

CITY OF OAKLAND

DALZIEL BUILDING · 250 FRANK H. OGAWA PLAZA, SUITE 5301 · OAKLAND, CALIFORNIA 94612-2034

Public Works Agency Environmental Services FAX (510) 238-7286 TDD (510) 238-7644

June 17, 2000

Mr. Barney Chan Alameda County Environmental Health Services 1131 Harbor Bay Parkway Alameda, California 94502-6577

Subject:

First Quarter 2000 Monitoring and Recommendation Report

City of Oakland Municipal Service Center

7101 Edgewater Drive Oakland, California

Dear Mr. Chan:

Enclosed is one copy of the First Quarter 2000 Monitoring and Recommendation Report, prepared by our consultant, Cambria Environmental Technology Inc., for the City of Oakland Municipal Service Center at 7101 Edgewater Drive.

We are finalizing a Work Plan for installation of additional borings and one additional well (MW-18) between MW-6 and MW-16. We will send you the Work Plan for your review and approval by July 15, 2000.

Please call me at 238-6259, if you have any questions or require additional information.

Sincerely,

Joseph A. Cotton

Environmental Program Specialist

cc: w/o encl.: Andrew Clark-Clough

David Elias, Cambria Environmental Technology

cc: w/encl.: Diane Heinz, Port of Oakland

Mr. Joseph Cotton City of Oakland, Public Works Agency Environmental Services Division 250 Frank H. Ogawa Plaza, Ste. 5301 Oakland, California 94612-2034

Re: First Quarter 2000 Monitoring and Recommendations Report

City of Oakland, Municipal Services Center 7101 Edgewater Drive Oakland, California Cambria Project #153-1247-019

Dear Mr. Cotton:

As required by the Alameda County Health Care Services Agency (ACHCSA), Cambria Environmental Technology, Inc. (Cambria) has prepared this first quarter 2000 groundwater monitoring report for the above-referenced site. Presented below are the first quarter 2000 activities and results, the anticipated second quarter 2000 activities, and recommendations for future work. The recommendations are based on the initial analytic results for groundwater samples collected from seven new monitoring wells installed in December 1999. Groundwater elevations and hydrocarbon concentrations are presented on Figure 1. We have also included isoconcentration contours as Figures 2 through 6 and cross sections, including the new lithologic data generated during the well installation, as Figures 7 and 8. Analytic results are tabulated in Table 1, and the laboratory analytical report including chromatograms is included as Attachment A. Well sampling forms, completed in the field, are included as Attachment B, and our standard field procedures for sampling monitoring wells are included as Attachment C.

FIRST QUARTER 2000 ACTIVITIES AND RESULTS

On January 18, 2000, Cambria gauged monitoring wells MW-1, MW-2 and MW-5 through MW-17 and backfill wells TBW-1, TBW-3, and TBW-6 (Figure 1), and inspected the site wells for separate phase hydrocarbons (SPH). Wells MW-3 and MW-4 were destroyed during the fourth quarter 1999. As per the ACHCSA approved schedule shown below, Cambria collected groundwater samples on January 18 and 19, 2000, from monitoring wells MW-1, MW-2 and MW-5 through MW-10, and initial groundwater samples from new wells MW-11 through MW-17. Select groundwater samples were analyzed for total petroleum hydrocarbons (TPH) as gasoline (TPHg), TPH as diesel (TPHd), TPH as kerosene (TPHk), TPH as motor oil (TPHmo), benzene, toluene, ethylbenzene and xylenes (BTEX), methyl tert-butyl ether (MTBE), and select bioparameters at Caltest Analytical of Napa, California, a California state-certified laboratory. The specific analytes for each well are presented below in Table A.

Oakland, CA San Ramon, CA Sonoma, CA

Portland, OR

Cambria Environmental Technology, Inc.

1144 65th Street Suite B Oakland, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170 Need New Schedul

	Table A	- Well Sampling Protocol
Well	Sampline la recutéria y Sur les	Ringing State American State (1984) and the state of the
MW-1	1 st and 3 rd Quarters	TPHd, TPHk, TPHmo, TPHg/BTEX/ MTBE, bioparameters
MW-2	1 st and 3 rd Quarters	TPHd , TPHg/BTEX/MTBE [*] , bioparameters
MW-3		None - destroy well
MW-4		None - destroy well
MW-5	1 st and 3 rd Quarters	TPHd, TPHk, TPHmo, TPHg/BTEX/MTBE, bioparameters
MW-6	1 st and 3 rd Quarters	TPHd, TPHg/BTEX/MTBE, bioparameters
MW-7	1st and 3rd Quarters	TPHd, TPHk, TPHmo, TPHg/BTEX/MTBE, bioparameters
MW-8	1st, 2nd, 3rd, and 4th Quarters	TPHd, TPHk, TPHmo, TPHg/BTEX/MTBE, bioparameters
MW-9	1 st , 2 nd , 3 rd , and 4 th Quarters	TPHd, TPHk, TPHmo, TPHg/BTEX/MTBE ⁻ , bioparameters
MW-10	1 st , 2 nd , 3 rd , and 4 th Quarters	TPHd, TPHk, TPHmo, TPHg/BTEX/MTBE ⁻ , bioparameters
MW-11	1st, 2nd, 3rd, and 4th Quarters	TPHd, TPHk, TPHmo, TPHg/BTEX/MTBE, bioparameters
MW-12	1 st , 2 nd , 3 rd , and 4 th Quarters	TPHd, TPHk, TPHmo, TPHg/BTEX/MTBE, bioparameters
MW-13	1 st , 2 nd , 3 rd , and 4 th Quarters	TPHd, TPHk, TPHmo, TPHg/BTEX/MTBE, bioparameters
MW-14	1st, 2nd, 3rd, and 4th Quarters	TPHd, TPHk, TPHmo, TPHg/BTEX/MTBE ⁻ , bioparameters
MW-15	1 st , 2 nd , 3 rd , and 4 th Quarters	TPHd, TPHk, TPHmo, TPHg/BTEX/MTBE, bioparameters
MW-16	1 st , 2 nd , 3 rd , and 4 th Quarters	TPHd, TPHk, TPHmo, TPHg/BTEX/MTBE, bioparameters
MW-17	1st, 2nd, 3rd, and 4th Quarters	TPHd, TPHk, TPHmo, TPHg/BTEX/MTBE, bioparameters

^{*}Any positive results for MTBE will be confirmed by re-analysis using EPA Method 8260, except in MW-5.

Confirmation by EPA Method 8260 for MW-5 is not necessary due to positive confirmation results in the third quarter 1998.

Groundwater Flow Direction

Cambria gauged all monitoring wells on January 18, 2000, within a thirty-minute period, to minimize the effects of tidal fluctuation on the measurement of groundwater elevations. The measurements indicate a northern groundwater gradient of 0.007 ft/ft toward Damon Slough in the northern portion of the site and a southwestern-northwestern groundwater gradient of 0.003 ft/ft toward San Leandro Bay in the central and southern portion of the site (Figure 1). The flow directions are generally consistent with historical measurements. However, the groundwater elevation data from newly installed wells MW-11 and MW-14, located in the central/western portion of the site, revealed a northwest/southeast-trending groundwater ridge. This ridge was not evident during previous sampling events. The flow direction interpretation in the northern portion of the site was not effected substantially by the removal of groundwater elevation data from previously destroyed wells MW-3 and MW-4. The contours near these former wells appear similar to previous sampling events

Bioparameters = Ferrous iron, ORP, DO, total alkalinity, nitrate, and sulfate and conducted only during 1st and 3st quarters.

with groundwater flowing north towards Damon Slough. Groundwater elevation data are presented in Table 1.

Hydrocarbon Distribution in Groundwater

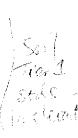
Chromatogram Review: Analytic laboratories will usually report the hydrocarbons detected in the range of the requested analysis, regardless of the pattern of the chromatogram. They may note if the pattern is different from the typical pattern associated with the requested analysis. However, this practice can still result in false positive hydrocarbon detections and reporting due to the overlapping of the ranges of different types of hydrocarbons. For example: a laboratory may report a diesel concentration, when in fact, the hydrocarbon detected is the lighter end of motor oil.

The laboratory reported that the soil and groundwater samples analyzed from newly installed wells MW- 12 through 17 contained relatively high TPHmo concentrations compared to historical soil and groundwater samples analyzed from other locations. In addition, we noted that high motor oil concentrations were often associated with a lower diesel concentration for a number of the perimeter wells. Therefore, we requested that the analytic laboratory complete a review of the chromatograms generated for this quarter to assess whether the TPHd detected in groundwater samples from the wells located along the shoreline were actually the lighter end of TPHmo. The results of this review indicated that most of the TPHd reported by the laboratory was actually motor oil (Table 1, Figure 2, Attachment A). This result of the chromatogram review is significant for two reasons: 1) the TPHd-impacted soil and groundwater appears to be restricted to onsite, and is not detected in groundwater water samples collected from downgradient perimeter wells MW-8, 9, 10, 13, 14, 15, or 17, and 2) the City does not have a history of an onsite motor oil release, nor has elevated TPHmo been detected historically in onsite groundwater or soil samples. Therefore, the TPHmo detected in the newly installed wells appears to originate from an offsite source located along the San Leandro shoreline and is not related to fuel dispensing activities associated with the City's Municipal Service Center.

Isoconcentration Contours: Cambria generated isoconcentration contours for TPHg, TPHd, TPHmo, benzene, and MTBE for this quarters data to summarize and present the distribution of the different hydrocarbons detected at the site (Figures 2,3,4,5, and 6). The discussion below summarizes the general distribution of each analyte.

Diesel in Groundwater: As discussed above, the majority of the diesel detected in groundwater samples for this quarter were actually the lighter end of motor oil, and in wells MW-10 and MW-11, the heavier end of gasoline contributed to the diesel concentration, as well. Therefore, the maximum TPHd concentration detected in groundwater was 100 micrograms per liter (µg/l) in well MW-5, which is located about 450 ft from San Leandro Bay, adjacent to the active USTs and Building Number 5. As illustrated on Figure 2, none of the offsite perimeter wells contain diesel

concentrations above the San Francisco Airport Ecological Protection Zone Tier I Standard of 640 µg/l., Although the wells were not sampled for TPHd due to SPH, the SPH surrounding wells TBW-5, TBW-1, TBW-3, and MW-6 are likely a mix of gasoline and diesel. Based on this quarters sampling data, it appears that TPHd in groundwater has not migrated offsite to the San Leandro Bay.


Motor Oil in Groundwater: The maximum TPHmo concentration detected in groundwater was 120,000 μg/l in new offsite well MW-13. With the exception of well MW-12, located immediately adjacent to the fence and property line, the highest TPHmo concentration detected in onsite groundwater was 660 μg/l in well MW-2. The TPHmo detected in the sample from MW-12 may be the result of it's proximity to the property boundary and the apparent TPHmo offsite source. As illustrated on Figure 3, elevated TPHmo concentrations appear to be restricted to the areas offsite and to the west of the Municipal Service Center property line.

Gasoline in Groundwater: The maximum TPHg concentration detected was 3,000 μ g/l in well-MW-5. Up to 200 μ g/l TPHg were detected in downgradient offsite wells MW-9, 10, 12, and 15, which is below the San Francisco Airport Ecological Protection Zone Tier I Standard acceptable threshold of 3,700 μ g/l. TPHg concentrations appear to be defined in the downgradient and crossgradient directions to within acceptable ecological risk thresholds (Figure 4).

Benzene in Groundwater: A maximum benzene concentration of 66 µg/l was detected in well MW-5, located adjacent to the active USTs. This concentration, and the other low concentrations detected, is within the acceptable risk thresholds for both the San Francisco Airport Ecological Protection Zone Tier I Standards and the City of Oakland Risk-Based Tier I guidance thresholds for inhalation of indoor air vapors, of 71 and 110 µg/l, respectively (Figure 5).

MTBE in Groundwater: With the exception of the 1,300 µg/l MTBE detected in well MW-5, no MTBE was detected in any of the groundwater samples collected for this quarters monitoring. However, the downgradient extent of the MTBE is defined by the non-detect result for well MW-11, located about 150 downgradient of well MW-5 (Figure 6).

Separate-Phase Hydrocarbons: Separate-phase hydrocarbons (SPH) were detected in monitoring wells MW-6 and MW-16, and in backfill wells TBW-3 and TBW-5. However, the extent of SPH is defined in the downgradient direction for each of these areas by wells MW-13 and MW 17. It is unlikely that the SPH detected in well MW-16 is related to the SPH in well MW-6 because the hydrocarbon appears to be more viscous than the onsite diesel/gasoline SPHs. Cambria recently submitted a product sample from well MW-16 to verify this conclusion, and will report the results of the analysis under separate cover. Cambria is currently removing SPH from tank backfill well TBW-5 using a pneumatic skimmer. SPH in wells MW-6, MW-16; TBW-1 and TBW-3 are being removed with passive skimmers.

Bioparameter Analyses Results

Cambria analyzed groundwater samples for ferrous iron, total alkalinity, oxidation reduction potential (ORP), dissolved oxygen (DO), nitrate, and sulfate to assess the present level of intrinsic bioremediation. These bioparameters were quantified in all of the monitoring wells analyzed for hydrocarbons. Presented below in Table B is a summary of the chemical reactions and relationships that indicate whether hydrocarbon biodegradation is occurring. Following Table B we have summarized the analytical results for this quarters sampling. The analytical results in their entirety, including TPHg and TPHd concentrations for comparison, are presented in Table 2.

	Table B - Bioparameter Analysis		
Bio- parameter	Description of chemical processes and implications of relationship between hydrocarbon and bioparameter concentrations.	Relationship indicating active biodegradation	Observed Relationship
ORP	The oxidation-reduction potential (ORP) of groundwater is a measure of electron activity and is an indicator of the relative tendency of a solute species to gain or lose electrons. The ORP of groundwater generally ranges from -400 millivolts (mV) to +800 mV. Under oxidizing conditions the ORP of groundwater is positive, while under reducing conditions the ORP is usually negative. Reducing conditions (negative ORP) suggests that anaerobic biodegradation is occurring. Generally, the ORP of groundwater inside a hydrocarbon plume should be somewhat less than that measured outside the plume.	inverse	direct
Nitrate	After DO has been depleted in the groundwater, nitrate may be used as an electron acceptor for anaerobic biodegradation. In this denitrification process, nitrate is reduced to nitrite. Reduced nitrate concentrations in the source area compared to the clean area suggests that anaerobic biodegradation is occurring.	inverse	inverse
Sulfate	After DO and nitrate have been depleted in the groundwater, sulfate may be used as an electron acceptor for anaerobic biodegradation. If sulfate concentrations vary inversely with hydrocarbon concentrations, anaerobic biodegradation of fuel hydrocarbons is probably occurring.	inverse	inverse
Ferrous Iron	In some cases ferric iron acts as an electron acceptor during anaerobic biodegradation of petroleum hydrocarbons. In this process, ferric iron is reduced to ferrous iron, which may be soluble in water. Therefore, if the ferrous iron concentrations vary directly with hydrocarbon concentration, anaerobic biodegradation may be occurring.	direct	direct

Alkalinity	The total alkalinity of groundwater indicates the groundwater's ability to neutralize acid. High alkalinity (high pH) conditions occur when groundwater contains elevated hydroxides, carbonates, and bicarbonates of elements such as calcium, magnesium, sodium, potassium, or ammonia. Since these chemical species are created by the respiration of microorganisms, high alkalinity is an indicator of biological activity. However, these chemical species may also result from the dissolution of rock (especially carbonates) and the transfer of carbon dioxide from the atmosphere. Alkalinity also buffers groundwater pH against acid generation by both aerobic and anaerobic biodegradation processes. Higher alkalinity in the source area as compared to clean areas suggests that aerobic biodegradation is occurring.	direct	direct
Dissolved Oxygen	During aerobic biodegradation, DO levels are reduced as aerobic respiration occurs. DO is the most thermodynamically favored electron acceptor used in aerobic biodegradation of petroleum hydrocarbons. Active aerobic biodegradation of BTEX compounds requires at least 1 ppm DO in groundwater and DO concentrations can be as high as 8 to 13 mg/L in oxygen-saturated groundwater that is free of hydrocarbons. Observed inverse relationships between DO and hydrocarbon concentrations indicate the occurrence of aerobic degradation, provided that at least 1 to 2 mg/L of DO is present in groundwater.	inverse	Inverse

Aerobic biodegradation: In general, nitrate, sulfate and DO concentrations appear to decrease as hydrocarbon concentrations increase, suggesting that aerobic biodegradation of hydrocarbons is occurring. Also, total alkalinity results show a general increasing trend as hydrocarbon concentrations increase, which also indicates aerobic biodegradation.

Anaerobic biodegradation: Ferrous iron concentrations exhibited a general increasing trend as hydrocarbons increased, suggesting that anaerobic biodegradation is occurring. ORP, however, appeared to increase as hydrocarbon concentrations increased, which is contraindicative of anaerobic biodegradation. The negative ORP values measured in wells MW-1, MW-5, MW-7, MW-11, MW-13 and TBW-6 indicate that reducing conditions may be present in the groundwater surrounding these wells.

In general, the bioparameter results indicate that natural biodegradation of hydrocarbons is occurring at the site.

Geologic Cross Sections

Cambria prepared two geologic cross sections to better understand the hydrogeology of the site, and to incorporate the new lithologic information generated during the installation of monitoring wells MW-11 through MW-17. Although the analytic results for groundwater from the downgradient perimeter wells indicate that the rate of contaminant transport is minimal at the site, the cross sections were also prepared to identify any high permeability sediments that may promote transport of hydrocarbons towards the San Leandro bay.

Cross Section A-A¹: The analytic results for groundwater indicate that hydrocarbon transport of TPHg and TPHd-related hydrocarbons is not occurring at a rapid rate. However, high permeability sediments do exist between wells MW-14 and MW-8, as shown on Figure 7. As discussed below, cross section B-B¹ shows that the high permeability sediments do not extend significantly to the east from well MW-16, and are not likely a concern in this area. However, there is less information regarding the sediments east of wells MW-14, MW-9, and MW-15. The shallow samples collected on the east side of the storage building during the piping removal were primarily low permeability clayey silts, with occasional sands and gravels, but the samples were not collected below about 7 ft depth. However, as mentioned above, the hydrocarbon concentrations detected in these wells are all below acceptable risk-based parameters for TPHg, TPHd, benzene, and MTBE, indicating that a high permeability conduit does not exist in the vicinity of the wells. High permeability units exist from about 12-18 ft depth in well MW-12 and in remediation well RW-1 from about 14 to 19 ft depth.

Cross Section B-B¹: As shown on Figure 8, cross section B-B¹, high permeability sediments appear to exist adjacent to San Leandro Bay, and do not extend significantly onto the Municipal Service Center property in the southern portion of the site. Hydrocarbon transport from the former USTs located upgradient from MW-6 is likely impeded by the moderate and low permeability sediments that appear to exist from well MW-7 to at least well MW-6.

OTHER FIRST QUARTER 2000 ACTIVITIES

Cambria installed an active, mobile free-product skimmer, and began removal of free-product from tank backfill wells TBW-1 and TBW-5. As of April 18, 2000, the active skimmer had removed about 95 gallons of SPH from well TBW-5. In addition, Cambria installed passive skimmers in wells MW-6, MW-16, TBW-1, and TBW-3.

CONCLUSIONS AND RECOMMENDATIONS

As mentioned above, Cambria collected the initial groundwater samples from seven newly installed monitoring wells (five offsite, two onsite) during this sampling event. In summary, the analytic results for groundwater from the seven new monitoring wells indicate the following:

• The diesel concentrations detected in the offsite perimeter wells are from the light end of motor oil, and are not indicative of actual TPHd in groundwater.

The offsite groundwater samples contained elevated TPHmo concentrations of up to 120,000 µg/l. These TPHmo concentrations are much higher than the concentrations detected in onsite wells where gasoline and diesel are the primary contaminants of concern. Since TPHmo appears to exist primarily offsite, there may be offsite TPHmo sources not associated with the historical operations at the Municipal Service Center. The site and the surrounding land is composed of large quantities of fill of unknown origin. Therefore, it is possible that motor oil was entrained in the material used to fill the offsite area. Although there is no historical documentation, a second potential source may have been a motor oil spill prior to the reclamation of the wetland.

As discussed above, none of the groundwater samples analyzed this quarter from the perimeter wells contained hydrocarbon concentrations above acceptable risk thresholds, with the exception of TPHmo. However, the TPHmo detected in the samples is likely from a source not associated with the historical activities at the Municipal Service Center.

The viscous SPH detected in well MW-16 did not appear to be the same hydrocarbon as the mixed gasoline and diesel SPH detected in onsite monitoring wells. Cambria compared the chromatograms from the soil samples collected from this well with the chromatograms from the product detected onsite. The results of the comparison supported that the hydrocarbons may be from different sources. We have also submitted a product sample to an analytic laboratory to verify this conclusion.

- The extent of hydrocarbons in groundwater downgradient of well MW-5 and the active USTs appears to attenuate significantly with distance. This conclusion is based on the moderate hydrocarbon concentrations detected in groundwater samples collected from the newly installed downgradient well MW-11, which define the downgradient extent of hydrocarbons from this source area.
- With the exception of the wells containing SPH, no groundwater samples collected this
 quarter contained benzene, MTBE, TPHg, or TPHd concentrations above the San Francisco
 Airport Ecological Protection Zone Tier I standards or the City of Oakland Risk-based Tier
 I guidance thresholds for inhalation of indoor air vapors.

As mentioned above, the relatively high TPHmo concentrations are interfering with the TPHd analyses and causing the laboratory to report falsely elevated TPHd concentrations. To better assess the source of the TPHmo, to keep the remedial process moving forward for the onsite TPHg and

TPHd-impacted soil and groundwater, and to better define the location of high permeability sediments, Cambria recommends the following:

Mary John

 Completing borings, and perhaps a monitoring well in the vicinity of wells MW-16 and MW-17 to assess whether the source of the SPH detected in well MW-16 emanates from on or offsite. Cambria has also collected a SPH sample from well MW-16 for comparison to the SPH detected onsite;

- Installing one to two well's between the onsite hydrocarbon sources and the newly installed perimeter wells to better assess whether the TPHmo detected in groundwater at the perimeter of the site exists onsite, as well. Cambria will likely recommend locations at the property boundary, downgradient of well TBW-5 and MW-6. Cambria also recommends installing either a boring or a well downgradient of well MW-12, between the well and the San Leandro Bay, to assess the extent of the high permeability unit at 12 ft depth in well MW-12;
- Continuing to remove product from the subsurface using both active and passive skimmers.
 In addition, Cambria recommends moving forward with feasibility testing in remediation test well RW-1 to assess the viability of completing site remediation using dual-phase extraction, soil vapor extraction, or air sparging; and
- Completing a human health and ecological risk assessment to assist with the designation of site specific cleanup concentration thresholds. These thresholds will help to guide the remedial action decision-making process.

ANTICIPATED SECOND QUARTER 2000 ACTIVITIES

Cambria will gauge and measure any SPH detected in MW-1, MW-2 and MW-5 through MW-17, and collect groundwater samples from wells MW-8 through MW-17. Following field activities, Cambria will tabulate the analytic data, contour groundwater elevations, and write a quarterly monitoring report.

CLOSING

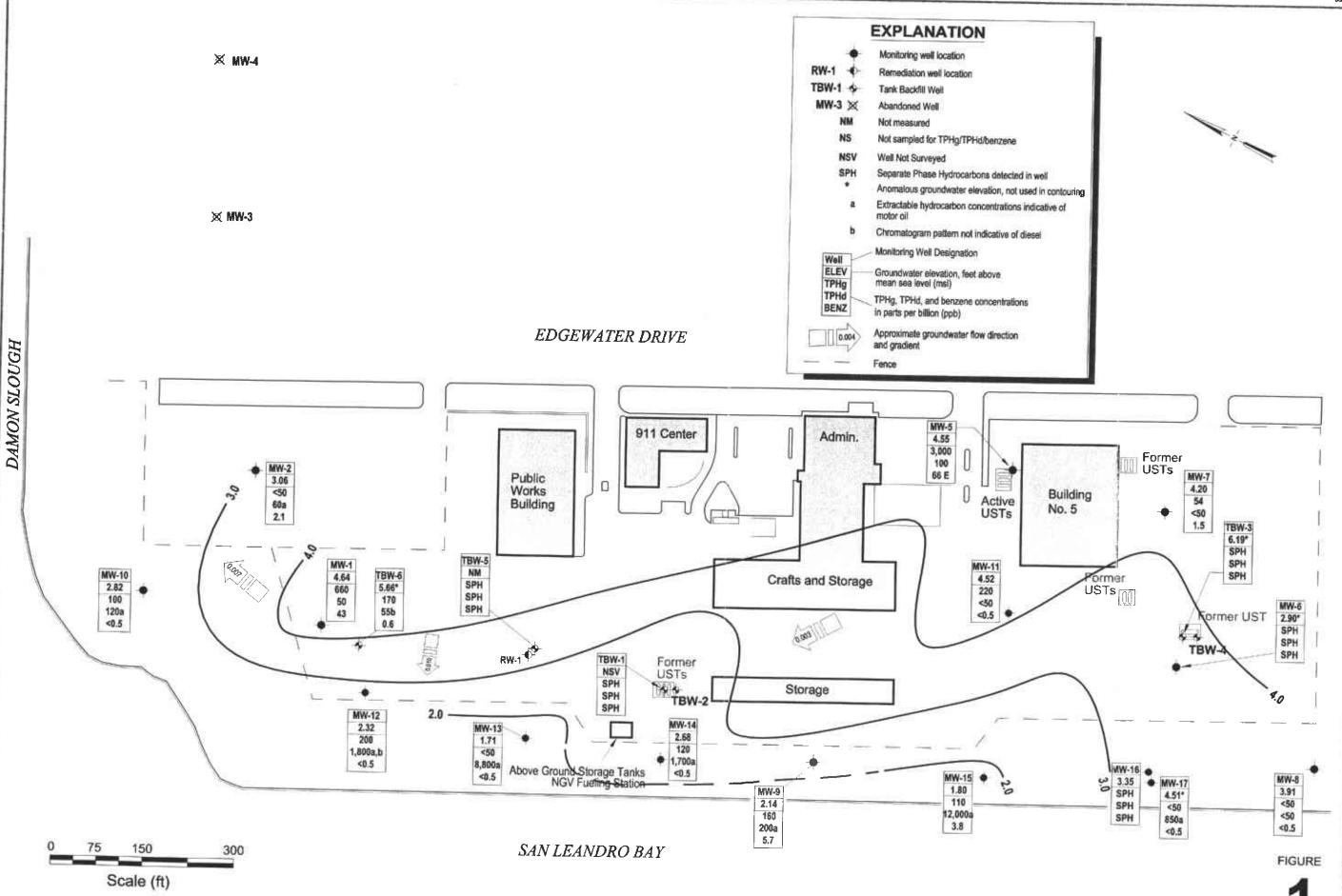
Please call Jacquelyn Jones at (510) 420-3315 or David Elias at (510) 420-3307, if you have any questions or comments regarding this report or anticipated site activities.

Sincerely,

Cambria Environmental Technology, Inc.

Jacquelyn Jones Staff Geologist

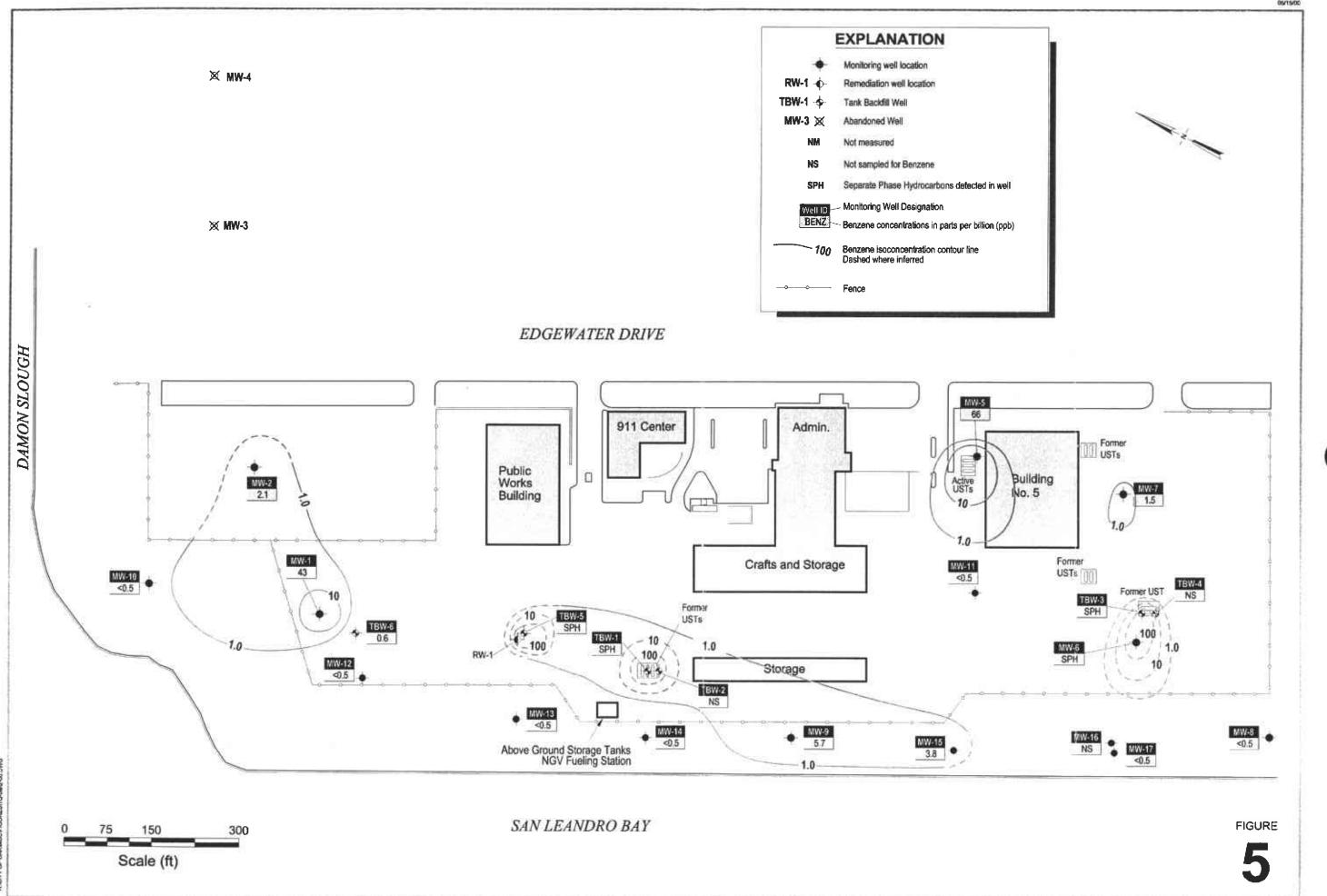
David Elias, R.G. Senior Geologist


Attachments: A - Laboratory Analytical Report

B - Well Sampling Forms

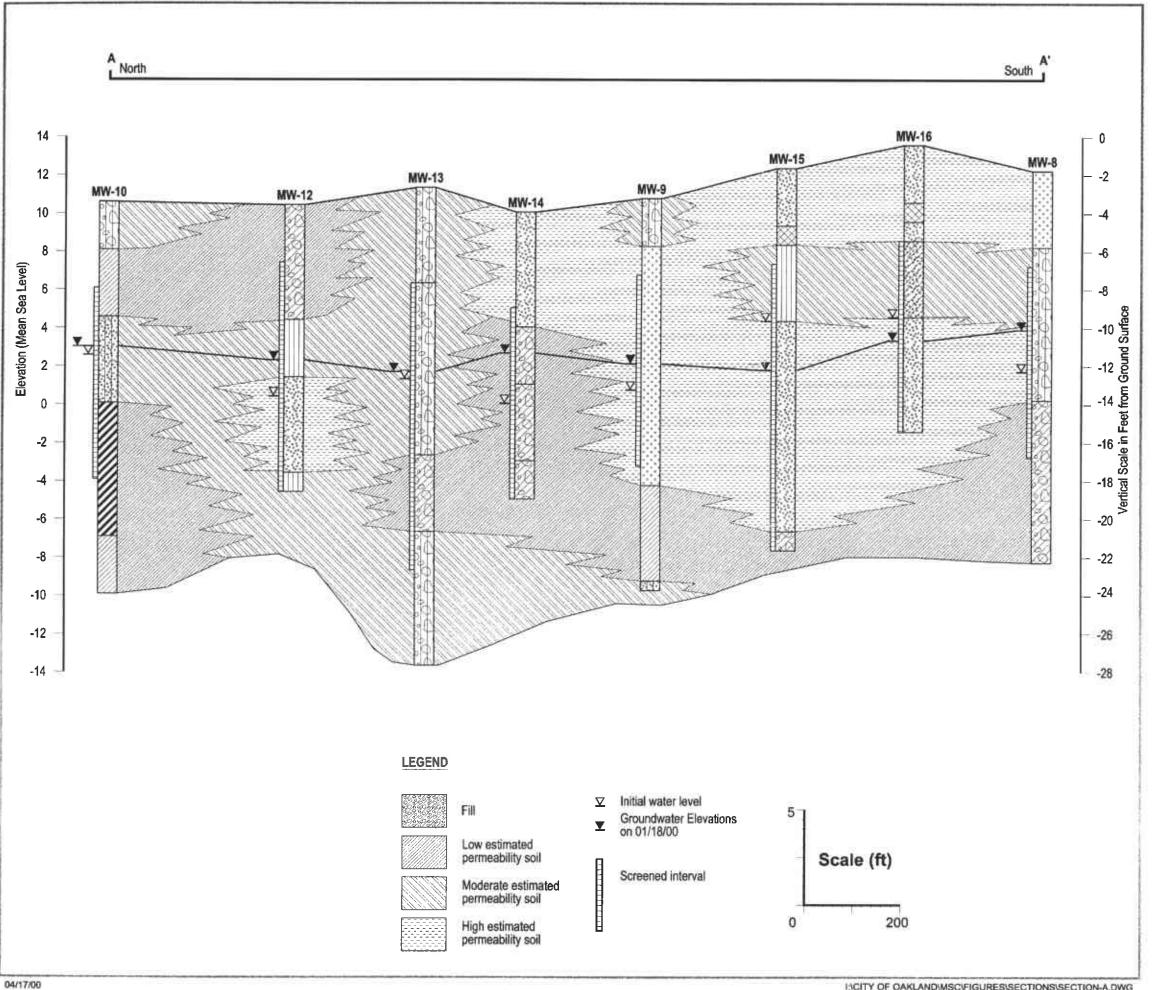
C - Standard Procedures for Monitoring Wells

H:\City of Oakland\Municipal Service Center\QM\1q00\CofO-1q00.wpd


TPHd Isoconcentration Contour Map

January 18 and 19, 2000

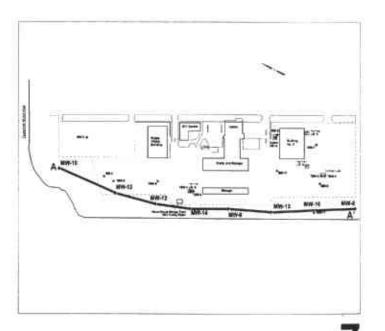
O


TPHmo Isoconcentration Contour Map

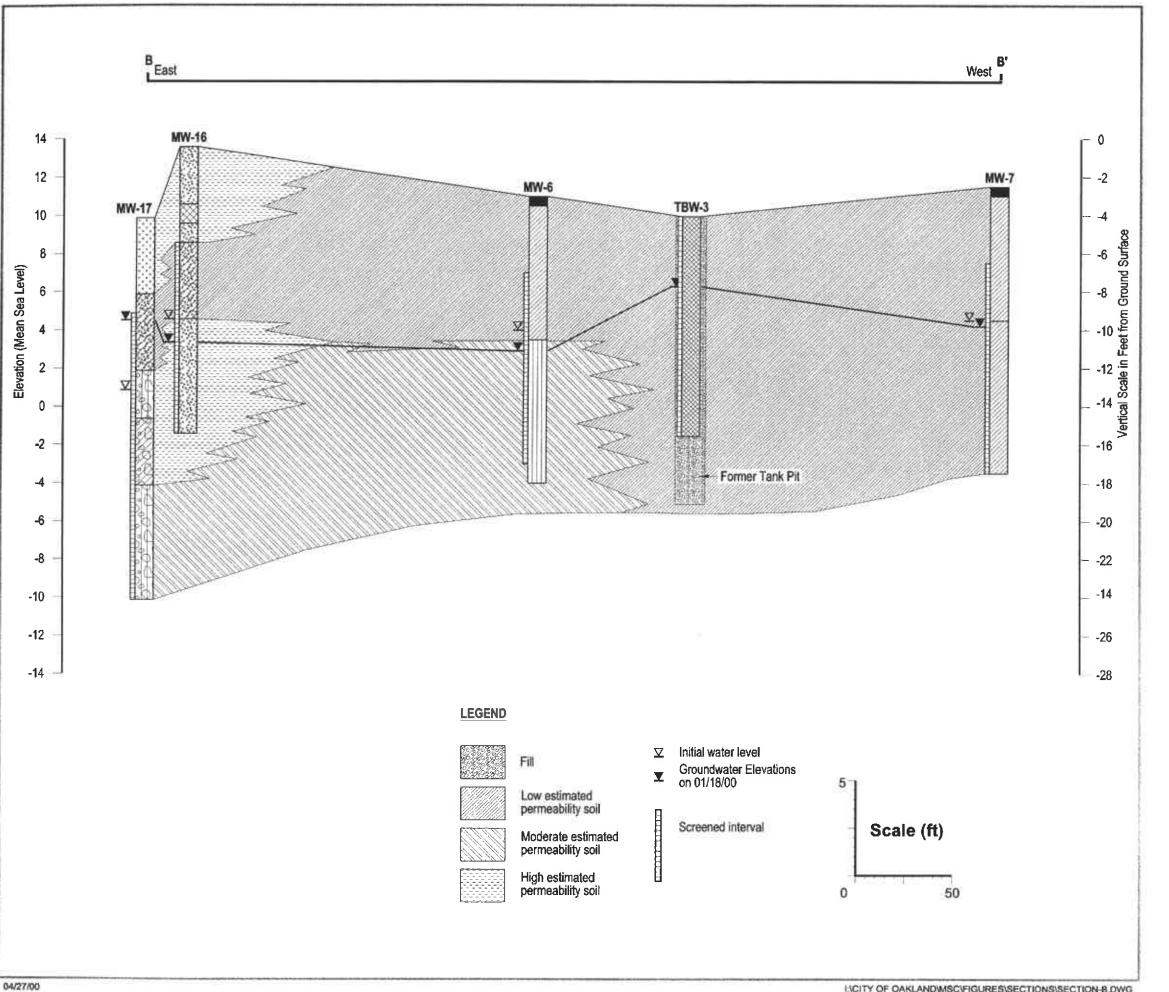
January 18 and 19, 2000

Benzene Isoconcentration Contour Map

January 18 and 19, 2000

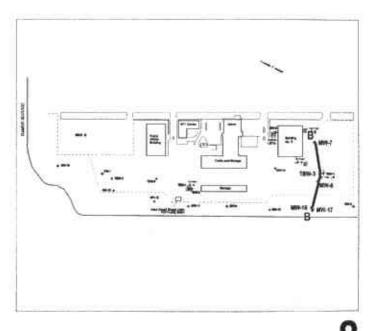

City of Oakland MSC

7101 Edgewater Drive Oakland, California


Geologic Cross Section A-A'

CAMBRIA

FIGURE


City of Oakland MSC

7101 Edgewater Drive Oakland, California

Geologic Cross Section B-B'

CAMBRIA

FIGURE

BORING LOG LEGEND

			SYME	BOLS	TYPICAL
M	AJOR DIVISI	ONS	GRAPH	LETTER	DESCRIPTIONS
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED		GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
SOILS		(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
		SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT . MIXTURES
		(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED	SILTS AND CLAYS			CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
SOILS	02.110			OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
TOTANA PA				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
i empiateiu.>> < <ru></ru>	SILTS AND CLAYS			СН	INORGANIC CLAYS OF HIGH PLASTICITY
>>)igumodas				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIG	GHLY ORGANIC	soils	77 77 77 77 77 7 77 77 77 77 77 77 77 77	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

Table 1. Groundwater Analytical Results for Fuel Hydrocarbons - City of Oakland Municipal Service Center, Oakland, California

Date	TOC Elev.	DTW	GW Elev.	BTEX Method	Notes TPH	ld T	PHmo	TPHk	ТРНд	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Organic Lead
					<					µg	ı/l				>
MW-1								MANAGEMENT AND AN ADDRESS OF THE PARTY OF TH	((hai-))(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a			*			
10/04/89	10.20			8020					540	65	26	14	22		
10/04/89	10.20			8240						120	46	43	78		
04/27/93	10.20			8020					<1,000	<1.0	<1.0	<1.0	<1.0		
04/19/95	10.20			8020					3,200	880	15	23	21		
07/27/95	10.20	4.62	5.58	8020					980	130	3.6	1.4	5.6		
11/20/95	10.20	6.08	4.12	8020					400	99	2.8	1.1	4.6		
02/21/96	10.20	4.62	5.58	8020					1,700	340	8.4	5.3	16		
05/13/96	10.20	4.33	5.87	8020					7,300	2,000	30	42	38		
08/27/96	10.20	5.25	4.95	8020					380	61	2.4	< 0.5	4.2		
02/23/98	10.20	1.75	8.45	8020		<50	<500	<50	820	160	4.9	3	9.7		
08/19/98	10.20	4.78	5.42	8020 S	GC 1,	200			780	69	4.1	0.84	8.5	<5.0	
11/11/98	10.20	5.64	4.56												
02/23/99	10.20	3.41	6.79	8020 S	GC 1,	200	1,600	<50	1,100	190	5.0	3.0	12	<5.0	
05/27/99	10.20	3.96	6.24					***							
08/24/99	10.20	4.92	5.28	8020 S	GC	640	1,900	<50	370	37	0.9	< 0.5	1.9	<5.0	
11/22/99	10.20	5.46	4.74												
01/18/00	10.05	5.41	4.64												
01/19/00				8020 S	GC	50	<200	<50	660	43	2.3	1.1	6.0	<5.0	
MW-2															
10/04/89	10.47			8020					<30	<0.3	<0.3	< 0.3	<0.3		
10/04/89	10.47			8240			•			2.0	<2.0	<2.0	<2.0		
04/27/93	10.47			8020					<1,000	<1.0	<1.0	<1.0	<1.0		
04/19/95	10.47			8020					<50	1.8	<0.5	<0.5	<0.5		
07/27/95	10.47	6.22	4.25	8020					<50	2.3	<0.5	<0.5	<0.5		
11/20/95	10.47	7.49	2.98	8020					<50	2.2	<0.5	<0.5	<0.5		

H:\IR\City of Oakland\Database\QM.mdb - QMTable

Table 1. Groundwater Analytical Results for Fuel Hydrocarbons - City of Oakland Municipal Service Center, Oakland, California

Date	TOC Elev.	DTW	GW Elev.	BTEX Notes Method	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	МТВЕ	Organic Lead
					<				μς	1/1				>
MW-2			- A THE TOTAL OF T					iidaltaidailisin läksikari marainantiinak			·*************************************			
02/21/96	10.47	6.68	3.79	8020				<50	1.7	< 0.5	<0.5	0.5		
05/13/96	10.47	6.32	4.15	8020					2.0	< 0.5	<0.5	< 0.5		
08/27/96	10.47	6.84	3.63	8020		**-			2.4	<0.5	<0.5	< 0.5		
02/24/98	10.47	5.44	5.03	8020	<50	<500	<50		1.6	< 0.5	<0.5	< 0.5		
08/19/98	10.47	6.56	3.91	8020 SGC	330			<50	4.1	3.4	0.8	2.6	<5.0	<100
11/11/98	10.47	7.37	3.10									***		
02/23/99	10.47	8.68	1.79	8020 SGC	200	900	<50	<50	3.5	0.6	0.6	1.2	<5.0	
05/27/99	10.47	5.20	5.27											
08/24/99	10.47	6.75	3.72	8020 SGC	140	700	<50	<50	2.6	<0.5	<0.5	< 0.5	<5.0	
11/22/99	10.47	7.58	2.89											
01/18/00	10.47	7.41	3.06	8020 SGC	60 A	660	<50	<50	2.1	< 0.5	<0.5	< 0.5	<5.0	
MW-3														•
10/04/89				8020				<30	< 0.3	<0.3	<0.3	< 0.3		
10/04/89				8240					<2.0	<2.0	<2.0	<2.0		
02/23/98					<50	<500	<50		***					
11/11/98		5.83		·			***							
02/23/99				Submerged				***						
05/27/99		1.68												
08/24/99		4.76												
11/22/99		6.46												
11/22/99				Destroyed					•					
MW-4														
10/04/89	7.89			8020				<30	<0.3	<0.3	< 0.3	< 0.3		
10/04/89	7.89			8240					<2.0	<2.0	<2.0	<2.0		

Table 1. Groundwater Analytical Results for Fuel Hydrocarbons - City of Oakland Municipal Service Center, Oakland, California

Date	TOC Elev.	DTW	GW Elev.	BTEX Note Method	s TPHd	TPHmo	TPHk	ТРНд	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Organic Lead
					<				µg	g/l		*		>
MW-4										Account to the second s				
11/11/98	7.89	6.25	1.64						4					
02/23/99	7.89	3.10	4.79		*									
05/27/99	7.89	4.03	3.86											
08/24/99	7.89	5.07	2.82											
11/22/99	7.89	6.32	1.57						24					
11/22/99				Destroy	ved								***	
MW-5														
12/13/91	11.15			8020	1,900			13,000	1,500	190	970	2,500		
12/13/91		•••		8020 Dup				16,000	1,400	180	870	2,500		
12/13/91	11.15			8240		•••			1,800	<250	1,000	3,800		
12/13/91				8240 Dup					1,600	<250	980	3,500		
04/27/93	11.15			8240	12,000			35,000	2,100	<1.0	1,800	2,700		
04/19/95	11.15	***		8240	880	4,700		14,000	490	51	610	1,200		
07/27/95	11.15	6.29	4.86	8240	590	5,000		22,000	1,300	54	1,500	2,400		
11/20/95	11.15	6.98	4.17	8020	<50	<50	<50	8,900	430	31	610	880		
02/21/96	11,15	5.97	5.18	8020	480	<50	<50	1,000	540	65	700	970		
05/13/96	11.15	6.25	4.90	8020	<50	<50	<50	5,900	430	26	580	760		
05/13/96				8020 Dup	<50	<50	<50	7,300	360	22	49	640		
08/27/96	11.15	6.40	4.75	8020	2,000	<51	<51	6,600	430	27	600	650		
08/27/96				8020 Dup	6,600	<51	<51	6,300	410	25	580	620		
02/23/98	11.15	4.22	6.93	8020	<50	<500	<50	740	19	1.4	41	34		
08/19/98	11.15	6.14	5.01	8020	1,400	<250	1,700	5,800	500	25	730	300	5,900	
08/19/98	11.15	6.14	5.01	8260 SGC									6,700	
11/11/98	11.15	6.51	4.64											
02/23/99	11.15	3.59	7.56	8020 SGC	2,000	700	<50	6,700	300	26	800	690	1,600	

H:\IR\City of Oakland\Database\QM.mdb - QMTable

Table 1. Groundwater Analytical Results for Fuel Hydrocarbons - City of Oakland Municipal Service Center, Oakland, California

Date	TOC Elev.	DTW	GW Elev.	BTEX Notes Method	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Organic Lead
					<				μς	y/l				>
MW-5						***************************************	***************************************					(CET LATE OF THE STATE OF THE S		**************************************
05/27/99	11.15	5.71	5.44											
08/24/99	11.15	6.02	5.13	8020 SGC	220	2,000	<50	2,100 E	190 E	5.5	340 E	78	380 E	
11/22/99	11.15	6.16	4.99		***					***	77.			
01/18/00	11.15	6.60	4.55											
01/19/00				8020 SGC	100	320	<50	3,000	66 E	6.3	400 E	90	300 E (1,300)	
MW-6														
12/13/91	10.98			8020	520			780	110	2.7	<2.5	5.5		
12/13/91	10.98			8240					95	5	<5	<5		
04/27/93	10.98			8020	<1,000			<1,000	430	4	5	10		
04/19/95	10.98			8020	6,700			5,700	40	< 0.8	3.9	29		
04/19/95				8020 Dup	3,700			3,000	310	3.1	2.7	100		
07/27/95	10.98	7.09	3.89	8020	3,900			6,100	430	15	200	600		
07/27/95				8020 Dup	2,600			6,300	420	15	200	600		
11/20/95	10.98	7.89	3.09	8020	850			6,800	160	4.6	8.0	240		
11/20/95				8020 Dup				3,600	130	11	4.4	200		
02/21/96	10.98	7.40	3.58	8020	1,700			2,800	230	2.8	3.8	44		
02/21/96				8020 Dup	2,500			2,200	280	3.0	4.0	4.6		
05/13/96	10.98	7.10	3.88	8020	400	<50	<50	3,100	430	12	5.2	67		
08/27/96	10.98	7.42	3.56	8020	3,100			4,200	300	9.3	110	110		
08/19/98	10.98			SPH: 0.1	25 ft						***			
11/11/98	10.98	7.09	3.89	SPH: 0.0	15 ft									
02/23/99	10.98	7.31	3.67	SPH; NM	···									
05/27/99	10.98	6.91	4.07	SPH: 0.2	20 ft									
08/24/99	10.98	7.46	3.52	SPH: 0.0	3 ft									

Table 1. Groundwater Analytical Results for Fuel Hydrocarbons - City of Oakland Municipal Service Center, Oakland, California

Date	TOC Elev.	DTW	GW Elev.	BTEX Method	Notes	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Organic Lead
		***************************************	~.~~	NA A A A A A A A A A A A A A A A A A A		<				µg	y/I				>
MW-6										***************************************					
11/22/99	10.98	7.96	3.02	777	SPH: 0.16 ft					*					
01/18/00	10.98	8.08	2.90		SPH: 0.019 ft										
MW-7															
12/13/91	11.51			8020	•	<50	444		<50	<0.5	< 0.5	<0.5	< 0.5		
12/13/91	11.51			8240)					<5	<5	<5	<5		***
04/27/93	11.51			8240	ł	<1,000			<1,000	<1.0	<1.0	<1.0	<1.0		
04/19/95	11.51			8240	l	<50	<1,000		<50	<2.0	<2.0	<2.0	<2.0		
07/27/95	11.51	6.87	4.64	8240	l	<50	<1,000		<50	<2.0	<2.0	<2.0	<2.0		
11/20/95	11.51	8.48	3.03	8020	l	<50		***	<50	<0.5	<0.5	< 0.5	1.5		**-
02/21/96	11.51	6.29	5.22	8020	1	<50			<50	< 0.5	< 0.5	< 0.5	<0.5		
05/13/96	11.51	6.95	4.56	8020	l	<50				< 0.5	< 0.5	<0.5	< 0.5		
08/27/96	11.51	6.80	4.71	8020	1					< 0.5	< 0.5	< 0.5	< 0.5		
08/19/98	11.51	6.88	4.63												
11/11/98	11.51	7.40	4.11												
02/23/99	11.51	5.57	5.94	8020	•	<50	<200	<50	80	< 0.5	< 0.5	< 0.5	1.0	<5.0	
05/27/99	11.51	6.56	4.95												
08/24/99	11.51	6.29	5.22	8020	SGC	<50	<200	<50	<50	<0.5	<0.5	<0.5	< 0.5	5.0	
11/22/99	11.51	6.80	4.71												
01/18/00	11.51	7.31	4.20												
01/19/00				8020	SGC	<50	<200	<50	54	1.5	1.5	2.4	3.8	<5.0	
MW-8															
11/20/96	12.22			8020)	880			<50	0.66	<0.5	<0.5	< 0.5		
11/20/97	12.22	9.59	2.63	8020)	200	***		<50	< 0.5	<0.5	<0.5	< 0.5	2.0	
02/24/98	12.22	8.42	3.80	8020)	<50	<500	<50	<50	<0.5	<0.5	<0.5	< 0.5		

Table 1. Groundwater Analytical Results for Fuel Hydrocarbons - City of Oakland Municipal Service Center, Oakland, California

Date	TOC Elev.	DTW	GW Elev.	BTEX Method	Notes	ТРНа	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Organic Lead
						<				μς	j/l				>
MW-8							***************************************	***************************************							
06/08/98	12.22	9.57	2.65	8020		1,200	1,000	<50	<50	< 0.5	<0.5	<0.5	<0.5		
08/19/98	12.22	9.49	2.73	8020	SGC	<50	<250	<50	<50	1.6	3.4	1.0	2.8	<5.0	
11/11/98	12.22	9.64	2.58	8020	SGC	<50	<200	<50	<50	0.9	0.8	0.6	2.3	<5.0	
02/23/99	12.22	11.53	0.69	8020		700	1,500	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0	
05/27/99	12.22	9.65	2.57	8020		<50	<200	<50	<50	< 0.5	< 0.5	< 0.5	<0,5	<5.0	
08/24/99	12.22	9.62	2.60	8020	SGC	70	<200	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0	
11/22/99	12.22	9.64	2.58	8020	SGC	57	<200	<50	<50	<0.5	< 0.5	<0.5	<0.5	<5.0	
01/18/00	12.22	8.31	3.91	8020	SGC	<50	<200	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
MW-9															
11/20/96	10.77			8020		1,900			240	21	0.81	1.8	2.2		
11/20/97	10.77	7.91	2.86	8020					300	20	< 0.5	<0.5	1.8	<1.0	
02/24/98	10.77	6.11	4.66	8020		<50	<500	<50	2,200	540	5.6	1.6	4.9		
06/08/98	10.77	7.14	3.63	8020		1,800	890	<50	840	450	6.1	3.3	5.3		
08/19/98	10.77	7.88	2.89	8020	SGC	190	<250	160	740	370	8.6	0.99	7.3	<5.0	
11/11/98	10.77	8.23	2.54	8020	SGC	<50	230	<50	700	130	4.3	<0.5	3.9	<5.0	
02/23/99	10.77	6.65	4.12	8020		1,100	3,700	<50	1,100	620	9.7	1.5	7.7	< 5.0	
05/27/99	10.77	7.70	3.07	8020	SGC	70	300	<50	950	470	11	1.5	9.2	<5.0	
08/24/99	10.77	8.12	2.65	8020	SGC	890	1,700	<50	290	45	2.8	<0.5	3.0	<5.0	
11/22/99	10.77	8.33	2.44	8020	SGC	1,000	6,000	<50	170	12	1.8	<0.5	2.0	<5.0	
01/18/00	10.77	8.63	2.14	8020	SGC	200 A	2,300	<50	160	5.7	1.9	0.6	4.2	<5.0	
MW-10															
11/20/96	10.59		•	8020		9 40			<50	49	0.59	0.54	1.2		
11/20/97	10.59	7.70	2.89	8020					<50	<0.5	<0.5	<0.5	< 0.5		
02/24/98	10.59	4.39	6.20	8020		<50	<500	<50	<50		<0.5	<0.5	<0.5		
							• • •		.50	.5.2	13.0		-5.0		

Table 1. Groundwater Analytical Results for Fuel Hydrocarbons - City of Oakland Municipal Service Center, Oakland, California

Date	TOC Elev.	DTW	GW Elev.	BTEX Notes Method	ТРНа	TPHmo	TPHk	ТРН	Benzene	Toluene	Ethyl- benzene	Xylenes	МТВЕ	Organic Lead
					<				μί	g/I				>
MW-10									TO THE RESIDENCE OF THE PERSON			H-18-4		
06/08/98	10.59	6.94	3.65	8020	500	<500	<50	<50	7.3	< 0.5	<0.5	< 0.5		***
08/19/98	10.59	6.99	3.60	8020 SGC	240	520	110	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	••-
11/11/98	10.59	7.57	3.02	8020 SGC	<50	<200	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	
02/23/99	10.59	5.51	5.08	8020	170	1,200	<50	<50	1.3	<0.5	< 0.5	<0.5	<5.0	
05/27/99	10.59	6.72	3.87	8020 SGC	<50	<200	<50	350	170	1.5	0.5	2.3	<5.0	
08/24/99	10.59	7.27	3.32	8020 SGC	140	300	<50	380	160 E	< 0.5	<0.5	2.6	<5.0	
11/22/99	10.59	7.71	2.88	8020 SGC	570	3,400	<50	110	5.1	<0.5	< 0.5	0.72	<5.0	
01/18/00	10.59	7.77	2.82									*		
01/19/00				8020 SGC	120 A,B	1,200	<50	100	<0.5	<0.5	0.8	< 0.5	<5.0	
MW-11														
01/18/00	11.60	7.08	4.52							***		•		
01/19/00				8020 SGC	<50	500	<50	220	< 0.5	<0.5	<0.5	<0.5	<5.0	***
MW-12														
01/18/00	10.43	8.11	2.32							*				
01/19/00				8020 SGC	1,800 A	11,000	<50	200	<0.5	3.4	1.5	8.4	<5.0	
MW-13														
01/18/00	11.34	9.63	1.71	8020 SGC	8,800 A	120,000	<50	<50	<0.5	0.8	<0.5	<0.5	<5.0	
MW-14														
01/18/00	10.05	7.37	2.68	8020 SGC	1,700 A	22,000	<50	120	<0.5	<0.5	<0.5	<0.5	<5.0	
MW-15														
01/18/00	12.36	10.56	1.80	8020 SGC	12,000 A	89,000	<50	110	3.8	2.1	1.0	4.6	<5.0	
MW-16														
01/18/00	13.57	10.22	3.35	SPH: 0.1 ft										

H:\IR\City of Oakland\Database\QM.mdb - QMTable

Table 1. Groundwater Analytical Results for Fuel Hydrocarbons - City of Oakland Municipal Service Center, Oakland, California

Date	TOC Elev.	DTW	GW Elev.	BTEX Notes Method	TPHd	TPHmo	TPHk	TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	МТВЕ	Organic Lead
					<				μς	_J /I				>
MW-16		· · · · · · ·			**************************************		***************************************	managa ang ang ang ang ang ang ang ang an	Arrange Manieta Carantes and Car					
MW-17														
01/18/00	9.86	5.35	4.51	8020 SGC	850 A	21,000	<50	<50	<0.5	<0.5	< 0.5	< 0.5	<5.0	
TBW-1														
02/23/99		6.25		SPH: 0.10 f	t									
05/27/99		5.29		SPH: 0.01 f	t									
08/24/99		6.99		SPH: 0.18 f	t									
11/22/99				Inaccessible	·			***	***					1**
01/18/00				Inaccessible	:									***
TBW-3														
08/19/98		2.67		8020 SGC	810,000			920	3.2	< 0.5	< 0.5	0.77	<10	
08/19/98		2.67		8260									< 5.0	
02/23/99		1.25		8020	3,800	3,000	<50	110	1.6	<0.5	< 0.5	< 0.5	<5.0	
05/27/99				DTW: NM										
08/24/99		3.25		SPH globule	es					4				
11/22/99		3.68												
01/18/00	9.92	3.73	6.19	SPH globul	es									
TBW-5														
02/23/99		9.72		SPH: 1.45 f	t									
05/27/99		7.03		SPH: 1.13 f	t									
08/24/99		6.52	,	SPH; 1.33 f	ì								***	
11/22/99		8.31		SPH: 1.29	ft									
01/18/00	10.22	6.20	4.02	SPH: 0.9 ft	·									

Table 1. Groundwater Analytical Results for Fuel Hydrocarbons - City of Oakland Municipal Service Center, Oakland, California

Date	TOC Elev.	DTW	GW Elev.	BTEX Notes Method	TPHd	TPHmo	TPHk	ТРНд	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Organic Lead
					<				μg	/I		+==		>
TBW-6					***************************************	W. W. Colonia de la Colonia de		***************************************	FAYANA) WARN AND AND AND AND AND AND AND AND AND AN	****		**************************************		
02/23/99		2.09		8020	160	600	<50	. 60	<0.5	<0.5	<0.5	< 0.5	<5.0	
05/27/99		3.31										*~-		
08/24/99		7.29		8020 SGC	180	400	<50	130	< 0.5	<0.5	<0.5	<0.5	<5.0	
11/22/99		4.37					***							
01/18/00	9.49	3.83	5.66											
01/19/00				8020 SGC	55 C	<200	<50	170	0.6	< 0.5	< 0.5	< 0.5	<5.0	
Trip Blar	nk													
08/19/98				8020				<50	< 0.5	<0.5	< 0.5	<0.5	<5.0	
11/22/99				8020				<50	< 0.5	<0.5	< 0.5	< 0.5	<5.0	

Table 1. Groundwater Analytical Results for Fuel Hydrocarbons - City of Oakland Municipal Service Center, Oakland, California

Date TOC DTW GW BTEX Notes TPHd TPHmo TPHk TPHg Benzene Toluene Ethyl- Xylenes MTBE Organic benzene Lead

Notes

All concentrations in micrograms per liter (µg/l)

--- = not measured/analyzed

TOC = Top of casing

DTW = Depth to water

GW = Ground water

BTEX = Benzene, toluene, ethylbenzene, and xylenes - analyzed by EPA Method 8020 or 8240/8260

TPHd = Total petroleum hydrocarbons as diesel - analyzed by Modified EPA method 8015

TPHmo = Total petroleum hydrocarbons as motor oil - analyzed by Modified EPA method 8015

TPHk = Total petroleum hydrocarbons as kerosene - analyzed by EPA method 8015

TPHg= Total petroleum hydrocarbons as gasoline - analyzed by Modified EPA method 8015

MTBE = Methyl tert-butyl ether - analyzed by EPA Method 8020 or 8260. Confirmation 8260 results shown in parentheses.

DUP = Duplicate sample

SPH = Separate-phase hydrocarbons; measured thickness

SGC = Silica gel cleanup prior to TPHd, TPHk, or TPHmo analysis

NM = Not measured

TBW = Tank backfill well

- A = The analytical laboratory reviewed the data and noted that all petroleum hydrocarbons quantified in the diesel range are actually the front end of the motor oil pattern
- B = The analytical laboratory reviewed the data and noted that the quantitiation in the diesel range show no diesel pattern; the response looks like lower carbon chain compounds close to the gasoline range
- C = The analytical laboratory reviewed the data and noted that there is no pattern relating to diesel range; the peaks are small and random
- E = Results are estimated due to concentrations exceeding the calibration ranged

Table 2. Groundwater Analytical Results for Bioparameters, Sodium, and Chloride

City of Oakland Municipal Service Center, Oakland, California

Sample ID / Date	TPHg (µg/l)	TPHd (µg/l)	ORP (mV)	Ferrous Iron	DO-B	DO-A	Nitrate [']	Sulfate ug/l	Total Alkalinity	y Sodium	Chloride
Damon Slough					***************************************	***************************************			Pris		
08/19/98									[r -	5,900,000	14,400,000
MW-1											
08/19/98	780	1,200	60	>5,000	9,800	8,470	<1,000	<1,000	1,270,000	1,600,000	3,750,000
02/23/99	1,100	1,200		>5,000		1,600	<100	<500	1,400,000		
08/24/99	370	640	-64	3,500		880	<100	<500	1,300,000		
01/19/00	660	50	-165	2,700		590.	7,600	<500	1,300,000		
MW-2											
08/19/98	<50	330	120	>5,000	8,630	8,560	<1,000	5,000	215,000	4,700,000	8,000,000
02/23/99	<50	200	50	>5,000		1,500	<100	<500	140,000		
08/24/99	<50	140	-34	<5,000		140	<100	<500	120,000		•••
01/18/00	<50	60	78	2,000		620	16,000	600	120,000		
MW-3											
08/19/98			-170	900	9,330	9,210	<1,000	400,000	3,260,000	14,000,000	23,750,000
MW-4											
08/19/98			-178	2,600	9,410	8,000	<1,000	280,000	1,700,000	3,600,000	7,000,000
MW-5						-					
08/19/98	5,800	1,400	75	>5,000	9,430	9,180	<1,000	10,000	820,000	970,000	2,520,000
02/23/99	6,700	2,000	-55	2,100		1,800	<100	14,000	400,000		
08/24/99	2,100	220	-54	2,900		320	<100	<500	660,000		

H:\IR\City of Oakland\Database\QM.mdb - QMTable-bio

Table 2. Groundwater Analytical Results for Bioparameters, Sodium, and Chloride

City of Oakland Municipal Service Center, Oakland, California

Sample ID / Date	TPHg (µg/l)	TPHd (µg/l)	ORP (mV)	Ferrous Iron	DO-B	DO-A	Nitrate		Total Alkalinity	Sodium	Chloride >
MW-5			***************************************					Herbild Beleform reserves and revenue are assume account		a	
01/19/00	3,000	100	-171	4,100		420	1,900	21,000	680,000		***
MW-6											
02/23/99 SPH: NM			115	3,200		6,400	<100	<500	1,300,000		
08/24/99 SPH: 0.03 ft			to de sai				NA	NA	1,100,000		
MW-7											
08/19/98	***		110	>5,000	8,600	7,860	<1,000	300,000	970,000	920,000	1,800,000
02/23/99	80	<50	75	4,900		3,900	<100	190,000	870,000	***	
08/24/99	<50	<50	-19	4,400		450	<100	300,000	760,000		
01/19/00	54	<50	-170	3,100		310	6,600	820,000	840,000		
MW-8											
11/20/96	<50	880	50	<100 a	500		<500	478,000			7,490,000
11/20/97	<50	200	262	<1,000 a	4,000		<50	1,200,000	380,000		
08/19/98	<50	<50	220	3,400	10,180	9,820	<1,000	610,000	490,000	4,300,000	7,500,000
02/23/99	<50	700	75	5,000		5,300	<100	150,000	630,000		
08/24/99	<50	70	87	200		320	<100	<5,000	320,000		
01/18/00	<50	<50	149	<500		223	16,000	1,900,000	270,000		
MW-9											
11/20/96	240	1,900	-73	240 a			<500	<3,000			2,230,000
11/20/97	300	1,000	202	<1,000	<1,000		<50	1,000	1,300,000	~==	
08/19/98	740	190	275	>5,000	10,150	9,670	<1,000	1,000	1,180,000	820,000	1,400,000

H:\IR\City of Oakland\Database\QM.mdb - QMTable-bio

Table 2. Groundwater Analytical Results for Bioparameters, Sodium, and Chloride

City of Oakland Municipal Service Center, Oakland, California

Sample ID / Date	TPHg (µg/l)	TPHd (µg/l)	ORP (mV)	Ferrous Iron	DO-B <	DO-A	Nitrate		Total Alkalinity	Sodium	Chloride >
MW-9											
02/23/99	1,100	1,100	-40	4,900		1,100	<100	1,200	1,000,000		
08/24/99	290	890	-65	3,300		330	<100	<500	950,000		
01/18/00	160	200	48	2,100		300	7,600	4,400	980,000		
MW-10											
11/20/96	<50	940	-54	<100 a			<500	52,000	***		1,940,000
11/20/97	<50	370	226	<1,000 a	<1,000		<50	<100	870,000		
08/19/98	<50	240	68	4,200	10,210	9,840	<1,000	10,000	900,000	330,000	350,000
02/23/99	<50	170	-10	3,000		1,900	3,000	71,000	690,000		
08/24/99	380	140	75	1,700		760	<100	<500	910,000		
01/19/00	100	120	-161	800		650	1,900	<500	940,000		
MW-11											
01/19/00	220	<50	-120	2,600		330	<100	26,000	1,800,000		
MW-12											
01/19/00	200	1,800	170	8,000			2,400	2,800	920,000		
MW-13											
01/18/00	<50	8,800	-81	2,300		210	300	320,000	850,000		
MW-14											
01/18/00	120	1,700	90	1,100		250	700	3,100	1,100,000		

Table 2. Groundwater Analytical Results for Bioparameters, Sodium, and Chloride

City of Oakland Municipal Service Center, Oakland, California

Sample ID / Date	TPHg (µg/l)	TPHd (µg/l)	ORP (mV)	Ferrous Iron	DO-B	DO-A	Nitrate	Sulfate ug/l	Total Alkalinity	Sodium	Chloride >
MW-15		<u> </u>			· · · · · · · · · · · · · · · · · · ·		······································				
01/18/00	110	12,000	93	3,100		270	9,000	3,900	920,000		
MW-17											
01/18/00	<50	850	102	<500		230	25,000	1,600	960,000		
San Leandro Bay											
08/19/98										5,700,000	14,400,000
TBW-1											
02/23/99 SPH: 0.10 ft							<100	34,000	420,000		
08/24/99 SPH: 0.18 ft				***					550,000	.~.	
TBW-3											
08/19/98	920	810,000	135	1,800	6,860	7,000	<1,000	45,000	410,000	91,000	175,000
02/23/99	110	3,800		1,900		2,400	2,000	49,000	410,000		
08/24/99 SPH globules							2,600	<500	430,000		
TBW-5											
02/23/99 SPH: 1.45 ft							13,000	1,000	690,000		
08/24/99 SPH: 1.33 ft							NA	NA	600,000		
TBW-6											
02/23/99	60	160		<100		1,100	<100	58,000	180,000		
08/24/99	130	180	42	<500		490	<100	39,000	340,000		
01/19/00	170	55	-161	<500		400	1,000	60,000	200,000		

H:\IR\City of Oakland\Database\QM.mdb - QMTable-bio

17-May-00

Table 2. Groundwater Analytical Results for Bioparameters, Sodium, and Chloride

City of Oakland Municipal Service Center, Oakland, California

Sample ID / Date	TPHg (µg/l)	TPHd (µg/l)	ORP (mV)	Ferrous Iron	DO-B <	DO-A	Nitrate		Total Alkalinity	Sodium	Chloride >
Ideal Relationship w Hydrocarbon Conce			Inverse	Direct	Inverse	Inverse	Inverse	Inverse	Direct		
Most Recent Observ Relationship with Hydrocarbon Conce	-		Direct	Direct		Inverse	Inverse	Inverse	Direct		
Legend ORP = Oxidation/reduction potential DO = Dissolved Oxygen (B = before purging, A = After purging) Inc. = Inconclusive						= No $NA = No$	t measured/a	inalyzed due to oily	s per liter (ug/l), un	less otherwi	se noted

ATTACHMENT A

Laboratory Analytical Report

May 11, 2000

David Elias Cambria 1144 65th Street Suite C Oakland, CA 94608

Dear David,

Calest has reviewed the extractable petroleum hydrocarbon data on project 153-1247-020/City of Oakland. The following information should be considered on reviewing the final data.

For samples:

Project ID
MW2
MW9
MW13
MW14
MW15
MW17
MW10

All petroleum hydrocarbons quantified in the diesel range are actually the front end of the motor oil pattern. As you know, we are limited by methodology and the fact that different sources of petroleum products are not identical. The method is limited by quantifying over a static carbon range. Motor oil is quantified from C24 to C32, when infact the pattern begins before C24. Our standards are measured under the same conditions, so we are able to quantify the motor oil with confidence. Any front end motor oil that is quantified in the diesel range, will be reported as TPH and not as diesel.

For samples:

Caltest ID Project ID A010469-4 MW10

Quantitation in the diesel range show no diesel pattern, the response looks like lower carbon chain compounds close to the gasoline range.

For sample:

Caltest ID

Project ID

A010469-7

TBW6

There is no pattern relating to diesel or front end motor oil in the diesel range, the peaks are small and random.

For sample:

Caltest ID

Project ID

A0I0469-6

MW12

Petroleum hydrocarbons quantified in the diesel range includes the front end of the motor oil pattern and unidentifiable peaks earlier in the diesel range.

I hope this further clarifies your data. Please call if you have any questions.

Sincerely Caltest Analytical Laboratory

Christine Horn

Laboratory Director

CAHON

Client:

1885 N. Kelly Rd. • Napa, California 94558

(707) 258-4000 • Fax: (707) 226-1001

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

LAB ORDER No.:

A010438 1 of 11

REPORT of ANALYTICAL RESULTS

David Elias

Report Date:

Purchase Order:

03 FEB 2000

19 JAN 2000

Received Date:

153-1247-020

Cambria 1144 65th Street, Suite C

Oakland, CA 94608

Project: 153-1247-020/CITY OF OAKLAND

Sampled by:

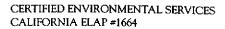
J.JONES

<u>Lab Number</u>	Sample Identification	Matrix	Sampled Date/Time
A010438-1	MW2	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	18 JAN 00 11:23
A010438-2	MW8		18 JAN 00 12:55
A010438-3	MW9		18 JAN 00 14:55
A010438-4	MW13		18 JAN 00 17:15
A010438-5	MW14		18 JAN 00 15:30
A010438-6	MW15		18 JAN 00 14:20
A010438-7	MW17		18 JAN 00 13:35

Todd M. Albertson Project Manager

Christine Horn Laboratory Director

CALTEST authorizes this report to be reproduced only in its entirety. Results are specific to the sample as submitted and only to the parameters reported. All analyses performed by EPA Methods or Standard Methods (SM) 18th Ed. except where noted. Results of 'ND' mean not detected at or above the listed Reporting Limit (R.L.). 'D.F.' means Dilution Factor and has been used to adjust the listed Reporting Limit (R.L.). Acceptance Criteria for all Surrogate recoveries are defined in the QC Spike Data Reports.



(707) 258-4000 • Fax: (707) 226-1001

LAB ORDER No.: INORGANIC ANALYTICAL RESULTS

A010438 2 of 11 Page

ANALYTE	RESULT	R.L.	UNITS	<u> D.F.</u>	METHOD	ANALYZED	QC_BATCH	NOTES
LAB NUMBER: A010438-1 SAMPLE ID: MW2 SAMPLED: 18 JAN 00 11:2	23		·					
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3	120. ND ND	10. 10. 10.	mg/L mg/L mg/L	1	310.1	01.25.00	I000005ALK	
Total Alkalinity as CaCO3 Nitrate as N Sulfate	120. 16. 0.6	10. 1. 0.5	mg/L mg/L mg/L	10 1	300.0 300.0	01.20.00	10000091C 10000091C	
LAB NUMBER: A010438-2 SAMPLE ID: MW8 SAMPLED: 18 JAN 00 12:5	55							
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3	270. ND ND	10. 10. 10.	mg/L mg/L mg/L	1	310.1	01.25.00	1000005ALK	
Total Alkalinity as CaCO3 Nitrate as N Sulfate	270. 16. 1900.	10. 10. 1. 50.	mg/L mg/L mg/L mg/L	10 100		01.20.00 01.27.00	10000091C 10000141C	
LAB NUMBER: A010438-3 SAMPLE ID: MW9 SAMPLED: 18 JAN 00 14:5	55							
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3	980. ND	10. 10.	mg/L mg/L		310.1	01.25.00	1000005ALK	
Carbonate as CaCO3 Total Alkalinity as CaCO3 Nitrate as N Sulfate	ND 980. 7.6 4.4	10. 10. 0.1 0.5	mg/L mg/L mg/L mg/L	1 1	300.0 300.0	01.20.00 01.20.00	10000091C 10000091C	

(707) 258-4000 • Fax: (707) 226-1001

INORGANIC ANALYTICAL RESULTS

LAB ORDER No.:

A010438 3 of 11

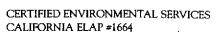
Page

	ANALYTE	RESULT	R.L.	UNITS	D.F	METHOD	ANALYZED	QC BATCH	<u>NOTES</u>
	LAB NUMBER: A010438-4 SAMPLE ID: MW13 SAMPLED: 18 JAN 00 17:1	5			•				
1	ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3	850 . ND ND	10. 10. 10.	mg/L mg/L mg/L	1	310.1	01.25.00	1000005ALK	
_	Total Alkalinity as CaCO3 Nitrate as N Sulfate	850. 0.3 320.	10. 0.1 5.	mg/L mg/L mg/L	1 10	300.0 300.0	01.20.00 01.20.00	10000091C 10000091C	
	LAB NUMBER: A010438-5 SAMPLE ID: MW14 SAMPLED: 18 JAN 00 15:3								
ľ	ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3	1100 . ND ND	10. 10. 10.	mg/L mg/L mg/L	1	310.1	01.25.00	1000005ALK	
_	Total Alkalinity as CaCO3 Nitrate as N Sulfate		10. 0.1 0.5	mg/L mg/L mg/L	1	300.0 300.0	01.20.00 01.20.00	1000009IC 1000009IC	
	LAB NUMBER: A010438-6 SAMPLE ID: MW15 SAMPLED: 18 JAN 00 14:2	10							
	ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3	920. ND NO	10. 10. 10.	mg/L mg/L	1	310.1	02.02.00	I000006ALK	·
	Total Alkalinity as CaCO3 Nitrate as N Sulfate	920. 9.0 3.9	10. 10. 0.1 0.5	mg/L mg/L mg/L mg/L	1	300.0 300.0	01.20.00 01.20.00	1000009IC 1000009IC	

INORGANIC ANALYTICAL RESULTS

1885 N. Kelly Rd. • Napa, California 94558

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664


(707) 258-4000 • Fax: (707) 226-1001

LAB ORDER No.:

Page

A010438 4 of 11

ANALYTE	RESULT	R.L.	UNITS	D.F	METHOD	ANALYZED	QC BATCH	NOTES
LAB NUMBER: A010438-7 SAMPLE ID: MW17 SAMPLED: 18 JAN 00 13:3	35							
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3 Total Alkalimity as CaCO3	960. ND ND 960.	10. 10. 10.	mg/L mg/L mg/L	1 .	310.1	02.02.00	I000006ALK	
Total Alkalinity as CaCO3 Nitrate as N Sulfate	25. 1600.	10. 1. 50.	mg/L mg/L mg/L	10 100	300.0 300.0	01.20.00 01.27.00	1000009IC 1000014IC	

(707) 258-4000 • Fax: (707) 226-1001

ORGANIC	ANALYTICAL	DECIII TO
Oliveration	AUAIL LIGHT	WESULIS.

LAB ORDER No.:

A010438

Page 5 of 11

						ruge	0 01 11
ANALYTE	RESULT	<u>R.L.</u>	_UNITS	<u>D.F.</u>	<u>analyzed</u>	QC_BATCH	NOTES
LAB NUMBER: A010438-1 SAMPLE ID: MW2 SAMPLED: 18 JAN 00 11:23 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS TPH-Extractable, quantitated as	60.	50.	ug/L	1	02.01.00	T000027TPH	1,2,3,4
diesel			-				
TPH-Extractable, quantitated as Motor Oil	660.	200.	ug/L				
Surrogate o-Terphenyl Kerosene	82. ND		%				
LAB NUMBER: A010438-1 (continued) SAMPLE ID: Mw2 SAMPLED: 18 JAN 00 11:23 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS TPH-Purgeable, quantitated as	ND	50.	ug/L	1	01.25.00	V000005G9A	5
gasoline Benzene	2.1	0.5	ug/L		01.25.00		
Toluene Ethylbenzene	ND ND	0.5 0.5	ug/L ug/L		01.25.00 01.25.00		
Xylenes (Total)	ND	0.5	ug/L		01.25.00		
Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND 97. 93.	5.	ug/L ሄ ሄ		01.26.00 01.25.00 01.25.00		
LAB NUMBER: A010438-2 SAMPLE ID: MW8 SAMPLED: 18 JAN 00 12:55 METHOD: EPA 8015M							. .
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS TPH-Extractable, quantitated as diesel	ND	50.	ug/L	1	02.01.00	T000027TPH	1,2

¹⁾ Sample Preparation on 01-28-00 using EPA 3510

2) This sample was analyzed following Silica Gel Cleanup.

³⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

⁴⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

⁵⁾ Sample Preparation on 01-25-00 using EPA 5030

(707) 258-4000 • Fax: (707) 226-1001

	LAB ORDER No.	:
ORGANIC ANALYTICAL RESULTS		

A010438

Page 6 of 11

ANALYTE	RESULT	<u>R.L.</u>	UNITS	<u>D,F.</u>	ANALYZED	QC_BATCH	<u>Notes</u>
LAB NUMBER: A010438-2 (continued) SAMPLE ID: MW8 SAMPLED: 18 JAN 00 12:55 METHOD: EPA 8015M				·			1
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS (continued)				1	02.01.00	T000027TPH	
TPH-Extractable, quantitated as	ND	200.	ug/L				
Motor Oil Surrogate o-Terphenyl Kerosene	83. ND		*				1
LAB NUMBER: A010438-2 (continued) SAMPLE ID: MW8 SAMPLED: 18 JAN 00 12:55 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1		V000005G9A	1
TPH-Purgeable, quantitated as gasoline	ND	50.	ug/L		01.25.00		•
Benzene	ND	0.5	ug/L		01.25.00		1
Toluene	ND	0.5	ug/L		01.25.00		i
Ethylbenzene Xylenes (Total)	ND ND	0.5 0.5	ug/L ug/L		01.25.00 01.25.00		
Methyl tert-Butyl Ether (MTBE)	ND	Š.	ug/L		01.26.00		
Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	97. 92.		% %		01.25.00 01.25.00		
LAB NUMBER: A010438-3 SAMPLE ID: MW9 SAMPLED: 18 JAN 00 14:55 METHOD: EPA:8015M							
TOTAL SEMI-VOLATILE PETROLEUM				1	02.01.00	T000027TPH	2,3,4,5
HYDROCARBONS TRH Extractable quantitated as	200.	50.	ua/i				1
TPH-Extractable, quantitated as diesel	ZUU.	50.	ug/L				•

¹⁾ Sample Preparation on 01-25-00 using EPA 5030

3) This sample was analyzed following Silica Gel Cleanup.

²⁾ Sample Preparation on 01-28-00 using EPA 3510

⁴⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

⁵⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

(707) 258-4000 • Fax: (707) 226-1001

ORGANIC ANALYTICAL RESULTS

LAB ORDER No.:

A010438

Page 7 of 11

	<u>R.L.</u>	<u>UNITS</u>	<u> </u>	ANALYZED	_QC_BATCH_	NOTES
				·		
2300.	200.	ug/L	1	02.01.00	Т000027ТРН	
81 . ND		*				
			1		V000005G9A	1,2
160.	50.	ug/L		01.25.00		
5.7 1.9 0.6 4.2 ND 98.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L		01.25.00 01.25.00 01.25.00 01.25.00 01.26.00 01.25.00		
	81. ND 160. 5.7 1.9 0.6 4.2 ND	81. ND 160. 50. 5.7 0.5 1.9 0.5 0.6 0.5 4.2 0.5 ND 5.	81. % ND 160. 50. ug/L 5.7 0.5 ug/L 1.9 0.5 ug/L 0.6 0.5 ug/L 4.2 0.5 ug/L ND 5. ug/L 98. %	2300. 200. ug/L 81. % ND 1 160. 50. ug/L 5.7 0.5 ug/L 1.9 0.5 ug/L 0.6 0.5 ug/L 4.2 0.5 ug/L ND 5. ug/L ND 5. ug/L ND 5. ug/L %	2300. 200. ug/L 81. % ND 1 160. 50. ug/L 01.25.00 5.7 0.5 ug/L 01.25.00 1.9 0.5 ug/L 01.25.00 0.6 0.5 ug/L 01.25.00 4.2 0.5 ug/L 01.25.00 ND 5. ug/L 01.25.00 98. % 01.25.00	2300. 200. ug/L 81. % ND 1 V000005G9A 160. 50. ug/L 01.25.00 5.7 0.5 ug/L 01.25.00 1.9 0.5 ug/L 01.25.00 0.6 0.5 ug/L 01.25.00 4.2 0.5 ug/L 01.25.00 ND 5. ug/L 01.25.00

¹⁾ Sample Preparation on 01-25-00 using EPA 5030

²⁾ A fuel pattern and it's constituents were found that did not identically match our standard.

(707) 258-4000 • Fax: (707) 226-1001

ORGANIC ANALYTICAL RESULTS

LAB ORDER No.:

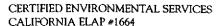
A010438

Page 8 of **1**1

ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	<u>ANALYZED</u>	QC BATCH	<u>NOTES</u>
LAB NUMBER: A010438-4 SAMPLE ID: MW13 SAMPLED: 18 JAN 00 17:15 METHOD: EPA 8015M							1
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS					02.01.00	T000027TPH	3-8
TPH-Extractable, quantitated as diesel	8800.	50.	ug/L	1			
TPH-Extractable, quantitated as Motor Oil	120000.	2000.	ug/L	10			
Surrogate o-Terphenyl Kerosene	81. ND		*	1			1
LAB NUMBER: A010438-4 (continued) SAMPLE ID: MW13 SAMPLED: 18 JAN 00 17:15 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS TPH-Purgeable, quantitated as gasoline	ND	50.	ug/L	1	01.25.00	V000005G9A	1
Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND 0.8 ND ND ND 99.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %		01.25.00 01.25.00 01.25.00 01.25.00 01.25.00 01.25.00 01.25.00		

³⁾ Sample Preparation on 01-28-00 using EPA 3510

4) This sample was analyzed following Šilica Gel Cleanup.


6) Sample diluted to bring concentration of target analyte(s) within the working range of the instrument, resulting in increased reporting limits.

7) An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

8) An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

1) Sample Preparation on 01-25-00 using EPA 5030

⁵⁾ The final volume of the sample extract was higher than the nominal amount, resulting in (a) higher reporting limit(s).

(707) 258-4000 • Fax: (707) 226-1001

ORGANIC ANALYTICAL RESULTS

LAB ORDER No.:

A010438

Page

9 of 11

ANALYTE	RESULT	<u>R.L.</u>	UNITS	<u>D.F.</u>	<u>ANALYZED</u>	QC BATCH	<u>NOTES</u>
LAB NUMBER: A010438-5 SAMPLE ID: MW14 SAMPLED: 18 JAN 00 15:30 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS				1	02.01.00	T000027TPH	1-6
TPH-Extractable, quantitated as diesel	1700.	250.	ug/L				•
TPH-Extractable, quantitated as Motor Oil	22000.	1000.	ug/L				
Surrogate o-Terphenyl Kerosene	38. ND		%				<u> </u>
LAB NUMBER: A010438-5 (continued) SAMPLE ID: MW14 SAMPLED: 18 JAN 00 15:30 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1		V000005G9A	7,8
TPH-Purgeable, quantitated as gasoline	120.	50.	ug/L		01.25.00		
Benzene Toluene Ethylbenzene	ND ND ND	0.5 0.5 0.5	ug/L ug/L ug/L		01.25.00 01.25.00 01.25.00		
Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND 100. 94.	0.5 5.	ug/L ug/L % %		01.25.00 01.26.00 01.25.00 01.25.00	•	

1) Sample Preparation on 01-28-00 using EPA 3510

2) This sample was analyzed following Silica Gel Cleanup.

3) The final volume of the sample extract was higher than the nominal amount, resulting in (a) higher reporting limit(s).

4) An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

5) An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

6) Due to matrix interferences present in the sample, surrogate recoveries failed to meet the QA/QC acceptance criteria.

7) Sample Preparation on 01-25-00 using EPA 5030

8) An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on gasoline standards.

(707) 258-4000 • Fax: (707) 226-1001

ORGANIC ANALYTICAL RESULTS

LAB ORDER No.:

A010438

Page 10 of 11

ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	<u>analyzed</u>	QC_BATCH	NOTES
LAB NUMBER: A010438-6 SAMPLE ID: MW15 SAMPLED: 18 JAN 00 14:20 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS					02.01.00	T000027TPH	1-6
TPH-Extractable, quantitated as diesel	12000.	250.	ug/L	1			
TPH-Extractable, quantitated as Motor Oil	89000.	2000.	ug/L	10			,
Surrogate o-Terphenyl Kerosene	69. ND		% ·	1			
LAB NUMBER: A010438-6 (continued) SAMPLE ID: MW15 SAMPLED: 18 JAN 00 14:20 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1		V000005G9A	7,8
TPH-Purgeable, quantitated as gasoline	110.	50.	ug/L		01.25.00		
Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	3.8 2.1 1. 4.6 ND 102. 95.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %		01.25.00 01.25.00 01.25.00 01.25.00 01.26.00 01.25.00 01.25.00		

1) Sample Preparation on 01-28-00 using EPA 3510

2) This sample was analyzed following Silica Gel Cleanup.

3) The final volume of the sample extract was higher than the nominal amount, resulting in (a) higher reporting limit(s).

4) Sample diluted to bring concentration of target analyte(s) within the working range of the instrument, resulting in increased reporting limits.

5) An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

6) An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

7) Sample Preparation on 01-25-00 using EPA 5030

8) A fuel pattern and it's constituents were found that did not identically match our standard.

1885 N. Kelly Rd. • Napa, California 94558

(707) 258-4000 • Fax: (707) 226-1001

ORGANIC ANALYTICAL RESULTS

LAB ORDER No.:

A010438 Page 11 of 11

ANALYTE	RESULT	R.L.	<u>UNITS</u>	<u>D.F.</u>	ANALYZED	QC BATCH	NOTES
LAB NUMBER: A010438-7 SAMPLE ID: MW17 SAMPLED: 18 JAN 00 13:35 METHOD: EPA 8015M						·	
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS				1	02.01.00	T000027TPH	1-5
TPH-Extractable, quantitated as diesel	850.	250.	ug/L				
TPH-Extractable, quantitated as Motor Oil	21000.	1000.	ug/L				
Surrogate o-Terphenyl Kerosene	83. ND		*				
LAB NUMBER: A010438-7 (continued) SAMPLE ID: MW17 SAMPLED: 18 JAN 00 13:35 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1		V000005G9A	6
TPH-Purgeable, quantitated as gasoline	ND	50.	ug/L		01.25.00		
Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND ND ND ND 94. 90.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %		01.25.00 01.25.00 01.25.00 01.25.00 01.25.00 01.25.00 01.25.00		

1) Sample Preparation on 01-28-00 using EPA 3510

2) This sample was analyzed following Silica Gel Cleanup.

3) The final volume of the sample extract was higher than the nominal amount, resulting in (a) higher reporting limit(s).

4) An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

5) An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

6) Sample Preparation on 01-25-00 using EPA 5030

SUPPLEMENTAL QUALITY CONTROL (QC) DATA REPORT

(707) 258-4000 • Fax: (707) 226-1001

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

LAB ORDER No.:

A010438

Page

1 of

Report Date:

03 FEB 2000 1

Received Date:

19 JAN 2000

Client: David Elias

Cambria

1144 65th Street, Suite C

Oakland, CA 94608

Project: 153-1247-020/CITY OF OAKLAND

QC Batch ID	Method	Matrix
I000005ALK I000006ALK I000009IC I000014IC T000027TPH V000005G9A	310.1 310.1 300.0 300.0 8015M 8015/8020A	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS

Todd M. Albertson Project Manager

Laboratory Director

CALTEST authorizes this report to be reproduced only in its entirety. Results are specific to the sample as submitted and only to the parameters reported.

All analyses performed by EPA Methods or Standard Methods (SM) 18th Ed. except where noted.

Results of 'ND' mean not detected at or above the listed Reporting Limit (R.L.). Analyte Spike Amounts reported as 'NS' mean not spiked and will not have recoveries reported. 'RPD' means Relative Percent Difference and RPD Acceptance Criteria is stated as a maximum.

'NC' means not calculated for RPD or Spike Recoveries.

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

(707) 258-4000 • Fax: (707) 226-1001

METHOD BLANK ANALYTICAL RESULTS

LAB ORDER No.:

A010438 2 of 6

Page 2 of 6

METHOD BLANK ANALYTICAL RESULTS		•		Page 2	of 6
ANALYTE	RESULT	R.L.	<u>UNITS</u>	<u>analyzed</u>	<u>NOTES</u>
QC BATCH: 1000005ALK				-	
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3 Total Alkalinity as CaCO3	ND ND ND ND	10. 10. 10. 10.	mg/L mg/L mg/L mg/L	01.25.00	
QC BATCH: 1000006ALK					
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3 Total Alkalinity as CaCO3	ND ND ND ND	10. 10. 10. 10.	mg/L mg/L mg/L mg/L	02.02.00	
QC BATCH: 10000091C					
Nitrate as N Sulfate	ND ND	0.1 0.5	mg/L mg/L	01.20.00 01.20.00	
QC BATCH: I000014IC		: .			
Sulfate	ND	0.5	mg/L	01.27.00	•
QC BATCH: T000027TPH					
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS Diesel Fuel TPH-Extractable, quantitated as diesel Motor Oil TPH-Extractable, quantitated as Motor Oil Surrogate o-Terphenyl Kerosene	ND ND ND ND 87 . ND	50. 50. 200. 200.	ug/L ug/L ug/L ug/L	01.31.00	1
QC BATCH: V000005G9A				-	
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline TPH-Purgeable, quantitated as gasoline Benzene	ND ND ND	50. 50. 0.5	ug/L ug/L ug/L	01.26.00 01.25.00 01.25.00	

¹⁾ This sample was analyzed following Silica Gel Cleanup.

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

(707) 258-4000 • Fax: (707) 226-1001

METHOD BLANK ANALYTICAL RESULTS

LAB ORDER No.:

A010438 3 of 6

Page

ANALYTE	RESULT	R.L.	UNITS	<u>ANALYZED</u>	<u>NOTES</u>
QC BATCH: V000005G9A (continued)					1
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS (continued)					
Toluene Ethylbenzene	ND	0.5	ug/L	01.25.00	
Xylenes (Total)	ND ND:	0.5 0.5	ug/L ug/L	01.25.00 01.25.00	
Methyl tert-Butyl Ether (MTBE)	ND	5.	ug/L	01.26.00	(
Surrogate 4-Bromofluorobenzene [FID]	96.		%	01.25.00	į
Surrogate 4-Bromofluorobenzene [PID]	92.		*	01.25.00	,

(707) 258-4000 • Fax: (707) 226-1001

LABORATORY CONTROL SAMPLE ANALYTICAL RESULTS

LAB ORDER No.:

A010438

Page 4 of 6

ANALYTE	SPIKE AMOUNT	SPIKE\DUP RESULT	SPK\DUP **REC	ACCEPTANCE %REC_\RPD_	REL% DIFF	<u>analyzed</u>	<u>NOTES</u>
QC BATCH: I000005ALK							
ALKALINITY Bicarbonate as CaCO3 Total Alkalinity as CaCO3	100. 100.	99.\ 99.\	99\ 99\	80-120\20 80-120\20		01.25.00	
QC BATCH: I000006ALK							·
ALKALINITY Bicarbonate as CaCO3 Total Alkalinity as CaCO3	100. 100.	89.\ 89.\	89\ 89\	80-120\20 80-120\20		02.02.00	
QC BATCH: 10000091C							
Nitrate as N Sulfate	6.25 20.0	6.26\ 20.6\	100\ 103\	80-120\20 80-120\20		01.20.00 01.20.00	
QC BATCH: I000014IC							
Sulfate	20.0	20.9\	104\	80-120\20		01.27.00	
QC BATCH: T000027TPH							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS						01.31.00	1
Diesel Fuel Surrogate o-Terphenyl	1000 100	844.\ 76.2\	84\ 76\	36-102\ 40-140\			
QC BATCH: V000005G9A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline Benzene Toluene Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	550. 6.69 39.0 20.0 20.0	500.\ 6.26\ 34.4\ 19.5\ 18.0\	91\ 94\ 88\ 98\ 90\	50-130\ 50-130\ 50-130\ 50-130\ 50-130\		01.26.00 01.25.00 01.25.00 01.25.00 01.25.00	

¹⁾ This sample was analyzed following Silica Gel Cleanup.

(707) 258-4000 • Fax: (707) 226-1001

DUPLICATE SAMPLES ANALYTICAL RESULTS

LAB ORDER No.:

Page

ANALYTE		ORIGINAL RESULT	DUPLICATE RESULT	REL% DIFF	ACCEPT LIMIT	<u>analyzed</u>	<u>NOTES</u>
QC BATCH: 1000005ALK QC SAMPLE LAB NUMBER: A010432-1							
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3 Total Alkalinity as CaCO3 QC BATCH: I000006ALK	10. 10. 10. 10.	216. ND ND 216.	220. ND ND 220.	1.8 NC NC 1.8	20 20 20 20 20	01.25.00	·
QC SAMPLE LAB NUMBER: A010469-7 ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3 Total Alkalinity as CaCO3	10. 10. 10. 10.	200. ND ND 200.	210. ND ND 210.	4.9 NC NC 4.9	20 20 20 20	02.02.00	

(707) 258-4000 • Fax: (707) 226-1001

MATRIX SPIKE ANALYTICAL RESULTS

LAB ORDER No.:

A010438

Page 6 of 6

ANALYTE	ORIGINAL RESULT	SPIKE AMOUNT	SPIKE\DUP RESULT	SPK\DUP %REC_	ACCEPTANCE **REC \RPD	RELX DIFF ANALYZED	<u>NOTES</u>
QC BATCH: 10000091C QC SAMPLE LAB NUMBER: A010452-1							
Nitrate as N QC BATCH: 1000009IC (continued) QC SAMPLE LAB NUMBER: A010452-1	2.63	50.	52.0\52.5	99\100	80-120\20	1 01.20.00	
Sulfate	33.8	160.	185.\188.	94\96	80-120\20	1.6 01.20.00	
QC BATCH: I000014IC QC SAMPLE LAB NUMBER: A010655-4							
Sulfate	32.1	160.	191.\184.	99\95	80-120\20	3.7 01.27.00	
QC BATCH: V000005G9A QC SAMPLE LAB NUMBER: A010438-1					10.50		
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline	ND	550.	440.\401.	80\73	50-130\25	01.26.00 9.3	
Benzene Toluene Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	2.14 ND 97.% 93.%	6.69 39.0 20.0 20.0	9.66\8.98 35.8\32.8 18.8\18.4 19.4\19.0	112\102 92\84 94\92 97\95	50-130\25 50-130\25 50-130\25 50-130\25	7.3 8.7	

(C	CALTE	ST		1885	N. KELLY R	OAD • NAPA, CA	94558 (707) 25	8-4000	Fax (707) 226-10	01			-	LAB ORDER #:	
₽ A¥	ANALY		•	SAN	IPLE				,		PAGE	=	OF	-	_ HUO	728
	LABOR	ATORY	CH	AIN OF		DY PROJECT #/PR	OJECTNAME /ユリフーもユ	0 /	City	D 0	a Ś	lan	1	P.O. #	53-124	7-020
CLIENT:	<i>(</i> **)	1 .	,		ad 0	CONTACT NAME		7		0	· · · · · ·	AI	VALY	SES A	EQUESTED	
ADDRES		bio	L by	MKON	every.	Jac 9)	710.	torus	•					Zvok		TURN-AROU
= 10	44	651	9 St	nert, S	CB.	Daland CA	9460	3				- <i>R</i>	\$\X	Y /		STANDARD
	ADDRESS:	- 4	_	, 1		,		_		· ·				/_9		RUSH
PHONE :		FA	X PHONE:			PRINT & SIGN NAME):	/-				A		$\chi \mathcal{N}$	\$\$_\0	Y 7 3	e aces
57042	20 333	3/5	<u> 5704</u>	209170	Jac.	guelyn dir	3/		COLAD					Y Y s	CX lines about	3
CALTEST	DATE SAMPLED	TIME SAMPLED	MATRIX	CONTAINER AMOUNT/TYPE	PRESERVATIVE	SAMPLE IDENTIF	FICATION SITE	CLIENT LAB #	COMP. or GRAB	1		\$ 1.	\$	78 TO	PEMARI	(S
ئے' ا	1800	[[27	Whr	X	X	MW2				1	+	7		7	NOTE	
22		1255				MW8									Wor	-L
-23		255				MWd									Same	les by
#7		515				MW B									2 1	1
		330				NWIY									will	
16		22-0				MW15									Com	17
7 7		135	V	V	V	MN17					1	V	1	1	to	yon.
		1,75					· ·					i.				-
	die /	1	n . / e	4	tel a	es VOAS:	210			7_1			1	1	MOA 00	 0 C
**************************************		ontair	W15.	, i	TICC P	(5) (113)		NISOLS	•	0-1	24	- 101	415	174-1	, non pr	
0.1元载	1			<u> </u>	<u> </u>		non-pr	7								
By s						rms and Conditions se										
	REL	INCOLIȘHED	BY	1 Kel	ATE/TIME	/RECEWE	ABY /	RELIN	HONISHED	BX /		1/9/	TE/TIM	IE 	RECEI	ED BY
		\swarrow	;· 	400	1430	Wallet ?	chill	y don't	I has	Di	4	1110	16	_ىدۇ	Jall	ling
16)	00													1	
Sam	ole (Woek)	AS INICITIO	de de la	, 1947. 1		Al Talles A. A. A.	Mary Augustin Strates	1/3 / (1) - 2/3/2		3 (1) 3 (1)					ous Nondrinking Wateus Nondrinking Wate	
S CC:	AN NA	700	(e)												L = Soli, Sludge, Solik	
SIL:	HP P	1.00 mg	4	in de la compania. La compania de la co	and man										6: AL = Amber Liter. ic); QT=Quart (Plast	
3 "	//HNO ₃	H ₂ SO ₂ A	NaQ	***					Ç.			(Plastic);	Soil Jar, E	34 = 4 oz. BACT; BT er Type Container	
PIL	HNO,	H ₂ SO ₄ year	*##NaO												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LANG

(707) 258-4000 • Fax: (707) 226-1001

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

LAB ORDER No.:

A010469 Page 1 of 12

REPORT of ANALYTICAL RESULTS

Report Date: Received Date:

23 FEB 2000 20 JAN 2000

Client: David Elias

Cambria

Purchase Order:

153-1247-20

1144 65th Street, Suite C

Oakland, CA 94608

Project: 153-1247-20/CITY OF OAKLAND

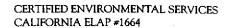
Sampled by:

J.JONES

Lab Number	Sample Identification	Matrix	Sampled Date/Time
A010469-1	MW1	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	19 JAN 00 14:00
A010469-2	MW5		19 JAN 00 15:35
A010469-3	MW7		19 JAN 00 15:50
A010469-4	MW10		19 JAN 00 13:15
A010469-5	MW11		19 JAN 00 14:50
A010469-6	MW12		19 JAN 00 10:30
A010469-7	TBW6		19 JAN 00 11:15
A010469-15	MW5		19 JAN 00 15:35

Todd M. Albertson Project Manager Christine Horn Laboratory Director

CALTEST authorizes this report to be reproduced only in its entirety.
Results are specific to the sample as submitted and only to the parameters reported.
All analyses performed by EPA Methods or Standard Methods (SM) 18th Ed. except where noted.
Results of 'ND' mean not detected at or above the listed Reporting Limit (R.L.).
'D.F.' means Dilution Factor and has been used to adjust the listed Reporting Limit (R.L.).
Acceptance Criteria for all Surrogate recoveries are defined in the QC Spike Data Reports.



(707) 258-4000 • Fax: (707) 226-1001

LAB ORDER No.: INORGANIC ANALYTICAL RESULTS

A010469 2 of 12 Page

ANALYTE	RESULT	R.L.	UNITS	D.F	METHOD	ANALYZED	QC BATCH	NOTES
LAB NUMBER: A010469-1 SAMPLE ID: MW1 SAMPLED: 19 JAN 00 14:0	10							1
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3	1300. ND ND	10. 10. 10.	mg/L mg/L mg/L	1	310.1	02.02.00	I000006ALK	;
Total Alkalinity as CaCO3 Nitrate as N Sulfate		10. 10. 0.1 0.5	mg/L mg/L mg/L	1 1	300.0		10000091C 10000091C	-
LAB NUMBER: A010469-2 SAMPLE ID: MW5 SAMPLED: 19 JAN 00 15:3	15							
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3	680. ND	10. 10.	mg/L mg/L	1	310.1	02.02.00	1000006ALK	,
Carbonate as CaCO3 Total Alkalinity as CaCO3 Nitrate as N Sulfate	ND 680. 1.9 21.	10. 10. 0.1 0.5	mg/L mg/L mg/L mg/L	1 1	300.0 300.0		10000091C 10000091C	
LAB NUMBER: A010469-3 SAMPLE ID: MW7 SAMPLED: 19 JAN 00 15:5	,0							_
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3	840. ND ND	10. 10. 10.	mg/L mg/L mg/L	1	310.1	02.02.00	1000006ALK	
Total Alkalinity as CaCO3 Nitrate as N Sulfate		10. 0.1 50.	mg/L mg/L mg/L	1 100	300.0 300.0	01.20.00 01.27.00	I000009IC I000014IC	

(707) 258-4000 • Fax: (707) 226-1001

INORGANIC ANALYTICAL RESULTS

LAB ORDER No.:

A010469

Page 3 of 12

ANALYTE	RESULT	R.L.	UNITS	D.F	METHOD_	_ANALYZED	QC BATCH	<u>NOTES</u>
LAB NUMBER: A010469-4 SAMPLE ID: MW10 SAMPLED: 19 JAN 00 13:1	5							·
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3	940. ND	10. 10.	mg/L mg/L	1	310.1	02.02.00	1000006ALK	
Carbonate as CaCO3 Total Alkalinity as CaCO3 Nitrate as N Sulfate	ND 940 : 1.9 ND	10. 10. 0.1 0.5	mg/L mg/L mg/L mg/L	1	300.0 300.0		10000091C	
LAB NUMBER: A010469-5 SAMPLE ID: MW11 SAMPLED: 19 JAN 00 14:5	50							
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3	1800. ND ND	10. 10. 10.	mg/L mg/L mg/L	1	310.1	02.02.00	I000006ALK	
Total Alkalinity as CaCO3 Nitrate as N Sulfate		10. 0.1 0.5	mg/L mg/L mg/L	1 1	300.0 300.0		10000091C 10000091C	
LAB NUMBER: A010469-6 SAMPLE ID: MW12 SAMPLED: 19 JAN 00 10:3	80							
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3	920. ND ND	10. 10. 10.	mg/L mg/L mg/L	1	310.1	02.02.00	1000006ALK	
Total Alkalinity as CaCO3 Nitrate as N Sulfate		10. 0.1 0.5	mg/L mg/L mg/L	1 1	300.0 300.0	01.20.00 01.20.00	1000009IC 1000009IC	

INORGANIC ANALYTICAL RESULTS

1885 N. Kelly Rd. • Napa, California 94558

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

(707) 258-4000 • Fax: (707) 226-1001

LAB ORDER No.:

Page

A010469 4 of 12

ANIAI VIII	DECLUT	D 1	IBITE	b.c	NCTI IOD	ANALYZED	OC DATCU	MOTES
ANALYTE	RESULT	<u>R.L.</u>	UNITS	_ <u>D.F.</u>	METHOD	ANALTZED	QC BATCH	<u>NOTES</u>
LAB NUMBER: A010469-7 SAMPLE ID: TBW6 SAMPLED: 19 JAN 00 11:1	5							
ALKALINITY				1	310.1	02.02.00	I000006ALK	
Bicarbonate as CaCO3	200.	10.	mg/L					
Hydroxide as CaCO3	ND "	10.	mg/L		•			
Carbonate as CaCO3	ND	10.	mg/L					
Total Alkalinity as CaCO3	200.	10.	mg/L					
Nitrate as N	1.0	0.1	mg/L	1	300.0	01.20.00	I0000091C	
Sulfate	60	5	ma/l	- 10	300.0	01.27.00	I000014IC	

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

1 02.01.00 T000027TPH 1.2.3.6

(707) 258-4000 • Fax: (707) 226-1001

ORGANIC ANALYTICAL RESULTS

LAB ORDER No.:

A010469

Page 5 of 12

ANALYTE	RESULT	<u>R.L.</u>	<u>UNITS</u>	<u>D.F.</u>	ANALYZED	QC BATCH	NOTES
LAB NUMBER: A010469-1 SAMPLE ID: MW1 SAMPLED: 19 JAN 00 14:00 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM				1	02.01.00	T000027TPH	1,2,3
HYDROCARBONS TPH-Extractable, quantitated as	50.	50.	ug/L				
diesel TPH-Extractable, quantitated as Motor Oil	ND	200.	ug/L				
Surrogate o-Terphenyl Kerosene	81. ND	50.	*				
LAB NUMBER: A010469-1 (continued) SAMPLE ID: MW1 SAMPLED: 19 JAN 00 14:00 METHOD: EPA 8015/8020A				•			
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1	01.25,.00	V000005G9A	4,5
Total Petroleum Hydrocarbons -	660.	50.	ug/L				
Gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	43. 2.3 1.1 6.0 ND 99. 95.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %				
							

HYDROCARBONS

TOTAL SEMI-VOLATILE PETROLEUM

19 JAN 00 15:35

LAB NUMBER: A010469-2 SAMPLE ID: MW5

METHOD: EPA 8015M

SAMPLED:

1) Sample Preparation on 01-28-00 using EPA 3510

2) This sample was analyzed following Silica Gel Cleanup.

4) Sample Preparation on 01-25-00 using EPA 5030

5) A fuel pattern and it's constituents were found that did not identically match our standard.

³⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

⁶⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

(707) 258-4000 • Fax: (707) 226-1001

	(101) 230 1000	2 and (101) 220 (001		
			LAB ORDER	No.:
ORGANIC A	ANALYTICAL R	ESULTS		

A010469 Page 6 of 12

ANALYTE_ RESULT R.L. UNITS D.F. ANALYZED QC BATCH NOTES

X

ug/L

ug/L

%

LAB NUMBER: A010469-2 (continued)

SAMPLE ID: MW5

19 JAN 00 -15:35 SAMPLED:

METHOD: EPA 8015M

TOTAL SEMI-VOLATILE PETROLEUM 1 02.01.00 T000027TPH **HYDROCARBONS** (continued) TPH-Extractable, quantitated as 100. 50. ug/L diesel

Motor Oil

TPH-Extractable, quantitated as 320. 200. ug/L

Surrogate o-Terphenyl 84.

Kerosene ND 50.

LAB NUMBER: A010469-2 (continued)

SAMPLE ID: MW5

19 JAN 00 15:35 SAMPLED:

METHOD: EPA 8015/8020A

AROMATIC HYDROCARBONS AND TOTAL 1 01.25.00 V000005G9A PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons -3000. 50. ug/L Gasoline Benzene 66.E 0.5 ug/L Toluene 6.3 0.5 ug/L Ethylbenzene 400.E 0.5 ug/L Xylenes (Total)

0.5

5.

LAB NUMBER: A010469-3

SAMPLE ID: MW7

SAMPLED: 19 JAN 00 15:50

Methyl tert-Butyl Ether (MTBE)

Surrogate 4-Bromofluorobenzene [FID]

Surrogate 4-Bromofluorobenzene [PID]

METHOD: EPA 8015M

TOTAL SEMI-VOLATILE PETROLEUM 1 02.01.00 T000027TPH

HYDROCARBONS

TPH-Extractable, quantitated as ND 50 uq/L

diesel

1) Sample Preparation on 01-25-00 using EPA 5030

2) "E" flagged results are estimated due to concentrations exceeding the calibration range.

90.

300.E

168.

92.

3) Due to matrix interferences present in the sample, surrogate recoveries failed to meet the QA/QC acceptance criteria.

4) Sample Preparation on 01-28-00 using EPA 3510

5) This sample was analyzed following Silica Gel Cleanup.

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

1 02.01.00 T000027TPH 3,4,5.6

(707) 258-4000 • Fax: (707) 226-1001

ORGANIC ANALYTICAL RESULTS

LAB ORDER No.:

A010469

7 of 12 Page

	ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	ANALYZED	QC BATCH	NOTES
Ì	LAB NUMBER: A010469-3 (continued) SAMPLE ID: MW7 SAMPLED: 19 JAN 00 15:50 METHOD: EPA 8015M							
	TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS				1	02.01.00	T000027TPH	
-	(continued) TPH-Extractable, quantitated as	ND	200.	ug/L .				•
	Motor Oil Surrogate o-Terphenyl Kerosene	78. ND	50.	%				
l	LAB NUMBER: A010469-3 (continued) SAMPLE ID: MW7 SAMPLED: 19 JAN 00 15:50 METHOD: EPA 8015/8020A						•	
ľ	AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons -	54.	50.	ug/L	. 1	01.25.00	V000005G9A	1,2
	Gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	1.5 1.5 2.4 3.8 ND 95.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %				
	LAB NUMBER: A010469-4 SAMPLE ID: MW10 SAMPLED: 19 JAN 00 13:15 METHOD: EPA 8015M			· ·				

1) Sample Preparation on 01-25-00 using EPA 5030

TPH-Extractable, quantitated as 120.

TOTAL SEMI-VOLATILE PETROLEUM

HYDROCARBONS

diesel

3) Sample Preparation on 01-28-00 using EPA 35104) This sample was analyzed following Silica Gel Cleanup.

50.

ug/L

²⁾ A fuel pattern and it's constituents were found that did not identically match our standard.

⁵⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

⁶⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

ORGANIC ANALYTICAL RESULTS

1885 N. Kelly Rd. • Napa, California 94558

(707) 258-4000 • Fax: (707) 226-1001

LAB ORDER No.:

A010469

Page

8 of 12

ANALYTE	RESULT	<u>R</u> .L.	<u>UNITS</u>	<u>D.F.</u>	<u>analyzed</u>	QC BATCH	NOTES
LAB NUMBER: A010469-4 (continued) SAMPLE ID: MW10 SAMPLED: 19 JAN 00 13:15 METHOD: EPA 8015M							[
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS (continued)				1	02.01.00	T000027TPH	1
TPH-Extractable, quantitated as Motor Oil	1200.	200.	ug/L				(
Surrogate o-Terphenyl Kerosene	90. ND	50.	%				i 4
LAB NUMBER: A010469-4 (continued) SAMPLE ID: MW10 SAMPLED: 19 JAN 00 13:15 METHOD: EPA 8015/8020A						•	
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS				1	01.25.00	V000005G9A	1.2
Total Petroleum Hydrocarbons - Gasoline	100.	50.	ug/L				(
Benzene Toluene	ND ND	0.5 0.5	ug/L ug/L				1
Ethylbenzene	0.8	0.5	ug/L				(
Xylenes (Total) Methyl tert-Butyl Ether (MTBE)	ND ND	0.5 5.	ug/L ug/L				
Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	97. 95.	υ.	% % %				•
LAB NUMBER: A010469-5 SAMPLE ID: MW11 SAMPLED: 19 JAN 00 14:50 METHOD: EPA 8015M							1
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS				1	02.01.00	Т000027ТРН	3,4,5
TPH-Extractable, quantitated as diesel	ND	50.	ug/L				
TPH-Extractable, quantitated as Motor Oil	500.	200.	ug/L				1

¹⁾ Sample Preparation on 01-25-00 using EPA 5030

²⁾ A fuel pattern and it's constituents were found that did not identically match our standard.
3) Sample Preparation on 01-28-00 using EPA 3510
4) This sample was analyzed following Silica Gel Cleanup.

⁵⁾ An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

CERTIFIED ENVIRONMENTAL SERVICES
CALIFORNIA ELAP #1664

(707) 258-4000 • Fax: (707) 226-1001

LAB ORDER No.:

Page 9 of 12

ANALYTE R.L. UNITS D.F. ANALYZED OC BATCH NOTES RESULT LAB NUMBER: A010469-5 (continued) SAMPLE ID: MW11 SAMPLED: 19 JAN 00 14:50 METHOD: EPA 8015M 1 02.01.00 T000027TPH TOTAL SEMI-VOLATILE PETROLEUM **HYDROCARBONS** (continued) % Surrogate o-Terphenyl 86. 50. ND Kerosene LAB NUMBER: A010469-5 (continued) SAMPLE ID: MW11 SAMPLED: 19 JAN 00 14:50 METHOD: EPA 8015/8020A AROMATIC HYDROCARBONS AND TOTAL 1 01.26.00 V000005G9A 1.2 PURGEABLE PETROLEUM HYDROCARBONS

Total Petroleum Hydrocarbons -220. 50. ug/L Gasoline Benzene ND 0.5 ug/L Toluene ND 0.5 ug/L **Ethylbenzene** ND 0.5 ug/L Xylenes (Total) ND 0.5 ug/L Methyl tert-Butyl Ether (MTBE) ug/L ND 5. 8 Surrogate 4-Bromofluorobenzene [FID] 99. % Surrogate 4-Bromofluorobenzene [PID] 94.

LAB NUMBER: A010469-6

SAMPLE ID: MW12

SAMPLED: 19 JAN 00 10:30

METHOD: EPA 8015M

TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS

02.01.00 T000027TPH

3-8

1) Sample Preparation on 01-25-00 using EPA 5030

2) A fuel pattern and it's constituents were found that did not identically match our standard.

3) Sample Preparation on 01-28-00 using EPA 3510

4) This sample was analyzed following Silica Gel Cleanup.

5) The final volume of the sample extract was higher than the nominal amount, resulting in (a) higher reporting limit(s).

6) Sample diluted to bring concentration of target analyte(s) within the working range of the instrument, resulting in increased reporting limits.

7) An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

8) An unidentified petroleum hydrocarbon mixture was present in the sample. An approximate concentration has been calculated based on motor oil standards.

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

(707) 258-4000 • Fax: (707) 226-1001

ORGANIC ANALYTICAL RESULTS

LAB ORDER No.:

A010469

Page 10 of 12

ANALYTE	<u>RESULT</u>	<u>R.L.</u>	UNITS	<u>D.F.</u>	<u>analyzed</u>	QC_BATCH	NOTES_
LAB NUMBER: A010469-6 (continued) SAMPLE ID: MW12 SAMPLED: 19 JAN 00 10:30 METHOD: EPA 8015M					;		
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS (continued)					02.01.00	Т000027ТРН	
TPH-Extractable, quantitated as	1800.	100.	ug/L	2			(
diesel TPH-Extractable, quantitated as Motor Oil	11000.	400.	ug/L	. 2			(
Surrogate o-Terphenyl Kerosene	70. ND	50.	%	1			
LAB NUMBER: A010469-6 (continued) SAMPLE ID: MW12 SAMPLED: 19 JAN 00 10:30 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline	200.	50.	ug/L	1	01.26.00	V000005G9A	1,2
Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND 3.4 1.5 8.4 ND 111. 99.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %				
LAB NUMBER: A010469-7 SAMPLE ID: TBW6 SAMPLED: 19 JAN 00 11:15 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS TPH-Extractable, quantitated as diesel	55.	50.	ug/L	1	02.01.00	T000027TPH	3,4,5

¹⁾ Sample Preparation on 01-25-00 using EPA 5030

²⁾ A fuel pattern and it's constituents were found that did not identically match our standard.

³⁾ Sample Preparation on 01-28-00 using EPA 3510

⁴⁾ This sample was analyzed following Silica Gel Cleanup.

⁵⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on Diesel #2 standards.

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

(707) 258-4000 • Fax: (707) 226-1001

ORGANIC ANALYTICAL RESULTS

LAB ORDER No.:

A010469 Page 11 of 12

•

ANALYTE	RESULT	R.L.	UNITS	<u>D.F.</u>	ANALYZED	QC BATCH	NOTES
LAB NUMBER: A010469-7 (continued) SAMPLE ID: TBW6 SAMPLED: 19 JAN 00 11:15 METHOD: EPA 8015M							
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS (continued) TPH-Extractable, quantitated as	ND.	200.	ug/l	. 1	02.01.00	T000027TPH	
Motor Oil Surrogate o-Terphenyl Kerosene	ND 67. ND	50.	ug/L %				
LAB NUMBER: A010469-7 (continued) SAMPLE ID: TBW6 SAMPLED: 19 JAN 00 11:15 METHOD: EPA 8015/8020A							
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS TPH-Purgeable, quantitated as qasoline	170.	50.	ug/L	1	01.26.00	V000005G9A	1,2
Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	0.6 ND ND ND ND 97. 94.	0.5 0.5 0.5 0.5 5.	ug/L ug/L ug/L ug/L ug/L %				
LAB NUMBER: A010469-15 SAMPLE ID: MW5 SAMPLED: 19 JAN 00 15:35 METHOD: EPA 8260A							
MTBE BY GC/MS Methyl tert-Butyl Ether (MTBE) Surrogate Dibromofluoromethane Surrogate 1.2-DCA-d4 Surrogate Toluene-d8	1300. 110. 130. 99.	100.	ug/L % %	100	02.08.00	V000020MSA	3,4

¹⁾ Sample Preparation on 01-25-00 using EPA 5030

²⁾ An unidentified petroleum hydrocarbon was present in the sample. An approximate concentration has been calculated based on gasoline standards.

³⁾ Sample Preparation on 02-08-00 using EPA 5030

⁴⁾ Sample diluted to bring concentration of target analyte(s) within the working range of the instrument, resulting in increased reporting limits.

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

(707) 258-4000 • Fax: (707) 226-1001

LAB ORDER No.:

A010469

Page 12 of 12

ORGANIC ANALYTICAL RESULTS

LAB NUMBER: A010469-15 (continued)

SAMPLE ID: MW5

ANALYTE

SAMPLED:

19 JAN 00 15:35

METHOD: EPA 8260A

MTBE BY GC/MS

(continued)

Surrogate 4-BFB

R.L. UNITS D.F. ANALYZED OC BATCH NOTES

100 02.08.00 V000020MSA

100.

(707) 258-4000 • Fax: (707) 226-1001

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

LAB ORDER No.:

A010469 1 of 7

Page

SUPPLEMENTAL QUALITY CONTROL (QC) DATA REPORT

Report Date: Received Date: 23 FEB 2000 20 JAN 2000

David Elias

Cambria

Client:

1144 65th Street, Suite C

Oakland, CA 94608

Project: 153-1247-20/CITY OF OAKLAND

QC Batch ID	Method	Matrix
I000006ALK I000009IC I000014IC T000027TPH V000005G9A V000020MSA	310.1 300.0 300.0 8015M 8015/8020A 8260A	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS

född M. Albertson Project Manager Christine Horn Laboratory Director

CALTEST authorizes this report to be reproduced only in its entirety.

Results are specific to the sample as submitted and only to the parameters reported.

All analyses performed by EPA Methods or Standard Methods (SM) 18th Ed. except where noted.

Results of 'ND' mean not detected at or above the listed Reporting Limit (R.L.).

Analyte Spike Amounts reported as 'NS' mean not spiked and will not have recoveries reported.

'RPD' means Relative Percent Difference and RPD Acceptance Criteria is stated as a maximum.

'NC' means not calculated for RPD or Spike Recoveries.

(707) 258-4000 • Fax: (707) 226-1001

METHOD BLANK ANALYTICAL RESULTS

LAB ORDER No.:

A010469 Page 2 of

ANALYTE	<u>RESULT</u>	R.L.	UNITS	<u>analyzed</u>	NOTES (
QC BATCH: I000006ALK					4
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3 Total Alkalinity as CaCO3	ND ND ND ND	10. 10. 10. 10.	mg/L mg/L mg/L mg/L	02.02.00	1
QC BATCH: 10000009IC					
Nitrate as N Sulfate	ND ND	0.1 0.5	mg/L mg/L	01.20.00 01.20.00	9
QC BATCH: I000014IC	· · · · · · · · · · · · · · · · · · ·				
Sulfate	ND	0.5	mg/L	01.27.00	
QC BATCH: T000027TPH				,	
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS Diesel Fuel TPH-Extractable, quantitated as diesel Motor Oil TPH-Extractable, quantitated as Motor Oil Surrogate o-Terphenyl Kerosene	ND ND ND ND 87. NO	50. 50. 200. 200.	ug/L ug/L ug/L ug/L	01.31.00	1
QC BATCH: V000005G9A					
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline TPH-Purgeable, quantitated as gasoline Benzene Toluene Ethylbenzene Xylenes (Total) Methyl tert-Butyl Ether (MTBE) Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	ND ND ND ND ND ND ND 96. 92.	50. 50. 0.5 0.5 0.5 0.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	01.26.00 01.25.00 01.25.00 01.25.00 01.25.00 01.25.00 01.25.00 01.25.00	

¹⁾ This sample was analyzed following Silica Gel Cleanup.

(707) 258-4000 • Fax: (707) 226-1001

METHOD BLANK ANALYTICAL RESULTS

LAB ORDER No.:

A010469

Page 3 of 7

ANALYTE	RESULT	<u>R.L.</u>	UNITS	ANALYZED	<u>Notes</u>
QC BATCH: V000020MSA					
VOLATILE ORGANIC COMPOUNDS				02.08.00	
Benzene	ND	1.	ug/L		
Promodichloromothano	ND	1.	ug/L		
Bromoform Promomethano (Methyl Promide)	ND	1.	ug/L		
Bromomethane (Methyl Bromide)	ND	1.	ug/L		
Carbon Tetrachloride	ND	1.	ug/L		
Chlorobenzene	ND	1.	ug/L		
Chlorobenzene Chloroethane (Ethyl Chloride)	ND	1.	ug/L		
2-Chloroethylvinyl ether	ND	1.	ug/L		
Chloroform	ND	1.	ug/L		
Chloromethane (Methyl Chloride)	ND	1.	ug/L		
Chloromethane (Methyl Chloride) Dibromochloromethane	ND	1.	ug/L		
1,2-Dichlorobenzene	ND	1.	ug/L		
1,3-Dichlorobenzene	ND	1.	ug/L		
1,4-Dichlorobenzene	ND	1.	ug/L		
Dichlorodifluoromethane (F-12)	ND	1.	ug/L		
1,1-Dichloroethane	ND	1.	ug/L		
1.2-Dichloroethane (EDC)	ND	1.	ug/L		
1,1-Dichloroethene	ND	1.	ug/L		
cis-1,2-Dichloroethene	ND	1.	ug/L		
trans-1,2-Dichloroethene	ND	1.	ug/L		
1.2-Dichloropropane	ND	1.	ug/L		
1.2-Dichloropropane cis-1.3-Dichloropropene	ND	0.5	ug/L		
trans-1,3-Dichloropropene	ND	0.5	ug/L		
Dichlorotrifluoroethane (F-123)	ND	1.	ug/L		
Ethylbenzene Ethylbenzene	ND	1.	ug/L		
Methylene Chloride	ND	3	ug/L		
Methyl tert-Butyl Ether (MTBE)	ND	1.	ug/L		
1,1,2,2-Tetrachloroethane	ND	1.	ug/L		
Tetrachloroethene (PCE)	ND	1.	ug/L		
Toluene	ND	1.	ug/L		
1,1,1-Trichloroethane (TCA)	ND	1.	ug/L		
1,1,2-Trichloroethane	ND	1.	ug/L		
Trichloroethene (TCE)	ND	1.	ug/L		
Trichlorofluoromethane (F-11)	ND	1.	ug/L		
Trichlorotrifluoroethane (F-113)	ND	1.	ug/L		
Vinyl Chloride	ND	1.	ug/L		
Xylenes (Total)	ND	1.	ug/L		
Surrogate Dibromofluoromethane	110.		%		
Surrogate 1,2-DCA-d4	148.		%		
Surrogate Toluene-d8	109.		%		
Surrogate 4-BFB	105.		%		

(707) 258-4000 • Fax: (707) 226-1001

LABORATORY CONTROL SAMPLE ANALYTICAL RESULTS

LAB ORDER No.:

A010469 4 of 7

Page

							,
ANALYTE	SPIKE <u>AMOUNT</u>	SPIKE\DUP RESULT	SPK\DUP %REC	ACCEPTANCE **REC \RPD	REL% <u>DIFF</u>	ANALYZED	<u>Notes</u>
QC BATCH: I000006ALK							. 1
ALKALINITY Bicarbonate as CaCO3 Total Alkalinity as CaCO3	100. 100.	89.\ 89.\	89\ 89\	80-120\20 80-120\20		02.02.00	1
QC BATCH: 10000091C							
Nitrate as N Sulfate	6.25 20.0	6.26\ 20.6\	100\ 103\	80-120\20 80-120\20		01.20.00 01.20.00	
QC BATCH: I000014IC							
Sulfate	20.0	20.9\	104\	80-120\20		01.27.00	1
QC BATCH: T000027TPH						 .	
TOTAL SEMI-VOLATILE PETROLEUM HYDROCARBONS Diesel Fuel Surrogate o-Terphenyl	1000 100	844.\ 76.2\	84\ 76\	36-102\ 40-140\		01.31.00	1
QC BATCH: V000005G9A							1
AROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS Total Petroleum Hydrocarbons - Gasoline Benzene Toluene Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]	550. 6.69 39.0 20.0 20.0	500.\ 6.26\ 34.4\ 19.5\ 18.0\	91\ 94\ 88\ 98\ 90\	50-130\ 50-130\ 50-130\ 50-130\ 50-130\		01.26.00 01.25.00 01.25.00 01.25.00 01.25.00	
QC BATCH: V000020MSA							
VOLATILE ORGANIC COMPOUNDS Benzene Chlorobenzene 1.1-Dichloroethene Toluene Trichloroethene (TCE) Surrogate Dibromofluoromethane	20.0 20.0 20.0 20.0 20.0 20.0	16.2\ 15.2\ 15.3\ 16.5\ 14.8\ 23.6\	81\ 76\ 76\ 82\ 74\ 118\	.70-130\ 70-130\ 70-130\ 70-130\ 70-130\ 70-130\		02.08.00	

¹⁾ This sample was analyzed following Silica Gel Cleanup.

1885 N. Kelly Rd. • Napa, California 94558

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

(707) 258-4000 • Fax: (707) 226-1001

LABORATORY CONTROL SAMPLE ANALYTICAL RESULTS

LAB ORDER No.:

A010469

Page 5 of

ANALYTE QC BATCH: V000020MSA (continued)	SPIKE AMOUNT	SPIKE\DUP RESULT	SPK\DUP <u>*REC</u>	ACCEPTANCE **REC \RPD	REL% DIFF	ANALYZED	NOTES
VOLATILE ORGANIC COMPOUNDS (continued) Surrogate 1,2-DCA-d4 Surrogate Toluene-d8 Surrogate 4-BFB	20.0 20.0 20.0	27.3\ 21.1\ 19.2\	136\ 106\ 96\	· 70-130\ 70-130\ 50-130\		02.08.00	

1885 N. Kelly Rd. • Napa, California 94558

CERTIFIED ENVIRONMENTAL SERVICES CALIFORNIA ELAP #1664

(707) 258-4000 • Fax: (707) 226-1001

DUPLICATE SAMPLES ANALYTICAL RESULTS

A0

Page 6 of

ANALYTE QC BATCH: I000006ALK QC SAMPLE LAB NUMBER: A010469-7	<u>R.L.</u>	ORIGINAL RESULT	DUPLICATE RESULT	REL% DIFF	ACCEPT LIMIT	ANALYZED	NOTES
ALKALINITY Bicarbonate as CaCO3 Hydroxide as CaCO3 Carbonate as CaCO3 Total Alkalinity as CaCO3	10. 10. 10. 10.	200. ND ND 200.	210. ND ND 210.	4.9 NC NC 4.9	20 20 20 20	02.02.00	

LAB ORDER No.:

1885 N. Kelly Rd. • Napa, California 94558

(707) 258-4000 • Fax: (707) 226-1001

MATRIX SPIKE ANALYTICAL RESULTS

LAB ORDER No.:

A010469 Page 7 of 7

MALACT.	ORIGINAL	SPIKE	SPIKE\DUP		ACCEPTANCE			
WALYTE	RESULT	_AMOUNT	RESULT	<u>%REC</u>	*REC \RPD	<u>DIFF</u>	ANALYZED	<u>NOTES</u>
C BATCH: 10000091C C SAMPLE LAB NUMBER: A010452-1								
litrate as N C BATCH: 1000009IC (continued) C SAMPLE LAB NUMBER: A010452-1	2.63	50.	52.0\52.5	99\100	80-120\20	1	01.20.00	,
ulfate	33.8	160.	185.\188.	94\96	80-120\20	1.6	01.20.00	
C BATCH: I000014IC C SAMPLE LAB NUMBER: A010655-4								
ulfate	32.1	160.	191.\184.	99\95	80-120\20	3.7	01.27.00	
C BATCH: V000005G9A C SAMPLE LAB NUMBER: A010438-1	 -							
ROMATIC HYDROCARBONS AND TOTAL PURGEABLE PETROLEUM HYDROCARBONS							01.26.00	
Total Petroleum Hydrocarbons - Gasoline	ND	550.	440.\401.	80\73	50-130\25	9.3		
Benzene Toluene Surrogate 4-Bromofluorobenzene [FID] Surrogate 4-Bromofluorobenzene [PID]		6.69 39.0 20.0 20.0	9.66\8.98 35.8\32.8 18.8\18.4 19.4\19.0	112\102 92\84 94\92 97\95	50-130\25 50-130\25 50-130\25 50-130\25	7.3 8.7		
<mark>Toluene</mark> S <mark>urrog</mark> ate 4-Bromofluorobenzene [FID]	ND 97.%	39.0	35.8\32.8	92\84	50-130\25			

C CALTEST	1885 N. KELLI K	DAD • NAPA, CA 94556 • (7	077238-4000 Fax (707			LAH ORDER#:
ANALYTICAL	SAMPLE			PAGE	OF	ADIO469
LABORATORY	CHAIN OF CUSTO	DY PROJECT #/PROJECT NAME 153-1247	-20/ Citz d	Ourland	P.O. #	153-1247-20 St
CLIENT:	Environmental	CONTACT NAME:	bnes		ANALYSES	REQUESTED
ADDRESS:	CITY: A CL-T	STATE: ZIP	94608		- (2) (3)	TURN-AROUND
BILLING ADDRESS:	Street, Stef	s. Ourland Co	71600		/2/20/	STANDARD
Same					Y Y Y	RUSH
PHONE #: 570 4 80 334 5		RINT SIGN NAME):			Charles And) WADDEDATE
			CUENT COMP.			
. 17	MATRIX AMOUNTITYPE PRESERVATIVE	SAMPLE IDENTIFICATION SITE	LAB# GRAB	1220	() () () () () () () () () ()	REMARKS
- 1 /19/00 200	Wr (2 L Americanon)					.
325		MWS				
多 350		MW7				
4 15		MWID				
250		Mwll				
1030		MW12				
		TBW6				
1112 A 1112		IDNAP		7 7	4	
1 A ASTE	Place 190	& truse san	andes			
10010	3/5	amples from	n Vistor			
		1				
By submittal of sample(s	s), client agrees to abide by the Te	rms and Conditions set forth on the	reverse of this document.		·*·····	
RELINQUISHED	BY DATE/TIME	RECEWED BY	RELINGUISHED		DATE/TIME	RECEIVED BY
Jun X	1353	Mekal Expel	Mulas The	all 10	1525	+ JOHN BOD
0 90						VI
samole WOM NIG 10		ान्सः । । । । । । । । । । । । । । । । । । ।	Travicis Va.			eous Nondrinking Water, Digested Metals
BO BIO AAAVAA						ous Nondrinking Water, Digested Metals; SL = Soil, Sludge, Solld; FP = Free Product
						S: AL = Amber Liter; AQL = 250 mL. stic); QT=Quart (Plastic); HG = Half Gallo
WIFINGS LA H.SO.				(F		B4 = 4 oz. BACT; BT = Brass Tube; VOA
PIL: HNO; HISO,			And the second			

DOIGHA HIESEL Haman

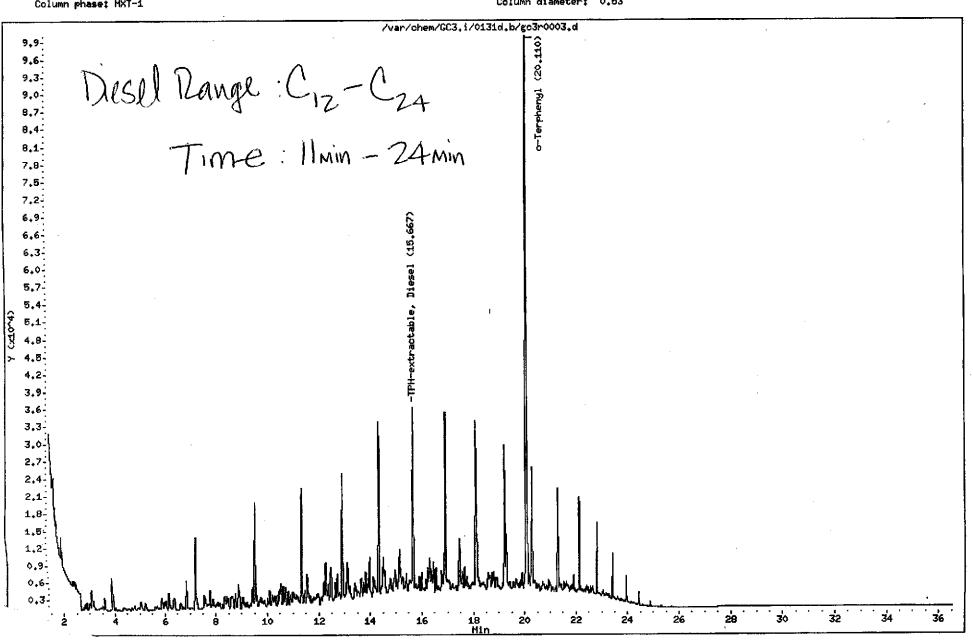
DIESEL STANDARD EPA 8015M

Data File: /var/chem/GC3.i/0131d.b/gc3r0003.d

Date : 31-JAN-2000 17:16

Client ID:

Sample Info: DIESEL 1000/100


Column phase: MXT-1

Instrument: GC3.i

Operator: NTA

Column diameter: 0.53

Page 2

MOTOR OIL STANDARD 8015 M

Data File: /var/chem/GC3.i/0131d.b/go3r0006.d

Date : 31-JAN-2000 19:28

Client ID:

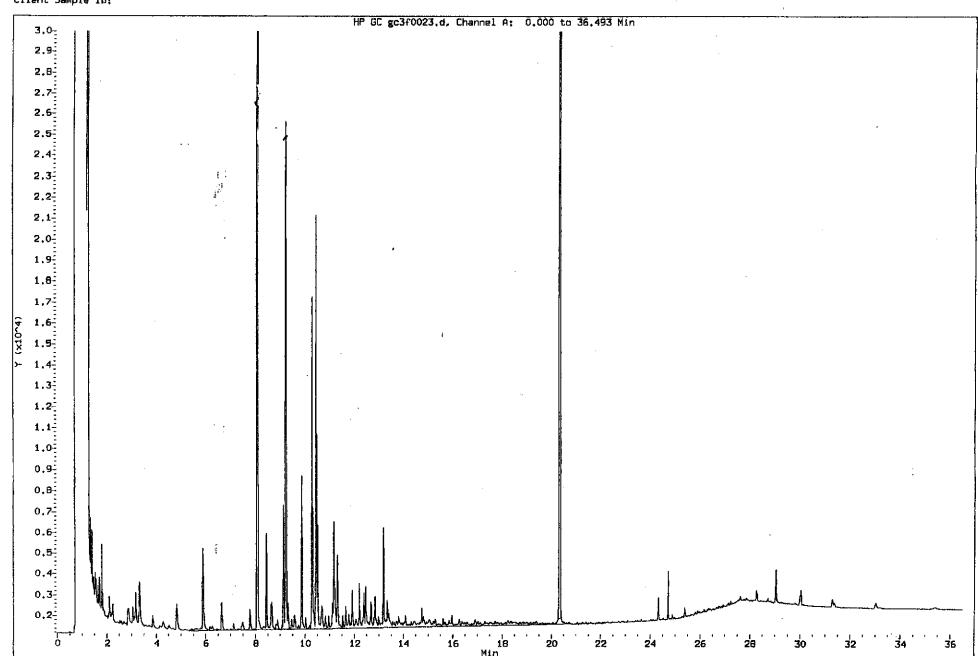
Sample Info: MOTOR OIL 2000

Column phase: MXT-1

Instrument: GC3.1

Operator: NTA

Column diameter: 0.53


Page 2

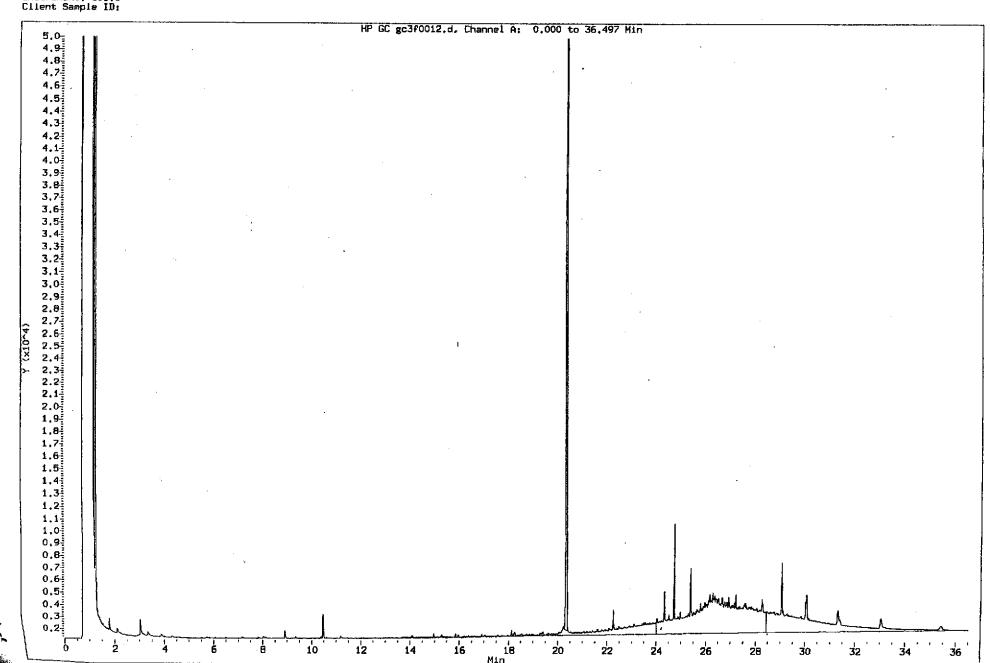
/var/chem/GC3.i/0131d.b/gc3r0006.d 9.9-Motor oil Range: C24 - C36 9.6-9.3-Time: 24min - 28.5 min 8.1-7.8 7.5-7.2-6.9-6.6-6.3-6.0-5.7 4.8-4.5-4.2-3.9-3.6-3.3-3.0-2.7-2.4 2.1-1.8 1.5-1.2 0.9-0.6 0.3Em Salo Maroral/ Enrollance

EPA 8015M- DIESEL/MOTOR OIL/ KEROSENE

Data File: /var/chem/GC3.1/0131d.b/gc3f0023.d Injection Date: 01-FEB-2000 0B:24 Instrument: GC3.1 Client Sample ID:

CALTEST ANALYTICAL
A010469-1
CLIENT: CAMBRIA
ID: MM1/AQ
SAMPLED: 01-19 @ 1400

- Die su Motoroil Revosene

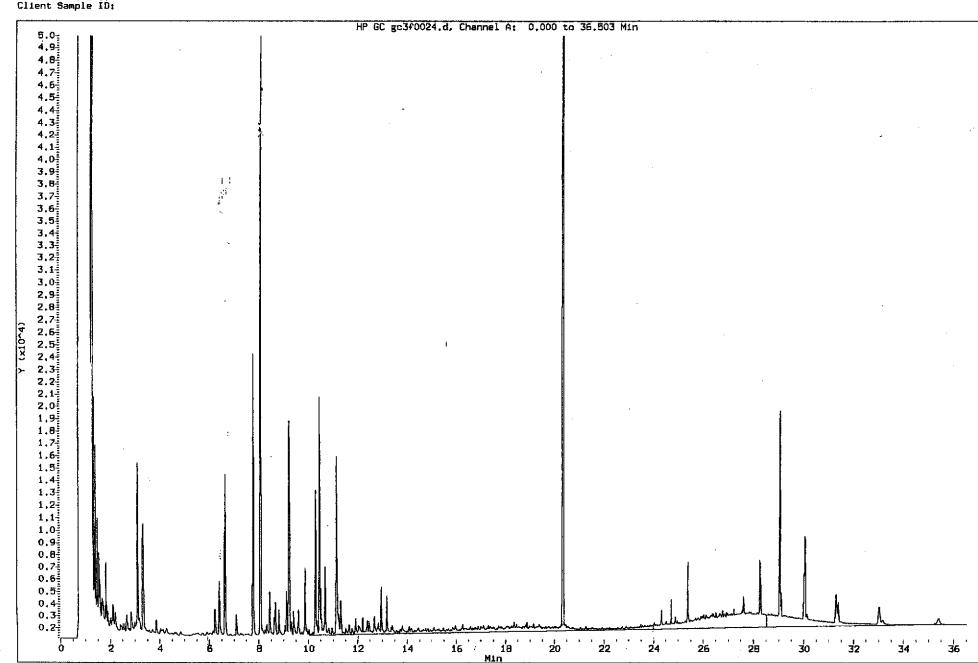

EPA 8015M DIESEL/MOTOR OIL /KEROSEME

Data File: /var/chem/GC3.1/0131d.b/gc3f0012.d Injection Date: 01-FEB-2000 00:02 Instrument: GC3.1

CLIENT: CAMBRIA ID: MH2/AQ

SAMPLED:01-18 @ 1123

CALTEST ANALYTICAL

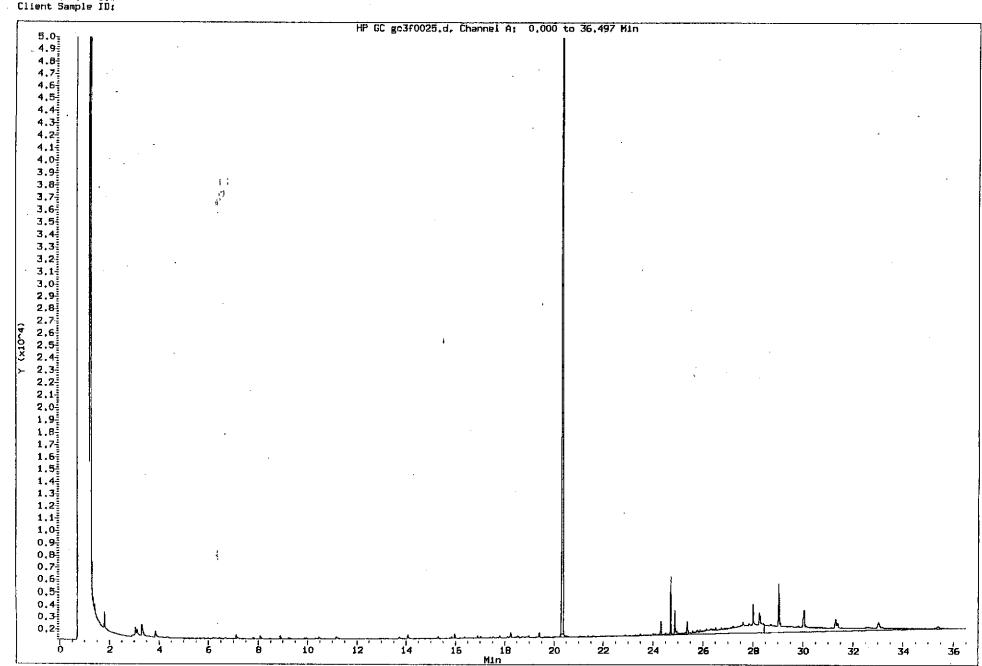

EPA 30 51 - Julian Marchael Revision

EPA 8015M - DIESEL/MOTOR OIL/KEROSENE Data File: /var/chem/GC3.1/0131d,b/gc3f0024.d Injection Date: 01-FEB-2000 09:10 Instrument: GC3.i Client Sample ID:

CALTEST ANALYTICAL

ID: MW5/AQ

SAMPLED: 01-19 @ 1535

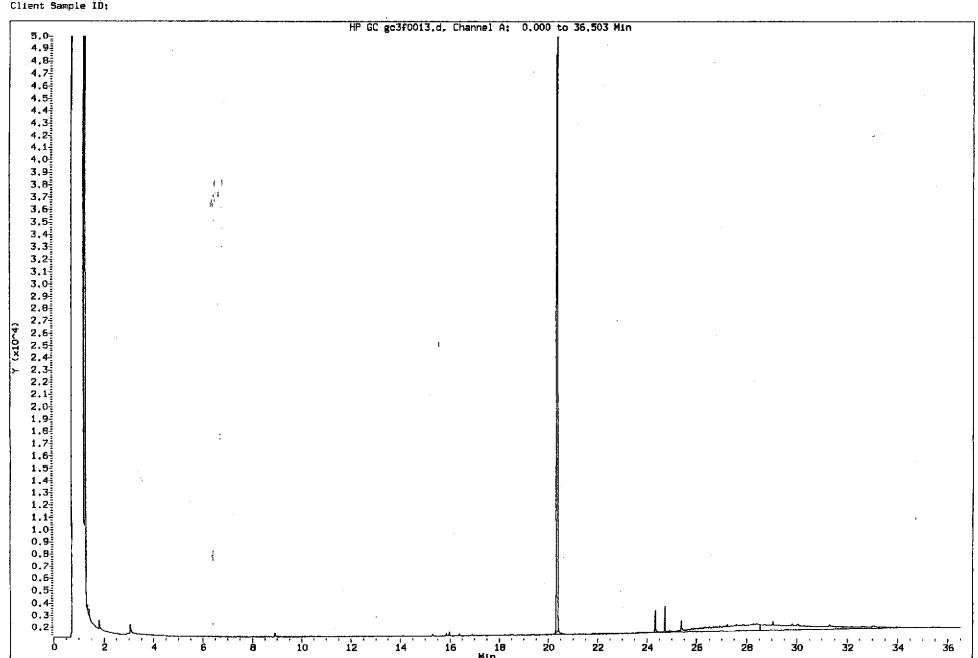


PA 3013M Died / motor lyter sever

EPA 8015 M - DIESEL/MOTOROIL/KELOSENE

Data File: /var/chem/GC3,1/0131d,b/gc3f0025.d Injection Date: 01-FEB-2000 09:57 Instrument: GC3.1

CALTEST ANALYTICAL AO 1 0469 - 3
CLIENT: CAMBRIA
ID: MU7/AQ
SAMPLED: 01-19 @ 1550

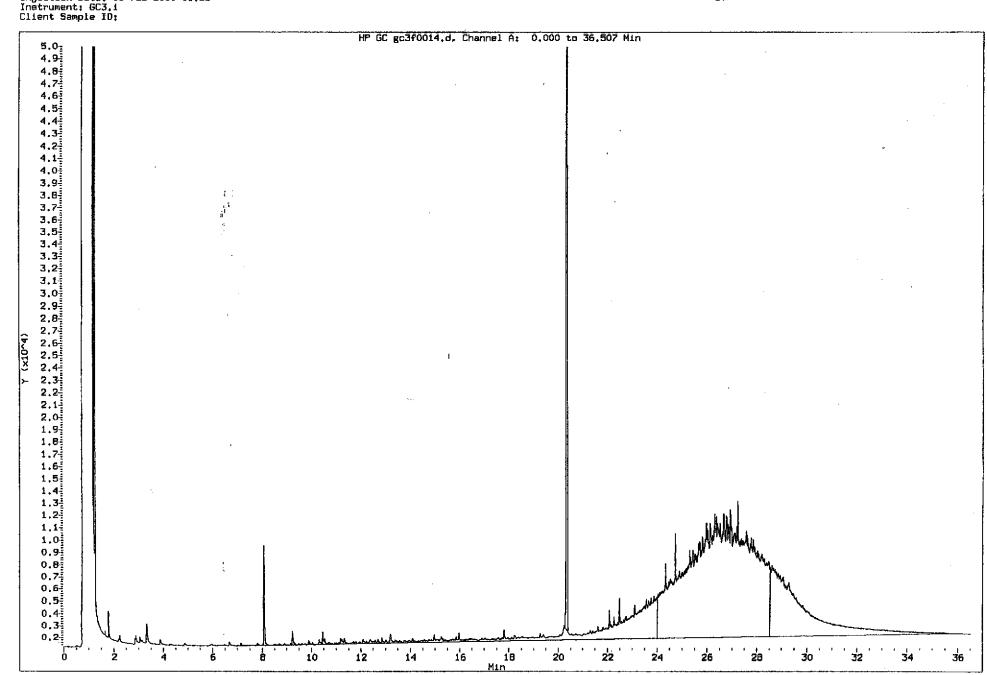

MARONIN - SUSTIMATE OF KENSO

8015M- DIESEL/MOTOR OIL/KEROSENE

Data File: /var/chem/GC3.i/013id.b/gc3f0013.d Injection Date: 01-FEB-2000 00:47 Instrument: GC3.i

CALTEST ANALYTICAL A010438-2 **CLIENT: CAMBRIA** ID: MW8/AQ

SAMPLED: 01-18 @ 1255



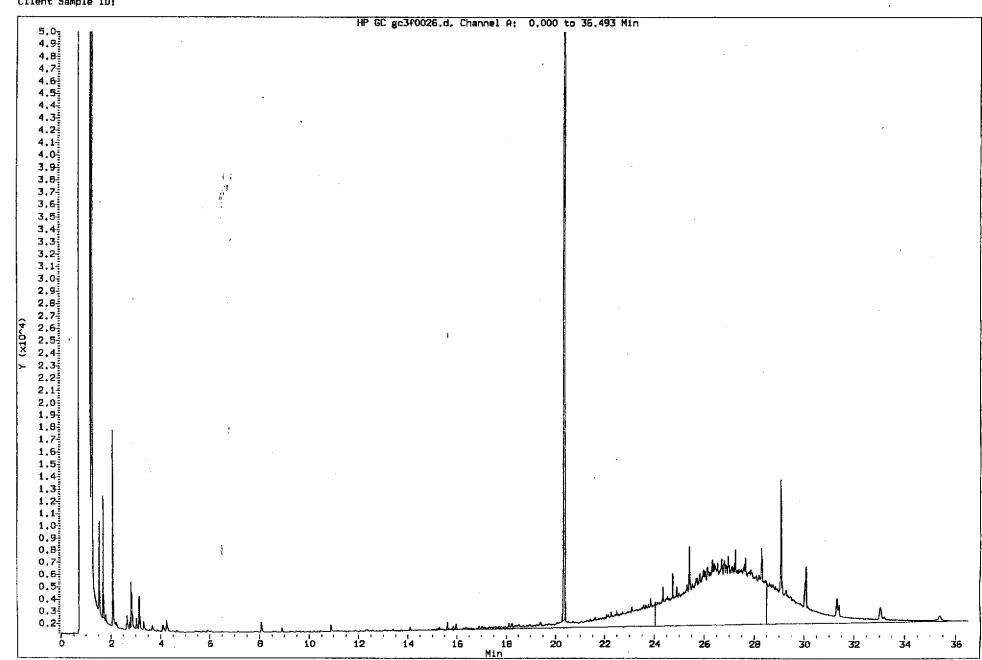
Em Senson Descriptions of the contract of the

EPA 8015M - DIESEL/MOTOROIL/KEROSENE
Data File: /var/chem/GC3.1/0131d.b/gc3f0014.d

Injection Date: 01-FEB-2000 01:33

CALTEST ANALYTICAL ID: MW9/AQ SAMPLED: 01-18 @ 1455

DA BUIGAN DUST / MATCHELLINE

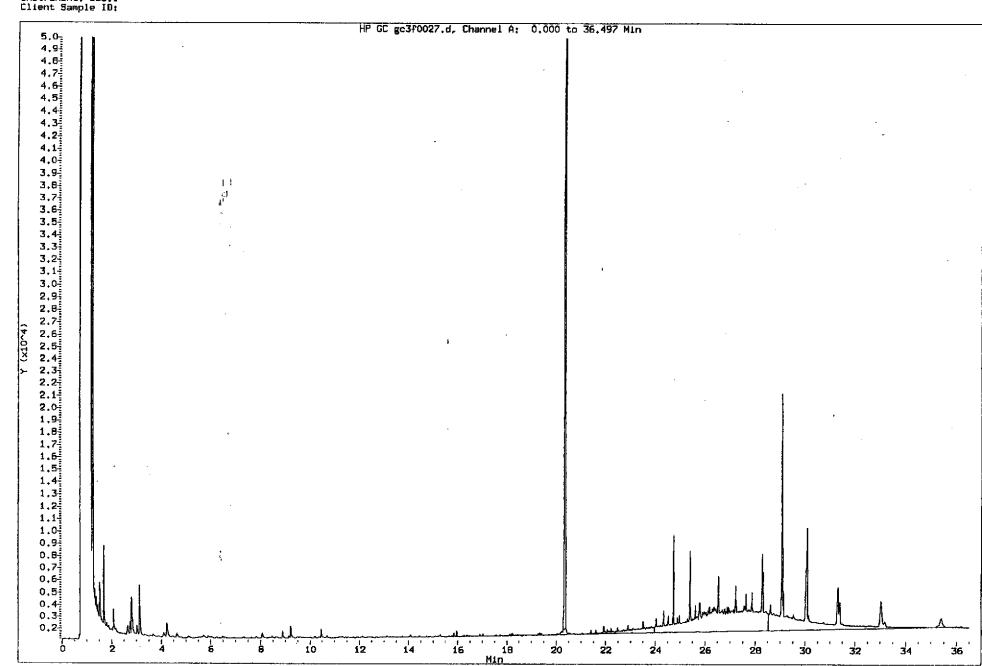

EPA 8015M - DIESEL/MOTOR OIL/KEROSENE
Data File: /var/chem/GC3.1/0131d.b/gc3f0026.d
Injection Date: 01-FEB-2000 10:43
Instrument: GC3:

ID: MW10/AQ

SAMPLED: 01-19 @ 1315

CALTEST ANALYTICAL

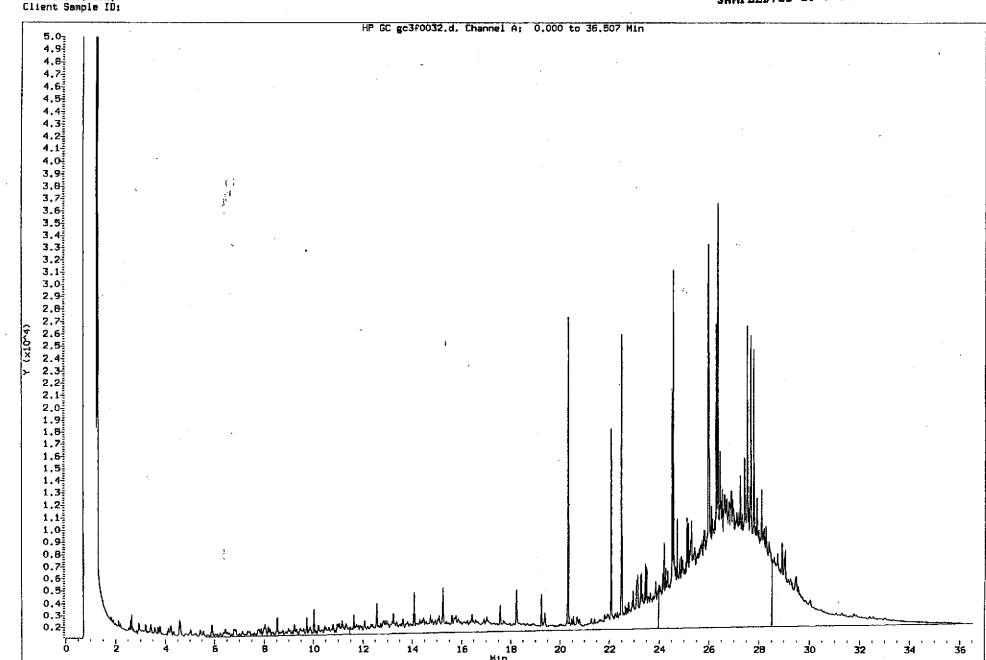
Instrument: GC3.1 Client Sample ID:


PA 2019 Pues Notorol Brosine

EPA 9015M - DIESEL/MOTOR SIL /KERDSENE

Data File: /var/chem/GC3.i/0131d.b/gc3f0027.d Injection Date: 01-FEB-2000 ii:29 Instrument: GC3.i A010469-5

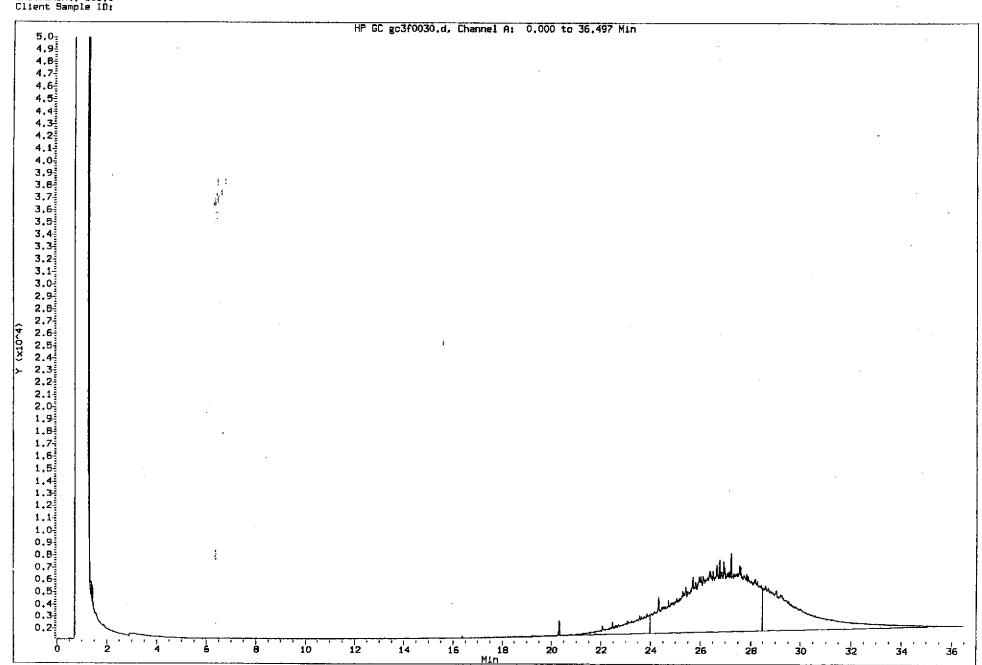
CLIENT: CAMBRIA ID: MW11/AQ


SAMPLED: 01-19 @ 1450

EPA 8019NN- DIESET MOTOREN / CENTREP

EPA 8015M- DIESEL/MOTOR OIL/KEROSENE

Data File: /var/chem/GC3.i/013id.b/gc3f0032.d Injection Date: 01-FEB-2000 15:23 Instrument: GC3.i Client Sample ID: CALTEST ANALYTICAL
A010469-6
CLIENT: CAMBRIA
ID: MM12/AQ
SAMPLED: 01-19 @ 1030

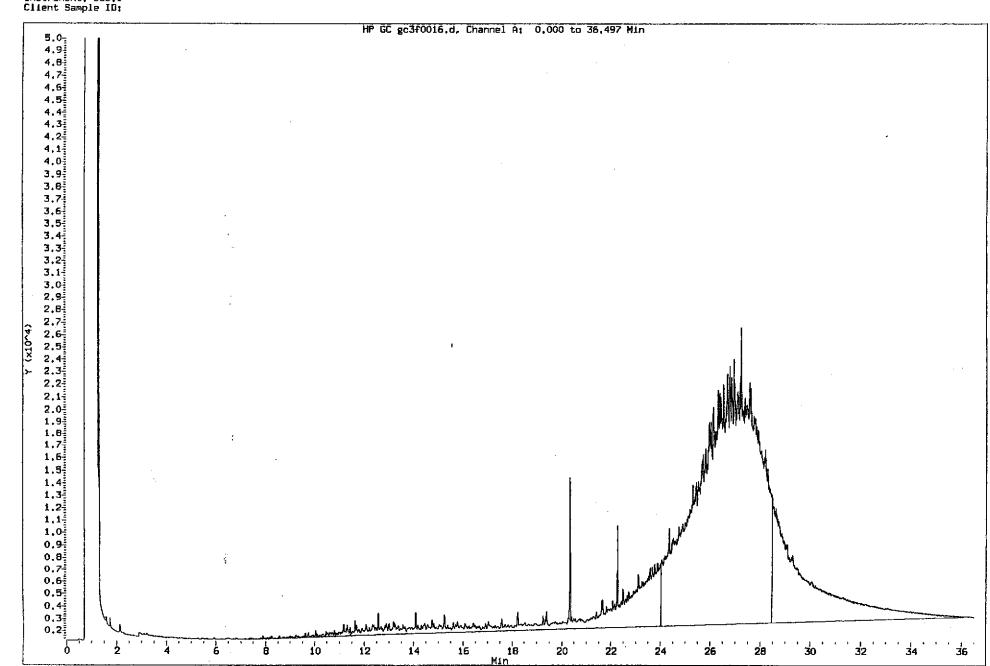


The sent the sent

DIESEL / MOTOR OIL / KEROSENE EPA 8015M-

Data File: /var/chem/GC3.i/0131d.b/gc3f0030.d Injection Date: 01-FEB-2000 13:49
Instrument: GC3,i

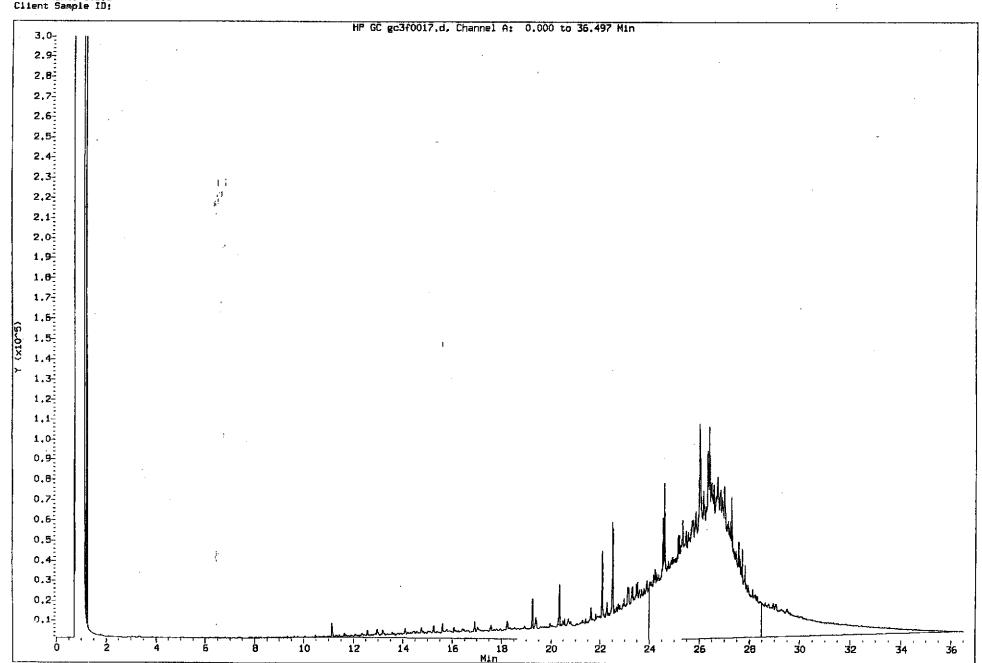
CALTEST ANALYTICAL CLIENT: CAMBRIA ID: MW13/AQ SAMPLED: 01-18 @ 1715


EPA 8015NT-DIESLIMOTOROIT/Kerose/RE

EPA 8015M- DIESEL/MOTOR OIL /KEROSENE

Data File: /var/chem/GC3.1/0131d.b/gc3f0016.d Injection Date: 01-FEB-2000 03:03 Instrument: GC3.1 Client Sample ID: A010438-5 CLIENT: CAMBRIA ID: MH14/AQ

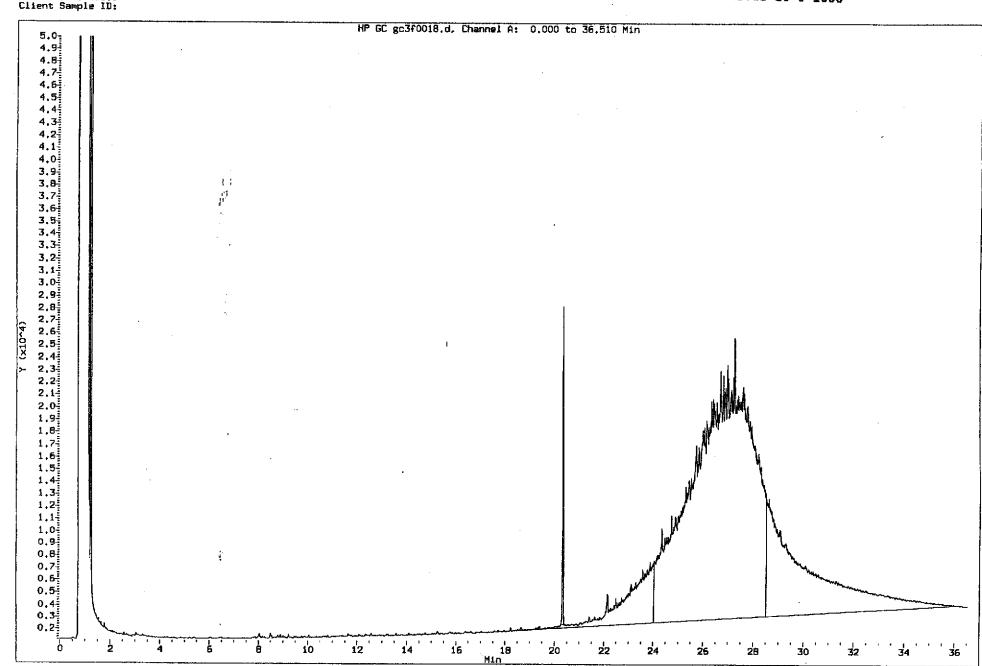
CALTEST ANALYTICAL


SAMPLED:01-18 @ 1530

Em son Mise Motor out the serve

EPA 8015M - DIESEL / MOTOR OIL /KEROSENE

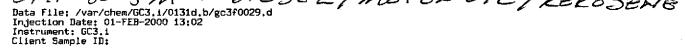
Data File: /var/chem/GC3.1/0131d.b/gc3f0017.d Injection Date: 01-FEB-2000 03:49 Instrument: GC3.1 CALTEST ANALYTICAL AO 1 0438-6 CLIENT: CAMBRIA ID: MH15/AQ SAMPLED: 01-18 @ 1420

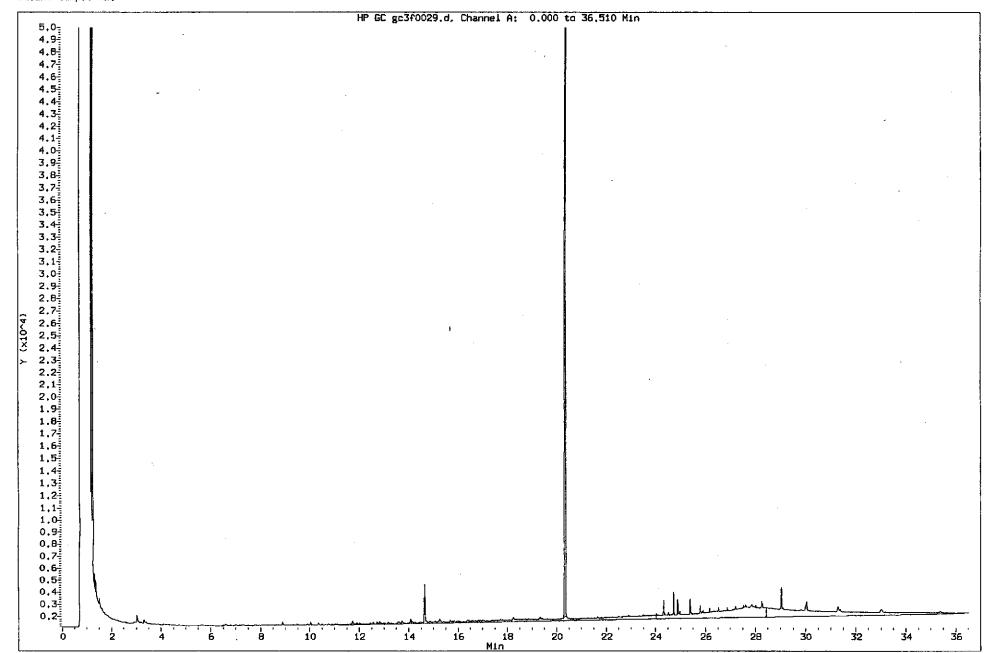

PA 50 15101 - DIESO/Motor oil/ter sere

EPA 8015 M - DIESEL/MOTOR OIL/KEROSENE

Bata File: /var/chem/GC3.1/0131d.b/gc3f0018.d

Data File: /var/chem/GC3.i/013id.b/gc3f0018.d Injection Date: 01-FEB-2000 04:35 Instrument: GC3.i Client Sample ID:


CALTEST ANALYTICAL
A010438-7
CLIENT: CAMBRIA
ID: MH17/AQ
SAMPLED: 01-18 @ 1335



8015M - DIESEL/MOTOR DIL/KEROSENE

ID: TBW6/AQ SAMPLED:01-19 @ 1115

CALTEST ANALYTICAL

CAMBRIA

ATTACHMENT B

Well Sampling Forms

CAMBRIA

WELL DEPTH MEASUREMENTS

Page (3 2

Well ID	Time	Product Depth	Water Depth	Product Thickness	Well Depth	Comments
MW.8	4:40	_	8.31		15.15'	
MW: 17	1:45		5.35		19.18	
112-16	10:00	9.00	10.20	1,22		Very Dity! Bill sud
MU-15	10:05		10.56	***************************************	20.65	
m2-9	10110	_	8.63	-,	17.25'	
MW-14	10:15	_	7.37		15.12	
MW-13	10:19		9.63		20-21	
MWIL	19:25		7.77		15.20'	
Mura	16:17	-	7.41		15.89	
ML)-1	7:56		5.41	,,	15.79	
MU 13	1011	7	9.11		15.08	
TOW 6	10:10		3.43		12.42'	
TOW-S	10:15		7.20			graduet Scinnel 1.1. Jalla
MW-11	9153	400	7:08		19.58	V
MD:5	745		6.60		14.45	

Project Name:	1in	48	Datalon	£
	9,	Q i		

Project Number: 153 - 1241

Date: $\sqrt{R/99}$

Measured By:___

WELL DEPTH MEASUREMENTS

CAMBRIA
Page 232

Well ID	Time	Product Depth	Water Depth	Product Thickness	Well Depth	Comments	
MW-7	7:44		7.31	-	14.35		
(1011	355		7.08			, ,	
Tow-3	5:40		3.73			Sue S, product 5/8	مل
MW-6	937	7.85	8008	0.19		7 (
TRW1/2	Cores	ed !	z du	npste	Λ		
/				ľ			

Project Name:_	4540
Measured By:_	SPE 6

Project Number:___

Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: MW
Project Number: 153-1247	Date: 1/19/00	Well Yield:
Site Address: 7101 Edgewater Drive Oakland, California	Sampling Method: Disposable bailer	Well Diameter: 2" pvc Technician(s):
Initial Depth to Water: 5,401	Total Well Depth: 15.69/	Water Column Height: 10.291
Volume/ft: ().[6	1 Casing Volume: (.64 al	3 Casing Volumes: 4.93 gal
Purging Device: sub pump	Did Well Dewater?: MO	Total Gallons Purged: 5 al
Start Purge Time: 36	Stop Purge Time: 39	Total Time: 3 min

 Casing Volume = Water column height x Volume/ ft.
 Well Diam.
 Volume/ft (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

Time	Casing Volume	Temp.	pН	Cond.	Comments
12,6	1	197.0	7.0	1140	
132	2	18.7	6.9	100 U	
139	3	12.5	7.0	1106	
		1	,		

Post-purge DO=______mg/L pp/>
Post-purge ORP=____(%) __mV
Ferrous Iron=_______ mg/L pp/>

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MWI	1/19/20	200	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
A	V	\ <u> </u>	2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: MW2
Project Number: 153-1247	Date: 1/8/00	Well Yield:
Site Address: /101 Edgewater Drive	Sampling Method:	Well Diameter: 2 " pvc
Oakland, California	Disposable bailer	Technician(s): W/FG
Initial Depth to Water: 7.41'	Total Well Depth: (5.69)	Water Column Height: 8. 28'
Volume/ft: 0.(6	1 Casing Volume: 1.32-gul	3 Casing Volumes: 397,
Purging Device: sub pump	Did Well Dewater?:	Total Gallons Purged: 4 Sal
Start Purge Time: 10:59	Stop Purge Time: 103	Total Time: 4min

 asing Volume = Water column height x Volume/ ft.
 Well Diam.
 Volume/ft (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

Time	Casing Volume	Temp.	рН	Cond.	Comments
10:59	t	17.9	7.2	1461 ms	
17:01	1 2	19.1	6.6	1786	
1103	3	15.)	4.0	1879	

Post-purge DO=_____mg/L pp/
Post-purge ORP=____78 __mV

Ferrous Iron=____2 ___ mg/L pp/

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW2	1/18/00	(123	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
A	7	V	2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: MW 5	
Project Number: 153-1247	Date: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Well Yield:	
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: 2" pvc	
Oakland, California	Disposable bailer	Technician(s):	
Initial Depth to Water: / 49/	Total Well Depth: 以りく	Water Column Height: 7.96'	
Volume/ft: 0.[6	1 Casing Volume: 1. 27 cal	3 Casing Volumes: 3,82,al	
Purging Device: sub pump	Did Well Dewater?:	Total Gallons Purged: (Sal	
Start Purge Time: 🎧 🤈	Stop Purge Time: 3/0	Total Time:	

Casing Volume = Water column height x Volume/ ft.

2"
0.16
4"
0.65
6"
1.47

Time	Casing Volume	Temp.	pН	Cond.	Comments
3.5		17.9	MMM I	1415	
476	٠	1-1-90	29	2	
2.1 T		17.8	7.1	1720	

Post-purge DO= 0.43 mg/L pph ppm
Post-purge ORP= -171 mV
Ferrous Iron= 4.4 mg/L ph ppm

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MWS	1/19/00	325	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2-half-liter plastic	none	nitrate, sulfate, alkalinity	
V	4		2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: MW 7	
Project Number: 153-1247	Date: 1/19 (00	Well Yield:	
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: " pvc	
Oakland, California	Disposable bailer	Technician(s): 135	
Initial Depth to Water: 7.20'	Total Well Depth: 14.35	Water Column Height: 7.15	
Volume/ft: 0.16	1 Casing Volume: 1.14 al	3 Casing Volumes: 3,43 (al	
Purging Device: sub pump	Did Well Dewater?:	Total Gallons Purged: 41,0 9465	
Start Purge Time: 3:40 pm	Stop Purge Time: 3:46	Total Time: 6 min.	

using Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp.	pН	Cond.	Comments
3:42	I	18.1	7,0	1802	
73:44	٧,	18,4	7.0	1210	
13:46	3	18.5	7.1	1223	
	<u> </u>				

Post-purge DO= 0.30 mg/Lph not well

Post-purge ORP= -170 mV thead as stripped

Ferrous Iron= 3.1 mg/L poell case in high

		1			- DOM	·
Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
N,M ±	1/19	3;50	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			<u>A half-liter</u> plastic	none	nitrate, sulfate, alkalinity	
:	1	; r	2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: Mw8	
Project Number: 153-1247	Date: \//8/00	Well Yield:	
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: 2 " pvc	
Oakland, California	Disposable bailer	Technician(s): 88 (FG	
Initial Depth to Water: 8.31	Total Well Depth: 15-15	Water Column Height: 6.841	
Volume/ft: 0 - 6	1 Casing Volume: 1.09 al	3 Casing Volumes: 3.28 cal	
Purging Device: sub pump	Did Well Dewater?:	Total Gallons Purged: 12. 51	
Start Purge Time: (2:3)	Stop Purge Time: 12:34	Total Time: 3名 へつ	
ē			

 Well Diam.
 Volume/ft (gallons)

 2*
 0.16

 4"
 0.65

 6"
 1.47

Time	Casing Volume	Temp.	pН	Cond.	Comments
12:31	1	(7,)	7.1	1770	
13:37	Q	17,0	7.1	72000	
1=:33	3	19.0	6.8	72000 72000	

Post-purge DO= 2.23 mg/L pp Post-purge ORP= 149 mV Ferrous Iron= 40.5 mg/L

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW8	1/15/00	1255	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
\ \	1	V	2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

	· · · · · · · · · · · · · · · · · · ·	
Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: MW9
Project Number: 153-1247	Date: 1/18/68	Well Yield:
Site Address: 101 Edgewater Drive	Sampling Method:	Well Diameter: 2 " pvc
Oakland, California	Disposable bailer	Technician(s): 88/15-67
nitial Depth to Water: S. 63	Total Well Depth: 17. 25	Water Column Height: 8.67
Volume/ft: 0 · [[1 Casing Volume: 1.38 gal	3 Casing Volumes: 4. 14 sal
Purging Device: sub pump	Did Well Dewater?:	Total Gallons Purged: U.S
Start Purge Time: 2:31	Stop Purge Time: 236	Total Time: 334 Smin

sing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp. డ్	pН	Cond.	Comments
5:31)	19,3	7.1	1373	
D: 3D	a	18.2	7.1	1396	
9:36	3	18.2	6.7	1431	

Post-purge DO= 0.30 mg/Ł ppb
Post-purge ORP= 48 mV
Ferrous Iron= 2.1 mg/Ł ppb

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW9	1/18/00	255	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
		 	2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: MW 10
Project Number: 153-1247	Date: 1/9/00	Well Yield:
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: 2 "pvc
Oakland, California	Disposable bailer	Technician(s):
Initial Depth to Water: 7.77	Total Well Depth: 15. 20'	Water Column Height: 7, √ ≥ /
Volume/ft: 0.16	1 Casing Volume: 1.19 cal	3 Casing Volumes: 3.57
Purging Device: sub pump	Did Well Dewater?:	Total Gallons Purged: 4 Sal
Start Purge Time: 1249	Stop Purge Time: 1>51	Total Time: 2 min

 Casing Volume = Water column height x Volume/ft.
 Well Diam.
 Volume/ft (gallons)

 4"
 0.65

 6"
 1.47

Time	Casing Volume	Temp.	pН	Cond.	Comments
1249		182	7.3	105-9	
1250	2	179	7.1	1052	
125/	3	18.2	7.1	1081	
<u> </u>			•		
···					
•					

Post-purge DO=________mg/L pb
Post-purge ORP=______mV
Ferrous Iron=________mg/Lpb

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
Mw/0	19/00	115	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
V	V	N T	2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

CAMBRIA

WELL SAMPLING FORM

Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: MM
Project Number: 153-1247	Date: \ \ 9\ 3V	Well Yield:
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: 7 " pvc
Oakland, California	Disposable bailer	Technician(s):
Initial Depth to Water: 108'	Total Well Depth: 19.58'	Water Column Height: (2.5
Volume/ft: 0.(6	1 Casing Volume: 2 Sal	3 Casing Volumes: 650
Purging Device: sub pump	Did Well Dewater?: 🕠 🔿	Total Gallons Purged: 6
Start Purge Time: W	Stop Purge Time:	Total Time: Smin

asing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons
2"	0.16
4 "	0.65
6™	1.47

Time	Casing Volume	Temp.	pН	Cond.	Comments
224	1	19.0	9.0	909	
225	1	19.4	1.0	1120	
2-27	7/	19.3	7.0	1371	
· · · · · · · · · · · · · · · · · · ·	<u> </u>				

Post-purge DO= 0 33 mg/Lpph
Post-purge ORP= 120 mV
Ferrous Iron= 2 mg/Lpph

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
Mull	1/10/00	250	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2-half-liter plastic	попе	nitrate, sulfate, alkalinity	
A	V	1	2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: MW /2	
Project Number: 153-1247	Date: 1/19/00	Well Yield:	
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: 7 " pvc	
Oakland, California	Disposable bailer	Technician(s):	
Initial Depth to Water: 8.10	Total Well Depth: (≤ 08'	Water Column Height: 6.98'	
Volume/ft: 0.16	1 Casing Volume: 1. 12-Gal	3 Casing Volumes: 3.35 (al	
Purging Device: sub pump	Did Well Dewater?:	Total Gallons Purged: 4 Sal	
Start Purge Time: \\ \ 0 2	Stop Purge Time: 11:05	Total Time: 3 min	

Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons)
2*	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp.	pН	Cond.	Comments
11:02	l	18.2	7.5	1192	MC V VI V
1:54	7.	18.3	1.4	1212) W.
11:05	- 7,	18.2	7.3	198	water
				,	

Post-purge DO=____mg/Lpb
Post-purge ORP=___70 __mV
Ferrous Iron=____ mg/Lpb

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MNIZ	1/19/20		4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
	,		2-half-liter plastic	none	nitrate, sulfate, alkalinity	
		W	2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

CAMBRIA

WELL SAMPLING FORM

Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: MW13	
oject Number: 153-1247	Date: \\8 86	Well Yield:	
Site Address: 01 Edgewater Drive	Sampling Method:	Well Diameter: 2 " pvc	
Jakland, California	Disposable bailer	Technician(s):	
Initial Depth to Water: 9.63	Total Well Depth: 20.2/	Water Column Height: 10.58'	
plume/ft: 0.16	1 Casing Volume: 1.09	3 Casing Volumes: 5.08 cal	
Purging Device: sub pump	Did Well Dewater?:	Total Gallons Purged: 20	
art Purge Time: 406	Stop Purge Time: 4:09	Total Time: 3 Min	

Time	Casing Volume	Temp.	pН	Cond.	Comments
408	2	19.2 19.3	7.7	1377	

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MIN B	1/1:00	カイラ	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
	V	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: MINIC
a continue of the continue	Cumbria Wigi. BCE	Well ID: MW14
Project Number: 153-1247	Date: \/ 18/1960	Well Yield:
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: 2 " pvc
Oakland, California	Disposable bailer	Technician(s): V/FG
Initial Depth to Water: 7, 37	Total Well Depth: 15.12	Water Column Height: 7,75/
Volume/ft: 0.16	1 Casing Volume: 1. 24 cal	3 Casing Volumes: 3.72901
Purging Device: sub pump	Did Well Dewater?:	Total Gallons Purged: 40
Start Purge Time: 3:15	Stop Purge Time: 3:ド	Total Time: 4 Min

 Casing Volume = Water column height x Volume/ft.
 Well Diam.
 Volume/ft (gallons)

 4"
 0.65

 6"
 1.47

Time	Casing Volume	Temp.	pН	Cond.	Comments
3: 15	1	18.4	7.4	1418 415	
3:17	2	18.3	7.5	1941	
3:19	3	18.5	7.4	1460	
					

Post-purge DO=_____s __mg/Lペッ
Post-purge ORP=______mv
Ferrous Iron=_____/____mg/L ppb

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
1W14	418/00	330	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
0	V		2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

CAMBRIA

1.47

WELL SAMPLING FORM

Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: HW15	
Project Number: 153-1247	Date: 1/18/00	Well Yield:	
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: _ "pvc Technician(s): 😸 /E 67 Water Column Height: 10.09 /	
Oakland, California	Disposable bailer		
initial Depth to Water: 10.56	Total Well Depth: 20.65		
Volume/ft: 0-(6	1 Casing Volume: . 6 5 al	3 Casing Volumes: 4.84 Cal	
Purging Device: sub pump	Did Well Dewater?:	Total Gallons Purged: 5gol	
Start Purge Time: 1:56	Stop Purge Time: 1/59	Total Time: 3 min	

tasing Volume = Water column height x Volume/ ft.

Well Diam.

2"
0.16
4"
0.65

Time	Casing Volume	Temp.	рН	Cond.	Comments
1:56)	19.3	7.6	1690	
1:58	ə	19.4	7.3	1537	
1:59	3	19.6	7.1	(205)	
					· · · · · · · · · · · · · · · · · · ·
		<u> </u>			PATIAL I M

Post-purge DO= 0.27 mg/Lpb
Post-purge ORP= 93 mV
Ferrous Iron= 3./ mg/Lpb

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MWIS	1/8/60	120	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
	У	V	2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

D TEMPLATE/FORMS/FIELD/WELLSAMP WPD

Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: MW 17
Project Number: 153-1247	Date: \ / 8 @	Well Yield:
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: pvc
Oakland, California	Disposable bailer	Technician(s):
Initial Depth to Water: 5.35'	Total Well Depth: 19.18	Water Column Height: 13.83'
Volume/ft: 0.16	1 Casing Volume: 2. 2/sal	3 Casing Volumes: 6. 64 cal
Purging Device: sub pump	Did Well Dewater?:	Total Gallons Purged: 6.86
Start Purge Time: 1:12	Stop Purge Time: 8	Total Time: 6 min

Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp.	pН	Cond.	Comments
1:12	1	17.3	7,4	(43)	
1:15	2	17,4	フ、ユ	1547	
パソフ	3	17.5	7.1	1539	-
		777			
		*** m			

Post-purge DO= 0・2岁 mg/上 向ら Post-purge ORP= 102 mV Ferrous Iron= **** の 「 mg/上 pb

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-17	Mrs 00	1:35	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
			2 half-liter plastic	none	nitrate, sulfate, alkalinity	
()	<u> </u>	1	2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

Project Name: City of Oakland	Cambria Mgr: DCE	Well ID: 1BW 6
Project Number: 153-1247	Date: 1/19/00	Well Yield:
Site Address: 7101 Edgewater Drive	Sampling Method:	Well Diameter: 6 "pvc
Oakland, California	Disposable bailer	Technician(s):
Initial Depth to Water: 4.01	Total Well Depth: 12.421	Water Column Height: Q 4 /
Volume/ft: (, 47	1 Casing Volume: 12.37 Sal	3 Casing Volumes: ———
Purging Device: sub pump	Did Well Dewater?: V (Total Gallons Purged: Mcal
Start Purge Time: 105	Stop Purge Time: 1058	Total Time: 7min

Casing Volume = Water column height x Volume/ ft.

2"
0.16
4"
0.65
6"
1.47

Time	Casing Volume	Temp.	pН	Cond.	Comments
1051	1	19.0	7.5	20	
1054	1	18.0		769	
1.59	1	17.8	PC	4/14	
· · · · · · · · · · · · · · · · · · ·					4

Post-purge DO=_____mg/L ppb
Post-purge ORP=___/b/_mV
Ferrous Iron=_______mg/L ppb

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
TWb	1/6/33	1115	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015, confirm MTBE by 8260
	,		2 half-liter plastic	none	nitrate, sulfate, alkalinity	
\ 	V	A	2 ambers	none	TPHd/TPHk/TPHmo	NOTE: silica gel clean up

ATTACHMENT C

Standard Field Procedures for Monitoring Wells

STANDARD FIELD PROCEDURES FOR MONITORING WELLS

This document describes Cambria Environmental Technology's standard field methods for drilling, installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Well Construction and Surveying

Groundwater monitoring wells are installed in soil borings to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 feet below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two ft above the well screen. A two feet thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I,II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security. The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

