

poral

LETTER OF TRANSMITTAL

DATE November	5, 2002	BEI Job No. 94015			
ATTENTION:	John Kaw	ahara			
SUBJECT:	Kawahara Nursery				
	16550 Ashland Avenue				
	San Loren	zo, California			
	Site # 440	3			

Alameda, California 94501-1396 (510) 521-3773 FAX: (510) 865-2594

Kawahar	a Nursery		Site # 4403
698 Burn	ett Avenue		
Morgan I	Hill, CA 95037		Alameda Countr
□ In	are sending you voice opy of letter		Alameda County NOV 0 7 2002 Environmedia Deler Specifications Prints Change Order Plans
Copies	Date	Number	Description
1	10/11/02		Blymyer Engineers; Report; ASTM RBCA Health Risk Assessment
_			
The	se are transmitte	d as checked	below:
☐ For payment ☐ Appro ☐ As requested ☐ Retur ☐ For approval ☐ For re			 □ Approved as submitted □ Approved as noted □ Submitcopies for approval □ Returned for Corrections □ For review and comment □ For your use
REMARKS	S: At your req	uest, the repo	ort has been additionally forwarded as indicated below.
			

COPY TO:

File

Mr. Amir Gholami, Alameda County Health Care Services Agency

SIGNED: Mark Detterman

Alameda County

NOV 0 7 2002

Environmental Health

ASTM RBCA Health Risk Assessment

Kawahara Nursery 16550 Ashland Avenue San Lorenzo, California Site # 4403

October 11, 2002 BEI Job No. 94015

Prepared by:

ROBIA RX DASHOTS KANDSHOTS Have 2, upd

Blymyer Engineers, Inc. 1829 Clement Avenue Alameda, CA 94501 Client:

Kawahara Nursery, Inc. 16550 Ashland Avenue San Lorenzo, CA 94508

Limitations

Services performed by Blymyer Engineers, Inc. have been provided in accordance with generally accepted professional practices for the nature and conditions of similar work completed in the same or similar localities, at the time the work was performed. The scope of work for the project was conducted within the limitations prescribed by the client. This report is not meant to represent a legal opinion. No other warranty, expressed or implied, is made. This report was prepared for the sole use of Kawahara Nursery, Inc.

Blymyer Engineers, Inc.

Mark E. Detterman C.E.G.

Senior Geologist

DELTERMAN No. 1788 CERTIFIED

NGREERING GEOLOGISI

\$11D

And

Michael S. Lewis

Vice President, Technical Services

Table of Contents

1.0	Introduction	1
	1.1 Previous Work	1
	1.1.1 Underground Storage Tank Removal	
	1.1.2 Phase I Site Investigation	
	1.1.3 Phase II Site Investigation	
	1.1.4 Additional Subsurface Investigation	
	1.2 Proposed Scope of Work	
	· · · · · · · · · · · · · · · · · · ·	
2.0	Risk Evaluation Using the RWQCB Risk-Based Screening Levels	8
3.0	ASTM RBCA Health Risk Assessment	9
	3.1 Overview	9
	3.2 Overview of Subsurface Geology	
	3.3 Overview of Contaminant Distribution	
	3.4 Risk Assessment Data Input and Output Screens	
	3.4.1 Main Screen	
	3.4.2 Exposure Pathway Input	
	3.4.2.1 Groundwater Exposure	
	3.4.2.2 Surface Soil Exposure	
	3.4.2.3 Air Exposure	
	3.4.3 Exposure Factors and Target Risk Limits	
	3.4.4 Source Media Chemicals of Concern	
	3.4.4.1 Selection and Modeling of Site-Specific COC	
	3.4.4.2 Site-Specific Analytical Data Sets	
	3.4.5 Transport Modeling Options	
	3.4.6 Site-Specific Soil Parameters	
	3.4.7 Site-Specific Groundwater Parameters	
	3.4.8 Site-Specific Air Parameters	
	3.5 Modeling Results; Site Specific Target Levels	
	3.5.1 Tier 2 Transient Domenico Analysis	
	3.5.2 Site-Specific Target Level Summary	
ΛD	Conclusions	20
4.U	4.1 ASTM RBCA Health Risk Assessment Conclusions	
	4.1 AS IN KDCA HEARIN KISK ASSESSMENT CONCIUSIONS	22
5.0	Recommendations	24
6.0	References	25

Tables

Table I: Results of Soil Sample Analysis

Table II: Results of Groundwater Sample Analysis

Table III: Results of Geotechnical Soil Sample Analysis

Table IV: Summary of SF-RWQCB RBSL Goals Table V: Summary of Site Specific Target Levels

Figures

Figure 1: Site Location Figure 2: Site Plan

Partial Site Plan Figure 3:

Appendices

Appendix A: Printouts: Main Screen, Exposure Pathway Identification, and Exposure Pathway Flowchart

Appendix B: Printouts: Exposure Factors and Target Risk Limits, User-Specified Custom

Chemical Database, and Chemical data for Selected COCs

Printouts: Representative COC Concentrations in Source Media (Groundwater)

Appendix C:

Appendix D: Printouts: Representative COC Concentrations in Source Media (Soil)

Appendix E: Printouts: Transport Modeling Options

Printouts: Site-Specific Soil Parameters, Site-Specific Groundwater Parameters, Appendix F:

Site-Specific Air Parameters, and Input Parameter Summary Sheet

Appendix G: Printouts: Domenico Groundwater Modeling Summary

Printouts: Soil SSTL Values, Groundwater SSTL Values, Calculation of SSTL Values Appendix H:

for TPH, Chemical-Specific Tier 2 Cleanup Summary (5 chemicals)

1.0 Introduction

1.1 Previous Work

1.1.1 Underground Storage Tank Removal

On December 1, 1992, one steel 5,000-gallon underground storage tank (UST) was removed from the property owned by Kawahara Nursery, located at 16550 Ashland Avenue, San Lorenzo, California, (Figures 1 and 2). The UST, used to store diesel, was reported to be in good condition at the time of removal with no visible evidence of holes. However, soil samples collected from the UST excavation contained Total Petroleum Hydrocarbons (TPH) as diesel, suggesting that a release had occurred. The results of the UST closure were described in the *Underground Storage Tank Closure Report*, (December 12, 1993) prepared by Tank Protect Engineering.

According to information obtained from Kawahara Nursery, a 1,000-gallon gasoline UST was previously located in the vicinity of the lath house on the north side of the property (Figure 3). The UST was reportedly removed from the site shortly after Kawahara Nursery occupied the property in 1954.

1.1.2 Phase I Site Investigation

In a letter dated January 27, 1993, the Alameda County Health Care Services Agency (ACHCSA) requested that a preliminary subsurface investigation be completed to ascertain the extent of soil and groundwater contamination at the site. On June 10, 1993, Blymyer Engineers supervised the installation of three groundwater monitoring wells (MW-1, MW-2, and MW-3) and one soil bore (SB-1). Minor concentrations of petroleum hydrocarbons were detected in the soil samples collected from soil bores MW-1 and MW-2, and higher concentrations were detected in the samples collected near the water-bearing zone in soil bore MW-3. The groundwater sample collected from monitoring well MW-3, located adjacent to an on-site irrigation well, contained TPH as gasoline and benzene, toluene, ethylbenzene, and xylenes (BTEX).

1.1.3 Phase II Site Investigation

In response to Blymyer Engineers' *Preliminary Site Assessment, Phase I Subsurface Investigation* (June 28, 1993) report and *Subsurface Investigation Status Report* (April 29, 1994), the ACHCSA requested full delineation of the extent of petroleum hydrocarbons in groundwater at the site and in the soil adjacent to the diesel UST excavation. In 1994, Blymyer Engineers conducted a second phase of investigation at the site consisting of:

- A review of records at the ACHCSA and the Regional Water Quality Control Board to determine if any toxic chemical or fuel leaks reported within a ¼-mile radius may have impacted the site
- A review of historical aerial photographs
- Field tests to assess whether pumping of the on-site irrigation well would influence the shallow water-bearing zone
- A 16-point soil gas survey
- Installation of two additional groundwater monitoring wells (MW-4 and MW-5)
- Collection of groundwater samples from all five monitoring wells during the first three quarters of 1995

Results of the second phase of investigation were presented in Blymyer Engineers' *Subsurface Investigation Letter Report*, dated December 16, 1994, and in quarterly groundwater monitoring reports submitted in 1995.

No potential upgradient sources of contamination were identified during the review of the local regulatory agency records and aerial photographs. On the basis of the limited field tests, pumping of the irrigation well did not have a significant influence on shallow groundwater beneath the site. Furthermore, petroleum hydrocarbons were not detected in the groundwater samples collected from the irrigation well, which is apparently screened from 45 to 60 feet below ground surface (bgs).

Slightly elevated concentrations of petroleum hydrocarbons were detected in the soil gas samples collected from the northeastern corner of the barn and near the northernmost lath house. Groundwater samples from MW-3, located between the lath house and the barn, contained up to 120,000 micrograms per liter ($\mu g/L$) TPH as gasoline, $4,800 \,\mu g/L$ of benzene, $8,400 \,\mu g/L$ of toluene, $3,000 \,\mu g/L$ of ethylbenzene, and $27,000 \,\mu g/L$ of total xylenes. The presence of TPH as gasoline in groundwater samples from MW-3 suggested that there was another source of petroleum hydrocarbons at the site, in addition to the diesel UST that was removed in 1992.

TPH as diesel was detected in the MW-5 groundwater sample only during the March 1995 sampling event. TPH as gasoline, TPH as diesel, and BTEX were not detected in groundwater samples collected from monitoring wells MW-1, MW-2, or MW-4. The direction of groundwater flow in September 1995 was estimated to be northwest with an average gradient of 0.004 feet/foot.

On the basis of the Subsurface Investigation Letter Report and quarterly groundwater monitoring reports, the ACHCSA requested (in a letter dated May 31, 1995) that Kawahara Nursery conduct additional work at the site. Specifically, they requested submittal of a workplan to identify the source and extent of contamination in soil and groundwater in the vicinity of monitoring well MW-3.

On June 3, 1997, Blymyer Engineers submitted the Workplan for Additional Site Characterization and Site Risk Classification (Workplan) to the ACHCSA. In a letter dated June 6, 1997, the ACHCSA requested that several additional tasks be included in the Workplan. On June 12, 1997, Blymyer Engineers submitted the Revised Workplan for Additional Site Characterization (Revised Workplan), which addressed the additional ACHCSA requirements.

The Revised Workplan included the following tasks:

- Resume quarterly groundwater monitoring and sampling of MW-3, MW-4, and MW-5
- Generate a geophysical survey in an attempt to locate the gasoline UST or its former basin in the vicinity of the lath house on the north side of the site
- Perform an additional investigation in the vicinity of the former gasoline UST by advancing approximately 6 direct-push soil bores
- Decommission monitoring wells MW-1 and MW-2, as approved by the ACHCSA
- Analyze soil and groundwater samples to evaluate the potential for natural attenuation (aerobic and anaerobic biodegradation)
- Determine if the site can be classified in the "low risk groundwater" category as defined by the San Francisco Bay Regional Water Quality Control Board (SF-RWQCB)
- If appropriate, evaluate the risk to human health and the environment

On March 4, 1999, Blymyer Engineers resumed quarterly groundwater monitoring and sampling of MW-3, MW-4, and MW-5, and submitted the *Quarterly Groundwater Monitoring Report, First Quarter 1999 (January through March)*, dated April 13, 1999.

In June 1999, prior to implementation of the Revised Workplan, the ACHCSA requested (June 2, 1999) the addition of the following tasks to the above scope of work (see Blymyer Engineers' *Proposed Soil Bore Locations*, dated June 21, 1999):

Drill two additional soil bores on the west side and east side of monitoring well MW-3

- Drill additional soil bores around the perimeter of the former diesel UST and in the vicinity of geophysical anomalies
- Collect soil samples at 5-foot intervals and collect one grab groundwater sample from each soil bore

1.1.4 Additional Subsurface Investigation

On September 2, 1999, Blymyer Engineers submitted the *Results of Additional Subsurface Investigation and Quarterly Groundwater Monitoring, Second Quarter 1999*. This report presented the results the geophysical survey, additional soil bore sampling, well decommissioning, and groundwater monitoring for the second quarter, 1999. In addition to decommissioning monitoring wells MW-1 and MW-2, as approved by the ACHCSA, the following conclusions were made:

- The direction of groundwater flow is toward the northwest
- On the basis of the geophysical survey, buried metal objects appear to be present in two locations near the west end of the lath house
- Soil and grab groundwater samples collected from SB-4 and SB-5, located downgradient of one magnetic anomaly, contained very high concentrations of petroleum hydrocarbons
- A petroleum sheen was observed on SB-4 and SB-5 water samples, and free product was observed in the soil samples
- Groundwater samples from MW-3, located between the barn and the northernmost lath house, contained significant concentrations of TPH as gasoline and benzene

The soil samples and grab groundwater sample collected downgradient of the former diesel
 UST (removed in 1992) indicated that this area is not a significant source of groundwater contamination

On the basis of the investigation, it appears that there may be free product present in soil and groundwater in the vicinity of the lath house (downgradient of one magnetic anomaly). The site could not, therefore, be classified as "low risk groundwater".

Furthermore, the concentrations of benzene were compared to the Tier 1 table of Risk-Based Screening Levels (RBSLs) as described in the ASTM E 1739-95 Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites (RBCA). A California-modified toxicity and exposure table was used. Benzene concentrations in groundwater samples from SB-4, SB-5, and MW-3 exceed the target levels for an exposure pathway of groundwater volatilization to indoor residential air. Because there is a residence immediately downgradient of the apparent gasoline source, closure of this site could not be recommended on the basis of a low risk to human health.

Blymyer Engineers recommended that a Tier 2 RBCA evaluation be generated to evaluate site-specific target levels (SSTLs) for both soil and groundwater. After the SSTLs are generated, it was recommended that the remaining petroleum hydrocarbon sources be removed from the site, using the SSTLs as cleanup goals. Blymyer Engineers submitted the *Health Risk Assessment Workplan*, dated January 20, 2000, to the ACHCSA. The workplan was approved by the ACHCSA in a December 14, 2000 letter.

Due to the relative stability of the groundwater analytical data over an extended period of time, Blymyer Engineers recommended, and the ACHCSA approved, that the site move to semi-annual groundwater monitoring. Three semi-annual sampling events have taken place at the site.

A *Remedial Action Plan*, dated September 10, 2001, was forwarded to the ACHCSA. In a letter dated September 18, 2001, the ACHCSA accepted the proposed remedial actions.

Copies of all available laboratory analytical data for Chemicals of Concern (COC) in soil and groundwater, as well as geotechnical soil data, can be found in the attached Tables I through III.

1.2 Proposed Scope of Work

The following proposed scope of work was contained in the health-risk workplan:

- Perform a Tier 2 risk assessment using the data collected in the subsurface investigation to
 determine site-specific target levels (SSTLs) to be used as cleanup levels for soil and
 groundwater at the site.
- Prepare a final report to document the results of the risk assessment modeling.

2.0 Risk Evaluation Using the RWQCB Risk-Based Screening Levels

The San Francisco Bay Regional Water Quality Control Board (SF-RWQCB) issued a risk-based decision making document (Application of Risk-Based Screening Levels and Decision Making to Sites With Impacted Soil and Groundwater, revised December 2001) which provided conservative risk-based, screening-level (Tier 1), contaminant concentration remedial goals. The document was reviewed for appropriateness of use at the subject site. One of the principal assumptions for use of the Tier 1 Lookup Tables is that the number of COC is limited to five. With TPH defined as a single compound, as indicated by the analytical report notes from the laboratory, use of the document at this site would be appropriate. Because the document provides only a Tier 1 screening-level evaluation of risk, the remedial goal for each COC will necessarily be very conservative. Thus these values would be useful for defining the most stringent remedial clean-up goal. The remedial goals for residential land use as contained in Table A [Surface Soil (< 3M BGS) and Groundwater Risk-Based Screening Levels (RBSLs), (Groundwater is a Current or Potential Source of Drinking Water)], of the referenced document are tabulated in Table IV.

3.0 ASTM RBCA Health Risk Assessment

In order to conduct the risk assessment at the site, Blymyer Engineers proposed to use the model entitled *RBCA Tool Kit* by Groundwater Sciences, Inc (GSI). of Houston, Texas. This model utilizes equations directly out of the American Society for Testing and Materials (ASTM) 1739-95 document entitled *Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites* and dated November 1995. However, as changes and refinements in ASTM risk-based documents have been made, changes and additions have been made to the programs generated by GSI. As a result of the issuing of the ASTM document *Standard Provisional Guide for Risk-Based Corrective Action* (PS-104; ASTM, 1998), which incorporates a larger number of contaminants in the risk-based decision universe, GSI generated the *RBCA Tool Kit for Chemical Releases*. As a consequence, the more recent modeling program was utilized to generate this risk assessment. Blymyer Engineers has used the most recent update (January 23, 2001) of the model to complete all calculations required in the ASTM standard PS-104.

3.1 Overview

This health risk assessment (HRA) has been conducted to evaluate the potential of soil and groundwater contamination to adversely impact the health of the current onsite residential occupants, commercial workers, and potential construction workers. As a consequence of the current residential occupancy, the risk assessment has utilized conservative residential standards rather than less conservative commercial standards. Blymyer Engineers has utilized existing data from the site in an attempt to determine the SSTL for contaminants that may be over acceptable health-risk goals. It is also the understanding of Blymyer Engineers that a potential reuse of the site may include residential redevelopment at some point in the future.

Existing soil and groundwater sample analytical results were utilized as input parameters for the risk assessment. However, when required input parameter data was not collected (i.e. site-specific rainfall data, vertical hydraulic conductivity, etc.), published but conservative parameter data were assumed for the modeling program. These areas are discussed below.

Essentially five chemicals of concern were identified at the subject site. This included BTEX and TPH. In this risk assessment, TPH as gasoline and TPH as diesel have been added together cumulatively as a conservative measure. Analytical laboratories have consistently noted that TPH as diesel range hydrocarbon compounds in groundwater and soil exhibit a fuel pattern that does not resemble the TPH as diesel standard. A review of the chromatograms for TPH as gasoline and TPH as diesel (see for example *Semiannual Groundwater Monitoring Report, Spring 2002*, Blymyer Engineers, June 24, 2002, Appendix C) therein finds that the hydrocarbon compound detected in both chromatograms is a single group of hydrocarbons that range from C6 to C14.

Blymyer Engineers assumed risk to a number of potential receptors. These include the current residential occupants at the northwest corner of the site at outside and inside locations, a groundwater degradation risk over MCLs assigned at the downgradient property line, current residential occupants across Ano Street north of the site, and a construction worker potentially exposed to contaminants during underground work such as utility repair, installation or modification. Contaminant pathways which were identified as complete in the risk analysis included a residential occupant exposed to indoor and outdoor vapor emissions from soil and groundwater, exposure to dust from impacted surface soil (conservatively defined to be 10 feet bgs), an offsite residential occupant exposed to vapor emissions from soil and groundwater, and groundwater ingestion (highly unlikely). Completed pathways were identified and modeled for commercial workers exposed to dust and vapor emissions from soil and groundwater. Onsite residential or commercial worker groundwater ingestion was not assumed (see section 2.4.2.1). Utility workers were assumed to be exposed to dermal contact with impacted soil, inhalation and ingestion of impacted soil dust and vapors, and groundwater vapors. Onsite incidental ingestion of groundwater by construction workers was also not assumed, nor modeled, as it is considered to be an unlikely occurrence.

Blymyer Engineers used a Hazard Quotient (HQ) of 1.0 for individual health risks related to non-carcinogenic chemicals, a Hazard Index (HI) of 1.0 for cumulative health risks related to non-carcinogenic chemicals, an individual health risk of 10⁻⁶ for individual carcinogenic chemicals, and a total health risk of 10⁻⁵ for carcinogenic chemicals for potential receptors, consistent with current industry practice and ACHCSA standards.

3.2 Overview of Subsurface Geology

Soils encountered at the site generally consisted of brown silty clay from the surface to a depth of approximately 12 feet bgs. In most soil bores, a sand and gravel stringer 1 to 3 inches thick was noted at a depth of approximately 8 feet bgs. The stringer was generally moist and did not appear to be saturated with groundwater. The silty clay is underlain by a brown to gray silty sand to sandy gravel encountered at approximately 12 feet bgs in the north-central area where the magnetic anomalies are located. To the south, in the vicinity of well MW-1, the granular unit was encountered at a depth of 15 feet bgs, rather than 12 feet bgs. The sand unit ranges from 0.5 to 3 feet in thickness across the site. The silty sand to sandy gravel unit is underlain by a brown silty clay unit to a depth of approximately 18 feet bgs. At that depth a 1.5 to 2.5 foot thick silty sand unit was encountered, and is in turn underlain in one bore by a gray silty clay to the total explored depth of 20.5 feet bgs.

Groundwater was initially encountered at 12 to 13 feet bgs in the silty sand, but often stabilized a few feet higher. This suggests that the groundwater beneath the site is confined. Based on the rate at which groundwater recharged into the borehole, the sandy water-bearing zone at 12 feet bgs appears to be relatively permeable.

3.3 Overview of Contaminant Distribution

In general lateral contaminant distribution in soil appears to be relatively restricted to the area around groundwater monitoring well MW-3, the southern magnetic anomaly, and soil bores SB-4 and SB-5. Relatively low soil contaminant concentrations were present in other wells and soil bores in the

northern area of investigation (ranging up to 1.4 milligrams per kilogram [mg/Kg] TPH as gasoline, 7.4 mg/Kg TPH as diesel, and 11 micrograms per kilogram [μ g/Kg] toluene). No other contaminants were detected in soil samples collected at the site. Additionally, up to 130 mg/Kg TPH as gasoline, and 4.1 mg/Kg of TPH as diesel were present in soil collected in soil bore SB-1, installed to investigate the extent of lateral contamination about the diesel UST in the southern area of investigation adjacent to the site business office. This data was not utilized in this analysis due to the distance from the principal area of concern.

In bores MW-3, SB-4, and SB-5 the vertical extent of contamination appears to be largely restricted to the approximate depths of 5 to 15 or 16 feet bgs. This suggests lateral transport by gravity or groundwater to these bore locations, likely from the base of a small diameter UST, but also perhaps along the more granular units found at that those depths. If the magnetic anomaly represents a UST system, or the remnants of a UST system, it is possible that impacted soil may be found at shallower depths in closer proximity to the anomalies.

3.4 Risk Assessment Data Input and Output Screens

The RBCA Tool Kit for Chemical Releases consists of a series of screens that facilitate the input of site-related data, and subsequent data output. These are discussed in some detail below in order to document site-specific inputs, modifications, and outputs of standard modeling assumptions employed in the program.

3.4.1 Main Screen

Site location, name, and other relevant data is input on the Main Screen. Selection of Tier 1 or Tier 2 analysis is made. The subject site required a Tier 2 analysis. Calculation options are also selected in this screen. Calculation of the Baseline Risk can be selected if source zone concentrations are known. Calculation of Cleanup Standards (SSTL) can also be selected based on selected target risks (i.e. individual health risk of 1 in a million [10⁻⁶]). For this site, the determination of the Baseline

Risk was not critical for the project; however, determination of the SSTL for each COC is required in order to determine remedial goals for soil and groundwater. Consequently, only the determination of the Cleanup Standard was selected for this modeling effort. In this mode, if the representative concentrations of the various COC are below the calculated SSTL, the SSTL is automatically set at the lowest calculated pathway-specific SSTL and remedial action is only required to that limiting concentration for each COC.

A series of data entry and review screens is accessed from the Main Screen. As a consequence of the selection of both modes of risk calculation, input was required in each of the data input screens. A printout of the Main Screen is enclosed in Appendix A.

3.4.2 Exposure Pathway Input

In the Exposure Pathway Identification screen, health risk exposures with documented or potentially complete pathways are identified, classified as to onsite or offsite location, and the distance to the receptors is input. There are essentially three main exposure pathways; groundwater, surface soil, and air exposure. Copies of the input screen for these pathways are included in Appendix A and the resultant output Exposure Pathway Flowchart is also attached in Appendix A. It should be noted that input boxes which printout with a black background are locked by the program based on other input criteria, either program-specified or user-specified.

3.4.2.1 Groundwater Exposure

The existing residential dwelling is supplied by city water. Horticultural business water demand is supplied by a deep groundwater supply well located approximately 20 feet southeast of groundwater monitoring well MW-3. Previous studies have shown that it is not screened in the shallow groundwater zone, and is thus not connected with the impacted groundwater zone (*Subsurface Investigation Letter Report*, Blymyer Engineers, December 16, 1994). Consequently, onsite exposure to groundwater is considered an incomplete pathway.

In order to provide protection to groundwater resources and to attempt to preclude degradation of groundwater beneath adjacent properties, an offsite exposure at the Maximum Contaminant Level (MCL), set at appropriate state levels, was identified to be coincident with the nearest assumed downgradient property boundary. This was defined to be at a distance of 75 feet northwest from the source. For the purposes of the risk assessment, it was assumed that the southern magnetic anomaly is the dominant or sole source of groundwater contaminants at the site. This is based on the near lack of detectable concentrations around the northern anomaly. Thus all distances were measured from the approximate center of the southern anomaly. Additionally, a second offsite receptor was assumed to be present. Offsite groundwater ingestion was assumed as a conservative measure. For the purposes of the modeling program, it was assumed that the nearest downgradient residential dwelling from the source is directly across Ano Street along the northern property line, at an approximate distance of 110 feet. Groundwater exposure modeling evaluated both impacted groundwater, and leaching from impacted soil to groundwater for the completed pathways.

3.4.2.2 Surface Soil Exposure

Onsite commercial ingestion and dermal contact to surface soil is considered a complete pathway for the purpose of modeling risk to a construction worker excavating soil in the vicinity of the release. It is assumed that the construction worker will be exposed at the time of remedial actions at the site, or in the event that residual contamination can be allowed to remain onsite. Residential exposure is unlikely, due to either remediation, or through a partial capping of residual-impacted soil by permanent structures such as a building, and other improvements such as driveways, sidewalks, or roadways. However, as a conservative measure a residential receptor was allowed in the modeling effort as a worst-case scenario.

3.4.2.3 Air Exposure

Multiple air exposure pathways were evaluated as a part of the modeling effort. The onsite residential receptor pathway was modeled as the worst-case scenario. This is defined by the program

to be at a distance of 0 feet from the source. The receptor was evaluated for air pathways including volatilization to ambient indoor and outdoor air from all soil sources, from groundwater, and from particulate emissions from surface soils. The risk associated with a completed indoor air pathway is typically the limiting factor in available remedial options.

3.4.3 Exposure Factors and Target Risk Limits

This screen, attached in Appendix B, accessed through the Exposure Pathway Identification screen, allows modification of standard ASTM exposure parameters, risk goal calculation options, and target health risk limits. The ASTM parameters correspond to the Reasonable Maximum Exposure (RME) values specified in EPA guidance (EPA, 1991). These parameters include the averaging time for carcinogens and non-carcinogens, body weight, exposure durations, exposure frequency, dermal exposure frequency, skin surface area (assuming 70 year life span; skin surface of an infant, child, and adult), ingestion rate of water, ingestion rate of soil, age adjustment of these two items, and soil-to-skin adherence factor. Site-specific modifications were not made to the exposure parameters. Risk goal calculations were requested for both individual and cumulative risk goals.

Site-specific modifications were not made to the target health risk limits. Blymyer Engineers used the standard Hazard Quotient (HQ) of 1.0 for individual health risks related to non-carcinogenic chemicals, a Hazard Index (HI) of 1.0 for cumulative health risks related to non-carcinogenic chemicals, an individual health risk of 10⁻⁶ for individual Class A and B carcinogenic chemicals, a cumulative health risk of 10⁻⁵ for Class A and B carcinogenic chemicals, and an individual health risk for 10⁻⁵ for Class C carcinogenic chemicals for potential receptors (Classes A and B refer to known or probable carcinogens, whereas Class C refers to possible carcinogens). This is consistent with current industry practice and ACHCSA standards. A printout of these data is included in Appendix B.

3.4.4 Source Media Chemicals of Concern

This screen allows selection of site-specific COC, leads to a screen that allows modification or input of additional COC relevant to the site, and leads to two additional screens that allow input of site-specific concentrations of the COC in groundwater and soil.

3.4.4.1 Selection and Modeling of Site-Specific COC

The program contains a database of over 100 chemicals from which to draw. The chemical database was modified in order to include California-specific chemical parameters for benzene. This specifically included the California Environmental Protection Agency (CalEPA) cancer potency factor (slope factor) of 0.1 kg-day/mg, in comparison to the EPA slope factor of 0.029 kg-day/mg, and the lower limit of detection for benzene required by CalEPA. User-specified custom chemical database output files are included in Appendix B, as is a copy of the chemical data output files for all selected COC (physical property data, toxicity data, and miscellaneous data files used in the risk assessment).

3.4.4.2 Site-Specific Analytical Data Sets

There are two methods for entering representative media concentrations for COC at a site. A user can directly enter the representative concentration for each chemical, or a user can enter all appropriate site analytical data and allow the program to calculate the maximum concentration, the statistical mean (arithmetic or geometric; industry standard or more conservative, respectively), or the Upper Confidence Level (UCL) on the mean. The UCL percentile can also be modified by the user. The user can then select which of these calculations is most representative of the source zone concentrations or residual source zone concentrations as need be.

For the purposes of this modeling effort, the southern magnetic anomaly and vicinity was considered as the likely source zone for soil and groundwater contamination as only in the vicinity of the anomaly was extensive contamination encountered. In both cases, the representative concentrations for both soil and groundwater were modeled with the arithmetic mean. Copies of the groundwater analytical data inputs are attached in Appendix C. To make the risk model reflective of current contaminant risk, only the last three years of groundwater analytical data from the source zone were utilized. Groundwater data from wells MW-4 and MW-5 were also not utilized as the low to nondetect concentrations in these wells are not reflective of source zone concentrations and these concentrations would dilute the program-calculated values. Attached in Appendix C are copies of the data output files with the program-calculated maximum, mean, and UCL on mean concentrations for groundwater. Copies of the soil analytical data inputs are attached as Appendix D. Copies of the soil analytical output files, with program-calculated maximum, mean, and UCL on mean concentrations for soil, are also attached in Appendix D. It is assumed that exploration and removal of the magnetic anomalies will likely remove elevated concentrations of the COC, and that perimeter residual concentrations (i.e. outboard of MW-3, SB-4, and SB-5) will be lower than the likely source zone. However, to conservatively model risk presently at the site, the UCL of the calculated source zone mean concentration was used as the representative concentration for each COC.

3.4.5 Transport Modeling Options

This screen allows site-specific modeling options to be input. These modeling options include vertical transport in the surface soil column, lateral air dispersion, and groundwater dilution attenuation factors. Factors included in the soil column vertical transport subset are outdoor air volatilization factors, indoor air volatilization factors, and soil-to-groundwater leaching factors. ASTM default models were utilized for vertical transport in the soil column and in the lateral air dispersion sections; however, because it is reasonable to anticipate the absorption of a contaminant leachate by clean soil the Soil Attenuation Model (SAM) was allowed in the Soil-to-Groundwater Leaching Factor subsection of the vertical transport, surface soil column. Additionally, as it is also reasonable to anticipate biodegradation of the organic COC, first-order biodegradation decay was allowed in the groundwater dilution attenuation section, rather than only groundwater dispersion (no biodegradation). The surface soil zone was set at a thickness of 10 feet, an ASTM default thickness.

This default thickness was also utilized in the SF-RWQCB RBSL document. This was judged to be conservative due to the predominance of silty clay in the upper 12 feet at the site as it allows volatilization and particle emission from a depth of approximately 10 feet bgs. ASTM default half-lives (Decay Rates) were utilized for the organic chemicals encountered at the site. However, there are no default half-life values for TPH COC. Consequently, as a conservative measure, the half life of TPH was assumed to be 100 years. A printout of these screens is attached as Appendix E, as is a copy of the output file screen for the COC half-lives.

3.4.6 Site-Specific Soil Parameters

This screen allows site-specific soil parameters to be input. These parameters include soil source zone and surface soil column characteristics. The depth to the water-bearing unit was input as 12 feet bgs. The depth to the top and to the base of the affected soil was input as 5 and 16 feet, respectively, and is based on available analytical data and field observations noted on the bore logs. It is likely that impacted soil is present above five feet bgs in the area of the magnetic anomaly; however, it is assumed that residual soil contamination within the upper 10 feet bgs will be largely removed as impacted soil in this depth range is generally driven by nuisance factors such as odor and color, rather than health risk. The SF-RWQCB RBSL document defines 100 mg/Kg as the nuisance threshold for TPH as gasoline and TPH as diesel. An average length and width of 40 feet by 25 feet, respectively, was utilized to calculate the affected soil area. The dominant wind flow direction was assumed to be southeast, parallel to the assumed groundwater gradient, and thus across the long dimension of impacted soil at the site. Because analysis was not conducted for all soil parameters for which direct entry is possible in the program, it was elected to select a conservative soil type for the site within the program. Silty Clay was identified as the most appropriate vadose zone soil encountered at the site based on the bore logs and available site-specific laboratory geotechnical data (Table III); however, to conservatively account for the presence of the more granular unit at an approximate depth of 8 feet bgs, sandy clay was selected for use in the modeling program. Rainfall was directly input based on the average rainfall for the Upper San Leandro Reservoir climate station over the period of October 1970 to December 2000. This is available under the Western U.S.

Climate Historical Summaries section of the Western Region Climate Center website (http://www.wrcc.dri.edu/index.html). This is judged to be conservative as the reservoir is at a higher elevation, and there is a direct correlation of increased elevation to increased precipitation (the orographic effect). A printout of the parameters used in this project is included in Appendix F. All user specified inputs appear with a white background; however, the Partitioning Parameters are based on the average of available Fraction Organic Carbon (FOC) and soil pH analysis values. These parameters were used as a conservative measure.

3.4.7 Site-Specific Groundwater Parameters

This screen allows site-specific groundwater parameters to be input. These parameters include water-bearing unit data, groundwater plume source zone, dispersion, and discharge to surface water input parameters. The hydraulic conductivity and gradient correspond to the predominant site-specific soil type and the average gradient over the last 1.5 years. The effective porosity is very conservative, as it has been set equal to the total porosity. This is essentially impossible for any soil type. Sorption parameters are based on site-specific data previously generated. Slightly acidic pH values are conservative as they lead to a higher leaching of contaminants. Although the source is assumed to be removed at a point in the future, residual effects such as the groundwater source width will remain. A 2.5-foot-thick mixing zone was calculated by the program based on the inputted average saturated thickness, a conservative assumed source width, and length of the source zone parallel to the groundwater flow direction. The ASTM default was used to calculate groundwater dispersion. Groundwater discharge to surface water was not an identified complete pathway, and thus was not calculated. A printout of this screen is attached in Appendix F.

3.4.8 Site-Specific Air Parameters

This screen allows site-specific air parameters to be input. These parameters include outdoor and indoor air pathway parameters. All outdoor air pathway parameters are ASTM default, or user-specified in a previous screen, and thus are locked on this screen. Only residential indoor pathways

were calculated by the program as a worst-case scenario. All building parameters are also conservative ASTM default parameters. Although there is currently a residential dwelling onsite, it may not be representative of potential additional dwellings, should there be eventual residential redevelopment at this site. Parameters for future dwellings are obviously not now known, and thus the site was modeled with the conservative ASTM values. The remainder of the building parameters are locked parameters based on input in another screen. A printout of the screen is also attached in Appendix F.

A complete summary of input parameters discussed above (competed exposure pathways, exposure parameters, target risks, modeling options, and surface, subsurface soil column, building, groundwater, and transport parameters) is included in Appendix F (Input Parameter Summary).

3.5 Modeling Results; Site Specific Target Levels

Based on the data inputs as outlined above, the modeling program calculated the SSTL for surface soil, subsurface soil, and groundwater for all allowed pathways.

3.5.1 Tier 2 Transient Domenico Analysis

As discussed above, first-order biodegradation was allowed in the modeling effort. As a result, the program generated a series of printouts that graphed the impact to groundwater from contaminant concentrations in soil and also in groundwater vs. both distance and time from the source (via groundwater transport). This effort found that the point of exposure (POE) concentration limits (set previously at a property line MCL maximum contaminant exposure at 75 feet, and the conservative residential groundwater exposure at a distance of 110 feet) were not exceeded from contaminants leaching from soil or migrating in groundwater. The *Tier 2 Domenico Groundwater Modeling Summary* table and the 12 data sheets with the referenced graphs are attached as Appendix G.

3.5.2 Site-Specific Target Level Summary

SSTL calculations were completed by the program and are included in Appendix H and are tabulated in Table V. For each COC the SSTL calculations are generated in order that the defined health risks (10⁻⁶ for individual health risks related to carcinogenic COC, 10⁻⁵ for cumulative health risks related to carcinogenic COC, a HQ of 1.0 for individual health risks related to non-carcinogenic chemicals, and a HI of 1.0 for cumulative health risks related to non-carcinogenic chemicals) will not be exceeded. Three summary tables are included in Appendix H. A careful review of the calculations indicate that except for benzene all calculated representative concentrations present in onsite soil are below the program generated SSTL for soil. Thus only benzene requires mitigation in onsite soil. The limiting pathway is soil volatilization to indoor air. The SSTL for benzene was calculated to be 0.14 mg/Kg. Review of the summary table for SSTL values for groundwater indicates that for each COC in all allowed pathways the SSTL was not exceeded. A review of the summary table for SSTL values for TPH for soil indicates that the appropriate target level for TPH as gasoline (TPH -Arom.) is 920 mg/Kg and for TPH as diesel (TPH - Aliph.) it is 2,200 mg/Kg. The combined TPH SSTL for soil is 1,100 mg/Kg. A review of the summary table for SSTL values for TPH for groundwater indicates that the appropriate target levels for TPH as gasoline (TPH - Arom.) and TPH as diesel (TPH - Aliph.) are above the residual saturation values. The combined TPH SSTL for each media was calculated by the inverse weighted average of the individual fraction-specific SSTLs.

In support of the summary tables discussed above, and located behind them in Appendix H, are six pages of Chemical-Specific Tier 2 Cleanup Summaries, containing further detail relevant to the data summarized in the three summary tables.

4.0 Conclusions

4.1 ASTM RBCA Health Risk Assessment Conclusions

The following conclusions can be made from the data generated from the health risk evaluation of the contaminants at the site:

- A review of the SF-RWQCB RBSL document indicated that the document may be useful to define and generate the most conservative SSTL for remedial goals at the site.
- In the RBCA Tool Kit for Chemical Releases modeling program, SSTL were calculated for benzene, toluene, ethylbenzene, total xylenes, TPH Aliph. (TPH as diesel), and TPH Arom. (TPH as gasoline) in soil and groundwater for the site. These conservative SSTL can be used to define the extent of the remedial excavation at the site. The SSTL were calculated in order that health-based risks including carcinogenic target risks and the non-carcinogenic HQ and HI values would not be exceeded on- or off-site.
- Based on the site-specific data, only the documented analytical concentrations in soil at the site for benzene exceed the calculated representative concentration and exceed the calculated SSTL for benzene. The limiting pathway is soil volatilization to indoor air.
- In groundwater, for each COC, the respective SSTL does not exceed the calculated representative concentrations, nor have the actual analytical concentrations in groundwater exceeded the respective SSTL.
- Although the modeling effort has documented that TPH is not a health risk to current (worst-case scenario) or future residential occupants at the site, a nuisance threshold (odor and color) as defined by the SF-RWQCB may necessitate additional excavation beyond that required based on human health risks. The SF-RWQCB RBSL nuisance threshold is defined to be 100 mg/Kg for TPH as gasoline and TPH as diesel in soil (to any depth), and 100 μg/L for groundwater.

5.0 Recommendations

Based on the data, Blymyer Engineers recommends the following actions be taken:

- Remedial excavations should be planned in accordance with the previously approved Remedial Action Plan. The excavations should assume an initial excavation area as shown on Figure 3 of the Remedial Action Plan.
- Except for TPH, the SSTLs for each COC in soil and groundwater, contained in Table V, should be used as remedial goals for soil and groundwater. The SF-RWQCB Nuisance Threshold concentration of 100 mg/Kg and 0.10 mg/L for soil and groundwater, respectively, should be used as appropriate remedial goals.
- To help preclude further remedial actions for groundwater, the addition of an Oxygen Releasing Compound (ORC) slurry should be evaluated for application to the open excavation(s).
- A copy of this report should be forwarded to the following agency for review:

Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502-6577 Attention: Mr. Amir Gholami

6.0 References

Environmental Protection Agency, Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual Supplemental Guidance: Standard Default Exposure Factors, Interim Final, OSWER Directive 9285.6-03, NTIS No. PB91-921314, 1991

SF-RWQCB, Application of Risk-Based Screening Levels and Decision Making To Sites With Impacted Soil and Groundwater, Interim Final, December 2001

Table I, Results of Soil Sample Analysis BEI Job No. 94015, Kawahara Nursery, Inc. 16550 Ashland Avenue, San Lorenzo, California

10550 Ashiand Avenue, San Lorenzo, Camornia										
Sample ID	Sample Date	Metho	ied EPA od 8015 g/kg)	EPA Method 8020 (μg/kg)						
		TPH as Gas	TPH as Diesel	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes		
MW-1 5'	6/10/93	<1	<1	NA	<5	<5	<5	<5		
MW-1 16'	6/10/93	<1	<1	NA	<5_	<5	<5	<5		
MW-2 2.5'	6/10/93	<1	1.9	NA	<5	<5	<5	<5		
MW-2 11.5	6/10/93	<1	<1	NA	<5	<5	<5	<5		
MW-3 6'	6/10/93	<1	<1	NA	<5	<5	<5	<5		
MW-3 15'	6/10/93	<1	<1	NA	200	980	680	4,000		
MW-4 12'	10/31/94	<1	<1	NA_	<2.5	<2.5	<2.5	<2.5		
MW-4 17'	10/31/94	<1	<1	NA _	<2.5	<2.5	<2.5	<2.5		
MW-5 12.5'	10/31/94	<1	<1	NA	<2.5	<2.5	<2.5	<2.5		
MW-5 17'	10/31/94	<1	<1	NA	<2.5	11	<2.5	27		
SB-1 7.5'	10/31/94	<1	<1	NA	<2.5	<2.5	<2.5	<2.5		
SB-1 17'	10/31/94	130	4.1	NA	<2.5	<2.5	<2.5	<2.5		
SB-2 5'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-2 10'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-2 12.5'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-3 10'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-3 15'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-4 5'	8/9/99	<1	<1	<50	<5	<5	<5	9		
SB-4 10'	8/9/99	1.4	1.6	<50	<5	33	<5	<5		
SB-4 15'	8/9/99	910	360	<2,000	870	10,000	14,000	92,000		
SB-5 10'	8/9/99	1.2	<1	<50	<5	26	<5	<5		
SB-5 12'	8/9/99	250	100	<200	<10	1,300	1,400	13,000		

Table I, Results of Soil Sample Analysis BEI Job No. 94015, Kawahara Nursery, Inc. 16550 Ashland Avenue, San Lorenzo, California

10550 Asmand Avenue, San Lorenzo, Camorma										
Sample ID	Sample Date	Metho	ied EPA od 8015 g/kg)	EPA Method 8020 (μg/kg)						
		TPH as Gas	TPH as Diesel	МТВЕ	Benzene	Toluene	Ethylbenzene	Total Xylenes		
MW-1 5'	6/10/93	<1	<1	NA	<5	<5	<5	<5		
MW-1 16'	6/10/93	<l< td=""><td><1</td><td>NA</td><td><5</td><td><5</td><td><5</td><td><5</td></l<>	<1	NA	<5	<5	<5	<5		
MW-2 2.5'	6/10/93	<l< td=""><td>1.9</td><td>NA</td><td><5</td><td><5</td><td><5</td><td><5</td></l<>	1.9	NA	<5	<5	<5	<5		
MW-2 11.5	6/10/93	<1	<1	NA	<5	<5	<5	<5		
MW-3 6'	6/10/93	<1	<1	NA	<5	<5	<5	<5		
MW-3 15'	6/10/93	<l< td=""><td><1</td><td>NA</td><td>200</td><td>980</td><td>680</td><td>4,000</td></l<>	<1	NA	200	980	680	4,000		
MW-4 12'	10/31/94	<1	<1	NA	<2.5	<2.5	<2.5	<2.5		
MW-4 17'	10/31/94	<1	<1	NA	<2.5	<2.5	<2.5	<2.5		
MW-5 12.5'	10/31/94	<1	<1	NA	<2.5	<2.5	<2.5	<2.5		
MW-5 17'	10/31/94	<1	<1	NA	<2.5	11	<2.5	27		
SB-1 7.5'	10/31/94	<1	<1	NA	<2.5	<2.5	<2.5	<2.5		
SB-1 17'	10/31/94	130	4.1	NA	<2.5	<2.5	<2.5	<2.5		
SB-2 5'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-2 10'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-2 12.5'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-3 10'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-3 15'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-4 5'	8/9/99	<1	<1	<50	<5	<5	<5	9		
SB-4 10'	8/9/99	1.4	1.6	<50	<5	33	<5	<5		
SB-4 15'	8/9/99	910	360	<2,000	870	10,000	14,000	92,000		
SB-5 10'	8/9/99	1.2	<1	<50	<5	26	<5	<5		
SB-5 12'	8/9/99	250	100	<200	<10	1,300	1,400	13,000		

Table I, Results of Soil Sample Analysis BEI Job No. 94015, Kawahara Nursery, Inc. 16550 Ashland Avenue, San Lorenzo, California

10000 Ashand Avenue, Ban Lorenzo, Camorna										
Sample ID	Sample Date	Modified EPA Method 8015 (mg/kg)		EPA Method 8020 (μg/kg)						
		TPH as Gas	TPH as Diesel	МТВЕ	Benzene	Toluene	Ethylbenzene	Total Xylenes		
SB-6 5'	8/9/99	<1	5.7	<50	<5	<5	<5	98		
SB-6 10'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-6 16'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-7 5'	8/9/99	<1	7.4	<50	<5	<5	<5	36		
SB-7 10'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-8 5'	8/9/99	<1	3.8	<50	<5	<5	<5	<5		
SB-8 10'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-8 15'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-9 5'	8/9/99	<1	1.8	<50	<5	<5	<5	<5		
SB-9 10'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-9 16'	8/9/99	<1	<1	<50	<5	<5	<5	<5		
SB-10 5'	8/9/99	<1	<1	<50	<5	< 5	<5	<5		
SB-10 10'	8/9/99	<1	<1	<50	<5	<5	<5	<u><5</u>		
Maria de la compania del compania del compania de la compania del compania del compania de la compania del co	A A A A A A A A A A A A A A A A A A A			To make the company of the company o	**************************************	The second secon	St And Andrews Agentine Control of Contro			

Notes:

TPH = Total petroleum hydrocarbons

EPA = Environmental Protection Agency

< x = Not detected above the analytical method reporting limit of x

mg/kg = Milligrams per kilogram $\mu g/kg = Micrograms per kilogram$

NA = Not analyzed

Results in **bold** indicate detectable concentrations.

Table II, Results of Groundwater Sample Hydrocarbon Analysis BEI Job No. 94015, Kawahara Nursery

16550 Ashland Avenue, San Lorenzo, California

Sample ID	Date	Metho	ed EPA d 8015 g/L)		EPA Method 8020 or 8021B (μg/L)						
		TPH as Gas	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ	(μg/L) MTBE		
MW-1	6/16/93	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS		
•	3/28/94	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS		
	11/8/94	NS	NS	NS	NS	NS	NS	NS	NS		
	3/29/95	<50	<50	<0.5	< 0.5	<0.5	<0.5	NS	NS		
	6/7/95	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS		
	9/7/95	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS		
_	3/4/99	NS	NS	NS	NS	NS	NS	NS	NS		
	6/29/99	NS	NS	NS	NS	NS	NS	NS	NS		
	11/15/99	NS	NS	NS	NS	NS	NS	NS	NS		
	5/22/00	NS	NS	NS	NS	NS	NS	NS	NS		
	8/16/00	NS	NS	NS	NS	NS	NS	NS	NS		
	11/16/00	NS	NS	NS	NS	NS	NS	NS	NS		
	2/21/01	NS	NS	NS	NS	NS	NS	NS	NS		
	5/31/01	NS	NS	NS	NS	NS	NS	NS	NS		
	11/28/01	NS	NS	NS	NS	NS	NS	NS	NS		
	5/28/02	NS	NS	NS	NS	NS	NS	NS	NS		

Table II, Results of Groundwater Sample Hydrocarbon Analysis BEI Job No. 94015, Kawahara Nursery

16550 Ashland Avenue, San Lorenzo, California

Sample ID	Date	Modifid Metho (μg			EPA Metho d 8260 (µg/L)				
		TPH as Gas	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ	МТВЕ
MW-2	6/16/93	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS
	3/28/94	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS
	11/8/94	NS	NS	NS	NS	NS	NS	NS	NS
	3/29/95	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS
	5/7/95	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS
	9/7/95	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS
	3/4/99	NS	NS	NS	NS	NS	NS	NS	NS
	6/29/99	NS	NS	NS	NS	NS	NS	NS	NS
	11/15/99	NS	NS	NS	NS	NS	NS	NS	NS
	5/22/00	NS	NS	NS	NS	NS	NS	NS	NS
•	8/16/00	NS	NS	NS	NS	NS	NS	NS	NS
	11/16/00	NS	NS	NS	NS	NS	NS	NS	NS
	2/21/01	NS	NS	NS	NS	NS	NS_	NS	NS
	5/31/01	NS	NS	NS	NS	NS	NS	NS	NS
	11/28/01	NS	NS	NS	NS	NS	NS	NS	NS
	5/28/02	NS	NS	NS	NS	NS	NS	NS	NS

Table II, Results of Groundwater Sample Hydrocarbon Analysis BEI Job No. 94015, Kawahara Nursery

16550 Ashland Avenue, San Lorenzo, California

10350 Ashranu Avenue, San Lorenzo, Camornia											
Sample ID	Date	Metho	ed EPA d 8015 g/L)		EPA Metho d 8260 (μg/L)						
		TPH as Gas	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ	MTBE		
MW-3	6/16/93	120,000	170,000	4,600	8,400	2,100	27,000	NS	NS		
	3/28/94	23,000	94,000	4,800	6,500	3,000	15,000	NS	NS		
	11/8/94	35,000	27,000	3,600	4,100	2,700	18,000	NS	NS		
	3/29/95	18,000	<50*	1,600	1,400	780	6,200	NS	NS		
	6/7/95	20,000	<50	1,700	1,400	750	6,800	NS	NS		
	9/7/95	17,000	<50	1,100	800	570	4,800	NS	NS		
	3/4/99	1,300	<50	33	<0.5	1.2	17	5.3 °	NS		
	6/29/99	8,000	<1,000	98	34	3.7	1,200	37 e	NS		
	11/15/99	4,200	2,000 a	63	25	65	590	33 e	NS		
	5/22/00	5,800	1,480	53	29	58	490	4.9 °	NS		
	8/16/00	2,400	530 °,*	18	5.8 b	18	182	12 b, e	ND e		
	11/16/00	9,000	3,700 c,*	35	27	88	719	<10 °	NS		
	2/21/01	2,400	880 ^{c, *}	28	12	46	276	<2.0	NS		
	5/31/01	2,900	680 ^{c, *}	5.3	33 b	17	144	<2.0	NS		
	11/28/01	1,700	430 °,*	23	3.0	37	184	4.2 °	NS		
	5/28/02	870	570 ^{c, *}	6.3	2.2	12	70	2.3 °	NS		

Table II, Results of Groundwater Sample Hydrocarbon Analysis BEI Job No. 94015, Kawahara Nursery

16550 Ashland Avenue, San Lorenzo, California

ļ								
Date	Metho	d 8015		EPA N	Method 8020 or 80 (μg/L)	021B		EPA Metho d 8260 (μg/L)
	TPH as Gas	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ	MTBE
6/16/93	NS	NS	NS	NS	NS	NS	NS	NS
3/28/94	NS	NS	NS	NS	NS	NS	NS	NS
11/8/94	<50_	<50	<0.5	<0.5	<0.5	<0.5	NS	NS
3/29/95	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS
6/7/95	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS
9/7/95	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS
3/4/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0 °	NS
6/29/99	130	<50	<0.5	<0.5	<0.5	<0.5	<5.0 °	NS
11/15/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0 °	NS
5/22/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.0 e	NS
8/16/00	<50	56 *, d	<0.5	<0.5	<0.5	0.51	2.3 e	NS
11/16/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.0 e	NS
2/21/01	<50	<50	<0.5	<0.5	<0.5	<0.5	2.6 e	NS
5/31/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.0 °	NS
11/28/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.0 e	NS
5/28/02	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.0 °	NS
	3/28/94 11/8/94 3/29/95 6/7/95 9/7/95 3/4/99 6/29/99 11/15/99 5/22/00 8/16/00 11/16/00 2/21/01 5/31/01 11/28/01	Method (με TPH as Gas Gas 6/16/93 NS 3/28/94 NS 11/8/94 <50 3/29/95 <50 6/7/95 <50 9/7/95 <50 3/4/99 <50 6/29/99 130 11/15/99 <50 5/22/00 <50 8/16/00 <50 11/16/00 <50 2/21/01 <50 5/31/01 <50 11/28/01 <50	Method 8015 (μg/L) TPH as Gas TPH as Diesel 6/16/93 NS NS 3/28/94 NS NS 11/8/94 <50	Method 8015 ($\mu g/L$) TPH as Gas TPH as Diesel Benzene 6/16/93 NS NS NS 3/28/94 NS NS NS 11/8/94 <50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Method 8015 (μg/L) TPH as Gas TPH as Diesel TPH as Diesel TPH as Diesel Toluene Ethylbenzene 6/16/93 NS NS NS NS NS 3/28/94 NS NS NS NS NS 11/8/94 <50	Method 8015 (μg/L) TPH as Gas Diesel TPH as Diesel Toluene Ethylbenzene Total Xylenes 6/16/93 NS O.5 <0.5	Method 8015

Table II, Results of Groundwater Sample Hydrocarbon Analysis BEI Job No. 94015, Kawahara Nursery

16550 Ashland Avenue, San Lorenzo, California

Sample ID	Date	Metho	ed EPA d 8015 g/L)		EPA N	Method 8020 or 80 (μg/L)	021B		EPA Metho d 8260 (μg/L)
		TPH as Gas	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ	MTBE
MW-5	6/16/93	NS	NS	NS	NS	NS	NS	NS	NS
	3/28/94	NS	NS	NS	NS	NS	NS	NS	NS
	11/8/94	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS
	3/29/95	<50	64	<0.5	<0.5	<0.5	<0.5	NS	NS
	6/7/95	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS
	9/7/95	<50	<50	<0.5	<0.5	<0.5	<0.5	NS	NS
	3/4/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0 °	NS
	6/29/99	160	<50	<0.5	<0.5	<0.5	<0.5	<5.0 °	NS
	11/15/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0 °	NS
	5/22/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.0 °	NS
	8/16/00	<50	<50	<0.5	<0.5	<0.5	<0.5	3.5 °	NS
	11/16/00	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.0 e	NS
	2/21/01	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.0 °	NS
1	5/31/01	<50	<50	<0.5	<0.5	<0.5	<0.5	2.8 e	NS
	11/28/01	<50	<50	<0.5	<0.5	<0.5	<0.5	4.2 °	NS
	5/28/02	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.0 °	NS

Table II continued, Summary of Groundwater Sample Hydrocarbon Analytical Results

Notes: μg/L	=	Micrograms per liter
TPH	=	Total Petroleum Hydrocarbons
MTBE	=	Methyl <i>tert</i> -butyl ether
NS	=	Not Sampled
<x< td=""><td>=</td><td>Less than the analytical detection limit (x)</td></x<>	=	Less than the analytical detection limit (x)
EPA	=	Environmental Protection Agency
*	=	Laboratory reported the presence of petroleum hydrocarbons with a chromatograph pattern uncharacteristic of diesel fuel.
a	=	Laboratory note indicates the result is within the quantitation range, but that the chromatographic pattern is not typical of fuel.
b	=	Laboratory note indicates that confirmation of the result differed by more than a factor of two.
c	=	Laboratory note indicates lighter hydrocarbons contributed to the quantification.
d	=	Laboratory note indicates the sample has an unknown single peak or peaks.
e	=	Detection of MTBE by EPA Method 8021B is regarded as erroneous; likely chemical detected is 3-methyl-pentane.

Results in **bold** indicate detectable concentrations.

Table III, Summary of Soil Sample Physical Parameters BEI Job No. 94015, Kawahara Nursery 16550 Ashland Avenue, San Lorenzo, California

L								
Sample ID	Date	ASTM E3173			ASTM 2974c	EPA 150.1	EPA 351.3	EPA 9060
		Weight % Moisture (%)	Bulk Density (g/cc)	Porosity (vol %)	FOC (wet %)	pН	TKN (mg/kg)	TOC (mg/kg)
SB-2 5'	8/9/99	NA	NA	NA	NA	7.73	258	6,910
SB-2 12.5'	8/9/99	21	2.0	40	2.8	NA	NA	NA
SB-5 12'	8/9/99	20	1.9	41	3.8	NA	NA	NA
SB-4 15'	8/9/99	NA	NA	NA	NA	8.04	190	849

Notes:

ASTM = American Society for Testing and Materials

EPA = Environmental Protection Agency

FOC = Fractional organic content
TKN = Total Kjeldahl nitrogen
TOC = Total organic carbon

g/cc = Grams per cubic centimeter

wet % = Wet weight percent

NA = Not analyzed

Table IV, Summary of SF-RWQCB RBSL Goals BEI Job No. 94015, Kawahara Nursery 16550 Ashland Avenue, San Lorenzo, California

	, , , , , , , , , , , , , , , , , , , ,		
COC	Surface Soil RBSL (mg/Kg)	Subsurface Soil RBSL (mg/Kg)	Groundwater RBSL (μg/L)
Benzene	0.045	0.045	1.0
Toluene	2.6	2.6	40
Ethylbenzene	2.5	2.5	30
Total Xylenes	1.0	1.0	13
TPH as gasoline	100	100	100
TPH as diesel	100	100	100
		200	

Notes:

SF-RWQCB = San Francisco Bay Regional Water Quality Control Board

COC = Chemical of Concern

RBSL = Risk-Based Screening Level mg/Kg = Milligrams per kilogram μg/L = Micrograms per liter

Assumes that groundwater is a current or potential source of drinking water (Tables A and C of the SF -RWQCB RBSL document).

Table V, Summary of Site Specific Target Levels BEI Job No. 94015, Kawahara Nursery 16550 Ashland Avenue, San Lorenzo, California

	-	TOSSO ASINAM	Avenue, San Lo	cheo, camori	1161	
Media	Benzene	Toluene	Ethylbenzene	Total Xylenes	TPH Aliph. (TPH as diesel)	TPH Arom. (TPH as gasoline)
Soil SSTL (mg/Kg)	0.140	400	2,100	34,000	2,200	920
Calculated Representative Concentration (mg/Kg)	0.39	4.5	6.1	41	170	420
SF- RWQCB Nuisance Threshold (mg/Kg)	NA	NA	NA	NA	100	100
					· .	
Groundwater SSTL (mg/L)	0.180	240	>170	>200	>0.034	>25
Calculated Representative Concentration (mg/L)	0.053	0.025	0.051	0.60	1.7	5.5
SF- RWQCB Nuisance Threshold (mg/L)	NA	NA	NA	NA	0.10	0.10
	,					

Notes:

> = Indicates Site Specific Target Level (SSTL) is greater than constituent residual saturation value.

SSTL = Site Specific Target Level

SF - RWQCB = San Francisco Regional Water Quality Control Board

mg/Kg = Milligrams per kilogram mg/L = Milligrams per liter

Results in **bold** indicate calculated representative concentration of analyte is over SSTL.

UNITED STATES GEOLOGICAL SURVEY 7.5" QUADS. "SAN LEANDRO, CA" AND "HAYWARD, CA" BOTH ED. 1959. PHOTOREVISED 1980.

94015

4-9-99

2000 1000 SCALE IN FEET

SITE LOCATION MAP

KAWAHARA NURSERY 16550 ASHLAND AVE. SAN LORENZO, CA

FIGURE

ACADLW\940152E 1"=50 Iw 1-21-00

Printouts: Main Screen, Exposure Pathway Identification, and
Exposure Pathway Flowchart

Printouts: Exposure Factors and Target Risk Limits, User-Specified
Custom Chemical Database, and Chemical data for Selected COCs

User-Specifie	d Cust	tom Chemical	Databas	se		Toxicity Data	Value	Refere	ence
occi opcomo	a ous	.om onomiou				EPA weight of evidence	A 🔻		
Chemical Name	BenzeneCA	V				Oral slope factor (1/[mg/kg/day])	0.1	PS	~
CAS No.	71-43-2	Тур	e A		₹	Dermal slope factor (1/[mg/kg/day])	0.02989691	TX	*
Physical Prop	erties	7,0	Value	Re	ference	Inhalation unit risk factor (1/[µg/m³])	8.2857E-06	PS	*
Molecular weight (g/m	nol)		78.1	PS	~	Oral reference dose (mg/kg/day)	0.003	R	*
Solubility @ 20-25°C	(mg/L)		1750	PS	•	Dermal reference dose (mg/kg/day)			•
Vapor pressure @ 20)-25°C (mmH	lg)	95.2	PS	~	Inhalation reference conc. (mg/m3)	0.00595	R	*
Henry's Law constant	@ 20°C	O (atm-m³/mol)	0.22888633	PS	~	Dermal Exposure	HO THE STATE OF	1980	
		unitless (-)			2	Dermal relative adsorption factor (-)	0.5	D	
lonization/dissociation	constants (pH units):				Dermal permeability coefficient (cm/hr)	0.021		
acid pKa	2:	base pK	b -		•	Lag time for dermal exposure (hr)	0.26		
Sorption coefficient (Id	og L/kg)	● log Koc	1.77	PS	*	Critical dermal exposure time (hr)	0.63		
		O log Kd			1	Relative contribution of perm. coeff. (-)	0.013		
Diffusion coefficient in	air (cm²/s)		0.088	PS	-	Regulatory Standards			
Diffusion coefficient in	water (cm ² /	s)	0.0000098	PS	-	Groundwater MCL (mg/L)	0.001	-	
Miscellaneous	Param	eters				Air PEL/TWA (mg/m ⁵)	3.25		*
Analytical Detection L	imits:		6			Aquatic life prot. criterion (mg/L)	72		
Groundwater (mg/L)	0.001	S Soil (mg/kg	0.005	S	~	Commands and Options			
First-Order Decay Ha	If Lives (days	s):				Undate Close Restore	Print		
Saturated	720	Unsaturate	720	н	~	Update Value	Sheet	Hei	p
Bioconcentration Fact	tor (-)		12.6		~	Patabase Refs.			

CHEMICAL DATA FOR SELECTED COCs

Physical Property Data

						Diffu	sion		la	g (Koc) or					Vapor						
			Molecu	lar		Coeffi	cients			log(Kd)		Henry's	Law Constant		Pressu	re	Solubillt	y			
			Weigh	it	In air		in wate	г	(€	20 - 25 C)		(@	20 - 25 C)		(@ 20 - 29	5 C)	(@ 20 - 25	C)			
	CAS		(g/mol	e)	(cm2/s)		(cm2/s)			log(L/kg)		(atm-m3)			(mm H	3)	(mg/L)		acid	base	
Constituent	Number	type	MW	ref	Dair	ref	Dwat	ref		partition	ref	mol	(unitless)	ref		ref		ref	pKa	pKb	ге
BenzeneCA*	71-43-2	A	78.1	P\$	8.80E-02	P\$	9.80E-06	PS	1.77	Kac	PS	5.55E-03	2.29 E -01	P\$	9.52E+01	PS	1.75E+03	PS	-	•	
Toluene	108-88-3	Α	92.4	5	8.50E-02	Α	9.40E-06	Α	2.13	Koc	Ą	6.30E-03	2.60E-01	Α	3.00E+01	4	5.15E+02	29	-	-	-
Ethylbenzene	100-41-4	Α	106.2	PS	7.50E-02	PS	7.80E-06	PS	2.56	Koc	PS	7.88E-03	3.25€-01	PS	1.00E+01	PS	1.69E+02	PS	-	-	-
Xylene (mixed isomers)	1330-20-7	Α	106.2	5	7.20E-02	Α	8.50E-06	Α	2.38	Koc	A	7.03E-03	2.90€-01	Α	7.00E+00	4	1.98E+02	5	-	-	-
TPH - Aliph >C10-C12	0-00-0	Т	160	Т	1.00E-01	_	1.00E-05	Τ	5.40	Koc	T	2.96E+00	1.22E+02	Τ	4.79E-01		3.40E-02	Т	-	-	-
TPH - Arom >C10-C12	0-00-0	т	130	Т	1.00E-01	Ŧ	1.00E-05	T	3.40	Koc	T	3.28E-03	1.35E-01	_	4.79E-01	-	2.50E+01	т	-	-	-

Site Name: Kawahara Nursery

Site Location: 16550 Ashland Avenue, San Lorenzo, CA

Completed By: Mark Detterman Date Completed: Sept. 2002 Job ID: 94015

CHEMICAL DATA FOR SELECTED COCs

Toxicity Data

		Referen	ce Dose		Reference C	onc.		Slope I	Factors		Unit Risk Fa	ctor		
		(mg/kg	g/day)		(mg/m3)		1/(mg/l	kg/day)		1/(µg/m3)			
			(mg/kg/day)						1/(mg/kg/day)				EPA Weight	ls
	Ora!		Dermal		Inhalation		Oral		Dermal		Inhalation		ot	Constituent
Constituent	RfD_oral	ref	RfD_dermal	ref	RfC_inhaf	ref	SF_oral	ret	SF_dermal	ref	URF_inhal	ref	Evidence	Carcinogenic ?
BenzeneCA*	3.00E-03	R	. •	•	5.95E-03	R	1.00E-01	PS	2.99E-02	TX	8.29E-06	P\$	Α	TRUE
Toluene	2.00E-01	A,R	1.60E-01	TX	4.00E-01	A,R	-	-	-	- [•		D	FALSE
Ethylbenzene	1.00E-01	PS	9.70E-02	TX	1.00E+00	PS	-	-	-	- 1	-	-	D	FALSE
Xylene (mixed isomers)	2.00E+00	A,R	1.84E+00	ΤX	7.00E+00	Α	-	-	-	-	-	-	D	FALSE
TPH - Aliph >C10-C12	1.00E-01	T	_	-	1.00E+00	Т	-	-	-	-	-	-	D	FALSE
TPH - Arom >C10-C12	4.00E-02	Т	-	-	2.00E-01	Т		-	-	-	-		D	FALSE
* = Chemical with user-specifie	c													

Site Name: Kawahara Nursery Site Location: 16550 Ashland

Miscellaneous Chemical Data

			Time-Wel	ghted	Aquatic Li	fe	Biocon-
		Maximum	Average Wo	orkplace	Prot. Crite	ria	centration
	Ce	ontaminant Level	Crites	ria			Factor
Constituent	MCL (mg/L)	ref	TWA (mg/m3)	ref	AQL (mg/L)	ref	(L-wat/kg-fish)
BenzeneCA*	1.00E-03	-	3.25E+00	-	-	-	12.6
Toluene	1.00E+00	56 FR 3526 (30 Jan 91)	1.47E+02	ACGIH		-	70
Ethylbenzene	7.00E-01	56 FR 3526 (30 Jan 91)	4.35E+02	PS	-	-	1
Xylene (mixed isomers)	1.00E+01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	-	-	1
TPH - Aliph >C10-C12	-	-	-	-	-	-	1
TPH - Arom >C10-C12	•	•	-	•		-	1

Site Name: Kawahara Nursery Site Location: 16550 Ashland

CHEMICAL DATA FOR SELECTED COCs

Miscellaneous Chemical Data

	Dermal		Wa	ter Dermai Per	meability Data									
	Relative	Dermal	Lag time for	Critical	Relative	Water/Skin			Detectio	n Limits		Hal	f Life	
	Absorp.	Permeability	Dermal	Exposure	Contr of Derm	Derm Adsorp		Groundw	ater	Soil		(First-Or	der Decay)	
	Factor	Coeff.	Exposure	Time	Perm Coeff	Factor		(mg/L)	(mg/kg)		(da	ays)	
Constituent	(unitless)	(cm/hr)	(hr)	(hr)	(unitless)	(cm/event)	ref		ref		ret	Saturated	Unsaturated	ref
BenzeneCA*	0.5	0.021	0.26	0.63	0.013	7.3E-2	D	0.001	S	0.005	S	720	720	Н
Toluene	0.5	0.045	0.32	0.77	0.054	1.6E-1	D	0.002	S	0.005	S	28	28	Н
Ethylbenzene	0.5	0.074	0.39	1.3	0.14	2.7E-1	D	0.002	S	0.005	S	228	228	Н
Xylene (mixed isomers)	0.5	80.0	0.39	1,4	0.16	2.9E-1	Ð	0.005	S	0.005	S	360	360	Н
TPH - Aliph >C10-C12	0.5	•		•	•	•	•	•			-	-	-	-
TPH - Arom >C10-C12	0.5			•			-		-	-	-	-	-	

^{* =} Chemical with user-specified

Site Name: Kawahara Nursery

Site Location: 16550 Ashland

Printouts: Representative COC Concentrations in Source Media (Groundwater)

RBCA SITE ASSESSMENT

User-Specified COC Data

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

Representative COC Concentration

		1100100011111111000111111								
CONSTITUENT		Groundwater	S	ioils (5 - 16 ft)						
	value (mg/L)	note	value (mg/kg)	note						
BenzeneCA*	5.3E-2		3.9E-1							
Toluene	2.5E-2		4.5E+0							
Ethylbenzene	5.1E-2		6.1E+0							
Xylene (mixed isomers)	6.0E-1		4.1E+1							
TPH - Aliph >C10-C12	1.7E+0	TPH as diesel	1.7E+2	TPH as diesel						
TPH - Arom >C10-C12	5.5E+0	TPH as gasoline	4.2E+2	TPH as gasoline						

* = Chemical with user-specified data

Site Name: Kawahara Nursery

Site Location: 16550 Ashland Avenue, San Lorenzo, CA

Completed By: Mark Detterman

Date Completed: Sept. 2002

Job ID: 94015

RBCA SITE ASSESSMENT

Site Name: Kawahara Nursery Co

Completed By: Mark Detterman

Site Location: 16550 Ashland Avenue, San Loren: Date Completed: Sept. 2002

1 of 1

TIER 2 GROUNDWATER CONCENTRATION DATA SUMMARY										
		Analytical Method			Dete	cted Concentra	tions			
CONSTITUE	NTS DETECTED	Typical Detection	No. of	No. of	Maximum	Mean	UCL on Mear			
CAS No.	Name	Limit (mg/L)	Samples	Detects	Conc. (mg/L)	Conc. (mg/L)	Conc. (mg/L)			
71-43-2	BenzeneCA*	5.0E-04	10	10	9.8E-02	3.6E-02	5.3E-02			
108-88-3	Toluene	5.0E-04	10	9	3.4E-02	1.7E-02	2.5E-02			
100-41-4	Ethylbenzene	5.0E-04	10	10	8.8E-02	3.5E-02	5.1E-02			
1330-20-7	Xylene (mixed isomers)	5.0E-04	10	10	1.2E+00	3.9E-01	6.0E-01			
0-00-0	TPH - Aliph >C10-C12	5.0E-02	10	8	3.7E+00	1.0E+00	1.7E+00			
0-00-0	TPH - Arom >C10-C12	5.0E-02	10	10	9.0E+00	3.9E+00	5.5E+00			

^{* =} Chemical with user-specified data

Site Name: Kawahara Nursery		Job ID: 94015	Command	Commands and Options				
Location: 16550 Ashland Avenue, San Compl. By: Mark Detterman	Lorenzo, CA	Date: Sept. 2002	Main Scre	een Print Sheet	Help			
Source Media	Constitu	uents of Conc		(3)	Apply Raoult's Law ?			
COC Select: Sort List: ?	Ground	water Source Zone	Soi	I Source Zone	Mole Fraction			
Add/Insert Top MoveUp	Enter Directly	■ □ Enter Site Data	Enter Directly	✓ ■□ Enter Site Data	in Source Material			
Delete Bottom MoveDown	(mg/L)	note	(mg/kg)	note	(-)			
BenzeneCA*	5.3E-2		3.9E-1					
Toluene	2.5E-2		4.5E+0					
Ethylbenzene	5.1E-2		6.1E+0					
Xylene (mixed isomers)	6.0E-1		4.1E+1					
TPH - Aliph >C10-C12	1.7E+0	TPH as diesel	1.7E+2	TPH as diesel				
TPH - Arom >C10-C12 * = Chemical with user-specified data	5.5E+0	TPH as gasoline	4.2E+2	TPH as gasoline				

RBCA Tool Kit for Chemical Releases, Version 1.3a

Commands and Options		PROPERTY OF THE PARTY OF THE PA		hara Nursery			D; 94015
Return Print Sheet	Help			Ashland Avenu Detterman	e, San Lo	renz ib a@AS	Sept. 2002
Groundwater Soul	ce Zor	ne Co	ncer	tration			UCL Percentile
Calculator	Paste Defaults			Estimated	(Mean Optio	95%
Constituent	Detection Limit	No. of Samples	No. of Detects	Distribution of Data	Max. Conc.	Mean Conc.	UCL on Mean
	(mg/L)				(mg/L)	(mg/L)	(mg/L)
BenzeneCA*	5.0E-4	10	10	Normal	9.8E-2	3.6E-2	5.3E-2
Toluene	5.0E-4	10	9	Normal	3.4E-2	1.7E-2	2.5E-2
Ethylbenzene	5.0E-4	10	10	Normal	8.8E-2	3.5E-2	5.1E-2
Xylene (mixed isomers)	5.0E-4	10	10	Normal	1.2E+0	3.9E-1	6.0E-1
TPH - Aliph >C10-C12	5.0E-2	10	8	Lognormal	3.7E+0	1.0E+0	1.7E+0
TPH - Arom >C10-C12	5.0E-2	10	10	Normal	9.0E+0	3.9E+0	5.5E+0

	to 50 Data	Source Zo Points)									Α	nalytical Da	ıta
	1	2	3	4	5	6	7	8	9	10	11	12	13
ID	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3			
ate	4-Mar-99	29-Jun-99	15-Nov-99	22-May-00	16-Aug-00	16-Nov-00	21-Feb-01	31-May-01	28-Nov-01	28-May-02			
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	3.30E-2	9.80E-2	6.30E-2	5.30E-2	1.80E-2	3.50E-2	2.80E-2	5.30E-3	2.30 E -2	6.30E-3			
	<0.0005	3.40E-2	2.50E-2	2.90E-2	5.80E-3	2.70E-2	1.20E-2	3.30E-2	3.00E-3	2.20E-3			
	1.20E-3	3.70E-3	6.50E-2	5.80E-2	1.80E-2	8.80E-2	4.60E-2	1.70E-2	3.70E-2	1.20E-2			
	1.70E-2	1.20E+0	5.90E-1	4.90E-1	1.82E-1	7.19E-1	2.76E-1	1.44E-1	1.84E-1	7.00E-2			
	< 0.050	<1	2.00E+0	1.48E+0	5.30E-1	3.70E+0	8.80E-1	6.80E-1	4.30E-1	5.70E-1			
	1.30E+0	8.00E+0	4.20E+0	5.80E+0	2.40E+0	9.00E+0	2.40E+0	2.90E+0	1.70E+0	8.70E-1			

14	15	16	17	18	19	20	21	22	23	24	nalytical Da 25	26
(mg/L)	(mg/L											

27	28	29	30	31	32	33	34	35	36	nalytical Da 37	38	39
mg/L)	(mg/L)	(mg/L)	(mg/L									

mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)				47	46	45	44	43	42	41	40
	(mg/L)	mg/L)									

Appendix D

Printouts: Representative COC Concentrations in Source Media (Soil)

RBCA SITE ASSESSMENT

User-Specified COC Data

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

Representative COC Concentration

		nepieseiitativ	e coc concentration	
CONSTITUENT		Groundwater	S	Soils (5 - 16 ft)
	value (mg/L)	note	value (mg/kg)	note
BenzeneCA*	5.3E-2		3.9E-1	
Toluene	2.5 E -2		4.5E+0	
Ethylbenzene	5.1E-2		6.1E+0	
Xylene (mixed isomers)	6.0E-1		4.1E+1	
TPH - Aliph >C10-C12	1.7E+0	TPH as diesel	1.7E+2	TPH as diesel
TPH - Arom >C10-C12	5.5E+0	TPH as gasoline	4.2E+2	TPH as gasoline

* = Chemical with user-specified data

Site Name: Kawahara Nursery

Site Location: 16550 Ashland Avenue, San Lorenzo, CA

Completed By: Mark Detterman

Date Completed: Sept. 2002

Job ID: 94015

RBCA SITE ASSESSMENT

Site Name: Kawahara Nursery Completed By: Mark Detterman

Site Location: 16550 Ashland Avenue, San Loren: Date Completed: Sept. 2002

1 of 1

		T	ER 2 SOIL	CONCENT	RATION DATA	SUMMARY	
		Analytical Method	1		Dete	cted Concentra	tions
CONSTITUE	NTS DETECTED	Typical Detection	No. of	No. of	Maximum	Mean	UCL on Mear
CAS No.	Name	Limit (mg/kg)	Samples	Detects	Conc. (mg/kg)	Conc. (mg/kg)	Conc. (mg/kg
71-43-2	BenzeneCA*	5.0E-03	7	2	8.7E-01	1.5E-01	3.9E-01
108-88-3	Toluene	5.0E-03	7	5	1.0E+01	1.8E+00	4.5E+00
100-41-4	Ethylbenzene	5.0E-03	7	3	1.4E+01	2.3E+00	6.1E+00
1330-20-7	Xylene (mixed isomers)	5.0E-03	7	4	9.2E+01	1.6E+01	4.1E+01
0-00-0	TPH - Aliph >C10-C12	1.0E+00	7	3	3.6E+02	6.6E+01	1.7E+02
0-00-0	TPH - Arom >C10-C12	1.0E+00	7	4	9.1E+02	1.7E+02	4.2E+02

^{* =} Chemical with user-specified data

Site Name: Kawahara Nursery		Job ID: 94015	Commands	and Options	
Location: 16550 Ashland Avenue, San Compl. By: Mark Detterman	Lorenzo, CA	Date: Sept. 2002	Main Scree	en Print Sheet	Help
Source Media	Constitu	ents of Conce			Apply Raoult's Law ?
COC Select: Sort List: ?	Groundy	vater Source Zone		Source Zone	Mole Fraction
Add/Insert Top MoveUp	Enter Directly	Enter Site Data	Enter Directly	Enter Site Data	in Source Material
Delete Bottom MoveDown	(mg/L)	note	(mg/kg)	note	(-)
BenzeneCA*	5.3E-2		3.9E-1		I I I I I I I I I I I I I I I I I I I
Toluene	2.5E-2		4.5E+0		1.5 H
Ethylbenzene	5.1E-2		6,1E+0		Name -
Xylene (mixed isomers)	6.0E-1		4.1E+1		
TPH - Aliph >C10-C12	1.7E+0	TPH as diesel	1.7E+2	TPH as diesel	
TPH - Arom >C10-C12	5.5E+0	TPH as gasoline	4.2E+2	TPH as gasoline	

Commands and Options		STATE OF TAXABLE PARTY.		ahara Nursery Ashland Aven			D: 9401:
Return Print Sheet	Help			Detterman	ue, Jan Lo	пенинрож	epi. 200
Soil Source Zone		ntrati	on C	alculat	or		UCL Percentil
	Paste Defaults			Estimated	(1	Mean Option	95%
Constituent	Detection Limit	No. of Samples	No. of Detects	Distribution of Data	Max. Conc.	Mean Conc.	UCL or Mean
	(mg/kg)				(mg/kg)	(mg/kg)	(mg/kg)
BenzeneCA*	5.0E-3	7	2	Lognormal	8.7E-1	1.5E-1	3.9E-1
Toluene	5.0E-3	7	5	Lognormal	1.0E+1	1.8E+0	4.5E+0
Ethylbenzene	5.0E-3	7	3	Lognormal	1.4E+1	2.3E+0	6.1E+0
Xylene (mixed isomers)	5.0E-3	7	4	Lognormal	9.2E+1	1.6E+1	4.1E+1
TPH - Aliph >C10-C12	1.0E+0	7	3	Lognormal	3.6E+2	6.6E+1	1.7E+2
TPH - Arom >C10-C12	1.0E+0	7	4	Lognormal	9.1E+2	1.7E+2	4.2E+2

	il Source 2 to 50 Dat										Ar	nalytical Da	ita
` '	1	2	3	4	5	6	7	8	9	10	11	12	13
ID	MW-3-6	MW-3-15					SB4-5	SB4-10	SB4-15	SB5-10	SB5-12		
ate	10-Jun-93	10-Jun-93					8-Aug-99	8-Aug-99	8-Aug-99	8-Aug-99	8-Aug-99		
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg
ſ	<0.005	2.00E-1					<0.005	<0.005	8.70E-1	<0.005	<0.010		
	<0.005	9.80E-1					<0.005	3.30E-2	1.00E+1	2.60E-2	1.30E+0		
	<0.005	6.80E-1					<0.005	<0.005	1.40E+1	<0.005	1.40E+0		
	< 0.005	4.00E+0					9.00E-3	<0.005	9.20E+1	<0.005	1.30E+1		
1	<1	<1					<1	1.60E+0	3.60E+2	<1	1.00E+2		
	<1	<1					<1	1.40E+0	9.10E+2	1.20E+0	2.50E+2		

											nalytical Da	
14	15	16	17	18	19	20	21	22	23	24	25	26
(mg/kg)	(mg/kg											

27	28	29	30	31	32	33	34	35	36	nalytical Da 37	38	39
mg/kg)	(mg/kg)	(mg/kg)	(mg/kg									

40	41	42	43	44	45	46	47	48	49	50
mg/kg)	(mg/kg)									

Printouts: Transport Modeling Options

User-Specified COC Data

CONSTITUENT HALF-LIFE VALUES

CONSTITUENT	Saturated Zone Half-Life (days)	Unsaturated Zone Half-Life (days)
BenzeneCA*	720	720
Toluene	28	28
Ethylbenzene	228	228
Xylene (mixed isomers)	360	360
TPH - Aliph >C10-C12	36500	36500
TPH - Arom >C10-C12	36500	36500

* = Chemical with user-specified data

Site Name: Kawahara Nursery

Site Location: 16550 Ashland Avenue, San Lorenzo, CA

Completed By: Mark Detterman

Date Completed: Sept. 2002

Job ID: 94015

RBCA Tool Kit for Chemical Releases, Version 1.3a

e Name: Kawahara Nursery	Job ID: 94015	Commands a	nd Options	3
cation: 16550 Ashland Avenue, San Lorenzo, CA mpl. By: Mark Detterman	Date: Sept. 2002	Return		Print Sheet
Constituent Half-Life Valu	Paste Default	Values	Help	
	Saturate	Zone	Unsatura	ated Zone
	F	irst-Order Decay		First-Order Decay
Constituent	Half-Life	Coeffecient	Half-Life	Coeffecient
	(day)	(1/day)	(day)	(1/day)
BenzeneCA*	7.2E+2	9.6E-4	7.2E+2	9.6E-4
Toluene	2.8E+1	2.5E-2	2.8E+1	2.5E-2
Ethylbenzene	2.3E+2	3.0E-3	2.3E+2	3.0E-3
Xylene (mixed isomers)	3.6E+2	1.9E-3	3.6E+2	1.9E-3
		4.65.6	3.7E+4	1.9E-5
TPH - Aliph >C10-C12	3.7E+4	1.9E-5	3.7 E+4	TOLE OF

Printouts: Site-Specific Soil Parameters, Site-Specific Groundwater

Parameters, Site-Specific Air Parameters, and

Input Parameter Summary Sheet

Site-Specific Groundwater Parameters

(?)

(ft)

Site-Specific Air Parameters 1. Outdoor Air Pathway Dispersion in Air Off-site 1 Off-site 2

Distance to offsite air receptor

or

Enter Directly

Horizontal dispersivity Vertical dispersivity

Air Source Zone

Air mixing zone height Ambient air velocity in mixing zone

Areal particulate emission flux

12.31 0 (ft) 8.32 0 (ft) 6.56167979 (ft) 637795.2756 (ft/d) 6.9E-14 (g/cm^2/s)

0

NA

110

V or

2. Indoor Air Pathway

Building Parameters

Building volume/area ratio

Foundation area

Foundation perimeter

Building air exchange rate

Depth to bottom of foundation slab

Convective air flow through cracks

Foundation thickness

Foundation crack fraction

Volumetric water content of cracks

Volumetric air content of cracks

Indoor/Outdoor differential pressure

		(?)
esidential	Commerci	al
6.56168	9.84252	(ft)
753.474	753.474	(ft^2)
111.549	111.549	(ft)
1.2E+1	2.0E+1	(1/d)
0.49213	0.49213	(ft)
0.0E+0	0.0E+0	(ft^3/d)
0.4921	25984	(ft)
0.	01	(-)
0.	12	(-)
0.	26	(-)
1	0	(psi)

Input Parameter Summary

Sile Name: Kawahara Nursery Sile Location: 16550 Ashland Avenue, San Lorenzo, CA Completed By Mark Detterman Date Completed Sept 2002

Exposur	Parameters		Finaldential		Commerci	alifoctuatrial
AT _a	Averaging time for cardinogens (yr)	Adult 70	(1-8yra)	(1-10 vis)	Cheunis	Senstos.
AT _n	Averaging time for non-carcinogens (yr)	30			25	1
BW	Body weight (kg)	70	15	35	70	
ED	Exposure duration (yr)	30	6	16	25	1
τ	Averaging time for vapor flux (yr)	30			25	1
EF	Exposure frequency (days/yr)	350			250	160
EFο	Exposure frequency for dermal exposure	350			250	
IR _w	Ingestion rate of water (L/(tay)	2			1	
IA,	Ingestion rate of soil (mg/dev)	100	200		50	100
5A	Skin surface area (dermait icm*Z)	5800		2023	5800	5800
М	Soll to skin adherence factor	1				
ÉT _{awim}	Swimming exposure time (hwevent)	3				
EV _{Iwm}	Swimming event frequency (events/yr)	12	12	12		
IA _{awan}	Water ingestion while assimming (L/hr)	0.05	0.5			
SAgwign	Skin surface area for swimming (cm/2)	23000		8100		
IR _{fin} h	ingestion rate of fish (kg/yr). Contaminated fish fraction (unifiess)	0.025				

Complete Exposure Pathweys and Receptors	On-site	Off-site 1	Off-site 2
Groundwalar:	7796	1000	A 1-17-17
Groundwater ingestion	None:	MOL	Residentia
Soil Leaching to Groundwater Ingestion	None	MCL	Residentia
Applicable Surface Water Exposure Routes:			500
Swimming			NA.
Fish Consumption			NA.
Aquatic Life Protection			NA.
Solt:			
Direct ingestion and Dermal Contact	Res/Constr.		
Ouldoor Air:			00000
Particulates from Surface Soils	Residential	Residental	#4one
Volatilization from Soila	Residental	Residential	None
Volatilization from Groundwater	Residential	Residential	None
Indoor Air	_		
Volatilization from Subsurface Soits	Residential	NA.	NA.
Volatilization from Groundwater	Residential	NA.	NA.

Receptor Distance from Source Media	On-site	Off-site 1	Off-eite 2	(Linita)
Groundwiner receptor	NA:	75	110	(ft)
Soll leaching to groundwater receptor	NA:	75	110	(05)
Outdoor air inhallation receptor		110	NA.	(113.

Target:	faulth Blak Values	Individual	Cumulativa
TH=	Target Risk (class A&B carcinogens)	1.0E-6	1,0E-5
TH.	Target Risk (class C carcinogens)	1.0E-5	
THO	Target Hazard Quotient (non-carcinogenic risk)	1.0E+0	1.0E+6

IBCA tier	Tier 2
utdoor air volgnitzation model	Surface & subsurface models
ndoor air volatilization modeli	Johnson & Ettinger model
Soll leaching model	ASTM leaching model
Ise soil ultimustion model (SAM) for leachate?	Yes
Air dilution factor	3-D Gaussian dispersion
Groundwater dilution-attenuation factor	Domenico model w/ biodeg

NOTE NA = Not applicable

Surfee	e Parameters	General Construction	(Unite)
A	Source zone area	1.0E+3 NA	(812)
W	Length of source-zone area paratiel to wind	1.0E+3 MA	(113
Wpr	Langth of source-zone area parallel to GW flow	3.0E+1	(M3
Uak	Ambient sir velocity in mixing zone	6.4E+5	(ft/db
å _{∎lr}	Air mixing zone height	6.6E+0	(11)
Ρ.	Areal particulate emission rate	6.9E-14	6BROWN 25%
Las	Thickness of affected surface so is	1.0E+1	ima

Job ID: 94015

Burfee	e Soll Column Parameters	Velue			(Units)
None	Capitary zone thickness	7.95-1			60
h.	Vadose zone thickness	1.1E+1			(ff3)
ρ_a	Soli bulk density	1.7E+0			E*molg)
foo	Fraction organic carbon	3.3E-2			14
O_{τ}	Soil lotal porosity	3.8E-1			4.8
Kes	Vertical hydraulic conductivity	2.8E-3			(ftrot)
K _v	Vapor permeability	1.1E-15			(819)
Lgre	Depth to groundwater	1.2E+1			(ft)
L.	Depth to top of affected soils	5.0E+0			(113
Losse	Depth to base of affected soils	1.6E+1			(M) (M) (M)
Laube	Thickness of affected so/s	1.1E+1			(m)
pH	Sol/groundwater pH	7.SE+0			64
		capillary	yadqae	foundation	1000
θ,,,	Volumetric water content	0.342	0.31	0.12	40
Un	Volumetric air content	0.038	0.07	0.26	40

Buildin	ig Parameters	Residential Commercial	(Unite)
Le	Building volumerarea ratio	6.56E+0 NA	(h)
Ab	Foundation area	7.53E+2 NA	(ft^2)
X _{crit}	Foundation perimeter	1.12E+2 NA	(ft)
ER	Building air sechange rate	1.21E+1 NA	(1/d)
Losk	Foundation thickness	4.92E-1 NA	(11)
Z_{ork}	Depth to bottom of foundation slab	4.92E-1 NA	(H)
η	Foundation crack traction	1.00E-2 NA	(-)
dΡ	Indoorroutdoor differential pressure	0.00E+0 NA	(psi)
Q,	Convective air flow through slate	0.00E+0 NA	(111/3/0)

Growne	twater Parameters	Valus	(Uista)
Oper .	Groundwater mixing zone depth	2.56+0	(11)
lj .	Net groundwater infiltration rate	R 5€+1	(mm/yr
U _{gw}	Groundwater Daircy velocity	8:5E-4	(ft/d)
Vgw	Groundwater seepage velocity	2.25-3	(8/6)
K _a	Saturated hydraulic conductivity	2.8E-1	create
ì	Groundwater gradient	3 0E-3	4-3 (m) (m)
Sw	Width of groundwater source zone	1.5E+1	(m).
S₄	Depth of groundwater source zone	2.5E+0	(m)
Upff	Effective porosity in water-bearing unit	3.8E-1	(9)
f _{oo-sat}	Fraction organic carbon in water-bearing unit	3.8E-2	(4)
pH_{ant}	Groundwater pH	7.5E+0	19
	Biodegradation considered?	1st Order	

Transp	ort Parameters	Off-site 1	Off-eite 2	Off-site 1	Off-site 2	(Units)
Lutere	Groundwater Transport	Groundwo	ter inquelities	Soli Lead	strig to GW	
Œ,	Longitudinal dispersivity	7.5E+0	1.1E+1	7 5E+0	1.1E+1	(ft)
Сly	Transverse dispersivity	2.5E+0	3.6E+0	2 5E+0	3.6E+0	(ft)
α_z	Vertical dispersivity	3.8E-1	5.5E-1	3.8E-1	5.5E-1	(ft)
Latera	Outdoor Air Transport	5of to Out	foor Air bhat.	GW to Dubb		
Ø _y	Transverse dispersion coefficient	1.2E+1	NA.	1.25+1	NA.	(ft)
σ_z	Vertical dispersion coefficient	8.3E+0	NA.	8.3E+0	NA	(ft)
ADF	Air dispersion factor	7.6E+1	NA:	5 1E+0	NA:	(-)

Surfec	e Water Perameters	Off-afte 2	- Quintag
Que .	Surface water flowrate	NA NA	(9/3/0)
Wet	Width of GW plume at SW discharge	NA.	(11)
*M	Thickness of GW plume at SW discharge	NA.	(ff)
DF.	Groundwater-to-surface water dilutton factor	NA NA	(4)

Printouts: Domenico Groundwater Modeling Summary

Tier 2 Domenico Groundwater Modeling Summary

		DOMENICO GRO	DUNDWATER MOD	DELING SUMMA	RY				
OFF-SITE GROUNDWATER EXPO	SURE PATHWAYS		(CHECKED IF PATH)	VAY IS ACTIVE)			31.75 tul		
SOILS LEACHING TO GROUNDWATER:									·
INGESTION	1) Source Medium	fium 2) Steady-state Exposure Concentration 3) POE Concentration Limit Groundwater: POE Conc. (mg/L) Groundwater: POE Conc. (mg/L)		4) Time to Reach POE Conc Conc. limit reached? ("" if yes);					
Constituents of Concern	Soil Conc. (mg/kg)	Off-site 1 (75 ft) MCL	Off-site 2 (110 ft) Residential	Off-site 1 (75 ft) MCL	Off-site 2 (110 ft) Residential	(Off-site 1 (75 ft) MCL	(ff-site 2 110 ft) sidential
BenzeneCA*	3.9E-1	1.3E-100	2.2E-106	1.0E-3	8.5E-4		NA		NA
Toluene	4.5E+0						NA	1	NA
Ethylbenzene	6.1E+0						NA		NA
Xylene (mixed isomers)	4.1E+1						NA]	NA
TPH - Aliph >C10-C12	1.7E+2			_			NA	L	NA
TPH - Arom >C10-C12	4.2E+2	1.0E-78	8.5E-84	NC	1.5E+0		NA		NA

NOTE: POE = Point of exposure

Tier 2 Domenico Groundwater Modeling Summary

Site Name: Kawahara Nurse	y Site Location: 16550 Ashland Avenue, San Lc Completed By: Mark Detterman	Date Completed: Sept. 2002	2 OF 2
	DOMENICO GROUNDWATER MODELING S	UMMARY	

OFF-SITE GROUNDWATER EXPOSURE PATHWAYS ■ (CHECKED IF PATHWAY IS ACTIVE) GROUNDWATER: 4) Time to Reach POE Conc. Limit INGESTION 1) Source Medium 2) Steady-state Exposure Concentration 3) POE Concentration Limit Groundwater: POE Conc. (mg/L) Groundwater: POE Conc. (mg/L) Conc reaches limit? ("■" If yes); Time (yr) Off-site 2 Off-site 1 Off-site 1 Off-site 2 Off-site 1 Off-site 2 Groundwater (75 ft) (110 ft) (75 ft) (110 ft) (75 ft) (110 ft) Constituents of Concern Conc. (mg/L) MCL Residential MCL Residential MCL Residential BenzeneCA* 5.3E-2 6.5E-27 1.1E-32 1.0E-3 8.5E-4 NA NA Toluene 2.5E-2 2.5E-102 2.5E-102 1.0E+0 7.3E+0 NA NA 5.1E-2 Ethylbenzene 5.2E-102 5.2E-102 7.0E-1 3.7E+0 NA NA Xylene (mixed isomers) 1.4E-86 6.0E-1 3.2E-71 1.0E+1 7.3E+1 NA NA TPH - Aliph >C10-C12 1.7E+0 1.7E-100 NA 1.7E-100 NC 3.7E+0 NA TPH - Arom >C10-C12 NC 5.5E+0 1.1E-21 8.9E-27 1.5E+0 NA NA

NOTE: POE ≃ Point of exposure

TIER 2 TRANSIENT DOMENICO ANALYSIS

Site Name: Kawahara Nursery

Completed By: Mark Detterman

1.0

92.5

Distance (ft)

Job ID: 94015

Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002

Time (yr)

1 of 6

Constiuent:

BenzeneCA*

Source Medium:

Affected Groundwater

Biodegredation:

1st Order

Concentration vs. Distance from Source

(for given time)

or given time	٥)											
Dista	ince (ft)	0	11	22	33	44	55	66	77	88	99	110
t = 1.0 yr	nc. J/L)	5.3E-2	0.0E+0									
Steady-state	ပိမ်	5.3E-2	5.4E-10	3.1E-14	1.3E-17	1.9E-20	5.9E-23	3.3E-25	2.8E-27	3.4E-29	5.5E-31	1.1E-32

Off-site1	Off-site2
MCL	None
75	NA
0.0E+0	NA
6.5E-27	NA
1 0F-3	NΔ

POE Concentration Limit (mg/L)

Concentration vs. Time

(for given distance from source)

			,									
•	Time (yr)	0	3	6	9	12	15	18	21	24	27	30
x = 92.5 ft] , 🕝	0.0E+0										
Off-site1 (75 ft)	J Š Ž	0.0E+0	3.6E-43									
Off-site2 (110 ft)	ر د د	0.0E+0										

Time	to	Rea	ach
Conc.	Li	mit	(yr)

Off-site1 NA Off-site2 NA

-D-x = 92.5 ft - Off-site1 (75 ft) - Off-site2 (110 ft) - - - T - - Off-site1 Conc.Limit - - + - - Off-site2 Conc.Limit

RBCA SITE ASSESSMENT TIER 2 TRANSIENT DOMENICO ANALYSIS Completed By: Mark Detterman Site Name: Kawahara Nursery Job ID: 94015 Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002 2 of 6 Constiuent: Toluene Source Medium: Affected Groundwater Biodegredation: 1st Order Concentration vs. Distance from Source Time (yr) 1.0 Off-site1 Off-site2 (for given time) MCL None Distance (ft) 0 11 22 33 44 55 66 77 88 99 110 75 NA Conc. (mg/L) 2.5E-2 0.0E+0 0.0E+0 0.0E+0 t = 1.0 yr0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 NA 2.5E-2 2.6E-74 1.5E-101 8.6E-102 5.3E-102 3.6E-102 2.5E-102 1.9E-102 1.5E-102 1.2E-102 9.4E-103 2.0E-102 Steady-state NA POE Concentration Limit (mg/L) 1.0E+0 NA 1.0E-2 - Steady-state 1.0E-4 E 1.0E-6 - t = 1.0 yr Conc. - - Off-site1 Conc.Limit 1.0E-8 - - + - - Off-site2 Conc.Limit 1.0E-10 1.0E-12 20 40 80 100 0 Distance60 Concentration vs. Time Distance (ft) 92.5 (for given distance from source) Time (yr) 0 9 12 15 18 21 24 27 30 Time to Reach 0.0E+0 Conc. Limit (yr) x = 92.5 ft0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 2.3E-111 2.3E-105 5.1E-103 1.3E-102 Off-site1 (75 ft) 0.0E+0 0.0E+0 0.0E+Q 0.0E+0 0.0E+0 0.0E+0 2.8E-113 7.3E-106 5.7E-103 1.9E-102 2.0E-102 Off-site1 NA 0.0E+0 Off-site2 (110 ft) 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 1.0E-118 | 1.9E-109 9.5E-105 5.2E-103 Off-site2 NA 2.0E-102 - x = 92.5 ft7.5E-102 W.0E-102 - Off-site1 (75 ft) - Off-site2 (110 ft) - - - - - Off-site1 Conc.Limit **Ŭ**5.0E-103 - - + - - Off-site2 Conc.Limit 0.0E+0 C 5 10 20 0 Time5(yr) 25 30

RBCA SITE ASSESSMENT TIER 2 TRANSIENT DOMENICO ANALYSIS Completed By: Mark Detterman Site Name: Kawahara Nursery Job ID: 94015 Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002 3 of 6 Constiuent: Ethylbenzene Source Medium: Affected Groundwater Biodegredation: 1st Order Concentration vs. Distance from Source Time (yr) 1.0 Off-site1 Off-site2 (for given time) MCL None Distance (ft) 11 22 0 33 44 55 66 77 88 99 110 75 NA Conc. (mg/L) 5.1E-2 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 t = 1.0 yr0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 NA 5.1E-2 5.9E-42 Steady-state 1.5E-59 3.6E-73 1.2E-84 9.8E-95 5.2E-102 3.9E-102 3.0E-102 2.4E-102 1.9E-102 4.1E-102 NA POE Concentration Limit (mg/L) 7.0E-1 NA 1.0E-2 - Steady-state (mg/L)1.0E-4 - t = 1.0 yr 1.0E-6 - - Off-site1 Conc.Limit 1.0E-8 1.0E-10 --- + -- Off-site2 Conc.Limit 1.0E-12 20 40 0 Distance60 80 100 Concentration vs. Time Distance (ft) 92.5 (for given distance from source) Time (yr) 0 3 6 9 12 15 18 21 24 27 30 Time to Reach Conc. Limit (yr) x = 92.5 ft0.0E+0 0.0E+0 Off-site1 (75 ft) 0.0E+0 0.0E+0 0.0E+00.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 Off-site1 0.0E+0 0.0E+0 NA Off-site2 (110 ft) 0.0E+0 Off-site2 NA 2.0E-102 -D- x = 92.5 ft 3.5E-102 E 1.0E-102 Off-site1 (75 ft) ◆── Off-site2 (110 ft) **હે**.0E-103 - - - Off-site1 Conc.Limit · · + · · Off-site2 Conc.Limit 0.0E+0 d 0 5 10 Time≊(yr) 20 25 30

RBCA SITE ASSESSMENT TIER 2 TRANSIENT DOMENICO ANALYSIS Completed By: Mark Detterman Job ID: 94015 Site Name: Kawahara Nursery Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002 4 of 6 Constiuent: Xylene (mixed isomers) Source Medium: Affected Groundwater **Blodegredation:** 1st Order Concentration vs. Distance from Source 1.0 Off-site 1 Off-site2 Time (yr) (for given time) MCL None Distance (ft) 33 55 66 77 88 99 110 75 NA 0 11 44 Conc. (mg/L) 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 6.0E-1 0.0E+0 0.0E+0 0.0E+0 0.0E+0 NA t = 1.0 yr3.5E-26 1.4E-46 4.1E-54 9.9E-61 1.1E-66 3.5E-72 2.8E-77 4.6E-82 1.4E-86 3.2E-71 NA 6.0E-1 1.1E-37 Steady-state POE Concentration Limit (mg/L) 1.0E+1 NA 1.0E+0 1.0E-2 - Steady-state 1.0E-4 ➡ t = 1.0 yr 1.0E-6 - ₩ · · Off-site1 Conc.Limit 1.0E-8 - - + - - Off-site2 Conc.Limit 1.0E-10 1.0E-12 0 20 40 Distance60 80 100 Concentration vs. Time 92.5 Distance (ft) (for given distance from source) 0 3 9 12 15 18 21 24 27 30 Time to Reach Time (yr) 6 0.0E+0 0.0E+0 Conc. Limit (yr) 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 x = 92.5 ft0.0E+0 0.0E+0 Off-site1 NA Off-site1 (75 ft) 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 Off-site2 (110 ft) 0.0E+0 0.0E+0 0.0E+0 0.0E+Q 0.0E+0 0.0E+0 Off-site2 NA 2.0E-102 x = 92.5 ft7.5E-102 E 7.0E-102 -Off-site1 (75 ft) -- Off-site2 (110 ft) - - Off-site1 Conc.Limit \$.0E-103 - - - Off-site2 Conc.Limit 0.0E+0 **Ö** 5 10 Times(yr) 20 25 30 0

RBCA SITE ASSESSMENT TIER 2 TRANSIENT DOMENICO ANALYSIS Completed By: Mark Detterman Site Name: Kawahara Nursery Job ID: 94015 Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002 5 of 6 Constiuent: TPH - Aliph >C10-C12 Source Medium: Affected Groundwater Biodegredation: 1st Order Concentration vs. Distance from Source 1.0 Off-site1 Off-site2 Time (yr) MCL (for given time) None Distance (ft) 55 66 77 88 99 110 75 NA Ó 11 22 33 44 Conc. (mg/L) 0.0E+0 0.0E+0 0.0E+0 0.0E+0 1.7E+0 0.0E+00.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 NA t = 1.0 yr5.8E-100 1.3E-100 Steady-state 1.7E+0 4.4E-85 1.0E-99 3.6E-100 2.4E-100 1.7E-100 1.3E-100 9.8E-101 7.8E-101 6.3E-101 NA noMCL NA POE Concentration Limit (mg/L) 1.0E+0 - Steady-state 1.0E-2 1.0E-4 - t = 1.0 yr 1.0E-6 - - - - - - Off-site1 Conc.Limit 1.0E-8 --- -- Off-site2 Conc.Limit 1.0E-10 1.0E-12 20 40 Distance60 80 100 0 Concentration vs. Time Distance (ft) 92.5 (for given distance from source) Time (yr) 0 3 6 9 12 15 18 21 24 27 30 Time to Reach Conc. Limit (yr) 0.0E+0 $x = 92.5 \, ft$ Off-site1 Off-site1 (75 ft) 0.0E+0 NA 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 Off-site2 Off-site2 (110 ft) 0.0E+0 0.0E+0 NA 2.0E-102 x = 92.5 ft 7.5E-102 E .0E-102 - Off-site1 (75 ft) - Off-site2 (110 ft) - M - - Off-site1 Conc.Limit &.0E-103 - - - Off-site2 Conc.Limit 0.0E+0 t 0 5 10 Times(yr) 20 25 30

RBCA SITE ASSESSMENT TIER 2 TRANSIENT DOMENICO ANALYSIS Completed By: Mark Detterman Site Name: Kawahara Nursery Job ID: 94015 Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002 6 of 6 TPH - Arom >C10-C12 Constinent: Source Medium: Affected Groundwater Biodegredation: 1st Order Concentration vs. Distance from Source Time (yr) 1.0 Off-site1 Off-site2 (for given time) MCL None Distance (ft) 0 11 22 33 44 55 66 77 88 99 110 75 NA Conc. (mg/L) 5.5E+0 0.0E+0 t = 1.0 yr0.0E+0 NA Steady-state 5.5E+0 8.9E-7 1.7E-10 1.8E-13 5.5E-16 3.4E-18 3.5E-20 5.2E-22 1.1E-23 2.8E-25 8.9E-27 1.1E-21 NA POE Concentration Limit (mg/L) noMCL NA 1.0E+0 1.0E-2 - Steady-state 1.0E-4 --- t ≃ 1.0 yr 1.0E-6 - - - - - - - Off-site1 Conc.Limit 1.0E-8 · · + · · Off-site2 Conc.Limit 1.0E-10 1.0E-12 0 20 40 Distance60 80 100 Concentration vs. Time Distance (ft) 92.5 (for given distance from source) Time (yr) 3 9 12 15 18 21 24 27 Time to Reach Conc. Limit (yr) $x = 92.5 \, ft$ 0.0E+0 Off-site1 (75 ft) 0.0E+0 0.0E+0Off-site1 NA Off-site2 (110 ft) 0.0E+0 Off-site2 NA 2.0E-102 x = 92.5 ft 3.5E-102 .0E-102 Off-site1 (75 ft) Off-site2 (110 ft) - - - - W - - Off-site1 Conc.Limit &.0E-103 - - + - - Off-site2 Conc.Limit 0.0E+0 🛱 0 5 10 Time5(yr) 20 25 30

RBCA SITE ASSESSMENT TIER 2 TRANSIENT DOMENICO ANALYSIS Completed By: Mark Detterman Job ID: 94015 Site Name: Kawahara Nursery Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002 1 of 6 Constiuent: BenzeneCA* Source Medium: Affected Soils Leaching to Groundwater Biodegredation: 1st Order Concentration vs. Distance from Source 1.0 Time (yr) Off-site1 Off-site2 (for given time) MCL None Distance (ft) 0 11 33 44 55 66 77 88 99 110 75 NA 0.0E+0 1.0E-75 0.0E+0 NA t = 1.0 yr1.0E-75 1.0E-83 6.0E-88 2.6E-91 3.7E-94 1.1E-96 6.4E-99 5.5E-101 | 6.7E-103 | 1.1E-104 | 2.2E-106 1.3E-100 NA Steady-state POE Concentration Limit (mg/L) 1.0E-3 NA 1.0E-74 20 40 60 80 100 1.0E-78 Steady-state 1.0E-82 1.0E-86 1.0E-90 - t = 1.0 yr 1.0E-90 - - Off-site1 Conc.Limit 1.0E-94 - -th - - Off-site2 Conc.Limit 1.0E-98 1.0E-102 1.0E-106 Distance Concentration vs. Time 92.5 Distance (ft) (for given distance from source) 0 3 6 9 12 15 18 21 24 27 30 Time to Reach Time (yr) 0.0E+0 0.0E+0 Conc. Limit (yr) 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 $x = 92.5 \, ft$ 0.0E+0 7.1E-117 Off-site1 NA Off-site1 (75 ft) 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 Off-site2 Off-site2 (110 ft) 0.0E+0 0.0E+0 NA 8.0E-117 7.0E-117 x = 92.5 ft6.0E-117 ₹.0E-117 Off-site1 (75 ft) 톡.0E-117 - Off-site2 (110 ft) \$.0E-117 - - - - Off-site1 Conc.Limit **Ý**2.0E-117 - - + · · Off-site2 Conc.Limit 1.0E-117 0.0E+0 🗖 0 5 10 Time5(yr) 20 25 30

RBCA SITE ASSESSMENT TIER 2 TRANSIENT DOMENICO ANALYSIS Completed By: Mark Detterman Job ID: 94015 Site Name: Kawahara Nursery Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002 2 of 6 Toluene Constiuent: Source Medium: Affected Soils Leaching to Groundwater **Biodegredation:** 1st Order Concentration vs. Distance from Source Time (yr) 1.0 Off-site2 Off-site 1 (for given time) MCL None Distance (ft) 0 11 22 33 44 55 66 77 88 99 110 75 NA Conc. (mg/L) 0.0E+0 NA t = 1.0 yr0.0E+0 0.0E+0 NA Steady-state POE Concentration Limit (mg/L) 1.0E+0 NA 1.0E+12 1.0E+9 Steady-state 1.0E+6 1.0E+3 1.0E+0 - t = 1.0 yr 1.0E-3 1.0E-6 · · · * · · · Off-site1 Conc.Limit - - - Off-site2 Conc.Limit 1.0E-9 1.0E-12 0 20 40 Distance60 80 100 Concentration vs. Time Distance (ft) 92.5 (for given distance from source) Time (yr) Ö 3 6 9 12 15 18 21 24 27 30 Time to Reach Conc. Limit (yr) 0.0E+0 x = 92.5 ft0.0E+0 0.0E+0 Off-site1 NA Off-site1 (75 ft) 0.0E+0 Off-site2 Off-site2 (110 ft) 0.QE+0 NA 2.0E-102 x = 92.5 ft**☆**.5E-102 - Off-site1 (75 ft) .0E-102 ◆---- Off-site2 (110 ft) - - - - - Off-site1 Conc.Limit 45.0E-103 - - - Off-site2 Conc.Limit 0.0E+0 **6** 5 Time5(yr) 25 0 10 20 30

RBCA SITE ASSESSMENT TIER 2 TRANSIENT DOMENICO ANALYSIS Completed By: Mark Detterman Job ID: 94015 Site Name: Kawahara Nursery Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002 3 of 6 Constiuent: Ethylbenzene Affected Soils Leaching to Groundwater Source Medium: Biodegredation: 1st Order Concentration vs. Distance from Source 1.0 Off-site1 Off-site2 Time (yr) (for given time) MCL None 55 66 77 88 99 75 NA Distance (ft) 0 11 22 33 44 110 Conc. (mg/L) 0.0E+0 NA t = 1.0 yr0.0E+0 0.0E+0 Steady-state 0.0E+0 0.0E+0 0.0E+00.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 NA POE Concentration Limit (mg/L) 7.0E-1 NA 1.0E+12 1.0E+9 -Steady-state ~1.0E+6 1.0E+3 1.0E+0 t = 1.0 yr 1.0E-3 - - - - - - Off-site1 Conc.Limit ٥ 1.0E-6 - - - Off-site2 Conc.Limit 1.0E-9 1.0E-12 80 0 20 40 Distance60 100 Concentration vs. Time Distance (ft) 92.5 (for given distance from source) Time (yr) 3 6 9 12 15 18 21 24 27 30 Time to Reach Conc. Limit (yr) 0.0E+0 x = 92.5 ftOff-site1 Off-site1 (75 ft) 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+Q 0.0E+0 0.0E+0 0.0E+0 NA 0.0E+0 Off-site2 Off-site2 (110 ft) 0.0E+0 NA 2.0E-102 x = 92.5 ft5.5E-102 E 0F-102 Off-site1 (75 ft) .0E-102 -- Off-site2 (110 ft) - - - - Off-site1 Conc.Limit \$.0E-103 - - + - - Off-site2 Conc.Limit 0.0E+0 ¢ 0 5 10 Time5(yr) 20 25 30

RBCA SITE ASSESSMENT TIER 2 TRANSIENT DOMENICO ANALYSIS Completed By: Mark Detterman Job ID: 94015 Site Name: Kawahara Nursery Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002 4 of 6 Constiuent: Xylene (mixed isomers) Source Medium: Affected Soils Leaching to Groundwater Biodegredation: 1st Order Concentration vs. Distance from Source Time (vr) 1.0 Off-site1 Off-site2 MCL (for given time) None 66 77 88 99 110 75 NA Distance (ft) 0 11 33 44 55 0.0E+0 NA t = 1.0 yr0.0E+0 0.0E+0 0.0E+0 Steady-state 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 NA POE Concentration Limit (mg/L) NA 1.0E+1 1.0E+12 1.0E+9 - Steady-state ~1.0E+6 1.0E+3 1.0E+0 t = 1.0 yr 1.0E-3 - - - ** - · Off-site1 Conc.Limit ပိ _{1.0E-6} - - - Off-site2 Conc.Limit 1.0E-9 1.0E-12 0 20 40 Distance60 80 100 Concentration vs. Time Distance (ft) 92.5 (for given distance from source) Time (yr) 3 6 9 12 15 18 21 24 27 30 Time to Reach Conc. Limit (yr) 0.0E+0 $x = 92.5 \, ft$ 0.0E+0 0.0E+0 0.0E+0 Off-site1 NA Off-site1 (75 ft) 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+00.0E + 00.0E+0 0.0E+0 0.0E+0 0.0E+Q 0.0E+0 0.QE+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 Off-site2 NA Off-site2 (110 ft) 2.0E-102 x = 92.5 ft7.5E-102 F.0E-102 Off-site1 (75 ft) -Off-site2 (110 ft) - W - - Off-site1 Conc.Limit &.0E-103 - - + - - Off-site2 Conc.Limit 0.0E+0 & 0 5 10 Time5(yr) 20 25 30

RBCA SITE ASSESSMENT TIER 2 TRANSIENT DOMENICO ANALYSIS Completed By: Mark Detterman Site Name: Kawahara Nursery Job ID: 94015 Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002 5 of 6 TPH - Aliph >C10-C12 Constinent: Source Medium: Affected Soils Leaching to Groundwater Biodegredation: 1st Order Concentration vs. Distance from Source 1.0 Off-site2 Time (yr) Off-site1 (for given time) MCL None Distance (ft) 0 11 22 33 44 55 66 77 88 99 110 75 NA Conc. (mg/L) 0.0E+0 NA t = 1.0 yr0.0E+0 0.0E+0 NA Steady-state POE Concentration Limit (mg/L) noMCL NA 1.0E+105 1.0E+92 1.0E+79 1.0E+66 E1.0E+53 -Steady-state - t = 1.0 yr1.0E+40 ن - - Off-site1 Conc.Limit 51.0E+27 1.0E+14 - - -+ - - Off-site2 Conc.Limit 1.0E+1 1.0E-12 20 40 Distance60 80 100 0 Concentration vs. Time 92.5 Distance (ft) (for given distance from source) Time (yr) 0 3 6 9 12 15 18 21 24 27 30 Time to Reach 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 Conc. Limit (yr) $x = 92.5 \, ft$ 0.0E+0 Off-site1 NΑ Off-site1 (75 ft) 0.0E + 00.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 Off-site2 Off-site2 (110 ft) NA 2.0E-102 - x = 92.5 ft1.5E-102 E 1.0E-102 Off-site1 (75 ft) .0E-102 ◆ Off-site2 (110 ft) - - - - M - - Off-site1 Conc.Limit **℃**5.0E-103 - - + - - Off-site2 Conc.Limit 0.0E+0 0 Times(yr) 5 10 20 25 0 30

RBCA SITE ASSESSMENT TIER 2 TRANSIENT DOMENICO ANALYSIS Completed By: Mark Detterman Site Name: Kawahara Nursery Job ID: 94015 Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002 6 of 6 TPH - Arom >C10-C12 Constinent: Source Medium: Affected Soils Leaching to Groundwater Biodegredation: 1st Order Concentration vs. Distance from Source Time (yr) 1.0 Off-site1 Off-site2 (for given time) MCL None Distance (ft) Ü 11 22 33 44 66 110 75 NA 55 77 88 99 Conc. (mg/L) 5.2E-57 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 t = 1.0 yr0.0E+0 0.0E+0 NA 5.2E-57 8.5E-64 1.6E-67 5.2E-73 3.2E-75 3.3E-77 5.0E-79 1.0E-80 2.6E-82 8.5E-84 1.0E-78 NA Steady-state 1.7E-70 POE Concentration Limit (mg/L) noMCL NA 1.0E-56 40 60 80 20 100 1.0E-60 --- Steady-state **_**1.0E-64 t = 1.0 yr 1.0E-68 - * · · · · · · · · · · Off-site1 Conc.Limit ⊈ 1.0E-72 5 1.0E-76 - - - Off-site2 Conc.Limit 1.0E-80 1.0E-84 Distance Concentration vs. Time 92.5 Distance (ft) (for given distance from source) 0 9 12 15 18 Time (yr) 3 6 21 24 27 30 Time to Reach Conc. Limit (yr) x = 92.5 ft0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.QE+0 Off-site1 0.0E+0 Off-site1 (75 ft) 0.0E+0 NA Off-site2 (110 ft) 0.0E+0 Off-site2 NA 2.0E-102 —□— x = 92.5 ft 7.5E-102 E .0E-102 Off-site1 (75 ft) Off-site2 (110 ft) - - - - Off-site1 Conc.Limit **ऍ**5.0E-103 - - # - - Off-site2 Conc.Limit 0.0E+0 **a** 5 0 10 Time5(yr) 20 25 30

Appendix H

Printouts: Soil SSTL Values, Groundwater SSTL Values, Calculation of SSTL Values for TPH, Chemical-Specific Tier 2 Cleanup Summary (5 chemicals)

						RBCA SITE	ASSESSME	NT							
Site Name: Ka	awahara Nursery		Completed By: I	Mark Detterman			Job ID: 94	1015							
Site Location:	16550 Ashland Avenue, San Lorer	zo, CA	Date Completed	l: Sept. 2002											1 OF 1
			Targe	t Flisk (Class A & B)	1.0E-6										
SOIL (5	- 16 ft) SSTL VALUES		T:	Targel Risk (Class C) 1.0E-5									Domenico - Fi	rst Order	
			Tarş	gel Hazard Quolient	1.0E+0								(One-direction	alvert dispersi	on)
					,	SSTL Results Fo	or Complete Expo	sure Pathways (*)	X* If Complete)						
			X So	il Leaching to Gro Ingestion	undwater	X Soil Vol. to Indoor Air	х		ration and Surface ates to Outdoor Ai			Soil Inhalation. Dermal Contact	Applicable	SSTL	Required CRF
CONSTITUENTS OF CONCERN		Representative Concentration	On-site (0 ft)	Off-site 1 (75 ft)	Off-site 2 (110 ft)	On-site (0 ft)	On-si	le (0 ft)	Off-site 1 (110 ft)	Off-site 2 (0 ft)	On-sit	te (0 ft)	SSTL	Exceeded ?	Only it "yes"
CAS No.	Name	(mg/kg)	None	MCL	Residential	Residential	Residential	Construction Worker	Residential	None	Residential	Construction Worker	(mg/kg)	°∎" if yes	left
71-43-2	BenzeneCA*	3.9E-1	NA	>3.7E+3	>3.7E+3	1.4E-1	2.9€+0	NA	2.2E+2	NA	1.1E+0	7.6E+1	1.4E-1	•	2.8E+0
108-88-3	Toluene	4.5E+0	NA	>2.4E+3	>2.4E+3	4.0E+2	>2.4E+3	NA	>2.4E+3	NA	2.3E+3	5.5E+3	4.0E+2		<1
100-41-4	Ethylbenzene	6.1E+0	NA	>2.1E+3	>2.1E+3	>2.1E+3	>2.1E+3	NA	>2.1E+3	NA	2.1E+3	3.3E+3	2.1E+3		<1
1330-20-7	Xylene (mixed isomers)	4,1E+1	NA	>1.6E+3	>1.6E+3	>1.6E+3	>1.6E+3	NA	>1.6E+3	NA	3.4E+4	6.3E+4	3.4E+4		<1
0-00-0	TPH - Aliph >C10-C12	1.7€+2	NA	noMCL	>2.8E+2	>2.8E+2	>2.8E+2	NA	>2.8E+2	NA	2.2E+3	3.4E+3	2.2E+3		<1

[&]quot;>" indicates risk-based target concentration greater than constituent residual saturation value. NA = Not applicable. NC = Not calculated.

				P	BCA SITE A	SSESSMENT						
Site Name: Ka	wahara Nursery		Completed By:	Mark Detterman			Job ID: 940)15		•		
Site Location:	16550 Ashland Avenue, San Lorenzo), CA	Date Complete	d: Sept. 2002								1 OF 1
GROUNDWATER SSTL VALUES Target Risk (Class A & B) 1.0E-6 Target Hazard Quotient 1.0E+0 Target Hazard Quotient 1.0E+0			1.0E-5				Ground	water DAF Option:		st Order Il vert. dispersion)		
•				SST	L Results For C	omplete Exposure Pa	athways ("X" if Cor	nplete)				
			х	Groundwater Ing	estion	X GW Vol. to Indoor Air	X G	roundwater Volati to Outdoor Ai	-	Applicable	SSTL	Required CRF
CONSTITUEN	TS OF CONCERN	Representative Concentration	On-site (0 ft)	Off-site 1 (75 ft)	Off-site 2 (110 ft)	On-site (0 ft)	On-site (0 ft)	Off-site 1 (110 ft)	Off-site 2 (0 ft)	SSTL	Exceeded?	Only if "yes"
CAS No.	Name	(mg/L)	None	MCL	Residential	Residential	Residential	Residential	None	(mg/L)	"■" if yes	left
71-43-2	BenzeneCA*	5.3E-2	NA	>1.8E+3	>1.8E+3	1.8E-1	6.2E+2	>1.8E+3	NA	1.8E-1		<1
108-88-3	Toluene	2.5E-2	NA	>5.2E+2	>5.2E+2	2.4E+2	>5.2E+2	>5.2E+2	NA	2.4E+2		<1
100-41-4	Ethylbenzene	5.1E-2	NA	>1.7E+2	>1.7E+2	>1.7E+2	>1.7E+2	>1.7E+2	NA	>1.7E+2		NA
1330-20-7	Xylene (mixed isomers)	6.0E-1	NA	>2.0E+2	>2.0E+2	>2.0E+2	>2.0E+2	>2.0E+2	NA	>2.0E+2		NA
0-00-0	TPH - Aliph >C10-C12	1.7E+0	NA	noMCL	>3.4E-2	>3.4E-2	>3.4E-2	>3.4E-2	NA	>3.4E-2		NA
0-00-0	TPH - Arom >C10-C12	5.5E+0	NA	noMCL	>2.5E+1	>2.5E+1	>2.5E+1	>2.5E+1	NA	>2.5E+1		NA NA
= Chemical v	vith user-specified data	•					-			-		'

[&]quot;>" indicates risk-based target concentration greater than constituent solubility value. NA = Not applicable.

NC = Not calculated.

RBCA SITE ASSESSMENT

TPH Criteria SSTL Worksheet

Site Name: Kawahara Nursery

Completed By: Mark Detterman

Job ID: 94015

Site Location: 16550 Ashland Avenue, San Lorenzo, CA

Date Completed: Sept. 2002

1 OF 1

CALCULATION OF SSTL VALUES FOR TPH

		Ma	ss Fractions	Representative	e Concentrations	Calculated Conce	entration Limits	Appilcable	SSTL Values
						Residual Soil		Solls	
CONSTITUE	ENTS OF CONCERN	Soll	Groundwater	Soli	Groundwater	Concentration	Solubility	(5 - 16 ft)	Groundwater
CAS No.	Name	(-)	(·)	(mg/kg)	(mg/L)	(mg/kg)	(mg/L)	(mg/kg)	(mg/L)
0-00-0	TPH - Aliph >C10-C12	2.8E-1	2.3E-1	1.7E+2	1.7E+0	2.8E+2	3.4E-2	2.2E+3	>3.4E-2
0-00-0	TPH - Arom >C10-C12	7.2E-1	7.7E-1	4.2E+2	5.5E+0	2.1E+3	2.5E+1	9.2E+2	>2.5E+1
= Chemica	I with user-specified data								
		Total 1 0E+0	1.0E+0	5.8F±2	7.2F±0	Total 1	FPH SSTL value	1.1F+3	>Sol

[&]quot;>" indicates risk-based target concentration greater than constituent residual saturation value.

NC = Not calculated.

Chemical-Specific Tier 2 Cleanup Summary

Site Name: Kawahara Nursery

Completed By: Mark Detterman

Site Location: 16550 Ashland Avenue, San Lorenzo, CA

Date Completed: Sept. 2002

Job ID: 94015

1 of 7

Constituent: Ber	zeneCA*
------------------	---------

(CAS	No.:	71-43-2

Site-Specific Target Level (SSTL) Concentrations			
	On-site	Off-site1	Off-site

	Site-Specific	c Target Level (SS	STL) Concentratio	ns
		On-site	Off-site1	Off-site2
Groundwate	er Ingestion			
Recepto	r Type / Distance (ft)	None	MCL / 75	Residential / 110
SSTL	THQ = 1e+0	NA	>1.8E+3	>1.8E+3
(mg/L)	TR = 1e-6	NA	>1.8E+3	>1.8E+3
Soil Leachi	ng to Groundwater In	ngestion	m ym ei ar ar dai'r ai'r ai'r ai'r ai'r ai'r ar y dai'r ai'r ar y dai'r ar y dai'r ar y dai'r ar y dai'r ar y	
Recepto	or Type / Distance (ft)	None	MCL / 75	Residential / 110
SSTL,	THQ = 1e+0	NA	>3.7E+3	NC
(mg/kg)	TR = 1e-6	NA	>3.7E+3	NC
Surface Soi	i inhalation, ingestic	n,Dermal Contact	agravia i i i	
Recepto	or Type / Distance (ft)	Res./Constr. / 0	No Off-site	Receptors
SSTLss	THQ = 1e+0	3.3E+1		
(mg/kg)	TR = 1e-6	1.1E+0		
Outdoor Air	Inhalation			
Recepto	or Type / Distance (ft)	Residential / 0	Residential / 110	None
RBELair	THQ = 1e+0	6.2E+0	6.2E+0	NA
(µg/m³)	TR = 1e-6	2.9E-1	2.9E-1	NA NA
Soil Volatili	zation/Particulates to	o Outdoor Air Inhala	tion	1 2. 24 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Recepto	or Type / Distance (ft)	Residential / 0	Residential / 110	None
SSTL	THQ = 1e+0	6.1E+1	>3.7E+3	NA
(mg/kg)	TR = 1e-6	2.9E+0	2.2E+2	NA
Groundwate	er Volatilization to O	utdoor Air Inhalatio	n	
Recepto	or Type / Distance (ft)	Residential / 0	Residential / 110	None
SSTLow	THQ = 1e+0	>1.8E+3	>1.8E+3	NA
(mg/L)	TR = 1e-6	6.2E+2	>1.8E+3	NA
Indoor Air II	nhalation			. 277 27:
Recepto	or Type / Distance (ft)	Residential / 0	No Off-site	Receptors
RBELair	THQ = 1e+0	6.2E+0		
(µg/m³)	TR = 1e-6	2.9E-1		
Soil Volatili	zation to Indoor Air l	Inhalation		71 - 72 - 73 - 73 - 73 - 73 - 73 - 73 - 73
Recepto	r Type / Distance (ft)	Residential / 0	No Off-site	Receptors
SSTL,	THQ = 1e+0	3.0E+0		
(mg/kg)	TR = 1e-6	1.4E-1		
Groundwate	er Volatilization to In	door Air Inhalation	W	1.46
Recepto	or Type / Distance (ft)	Residential / 0	No Off-site	Receptors
SSTL _{gw}	THQ = 1e+0	3.9E+0		

Units	Residentiai	Commercial	Construction		
Cross-Media Transfer Factors					
(kg-soil/m3-air)	1.0E-4	NA	NA		
(kg-soil/m3-air)	4.4E-5	NA	NA		
(m3-wat/m3-air)	4.7E-7	NA	NA		
(kg-soil/m3-air)	2.1E-3	NA	NA		
(m3-wat/m3-air)	1.6E-3	NA	NA		
(kg-soil/L-wat)	All exposur	es: 2.6E-75	NA		
	(kg-soil/m3-air) (kg-soil/m3-air) (m3-wat/m3-air) (kg-soil/m3-air) (m3-wat/m3-air)	(kg-soil/m3-air) 1.0E-4 (kg-soil/m3-air) 4.4E-5 (m3-wat/m3-air) 4.7E-7 (kg-soil/m3-air) 2.1E-3 (m3-wat/m3-air) 1.6E-3	(kg-soil/m3-air) 1.0E-4 NA (kg-soil/m3-air) 4.4E-5 NA (m3-wat/m3-air) 4.7E-7 NA (kg-soil/m3-air) 2.1E-3 NA (m3-wat/rn3-air) 1.6E-3 NA		

1.8E-1

	Units	On-Site	Off-Site1	Off-Site2
Lateral Transpo	ort Factors			
DAFgw	(-)	NA	8.1E+24	4.7E+30
DAFs/gw	(-)	NA	8.1E+24	4.7E+30

Chemical Parameters

	Units	Value	Reference
Physical Pr	operties		
MW	(g/mol)	7.8E+1	P\$
Sol	(mg/L)	1.8E+3	PS
P _{vap}	(mmHg)	9.5E+1	PS
H _{atm}	(atm-m³/mol)	5.6E-3	PS
pK _a	(log[mol/mol])		-
pK _b	(log{mol/mol])	-	-
log(K₀₀)	(log[L/kg])	1.8E+0	PS
D _{air}	(cm²/sec)	8.8E-2	PS
D _{wal}	(cm²/sec)	9.8E-6	PS
Toxicity Da	ta		
Wt of Evd.		A	
SF _o	(1/[mg/kg/day])	1.0E-1	PS
SF₀	(1/[mg/kg/day])	3.0E-2	TX
URF;	(1/[<i>µ</i> g/m³])	8.3E-6	PS
RfD _o	(mg/kg/day)	3.0E-3	R
RfD₀	(mg/kg/day)	•	•
RfC _i	(mg/m³)	6.0E-3	R
Dermal Exp	osure Parameters	Market 1	
RAF _d	(mg/mg)	5.0E-1	D
K _ρ	(cm/hr)	2.1E-2	
tau _d	(hr/event)	2.6E-1	
t _{orit}	(hr)	6.3E-1	
В	(-)	1.3E-2	
Regulatory	Standards		
MCL	(mg/L)	1.0E-3	*
TWA	(mg/m ^s)	3.3E+0	-
AQL	(mg/L)	-	-
	us Parameters	t to the second	
ADL _{g₩}	(mg/L)	1.0E-3	S
ADL_{s}	(mg/kg)	5.0E-3	\$
t _{1/2,sal}	(d)	7.2E+2	н
t _{1/2,unsat}	(d)	7.2E+2	Н

^{*} MCL ref = -

Units Value

Derived P.	arameters	
Н	(L-wat/L-air)	2.3E-1
K _{sw}	(L-wat/kg-soil)	4.7E-1
C _{sat}	(mg/kg-soil)	3.7E+3
C _{sat,vap}	(µg/m³-air)	4.0E+8
$D_{\rm eff,s}$	(cm²/sec)	9.3 E -5
$D_{\rm eff,crk}$	(cm²/sec)	6.9€-3
D _{eff,cap}	(cm²/sec)	2.0E-5
D _{eff,ws}	(cm²/sec)	7.5E-5
R _{sat}	(-)	1.1E+1
R _{unsat}	(-)	1.2E+1
Z	(cm/event)	7.3E-2

(mg/L)

TR = 1e-6

Notes: 1) NA = Not applicable; NC = Not calculated.

²⁾ Definitions and references presented on page 7 of 7.

Chemical-Specific Tier 2 Cleanup Summary

Site Name: Kawahara Nursery

(mg/L)

(µg/m³)

Indoor Air Inhalation

TR = 1e-6

Receptor Type / Distance (ft)

TR = 1e-6

THQ = 1e+0

Soil Volatilization to Indoor Air Inhalation Receptor Type / Distance (ft)

Completed By: Mark Detterman

Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002 Job ID: 94015

2 of 7

Reference

NÇ

NΑ

No Off-site Receptors

No Off-site Receptors

Constituer	nt: Toluene	CAS No.: 108-88-3			
	Site-Specific	Target Level (S	STL) Concentration	ns	
		On-site	Off-site1	Off-site2	
Groundwate	er Ingestion		italia de la companya della companya de la companya de la companya della companya		
Recepto	or Type / Distance (ft)	None	MCL / 75	Residential / 110	
SSTL _{gw}	THQ = 1e+0	NA	NC	NC	
(mg/L)	TR = 1e-6	NA	NC	NC	
Soil Leachir	ng to Groundwater li	ngestion			
Recepto	or Type / Distance (ft)	None	MCL / 75	Residential / 110	
SSTL。	THQ = 1e+0	NA	NC	NC	
(mg/kg)	TR = 1e-6	NA	NC	NC	
Surface Sol	i inhalation, Ingestic	n,Dermal Contact			
Recepto	r Type / Distance (ft)	Res./Constr. / 0	No Off-site Receptors		
\$STL _{ss}	THQ = 1e+0	2.3E+3			
(mg/kg)	TR = 1e-6	NC			
Outdoor Air	Inhalation	7.7	· .		
Recepto	r Type / Distance (ft)	Residential / 0	Residential / 110	None	
RBEL _{air}	THQ = 1e+0	4.2E+2	4.2E+2	NA	
(µg/m³)	TR = 1e-6	NC	NC	NA	
Soli Volatili	zation/Particulates to	Outdoor Air Inhai	ation		
Recepto	r Type / Distance (ft)	Residential / 0	Residential / 110	None	
SSTL₅	THQ = 1e+0	>2.4E+3	>2.4E+3	NA	
(mg/kg)	TR = 1e-6	NC	NC	NA	
Groundwate	er Volatilization to O	utdoor Air Inhalatic	ín.		
Recepto	r Type / Distance (ft)	Residential / 0	Residential / 110	None	
SSTL	THQ = 1e+0	>5.2E+2	>5.2E+2	NA	

SSTLs	THQ = 1e+0	4.0E+2			
(mg/kg)	TR ≃ 1e-6	NC			
Groundwat	Groundwater Volatilization to Indoor Air inhalation				
Recepto	or Type / Distance (ft)	Residential / 0	No Off-site Receptors		
SSTL ₉	THQ = 1e+0	2.4E+2			
(mg/L)	TR = 1e-6	NC	i		

NC

Residential / 0

4.2E+2

NC

Residential / 0

	Units	Residential	Commercial	Construction
Cross-Med	lia Transfer Factors			
VF _{ss}	(kg-soil/m3-air)	7.2E-5	NA	NA
VF _{samb}	(kg-soil/m3-air)	2.2E-5	NA	NA
VF _{wamb}	(m3-wat/m3-air)	5.1E-7	NA	NA
VF _{sesp}	(kg-soil/m3-air)	1.0E-3	NA	NA
VF _{wesp}	(m3-wat/m3-air)	1.7E-3	NA	NA
LF	(kg-soil/L-wat)	N	С	NA

	Units	On-Site	Off-Site1	Off-Site2
Lateral Transpo	ort Factors			. }
DAFgw	(-)	NA	1.0E+100	1.0E+100
DAFs/gw	(-)	NA	1.0E+100	1.0E+100
				<u> </u>

Chemical Parameters Units Value

Physical Pi	operties		
MW	(g/mol)	9.2E+1	5
Sol	(mg/L)	5.2E+2	29
P _{vap}	(mmHg)	3.0E+1	4
H _{alm}	(atm-m ³ /mol)	6.3E-3	Α
рК _а	(log[mol/mol])		•
pK₀	(log[mol/mol])	-	-
log(K₀c)	(log[L/kǧ])	2.1E+0	Α
\mathbf{D}_{air}	(cm²/sec)	8.5E-2	Α
D _{wat}	(cm²/sec)	9.4E-6	Α
Toxicity Da	ta .	Marian Company	
Wt of Evd.		D	
SF _o	(1/[mg/kg/day])	-	-
SF_d	(1/[mg/kg/day])	-	•
URF;	(1/[µg/m³])	-	-
RfD _a	(mg/kg/day)	2.0E-1	A,R
RfD_d	(mg/kg/day)	1.6E-1	TX
RfC _i	(mg/m³)	4.0E-1	A,R
Dermal Exp	osure Parameters		
RAF_d	(mg/mg)	5.0 E -1	D
K _ρ	(cm/hr)	4.5E-2	
tau _d	(hr/event)	3.2E-1	
t _{erit}	(hr)	7.7E-1	
В	(-)	5.4E-2	
Regulatory	Standards		
MCL	(mg/L)	1.0E+0	*
TWA	(mg/m³)	1.5E+2	ACGIH
AQL	(mg/L)	-	-
Miscellane	ous Parameters		
ADL _{gw}	(mg/L)	2.0E-3	S
ADL _s	(mg/kg)	5.0E-3	s
t _{1/2,sat}	(d)	2.8E+1	Н
t _{1/2,unsal}	(d)	2.8E+1	. H
* MCL rof - I	56 FR 3526 (30 Jan	011	

MCL ref = 56 FR 3526 (30 Jan 91)

Units Value

Derived P	arameters	
Н	(L-wat/L-air)	2.6E-1
K _{sw}	(L-wat/kg-soil)	2.2E-1
C _{sat}	(mg/kg-soil)	2.4E+3
C _{sat,vep}	(µg/m³-air)	1.5E+8
$D_{eff,s}$	(cm²/sec)	8.9E-5
D _{eff,crk}	(cm²/sec)	6.6E-3
D _{eff,cap}	(cm²/sec)	1.8E-5
D _{ell,ws}	(cm²/sec)	7.1E-5
R _{sat}	(-)	2.4E+1
R _{unsat}	(-)	2.5E+1
Z	(cm/event)	1.6E-1
		•

Notes: 1) NA = Not applicable; NC = Not calculated.

²⁾ Definitions and references presented on page 7 of 7.

Off-site2

RBCA SITE ASSESSMENT

Chemical-Specific Tier 2 Cleanup Summary

Site Name: Kawahara Nursery

Completed By: Mark Detterman

Site Location: 16550 Ashland Avenue, San Lorenzo, CA

Date Completed: Sept. 2002

Job ID: 94015

3 of 7

Constituent: Ethylbenzene CAS No.: 100-41-4

Site-Specific Target Leve	(SSTL) Concentrations
On-site	Off-site1

Groundwa	ter Ingestion			A Paragraphy
Recept	tor Type / Distance (ft)	None	MCL / 75	Residential / 110
SSTLgw	THQ = 1e+0	NA	>1.7E+2	NC
(mg/L)	TR = 1e-6	NA	NC	NC
Soil Leach	ing to Groundwater Inge	stion		r de mercario, directorio de la constanti. La constanti productione i
Recept	tor Type / Distance (ft)	None	MCL / 75	Residential / 110
SSTLs	THQ = 1e+0	NA	NC	NC
(mg/kg)	TR = 1e-6	NA	NC	NC

Surface Soil Inhalation, Ingestion, Dermal Contact						
Recept	or Type / Distance (ft)	Res./Constr. / 0	No Off-site Receptors			
SSTLss	THQ = 1e+0	2.1E+3				
(mg/kg)	TR = 1e-6	NC				

Outdoor Ai	r Inhalation			10 - A-200 (100) 10 - A-200 (100) 10 - A-200 (100)
Recepte	or Type / Distance (ft)	Residential / 0	Residential / 110	None
RBELair	THQ = 1e+0	1.0E+3	1.0E+3	NA
(µg/m ³)	TR = 1e-6	NC .	NC	NA

Soli Volatii	Soil Volatilization/Particulates to Outdoor Air Innaiation						
Recept	or Type / Distance (ft)	Residential / 0	Residential / 110	None			
SSTL	THQ = 1e+0	>2.1E+3	>2.1E+3	NA			
(mg/kg)	TR = 1e-6	NC	NC	NA			

Groundwa	ter Volatilization to O	utdoor Air Inhalatio	n	
Recept	or Type / Distance (ft)	Residential / 0	Residential / 110	None
SSTLgw	THQ = 1e+0	>1.7E+2	>1.7E+2	NA
(mg/L)	TR = 1e-6	NC	NC NC	l NA

Indoor Air	Inhalation	<u>Alle Grifferson</u>	
Recept	tor Type / Distance (ft)	Residential / 0	No Off-site Receptors
RBELair	THQ = 1e+0	1.0E+3	
(µa/m³)	TR = 1e-6	NC	

Soil Volatilization to Indoor Air Inhalation					
Recept	or Type / Distance (ft)	Residential / 0	No O	ff-site Receptors	
SSTLs	THQ = 1e+0	>2.1E+3			
(ma/ka)	TD - 10 6	NC			

Groundwa	ter Volatilization to In		
Recept	or Type / Distance (ft)	Residential / 0	No Off-site Receptors
SSTLgw	THQ = 1e+0	>1.7E+2	
(ma/L)	TD = 10.6	NC	

Units	Residential	Commercial	Construction
Cross-Media Transfer Factors			
(kg-soil/m3-air)	4.7E-5	NA	NA
(kg-soil/m3-air)	9.2E-6	NA NA	NA
(m3-wat/m3-air)	5.4E-7	NA	NA
(kg-soil/m3-air)	4.3E-4	NA NA	NA
(m3-wat/m3-air)	1.8E-3	NA	NA
(kg-soil/L-wat)	N	IC	NA
	(kg-soil/m3-air) (kg-soil/m3-air) (kg-soil/m3-air) (kg-soil/m3-air) (kg-soil/m3-air)	(kg-soil/m3-air) 4.7E-5 (kg-soil/m3-air) 9.2E-6 (m3-wat/m3-air) 5.4E-7 (kg-soil/m3-air) 4.3E-4 (m3-wat/m3-air) 1.8E-3	(kg-soil/m3-air) 4.7E-5 NA (kg-soil/m3-air) 9.2E-6 NA (m3-wat/m3-air) 5.4E-7 NA (kg-soil/m3-air) 4.3E-4 NA (m3-wat/m3-air) 1.8E-3 NA

	Units	On-Site	Off-Site1	Off-Site2
Lateral Transp	ort Factors			
DAFgw	(-)	NA	1.0E+100	1.0E+100
DAFs/gw	(-)	NA	1.0E+100	1.0E+100

Chemical Parameters

	Units	Value	Reference
Physical Pr	roperties		
MW	(g/mol)	1.1E+2	PS
Sol	(mg/L)	1.7E+2	PS
P _{vap}	(mmHg)	1.0E+1	PS
H _{atm}	(atm-m³/mol)	7.9E-3	PS
pK _a	(log[mol/mol])	-	-
pK₅	(log[mal/mal])	-	-
log(K _{oc})	(log[L/kg])	2.6E+0	PS
\mathbf{D}_{air}	(cm²/sec)	7.5E-2	PS
D _{wat}	(cm²/sec)	7.8E-6	PS
Toxicity Da	ta		
Wt of Evd.		D	
SF _o	(1/[mg/kg/day])	-	-
\$F₀	(1/[mg/kg/day])	-	-
URF_{i}	(1/[µg/m³])	-	
RfD₀	(mg/kg/day)	1.0E-1	PS
RfD ₆	(mg/kg/day)	9.7E-2	TX
RfC _i	(mg/m³)	1.0E+0	PS
Dermal Exp	osure Parameter		
RAF _d	(mg/mg)	5.0E-1	D
K _p	(cm/hr)	7.4E-2	
tau _d	(hr/event)	3.9E-1	
lorit	(hr)	1.3E+0	
В	(-)	1.4E-1	
Regulatory	Standards	<u> </u>	
MCL	(mg/L)	7.0E-1	•
TWA	(mg/m ³)	4.4E+2	PS
AQL	(mg/L)	-	-
	ous Parameters	17 /4	<u> </u>
ADL _{gw}	(mg/L)	2.0E-3	s
ADL _s	(mg/kg)	5.0E-3	S
t _{1/2,sat}	(d)	2.3E+2	н
t _{1/2,unsat}	(d)	2.3E+2	Н

^{*} MCL ref = 56 FR 3526 (30 Jan 91)

Units Value

H (L-wat/l	
U (r-want	air) 3.2E-1
K _{sw} (L-wat/s	(g-soil) 8.2E-2
C _{sal} (mg/kg-	soil) 2.1E+3
C _{sal,γap} (μg/m³-	air) 5.8E+7
D _{eff,s} (cm ² /se	c) 7.7E-5
D _{eff,crk} (cm ² /se	c) 5.9E-3
D _{eff,cap} (cm²/se	c) 1.4E-5
D _{eff,ws} (cm ² /se	c) 6.0E-5
Ĥ _{sal} (-)	6.3E+1
R _{unsat} (-)	6.7E+1
Z (cm/eve	ent) 2.7E-1

Notes: 1) NA = Not applicable; NC = Not calculated.

²⁾ Definitions and references presented on page 7 of 7.

Chemical-Specific Tier 2 Cleanup Summary

Site Name: Kawahara Nursery

Completed By: Mark Detterman

Site Location: 16550 Ashland Avenue, San Lorenzo, CA Date Completed: Sept. 2002

Job ID: 94015 4 of 7

to delliploted. depti 2442

Constituent: Xylene (mixed isome	rs) CAS No.: 1330-20-7
----------------------------------	------------------------

	Site-Specific T	arget Level (S	STL) Concentratior	าร
		On-site	Off-site1	Off-site2
Groundwat	ter Ingestion			
Recept	or Type / Distance (ft)	None	MGL / 75	Residential / 110
SSTL _{gw}	THQ = 1e+0	NA	>2.0E+2	>2.0E+2
(mg/L)	TR = 1e-6	NA	NC	NC
Soil Leachi	ing to Groundwater Inge	estion		
Recept	tor Type / Distance (ft)	None	MCL / 75	Residential / 110
SSTL	THQ = 1e+0	NA	NC	NC
(mg/kg)	TR = 1e-6	NA	NC	NC
Surface So	il Inhalation Ingestion	Dermal Contact	THE SELECTION OF SELECTION	

Surface Soil Inhalation, Ingestion, Dermal Contact						
Recept	or Type / Distance (ft)	Res./Constr. / 0	No Off-site Receptors			
SSTL _{ss}	THQ = 1e+0	3.4E+4				
(ma/ka)	TD = 15 C	NC				

Colloco Ali linalation					
Recept	or Type / Distance (ft)	Residential / 0	Residential / 110	None	
RBELair	THQ = 1e+0	7.3E+3	7.3E+3	NA	
(µg/m³)	TR = 1e-6	NC	NC	NA	
Soil Volatilization/Particulates to Outdoor Air Inhalation					

JOIL LOIGH	Son Foldinganos Particulates to Cutador An Inflatation						
Recept	or Type / Distance (ft)	Residential / 0	Residential / 110	None			
SSTL	THQ = 1e+0	>1.6E+3	>1.6E+3	NA			
(mg/kg)	TR = 1e-6	NC	NC	NA			

Groundwater Volatilization to Outdoor Air Inhalation					
Recept	or Type / Distance (ft)	Residential / 0	Residential / 110	None	
SSTL _{ow}	THQ = 1e+0	>2.0E+2	>2.0E+2	NA	
(mg/L)	TR = 1e-6	NC	NC	NA	
				_	

Indoor Air I	Inhalation	<u> de la capaçõe de la capação de la capa</u>	
Recept	or Type / Distance (ft)	Residential / 0	No Off-site Receptors
RBELair	THQ = 1e+0	7.3E+3	
(µg/m³)	TR = 1e-6	NC	

Soil Volatil	ization to Indoor Air I		
Recept	or Type / Distance (ft)	Residential / 0	No Off-site Receptors
SSTLs	THQ = 1e+0	>1.6E+3	
(mg/kg)	TR = 1e-6	NC	

Groundwal	er voiatilization to in	<u> </u>	
Recept	or Type / Distance (ft)	Residential / 0	No Off-site Receptors
SSTL _{gw}	THQ = 1e+0	>2.0E+2	
(mg/L)	TR = 1e-6	NC	

	Units	Residential	Commercial	Construction
Cross-Med	tia Transfer Factors		ter militare m Pristra m Pristra	
VF _{ss}	(kg-soil/m3-air)	5.3E-5	NA	NA
VF _{samb}	(kg-soil/m3-air)	1.2E-5	NA NA	NA NA
VF_{wamb}	(m3-wat/m3-air)	4.8E-7	NA	NA
VF _{sesp}	(kg-soil/m3-air)	5.6E-4	NA	NA
VF _{wesp}	(m3-wat/m3-air)	1.6E-3	NA	NA
LF	(kg-soil/L-wat)	N	IC .	NA

Units	On-Site	Off-Site1	Off-Site2
t Factors	• .		
(-)	NA	1.9E+70	4.4E+85
(-)	NA	1.9E+70	4.4E+85
	t Factors	t Factors (-) NA	t Factors (-) NA 1.9E+70

Chemical Parameters

	Units	Value	Reference
Physical Pro	perties		
MW	(g/mol)	1.1E+2	5
Sol	(mg/L)	2.0E+2	5
P _{vap}	(mmHg)	7.0E+0	4
H_{atm}	(atm-m³/mol)	7.0E-3	A
pK _a	(log(mol/mol])	-	-
pK _b	(log(mol/mol))	-	-
log(K₀₀)	(log[L/kg])	2.4E+0	Α
D _{air}	(cm²/sec)	7.2E-2	Α
D _{wal}	(cm²/sec)	8.5E-6	Α
Toxicity Dat	a -		
Wt of Evd.		D	
SF _a	(1/[mg/kg/day])	-	-
SF₀	(1/[mg/kg/day])	-	-
URF;	(1/[µg/m³])	-	•
RfD _o	(mg/kg/day)	2.0E+0	A,R
RfD₀	(mg/kg/day)	1.8E+0	TX
RfC _i	(mg/m³)	7.0E+0	Α
Dermal Expe	osure Parameters		
RAF₀	(mg/mg)	5.0E-1	D
K _p	(cm/hr)	8.0E-2	
tau _d	(hr/event)	3.9E-1	
t _{orit}	(hr)	1.4E+0	
В	(•)	1.6E-1	
Regulatory :	Standards	Control of	<u>a 6,970-1</u>
MCL	(mg/L)	1.0E+1	•
TWA	(mg/m³)	4.3E+2	ACGIH
AQL	(mg/L)	-	-
Miscellaneo	us Parameters		
ADL _{gw}	(mg/L)	5.0 E -3	Ş
I			
ADL _s	(mg/kg)	5.0E-3	S
ADL _s	(mg/kg) (d)	5.0E-3 3.6E+2	S Н

^{*} MCL ref = 56 FR 3526 (30 Jan 91)

Units Value

Derived P	7 V 21 50 50 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Н	(L-wat/L-air)	2.9E-1
K_{sw}	(L-wat/kg-soil)	1.2E-1
C_{sat}	(mg/kg-soil)	1.6E+3
$C_{\rm sal,vap}$	(µg/m³-air)	4.0E+7
$D_{\rm eff,s}$	(cm²/sec)	7.5E-5
D _{eff,crk}	(cm²/sec)	5.6E-3
$D_{eff,cap}$	(cm²/sec)	1.5E-5
D _{eff,ws}	(cm²/sec)	6.0E-5
$R_{\rm sal}$	(-)	4.2E+1
R _{unsal}	(-)	4.4E+1
Z	(cm/event)	2.9E-1

Notes: 1) NA = Not applicable; NC = Not calculated.

²⁾ Definitions and references presented on page 7 of 7.

Chemical-Specific Tier 2 Cleanup Summary

Site Name: Kawahara Nursery Site Location: 16550 Ashland Avenue, San Lorenzo, CA Completed By: Mark Detterman

Date Completed: Sept. 2002

Job ID: 94015

5 of 7

Constituent: TPH - Aliph >C10-C12

CAS No.: 0-00-0

ite-Specific	Target Level	(SSTL) Concentrations	

	Site-Specific	c Target Level (SS	iTL) Concentratio	ns
		On-site	Off-site1	Off-site2
Groundwat	er Ingestion			
Recepto	or Type / Distance (ft)	None	MCL / 75	Residential / 110
SSTLgw	THQ = 1e+0	NA	поМСL	NC
(mg/L)	TR = 1e-6	NA	noMCL	NC
Soil Leachi	ng to Groundwater li	ngestion		: 1
Recepto	or Type / Distance (ft)	None	MCL / 75	Residential / 110
SSTL₃	THQ = 1e+0	NA	noMCL	NC
(mg/kg)	TR = 1e-6	NA	noMCL	NC
Surface Soi	il Inhalation, Ingestic	on,Dermal Contact		
Recepto	or Type / Distance (ft)	Res./Constr. / 0	No Off-site	Receptors
SSTLss	THQ = 1e+0	2.2E+3		
(mg/kg)	TR = 1e-6	NC		
Outdoor Air	Inhalation			
Recepto	or Type / Distance (ft)	Residential / 0	Residential / 110	None
RBELair	THQ = 1e+0	1.0E+3	1.0E+3	NA
(µg/m³)	TR = 1e-6	NC	NC_	NA NA
Soil Volatili	zation/Particulates t	o Outdoor Air Inhala	itlon	
Recepto	or Type / Distance (ft)	Residential / 0	Residential / 110	None
SSTLs	THQ = 1e+0	>2.8E+2	>2.8E+2	NA
(mg/kg)	TR = 1e-6	NC	NC	NA
Groundwate	er Volatilization to O	utdoor Air Inhalatio	0	
Recepto	or Type / Distance (ft)	Residential / 0	Residential / 110	None
SSTL _{gw}	THQ = 1e+0	>3.4E-2	>3.4E-2	NA
(mg/L)	TR = 1e-6	NC	NC	NA
Indoor Air I	nhalation	and the second s		4 4 4 8 6 4 E
Recepto	or Type / Distance (ft)	Residential / 0	No Off-site	Receptors
R8EL _{air}	THQ = 1e+0	1.0E+3		
(µg/m³)	TR = 1e-6	NC		
Soli Volatili	zation to Indoor Air i	Inhalation		
Recepto	or Type / Distance (ft)	Residential / 0	No Off-site	Receptors
SSTLs	THQ = 1e+0	>2.8E+2		
(mg/kg)	TR = 1e-6	NC		
Groundwate	er Volatilization to In	door Air Inhelation		•
Receptor Type / Distance (ft) Residential / 0 No Off-site Receptors		Receptors		

	Units	Residential	Commercial	Construction
Cross-Med	lia Transfer Factors		in the second	The second secon
VF _{ss}	(kg-soil/m3-air)	3.9E-5	NA	NA
VF _{semb}	(kg-soil/m3-air)	6.5E-6	NA	NA
VF _{wamb}	(m3-wat/m3-air)	2.3E-4	NA	NA
VF _{sesp}	(kg-soil/m3-air)	3.0E-4	NA	NA
VF _{wesp}	(m3-wat/m3-air)	7.9E-1	NA	NA
LF	(kg-soil/L-wat)		NC	NA

>3.4E-2

NC

	Units	On-Site	Off-Site1	Off-Site2
Lateral Transp	ort Factors			
DAFgw	(-)	NA	1.0E+100	1.0E+100
DAFs/gw	(-)	NA NA	1.0E+100	1.0E+100

Chemical Parameters

Physical Properties		Units	Value	Reference
Sol	Physical P	roperties		
P _{vap} (mmHg) 4.8E-1 - H _{atm} (atm-m³/mol) 3.0E+0 T pK _a (log[mol/mol]) - - pK _b (log[mol/mol]) - - log(K _{oc}) (log[L/kg]) 5.4E+0 T D _{air} (cm²/sec) 1.0E-1 T D _{wal} (cm²/sec) 1.0E-5 T Toxicity Data Wt of Evd. D SF _o 1.0E-5 T Toxicity Data Wt of Evd. D SF _o 1.0E-5 T Toxicity Data Wt of Evd. D SF _o 1.0E-5 T Toxicity Data Wt of Evd. D SF _o 1.0E-5 T Toxicity Data Wt of Evd. D SF _o 1.0E-1 T FfD _o (mg/kg/day) - - - FfD _o (mg/kg/day) - - - </td <td>MW</td> <td>(g/mol)</td> <td>1.6E+2</td> <td>Т</td>	MW	(g/mol)	1.6E+2	Т
H _{atm} (atm-m³/mol) 3.0E+0 T pK _a (log[mol/mol]) - - pK _b (log[mol/mol]) - - log(K _{oc}) (log[L/kg]) 5.4E+0 T D _{air} (cm²/sec) 1.0E-1 T D _{wal} (cm²/sec) 1.0E-5 T Toxicity Data Wt of Evd. D SF _o 1.0E-5 T Toxicity Data Wt of Evd. D SF _o 1.0E-5 T Toxicity Data Wt of Evd. D - - SF _o (1/[mg/kg/day]) - - - SF _o (1/[mg/kg/day]) - - - - URF _i (1/[mg/kg/day]) -	Sol	(mg/L)	3.4E-2	Т
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P _{vap}	(mmHg)	4.8E-1	-
DK Description Descripti		(atm-m³/mol)	3.0E+0	Т
log(K _{oc}) (log[L/kg]) 5.4E+0 T D _{sir} (cm²/sec) 1.0E-1 T D _{wst} (cm²/sec) 1.0E-5 T Toxicity Data Wt of Evd.	pK _a	(log[mol/mol])	-	-
Dair (cm²/sec) 1.0E-1 T Dwst (cm²/sec) 1.0E-5 T Toxicity Data Wt of Evd. D SF₀ (1/[mg/kg/day]) - </td <td>pK_b</td> <td>(log[mol/mol])</td> <td>-</td> <td>-</td>	pK _b	(log[mol/mol])	-	-
Dwsl (cm²/sec) 1.0E-5 T Toxicity Data Wt of Evd. D SFo (1/[mg/kg/day]) - - SFd (1/[mg/kg/day]) - - URFi (1/[µg/m²]) - - RfDo (mg/kg/day) 1.0E-1 T RfDd (mg/kg/day) - - RfCi (mg/m³) 1.0E+0 T Dermal Exposure Parameters RAFd (mg/mg) 5.0E-1 - Kp (cm/hr) - - terit (hr/event) - - terit (hr) - - B (-) - - Regulatory Standards MCL (mg/L) - - TWA (mg/mg/m³) - - AQL (mg/L) - - ADL _{gw} (mg/kg) - - TWA (mg/kg) <td< td=""><td>log(K₀₀)</td><td>(log[L/kg])</td><td>5.4E+0</td><td>Т</td></td<>	log(K₀₀)	(log[L/kg])	5.4E+0	Т
Toxicity Data Wt of Evd. D	D _{air}	(cm²/sec)	1.0E-1	Т
Wt of Evd. D SFo. (1/[mg/kg/day]) - - SFd. (1/[mg/kg/day]) - - URFi. (1/[µg/m³]) - - RfDo. (mg/kg/day) 1.0E-1 T RfDd. (mg/kg/day) - - RfCq. (mg/m³) 1.0E+0 T Dermal Exposure Parameters RAFd. (mg/mg) 5.0E-1 - Kp. (cm/hr) - - taud. (hr/event) - - tent. (hr) - - B. (-) - - Regulatory Standards MCL. (mg/L) - - TWA. (mg/m] - - AQL. (mg/L) - - Miscellaneous Parameters ADL_gw. (mg/kg) - - ADL_st. (mg/kg) - - ADL_st. (mg/kg)	D _{wal}	(cm²/sec)	1.0E-5	Т
SFo (1/[mg/kg/day]) - - SFd (1/[mg/kg/day]) - - URFi (1/[mg/kg/day]) - - RfDo (mg/kg/day) 1.0E-1 T RfDd (mg/kg/day) - - RfCi (mg/m³) 1.0E+0 T Dermal Exposure Parameters RAFd (mg/mg) 5.0E-1 - Kp (cm/hr) - - taud (hr/event) - - text (hr) - - B (-) - - Regulatory Standards MCL (mg/L) - - TWA (mg/L) - - AQL (mg/L) - - MScellaneous Parameters ADL _{gw} (mg/kg) - - t _{1/Z,sst} (d) - -	Toxicity Da	ita .		
SF _d (1/[mg/kg/day]) - - URF ₁ (1/[µg/m³]) - - RfD _o (mg/kg/day) 1.0E-1 T RfD _d (mg/kg/day) - - RfC ₁ (mg/m³) 1.0E+0 T Dermal Exposure Parameters RAF _d (mg/mg) 5.0E-1 - K _p (cm/hr) - - tau _d (hr/event) - - t _{ent} (hr) - - B (-) - - Regulatory Standards MCL (mg/L) - - TWA (mg/L) - - AQL (mg/L) - - AQL (mg/L) - - ADL _{gw} (mg/kg) - - t _{1/Z,sel} (d) - -	Wt of Evd.		D	
URF _i (1/[µg/m³])	SF。	(1/[mg/kg/day])	-	-
RfD _o (mg/kg/day) 1.0E-1 T RfD _d (mg/kg/day) - - RfC _I (mg/m³) 1.0E+0 T Dermal Exposure Parameters RAF _d (mg/mg) 5.0E-1 - K _p (cm/hr) - - tau _d (hr/event) - - t _{crit} (hr) - - B (·) - - Regulatory Standards MCL (mg/L) - - TWA (mg/m²) - - AQL (mg/L) - - Miscellaneous Parameters ADL _{gw} (mg/kg) - - t _{1/Z,sel} (d) - -	SF_d	(1/[mg/kg/day])	-	-
RfD _d (mg/kg/day) - - RfC _I (mg/m³) 1.0E+0 T Dermal Exposure Parameters RAF _d (mg/mg) 5.0E-1 - K _p (cm/hr) - - tau _d (hr/event) - - t _{crit} (hr) - - B (·) - - Regulatory Standards - - - MCL (mg/L) - - TWA (mg/m³) - - AQL (mg/L) - - Miscellaneous Parameters ADL _{gw} (mg/kg) - - ADL _s (mg/kg) - - t _{1/Z,sel} (d) - -	URF _i	(1/[μg/m³])	-	-
RfC ₁ (mg/m³) 1.0E+0 T Dermal Exposure Parameters T T RAF _d (mg/mg) 5.0E-1 - K _p (cm/hr) - - tau _d (hr/event) - - t _{crit} (hr) - - B (-) - - Regulatory Standards MCL (mg/L) - - TWA (mg/m³) - - AQL (mg/L) - - Miscellaneous Parameters ADL _{gw} (mg/kg) - - ADL _s (mg/kg) - - t _{1/Z,sel} (d) - -	R fD₀	(mg/kg/day)	1.0E-1	Т
Dermal Exposure Parameters	RfD₀		-	•
RAF _d (mg/mg) 5.0E-1 -	RfC _i	(mg/m³)	1.0E+0	Т
Kp (cm/hr) - taud (hr/event) - text (hr) - B (-) - Regulatory Standards MCL (mg/L) - TWA (mg/m³) - - AQL (mg/L) - - Miscellaneous Parameters ADL _{gw} (mg/kg) - - ADL _s (mg/kg) - - t _{1/Z,sal} (d) - -	Dermal Exp	posure Parameters		. EVELEY
tau _d (hr/event) - t _{crit} (hr) - B (-) **Hegulatory Standards MCL (mg/L) - TWA (mg/m³) - AQL (mg/L) - **Miscellaneous Parameters ADL _{gw} (mg/L) - ADL _s (mg/kg) - t _{1/Z,ssl} (d) -	RAF_d	(mg/mg)	5.0E-1	-
t _{crit} (hr) - B (-) -	Κ _p	(cm/hr)	-	
B (-) - **Regulatory Standards** MCL (mg/L) - TWA (mg/m³) - AQL (mg/L) - **Miscellaneous Parameters* ADL_gw (mg/L) - ADL_s (mg/kg) - t_{1/2,sel} (d) -	tau _d	(hr/event)	-	
Regulatory Standards	t _{crit}	(hr)	-	
MCL	В	(-)	-	
TWA (mg/m³) AQL (mg/L) Miscellaneous Parameters ADL _{gw} (mg/L) ADL _s (mg/kg) t _{1/Z,sal} (d)	Regulatory			gigat, et.
AQL (mg/L) Miscellaneous Parameters ADL _{gw} (mg/L) ADL _s (mg/kg) t _{1/Z,sa1} (d)	MCL.		- :	*
Miscellaneous Parameters ADL _{gw} (mg/L) - - ADL _s (mg/kg) - - t _{1/Z,sal} (d) - -	TWA	(mg/m³)	-	-
ADL _{gw} (mg/L)	AQL	(mg/L)	-	
ADL _s (mg/kg)		ous Parameters	11 12 22 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	
t _{1/2,sal} (d)	ADL _{gw}		-	-
1 1	ADL _s	(mg/kg)	-	-
t _{1/2,unsal} (d)	t _{1/2,sel}		-	-
* MCL rof -		(d)	-	-

^{*} MCL ref = -

Units Value

Derived Pa		
Ħ	(L-wat/L-air)	1.2E+2
Ksw	(L-wat/kg-soil)	1.2E-4
C _{sat}	(mg/kg-soil)	2.8E+2
C _{sat,vep}	(µg/m³-air)	4.2E+6
$D_{eff,s}$	(cm²/sec)	9.9E-5
D _{eff,ork}	(cm²/sec)	7.8E-3
$D_{eff,cap}$	(cm²/sec)	1.3E-5
D _{eff,ws}	(cm²/sec)	6.9E-5
R _{sat}	(-)	4.3E+4
R _{unsat}	(-)	4.5E+4
Z	(cm/event)	-

SSTLgw

(mg/L)

THQ = 1e+0

TR = 1e-6

Notes: 1) NA = Not applicable; NC = Not calculated.

²⁾ Definitions and references presented on page 7 of 7.

Off-site2

RBCA SITE ASSESSMENT

Chemical-Specific Tier 2 Cleanup Summary

Site Name: Kawahara Nursery

Groundwater Ingestion

SSTLgw

(mg/L)

(mg/L)

TR = 1e-6

Completed By: Mark Detterman

Site Location: 16550 Ashland Avenue, San Lorenzo, CA

Date Completed: Sept. 2002

Job ID: 94015

6 of 7

Reference

Constituent: TPH - Arom >C10-C12

CAS No.: 0-00-0

Off-site1

Site-Specific	Target I	Level (SSTL)	Concentration

On-site

oundwa	ter Ingestion				
Recept	tor Type / Distance (ft)	None	MCL / 75	Residential / 110	
STL _{gw}	THQ = 1e+0	NA	noMCL	>2.5E+1	
ng/L)	TR = 1e-6	NA	noMCL	NC	
Il Leaching to Groundwater Ingestion					

Boll Leach	ing to Groundwater Ir			
Recept	or Type / Distance (ft)	None	MCL / 75	Residential / 110
SSTL _s	THQ = 1e+0	NA	noMCL	>2.1E+3
(mg/kg)	TR = 1e-6	NA	noMCL	NC
Sandana 65	SVV-16-16-16-16-16-16-16-16-16-16-16-16-16-	a Barral Cartage		

			and the second s
Recept	or Type / Distance (ft)	Res./Constr. / 0	No Off-site Receptors
SSTLss	THQ = 1e+0	9.2E+2	
(mg/kg)	TR = 1e-6	NC	

Outdoor Ai	r Inhalation	<u> + </u>	i e u seustifica	
Recept	or Type / Distance (ft)	Residential / 0	Residential / 110	None
RBEL	THQ = 1e+0	2.1E+2	2.1E+2	NA
$(\mu g/m^3)$	TR = 1e-6	NC	NC	NA

Soil Volatil	Soil Volatilization/Particulates to Outdoor Air Inhalation				
Recept	or Type / Distance (ft)	Residential / 0	Residential / 110	None	
SSTLs	THQ = 1e+0	>2.1E+3	>2.1E+3	NA	
(mg/kg)	TR = 1e-6	NC	NC	NA	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				:	

Groundwa	iter voiatilization to Ot	utgoor Air innalatio	n	+ (-1)
Recep	tor Type / Distance (ft)	Residential / 0	Residential / 110	None
SSTLgw	THQ = 1e+0	>2.5E+1	>2.5E+1	NA
(mg/L)	TR = 1e-6	NC	NC	NA
(5, –/	111-16-0	140	110	11/5

Indoor Air	inhalation		
Recept	or Type / Distance (ft)	Residential / 0	No Off-site Receptors
RBELair	THQ = 1e+0	2.1E+2	
(µg/m³)	TR = 1e-6	NC	

Soli Volatilization to Indoor Air Inhalation			
Recept	or Type / Distance (ft)	Residential / 0	No Off-site Receptors
SSTL	THQ = 1e+0	>2.1E+3	
(mg/kg)	TR = 1e-6	NC	

(1119/119)	1H = 1e-6	NC.	
Groundwate	er Volatilization to In	door Air Inhalation	
Recepto	or Type / Distance (ft)	Residential / 0	No Off-site Receptors
POTI	THO 10.0	- 2 EE. 1	

ИC

		Units	Residential	Commercial	Construction
1	Cross-Med	lia Transfer Factors	1.0		
I	VF_{ss}	(kg-soil/m3-air)	1.4E-5	NA	NA
	VF_{samb}	(kg-soil/m3-air)	7.9E-7	NA.	NA
	VF _{wamb}	(m3-wat/m3-air)	3.4E-7	NA NA	NA
	VF_{sesp}	(kg-soil/m3-air)	3.7E-5	NA.	NA
	VF _{wesp}	(m3-wat/m3-air)	1.1E-3	NA NA	NA
	LF	(kg-soil/L-wat)	All exposur	es: 1.3E-59	NA

	Units	On-Site	Off-Site1	Off-Site2
Lateral Transpor	t Factors			27.47
DAFgw	(-)	NA	5.0E+21	6.2E+26
DAFs/gw	(-)	NA	5.0E+21	6.2E+26

Chemical Parameters Value Units

			
Physical P	roperties	4.44	
MW	(g/mol)	1.3E+2	Т
Sol	(mg/L)	2.5E+1	Т
Pyap	(mmHg)	4.8E-1	•
H _{atm}	(atm-m ³ /mol)	3.3E-3	Т
рК _в	(log[mol/mol])	-	-
pK_b	(iog[mol/mol])	-	-
$log(K_{oo})$	(log[L/kg])	3.4E+0	T
Dair	(cm²/sec)	1.0E-1	Т
D _{wat}	(cm²/sec)	1.0E-5	Т
Toxicity Data			
Wt of Evd.		D	
SF。	(1/[mg/kg/day])	-	
SF _d	(1/[mg/kg/day])		
URF;	(1/[µg/m³])	-	-
RfD。	(mg/kg/day)	4.0E-2	т
RfD _d	(mg/kg/day)	-	-
RfC _i	(mg/m³)	2.0E-1	T
Dermal Exposure Parameters		5	
RAF _d	(mg/mg)	5.0E-1	
K _p	(cm/hr)	-	
tau _d	(hr/event)	_	
t _{ont}	(hr)	-	
В	(-)	-	
Regulatory Standards			- 3
MCL.	(mg/L)	-	*
TWA	(mg/m³)	-	-
AQL	(mg/L)	_	-
Miscellane			- 284
ADLgw	(mg/L)	•	-
ADL,	(mg/kg)	_	-
t _{1/2,sat}	(d)	_	
t _{1/2} ,unsat	(d)	_	-
MCL ref =			

Units Value

Derived Parameters		. 1/1000.01.01.01.00 1. 1/1.100	
Н	(L-wat/L-air)	1.4E-1	
K _{sw}	(L-wat/kg-soil)	1.2E-2	
$C_{\rm sat}$	(mg/kg-soil)	2.1E+3	
C _{sat,vap}	(µg/m³-air)	3.4E+6	
$D_{eff,s}$	(cm²/sec)	1.1E-4	
$D_{\text{eff,crk}}$	(cm²/sec)	7.8E-3	
D _{elf,cap}	(cm²/sec)	2.7€-5	
D _{elf,ws}	(cm²/sec)	9.1E-5	
R _{sat}	(-)	4.3E+2	
Runsat	(-)	4.6E+2	
Z	(cm/event)	-	

Notes: 1) NA = Not applicable; NC = Not calculated.

²⁾ Definitions and references presented on page 7 of 7.