

CITY OF OAKLAND

DALZIEL BUILDING • 250 FRANK H. OGAWA PLAZA, SUITE 5301 • OAKLAND, CALIFORNIA 94612-2034

Public Works Agency Environmental Services FAX (510) 238-7286 TDD (510) 238-7644

\$ 3978

August 9, 2001

AUG 7 4 200,

Mr. Barney Chan Alameda County Environmental Health Services 1131 Harbor Bay Parkway Alameda, California 94502-6577

Subject:

Second Quarter 2001 Monitoring Report -City of Oakland Municipal Service Center 7101 Edgewater Drive Oakland, California

Dear Mr. Chan:

Enclosed are copies of the *Second Quarter 2001 Monitoring Report* prepared by our consultant, Cambria Environmental Technology Inc. for the City of Oakland Municipal Service Center at 7101 Edgewater Drive.

Please call me at 238-6259, if you have any questions or require additional information.

Sincerely,

Joseph A. Cotton

Environmental Program Specialist

ce: Diane Heinz, Port of Oakland, 530 Water St., Oakland, CA 94604 Xinggang Tong, URS Corporation, 500 12th St., Suite 200, Oakland, CA 94607 Mr. Joseph Cotton City of Oakland, Public Works Agency Environmental Services Division 250 Frank H. Ogawa Plaza, Ste. 5301 Oakland, California 94612-2034 AUG 1 4 2001

Re: Second Quarter 2001 Monitoring Report

City of Oakland, Municipal Services Center 7101 Edgewater Drive Oakland, California Cambria Project #153-1653-012

Dear Mr. Cotton:

As required by the Alameda County Health Care Services Agency (ACHCSA), Cambria Environmental Technology, Inc. (Cambria) has prepared this second quarter 2001 groundwater monitoring report for the above-referenced site. Presented in the report are the second quarter 2001 activities, conclusions, recommendations and the anticipated third quarter 2001 activities.

Cambria understands that the City of Oakland will forward a copy of this report to the ACHCSA. If you have any questions or comments regarding this report, please call me at (510) 420-3303.

Sincerely,

Cambria Environmental Technology, Inc.

entidell

Attachments: Second Quarter 2001 Monitoring Report

Bob Clark-Riddell, P.E. Principal Engineer

i imerpai Engineer

San Ramon, CA Sonoma, CA

Oakland, CA

Portland, OR

Cambria Environmental Technology, Inc.

1144 65th Street Suite B Oakland, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

SECOND QUARTER 2001 MONITORING REPORT

City of Oakland, Municipal Services Center 7101 Edgewater Drive Oakland, California Cambria Project #153-1653-012

June 18, 2001

City of Oakland, Public Works Agency **Environmental Services Division** 250 Frank H. Ogawa Plaza, Ste. 5301 Oakland, California 94612-2034

Prepared by:

Cambria Environmental Technology, Inc. 1144 65th Street, Suite B Oakland, California 94608

No. C 049629

Thomas Howard Project Geologist Bob Clark-Riddell, P.E.

Principal Engineer

SECOND QUARTER 2001 MONITORING REPORT

City of Oakland, Municipal Services Center
7101 Edgewater Drive
Oakland, California
Cambria Project #153-1653-012

June 18, 2001

INTRODUCTION

As required by the Alameda County Health Care Services Agency (ACHCSA), Cambria Environmental Technology, Inc. (Cambria) has prepared this second quarter 2001 groundwater monitoring report for the above-referenced site. Described below are the second quarter 2001 activities, monitoring results, contaminant distribution in groundwater, corrective action activities, conclusions, recommendations, and the anticipated third quarter 2001 activities.

SECOND QUARTER 2001 ACTIVITIES

Monitoring Activities

Field Activities: On May 17, 2001, Cambria gauged and inspected for separate-phase hydrocarbons (SPH) in site monitoring and tank pit backfill wells in accordance with the ACHCSA-approved monitoring protocol presented below in Table A. Monitoring well locations are shown on Figure 1. Also on May 17 and 18, 2001, Cambria collected groundwater samples from site wells scheduled for sampling, provided no significant SPH were present in the wells. Field data sheets are presented as Appendix A.

Sample Analyses: Select groundwater samples were analyzed for: total petroleum hydrocarbons (TPH), as gasoline (TPHg), TPH as diesel (TPHd), TPH as kerosene (TPHk), TPH as motor oil (TPHmo); benzene, toluene, ethylbenzene and xylenes (BTEX); and methyl tertiary butyl ether (MTBE) by EPA Methods 8015/8020A by Caltest Analytical Laboratory of Napa, California, a California state-certified laboratory. Prior to TPHd/k/mo analyses, samples were filtered using industry standard 0.45-micron filters and then subjected to silica gel treatment by EPA Method 3630. Laboratory QA/QC method blanks were also subject to 0.45-micron filtration and silica gel treatment by EPA Method 3630. Positive detections of MTBE were confirmed by EPA Methods 8260 (with the exception of samples from well MW-5 which historically are known to test positive for MTBE). The specific analytes for each well sample are presented in Table A (below). Analytic results are summarized in Tables 1, 2, 3 and 4 (attached). The laboratory analytical reports and correspondence are included as Appendix B.

C A M British of 0.45 micron filtration and silica gel treatment: Due to the fine-grained nature of the subsurface formations screened by the monitor wells, the well construction design and the limitations of sampling methodologies, groundwater samples collected from wells at the Municipal Services Center (MSC) are occasionally observed to be turbid and, even when clear, are still likely to contain sub-micron size particles and colloids as *suspended solids*. These suspended solids and colloids may carry bound contaminants of concern, including hydrocarbons. Furthermore, in complex depositional environments such as that beneath the MSC, *naturally occurring hydrocarbons* and *biodegraded anthropogenic* hydrocarbons may be present in groundwater.

Therefore, consistent with RWQCB guidance^{1,2} and agreement from ACHCSA³, Cambria recommended filtration and silica gel treatment of groundwater samples prior to TPHd/k/me analyses to objectively evaluate dissolved hydrocarbons in groundwater. The purpose of the filtration is to eliminate positive interference effects resulting from hydrocarbons bound to suspended particles and colloids in the groundwater samples, thus isolating the suspended from *dissolved* constituents. The industry standard for dissolved constituent filtration is 0.45 microns. The purpose of silica gel treatment is to mitigate positive interference effects resulting from limitations of the 8015M analysis by removing polar, biogenic hydrocarbons from anthropogenic hydrocarbons. The laboratory recommended method of silica gel treatment (consistent with RWQCB guidance) is EPA Method 3630.

It should be noted that it is highly unlikely any significant mass of inter-formational suspended particles with bound contaminants of concern are migrating beneath the site. Rather, extremely fine-grained particles and colloids are most likely dislodged from the formation/borehole wall interface. During well purging, significant gradients are induced, locally, introducing fine-grained materials into the wells. During static water level conditions, groundwater gradient and velocity are likely insignificant to transmit any inter-formational suspended or dislodged particles, if present, throughout the formation(s). Lastly, it is unlikely any amount of additional well development would curtail this phenomena, rather a change in sampling methodologies (or well construction design) could be considered.

(Now purge Sambling)

¹ Regional Water Quality Control Board, San Francisco Bay Region (RWQCB-SFBR), Use of Silica Gel Cleanup for Extractable TPH Analysis, Memorandum from Ravi Arulanantham, Toxics Cleanup Division to Stephen Morse, February 16, 1999

²Conversation with Dr. Ravi Arulanantham, RWQCB, May 25, 2001

³ Conversation with Mr. Barney Chan, ACHCSA, May 25, 2001

Second Quarter 2001 Monitoring Report City of Oakland, Municipal Services Center Oakland, California June 18, 2001

DO = Dissolved oxygen

* = Any positive results for MTBE will be confirmed by re-analysis using EPA Method 8260, except in MW-5

** = Prior to analysis, lab will filter sample with 0.45 micron filter, then subject filtrate to silica gel treatment (clean-up) by EPA Method 3630, and then sample/dilute the filtrate for analysis. The lab shall run a spiked method blank through

the same procedure, evaluate, and explain any atypical deviation.

*** = Wells MW-3 and MW-4 were destroyed during the first quarter 1999.

**** = For MW-6 ball product first and use custom oil/water separator to facilitate sample collection.

Second Quarter 2001 Monitoring Report City of Oakland, Municipal Services Center Oakland, California June 18, 2001

MONITORING RESULTS

Shallow Groundwater Topography

On May 17, 2001, Cambria gauged site monitoring wells and tank backfill wells in accordance with the protocol shown on Table A. Cursory examination of the shallow groundwater elevation map suggests groundwater flow towards San Leandro Bay and Damon Slough (Figure 1). Apparent groundwater flow directions are generally consistent with historical measurements. Depth-to-water and groundwater elevation data are presented in Table 1.

Occurrence of Separate-Phase Hydrocarbons

Separate-phase hydrocarbons (SPH) were detected in monitoring wells MW-6 (0.32 ft) and MW-16 (not measured), and in backfill wells TBW-1 (0.28 ft) and TBW-5 (0.67 ft). SPH in well MW-16 were extremely viscous and adhered to the oil-water interface probe. Cambria was unable to obtain an accurate and reliable SPH measurement in this well and consequently, neither product thickness nor depth to water could be measured with precision in this well. However, historically, SPH in well MW-16 have been less than or equal to 0.42 ft thick.

SPH thickness measurements in wells frequently may not be representative of true thicknesses in the formation(s) screened by the wells, and are typically several to many times thicker than those actually occurring in the deposits or formation(s) intercepted by the well screens^{4,5}. This phenomena can also be exaggerated by fluctuating water tables. The extent of SPH is defined in the downgradient direction for each of these areas by other site wells. SPH removal activities are described below in the corrective action section.

Contaminant Distribution in Groundwater

Benzene in Groundwater: The maximum benzene concentration detected was 140 μ g/l in well MW-5. The maximum benzene concentration detected in an offsite perimeter well was 11 μ g/l in well MW-14. This analytic result for benzene is below the acceptable risk thresholds for both the San

⁴ Wagner, R.B., Hampton, D.R., and Howell, J.A., A New Tool to Determine The Actual Thickness of Free Product in a Shallow Aquifer, Proceedings of the Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection and Restoration, 1989. Published by the National Water Well Association.

⁵ Yaniga, P. M., Hydrocarbon Retrieval and Apparent Hydrocarbon Thickness: Relationship to Recharging/Discharging Aquifer Conditions, presented to the National Water Well Association and the American Petroleum Institute, Houston, TX, 1984.

Second Quarter 2001 Monitoring Report City of Oakland, Municipal Services Center Oakland, California June 18, 2001

Francisco Airport Ecological Protection Zone Tier I Standards⁶ and the City of Oakland Risk-Based Tier I⁷ for inhalation of indoor air vapors of 71 μ g/l and 110 μ g/l, respectively. This analytic result for benzene is also below the acceptable risk threshold of 46 μ g/l for ecological toxicity established by the USEPA according to the San Francisco Bay Regional Water Quality Control Board (RWQCB-SFBR)⁸.

MTBE in Groundwater: MTBE was detected at 170 μ g/l in the groundwater sample collected from well MW-5, and at 9.7 μ g/l in the groundwater sample collected from well MW-11 (by EPA 8015/8020A). The detection of MTBE in the sample from well MW-11 was verified by EPA method 8260 at 5.1 μ g/l. MTBE historically has been detected only in wells MW-5 and MW-6.

TPHg in Groundwater: The maximum TPHg concentration detected was 7,500 μ g/l in well MW-5. All other concentrations are below the San Francisco Airport Ecological Protection Zone Tier I Standard acceptable threshold of 3,700 μ g/l.⁹ TPHg concentrations appear to be defined in the downgradient and crossgradient directions to within acceptable ecological risk thresholds.

TPHd in Groundwater: The maximum dissolved TPHd concentration detected in offsite perimeter wells was 210 μ g/l in well MW-15. Analytical results were below the San Francisco Airport Ecological Protection Zone Tier I Standard of 640 μ g/l.¹⁰

TPHmo in Groundwater: No dissolved TPHmo was detected in any of the wells.

Volatile Organic Compounds in Groundwater: The only VOC analysis performed on samples during the second quarter 2001 was the confirmation of MTBE in the sample from well MW-11 at 5.1 μ g/l. Previous quarterly monitoring results for VOCs are presented in Table 2.

⁶ Regional Water Quality Control Board, San Francisco Bay Region (RWQCB-SFBR) *Order No. 99-045* for a similar situation at the San Francisco International Airport. Staff comments dated July 16, 1998, signed by Mr. Steven Morse, Chief of the Toxics Cleanup Division, addressed to the SFIA Consolidated Tenant Group.

⁷ Spence, L., and Gomez, M. Oakland Risk-Based Corrective Action: Technical Background Document. Urban Land Redevelopment Program Technical Advisory Committee. May 17, 1999.

⁸ RWQCB-SFBR, Application of Risk-Based Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater. Interim Final. August 2000.

⁹ RWQCB-SFBR Order No. 99-045 for a similar situation at the San Francisco International Airport. Staff comments dated July 16, 1998, signed by Mr. Steven Morse, Chief of the Toxics Cleanup Division, addressed to the SFIA Consolidated Tenant Group.

¹⁰ Ibid.

Second Quarter 2001 Monitoring Report City of Oakland, Municipal Services Center Oakland, California June 18, 2001

Semi-Volatile Organic Compounds in Groundwater: SVOC analyses were not performed on samples during the second quarter 2001. Previous quarterly monitoring results are presented in Table 3.

LUFT Metals in Groundwater: LUFT metals analyses were not performed on samples during the second quarter 2001. Previous quarterly monitoring results are presented in Table 4.

Laboratory Quality Assurance and Quality Control: All samples and Laboratory Control Sample (LCS) method blanks were spiked with surrogates (prior to filtration and silica gel treatment) to evaluate laboratory QA/QC. All recoveries for all surrogates were within acceptable limits for all analyses, indicating that 0.45-micron filtration and silica gel treatment do not adversely affect sample quality.

June 18, 2001

CAMBRIA

Corrective Action Activities

Separate-Phase Hydrocarbon Removal: Separate-phase hydrocarbons (SPH) have been actively skimmed from well TBW-5 using a mobile SPH skimmer. Hydrocarbon-absorbing "socks" were used in wells MW-6, MW-16, TBW-1, and TBW-2. The hydrocarbon-absorbing "socks" were monitored on three separate events and were replaced if saturated. Access to TBW-2 is presently blocked by a concrete traffic barricade. Historically, trace or sheen amounts of SPH, when present, have been bailed from TBW-3; no SPH were observed in TBW-3 through the 2nd quarter.

As shown on Table B (below), Cambria estimates that approximately 17 pounds of SPH were removed from the site after the 1st quarter sampling event (after February 26, 2001) and through the 2nd quarter 2001 sampling event (May 18, 2001). Recovery of SPH has improved significantly with the installation and operation of a vendor-recommended skimmer (designed for heavier, higher viscosity SPH). The system resumed continuous operation May 8, 2001, and removed approximately 2.5 gallons by May 18, 2001 – a SPH removal rate of approximately 0.25 gallons per day. SPH recovered by the skimmer is assumed to be 100% hydrocarbon, as no detectable water is currently detected in the 500-gallon recovery tank. The 500-gallon recovery tank was last emptied for disposal on March 21, 2001.

Since water is also removed during SPH bailing and sock removal, Cambria estimates that approximately 50% of the bailed volume and 50% of the sock saturation weight is actually SPH (unless otherwise calculated in field). To determine the sock saturation weight, Cambria weighs each removed sock and subtracts the dry weight from the total weight of the used sock. One gallon of separate-phase hydrocarbons is estimated to weigh 6.6 pounds. This cumulative volume does not include additional SPH removal achieved by "socks" prior to the third quarter 2000.

Table E	– SPH Removal Summ	ary 🖒 💮 💮
Hydrocarbon Removal Method	Removal This Quarter (pounds)	Cumulative Removal (pounds)
Active Skimming (TBW-5)	16	432
Bailing/Socks (TBW-5)	0	132.4
Bailing/Socks (TBW-1)	0.9	13.8
Bailing/Socks (TBW-2)	0	2.5
Bailing/Socks (TBW-3)	0	9.6
Bailing/Socks (MW-6)	0.175	0.225
Bailing/Socks (MW-16)	0	3
	17. Pounds 性之	593.5 Pounds 2

Second Quarter 2001 Monitoring Report City of Oakland, Municipal Services Center Oakland, California June 18, 2001

CONCLUSIONS AND RECOMMENDATIONS

Cambria offers the following conclusions and recommendations regarding site activities and this quarter's analytic results.

- Separate phase impression 15PT), recovery efforts all actual and the hydroganhous from the site submariates, miniacity in well I key 5, which are seen improved with the new density skingure and remited prove installed in well that son May 8, 2001. Caushon recommends continued monitoring of SVH plants and SV.
- Additional site assessment described in the January 2001 Site History and Characterization Report prepared by Baseline Environmental Consultants (Baseline) suggests that the downgradient extent of dissolved and separate-phase hydrocarbons has been adequately defined.
- With the exception of onsite well MW-5, TPHg concentrations are below the San Francisco Airport Ecological Protection Zone Tier I Standard acceptable threshold of 3,700 µg/l. It should be noted that samples for TPHg analysis are not filtered, nor subject to silica gel treatment (cleanup). Therefore, the reported TPHg concentrations are indicative of suspended and dissolved organic and anthropogenic hydrocarbons, all quantitated as TPHg eggen de la company de la comp

TPHg detections did not contain detectable BTEX compounds, which are commonly detected in conjunction with gasoline releases. TPHg concentrations detected in perimeter ² offsite wells appear to be the result of local fill quality rather than offsite migration of dissolved petroleum hydrocarbons. The City may request that duplicate groundwater samples be subjected to filtration and silica gel treatment (as performed for the heavierrange petroleum hydrocarbon analyses), if the local regulatory agencies are concerned about the TPHg concentrations detected in offsite wells.

Reported dissolved TPHd concentrations in offsite perimeter wells were below the San Francisco Airport Ecological Protection Zone Tier I Standard of 640 μ g/l.

¹¹ Regional Water Quality Control Board, San Francisco Bay Region (RWQCB-SFBR) Order No. 99-045 for a similar situation at the San Francisco International Airport, Staff comments dated July 16, 1998, signed by Mr. Steven Morse, Chief of the Toxics Cleanup Division, addressed to the SFIA Consolidated Tenant Group.

Second Quarter 2001 Monitoring Report City of Oakland, Municipal Services Center Oakland, California June 18, 2001

- No dissolved TPHmo was detected in site groundwater. The apparent detection of higher TPHmo concentrations prior to implementation of 0.45 micron filtration and silica gel treatment (based on previous monitoring results) suggests that heavier-range hydrocarbons may be adsorbed to extremely fine particles and colloids which are dislodged during sampling and occur as suspended solids in groundwater samples, and that dissolved TPHmo is not present in groundwater at detectable concentrations. The historical detection of TPHmo concentrations in downgradient offsite wells prior to filtration (based on previous monitoring results) also suggests that these TPHmo detections were a result of soil/fill quality effects and the resulting groundwater sample quality, rather than migration of dissolved TPHmo from an onsite release.
- As mentioned above, it is highly unlikely suspended solids with bound or adsorbed contaminants of concern are present as inter-formational mass migrating in groundwater beneath the site. Rather any suspended solids present in groundwater samples most likely originate from the formation/borehole wall interface and occur as a well bore, samplinginduced phenomena.
- Historical analytic results indicate that hydrocarbon attenuation is occurring at the site, with evidence that both aerobic and anaerobic biodegradation are taking place.
 Hydrocarbon attenuation was described in prior monitoring reports.
- In conjunction with the feasibility study being conducted by URS-Greiner, the City of Oakland may also wish to perform a site-specific ecological risk assessment or conduct feasibility testing at the site.

ANTICIPATED THIRD QUARTER 2001 ACTIVITIES

Monitoring Activities

Cambria will gauge, measure any detected SPH, and collect groundwater samples from site wells in accordance with the protocol presented in Appendix C. The protocol now proposes sampling of well MW-5 on a quarterly basis with analysis for TPHg, BTEX, and MTBE. All TPHd/k/mo analyses will be subject to 0.45-micron filtration and silica gel treatment prior to analysis. Following field activities, Cambria will tabulate the analytic data, contour groundwater elevations, and prepare a quarterly monitoring report.

Second Quarter 2001 Monitoring Report City of Oakland, Municipal Services Center Oakland, California June 18, 2001

Corrective Action

Cambria will continue SPH removal using active skimming in well TBW-5. Cambria will perform operation and maintenance (O&M) of the skimmer pump with the new 'density skimmer' filter. During scheduled O&M visits Well TBW-3 will be checked for presence of SPH and hydrocarbonabsorbing "socks" in wells MW-6, MW-16, TBW-1, and TBW-2 will be inspected and replaced if saturated.

saturated

URS-Greiner completed a feasibility study that evaluated remedial options for the site and recommended dual phase extraction (DPE) for SPH removal. Testing and implementation of DPE will be initiated. The first phase will involve the installation of test wells and piezometers to facilitate DPE testing and monitoring.

Repair of Offsite Well Vaults

During the third quarter, Cambria removed and replaced well vaults for 4 offsite wells (MW-8, MW-9, MW-10, and MW-14).

ATTACHMENTS

Figure 1 - Groundwater Elevation Contours and Hydrocarbon Concentration Map

Table 1 – Groundwater Elevation Data and Analytical Results - Hydrocarbons

Table 2 - Groundwater Analytical Results - VOCs

Table 3 – Groundwater Analytical Results - SVOCs

Table 4 – Groundwater Analytical Results – LUFT Metals

Appendix A - Field Data Sheets

Appendix B - Laboratory Analytical Reports/Correspondence

Appendix C - Well Sampling Protocol for 2nd Quarter 2001

H:\City of Oakland\Municipal Service Center\QM\CoO-2Q01.DOC

Groundwater Elevation Contour Map and Hydrocarbon Concentrations May 17, 2001

⋖

Municipal Service Center

Oakland, California

Sample ID/ Date	TOC Elev.	DTW	GW Elev.	BTEX Method	Notes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE
Date	EICY.		EICY.	MEHIOU		4				_ μg/l				
MW-1	10.00			8020					540	65	26	14	22	
10/4/89	10.20								J40	120	46	43	78	
10/4/89	10.20			8240					<1,000	<1.0	<1.0	<1.0	<1.0	
4/27/93	10.20		•	V		***			3,200	880	15	23	21	
4/19/95	10.20								980	130	3.6	1.4	5.6	• • • • • • • • • • • • • • • • • • • •
7/27/95	10.20	4.62	5.58						400	99	2.8	1.1	4.6	
11/20/95	10.20	6.08	4.12							340	8.4	5.3	16	
2/21/96	10.20	4.62	5.58						1,700		30	42	38	
5/13/96	10.20	4.33	5.87						7,300	2,000		<0.5	4.2	
8/27/96	10.20	5.25	4.95						380	61	2.4	<0.3	9.7	
2/23/98	10.20	1.75	8.45			<50	<500	<50	820	160	4.9	_		<5.0
8/19/98	10.20	4.78	5.42		SGC	1,200			780	69	4.1	0.84	8.5	
11/11/98	10.20	5.64	4.56										10	
2/23/99	10.20	3.41	6.79	8020	SGC	1,200	1,600	<50	1,100	190	5	3	12	<5.0
5/27/99	10.20	3.96	6.24											.c.c
8/24/99	10.20	4.92	5.28	8020	SGC	640	1,900	<50	370	37	0.9	<0.5	1.9	<5.0
11/22/99	10.20	5.46	4.74											***
1/18/00	10.05	5.41	4.64											
1/19/00				8020	SGC	50	<200	< 50	660	43	2.3	1.1	6	<5.0
5/11/00	10.05	4.63	5.42	:										
8/24/00	10.05	5.07	4.98											+
8/25/00				8020	SGC	340	<250	290	480	53	1.4	< 0.5	2.9	<5.0
11/28/00	10.05	5.60	4.45	;				***						
2/27/01	10.05	3.95	6.10	8020	Filtered+SGC	270	<250	<61	1,500	110	6.3	<1.5	9.9	<15
5/17/01	10.05	4.00	6.05	·			***							
MW-2														
10/4/89	10.47			- 8020				***	<30	< 0.3	< 0.3	<0.3	<0.3	
10/4/89	10.47			- 8240						2	<2.0	<2.0	<2.0	
4/27/93	10.47			- 8020					<1,000	<1.0	<1.0	<1.0	<1.0	
4/19/95	10.47								<50	1.8	<0.5	< 0.5	<0.5	
7/27/95	10.47		4.25						<50	2.3	< 0.5	< 0.5	<0.5	

Sample ID/ Date	TOC Elev.	DTW	GW Elev.	BTEX Method	Notes	TPHd	TPHmo	TPHk	ТРНд	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE
						_				_ μg/l				
11/20/95	10.47	7.49	2.98	8020					<50	2.2	<0.5	<0.5	<0.5	
2/21/96	10.47	6.68	3.79	8020					<50	1.7	< 0.5	< 0.5	0.5	
5/13/96	10.47	6.32	4.15	8020						2	< 0.5	<0.5	<0.5	
8/27/96	10.47	6.84	3.63	8020						2.4	< 0.5	< 0.5	< 0.5	
2/24/98	10.47	5.44	5.03	8020		<50	<500	<50	+	1.6	< 0.5	< 0.5	<0.5	
8/19/98	10.47	6.56	3.91	8020	SGC	330	***		< 50	4.1	3.4	0.8	2.6	<5.0
11/11/98	10.47	7.37	3.10											***
2/23/99	10.47	8.68	1.79	8020	SGC	200	900	<50	< 50	3.5	0.6	0.6	1.2	<5.0
5/27/99	10.47	5.20	5.27											
8/24/99	10.47	6.75	3.72	8020	SGC	140	700	<50	<50	2.6	<0.5	<0.5	<0.5	<5.0
11/22/99	10.47	7.58	2.89				F							
1/18/00	10.47	7.41	3.06	8020	SGC	60 A	660	<50	<50	2.1	< 0.5	<0.5	< 0.5	<5.0
5/11/00	10.47	6.43	4.04									***	***	
8/24/00	10.47	8.91	1.56	8020	SGC	170	440	130	<50	2.4	< 0.5	< 0.5	< 0.5	<5.0
11/28/00	10.47	7.35	3.12											
2/27/01	10.47	6.70	3.77	8020	Filtered+SGC	<59	<240	<59	<50	3.6	< 0.5	< 0.5	<0.5	<5
5/17/01	10.47	6.90	3.57	***							***			
MW-3														
10/4/89				8020					<30	< 0.3	< 0.3	< 0.3	<0.3	***
10/4/89	***			8240						<2.0	<2.0	<2.0	<2.0	
2/23/98						<50	<500	<50					+	
11/11/98		5.83												
2/23/99					Submerged									
5/27/99		1.68								***				
8/24/99		4.76												
11/22/99	*	6.46							-*-					
11/22/99				•••	Destroyed									

Sample ID/ Date	TOC Elev.	DTW	GW Elev.	BTEX Method	Notes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE
						-				_ μg/l				
MW-4														
10/4/89	7.89			8020					<30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89	7.89			8240						<2.0	<2.0	< 2.0	<2.0	
11/11/98	7.89	6.25	1.64								-+-	***		
2/23/99	7.89	3.10	4.79							*				
5/27/99	7.89	4.03	3.86											
8/24/99	7.89	5.07	2.82											**.
11/22/99	7.89	6.32	1.57											
11/22/99					Destroyed									
MW-5														
12/13/91	11.15			8020		1,900			13,000	1,500	190	970	2,500	
12/13/91				8020	Dup				16,000	1,400	180	870	2,500	
12/13/91	11.15			8240						1,800	<250	1,000	3,800	
12/13/91			•••	8240	Dup					1,600	<250	980	3,500	
4/27/93	11.15			8240		12,000		~**	35,000	2,100	<1.0	1,800	2,700	
4/19/95	11.15			8240		880	4,700		14,000	490	51	610	1,200	
7/27/95	11.15	6.29	4.86	8240		590	5,000		22,000	1,300	54	1,500	2,400	
11/20/95	11.15	6.98	4.17	8020		<50	<50	<50	8,900	430	31	610	880	
2/21/96	11.15	5.97	5.18	8020		480	<50	<50	1,000	540	65	700	970	
5/13/96	11.15	6.25	4.90	8020		< 50	<50	<50	5,900	430	26	580	760	
5/13/96				8020	Dup	< 50	<50	<50	7,300	360	22	49	640	
8/27/96	11.15	6.40	4.75	8020		2,000	<51	<51	6,600	430	27	600	650	
8/27/96				8020	Dup	6,600	<51	<51	6,300	410	25	580	620	•
2/23/98	11.15	4.22	6.93	8020		<50	<500	<50	740	19	1.4	41	34	
8/19/98	11.15	6.14	5.01	8020		1,400	<250	1700	5,800	500	25	730	300	5,900
8/19/98	11.15	6.14	5.01		SGC							***		6,700
11/11/98	11.15	6.51	4.64							***				
2/23/99	11.15	3.59	7.56		SGC	2,000	700	<50	6,700	300	26	800	690	1,600
5/27/99	11.15	5.71	5.44			***								• • •
8/24/99	11.15	6.02	5.13	8020	SGC	220	2,000	< 50	2,100 E	190 E	5.5	340 E	78	380 H
11/22/99	11.15	6.16	4,99											

Sample ID/ Date	TOC Elev.	DTW	GW Elev.	BTEX Method	Notes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE
Date	IMC 11		Die	2.,,		-				_ μg/l				
1/18/00	11.15	6.60	4.55											
1/19/00	•			8020	SGC	100	320	<50	3,000	66 E	6.3	400 E	90	(1,300)
5/11/00	11.15	5.62	5.53											
8/24/00	11.15	6.32	4.83	8020	SGC	4,800	560	6,600	12,000	220	21	430	91	(1,400)
11/28/00	11.15	6.47	4.68											***
2/27/01	11.15	4.40	6.75	8020	Filtered+SGC	230	<250	<61	6,300	150	7	350	55	830
5/17/01	11.15	5.77	5.38	8020	Filtered+SGC	190	<200	<50	7,500	140	7	580	101	170
MW-6														
12/13/91	10.98		***	8020		520			780	110	2.7	<2.5	5.5	
12/13/91	10.98			8240						95	5	<5	<5	
4/27/93	10.98	***		8020		<1,000		***	<1,000	430	4	5	10	
4/19/95	10.98			8020		6,700			5,700	40	<0.8	3.9	29	
4/19/95				8020	Dup	3,700			3,000	310	3.1	2.7	100	
7/27/95	10.98	7.09	3.89	8020		3,900		***	6,100	430	15	200	600	
7/27/95				8020	Dup	2,600			6,300	420	15	200	600	
11/20/95	10.98	7.89	3.09	8020		850			6,800	160	4.6	8	240	
11/20/95				8020	Dup				3,600	130	11	4.4	200	
2/21/96	10.98	7.40	3.58	8020	Filtered+SGC	1,700	***		2,800	230	2.8	3.8	44	
2/21/96				8020	Dup	2,500			2,200	280	3	4	4.6	
5/13/96	10.98	7.10	3.88	8020		400	<50	<50	3,100	430	12	5.2	67	
8/27/96	10.98	7.42	3.56	8020		3,100			4,200	300	9.3	110	110	
8/19/98	10.98				SPH: 0.125 ft					***				
11/11/98	10.98	7.09	3.93		SPH: 0.05 ft									
2/23/99	10.98	7.31	3.67		SPH: NM			**-						
5/27/99	10.98	6.91	4.25		SPH: 0.20 ft									
8/24/99	10.98	7.46	3.72		SPH: 0.03 ft									
11/22/99	10.98	7.96	3.15		SPH: 0.16 ft							*		
1/18/00	10.98	8.08	3.05		SPH: 0.19 ft									
5/11/00	10.98	7.52	4.47		SPH: 0.01 ft									
8/24/00	10.98	7.50	3.53		SPH: 0.06 ft							***		
11/28/00	10.98	6.39	4.62		SPH: 0.04 ft			•••						
2/26/01	10.98	7.80	3.50	8020	SPH: 0.40 ft, F	820	<240	<60	6,100	181	<5	14.2	<5	<50
2/26/01				8260B						270	3	9	3	(19)
5/17/01	10.98	7.57	3.66	·	SPH: 0.32 ft			***						

Sample ID/ Date	TOC Elev.	DTW	GW Elev.	BTEX Method	Notes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE
Date	L/ICY.		Licy.	Memod						_ μg/i				
MW-7											•			
12/13/91	11.51			8020		<50			<50	<0.5	< 0.5	< 0.5	< 0.5	
12/13/91	11.51			8240						<5	<5	<5	<5	
4/27/93	11.51			8240		<1,000			<1,000	<1.0	<1.0	<1.0	<1.0	
4/19/95	11.51			8240		<50	<1,000		<50	<2.0	<2.0	<2.0	<2.0	
7/27/95	11.51	6.87	4.64	8240		<50	<1,000		< 50	<2.0	<2.0	< 2.0	<2.0	
11/20/95	11.51	8.48	3.03	8020		<50			<50	<0.5	<0.5	< 0.5	1.5	
2/21/96	11.51	6.29	5.22	8020		<50			<50	<0.5	< 0.5	< 0.5	<0.5	***
5/13/96	11.51	6.95	4.56	8020		< 50				< 0.5	< 0.5	<0.5	< 0.5	
8/27/96	11.51	6.80	4.71	8020						<0.5	<0.5	<0.5	< 0.5	
8/19/98	11.51	6.88	4.63									*		
11/11/98	11.51	7.40	4.11											
2/23/99	11.51	5.57	5.94	8020		<50	<200	<50	80	< 0.5	<0.5	<0.5	1	<5.0
5/27/99	11.51	6.56	4.95							***				
8/24/99	11.51	6.29	5.22	8020	SGC	<50	<200	<50	<50	<0.5	< 0.5	<0.5	< 0.5	5
11/22/99	11.51	6.80	4.71						***			***		
1/18/00	11.51	7.31	4.20									***		
1/19/00	11.51			8020	SGC	<50	<200	<50	54	1.5	1.5	2.4	3.8	<5.0
5/11/00	11.51	6.41	5.10											
8/24/00	11.51	7.11	4.40	8020		<50	<250	<50	<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0
11/28/00	11.51	7.30	4.21					***						
2/27/01	11.51	5.75	5.76	8020	Filtered+SGC	<50	<200	<50	<50	<0.5	< 0.5	< 0.5	<0.5	<5
5/17/01	11.51	6.65	4.86			***							•	
MW-8														
11/20/96	12.22	***		8020		880			< 50	0.66	< 0.5	< 0.5	< 0.5	
11/20/97	12.22	9.59	2.63	8020		200			< 50	< 0.5	< 0.5	<0.5	<0.5	2
2/24/98	12.22	8.42	3.80	8020		<50	<500	<50	<50	<0.5	<0.5	< 0.5	<0.5	
6/8/98	12.22	9.57	2.65	8020		1,200	1,000	<50	<50	< 0.5	< 0.5	<0.5	<0.5	
8/19/98	12.22	9.49	2.73	8020	SGC	<50	<250	<50	<50	1.6	3.4	1	2.8	<5.0
11/11/98	12.22	9.64	2.58	8020	SGC	<50	<200	<50	<50	0.9	8.0	0.6	2.3	<5.0
2/23/99	12.22	11.53	0.69	8020		700	1,500	<50	<50	<0.5	< 0.5	<0.5	<0.5	< 5.0
5/27/99	12.22	9.65	2.57	8020		<50	<200	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
8/24/99	12.22	9.62	2.60	8020	SGC	70	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	· <5.0

Sample ID/	TOC	DTW	GW	BTEX	Notes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE
Date	Elev.		Elev.	Method								benzene		
						4				_ μg/l _				
11/22/99	12.22	9.64	2.58	8020	SGC	57	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
1/18/00	12.22	8.31	3.91	8020	SGC	<50	<200	<50	<50	<0.5	<0.5	< 0.5	<0.5	<5.0
5/11/00	12.22	9.69	2.53	8020	SGC	<50	<200	<50	<50	< 0.5	1.3	< 0.5	2.1	<5.0
8/24/00	12.22	9.40	2.82											
8/25/00	•••			8020	SGC	85	<250	< 50	<50					
11/28/00	12.22	9.40	2.83	8020	SGC	<50	910	<50	<50	<0.5	< 0.5	< 0.5	<0.5	<5.0
2/27/01	12.22	9.50	2.72	8020	Filtered+SGC	<50	<200	<50	<50	<0.5	< 0.5	<0.5	<0.5	< 5.0
5/17/01	12.22	9.71	2.51			,			***	***				
5/18/01				8020	Filtered+SGC	<50	<200	<50	<50	<0.5	<0.5	<0.5	< 0.5	<5.0
MW-9														
11/20/96	10.77			8020		1,900		•	240	21	0.81	1.8	2.2	
11/20/97	10.77	7.91	2.86	8020				••-	300	20	<0.5	< 0.5	1.8	<1.0
2/24/98	10.77	6.11	4.66	8020		<50	<500	<50	2,200	540	5.6	1.6	4.9	
6/8/98	10.77	7.14	3.63	8020		1,800	890	<50	840	450	6.1	3.3	5.3	
8/19/98	10.77	7.88	2.89	8020	SGC	190	<250	160	740	370	8.6	0.99	7.3	<5.0
11/11/98	10.77	8.23	2.54	8020	SGC	<50	230	<50	700	130	4.3	< 0.5	3.9	<5.0
2/23/99	10.77	6.65	4.12	8020		1,100	3,700	<50	1,100	620	9.7	1.5	7.7	<5.0
5/27/99	10.77	7.70	3.07	8020	SGC	70	300	<50	950	470	11	1.5	9.2	<5.0
8/24/99	10.77	8.12	2.65	8020	SGC	890	1,700	<50	290	45	2.8	< 0.5	3	<5.0
11/22/99	10.77	8.33	2.44	8020	SGC	1,000	6,000	<50	170	12	1.8	<0.5	2	<5.0
1/18/00	10.77	8.63	2.14	8020	SGC	200 A	2,300	<50	160	5.7	1.9	0.6	4.2	<5.0
5/11/00	10.77	7.70	3.07	8020	SGC	180 A	980	<100	1,050	280	7.0	<2.5	5.9	<25
8/24/00	10.77	8.31	2.46											
8/25/00				8020	SGC	580	2,200	170	180	23	2.4	<0.5	2.7	<5.0
11/28/00	10.77	8.45	2.32	8020	SGC	200	1,600	<50	130	1.9	< 0.5	< 0.5	<0.5	< 5.0
11/28/00	10.77	8.45	2.32		Filtered+SGC	<50	<200	<50						
2/26/01	10.77	6.40	4.37	8020	Filtered+SGC	120	<200	<50	142	33	1.8	< 0.5	< 0.5	<5.0
5/17/01	10.77	9.88	0.89	***			***						***	
5/18/01				8020	Filtered+SGC	<50	<200	<50	74	4.6	<0.5	<0.5	< 0.5	<5.0
MW-10	•													
11/20/96	10.59			8020		940			<50	49	0.59	0.54	1.2	
11/20/97	10.59	7.70	2.89	8020		***			<50	<0.5	< 0.5	<0.5	<0.5	'
2/24/98	10.59	4.39	6.20	8020		<50	<500	<50	< 50		< 0.5	< 0.5	< 0.5	
6/8/98	10.59	6.94	3.65	8020		500	<500	<50	< 50	7.3	< 0.5	<0.5	<0.5	

Sample ID/	TOC	DTW	GW	BTEX	Notes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE
Date	Eley.		Elev.	Method								benzene		
						4				_ μg/l _				<u> </u>
8/19/98	10.59	6.99	3.60	8020	SGC	240	520	110	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
11/11/98	10.59	7.57	3.02	8020	SGC	<50	<200	<50	<50	< 0.5	<0.5	< 0.5	< 0.5	<5.0
2/23/99	10.59	5.51	5.08	8020		170	1,200	<50	<50	1.3	<0.5	<0.5	<0.5	<5.0
5/27/99	10.59	6.72	3.87	8020	SGC	<50	<200	<50	350	170	1.5	0.5	2.3	<5.0
8/24/99	10.59	7.27	3.32	8020	SGC	140	300	<50	380	160 E	<0.5	<0.5	2.6	<5.0
11/22/99	10.59	7.71	2.88	8020	SGC	570	3,400	<50	110	5.1	<0.5	< 0.5	0.72	<5.0
1/18/00	10.59	7.77	2.82											
1/19/00				8020	SGC	120 A,B	1,200	<50	100	<0.5	< 0.5	0.8	<0.5	<5.0
5/11/00	10.59	7.00	3.59	8020	SGC	110 A	990	<50	145	1.62	0.5	0.5	0.9	<5.0
8/24/00	10.59	7.31	3.28	***										
8/25/00				8020	SGC	430	1,300	110	<50	1.0	< 0.5	< 0.5	< 0.5	<5.0
11/28/00	10.59	7.90	2.69	8020	SGC	220	1,500	<50	<50	<0.5	< 0.5	< 0.5	<0.5	<5.0
2/27/01	10.59	5.80	4.79	8020	Filtered+SGC	8 <i>5</i>	<230	<57	<50	1.3	<0.5	<0.5	< 0.5	<5.0
5/17/01	10.59	6.27	4.32			***	•••							
5/18/01	44.			8020	Filtered+SGC	<50	<200	<50	<50	0.7	<0.5	<0.5	<0.5	<5.0
MW-11														
1/18/00	11.60	7.08	4.52											
1/19/00				8020	SGC	<50	500	<50	220	< 0.5	<0.5	<0.5	<0.5	<5.0
5/11/00	11.60	5.95	5.65	8020	SGC	<50	430	<50	600	23	2.1	18	15	<5.0
8/24/00	11.60	6.58	5.02	8020		<50	<250	<50	110	5.9	< 0.5	0.73	0.64	<5.0
11/28/00	11.60	6.91	4.69	8020	SGC	<50	<200	<50	180	4	<0.5	1.9	<0.5	< 5.0
2/27/01	11.60	5.65	5.95	8020	Filtered+SGC	86	<240	<60	720	29	5.2	38	36	<5.0
5/17/01	11.60	6.85	4.75	8020	Filtered+SGC	<50	<200	<50	720	36	3.4	15	18	9.7
MW-12														
1/18/00	10.43	8.11	2.32											
1/19/00				8020	SGC	1,800 A	11,000	<50	200	<0.5	3.4	1.5	8.4	<5.0
5/11/00	10.43	6.78	3.65	8020	SGC	2,400 A	4,900	<100	370	<0.5	< 0.5	<0.5	0.9	<5.0
8/24/00	10.43	7.56	2.87										. •	
8/25/00				8020	SGC	3,500	5,000	3,700	170		<0.5	<0.5	<0.5	<5.0
11/28/00	10.43	8.13	2.30	8020	SGC	2,100	14,000	<50	290	<0.5	<0.5	< 0.5	< 0.5	<5.0
11/28/00	10.43	8.13	2.30		Filtered+SGC	50	<200	<50				***		
2/27/01	10.43	6.00	4.43	8020	Filtered+SGC	320	<250	66	110		<0.5	<0.5	<0.5	<5.0
5/17/01	10.43		3.42	8020	Filtered+SGC	<50	<200	<50	220	<0.5	<0.5	<0.5	< 0.5	<5.0

Sample ID/	TOC	DTW	GW	BTEX	Notes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE
Date	Elev.		Elev.	Method								benzene		
							·			_ μg/l				
MW-13						0.000	100.000	<i>c</i> 0	.50	-0 E	0.8	<0.5	<0.5	<5.0
1/18/00	11.34	9.63	1.71	8020	SGC	8,800 A	120,000	<50	<50	< 0.5	5.4	1.2	7.6	<5.0
5/11/00	11.34	10.12	1.22	8020	SGC	11,000 A	110,000	<500	70	1.6		1.2	7.0	~5.0
8/24/00	11.34	10.22	1.12				40.000		-50	-0.6	<0.5	<0.5	<0.5	<5.0
8/25/00				8020	SGC	3,100	13,000	1,200	<50	<0.5		<0.5	<0.5	<5.0
11/28/00	11.34	10.50	0.84	8020	SGC	2,400	36,000	<1300	<50	<0.5	< 0.5		<0.J	~3.0
11/28/00	11.34	10.50	0.84			280	1,100	<50				.0.5		<5.0
2/26/01	11.34	9.60	1.74	8020	Filtered+SGC	100	<260	<64	<50	<0.5	<0.5	< 0.5	<0.5	
5/17/01	11.34	10.10	1.24				***							
5/18/01		***		8020	Filtered+SGC	<50	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
MW-14													0.5	
1/18/00	10.05	7.37	2.68	8020	SGC	1,700 A	22,000	<50	120	<0.5	<0.5	<0.5	<0.5	<5.0
5/11/00	10.05	6.73	3.32	8020	SGC	360 A	4,300	<100	120	< 0.5	< 0.5	0.5	< 0.5	<5.0
8/24/00	10.05	7.30	2.75											
8/25/00				8020	SGC	1,000	3,100	460	90	6.3	<0.5	<0.5	<0.5	<5.0
11/28/00	10.05	7.40	2.65	8020	SGC	380	6,400	<250	140	7.4	<0.5	<0.5	<0.5	<5.0
11/28/00	10.05	7.40	2.65	***	Filtered+SGC	<50	<200	<50						
2/26/01	10.05	6.20	3.85	8020	Filtered+SGC	150	<230	<58	73	2.3	<0.5	< 0.5	<0.5	<5.0
5/17/01	10.05	7.74	2.31				400							
5/18/01				8020	Filtered+SGC	120	<200	<50	100	11	< 0.5	<0.5	<0.5	<5.0
MW-15														
1/18/00	12.36	10.56	1.80	8020	SGC	12,000 A	89,000	<50	110	3.8	2.1	1	4.6	<5.0
5/11/00	12.36	10.03	2.33	8020	SGC	120 A	590	<50	90	0.9	0.9	< 0.5	3.3	<5.0
8/24/00	12.36	10.22	2.14											
8/25/00				8020	SGC	1,900	8,600	1,000	<50	1.9	<0.5	< 0.5	1.5	<5.0
11/28/00	12.36	10.30	2.06	8020	SGC	2,500	36,000	<1300	80	1.7	< 0.5	< 0.5	1.6	<5.0
11/28/00	12.36	10.30	2.06		Filtered+SGC	73	<200	<50					***	
2/26/01	12.36	9.30	3.06	8020	Filtered+SGC	190	<240	<60	55	0.6	<0.5	< 0.5	0.5	<5.0
5/17/01	12.36		2.27									,		
5/18/01				8020	Filtered+SGC	210	<230	<57	66	1.5	< 0.5	<0.5	2.1	<5.0
MW-16														,
1/18/00	13.57	10.22	3.43	}	SPH: 0.1 ft									
5/11/00	13.57	13.31	0.27	7·	SPH: 0.01 ft									4-
8/24/00	13.57	8.91	4.66	5	SPH: NM									
11/28/00	13.57		0.86	5	SPH: 0.42 ft									
2/26/01	13.57)	SPH: 0.40 ft					***				
5/17/01		12.62G			SPH: NM							***		

Sample ID/	TOC	DTW	GW	BTEX	Notes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE
Date	Elev.	 	Elev.	Method						_ μg/l _	-	benzene		
MW-17					<u>.</u>					<u> με/1</u> —				<u> </u>
1/18/00	9.86	5.35	4.51	8020	SGC	850 A	21,000	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
5/11/00	9.86	9.85	0.01		SGC	150 A	2,900	<100	<50	<0.5	<0.5	<0.5	<0.5	<5.0
8/24/00	9.86	8.59	1.27		300	130 A	2,700							
8/25/00	9.00	0.39	1.2/		SGC	190	610	71	<50	0.58	<0.5	<0.5	<0.5	<5.0
11/28/00	9.86	9.25	0.61		SGC	<250	2,400	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0
11/28/00	9.86	9.25	0.61		Filtered+SGC	<50	<200	< 5 0	~50			~0.5		
2/26/01	9.86	9.40	0.46		Filtered+SGC	<50	<200	<50	<50	< 0.5	< 0.5	<0.5	<0.5	<5.0
5/17/01	9.86	8.32	1.54		Thickersoc	~	~200	***						***
5/18/01	9.00	0.52	1.54		Filtered+SGC	<50	<200	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0
TBW-1														
2/23/99		6.25			SPH: 0.10 ft	*								
5/27/99		5.29		***	SPH: 0.01 ft									
8/24/99		6.99			SPH: 0.18 ft									
11/22/99					Inaccessible									
1/18/00					Inaccessible									
5/11/00		6.90			SPH: 0.10 ft									
8/24/00		7.12			SPH: NM									
11/28/00		7.75			SPH: 0.36 ft									
2/27/01	-4-	9.06			SPH: 0.51 ft	***					***			
5/17/01		6.98			SPH:0.28 ft	**-						***		
TBW-3														
8/19/98		2.67		8020	SGC	810,000			920	3.2	< 0.5	<0.5	0.77	<10
8/19/98		2.67		8260		*								<5.0
2/23/99		1.25		8020		3,800	3,000	<50	110	1.6	< 0.5	< 0.5	< 0.5	<5.0
5/27/99					DTW: NM									
8/24/99		3.25			SPH globules									
11/22/99		3.68												
1/18/00	9.92	3.73	6.19		SPH globules									
5/11/00	9.92	2.07	7.85	·										
8/24/00	9.92	2.82	7.10		SPH: sheen	44,000	13,000	34,000	570	4.7	< 0.5	< 0.5	< 0.5	<5.0
11/28/00			•••							~				
2/27/01	9.92	1.29	8.63	8020	Filtered+SGC	560	<230	<57	120	1.5	<0.5	<0.5	<0.5	<5.0
5/17/01	9.92	2.47	7.45	;		540								

Sample ID/	TOC	DTW	GW Elev.	BTEX Method	Notes	TPHd	TPHmo	TPHk	ТРНд	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE
Date	Eley.		Elev.	MEHIOU		4				_ μg/l				→
						-								
TBW-4														
2/27/01		1.35		8020	Filtered+SGC	410	<230	<57	250	1.9	<0.5	< 0.5	<0.5	<5.0
5/17/01		2.52		•••			***			***				P41
TBW-5														
2/23/99	***	9.72			SPH: 1.45 ft									
5/27/99	***	7.03		***	SPH: 1.13 ft						~			
8/24/99		6.52			SPH: 1.33 ft									
11/22/99		8.31			SPH: 1.29 ft								***	
1/18/00	10.22	6.20	4.74		SPH: 0.90 ft	***		***						
5/11/00	10.22	9.41	1.05		SPH: 0.30 ft									
8/24/00	10.22	9.62	0.81		SPH: 0.26 ft					ile mair				
11/28/00	10.22	10.25	0.34		SPH: 0.46 ft			***				F##		***
2/27/01	10.22	9.06	1.45		SPH: 0.36 ft			***			4- -			
5/17/01	10.22	8.75	1.47		SPH: 0.67 ft					***			***	
TBW-6													0.5	ر می
2/23/99		2.09		8020		160	600	<50	60	<0.5	<0.5	<0.5	<0.5	<5.0
5/27/99		3.31		• • • •									 ۰۸ ۳	 -E (
8/24/99		7.29			SGC	180	400	<50	130	<0.5	< 0.5	<0.5	<0.5	<5.6
11/22/99	•••	4.37												
1/18/00	9.49	3.83	5.66				200		120	0.6	-0.5	<0.5	<0.5	 <5.0
1/19/00					SGC	55 C	<200	<50	170	0.6	<0.5	<0.5	<0.5	
5/11/00	9.49	2.51	6.98							*				
8/24/00	9.49	4.34	5.15		000	220	-250	200		<0.5	<0.5	<0.5	<0.5	<5.0
8/25/00					SGC	320		200	<50	<0.5	~0. 5		~~·	~J.
11/28/00	9.49		4.75		T:: 1.000				-50	<0.5	<0.5	<0.5	<0.5	<5.0
2/27/01	9.49	2.30	7.19		Filtered+SGC	<57		<57	<50			<0.3	~0.J	~3,
5/17/01	9.49	3.35	6.14								***			
Trip Blank												.0.5	.0.5	، جہ
8/19/98				0020					<50	<0.5	<0.5	< 0.5	<0.5	<5.6 - <5.6
11/22/99									<50	<0.5	<0.5	<0.5	<0.5	<5.6
11/28/00				00-0					<50	<0.5	<0.5	<0.5	<0.5 <0.5	<5.5
2/27/01				00-0		*			<50	<0.5	< 0.5	< 0.5		<5.
5/17/01	••-			8020	SGC				< 50	<0.5	<0.5	<0.5	< 0.5	<3.

Table 1. Groundwater Elevation Data and Analytical Results - Hydrocarbons - City of Oakland Municipal Services Center, Oakland, CA

					-									
Sample ID/	TOC	DTW	GW	BTEX	Notes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE
Date	Elev.		Elev.	Method								benzene		
						4				μg/l _				<u></u>

<u>Notes</u>

All concentrations in micrograms per liter (µg/l)

--- = not measured/analyzed

TOC = Top of casing

DTW = Depth to water

DTP = Depth to product (SPH)

Filtered = 0.45 micron glass membrane filter

GW = Groundwater

Groundwater Elevation corrected for the presence of free product according to the calculation: GW Elevation = TOC - DTW + (0.8 x SPH thickness)

BTEX = Benzene, toluene, ethylbenzene, and xylenes - analyzed by EPA Method 8020 or 8240/8260

TPHd = Total petroleum hydrocarbons quantitated as diesel - analyzed by Modified EPA Method 8015

TPHmo = Total petroleum hydrocarbons quantitated as motor oil - analyzed by Modified EPA Method 8015

TPHk = Total petroleum hydrocarbons quantitated as kerosene - analyzed by Modified EPA Method 8015

TPHg = Total petroleum hydrocarbons quantitated as gasoline - analyzed by Modified EPA Method 8015

MTBE = methyl tert-butyl ether - analyzed by EPA Method 8020 or 8260. Confirmation 8260 results shown in parentheses

DUP = Duplicate sample

SPH = Separate-phase hydrocarbons; measured thickness

SGC = Silica gel cleanup based on Method 3630B prior to TPHd, TPHk, or TPHmo analysis, following CRWQCB February 16, 1999 memorandum

NM = Not measured

TBW = Tank backfill well

- A = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range are actually the front end of the motor oil pattern
- B = The analytical laboratory reviewed the data and noted that the quantitation in the diesel range show no diesel pattern; the response looks like lower carbon chain compounds close to the gasoline range
- C = The analytical laboratory reviewed the data and noted that there is no pattern related to diesel range; the peaks are small and random
- E = Results are estimated due to concentrations exceeding the calibration ranged
- F = Filtration with 0.45 micron glass membrane filter and silica gel treatment
- G = Depth to product, depth to water could not be determined

Table 2.	Groundwater Analy	∕tical Results - VOCs b	v EPA Method 8260 -	City of Oakland Munici	pal Services Center, Oakland, California
----------	--------------------------	-------------------------	---------------------	------------------------	--

Sample ID/	Benzene	n-Butyl- benzene	sec-Butyl- benzene	Chloro- ethane	1,2-DCA	1,2-DCP	Ethyl- benzene	Isopropyl- benzene	p-Isopropyl toluene		Napthalene	n-Propyl- benzene	Toluene	1,2,4-TMB	1,3,5-TMB	Xylenes
									μg/l							<u> </u>
MW-5 2/27/01	180	9	4	3	7	3	260	23	6	1,100	43	68	7	1	11	53
MW-6 2/27/01	270	11	3	<1	7	<1	9	6	1	19	62	21	3	1	<1	3

Notes Notes

All concentrations in micrograms per liter (mg/l)

 $\mu g/l = micrograms per liter$

VOCs = Volatile organic compounds by EPA Method 8260. Sample not subject to SCG or filtration prior to analysis.

1,2-DCA = 1,2-dichloroenthane

1,2-DCP = 1,2-dichloropropane

MTBE = methyl tertiary-butyl ether

1,2,4-TMB = 1,2,4-trimethylbenzene

1,3,5-TMB = 1,3,5-trimethylbenzene

Table 3. Groundwater Analytical Results - SVOCs by EPA Method 8270
City of Oakland Municipal Services Center, Oakland, California

Sample ID/ Date	Naphthalene	Pyrene	Other SVOCs	
	<	µg/L	>	
MW-6				
2/27/01	19	ND	ND	
MW-9				
11/28/00	ND	ND	ND	
MW-13				
11/28/00	ND	10	ND	
MW-17				
11/28/00	ND	ND	ND	

Notes

All concentrations in micrograms per liter (µg/l)

SVOCs = Semi-volatile organic compounds by EPA Method 8270.

Samples not subject to filtration or silica gel cleanup prior to analysis.

Table 4. Groundwater Analytical Results - LUFT Metals - City of Oakland Municipal Services Center, Oakland, California

Sample ID/ Date	Cadmium <	Chromium	Lead mg/l	Nickel	Zinc >	Notes
MW-2 8/19/98			<100			a
MW-6 2/28/01	<0.001	0.035	0.23	0.046	0.19	non-filtered

Abbreviations and Notes:

LUFT metals by EPA Method 6010. Samples filtered in lab prior to analysis, unless noted otherwise.

mg/l = milligrams per liter

--- = not measured/analyzed

a = Analyzed for organic lead

Attachment A

Field Data Sheets

Solar Rem	City of Oa Active S	kland Mu kimmer a Date	nicipal Service Ind Passive Ski 4- <u>4-0</u>	Center mmer Log	Sheet 65
Active Skimmer Paramters	Well ID Tau-5		Well ID Passive Skimmer or Pig Installed ?	Passive Skimmer Product Thickness	Passive Skimmer Volume Product Remove
High Level Alarms	3	For	nishain	5/c/a	ew density
Well Discharge Cycles	8623		immer	12 TB	What !
Loss of Power	880	Ba	Heru &	ad_	
Off Pushed	4	Bla	7/	o ma	(functions
Compressor Startups	4811			(
PLC On Time	125				
Compressor Run Hours	263				
Depth to Product	5.28				
Product Thickness	1.32	Took	DTP-3.71	1	

City of Oakland Municipal Service Center Solar Rem Active Skimmer and Passive Skimmer Log Sheet Repaired Pump
Date 5-8-0/ - Furnish & Instal Recharded Battery

		Date	3 4 57		Lecharas
Active Skimmer Paramters	Well ID 1BW 5		Well ID Passive Skimmer or Pig Installed ?	Passive Skimmer Product Thickness	Passive Skimmer Volume Product Remove
High Level Alarms	6				
Well Discharge Cycles	8023				
Loss of Power	888				
Off Pushed	7				
Compressor Startups	4815				
PLC On Time	125				
Compressor Run Hours	263				
Depth to Product	8.40				
Product Thickness	.32	Tank-	DTP-3.71	DTB-3	91

TBN-5-DTP was measured prior to pump installation.

Skimmer parameters taken after installation.

Battery doesn't seem to be holding a Charge.

TOTAL P.02

DAILY FIELD REPORT

Project Ma	arre: City of Oakland Cambria Mar. TH	Field Person:	SG
Project Nu General Ta	moer_ 153-1247 Date: 5-17-01	Site Address: 7101 Edsewate Oakland, G	
5:00	Activity/Comments cleaned truck & Proped		Code Hours
6:00 7:00	left office onsite met up with Tom Berry safety neetins saused		
100	Sampled 4 wells left sit-		
1:30	S-18-01 (eft office		
9:30	sampled outside wells left site		
47:00	came back tosite for OfM left site day over		

DRUM INVENTORY RECORD

C C	roject No. ate lient (ay of the	5-18-01		Þ	ocation <i>C</i> roject Mgr echnician	Tom Henrico		
Drum No. or ID	Well or Source ID(s)	Sample ID	Type of Material	Amount of Material in Drum	Date Generated	Comments		
1			puis water	full				
3								
Ч					·			
5			Į į		5-13-01			
	·							
Skatabil	ocations-	of Duran			015			
Sketch i	Locations	or Drums	S:		No. Of Drums Generated: Soil:			
		-diwas			Water: Total No. Of Drums at Site:			
· .	}	ſ						
				Date Removed: Landfill:				
	(A	intranc.		Drums Removed:				
					Personnel in	nitials:		

WELL DEPTH MEASUREMENTS

Well ID	Time	Top of Screen	DTB	DTP	DTW	DOP	Casing Dia	Comments
MW-I	8:50				4.00			
MW/L	8:45				6.90			·
MW-5	8:51				5.77			
MW-6	9:05		,	7.25	7.57			bailed 100 ml SPH
MW-7	8:55				6.65			
MW-8	გ∵ чь				9.71			
MW-9	9:13		·-··		9.88			
MW-10	9:26				6.27			
MW-11	8:53				6.85			
MW-12	9:23				7:01			·
MW-13	9:13				10:10			
MW-14	9:10				7.74			
MW45	9:06				10.09			
MW-16	9:57		14.94	12.62				10 death towater by beiling
MW-17	3:51				8.32			wiring towards or beiling

Project Name:	, City of	Ockland
Measured By:	J. XII	

Project Number: 15 3 - 165 3 - 01 L

Date: 5-17-01

WELL DEPTH MEASUREMENTS

Well ID	Time	Product Depth	Water Depth	Product Thickness	Well Depth	Comments, .
TBW-1	9:10	6.70	6.98			Sock was credeplated to plope di no crean Chancelsock rembued 2 Liver Spi
TB W-3	9:02		2.47		• • • • • • • • • • • • • • • • • • • •	Changersock TUMBURY 261981 SPA
TB W-4	9:00		2.52		+	
TBW-S	9:15	8.08	3.75			
TBW-6	3:47		3.35			
		· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·		ner ne a la composition de la composition della		4.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
······································				**************************************		
			· · · · · · · · · · · · · · · · · · ·	· - · · · · · · · · · · · · · · · · · ·		
	····	· · · · · · · · · · · · · · · · · ·				
				······································		

Project Name: City of Oakland	Project Number:
Measured By: 8. July	
Months (Marie Control of the Control	Date: <u>5-77-01</u>

WELL SAMPLING FORM

Project Name: City of Oakland	Cambria Mgr: BCR	Well ID: MW-5
Project Number: 153-1247	Date: 5-17-01	Well Yield:
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: "pvc
Oakland, California	Disposable bailer	Technician(s): 59
Initial Depth to Water: 5.77	Total Well Depth: 14.30	Water Column Height: 8.53
Volume/ft: 0.16	1 Casing Volume: 1.36	3 Casing Volumes: 409
Purging Device: sub pump		Total Gallons Purged: 4
Start Purge Time: 11:20	Stop Purge Time: //: 3 4	Total Time: 14 mins

1 Casing Volume = Water column height x Volume/ ft.

 Well Diam.
 Volume/ft (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

	Time	Casing Volume	Temp.	pН	Cond.	Comments
L	11:25	2	20.3	7.43	1364	
	11', 30	3	20.4	7-31	1407	oder
Ĺ	11:35	4	19.9	7.25	1365	
						Stripped bolts
L						2 (9/16) needed
L						

Post-purge DO= O · 19 ug/L
Post-purge ORP= mV
Ferrous Iron= ug/L

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
Mw·s	5-17-01	11:40	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
			2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

WELL SAMPLING FORM

Project Name: City of Oakland	Cambria Mgr: BCR	Well ID: MW-8	
Project Number: 153-1247	Date: 5-17-01	Well Yield:	
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: "pvc	
Oakland, California	Disposable bailer	Technician(s): 59	
Initial Depth to Water: G.71	Total Well Depth: 15./0	Water Column Height: 5.39	
Volume/ft: 0.16	1 Casing Volume: Novo 0.86	3 Casing Volumes: 2-58	
Purging Device: sub pump	Did Well Dewater?:	Total Gallons Purged: 2.50	
Start Purge Time: 6: 25	Stop Purge Time: 6:5 4	Total Time: 29mins	

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

Tim	ie	Casing Volume	Temp.	pH	Cond.	Comments
6:3	5	1:	15.9	7.24	3999	
6:4		1.5	16.1	7.61	3559	
6:5		2.5	16.3	7.59	3999	
				<u></u>	<u> </u>	

Post-purge DO= /.00 ug/L
Post-purge ORP= mV
Ferrous Iron= ug/L

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
WM.8	5-18-0(7:00	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
			2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: BCR	Well ID: MW-9
Project Number: 153-1247	Date: 5-17-0	Well Yield:
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: 2" pvc
Oakland, California	Disposable bailer	Technician(s): 54
Initial Depth to Water: 10.09	Total Well Depth: 13.98	Water Column Height: 3.89
Volume/ft:	1 Casing Volume: 0.62	3 Casing Volumes: 1.86
Purging Device: suppuring baile	Did Well Dewater?: no	Total Gallons Purged: 2
Start Purge Time: 41: 35	Stop Purge Time: 5:09	Total Time: 34min 5

l Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp.	рН	Cond.	Comments
4:45	.5	15.1	7.29	3599	
5:00	1.5	15.4	7.71	3999	
5:10	2	15.7	7.62	3555	

Post-purge DO= o s q ug/L
Post-purge ORP= mV
Ferrous Iron= ug/L

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-9	5-18-01	5:15	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
			2 ambers	none	ТРНd/ТРНk/ТРНmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: BCR	Well ID: MW-10
Project Number: 153-1247	Date: 5-17-0	Well Yield:
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: "pvc
Oakland, California	Disposable bailer	Technician(s): 34
Initial Depth to Water: 6.27	Total Well Depth: 15.00	Water Column Height: 3.73
Volume/ft: O.16	1 Casing Volume: 1.39	3 Casing Volumes: 4.19
Purging Device: salepump beile	Did Well Dewater?:	Total Gallons Purged: \
Start Purge Time: 3:20	Stop Purge Time: 3:34	Total Time: 14mlas

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

	Time	Casing Volume	Temp.	pH	Cond.	Comments
1	3:25	2	16.4	7.20	1721	
	3:30	4	15.1	7.39	1784	
	3:35	6	15.2	7.42	1812	
L						
	,					

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-10	5-18-0 (3:40	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
			2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: BCR	Well ID: MW-11
Project Number: 153-1247	Date: 5-17-01	Well Yield:
Site Address: 7101 Edgewater Drive		
Oakland, California	Disposable bailer	Technician(s): 54
Initial Depth to Water: 6.35	Total Well Depth: 19.47	Water Column Height: 17.62
Volume/ft:	1 Casing Volume: 72-04	3 Casing Volumes: 6.03
Purging Device: sub pump baile.	Did Well Dewater?:	Total Gallons Purged: 6
Start Purge Time: 50	Stop Purge Time: / 2:04	Total Time: 14mins

1 Casing Volume = Water column height x Volume/ ft.

 Well Diam.
 Volume/ft (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

Time	Casing Volume	Temp.	pН	Cond.	Comments
11.55	૧	14.7	7.85	2753	
15:00	۲.	14.8	7.51	2092	
12:05	6	14.8	7.54	1953	

Post-purge DO= o·sq ug/L
Post-purge ORP= mV
Ferrous Iron= ug/L

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
Mw-II	5-17-01	12:05	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
			2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: BCR	Well ID: MW-12	
Project Number: 153-1247	Date: 5-17-01	Well Yield:	
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: "pvc 2	
Oakland, California	Disposable bailer	Technician(s): 59	
Initial Depth to Water: 6.94	Total Well Depth: 14.70	Water Column Height: 7, 76	
Volume/ft: 0.16	1 Casing Volume: 1.24 77	3 Casing Volumes: 3.72	
Purging Device: sub-purp wile	Did Well Dewater?:	Total Gallons Purged: L(
Start Purge Time: 10:00	Stop Purge Time: 10:11	Total Time: 1/mins	

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp.	pН	Cond.	Comments
10:05	2	18.4	6.52	2057	needs a new lid 12 "
10:08	3	17.9	6.58	2120	Sheen (2)15/16
10:12	4	17.8	6.64	2077	્રં,
					00= 0.5873/
					1

Post-purge DO= 0.58 ug/L
Post-purge ORP= mV
Ferrous Iron= ug/L

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-12	5-17-01	10:17	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
			2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: BCR	Well ID: MW-13
Project Number: 153-1247	Date: 5-17-0(Well Yield:
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: "pvc
Oakland, California	Disposable bailer	Technician(s): 54
Initial Depth to Water: 10,10	Total Well Depth: 70.10	Water Column Height: 10.00
Volume/ft: 0./6	1 Casing Volume: /.60	3 Casing Volumes: 4.80
Purging Device: sub-pump	Did Well Dewater?: yes	Total Gallons Purged: 2
Start Purge Time: /3:00	Stop Purge Time: /3:05	Total Time: 4 mins

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp.	рН	Cond.	Comments
13:05	2	21.5	7.32	2259	
No.	4		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
13:05 13:05 13:05		well ge	waterer	<u> </u>	

Post-purge DO= O·55 ug/L
Post-purge ORP= mV
Ferrous Iron= ug/L

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-13	5-18-01	#3:10 -1~8\780	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
			2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: BCR	Well ID: MW-14
Project Number: 153-1247	Date: 5-17-0 1	Well Yield:
Site Address: 7101 Edgewater Drive	dress: Sampling Method:	
Oakland, California	Disposable bailer	Technician(s): 54
Initial Depth to Water: 7.7 4	Total Well Depth: 14.73	Water Column Height: 6.99
Volume/ft: 0.16	1 Casing Volume: /.	3 Casing Volumes: 3.33
Purging Device: subphine bailer	Did Well Dewater?:	Total Gallons Purged: 3.50
Start Purge Time: 3:55	Stop Purge Time:	Total Time:

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

	Time	Casing Volume	Temp.	pН	Cond.	Comments
L	4:00	1.5	15.7	7.22	1819	
	4:10	7	15.4	7.31	1651	
	4:20	3.5	15.4	7.35	1622	
L						
L						

Post-purge DO= _____ug/L Post-purge ORP= _____wV Ferrous Iron= _____ug/L

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-IN	5-18-01	կ։ չ Տ	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
			2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: BCR	Well ID: MW-15
Project Number: 153-1247	Date: 5-17-0 [Well Yield:
Site Address: - 7101 Edgewater Drive	Sampling Method:	Well Diameter: "pvc
Oakland, California	Disposable bailer	Technician(s): $\leq \zeta$
Initial Depth to Water: 10.09	Total Well Depth: 20.10	Water Column Height: 10.01
Volume/ft:	1 Casing Volume: 2000	3 Casing Volumes: 4. 80
Purging Device: and pump baile.	Did Well Dewater?:	Total Gallons Purged: 5
Start Purge Time: 5:75	Stop Purge Time: 5:39	Total Time: /4mins

1 Casing Volume = Water column height x Volume/ ft.

Wel <u>l Diam.</u>	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp.	рН	Cond.	Comments
5:30	1. 5	15.7	2.79	3999	
5:35	3	15.5	7.62	3999	
5:40	5	15.6	7.65	3599	

Post-purge DO=__o.si__ug/L
Post-purge ORP=___mV
Ferrous Iron=___ug/L

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-15	5-13.01	5:45	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
			2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: BCR	Well ID: MICH MW-17
Project Number: 153-1247	Date: 5-17-01	Well Yield:
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: "pvc
Oakland, California	Disposable bailer	Technician(s):
Initial Depth to Water: 8.37	Total Well Depth: 17.98	Water Column Height: 9.66
Volume/ft: 0.16	1 Casing Volume: /. 54	3 Casing Volumes: 4.63
Purging Device: Sub pump bailey	Did Well Dewater?:	Total Gallons Purged: 5
Start Purge Time: 5:55	Stop Purge Time: 6.04	Total Time: /4~ins

1 Casing Volume = Water column height x Volume/ ft.

Volume/ft (gallons)
0.16
0.65
1.47

Time	Casing Volume	Temp.	рН	Cond.	Comments
6:00	1.5	15.4	7.80	3999	
6:05	3	15.7	7.64	399	<u> </u>
6:10	5	15.9	7.60	3999	
		-			

Post-purge DO= ____ug/L
Post-purge ORP= ____wV
Ferrous Iron= ____ug/L

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
hm-17	5-18-01	6:15	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
			2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Appendix B

Laboratory Analytical Reports/Correspondence

CASE NARRATIVE

Client: Cambria

Project: City of Oakland Order #: B050585 Date: July 11, 2001

Samples were received cold, sealed and intact at Caltest. Samples were requested for TPH analyses.

Gasoline analyses was performed by EPA 5030/8015B, purge and trap. BTEX and MTBE analyses were performed by EPA 5030/8021 and the MTBE hits were confirmed by EPA 8260, GCMS.

Surrogate recoveries were acceptable for all samples; surrogates are compounds added to a sample prior to extraction to verify complete and valid extraction. LCS and matrix spikes recoveries were within laboratory control limits; spiked compounds are added either to a lab blank (LCS) or an actual sample (matrix spike). The recoveries are calculated to provide accuracy and precession data

2. Samples for diesel, kerosene, and motor oil analyses were filtered through a 0.45 micron filter prior to extraction per the COC. The extract was passed through a silica gel column per EPA 3630; analyses of extract followed this cleanup.

Surrogate recoveries were acceptable for all samples. LCS and matrix spikes recoveries were within laboratory control limits; diesel was used as the spiking compound.

If you have any questions please call me or another project manager at Caltest (707) 258-4000.

Sincerely,

Caltest Analytical Laboratory

William Svoboda

Project Manager

LAB ORDER No.:

8050585

Page

1 of 11

REPORT of ANALYTICAL RESULTS

Report Date:

13 JUN 2001

Client: Tom Howard

Cambria

Received Date:

22 MAY 2001

1144 65th Street, Suite C Oakland, CA 94608

Project: 153-1653-012\CITY OF OAKLAND MSC

Sampled by:

SANJIR GILL

<u>Lab Number</u>	Sample Identification	Matrix	Sampled Date/Time
B050585-1 B050585-2 B050585-3 B050585-4 B050585-5 B050585-6 B050585-7 B050585-8 B050585-9 B050585-10 B050585-11	MW-5 MW-8 MW-9 MW-10 MW-11 MW-12 MW-13 MW-14 MW-15 MW-17	AQUEOUS	17 MAY 01 11:40 18 MAY 01 07:00 18 MAY 01 17:15 18 MAY 01 15:40 17 MAY 01 12:05 17 MAY 01 10:17 18 MAY 01 15:10 18 MAY 01 16:25 18 MAY 01 17:45 18 MAY 01 18:15 17 MAY 01

William Svoboda Project Manager Christine Horn Laboratory Director

CALTEST authorizes this report to be reproduced only in its entirety.

Results are specific to the sample as submitted and only to the parameters reported.

All analyses performed by EPA Methods or Standard Methods (SM) 18th Ed. except where noted.

Results of 'ND' mean not detected at or above the listed Reporting Limit (R.L.).

'D.F.' means Dilution Factor and has been used to adjust the listed Reporting Limit (R.L.).

Acceptance Criteria for all Surrogate recoveries are defined in the QC Spike Data Reports.

Caltest collects samples in compliance with CFR 40, EPA Methods, Cal. Title 22, and Standard Methods.

	ADDED	N. 1	
IVK	ORDER	NΩ	٠
	UNULIN	110.	•

B050585

Page 2 of 11

ANALYTE	RESULT	<u>R.L.</u>	UNITS_	D.F.	<u>analyzed</u>	QC BATCH	NOTES
LAB NUMBER: B050585-1 SAMPLE ID: MW-5 SAMPLED: 17 MAY 01 11:40 METHOD: EPA 8015M							
TPH SEMI-VOL- DISSOLVED Diesel Fuel TPH-Extractable, quantitated as diesel Motor Oil TPH-Extractable, quantitated as Motor Oil Surrogate o-Terphenyl	ND 190. ND ND 47.	50. 50. 200. 200.	ug/L ug/L ug/L ug/L	1	06.08.01	Т010138ТРН	1,2
Kerosene LAB NUMBER: B050585-1 (continued) SAMPLE ID: MW-5 SAMPLED: 17 MAY 01 11:40 METHOD: EPA 8015/8020A	ND 	50. 	ug/L 	- 			
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons -	ND	50.	ug/L	1	05.25.01	V010059G9A	3,4,5
Gasoline TPH-Purgeable, quantitated as gasoline	7500.	500.	ug/L	10			

1) Sample Preparation on 05-24-01 using EPA 3510

ORGANIC ANALYTICAL RESULTS

Benzene

Toluene

Ethylbenzene

Xylenes (Total)

Methyl tert-Butyl Ether (MTBE)

Surrogate 4-Bromofluorobenzene [FID]

Surrogate 4-Bromofluorobenzene [PID]

5.

0.5

5.

0.5

5.

140.

580.

101.

170.

125.

90.

7.0

ug/L

ug/L

ug/L

ug/L

ug/L

%

%

10

1

10

1

1

1

1

3) Sample Preparation on 05-24-01 using EPA 5030

²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

⁴⁾ Sample diluted to bring concentration of target analyte(s) within the working range of the instrument, resulting in increased reporting limits.

⁵⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on gasoline standards.

LAB ORDER No.:

B050585 Page 3 of 11

ORGANIC ANALYTICAL RESULTS

ANALYTE	RESULT	<u>R.L.</u>	UNITS	<u>D.F.</u>	<u>ANALYZED</u>	QC BATCH	NOTES
LAB NUMBER: B050585-2 SAMPLE ID: MW-8 SAMPLED: 18 MAY 01 07:00 METHOD: EPA 8015M							
TPH SEMI-VOL- DISSOLVED Diesel Fuel TPH-Extractable, quantitated as diesel	ND ND	50. 50.	ug/L ug/L	1	06.08.01	T010138TPH	1
Motor Oil TPH-Extractable, quantitated as Motor Oil	ND ND	200. 200.	ug/L ug/L				
Surrogate o-Terphenyl Kerosene	78. ND	50.	% ug/L				
LAB NUMBER: B050585-2 (continued) SAMPLE ID: MW-8 SAMPLED: 18 MAY 01 07:00 METHOD: EPA 8015/8020A					-		
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons -	ND	50.	ug/L	1	05.24.01	V010059G9A	2
Gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND ND ND ND 101.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %				
LAB NUMBER: B050585-3 SAMPLE ID: MW-9 SAMPLED: 18 MAY 01 17:15 METHOD: EPA 8015M							
TPH SEMI-VOL- DISSOLVED Diesel Fuel TPH-Extractable, quantitated as	ND ND	50. 50.	ug/L ug/L	1	06.08.01	T010138TPH	1
diesel Motor Oil TPH-Extractable, quantitated as Motor Oil	ND ND	200. 200.	ug/L ug/L				_

¹⁾ Sample Preparation on 05-24-01 using EPA 3510 2) Sample Preparation on 05-24-01 using EPA 5030

ORGANIC ANALYTICAL RESULTS			LAB ORI	DER No.:	:	Page	B050585 4 of 11
ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	<u>ANALYZED</u>	QC BATCH	NOTES
LAB NUMBER: B050585-3 (continued) SAMPLE ID: MW-9 SAMPLED: 18 MAY 01 17:15 METHOD: EPA 8015M							
TPH SEMI-VOL- DISSOLVED (continued) Surrogate o-Terphenyl Kerosene	76. ND	50.	% ug/L —————	1	06.08.01	T010138TPH	
LAB NUMBER: B050585-3 (continued) SAMPLE ID: MW-9 SAMPLED: 18 MAY 01 17:15 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons -	ND	50.	ug/L	1	05.24.01	V010059G9A	1,2
Gasoline TPH-Purgeable, quantitated as	74.	50.	ug/L				
gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	4.6 ND ND ND ND 97. 99.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %				
LAB NUMBER: B050585-4 SAMPLE ID: MW-10 SAMPLED: 18 MAY 01 15:40 METHOD: EPA 8015M							
TPH SEMI-VOL- DISSOLVED Diesel Fuel TPH-Extractable, quantitated as diesel	ND ND	50. 50.	ug/L ug/L	1	06.08.01	T010138TPH	3
Motor Oil TPH-Extractable, quantitated as Motor Oil	ND NO	200. 200.	ug/L ug/L				
	6.6		07				

Surrogate o-Terphenyl

%

82.

Sample Preparation on 05-24-01 using EPA 5030
 An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on gasoline standards.
 Sample Preparation on 05-24-01 using EPA 3510

LAB ORDER No.:

B050585

Page

5 of 11

ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	<u>analyzed</u>	QC BATCH	<u>NOTES</u>
LAB NUMBER: B050585-4 (continued) SAMPLE ID: MW-10 SAMPLED: 18 MAY 01 15:40 METHOD: EPA 8015M							
TPH SEMI-VOL- DISSOLVED (continued) Kerosene	ND	50.	ug/L	1	06.08.01	T010138TPH	
LAB NUMBER: B050585-4 (continued) SAMPLE ID: MW-10 SAMPLED: 18 MAY 01 15:40 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline Benzene Toluene	ND 0.7 ND	50. 0.5 0.5	ug/L ug/L ug/L	1	05.24.01	V010059G9A	1
Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND ND 102. 106.	0.5 0.5 5.	ug/L ug/L ug/L % %				
LAB NUMBER: B050585-5 SAMPLE ID: MW-11 SAMPLED: 17 MAY 01 12:05 METHOD: EPA 8015M							
TPH SEMI-VOL- DISSOLVED Diesel Fuel TPH-Extractable, quantitated as diesel	ND ND	50. 50.	ug/L ug/L	1	06.08.01	T010138TPH	2
Motor Oil TPH-Extractable, quantitated as Motor Oil	ND ND	200. 200.	ug/L ug/L				
Surrogate o-Terphenyl Kerosene	70. ND	50.	% ug/L				

¹⁾ Sample Preparation on 05-24-01 using EPA 5030 2) Sample Preparation on 05-24-01 using EPA 3510

LAB ORDER No.:

B050585

Page 6 of 11	
--------------	--

ANALYTE	RESULT	R.L.	UNITS	D.F.	<u>analyzed</u>	QC BATCH	NOTES
LAB NUMBER: B050585-5 (continued) SAMPLE ID: MW-11 SAMPLED: 17 MAY 01 12:05 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline	ND	50.	ug/L	1	05.25.01	V010059G9A	1,2
TPH-Purgeable, quantitated as gasoline	720.	50.	ug/L				
Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	36. 3.4 15. 18. 9.7 98. 102.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %				
LAB NUMBER: B050585-6 SAMPLE ID: MW-12 SAMPLED: 17 MAY 01 10:17 METHOD: EPA 8015M							
TPH SEMI-VOL- DISSOLVED Diesel Fuel TPH-Extractable, quantitated as	ND ND	50. 50.	ug/L ug/L	1	06.08.01	T010138TPH	3
diesel Motor Oil TPH-Extractable, quantitated as	ND ND	200. 200.	ug/L ug/L				
Motor Oil Surrogate o-Terphenyl Kerosene	38. ND	50.	% ug/L				
LAB NUMBER: B050585-6 (continued) SAMPLE ID: MW-12 SAMPLED: 17 MAY 01 10:17 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline	ND	50.	ug/L	1	05.25.01	V010059G9A	1,2

Sample Preparation on 05-24-01 using EPA 5030
 An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on gasoline standards.

³⁾ Sample Preparation on 05-24-01 using EPA 3510

LAB ORDER No.:
- 10 O. (O. C. (101)

B050585

11	7 of	Page
11	7 of	Page -

ONDANIC ANALITICAL RESULTS						raye	/ 01 11
ANALYTE	RESULT	<u>R.L.</u>	UNITS	<u>D.F.</u>	ANALYZED	QC BATCH	NOTES
LAB NUMBER: B050585-6 (continued) SAMPLE ID: MW-12 SAMPLED: 17 MAY 01 10:17 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS (continued)				1	05.25.01	V010059G9A	
TPH-Purgeable, quantitated as gasoline	220.	50.	ug/L				
Benzene Toluene Ethylbenzene	ND ND ND	0.5 0.5 0.5	ug/L ug/L ug/L				
<pre>Xylenes (Total) Methyl tert-Butyl Ether (MTBE)</pre>	ND ND	0.5 5.	ug/L				
Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	88. 90.	5.	ug/L % %				
LAB NUMBER: B050585-7 SAMPLE ID: MW-13 SAMPLED: 18 MAY 01 15:10 METHOD: EPA 8015M							
TPH SEMI-VOL- DISSOLVED				1	06.08.01	T010138TPH	1
Diesel Fuel TPH-Extractable, quantitated as diesel	ND ND	50. 50.	ug/L ug/L				
Motor Oil TPH-Extractable, quantitated as Motor Oil	ND ND	200. 200.	ug/L ug/L				
Surrogate o-Terphenyl Kerosene	78. ND	50.	% ug/L				
LAB NUMBER: B050585-7 (continued) SAMPLE ID: MW-13 SAMPLED: 18 MAY 01 15:10 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL				1	05.24.01	V010059G9A	2
PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons -	ND	50.	ug/L				
Gasoline Benzene	ND		_				
Toluene	ND ND	0.5 0.5	ug/L ug/L				

¹⁾ Sample Preparation on 05-24-01 using EPA 3510 2) Sample Preparation on 05-24-01 using EPA 5030

LAB ORDER No.:

ANALYTE	RESULT	R,L.	UNITS	<u>D.F.</u>	<u>ANALYZED</u>	QC BATCH	NOTES
LAB NUMBER: B050585-7 (continued) SAMPLE ID: MW-13 SAMPLED: 18 MAY 01 15:10 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS (continued) Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND ND 98. 102.	0.5 0.5 5.	ug/L ug/L ug/L %	1	05.24.01	V010059G9A	
LAB NUMBER: B050585-8 SAMPLE ID: MW-14 SAMPLED: 18 MAY 01 16:25 METHOD: EPA 8015M							
TPH SEMI-VOL- DISSOLVED Diesel Fuel TPH-Extractable, quantitated as	ND 120.	50. 50.	ug/L ug/L	1	06.08.01	T010138TPH	1,2
diesel Motor Oil TPH-Extractable, quantitated as Motor Oil	ND ND	200. 200.	ug/L ug/L				
Surrogate o-Terphenyl Kerosene	79. ND	50.	% ug/L				
LAB NUMBER: B050585-8 (continued) SAMPLE ID: MW-14 SAMPLED: 18 MAY 01 16:25 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons -	ND	50.	ug/L	1	05.24.01	V010059G9A	3,4
Gasoline TPH-Purgeable, quantitated as gasoline	100.	50.	ug/L				

ORGANIC ANALYTICAL RESULTS

3) Sample Preparation on 05-24-01 using EPA 5030

⁴⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on gasoline standards.

B050585

8 of 11

Page

Sample Preparation on 05-24-01 using EPA 3510
 An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

LAB ORDER No.:

B050585

Page

9 of 11

ONDARIO MINETTIONE NESSETS						, «90)
ANALYTE	RESULT	R.L	UNITS	<u>D.F.</u>	<u>analyzed</u>	QC BATCH	NOTES
LAB NUMBER: B050585-8 (continued) SAMPLE ID: MW-14 SAMPLED: 18 MAY 01 16:25 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS (continued) Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	11. ND ND ND ND 95. 99.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %	1	05.24.01	V01005,9G9A	
LAB NUMBER: B050585-9 SAMPLE ID: MW-15 SAMPLED: 18 MAY 01 17:45 METHOD: EPA 8015M							
TPH SEMI-VOL- DISSOLVED Diesel Fuel TPH-Extractable, quantitated as diesel	ND 210.	57 . 57 .	ug/L ug/L	1	06.08.01	T010138TPH	1,2
Motor Oil TPH-Extractable, quantitated as	ND ND	230. 230.	ug/L ug/L				
Motor Oil Surrogate o-Terphenyl Kerosene	73. ND	57.	% ug/L				
LAB NUMBER: B050585-9 (continued) SAMPLE ID: MW-15 SAMPLED: 18 MAY 01 17:45 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline	ND	50.	ug/L	1	05.24.01	V010059G9A	3,4

1) Sample Preparation on 05-24-01 using EPA 3510

ORGANIC ANALYTICAL RESULTS

3) Sample Preparation on 05-24-01 using EPA 5030

⁴⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on gasoline standards.

²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

LAB ORDER No.:

B050585

Page 10 of 11

- ONDERTONE NESSELS						ruge 1	0 OI 11
ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	<u>analyzed</u>	QC BATCH	<u>NOTES</u>
LAB NUMBER: B050585-9 (continued) SAMPLE ID: MW-15 SAMPLED: 18 MAY 01 17:45 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS (continued)	5.0	50		1	05.24.01	V010059G9A	
TPH-Purgeable, quantitated as gasoline	66.	50.	ug/L				
Benzene Toluene Ethylbenzene Xylenes (Total)	1.5 ND ND 2.1	0.5 0.5 0.5	ug/L ug/L ug/L ug/L				
Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND 101. 103.	5. 	ug/L % % 				
LAB NUMBER: B050585-10 SAMPLE ID: MW-17 SAMPLED: 18 MAY 01 18:15 METHOD: EPA 8015M							
TPH SEMI-VOL- DISSOLVED Diesel Fuel TPH-Extractable, quantitated as diesel	ND ND	50. 50.	ug/L ug/L	1	06.08.01	Т010138ТРН	1
Motor Oil TPH-Extractable, quantitated as Motor Oil	ND ND	200. 200.	ug/L ug/L				
Surrogate o-Terphenyl Kerosene	61. ND	50.	% ug/L				
LAB NUMBER: B050585-10 (continued) SAMPLE ID: MW-17 SAMPLED: 18 MAY 01 18:15 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL				1	05.24.01	V010059G9A	2
PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline	ND	50.	ug/L				
Benzene Toluene	ND ND	0.5 0.5	ug/L ug/L				

¹⁾ Sample Preparation on 05-24-01 using EPA 3510 2) Sample Preparation on 05-24-01 using EPA 5030

LAB ORDER No.:

B050585

Page 11 of 11

ANALYTE	RESULT	R.L.	UNITS	D.F.	<u>analyzed</u>	QC BATCH	NOTES
LAB NUMBER: B050585-10 (continued) SAMPLE ID: MW-17 SAMPLED: 18 MAY 01 18:15 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS (continued) Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID] LAB NUMBER: B050585-11 SAMPLE ID: TB SAMPLED: 17 MAY 01	ND ND ND 96. 102.	0.5 0.5 5.	ug/L ug/L ug/L % %		05.24.01	V010059G9A	
METHOD: EPA 8015/8020A AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND ND ND ND ND ND 92. 95.	50. 0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L ug/L	1	05.25.01	V010059G9A	1

¹⁾ Sample Preparation on 05-24-01 using EPA 5030

LAB ORDER No.:

B050585

Page

1 of 4

SUPPLEMENTAL QUALITY CONTROL (QC) DATA REPORT

Report Date: Received Date: 13 JUN 2001 22 MAY 2001

Client: Tom Howard

Cambria

1144 65th Street, Suite C

Oakland, CA 94608

QC Batch ID

Project: 153-1653-012\CITY OF OAKLAND MSC

Method

<u>Matrix</u>

T010138TPH V010059G9A 8015M 8015/8020A AQUEOUS AQUEOUS

William Svoboda Project Manager

Christine Horn Laboratory Director

CALTEST authorizes this report to be reproduced only in its entirety.
Results are specific to the sample as submitted and only to the parameters reported.
All analyses performed by EPA Methods or Standard Methods (SM) 18th Ed. except where noted.
Results of 'ND' mean not detected at or above the listed Reporting Limit (R.L.).
Analyte Spike Amounts reported as 'NS' mean not spiked and will not have recoveries reported.
'RPD' means Relative Percent Difference and RPD Acceptance Criteria is stated as a maximum.
'NC' means not calculated for RPD or Spike Recoveries.

METHOD BLANK ANALYTICAL RESULTS

LAB ORDER No.:

B050585 Page 2 of 4

ANALYTE	RESULT	R.Ļ	UNITS	<u>analyzed</u>	<u>NOTES</u>
QC BATCH: T010138TPH					
TPH SEMI-VOL- DISSOLVED Diesel Fuel TPH-Extractable, quantitated as diesel Motor Oil TPH-Extractable, quantitated as Motor Oil Surrogate o-Terphenyl Kerosene QC BATCH: V010059G9A	ND ND ND ND 73. ND	50. 50. 200. 200.	ug/L ug/L ug/L ug/L % ug/L	06.07.01	
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline TPH-Purgeable, quantitated as gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [PID] Surrogate 4-Bromofluorobenzene	ND ND ND ND ND ND ND 94.	50. 50. 0.5 0.5 0.5 0.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L %	05.24.01	

LABORATORY CONTROL SAMPLE ANALYTICAL RESULTS

LAB ORDER No.:

B050585

age 3 of 4

analyte	SPIKE AMOUNT	SPIKE\DUP RESULT	SPK\DUP %REC	ACCEPTANCE %REC \RPD	REL% DIFF	<u>analyzed</u>	<u>NOTES</u>
QC BATCH: T010138TPH							
TPH SEMI-VOL- DISSOLVED Diesel Fuel Surrogate o-Terphenyl	1000 100	917.\ 95.3\	92\ 95\ 	36-102\ 40-140\		06.07.01	1
QC BATCH: V010059G9A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	550. 6.69 39.1 9.20 47.4 11.1 20.0 20.0	525.\ 6.52\ 39.0\ 9.72\ 47.1\ 11.3\ 19.6\ 21.4\	95\ 97\ 100\ 106\ 99\ 102\ 98\ 107\	50-130\ 50-130\ 50-130\ 50-130\ 49-129\ 50-130\ 50-130\		05.24.01	

¹⁾ This batch has four LCS's, two prefiltered and two unfiltered the two prefiltered have no recovery. This LCS is an unfiltered.

MATRIX SPIKE ANALYTICAL RESULTS

LAB ORDER No.:

B050585 Page 4 of 4

8\78 9\78	38-105\32 40-140\	12.	06.07.01
			05.24.01
8\79	50-130\25	10.	
00\88 01\90 07\94 00\89 03\111 01\94 1\99	50-130\25 50-130\25 50-130\25 43-124\10 50-130\ 50-130\	12. 13.	
18 1011710 11 11 11 11 11 11 11 11 11 11 11 11 11	3\79)\88 \90 7\94)\89 3\111 \94	3\79	3\79 50-130\25 10. 0\88 50-130\25 13. 1\90 50-130\25 12. 7\94 50-130\25 13. 0\89 43-124\10 12. 3\111 10.

		.14.		1885 N. K	ELLY ROAD	• NAPA, CA 94558 •	(707) 258-40	00 • Fax (70	7) 226-10				LAB ORDER #	
1		alte	38 L	SAMP	LE CHA	IN	1.1			PA	GE	OF	<u> </u>	
	ANALYT	ICAL LABO	DATODV		USTOD	PROJECT # / PROJE		-· ^	^			P.	O. #	
	ANALII		AAJOKI	J OI O		<u> 15 3-16 5.5 ^</u>	012/6	ity of	Oakbagu	1 MS				
CLIENT:	0,		6	L		REPORT TO:					ANALYSES REDUESTED			
	Cank	oria_	LUN.	,	<u> </u>		Tom Howard					/ _/ /	दिन्न / / TURN-AROUND	
ADDRES				CITY: Oaklo	. \	STATE: Ca	STATE: ZIP: Ca 94608					Y E	TIME	
BILLING	LI 65	TN 57	•	CANIC	MW		-1 100	<u> </u>			20,7	1919 Jan	STANDARD □ STANDARD	
		me a	15 6	bave					ſ		/N/ 27	\rd \	/ RUSH	
PHONE			X PHONE		SAMPLER (PRINT & SIGN NAME):	SIGN NAME): 0 1/1					\ \ \ /	DUE DATE:	
510-	420-3	310 3	510-47	20-9170	Soni	ir Gill . A.	KULI			- /.	5/ /s	<i>y</i> /	/ /	
CALTEST														
#	SAMPLED	SAMPLED	MATRIX	CONTAINER AMOUNT/TYPE	PRESERVATIVE	SAMPLE IDENTIFICA	ATION SITE	CLIENT LAB#	(GRAB	_/_/	/	/_/_	REMARKS	
yrin (5-12-01	11'40	AA	3 Amber	HCI	MW-S			X	1	+		any positive	
	•	11.00	110	4004		7110 2			ٺ				results for MIRE	
= 2	5-18-01	7:00	AQ	TAMBEL	1461	MW-8			X	1	+		will be confirmed	
- March 200 1				in Noa					X	2			by reanalysis using	
-3	5-18-01	2:12	AQ	3 Ambei	HCI	MW-9			^		 		EPA Method 8260 except in mw-5	
-4		7		WVOG					$ \chi $	74			CICCPT IN PIW-3	
	5-18-01	3,40	AQ	JAmber	HCI	MW-10			Λ		+	+ + -	Prior to extraction,	
-5	5-17-01	17.105	AQ	MV 04	nei	4			$ \mathcal{X} $	X	12		Lab will fritter and	
	J (1-10-	1/4	3Amber	1101	MW-11 A			,			 	WITH DIG MICETA	
¥ (*	5-17-01	רוטו	AG	3 Amber	1461	MW-12			$ \mathcal{X} $		~		glass-membrone filter	
مَّنْ النَّالَةِ النَّالَةِ النَّالَةِ النَّالَةِ النَّالَةِ النَّالَةِ النَّالَةِ النَّالَةِ النَّ		70.1	17.0	4404					.,				extract with silica	
_+	5-18-01	3:10	IAQ	3Amber	Mei	MW-13			X	\			sel in flock and	
-8		1.		WYOR					X		الدا		ultrasonic both asalaton, and the sample dilute the sample dilute the cytract for analysis (regulied by Acitos A).	
	5-13-01		AQ	3 Ambe.	1-1C (MW-14			1		\ \	1	the crytiact for analysis	
-9	5-1-801	i		SA VOA	+161	MW-15			2	X	+3			
<u> </u>	5-18-0	6:15	AQ	2 004	McI	M W-17				X	1-		The lab shall run a spiked method blank	
$-\mu$	5-17-0		17.0	2002	HCY	TB XX			4		- 	+	through the same word in	
							Coulo coulo cou						and evaluate and explains	
By SI			<u></u>			erms and Conditions set					T			
-	RELI	NQUISHED	BY	-S-7	AJEJINE	RECEIVED BY	′	RELIN	IQUISHED E	3Y	1 7	TE/TIME	RECEIVED BY	
	Ω.	MN	1	ج م نتین ا	134	of continue	2 0 1	too	→ <u>·</u>) ()	2/53	163	-D Therea W	
	<u>~~</u>	-20/V	rs.			1 903 100	~~~	1,000		~~0 ~			7	
				·										
Sam	les: WC	MICRO	u wate	IIO, WAR	rit 8VV	DA PHY YN TE	MP: S.O	SEALED ON	INTAC	1: (VA)	MATR	IX: AGEA	queous Nondrinking Water, Digested Metal	
BD:	BIO	Woulding	AA ELM	ungisa akan	CON	WENTS	AND THE PARTY OF T				کطر FE	W H.L.s, Aq	ueous Nondrinking Water, Digested Metals;	
	AA TITE	22 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1 11 18 16	Personal Service Control of the Cont	bildi S	vey, eagaining ray weller to	100 (50) (20) (40) (50) (20)			•	r; SL = Soil, Sludge, Solid; FP = Free Produc	
CONTAINER TYPES: A										PES: AL = Amber Liter; AHL = 500 ml Plastic); QT=Quart (Plastic); HG = Half Gal-				
a	<u> 2000 (100 100 100 100 100 100 100 100 100</u>					2 1 5pm			~wil	11	<u></u>	,	oil Jar; B4 = 4 oz. BACT; BT = Brass Tube;	
777	/HNO ₃	_H ₂ SO ₄ ,	******	ой шинови		to the busk	1 cm. l	oubble.	-XXX 5	[/23/0]			OTC = Other Type Container	
PIL:	HNO ₃	_H₂SÖ₄	NaO	HLHCL_	X)	1 1mg w/ 3/	m bublels					PA	<u> </u>	

Appendix C

Well Sampling Protocol for 3rd Quarter 2001

		Ta	ble					otocol (T cipal Ser			r 2001)	strict
Well***		Qua	urter		Gauge Every Otr	DO (field meter)	TPHg/ BTEX/ MTBE* (8015/ 8020)	TPH d/k/mo (8015) w/filtration + silica **	VOC (8260)	SVOC (8270)		Comments **
The star star and star		2	3	4								
MW-1	Х		Х		X	X	X	×				`
MW-2	Х		X		Х	Х	Х	Х				
MW-5	X	Х	X	Х	X	Х	X	×				
MW-6	Х		Х		Х	Х	Х	×				SPH present
MW-7	X		х		Х	Х	Х	×				picacin
MW-8	X	X	Х	Х	Х	Х	х	×				
MW-9	X	х	Х	×	X	Х	X	×		-		
MW-10	Х	×	Х	Х	X	X	X	×	<u> </u>			
MW-11	Х	×	Х	Х	X	Х	Х	×				
MW-12	х	X	Х	Х	Х	Х	Х	×				
MW-13	Х	х	Х	X	X	х	х	Х				
MW-14	Х	×	X	Х	X	Х	Х	×				
MW-15	Х	х	Х	Х	Х	Х	Х	×	_			
MW-16	Х		X	Х	х	Х	х	×				SPH present
MW-17	×	х	X	Х	Х	х	Х	X				process
MW-18		L	1		1	<u> </u>	Gauge	3 rd quarter o	nly			<u> </u>
TBW-1	Х		Х		Х	Х	X	×				SPH present
TBW-3	X		×		Х	Х	Х	X				procent
TBW-4	X		Х	-	Х	Х	Х	×				
TBW-5	X		Х		х	×	Х	×				SPH present
TBW-6	x		Х	 	х	Х	Х	×				prosent
Trip Blank	X	Х	х	х	NA	NA	Х	х				

Blank

DO = Dissolved oxygen

= Any positive results for MTBE will be confirmed by re-analysis using EPA Method 8260, except in MW-5.

= Prior to analysis, lab will filter sample with 0.45 micron filter, then subject filtrate to silica get treatment (clean-up) by EPA Method 3630, and then sample/dilute the filtrate for analysis. The lab shall run a spiked method blank through the same procedure and evaluate and explain any atypical deviation.

*** = Wells MW-3 and MW-4 were destroyed during the first quarter 1999.