							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS				. 1	04.16.02	T020101TPH	1,2
Diesel Fuel	ND	50 <i>.</i>	ug/L				
TPH-Extractable, quantitated as diesel	80.	50.	ug/L				
Motor Oil	МĐ	200.	ug/L				
TPH-Extractable, quantitated as Motor Oil	ND	200.	ug/L				
Surrogate o-Terphenyl	96.		%				
· · · · · · · · · · · · · · · · · · ·							

LAB NUMBER: C040331-1 (continued)

SAMPLE ID: MW-7

SAMPLED: 08 APR 02 10:15

METHOD: EPA 8015/8020A

AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1	04.18.02	V020029G9A	3
Total Petroleum Hydrocarbons - Gasoline	ND	50.	ug/L				
TPH-Purgeable, quantitated as gasoline	ND	50.	ug/L				
Benzene Toluene	ND 0.5	0.5 0.5	ug/L				
Ethylbenzene	0.6	0.5	ug/L ug/L				•
Xylenes (Total) Methyl tert-Butyl Ether (MTBE)	ND ND	0.5 5.	ug/L ug/L	•			
Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	83. 86.		% %				

1) Sample Preparation on 04-12-02 using EPA 3510

²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

C040331

3 of 10 Page

ORGANIC ANALYTICAL RESULTS

<u>ANALYTE</u>	RESULT	R.L.	UNITS	<u>D.F.</u>	ANALYZED	QC BATCH	NOTES
LAB NUMBER: C040331-2 SAMPLE ID: MW-8 SAMPLED: 08 APR 02 12:37 METHOD: EPA 8015M					. •		
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS Diesel Fuel TPH-Extractable, quantitated as diesel Motor Oil TPH-Extractable, quantitated as	ND 440 ND 800	50. 50. 200. 200.	ug/L ug/L ug/L ug/L	1	04.16.02	T020101TPH	1.2.3
Motor Oil Surrogate o-Terphenyl	102.	200.	% 				
LAB NUMBER: C040331-2 (continued) SAMPLE ID: MW-8 SAMPLED: 08 APR 02 12:37 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons -	ND	50.	ug/L	1	04.18.02	V020029G9A	4
Gasoline TPH-Purgeable, quantitated as gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND ND ND ND ND ND 88	50. 0.5 0.5 0.5 0.5	ug/L ug/L ug/L ug/L ug/L ug/L				. ·

Sample Preparation on 04-12-02 using EPA 3510
 An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.
 An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.
 Sample Preparation on 04-18-02 using EPA 5030

C040331

Page 4 of 10

ORGANIC ANALYTICAL RESULTS

ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	ANALYZED	QC BATCH	NOTES
LAB NUMBER: C040331-3 SAMPLE ID: MW-10 SAMPLED: 08 APR 02 11:05 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM				1	04.16.02	T020101TPH	1,2,3
HYDROCARBONS Diesel Fuel TPH-Extractable, quantitated as diesel	ND 220.	50. 50.	ug/L ug/L				
Motor Oil TPH-Extractable, quantitated as Motor Oil	ND 300	200. 200.	ug/L ug/L				
Surrogate o-Terphenyl	101.		%				
LAB NUMBER: C040331-3 (continued) SAMPLE ID: MW-10 SAMPLED: 08 APR 02 11:05 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1	04.18.02	V020029G9A	4
Total Petroleum Hydrocarbons - Gasoline	ND	50.	ug/L	•			
TPH-Purgeable, quantitated as gasoline	ND	50.	ug/L		~		
Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	1.1 ND ND ND ND 91. 89.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %				

1) Sample Preparation on 04-12-02 using EPA 3510

 ²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.
 3) An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

been calculated based on motor oil standards.

C040331

Page 5 of 10

ORGANIC ANALYTICAL RESULTS

ANALYTE	RESULT	<u>R.L.</u>	UNITS	<u>D.F.</u>	<u>ANALYZED</u>	QC BATCH	<u>NOTES</u>
LAB NUMBER: C040331-4 SAMPLE ID: MW-12 SAMPLED: 08 APR 02 13:15 METHOD: EPA 8015M				·			
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS	·			1	04.16.02	T020101TPH	1,2,3
Diesel Fuel TPH-Extractable, quantitated as diesel	ND 500 ₋	50. 50.	ug/L ug/L		•		·
Motor Oil TPH-Extractable, quantitated as Motor Oil	ND 500.	200. 200.	ug/L ug/L				
Surrogate o-Terphenyl	91.		*				-
LAB NUMBER: C040331-4 (continued) SAMPLE ID: MW-12 SAMPLED: 08 APR 02 13:15 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1	04.18.02	V020029G9A	4,5
Total Petroleum Hydrocarbons - Gasoline	ND	50.	ug/L				
TPH-Purgeable, quantitated as gasoline	180.	50.	ug/L				
Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND 0.7 ND ND 100. 91.	0.5 0.5 0.5 1.5 5.	ug/L ug/L ug/L ug/L ug/L %				

¹⁾ Sample Preparation on 04-12-02 using EPA 3510

²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been

calculated based on Diesel #2 standards.

3) An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

4) Sample Preparation on 04-18-02 using EPA 5030

⁵⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on gasoline standards.

ORGANIC ANALYTICAL RESULTS

LAB ORDER No.:

C040331

Page 6 of 10

ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	ANALYZED	QC BATCH	NOTES
LAB NUMBER: C040331-5 SAMPLE ID: MW-13 SAMPLED: 08 APR 02 16:10 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS				1	04.16.02	T020101TPH	1,2.3
Diesel Fuel TPH-Extractable, quantitated as diesel	ND 440.	50. 50.	ug/L ug/L				
Motor Oil TPH-Extractable, quantitated as Motor Oil	N D 900.	200. 200.	ug/L ug/L		÷		
Surrogate o-TerphenyT	91.		%				
LAB NUMBER: C040331-5 (continued) SAMPLE ID: MW-13 SAMPLED: 08 APR 02 16:10 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1	04.18.02	V020029G9A	4
Total Petroleum Hydrocarbons - Gasoline	ND	50.	ug/L				
TPH-Purgeable, quantitated as gasoline	ND	50.	ug/L				
Benzene Toluene Ethylbenzene Xylenes (Total)	ND ND ND ND	0.5 0.5 0.5 0.5	ug/L ug/L ug/L ug/L		·		

²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

³⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.
4) Sample Preparation on 04-18-02 using EPA 5030

C040331

Page 7 of 10

ORGANIC	ANALY	TICAL	RESUL	TS
---------	-------	-------	-------	----

ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	<u>ANALYZED</u>	QC BATCH	<u>NOTES</u>
LAB NUMBER: C040331-6 SAMPLE ID: MW-14 SAMPLED: 09 APR 02 11:10 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS Diese? Fuel TPH-Extractable, quantitated as diesel	ND 870.	50. 50.	ug/L ug/L	1	04.17.02	T020101TPH	1,2,3
Motor Oil TPH-Extractable, quantitated as Motor Oil	ND 1100.	200. 200.	ug/L ug/L				
Surrogate o-Terphenyl	92.		% 			<u></u>	
LAB NUMBER: C040331-6 (continued) SAMPLE ID: MW-14 SAMPLED: 09 APR 02 11:10 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons -	NÐ	50.	ug/L	1	04.18.02	V020029G9A	4,5
Gasoline TPH-Purgeable, quantitated as gasoline	250.	50.	ug/L	•			
Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND ND ND ND 99.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %				

1) Sample Preparation on 04-12-02 using EPA 3510

²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

³⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

⁵⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on gasoline standards.

C040331

Page 8 of 10

ORGANIC ANALYTICAL RESULTS	ŝ
----------------------------	---

ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	<u>analyzed</u>	QC_BATCH	NOTES
LAB NUMBER: C040331-7 SAMPLE ID: MW-1 SAMPLED: 09 APR 02 14:15 METHOD: EPA 8015M	•						
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS Diesel Fuel	ND	50.	ug/L	1	04.17.02	T020101TPH	1,2,3
TPH-Extractable, quantitated as diesel	1100.	50.	ug/L		•		
Motor Oil TPH-Extractable, quantitated as Motor Oil	ND 1000.	200. 200.	ug/L ug/L				
Surrogate o-Terphenyl	99.		%				
LAB NUMBER: C040331-7 (continued) SAMPLE ID: MW-1 SAMPLED: 09 APR 02 14:15 METHOD: EPA 8015/8020A		-					
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS							4,5,6
Total Petroleum Hydrocarbons - Gasoline	ND	50.	ug/L	10	04.19.02	V020030G9A	
TPH-Purgeable, quantitated as gasoline	2000.	500.	ug/L	10	04.19.02	V020030G9A	
Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	320. 5.38 3.08. 6.24 ND 99. 98.	5. 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %	10 1 1 1 1 10 10	04.19.02 04.18.02 04.18.02 04.18.02 04.18.02 04.19.02 04.19.02	V020030G9A V020029G9A V020029G9A V020029G9A V020029G9A V020030G9A V020030G9A	. • •

1) Sample Preparation on 04-12-02 using EPA 3510

²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

³⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

⁵⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on gasoline standards.

⁶⁾ Sample diluted to bring concentration of target analyte(s) within the working range of the instrument, resulting in increased reporting limits.

C040331

Page 9 of 10

ORGANIC ANALYTICAL RESULTS

ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	ANALYZED	QC BATCH	NOTES
LAB NUMBER: C040331-8 SAMPLE ID: MW-5 SAMPLED: 09 APR 02 14:55 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS Diesel Fuel TPH-Extractable, quantitated as diesel Motor Oil TPH-Extractable, quantitated as Motor Oil Surrogate o-Terphenyl	ND 480 ND 260	50. 50. 200. 200.	ug/L ug/L ug/L ug/L	1	04.17.02	T020101TPH	1,2,3
LAB NUMBER: C040331-8 (continued) SAMPLE ID: MW-5 SAMPLED: 09 APR 02 14:55 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline TPH-Purgeable, quantitated as gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND 8000. 110. 5.95 650. 53.9 166. 99.	50. 1000. 10. 0.5 10. 0.5 5.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	20 20 20 1 20 1 1 20 20	04.19.02 04.19.02 04.19.02 04.18.02 04.19.02 04.18.02 04.19.02 04.19.02	V020030G9A V020030G9A V020030G9A V020029G9A V020030G9A V020029G9A V020030G9A V020030G9A	4.5,6

1) Sample Preparation on 04-12-02 using EPA 3510

An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

³⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

⁵⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on gasoline standards.

⁶⁾ Sample diluted to bring concentration of target analyte(s) within the working range of the instrument, resulting in increased reporting limits.

ORGANIC ANALYTICAL RESULTS

LAB ORDER No.:

C040331 Page 10 of 10

ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	<u>ANALYZED</u>	QC BATCH	NOTES
LAB NUMBER: C040331-9 SAMPLE ID: MW-17 SAMPLED: 09 APR 02 10:30 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM				1	04.17.02	T020101TPH	1,2,3
HYDROCARBONS Diesel Fuel	ND						
TPH-Extractable, quantitated as diesel	ND 590.	50. 50.	ug/L ug/L				
Motor Oil	ND	200.	ug/L				
TPH-Extractable, quantitated as	800.	200.	ug/L				
Motor Oil Surrogate o-Terphenyl	96.		%				
——————————————————————————————————————	50.						
LAB NUMBER: C040331-9 (continued) SAMPLE ID: MW-17 SAMPLED: 09 APR 02 10:30 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1	04.18.02	V020029G9A	4,5
Total Petroleum Hydrocarbons -	ND	50.	ug/L				
Gasoline			- -				
TPH-Purgeable, quantitated as gasoline	60.	50.	ug/L				
Benzene	ND	0.5	ug/L				
Toluene	ND	0.5	ug/L		•		
Ethylbenzene	1.6	0.5	ug/L	•			
Xylenes (Total)	ND	0.5	ug/L				
Methyl tert-Butyl Ether (MTBE)	ND .	5.	ug/L				
Surrogate 4-Bromofluorobenzene [FID]	94.		%				
Surrogate 4-Bromofluorobenzene [PID]	91.		%				

²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

³⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.
4) Sample Preparation on 04-18-02 using EPA 5030

⁵⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on gasoline standards.

NELAP Certification 01103CA

ELAP Certification 1664

LAB ORDER No .:

C040331

1 of

Report Date: Received Date: 23 MAY 2002 10 APR 2002

Client:

City Of Oakland

250 Frank Ogawa Plaza Suite 5301

SUPPLEMENTAL QUALITY CONTROL (QC) DATA REPORT

Oakland, CA 94612

Project: MUNI SERVICE CENTER

Matrix Method QC Batch ID **AQUEOUS** 8015M T020101TPH **AQUEOUS** 8015/8020A V020029G9A **AQUEOUS** 8015/8020A V020030G9A

William Svoboda Project Manager

Christine Horn Laboratory Director

CALTEST authorizes this report to be reproduced only in its entirety.

Results are specific to the sample as submitted and only to the parameters reported.

All analyses performed by EPA Methods or Standard Methods (SM) 18th Ed. except where noted.

Results of 'ND' mean not detected at or above the listed Reporting Limit (R.L.).

Analyte Spike Amounts reported as 'NS' mean not spiked and will not have recoveries reported.

'RPD' means Relative Percent Difference and RPD Acceptance Criteria is stated as a maximum.

'NC' means not calculated for RPD or Spike Recoveries.

NELAP Certification 01103CA

METHOD BLANK ANALYTICAL RESULTS

ELAP Certification 1664

LAB ORDER No.:

Page	2	٥T	3
------	---	----	---

ANALYTE	RESULT	<u>R.L.</u>	UNITS	ANALYZED	<u>NOTES</u>
QC BATCH: TOZO101TPH	•				
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS Diesel Fuel TPH-Extractable, quantitated as diesel Motor-Oil	ND ND ND ND	50. 50. 200. 200.	ug/L ug/L ug/L ug/L	04.16.02	
TPH-Extractable, quantitated as Motor Uil Surrogate o-Terphenyl	94.		8		
QC BATCH: V020029G9A					
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				04.18.02	
Total Petroleum Mydrocarbons - Gasoline TPH-Purgeable, quantitated as gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromoflucrobenzene [FID] Surrogate 4-Bromoflucrobenzene [PID]	ND ND ND ND ND ND 84.	50 50 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L ug/L		·
QC BATCH: V020030G9A		. •		64 10 00	
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline TPH-Purgeable, quantitated as gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND ND ND ND ND ND 87 89	50. 50. 0.5 0.5 0.5 5.5	ug/L ug/L ug/L ug/L ug/L ug/L	04.19.02	

NELAP Certification 01103CA

ELAP Certification 1664

LAB ORDER No.:

C040331 3 of

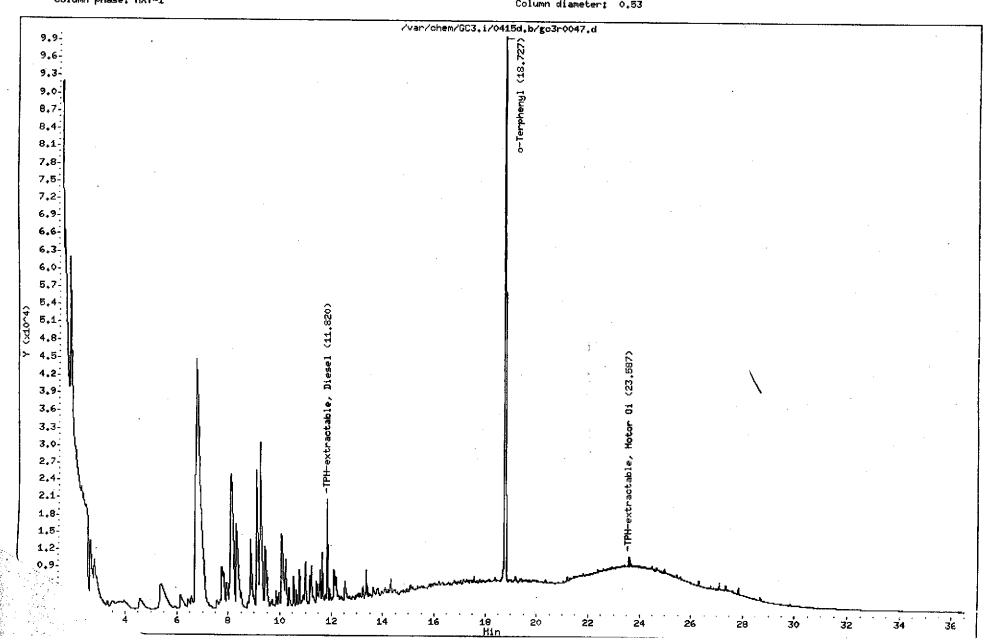
LABORATORY CONTROL SAMPLE ANALYTICAL RESULTS

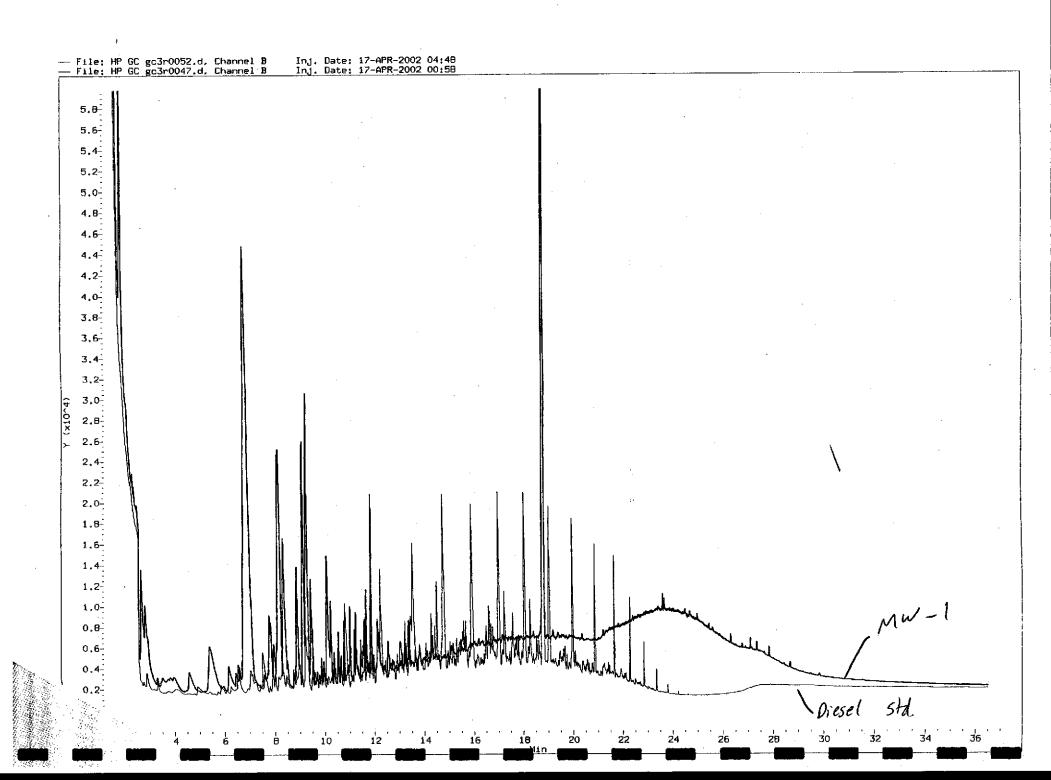
Page

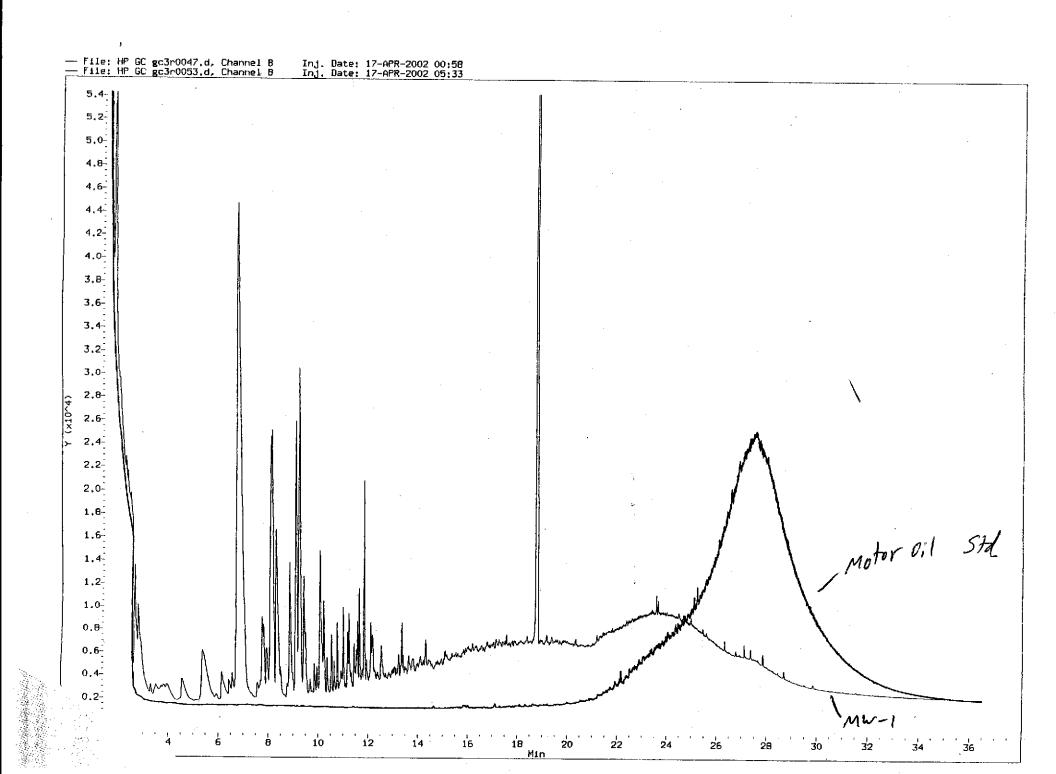
ANALYTE	SPIKE AMOUNT	SPIKE\DUP RESULT	SPK\DUP 	ACCEPTANCE KREC \RPD	REL*	ANALYZED	NOTES
QC BATCH: T020101TPH							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS Diesel Füel Surrogate o-Terphenyl	1000 100	750.\ 92.1\	75\ 92\	36-102\32 50-150\		04.16.02	
QC BATCH: V020029G9A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	550. 6.4 38.6 9.2 45.2 10.0 10.0	539.\560. 6.45\6.91 38.4\40.4 10.5\10.6 47.8\48.9 10.1\11.1 9.83\9.96	98\102 101\108 99\105 114\115 103\106 101\111 98\100	50-130\ 50-130\ 50-130\ 50-130\ 49-129\ 50-130\ 50-130\	3.8 6.9 5.1 2.3	04.18.02	
QC BATCH: VO20030G9A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	550. 6,4 38.6 9.2 46.2 10.0	536.\580. 6.52\7.17 38.8\41.8 10.4\11.0 47.5\50.7 8.19\8.99 9.80\10.4	97\105 102\112 101\108 113\120 103\110 82\90 98\104	50-130\ 50-130\ 50-130\ 49-129\ 50-130\	7.9 9.5 7.4 5.6 6.5		

Bata File: /var/chem/GC3.i/0415d.b/gc3r0047.d

Date : 17-APR-2002 00:58


Client ID:


Sample Info: C040331-7;;1X Volume Injected (uL): 1000.0

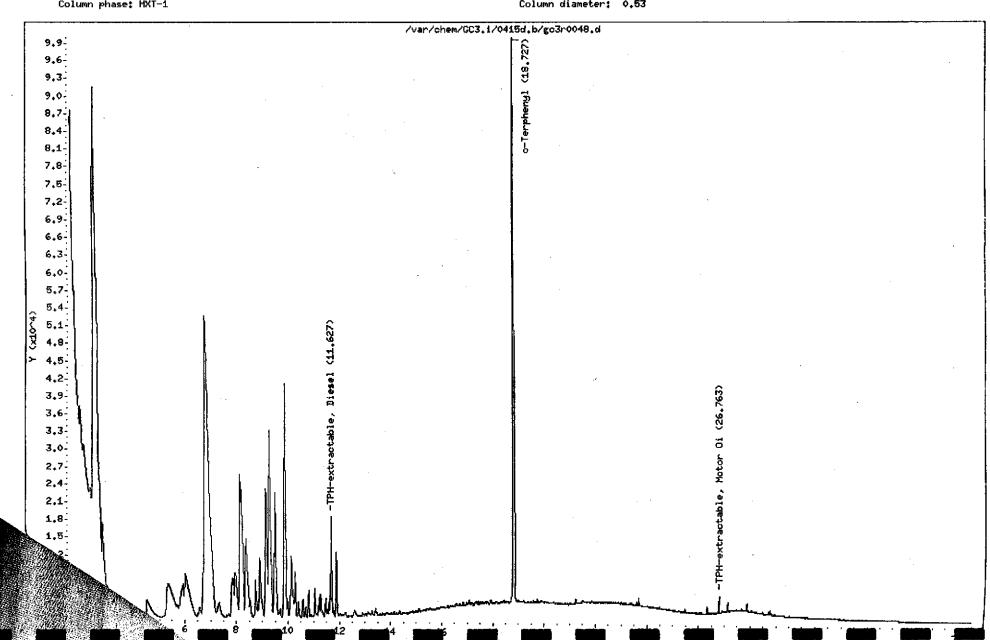

Column phase: HXT~1

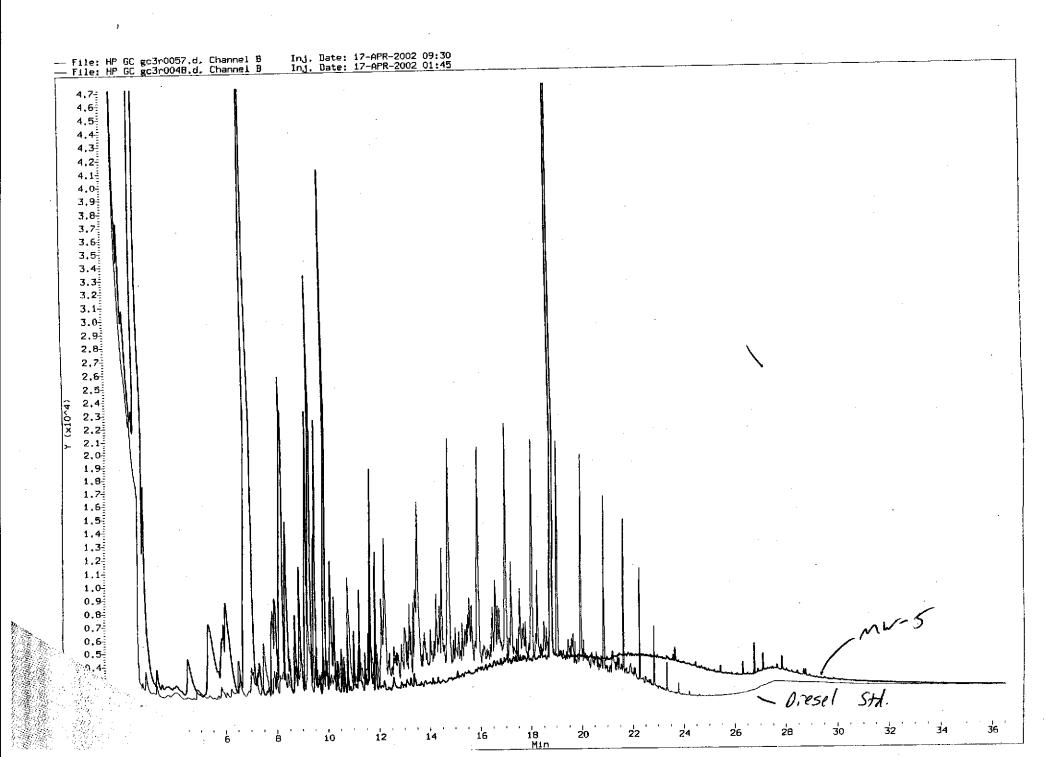
Instrument: GC3,i

Operator: MDT

Data File: /var/chem/GC3.i/0415d.b/gc3r0048.d

Date : 17-APR-2002 01:45

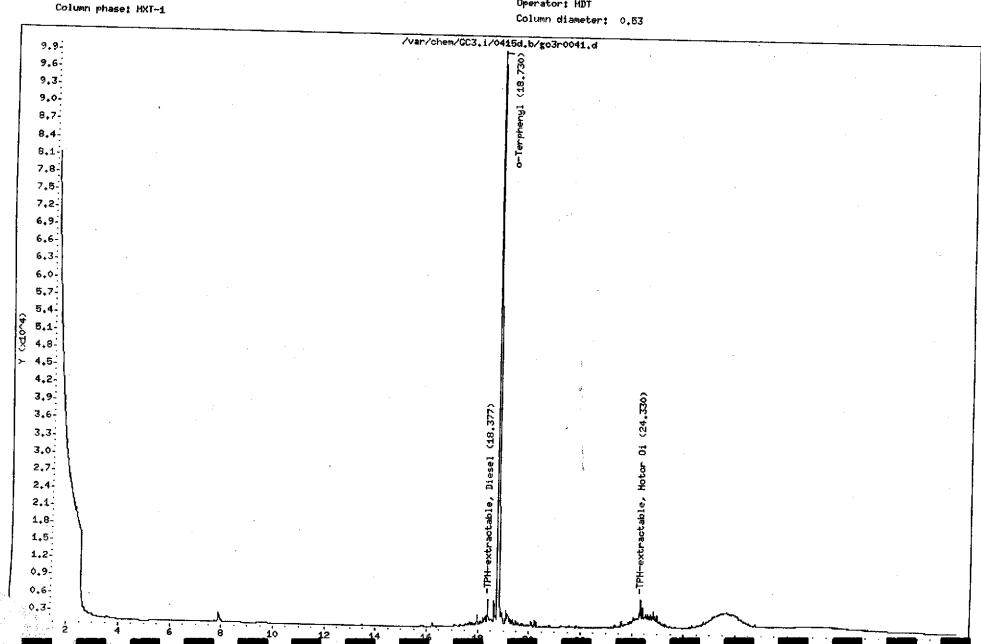

Client ID:


Sample Info: C040331-8;;1X Volume Injected (uL): 1000.0

Column phase: MXT-1

Instrument: GC3.i

Operator: MDT



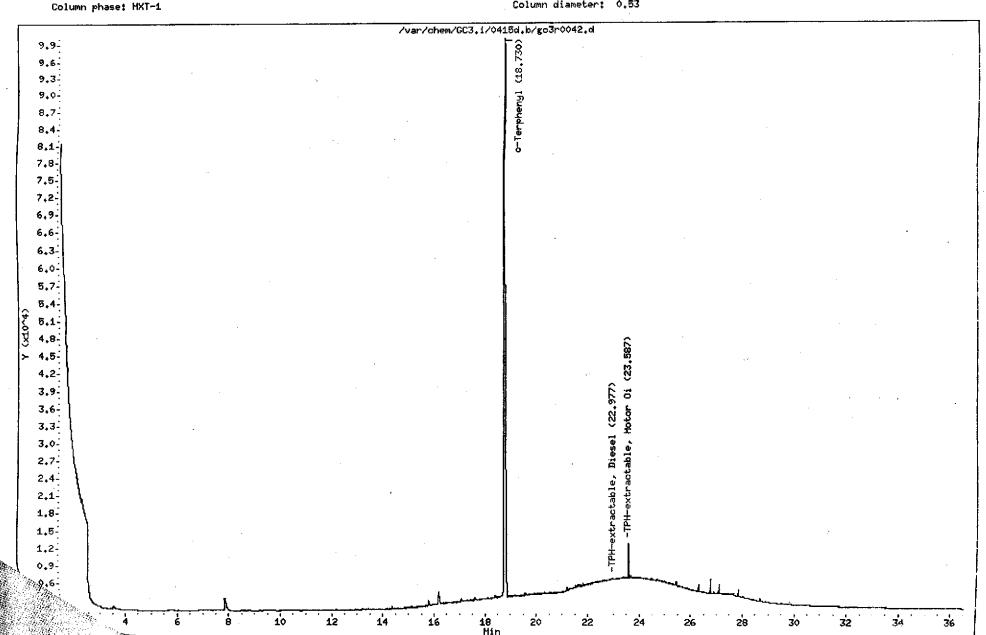
Data File: /var/chem/GC3.i/0415d.b/go3r0041.d Date : 16-APR-2002 20:23 Client ID: Sample Info: C040331-1;;1X Volume Injected (uL): 1000.0

Instrument: GC3.i

Operator: MDT

Page 3

Data File: /var/chem/GC3.i/0415d.b/gc3r0042.d


Date : 16-APR-2002 21:08

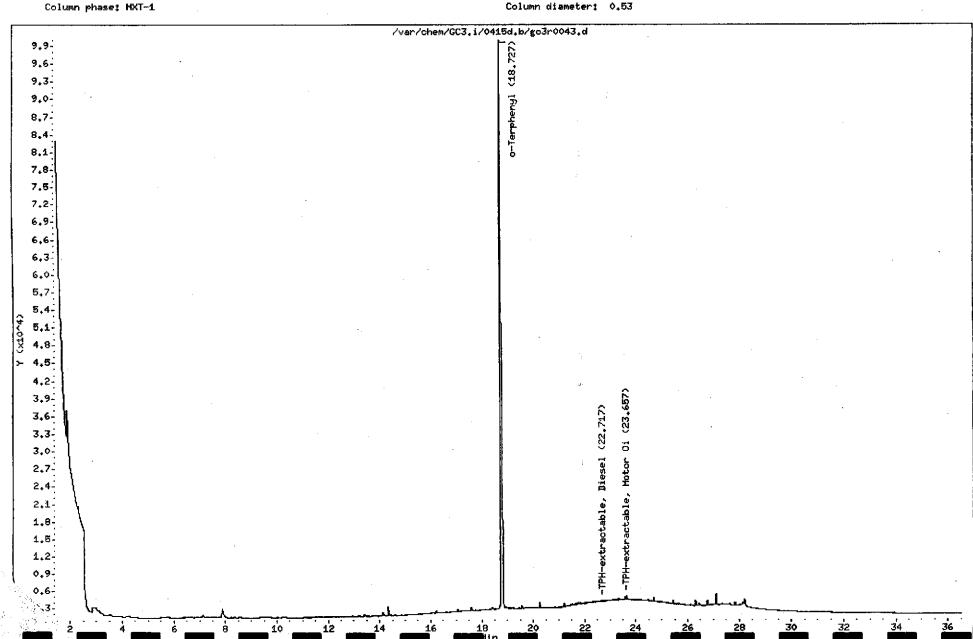
Client ID:

Sample Info: C040331-2;;1X Volume Injected (uL): 1000.0

Instrument: GC3.i

Operator: MDT

Data File: /var/chem/GC3.i/0415d.b/gc3r0043.d


Date : 16-APR-2002 21:54

Client ID:

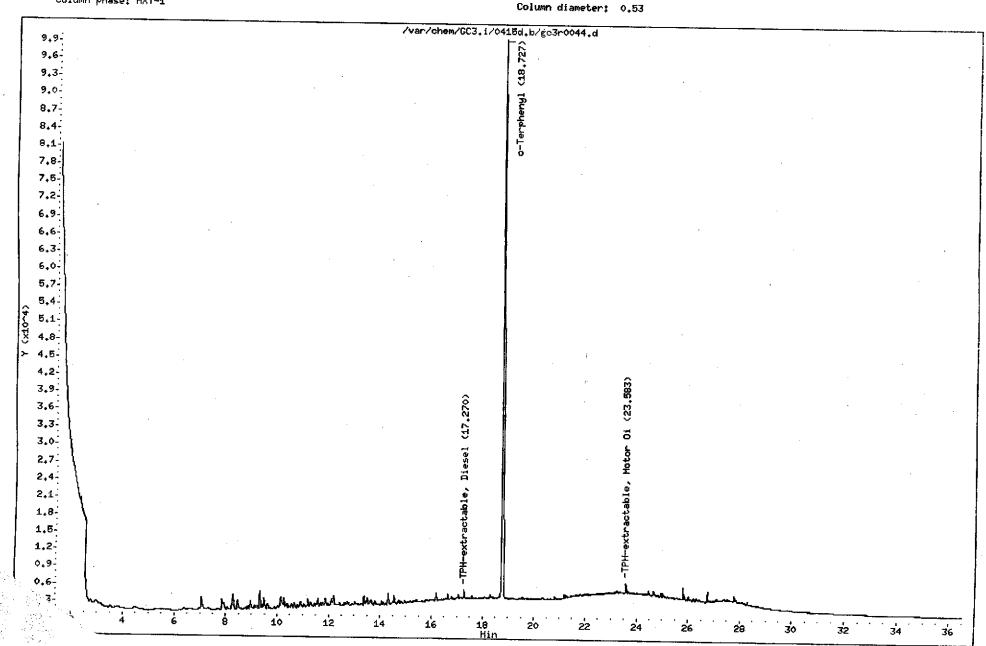
Sample Info: C040331-3;;1X Volume Injected (uL): 1000.0

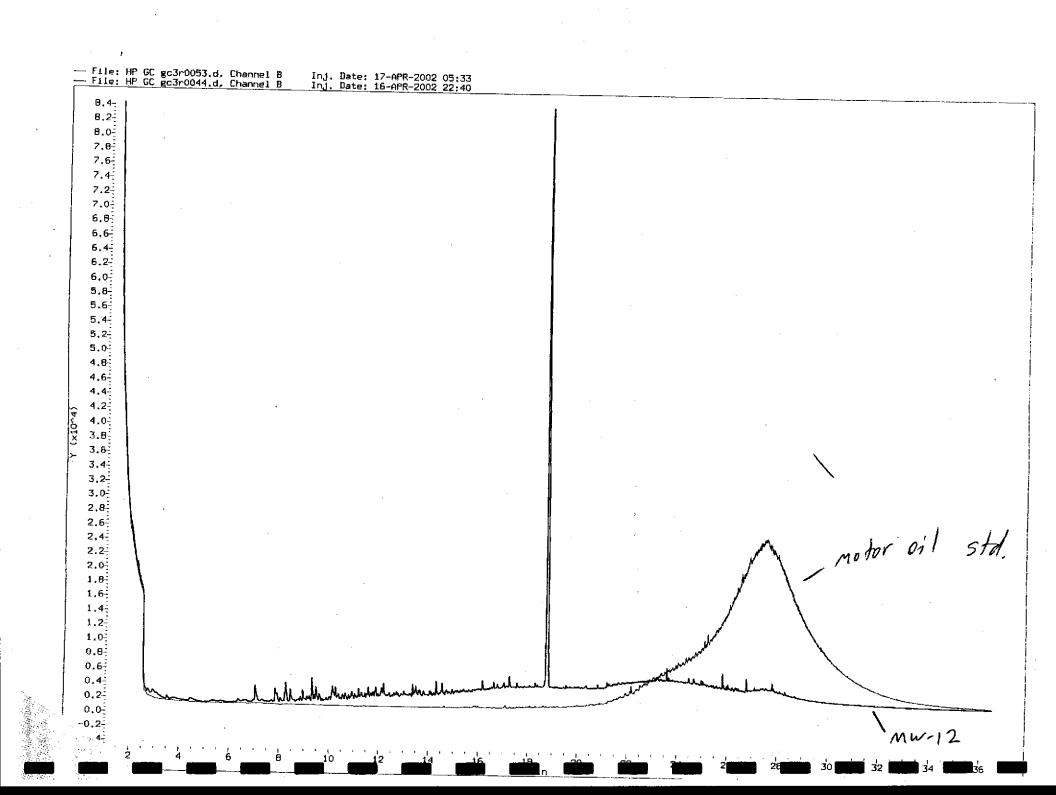
Instrument: GC3.i

Operator: MDT

Data File: /var/ohem/GC3.i/0415d.b/go3r0044.d

Date : 16-APR-2002 22:40


Client ID:


Sample Info: C040331-4;;1X Volume Injected (uL): 1000.0

Column phase: MXT-1

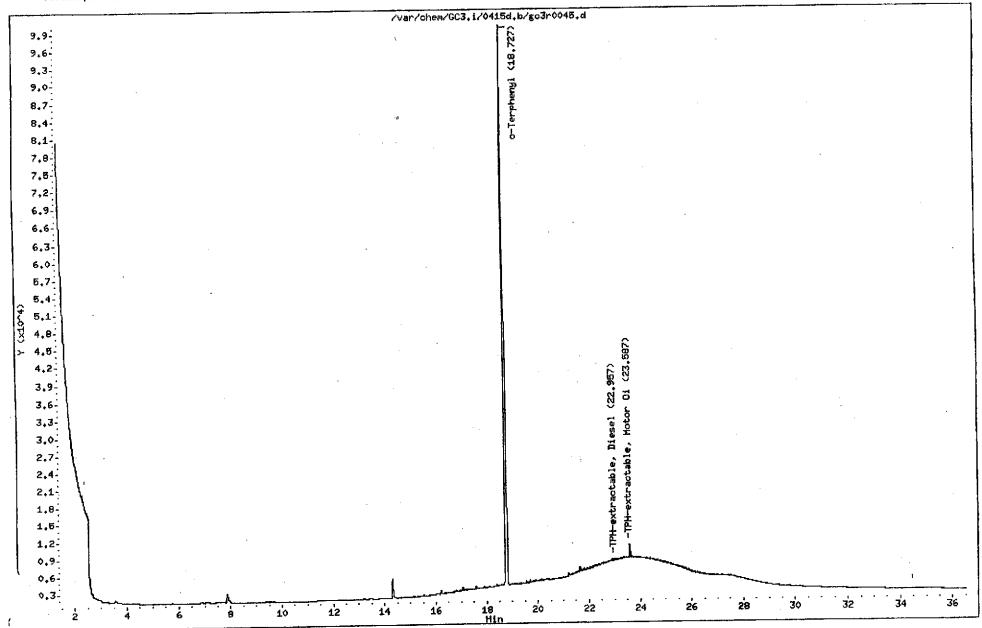
Instrument: GC3.i

Operator: MDT

Data File: /var/ohem/GC3.i/0418d.b/gc3r0048.d

Date : 16-APR-2002 23:26

Client ID:


Sample Info: C040331-5;;1X

Volume Injected (uL): 1000.0

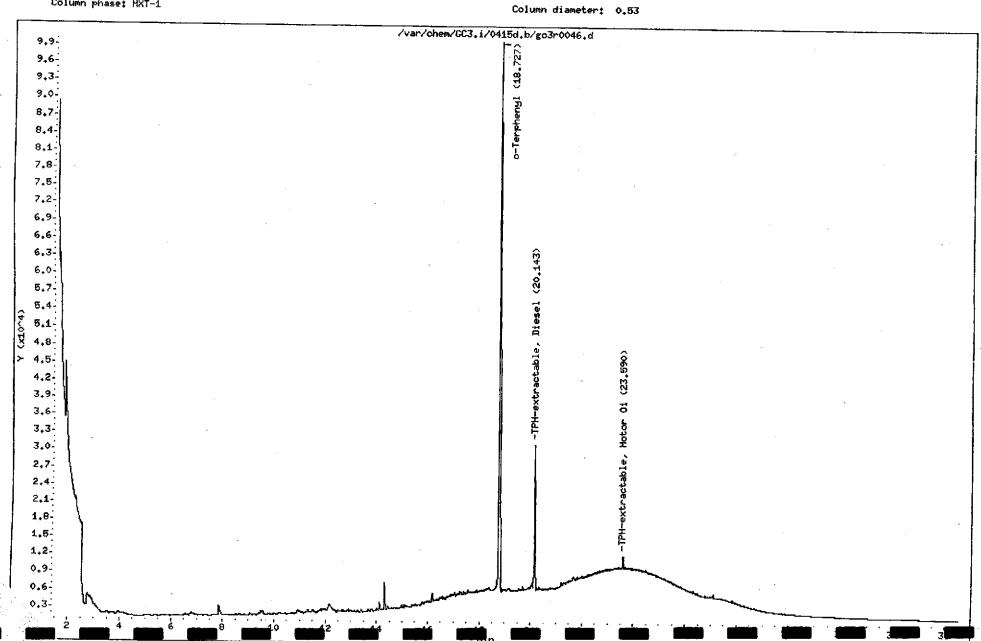
Column phase: MXT-1

Instrument: GC3.i

Operator: MDT

Data File: /var/chem/GC3.i/0415d.b/gc3r0046.d

Date : 17-APR-2002 00:12


Client ID:

Sample Info: C040331-6;;1X Volume Injected (uL): 1000.0

Column phase: MXT-1

Instrument: GC3.i

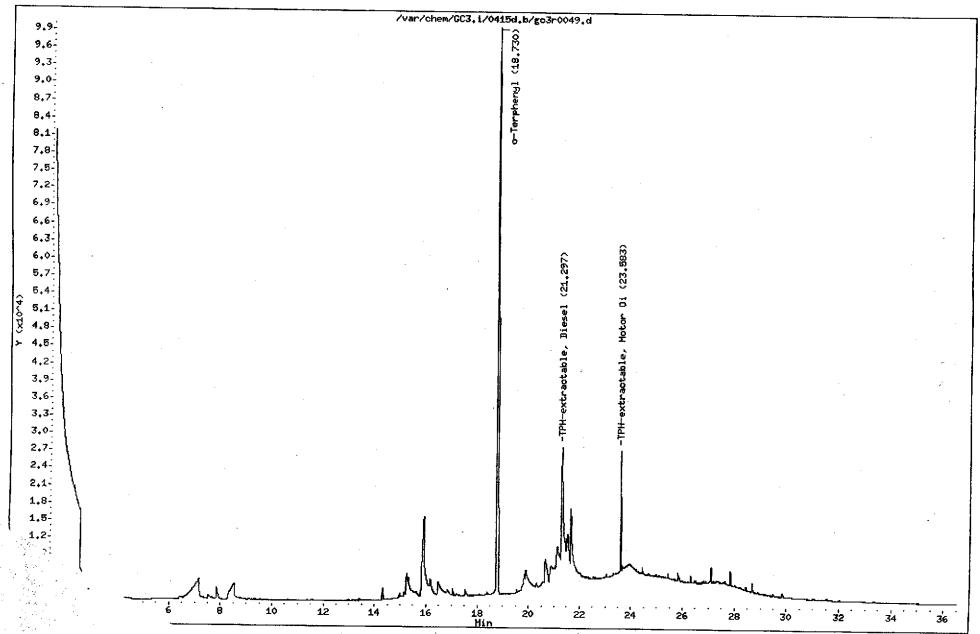
Operator: MDT

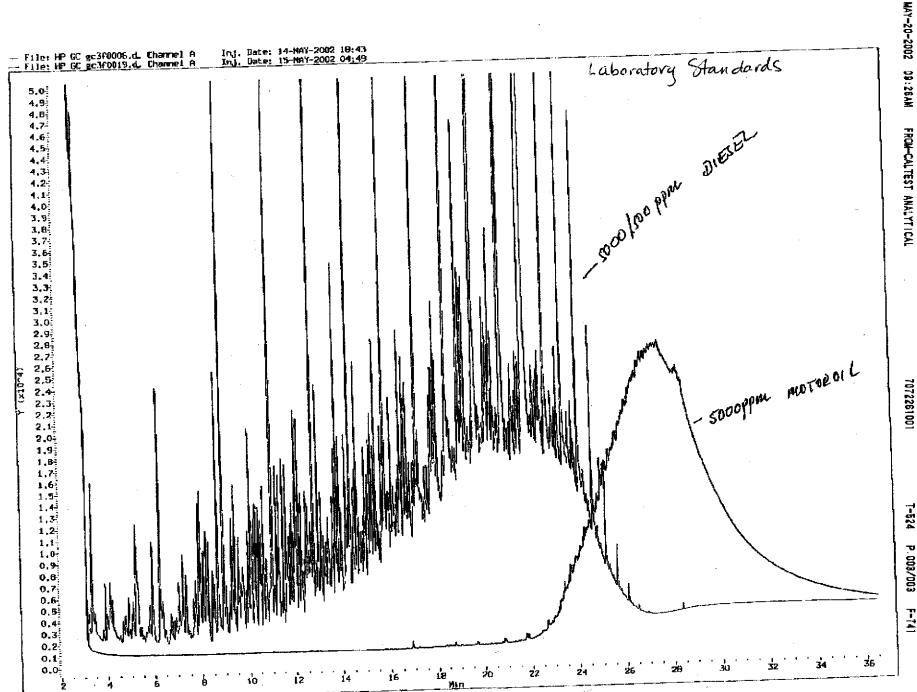
MW-17

Page 3

Data File: /var/ohem/GC3.1/0415d.b/go3r0049.d

Date : 17-APR-2002 02:30


Client ID:


Sample Info: CO40331-9;:1X Volume Injected (uL): 1000.0

Column phase: MXT-1

Instrument: GC3.i

Operator: MDT

7072261001

09:26AM

T-524 P. 003/003

F

i			140	-4				APA, CA 94558	• (707) 258-400	00 • Fax	(707) 2	26-10	01 •	www.c P A G	altest E	lab.co	ota _OF	3	LAB ORDER #:	
ļ			ılte			PLE CH CUSTO		PROJECT #1PRO	JECT NAME	11/26		رسوم						.0.#		
ANALYTICAL LABORATORY OF CUSTO									SCRE	1/6,6	<u>. </u>	<u> </u>	ANALYSES REQUESTED							
		75 0	F C	JAK.	(BR	0		REPORT TO:		-						18 /	7	//	TURN-AROU TIME	ND .
5,	DRES 25C	FRAN	IK O	GAUH SAUH	CITY:	92A SU	NE.	STATE: 530/, OA/	KANO C	12, 9	461	Z -					//	//	☐ STANDARD	7ĒV. 28
	_	ADDRESS:								····				\b2				//	DUE DATE:	-
-238 -238 -238	HONE	t. 567-01	FA:	X PHONE	:	SAMPLE	ER (PRINT	SIGN NAMES	5/1			}			¥7/	//	//	/ /	/ BOL BAIL.	RECEIP
	ALTEST	DATE	TIME	MATRIV	CONTAIN	ER YPE PRESERVATI	VE.	SAMPLE IDENTIF	ICATION SITE	CLIE LA	NT C	MP. of RAB			4			4	REMARKS	PY AS
-							. 1111			111	(A	10		X				17	EHCH	. ₽
-					AMBO		- 1	101-7		11	- Ek	916	X					5	CALL	K-GLE
7072261001		46/02	10 13	MEU	cur	1761														. L
7072		delice		110	AMBE	a rene		براد <u>ا</u> البکاریا		21	81	eAB.	,	X				7	CMC11	ягроя
		Т ,	Į.		LITER		Mo				a a	ME.	X					3	EACH	FINAL
		11862	1231	1120	CEA	HEC	_///0	0.6		- -`		7.7.2								MEAN
		delse	11.00		MABE	e none	- 100	14/-10		7	GE.	NB		X				Z	EACH	, TO ACC
,					UOA		178	W-10			- 61	0115	X					<u>گ</u>	ENCH	مون آ
3		710101	1160	1120	600	7,,,,,														- See -
AMALY		<u> </u>	 	-	-												\cdot		• .	YELLOY
ls:	_					!		L C I'll	and forth on the	roverse i	of this de	ocume	ı— ant.			-				≿
H	Ву	submittal c	elqmaa i	(s), clie	nt agree	to abide by	he term	ns and Conditions	D HV	1649190	RELINGL	JISHED	BÝ			DAT	E/TIME 2		RECEIVED BY	- ATOP
E.	人	7 REL	INOUTSHE	D BY		DATETIME	25	Fw. P. A	-0 -	Fres.		Q(9/10	10	2	15		TABOR -
_ \ ≱	eg	200			- 															WHITE
03:05PM					DIO.	AA8V	VOA_	pH7 Y#N	TEMP: Y-10	SEALEI	o:{}7/N	INT	ACT:	7/N		ATRI	X: ÀQ	= Aqueot	us Nondrinking Water, Digested I	Metals;
8	<u> </u>	mples: WC_	MICR		B10		COMME								l e	≓ =1 m	w R.L.s.	Aqueous	s Nondrinking Water, Digested Ma = Soll, Saudge, Solid; FP = Free Po	etels;
APR-05-2002		: BIO :: AA	_WC	AA _VOA				•			-				_ 1 0	ONT	RINER	TYPES	: AL = Amber Liter; AHL = 500 m	r.l
	W-	L: HP			_VOA										-1 k	ın (Plas	stic); SJ	= Soll Ja	o); QT=Quari (Plastic); HG = Half r, 84 = 4 oz. BACT; 87 = Brass Te	npe:
Ā	841 2.	W/HNO ₃	H ₂ SO ₄		laOH	_									۱ ا	OA = 4	10 mL.V	DA; OTC	= Other Type Container	
	9 W/HNO ₂ 15504 naon											M F								

_					1005 N1 VD	E1Υ R∩AΓ) • NAPA, CA 94558 • (707) 258-400	0 • Fax (70	7) 226-10	• 100	www.ca	ltestlab.	com	7	LAB ORDER #:
	L	Ca	ılte	st	SAMPL	E CHA	IN		 					.0.#	<u> </u>
25	4	ANALYTI	CAL LABO	RATORY	OF CU	JSTOD	Y PROJECT M/PROJECT NAME	NCE		1/	1618	AN	ALYSE	SREQ	UESTED
	IENT	// // //	V C	WAR.	(AN))	REPORT TO:						///	7/	TURN-AROUND TIME &
100/100	DRE	98: D <i>FRAN</i>	VK O	SANK	CITY: A PLAZ	A SUI.	STATE: ZIP: TE 5301, CALLIANI C	1, 940	12					//	☐ STANDARD STANDARD STANDARD
<u>.</u>	LUNG	ADDRESS:						<i>q</i>	<u>.</u>		- \b ¹ /		//,	//	DUE DATE: &
		1. 201-01		X PHONE		SAMPLER	(PRINT & SIGN NAME):		COMP.				//,		
•	ALTES				CONTAINER		SAMPLE IDENTIFICATION SITE	CLIENT LAB	or GRAB		<u> </u>				REMARKS
	ALIES	777		ا ، ا	AMOUNTITYPE	PRESERVATIVE	MW-12	41	ANB		X			12	ENCH S
,		1822	1315				MW12	1	DON'S	X				3	EACH S
7072251001		316f0Z	1313	176	1111	MCC	10111								
70722		1.1	11 17	11.7	AMPEL	AMAKE	Mal-13	7	BLAB					2	EACH
						1101	111117	4	en.	X				15	EACH
		1/8/62	1610	HEL	WA	HUL_	MW-13		XXXIII						
			<u> </u>		AMBER	directors.	With Ill	61	GINS					2	ENCH
		419/02	1110	Hd	MAGR	NAME	MW-14	1	SIR					3	MH
ਤੋਂ		1/4/02	MO	1110	WA WA	HEC	MW 17			1					
ANALYTICAL		_	-		-					1					
ST				<u> </u>				reverse of th	ale docum	 aent	<u> </u>				
A.TE	В	y submittal	oi sample	e(s), clie	nt agrees to	abide by the	e Terms and Conditions set torth on the	RE	LINQUISHE	D BY		7	ATE/TIME		RECEIVED BY
显显	T	RE	LINOUNS PI	ED BY	1	DATE/TIME	Fro. Relia.	Fig. F	2.0	Q.		1/20/	2/1	715	
и.	4	<i>/</i> /_				190	7		•		<u> </u>				
03:05PM	1		MIC		BIO	_8V	_VOAPH7_YN TEMP: U, D	SEALED:	NA IN	TACT	√ y n	TAM	RIX: AQ	= Aqมดอเ	s Nondrinking Water, Digested Metals
	_ [Samples: WC_ BD: BIO	WC	AA			OMMENTS				<u> </u>	−ן מעס	: Drinking V	Vater; SL	s Nondrinking Water, Digested Metels; = Soll, Shudge, Bolid; FP = Free Product
-2005	°≨⊦	CC: AA		_ VOA		:					•	l Amb	PT Pi	ot (Plastic	: AL = Amber Liler; AHL = 500 ml b); QT=Quarl (Plastic); HG = Helf Gal-
APR-05-2002	黑片	S1L: HP	PT	QT	_voa							—1 lond	insite): SJ	= Solf Ja	r; B4 = 4 oz. BACT; BT = Brasa Tube; = Other Type Container
- 4	8	WHNO ₃	H ₂ 50	<u>4</u>	NaOH								PR		MF

HCL

P.007/007

Appendix D

Well Sampling Protocol for Second Quarter 2002

		* ***						76 (15 Act 14) 1 (16 Act 14)		16 - 14 ± 17 ± 17 ± 17 ± 17 ± 17 ± 17 ± 17 ±	
										eria elemento. Composito de la composito de la	
				建筑等的地域的企业。							
		-	ini.				, and a second				
	H		3 1								
MW-1	X	a di di		X	Х	X	X				
MW-2	Х			Х	х	х	X		1	<u> </u>	
MW-5	x			X	X	х	×		†		
MW-6				X	X	Х	×		-		SPH present
MW-7	X			X	х	х	×		 		резон
MW-8	х			X	х	х	X				
MW-9	Х	х		х	х	X	х				
MW-10	х	X		Х	Х	×	X				
MW-11	Х	X		х	х	X	х				
MW-12	х	X		X	x	X	х	-			
MW-13	х	×		х	х	х	X				
MW-14	Х	×		X	х	х	х		1		
MW-15	Х	X		×	Х	x	х				
MW-16				Х	х	х	Х				SPH present
MW-17	Х	x		X	х	х	х	-			ргозоль
MW-18		<u></u>		Dev	/eloped to	monitor a	utility trench, i	not sample	ed to date	<u> </u> 	
TBW-1	X			1	Gauge	thickness	of separate-p	hase hydr	ocarbons	;	
TBW-3	х			+	Gauge	thickness	of separate-p	hase hydr	ocarbons	,	
TBW-4	Х	\Box	1	+	Gauge	thickness	of separate-p	hase hydr	ocarbons	3	
TBW-5	х				Gauge	thickness	of separate-p	hase hydr	ocarbons	\$	
TBW-6	X			†	Gauge	thickness	of separate-p	hase hydr	ocarbons	ŝ	
Trip Blank	X			NA	NA	Х					
		5 m				carattala					
	Sold of the	1 10 10 10		A PORTOR OF	建筑装置于200 0年度			2 Mark 17 Carlo		er er er e	

rior a pictor e como Comendo de espera de la como de la