### THE SUTTON GROUP

PHONE (925) 284-4208 FAX (925) 871-3617 EMAIL: suttongeo@sbcglobal.net

SOILS, FOUNDATIONS, DRAINAGE, SLOPES, CONTAINMENTS CIVIL, GEOTECHNICAL AND ENVIRONMENTAL ENGINEERING 3708 Mount Diablo Blvd Suite 215 Lafayette, CA, 94549

November 13, 2007

Mr. Jason Warner Oro Loma Sanitary District 2655 Grant Avenue San Lorenzo, 94580

### **RECEIVED**

1:16 pm, Nov 14, 2007

Alameda County Environmental Health

Results of 21<sup>st</sup> Quarterly Round of Sampling of Ground Water Monitoring Wells Site of the Former Gasoline Tank 2655 Grant Ave., San Lorenzo, CA OLSD PO No. 4911, LOP Site No. RO0000288 ST ID 1996

Dear Mr. Warner:

We attach results for the most recent round of quarterly sampling of the ground water monitoring wells in the area of the former gasoline tank, conducted on October 17<sup>th</sup>, 2007. This is the 21<sup>st</sup> quarterly sampling of wells in the gasoline tank area.

Please note that the street address of the District's offices, and thus that of the tank location, has been changed at the request of the Post Office, from 2600 to 2655 Grant Avenue. We hope this does not upset the Agency's filing system.

This work has been performed in accordance with the Work Plan that was approved by Alameda County Health Care Agency's Environmental Protection Division (ACEP) in their letter dated April 18, 2003, as amended.

Figure 1 is a plan of the District's facilities at the foot of Grant Avenue in San Lorenzo. It shows the relative locations of the former gasoline and diesel tanks to the District's offices and adjacent sewage treatment plant. Figure 2 is a plan of the engineering offices and maintenance area, showing the monitoring well locations and the calculated groundwater flow gradient. Figure 2A is the calculation sheet used to develop Figure 2.

This quarter's monitoring data was up-loaded to the State Water Resources Control Board's Geotracker computer database, as required by law. We have also electronically uploaded this report to Alameda County's own electronic database.

### Groundwater Monitoring

Review of groundwater level measurements around the former gasoline tank site indicates a slight increase of ground water elevations typical of seasonal conditions in recent years and consistent with historical levels. Groundwater levels in the onsite wells are approximately the same as the same quarter a year ago. Table 1 is a cumulative tabulation of groundwater level data. Well MW5 historically responds less to seasonal changes compared to the other onsite wells and we are exploring the possibility that the "mound effect" is due to this

situation. We have thus provided two gradient calculations, with one neglecting the MW5 data as depicted on Figures 2 and 2A.

### Sampling Results

On October 17<sup>th</sup>, 2007 water samples were collected from the three onsite wells in accordance with the approved work plan. The samples were collected by bailing. Each sample was analyzed for gasoline, BTEX and MTBE. Table 2 is a summary of the results of the current round of analytical results for hydrocarbons. Table 2A is a compilation of all test results for gasoline-related hydrocarbon constituents in the gasoline tank area since well sampling began in 1999. Laboratory certificates and field sampling logs are also attached.

We appreciate the opportunity to be of continued service to The District. Please call me if you have questions or if I can assist you in any other way.

Yours truly,

#### THE SUTTON GROUP



John R. Sutton, PE RCE 40324, exp 12/31/2008

### Attachments:

Figure 1 Site Plan

Figure 2 Well Location Plan, Former Gasoline Tank Area

Figure 2A Gradient calculation sheet

Table 1 Ground Water Elevations, Former Gasoline Tank Area

Table 2 Summary of Current Water Sample Analyses for Gasoline and constituents,

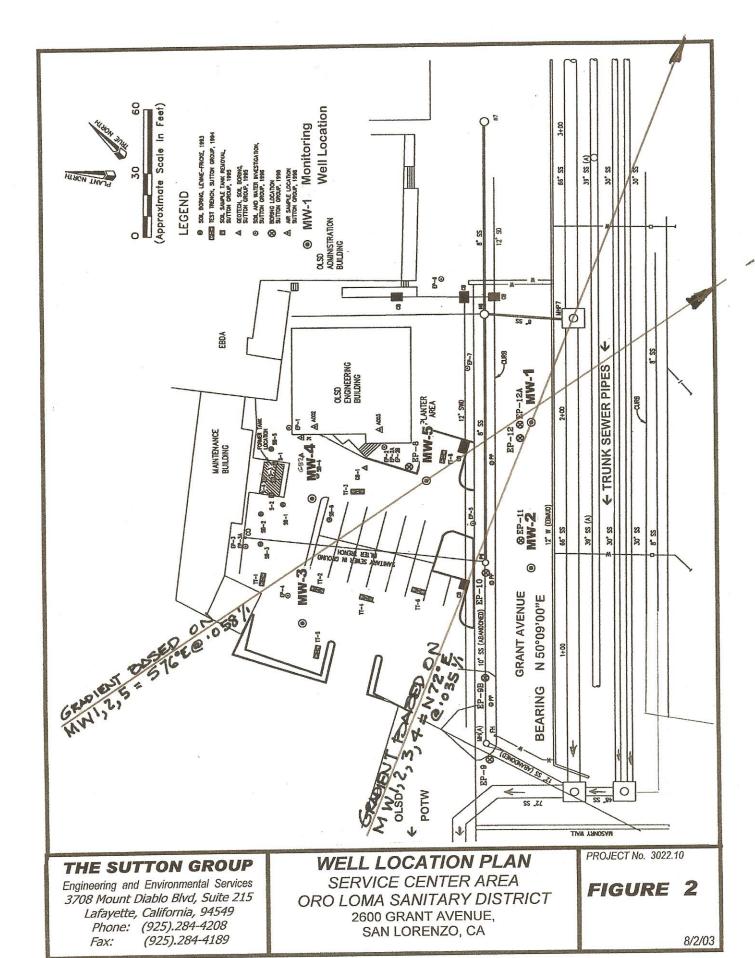
Former Gasoline Tank Area

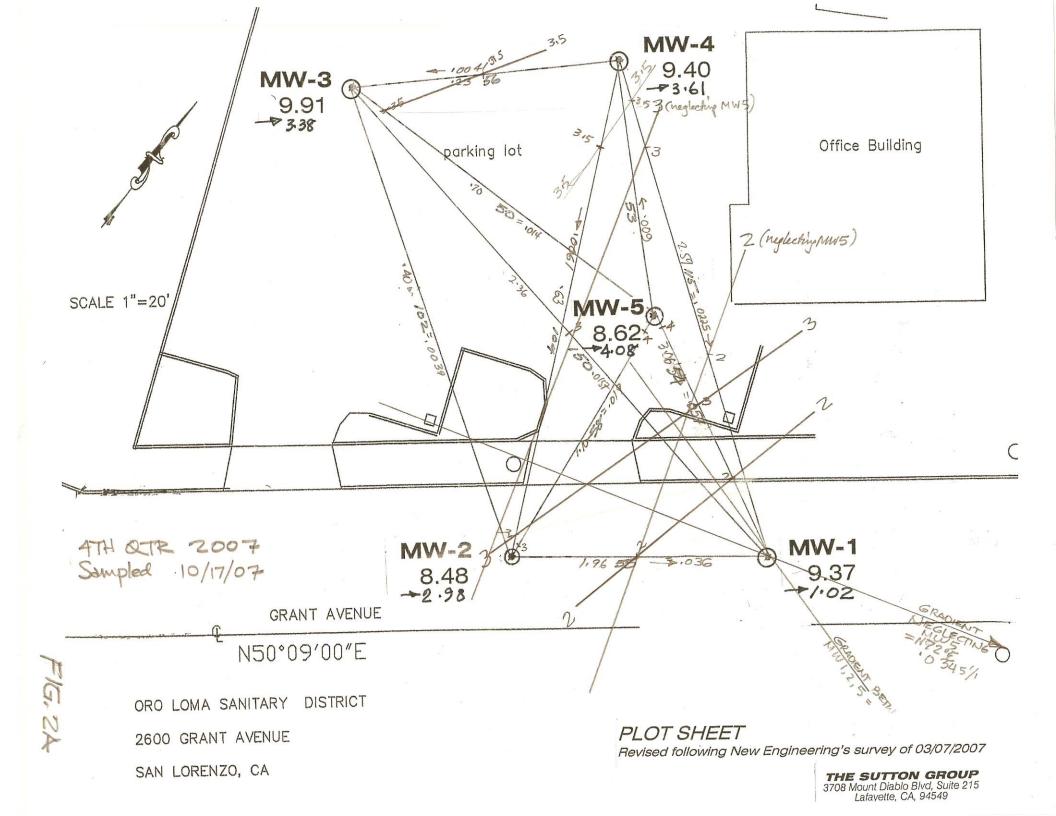
Table 2A Cumulative Summary of Water Sample Analyses, Gas Tank Area

Analytical Laboratory Reports (McCampbell)

Field sampling Reports (Blaine Tech)


Copy uploaded to Alameda Co web site. Data uploaded to Geotracker database.


Copy with attachments in pdf and MSExcel formats sent by email to Mr. Steven Plunkett at Alameda County Health Dept.


Copy sent by email to Mr. M. Cameron at OLSD

Copy sent by email to Mr. Tim Becker at Environmental Guidance, Inc.

302210, Qtr #21 ltr Q04-2007- sig.doc







### TABLE 1 GROUND WATER ELEVATIONS

All measurements are in feet

| Monitoring Well ID                 | )              |       |           |           |           | Estim           | ated Net       |
|------------------------------------|----------------|-------|-----------|-----------|-----------|-----------------|----------------|
| Well Cover Rim Elevn               | * 8.37         | 8.48  | 9.91      | 9.40      | 8.62      | Flow Direction, | Gradient ft/ft |
| Groundwater Elevation              | on             |       |           |           |           |                 |                |
| Initial Sampling 10/21/0           | <i>1.</i> 72   | 2.04  | 3.21      | 3.58      | 2.84      | S21°E           | 0.016          |
| 2 <sup>nd</sup> Quarterly 1/28/0.  | 3 2.23         | 2.65  | 4.94      | 5.35      | 4.42      | S23°E           | 0.033          |
| 3rd Quarterly 4/28/03              | Not Measured   | 3.18  | Not Meas. | 5.80      | 5.20      | S22½°W          | 0.042          |
| 4 <sup>th</sup> Quarterly 7/25/03  | 0.45           | 2.35  | 3.44      | 3.58      | 3.52      | S18°W           | 0.027          |
| 5 <sup>th</sup> Quarterly 10/30/0. | 3 1.82         | 2.75  | 3.61      | 4.18      | 4.09      | S26°E           | 0.014          |
| 6 <sup>th</sup> Quarterly 1/23/04  | 2.20           | 3.27  | 5.27      | 5.47      | 5.17      | S35°E           | 0.053          |
| 7th Quarterly 4/27/200             | 2.35           | 3.55  | 4.99      | 5.08      | 4.92      | S17°E           | 0.017          |
| 8th Quarterly 7/29/200             | 1.55           | 2.43  | 3.77      | 4.11      | 4.14      | S52°W           | 0.006          |
| 9th Quarterly 10/28/20             | -0.08          | 0.98  | 4.17      | 4.50      | 4.69      | S63°E           | 0.087          |
| Special Sampling 12/8/20           | 004 -0.74      | -0.83 | Not Meas. | Not Meas. | Not Meas. | Not Meas.       | Not Meas.      |
| 10th Quarterly 1/24/200            | 0.79           | 2.75  | 5.64      | 5.83      | 4.74      | S27°E           | 0.03           |
| 11th Quarterly 4/28/200            | 5 1.37         | 3.02  | 5.15      | 5.19      | 4.52      | S40°E           | 0.023          |
| 12th Quarterly 7/19/200            | <i>5</i> 1.18  | 2.37  | 4.31      | 4.48      | 4.32      | S59°E           | 0.063          |
| 13th Quarterly 10/26/200           | 0.79           | 1.72  | 3.69      | 4.10      | 4.20      | S64°E           | 0.065          |
| 14th Quarterly 1/30/200            | 6 1.72         | 3.17  | 4.85      | 4.92      | 4.24      | S73°E           | 0.05           |
| 15th Quarterly 4/18/200            | 6 2.17         | 3.44  | 5.94      | 5.09      | 4.25      | S78°E           | 0.025          |
| 16th Quarterly 7/19/200            | 6 1.55         | 2.88  | 4.41      | 4.57      | 4.13      | S69E            | 0.048          |
| 17th Quarterly 10/26/200           | <i>96</i> 1.17 | 2.63  | 3.47      | 3.92      | 5.38      | A: S30W @ .054  | B:S76E @ .087  |
| 18th Quarterly 1/15/200            | 7 1.35         | 3.20  | 4.84      | 4.73      | 4.37      | A: S64E @ .007  | B:S87E @ .055  |
| 19th Quarterly 4/19/200            | 7 1.72         | 3.39  | 6.06      | 5.20      | 4.05      | A: S70E @ .036  | B:S85E @ .044  |
| 20th Quarterly 7/19/200            | 7 1.10         | 1.70  | 3.38      | 3.52      | 3.35      | A: S63E @ .074  | B:S7E @~.004   |
| Current (21st) reading on          | 10/17/2007     |       |           |           |           |                 |                |
| Groundwater Depth                  | 7.35           | 5.50  | 6.53      | 5.79      | 4.54      |                 |                |
| Groundwater Elevation              | 1.02           | 2.98  | 3.38      | 3.61      | 4.08      | S76E @ .058     | N72E @ .035    |
| Change Since 7/19/2007             | -0.08          | 1.28  | 0.00      | 0.09      | 0.73      |                 |                |
| Change since same Q<br>last year   | -0.15          | 0.35  | -0.09     | -0.31     | -1.30     |                 |                |

<sup>\*</sup> Wells re-surveyed 03/08/2007 based on NGS Station Loma (HT3751). New rim elevations were 0.27-0.30 feet "lower".

Elevations beginning April 2007 reflect the new elevations. Previously tabulated readings have not been changed.

QTR 21, 10/17/2007: Two gradients were calculated:

S76E is from MW1,2 and 5 as previous offsite

ORO LOMA SANITARY DISTRICT

N72E is Gradient from MW 1,2,3,4 -- neglecting MW5

RO0000288

OLSD 21-2007-Q4, Tables 1-2-3.xls, 11/13/2007

<sup>\* &</sup>quot;Onsite gradient" is interpreted to be the natural gradient due to baylands and San Francisco Bay.

<sup>&</sup>quot;Offsite gradient" reflects the dewatering effect of the gravel-bedded sanitary sewer trunk lines beneath Grant Avenue.

### TABLE 2

## total petroleum hydrocarbons as gasoline, btex and mtbe

EPA METHOD 8015Cm /8021 results in µg/l (ppb)

| Sample                            |                             |                 |                  |                  |                  | Xylenes          |            | Dilution |
|-----------------------------------|-----------------------------|-----------------|------------------|------------------|------------------|------------------|------------|----------|
| Location                          | Sample Date                 | Gasoline        | Benzene          | Toluene          | Ethyl Benzene    | (total)          | MTBE       | Factor   |
| MW-1                              | 10/17/2007                  | n/a             | n/a              | n/a              | n/a              | n/a              | n/a        | 1        |
| MW-2                              | 10/17/2007                  | n/a             | n/a              | n/a              | n/a              | n/a              | n/a        | 1        |
| MW-3                              | 10/17/2007                  | 55              | 1.5              | ND               | ND               | 1.3              | <i>4</i> 2 | 1        |
| MW-4                              | 10/17/2007                  | 28,000          | 5,900            | 87               | 1,700            | 1400             | ND<240     | 50       |
| MW-5                              | 10/17/2007                  | 32,000          | 9,200            | 57               | 650              | 1,900            | ND<100     | 20       |
| <b>Trip Blank</b><br>Reporting Li | 10/17/2007<br>mits for DF=1 | <i>ND</i><br>50 | <i>ND</i><br>0.5 | <i>ND</i><br>0.5 | <i>ND</i><br>0.5 | <i>ND</i><br>0.5 | ND<br>5    | 1        |

### NOTES:

ND Analyte not detected at stated reporting limit

n/a Not analyzed

ORO LOMA SANITARY DISTRICT R00000288 Table 2

### TABLE 2A LOP Site No. RO0000288

# CUMULATIVE SUMMARY OF GROUND WATER SAMPLE ANALYSES FORMER GASOLINE TANK AREA

### total petroleum hydrocarbons as gasoline and mbtex

results in µg/l (ppb)

| Sample<br>Location | Sample Date | Gasoline  | Benzene | Toluene | Ethyl<br>Benzene | Xylenes<br>(total) | MTBE |
|--------------------|-------------|-----------|---------|---------|------------------|--------------------|------|
| MW-1               | 2/19/1999   | nd        | nd      | nd      | nd               | nd                 | nd   |
|                    | 5/10/1999   | nd        | nd      | nd      | nd               | nd                 | nd   |
|                    | 8/30/1999   | n/a       | nd      | nd      | nd               | nd                 | nd   |
|                    | 11/23/1999  | nd        | nd      | nd      | nd               | nd                 | nd   |
| dup                | 11/23/1999  | nd        | nd      | nd      | nd               | nd                 | nd   |
|                    | 7/25/2003   | nd        | nd      | nd      | nd               | nd                 | nd   |
|                    | 10/30/2003  | n/a       | n/a     | n/a     | n/a              | n/a                | n/a  |
|                    | 1/23/2004   | nd        | nd      | nd      | nd               | nd                 | nd   |
|                    | 4/27/2004   | n/a       | n/a     | n/a     | n/a              | n/a                | n/a  |
|                    | 7/29/2004   | nd        | nd      | nd      | nd               | nd                 | nd   |
| MP                 | 10/28/2004  | NΑ        | NΑ      | NΑ      | NΑ               | NΑ                 | NΑ   |
|                    | 12/8/2004   | nd        | nd      | nd      | nd               | nd                 | nd   |
| MP                 | 1/24/2005   | nd        | nd      | nd      | nd               | nd                 | nd   |
|                    | 4/28/2005   | NΑ        | NΑ      | NΑ      | NΑ               | NΑ                 | NΑ   |
|                    | 7/19/2005   | nd        | nd      | nd      | nd               | nd                 | nd   |
|                    | 10/6/2005   | N/A       | N/A     | N/A     | N/A              | N/A                | N/A  |
|                    | 1/30/2006   | ND        | ND      | ND      | ND               | ND                 | ND   |
|                    | 4/18/2006   | N/A       | N/A     | N/A     | N/A              | N/A                | N/A  |
|                    | 7/19/2006   | ND        | ND      | ND      | ND               | ND                 | ND   |
|                    | 10/26/2006  | n/a       | n/a     | n/a     | n/a              | n/a                | n/a  |
|                    | 1/15/2007   | ND        | ND      | ND      | ND               | ND                 | ND   |
|                    | 4/19/2007   | NA        | NA      | NA      | NA               | NA                 | NA   |
|                    | 7/19/2007   | ND        | ND      | ND      | ND               | ND                 | ND   |
|                    | 10/17/2007  | n/a       | n/a     | n/a     | n/a              | n/a                | n/a  |
| MW-2               | Sample Date | Gasoline  | Benzene | Toluene | EBenzene         | Xylenes            | MTBE |
|                    | 2/19/1999   | nd        | nd      | nd      | nd               | nd                 | nd   |
|                    | 5/10/1999   | nd<br>n/o | nd      | nd      | nd               | nd                 | nd   |
|                    | 8/30/1999   | n/a       | nd      | nd      | nd               | nd                 | nd   |
|                    | 11/23/1999  | nd        | nd<br>l | nd<br>l | nd               | nd                 | nd   |
|                    | 7/25/2003   | nd<br>/-  | nd      | nd      | nd               | nd                 | < 1  |
|                    | 10/30/2003  | n/a       |         |         |                  |                    |      |
|                    | 1/23/2004   | nd<br>/-  | nd      | nd      | nd               | nd                 | nd   |
|                    | 4/27/2004   | n/a       | n/a     | n/a     | n/a              | n/a                | n/a  |
|                    | 7/29/2004   | nd        | nd      | nd      | nd               | nd                 | nd   |
| MP                 | 10/28/2004  | ND        | ND      | ND      | ND               | ND                 | ND   |
|                    | 12/8/2004   | ND        | ND      | ND      | ND               | ND                 | 1.5  |

| MP         | 1/24/2005               | ND         | ND         | ND         | ND         | ND         | 9          |    |
|------------|-------------------------|------------|------------|------------|------------|------------|------------|----|
|            | 4/28/2005               | n a        | n a        | n a        | n a        | n a        | n a        |    |
|            | 7/19/2005               | nd         | nd         | nd         | nd         | nd         | nd         |    |
|            | 10/6/2005               | N/A        | N/A        | N/A        | N/A        | N/A        | N/A        |    |
|            | 1/30/2006               | ND         | ND         | ND         | ND         | ND         | ND         |    |
|            | 4/18/2006               | N/A        | N/A        | N/A        | N/A        | N/A        | N/A        |    |
|            | 7/19/2006               | ND         | ND         | ND         | ND         | ND         | ND         |    |
|            | 10/26/2006              | n/a        | n/a        | n/a        | n/a        | n/a        | n/a        |    |
|            | 1/15/2007               | ND         | ND         | ND         | ND         | ND         | ND         |    |
|            | 4/19/2007               | NA         | NA         | NA         | NA         | NA         | NA         |    |
|            | 7/19/2007               | ND         | ND         | ND         | ND         | ND         | ND         |    |
|            | 10/17/2007              | n/a        | n/a        | n/a        | n/a        | n/a        | n/a        |    |
| MW-3       | Sample Date             | Gasoline   | Benzene    | Toluene    | Ebenzene   | Xylenes    | MTBE       |    |
|            | 2/19/1999               | nd         | nd         | nd         | nd         | nd         | 1.5        | *1 |
| dup        | 2/19/1999               | nd         | nd         | nd         | nd         | nd         | n/a        |    |
|            | 5/10/1999               | nd         | nd         | nd         | nd         | nd         | 1.5        | *2 |
|            | 8/30/1999               | n/a        | nd         | nd         | nd         | nd         | nd         |    |
|            | 11/23/1999              | nd         | nd         | [.69]*     | [.58]*     | [1.3]*     | nd         | *3 |
|            | 1/6/2000                | nd         | nd         | nd         | nd         | nd         | 3.14       | *4 |
| Dup        | 1/6/2000                | nd         | nd         | nd         | nd         | nd         | 2.64       | *4 |
| Trip Blank | 2/10-22/99              | ND         | ND         | ND<br>,    | ND         | ND<br>,    | N/A        |    |
|            | 5/8-20/99               | n/a        | n/a        | n/a        | n/a        | n/a        | n/a        |    |
|            | 8/27-31/99              | n/a        | n/a        | n/a        | n/a        | n/a        | n/a        |    |
|            | 7/25/2003               | nd         | nd<br>/-   | nd         | nd<br>/-   | nd         | 1.1        |    |
|            | 10/30/2003<br>1/23/2004 | n/a<br>n/a | n/a<br>n/a | n/a<br>n/a | n/a<br>n/a | n/a<br>n/a | n/a<br>n/a |    |
|            | 4/27/2004               | n/a        | n/a        | n/a        | n/a        | n/a        | n/a        |    |
|            | 7/29/2004               | ND         | 6.4        | ND         | ND         | ND         | 8.8        |    |
| MP         | 10/28/2004              | 390        | 170        | 0.7        | nd         | 2.4        | 57         |    |
|            | 12/8/2004               | N/A        | N/A        | N/A        | N/A        | N/A        | N/A        |    |
| MP         | 1/24/2005               | 520        | 260        | 0.53       | nd         | 1.9        | 89         |    |
|            | 4/28/2005               | 220        | 110        | ND         | ND         | 0.63       | 54         |    |
|            | 7/19/2005               | 760        | 370        | 0.68       | ND         | 2.6        | 92         |    |
|            | 10/6/2005               | 190        | 71         | ND         | ND         | ND         | 49         |    |
|            | 1/30/2006               | 300        | 130        | 0.74       | ND         | 2.5        | 71         |    |
|            | 4/18/2006               | 380        | 190        | 1.0        | nd         | 4.0        | 66         |    |
|            | 7/19/2006               | 140        | 61         | ND         | 0.57       | 0.89       | 44         |    |
|            | 10/26/2006              | 91         | 20         | nd         | 0.55       | 3.5        | 46         |    |
|            | 1/15/2007               | ND         | 3.8        | ND         | ND         | ND         | 32         |    |
|            | 4/19/2007               | 52         | 2.9        | ND         | ND         | ND         | 57         |    |
|            | 7/19/2007               | ND         | 2.6        | ND         | ND         | ND         | 47         |    |
|            | 10/17/2007              | 55         | 1.5        | ND         | ND         | 1.3        | 42         |    |
|            |                         |            |            |            |            |            |            |    |

| MW-4 | Sample Date                                                                                                                                                                                                                                | Gasoline                                                                                                                             | Benzene                                                                                                                          | Toluene                                                                                                       | EBenzene                                                                                                | Xylenes                                                                                                                 | MTBE                                                                                                                                                                                                                                            |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 10/21/2002                                                                                                                                                                                                                                 | n/a                                                                                                                                  | 5,800                                                                                                                            | 6,200                                                                                                         | 3,500                                                                                                   | 18,000                                                                                                                  | 140                                                                                                                                                                                                                                             |
|      | 1/28/2003                                                                                                                                                                                                                                  | n/a                                                                                                                                  | 7,200                                                                                                                            | 3,500                                                                                                         | 2,700                                                                                                   | 15,000                                                                                                                  | 130                                                                                                                                                                                                                                             |
|      | 4/28/2003                                                                                                                                                                                                                                  | n/a                                                                                                                                  | 5,700                                                                                                                            | 850                                                                                                           | ND<120                                                                                                  | 10,000                                                                                                                  | 200                                                                                                                                                                                                                                             |
|      | 7/25/2003                                                                                                                                                                                                                                  | 97,000                                                                                                                               | 11,000                                                                                                                           | 8,400                                                                                                         | 4,900                                                                                                   | 24,000                                                                                                                  | nd<250                                                                                                                                                                                                                                          |
|      | 10/30/2003                                                                                                                                                                                                                                 | 77,000                                                                                                                               | 12,000                                                                                                                           | 9,300                                                                                                         | 3,200                                                                                                   | 16,000                                                                                                                  | nd < 200                                                                                                                                                                                                                                        |
|      | 1/23/2004                                                                                                                                                                                                                                  | 100,000                                                                                                                              | 16,000                                                                                                                           | 10,000                                                                                                        | 1,100                                                                                                   | 19,000                                                                                                                  | nd < 1,200                                                                                                                                                                                                                                      |
|      | 4/27/2004                                                                                                                                                                                                                                  | 78,000                                                                                                                               | 13,000                                                                                                                           | 7,800                                                                                                         | 3,200                                                                                                   | 17,000                                                                                                                  | nd < 1,000                                                                                                                                                                                                                                      |
| MP   | 7/29/2004<br>10/28/2004                                                                                                                                                                                                                    | 46,000<br>80,000                                                                                                                     | 8,300<br>15,000                                                                                                                  | 2,100<br>7,100                                                                                                | 2,000<br>3,500                                                                                          | 7,900<br>14,000                                                                                                         | nd<500<br>ND<1,000                                                                                                                                                                                                                              |
|      | 12/8/2004                                                                                                                                                                                                                                  | n/a                                                                                                                                  | N/A                                                                                                                              | 7,100<br>N/A                                                                                                  | 3,500<br>N/A                                                                                            | N/A                                                                                                                     | n/a                                                                                                                                                                                                                                             |
| MP   | 1/24/2005                                                                                                                                                                                                                                  | 70                                                                                                                                   | 9,900                                                                                                                            | 850                                                                                                           | 2,500                                                                                                   | 11,000                                                                                                                  | ND<1,000                                                                                                                                                                                                                                        |
|      | 4/28/2005                                                                                                                                                                                                                                  | 79,000                                                                                                                               | 9,400                                                                                                                            | 690                                                                                                           | 4000                                                                                                    | 16,000                                                                                                                  | nd<900                                                                                                                                                                                                                                          |
|      | 7/19/2005                                                                                                                                                                                                                                  | 35,000                                                                                                                               | 7,500                                                                                                                            | 92                                                                                                            | 1,900                                                                                                   | 3,900                                                                                                                   | nd<500                                                                                                                                                                                                                                          |
|      | 10/6/2005                                                                                                                                                                                                                                  | 65,000                                                                                                                               | 12,000                                                                                                                           | 2,100                                                                                                         | 3,200                                                                                                   | 11,000                                                                                                                  | ND<500                                                                                                                                                                                                                                          |
|      | 1/30/2006                                                                                                                                                                                                                                  | 45,000                                                                                                                               | 9,800                                                                                                                            | 380                                                                                                           | 2,400                                                                                                   | 6,500                                                                                                                   | nd<130                                                                                                                                                                                                                                          |
|      | 4/18/2006                                                                                                                                                                                                                                  | 58,000                                                                                                                               | 7,100                                                                                                                            | 420                                                                                                           | 3,900                                                                                                   | 13,000                                                                                                                  | nd < 500                                                                                                                                                                                                                                        |
|      | 7/19/2006                                                                                                                                                                                                                                  | 71,000                                                                                                                               | 10,000                                                                                                                           | 520                                                                                                           | 4,900                                                                                                   | 18,000                                                                                                                  | ND<500                                                                                                                                                                                                                                          |
|      | 10/26/2006                                                                                                                                                                                                                                 | 89,000                                                                                                                               | 13,000                                                                                                                           | 1600                                                                                                          | 4,300                                                                                                   | 19,000                                                                                                                  | nd< 800                                                                                                                                                                                                                                         |
|      | 1/15/2007                                                                                                                                                                                                                                  | 65,000                                                                                                                               | 10,000                                                                                                                           | 570                                                                                                           | 3,300                                                                                                   | 13,000                                                                                                                  | nd< 250                                                                                                                                                                                                                                         |
|      | 4/19/2007                                                                                                                                                                                                                                  | 52,000                                                                                                                               | 9,400                                                                                                                            | 300                                                                                                           | 3,600                                                                                                   | 8,900                                                                                                                   | ND<600                                                                                                                                                                                                                                          |
|      | 7/19/2007                                                                                                                                                                                                                                  | 21,000                                                                                                                               | 4,500                                                                                                                            | 26                                                                                                            | 1,100                                                                                                   | 370                                                                                                                     | ND<240                                                                                                                                                                                                                                          |
|      | 10/17/2007                                                                                                                                                                                                                                 | 28,000                                                                                                                               | 5,900                                                                                                                            | 87                                                                                                            | 1,700                                                                                                   | 1400                                                                                                                    | ND<240                                                                                                                                                                                                                                          |
|      |                                                                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                  |                                                                                                               |                                                                                                         |                                                                                                                         |                                                                                                                                                                                                                                                 |
| MW-5 | Sample Date                                                                                                                                                                                                                                | Gasoline                                                                                                                             | Benzene                                                                                                                          | Toluene                                                                                                       | EBenzene                                                                                                | Xylenes                                                                                                                 | MTBE                                                                                                                                                                                                                                            |
| MW-5 | 10/21/2002                                                                                                                                                                                                                                 | 65,000                                                                                                                               | 12,000*                                                                                                                          | 20,000*                                                                                                       | 1,600*                                                                                                  | 7,100*                                                                                                                  | ND<100                                                                                                                                                                                                                                          |
| MW-5 | 10/21/2002<br>1/28/2003                                                                                                                                                                                                                    | 65,000<br>n/a                                                                                                                        | 12,000*<br>9,100                                                                                                                 | 20,000*<br>6,600                                                                                              | 1,600*<br>720                                                                                           | 7,100*<br>4,000                                                                                                         | ND<100<br>ND<100                                                                                                                                                                                                                                |
| MW-5 | 10/21/2002<br>1/28/2003<br>4/28/2003                                                                                                                                                                                                       | 65,000<br>n/a<br>n/a                                                                                                                 | 12,000*<br>9,100<br>12,000                                                                                                       | 20,000*<br>6,600<br>8,300                                                                                     | 1,600*<br>720<br>ND<250                                                                                 | 7,100*<br>4,000<br>2,100                                                                                                | ND<100<br>ND<100<br>ND<250                                                                                                                                                                                                                      |
| MW-5 | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003                                                                                                                                                                                          | 65,000<br>n/a<br>n/a<br>62,000                                                                                                       | 12,000*<br>9,100<br>12,000<br>13,000                                                                                             | 20,000*<br>6,600<br>8,300<br>14,000                                                                           | 1,600*<br>720<br>ND<250<br>1,300                                                                        | 7,100*<br>4,000<br>2,100<br>5,200                                                                                       | ND<100<br>ND<100<br>ND<250<br>nd<250                                                                                                                                                                                                            |
| MW-5 | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003                                                                                                                                                                            | 65,000<br>n/a<br>n/a<br>62,000<br>33,000                                                                                             | 12,000*<br>9,100<br>12,000<br>13,000<br>7,500                                                                                    | 20,000*<br>6,600<br>8,300<br>14,000<br>2,200                                                                  | 1,600*<br>720<br>ND<250<br>1,300<br>490                                                                 | 7,100*<br>4,000<br>2,100<br>5,200<br>1,600                                                                              | ND<100<br>ND<100<br>ND<250<br>nd<250<br>nd < 100                                                                                                                                                                                                |
| MW-5 | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003                                                                                                                                                                                          | 65,000<br>n/a<br>n/a<br>62,000<br>33,000<br>97,000                                                                                   | 12,000*<br>9,100<br>12,000<br>13,000                                                                                             | 20,000*<br>6,600<br>8,300<br>14,000<br>2,200<br>20,000                                                        | 1,600*<br>720<br>ND<250<br>1,300                                                                        | 7,100*<br>4,000<br>2,100<br>5,200<br>1,600<br>7,900                                                                     | ND<100<br>ND<100<br>ND<250<br>nd<250<br>nd < 100<br>nd < 1,200                                                                                                                                                                                  |
| MW-5 | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004<br>4/27/2004                                                                                                                                                  | 65,000<br>n/a<br>n/a<br>62,000<br>33,000<br>97,000<br>39,000                                                                         | 12,000*<br>9,100<br>12,000<br>13,000<br>7,500<br>18,000<br>12,000                                                                | 20,000*<br>6,600<br>8,300<br>14,000<br>2,200<br>20,000<br>11,000                                              | 1,600*<br>720<br>ND<250<br>1,300<br>490<br>ND<120                                                       | 7,100*<br>4,000<br>2,100<br>5,200<br>1,600<br>7,900<br>4,300                                                            | ND<100<br>ND<100<br>ND<250<br>nd<250<br>nd < 100<br>nd < 1,200<br>nd < 1,000                                                                                                                                                                    |
| MW-5 | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004                                                                                                                                                               | 65,000<br>n/a<br>n/a<br>62,000<br>33,000<br>97,000                                                                                   | 12,000*<br>9,100<br>12,000<br>13,000<br>7,500<br>18,000                                                                          | 20,000*<br>6,600<br>8,300<br>14,000<br>2,200<br>20,000                                                        | 1,600* 720 ND<250 1,300 490 ND<120 920                                                                  | 7,100*<br>4,000<br>2,100<br>5,200<br>1,600<br>7,900                                                                     | ND<100<br>ND<100<br>ND<250<br>nd<250<br>nd < 100<br>nd < 1,200                                                                                                                                                                                  |
|      | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004<br>4/27/2004<br>7/29/2004                                                                                                                                     | 65,000<br>n/a<br>n/a<br>62,000<br>33,000<br>97,000<br>39,000<br>47,000                                                               | 12,000* 9,100 12,000 13,000 7,500 18,000 12,000 11,000                                                                           | 20,000*<br>6,600<br>8,300<br>14,000<br>2,200<br>20,000<br>11,000<br>5,500                                     | 1,600* 720 ND<250 1,300 490 ND<120 920 690                                                              | 7,100*<br>4,000<br>2,100<br>5,200<br>1,600<br>7,900<br>4,300<br>2,800                                                   | ND<100<br>ND<100<br>ND<250<br>nd<250<br>nd < 100<br>nd < 1,200<br>nd < 1,000<br>nd < 1,000                                                                                                                                                      |
|      | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004<br>4/27/2004<br>7/29/2004<br>10/28/2004                                                                                                                       | 65,000<br>n/a<br>n/a<br>62,000<br>33,000<br>97,000<br>39,000<br>47,000<br>130,000                                                    | 12,000* 9,100 12,000 13,000 7,500 18,000 12,000 11,000 23,000                                                                    | 20,000*<br>6,600<br>8,300<br>14,000<br>2,200<br>20,000<br>11,000<br>5,500<br>25,000                           | 1,600* 720 ND<250 1,300 490 ND<120 920 690 2,000                                                        | 7,100*<br>4,000<br>2,100<br>5,200<br>1,600<br>7,900<br>4,300<br>2,800<br>9,700                                          | ND<100<br>ND<100<br>ND<250<br>nd<250<br>nd < 100<br>nd < 1,200<br>nd < 1,000<br>nd < 1,000<br>ND<                                                                                                                                               |
| MP   | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004<br>4/27/2004<br>7/29/2004<br>10/28/2004<br>12/8/2004                                                                                                          | 65,000<br>n/a<br>n/a<br>62,000<br>33,000<br>97,000<br>39,000<br>47,000<br>130,000<br>n/a                                             | 12,000* 9,100 12,000 13,000 7,500 18,000 12,000 11,000 23,000 n/a                                                                | 20,000*<br>6,600<br>8,300<br>14,000<br>2,200<br>20,000<br>11,000<br>5,500<br>25,000<br>N/A                    | 1,600* 720 ND<250 1,300 490 ND<120 920 690 2,000 N/A                                                    | 7,100*<br>4,000<br>2,100<br>5,200<br>1,600<br>7,900<br>4,300<br>2,800<br>9,700<br>N/A                                   | ND<100<br>ND<100<br>ND<250<br>nd<250<br>nd < 100<br>nd < 1,200<br>nd < 1,000<br>nd < 1,000<br>ND<<br>N/A                                                                                                                                        |
| MP   | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004<br>4/27/2004<br>7/29/2004<br>10/28/2004<br>1/28/2004<br>1/24/2005                                                                                             | 65,000<br>n/a<br>n/a<br>62,000<br>33,000<br>97,000<br>39,000<br>47,000<br>130,000<br>n/a<br>150,000                                  | 12,000* 9,100 12,000 13,000 7,500 18,000 12,000 11,000 23,000 n/a 22,000                                                         | 20,000*<br>6,600<br>8,300<br>14,000<br>2,200<br>20,000<br>11,000<br>5,500<br>25,000<br>N/A<br>25,000          | 1,600* 720 ND<250 1,300 490 ND<120 920 690 2,000 N/A 2,100                                              | 7,100*<br>4,000<br>2,100<br>5,200<br>1,600<br>7,900<br>4,300<br>2,800<br>9,700<br>N/A<br>12,000                         | ND<100<br>ND<100<br>ND<250<br>nd<250<br>nd < 100<br>nd < 1,200<br>nd < 1,000<br>nd < 1,000<br>ND<<br>N/A<br>nd<1,000                                                                                                                            |
| MP   | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004<br>4/27/2004<br>7/29/2004<br>10/28/2004<br>1/24/2005<br>4/28/2005                                                                                             | 65,000<br>n/a<br>n/a<br>62,000<br>33,000<br>97,000<br>39,000<br>47,000<br>130,000<br>n/a<br>150,000<br>89,000                        | 12,000* 9,100 12,000 13,000 7,500 18,000 12,000 11,000 23,000 n/a 22,000 18,000                                                  | 20,000* 6,600 8,300 14,000 2,200 20,000 11,000 5,500 25,000 N/A 25,000 11,000                                 | 1,600* 720 ND<250 1,300 490 ND<120 920 690 2,000 N/A 2,100 1,600                                        | 7,100*<br>4,000<br>2,100<br>5,200<br>1,600<br>7,900<br>4,300<br>2,800<br>9,700<br>N/A<br>12,000<br>8,900                | ND<100<br>ND<100<br>ND<250<br>nd<250<br>nd < 100<br>nd < 1,200<br>nd < 1,000<br>nd < 1,000<br>ND<<br>N/A<br>nd<1,000<br>nd < 500                                                                                                                |
| MP   | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004<br>4/27/2004<br>7/29/2004<br>10/28/2004<br>1/24/2005<br>4/28/2005<br>7/19/2005                                                                                | 65,000<br>n/a<br>n/a<br>62,000<br>33,000<br>97,000<br>39,000<br>47,000<br>130,000<br>n/a<br>150,000<br>89,000<br>39,000              | 12,000* 9,100 12,000 13,000 7,500 18,000 12,000 11,000 23,000 n/a 22,000 18,000 11,000                                           | 20,000* 6,600 8,300 14,000 2,200 20,000 11,000 5,500 25,000 N/A 25,000 11,000 200                             | 1,600* 720 ND<250 1,300 490 ND<120 920 690 2,000 N/A 2,100 1,600 710                                    | 7,100* 4,000 2,100 5,200 1,600 7,900 4,300 2,800 9,700 N/A 12,000 8,900 1,700                                           | ND<100<br>ND<100<br>ND<250<br>nd<250<br>nd < 100<br>nd < 1,200<br>nd < 1,000<br>nd < 1,000<br>ND<<br>N/A<br>nd<1,000<br>nd < 500<br>nd < 500                                                                                                    |
| MP   | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004<br>4/27/2004<br>7/29/2004<br>10/28/2004<br>1/24/2005<br>4/28/2005<br>7/19/2005<br>10/6/2005<br>1/30/2006<br>4/18/2006                                         | 65,000 n/a n/a 62,000 33,000 97,000 39,000 47,000 130,000 n/a 150,000 89,000 39,000 58,000 61,000 36,000                             | 12,000* 9,100 12,000 13,000 7,500 18,000 11,000 23,000 n/a 22,000 18,000 11,000 17,000 15,000 13,000                             | 20,000* 6,600 8,300 14,000 2,200 20,000 11,000 5,500 25,000 N/A 25,000 11,000 200 410 5,500 490               | 1,600* 720 ND<250 1,300 490 ND<120 920 690 2,000 N/A 2,100 1,600 710 1,000 1,100 660                    | 7,100* 4,000 2,100 5,200 1,600 7,900 4,300 2,800 9,700 N/A 12,000 8,900 1,700 6,600 5,600 3,300                         | ND<100<br>ND<100<br>ND<250<br>nd<250<br>nd < 100<br>nd < 1,200<br>nd < 1,000<br>nd < 1,000<br>ND<<br>N/A<br>nd<1,000<br>nd < 500<br>nd < 500                            |
| MP   | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004<br>4/27/2004<br>7/29/2004<br>10/28/2004<br>1/24/2005<br>4/28/2005<br>7/19/2005<br>10/6/2005<br>1/30/2006<br>4/18/2006<br>7/19/2006                            | 65,000 n/a n/a 62,000 33,000 97,000 39,000 47,000 130,000 n/a 150,000 89,000 39,000 58,000 61,000 49,000                             | 12,000* 9,100 12,000 13,000 7,500 18,000 11,000 23,000 n/a 22,000 18,000 17,000 15,000 13,000 16,000                             | 20,000* 6,600 8,300 14,000 2,200 20,000 11,000 5,500 25,000 N/A 25,000 11,000 200 410 5,500 490 460           | 1,600* 720 ND<250 1,300 490 ND<120 920 690 2,000 N/A 2,100 1,600 710 1,000 1,100 660 ND<50              | 7,100* 4,000 2,100 5,200 1,600 7,900 4,300 2,800 9,700 N/A 12,000 8,900 1,700 6,600 5,600 3,300 7,700                   | ND<100 ND<100 ND<250 nd<250 nd<250 nd < 100 nd < 1,200 nd < 1,000 nd < 1,000 ND< N/A nd<1,000 nd < 500 nd < 500 ND<500 nd < 500 ND<500 ND<500 ND<500                                                                                            |
| MP   | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004<br>4/27/2004<br>7/29/2004<br>10/28/2004<br>1/24/2005<br>4/28/2005<br>7/19/2005<br>10/6/2005<br>1/30/2006<br>4/18/2006<br>7/19/2006<br>10/26/2006              | 65,000 n/a n/a 62,000 33,000 97,000 39,000 47,000 130,000 n/a 150,000 89,000 39,000 58,000 61,000 49,000 55,000                      | 12,000* 9,100 12,000 13,000 7,500 18,000 11,000 23,000 n/a 22,000 18,000 11,000 17,000 15,000 13,000 16,000 14,000               | 20,000* 6,600 8,300 14,000 2,200 20,000 11,000 5,500 25,000 N/A 25,000 11,000 200 410 5,500 490 460 430       | 1,600* 720 ND<250 1,300 490 ND<120 920 690 2,000 N/A 2,100 1,600 710 1,000 1,100 660 ND<50 1200         | 7,100* 4,000 2,100 5,200 1,600 7,900 4,300 2,800 9,700 N/A 12,000 8,900 1,700 6,600 5,600 3,300 7,700 6,700             | ND<100 ND<100 ND<250 nd<250 nd<250 nd < 100 nd < 1,200 nd < 1,000 nd < 1,000 ND< N/A nd<1,000 nd < 500 nd < 500 ND<500 nd<1,000 |
| MP   | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004<br>4/27/2004<br>7/29/2004<br>10/28/2004<br>12/8/2004<br>1/24/2005<br>4/28/2005<br>7/19/2005<br>1/30/2006<br>4/18/2006<br>7/19/2006<br>10/26/2006<br>1/15/2007 | 65,000 n/a n/a 62,000 33,000 97,000 39,000 47,000 130,000 n/a 150,000 89,000 39,000 58,000 61,000 36,000 49,000 55,000 34,000        | 12,000* 9,100 12,000 13,000 7,500 18,000 11,000 23,000 n/a 22,000 11,000 17,000 15,000 13,000 16,000 14,000 11,000               | 20,000* 6,600 8,300 14,000 2,200 20,000 11,000 5,500 25,000 N/A 25,000 11,000 200 410 5,500 490 460 430 88    | 1,600* 720 ND<250 1,300 490 ND<120 920 690 2,000 N/A 2,100 1,600 710 1,000 1,100 660 ND<50 1200 720     | 7,100* 4,000 2,100 5,200 1,600 7,900 4,300 2,800 9,700 N/A 12,000 8,900 1,700 6,600 5,600 3,300 7,700 6,700 2,600       | ND<100 ND<100 ND<250 nd<250 nd<250 nd<1,000 nd<1,000 nd<1,000 nd<1,000 nd<500 nd<1,000 ND<250                                          |
| MP   | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004<br>4/27/2004<br>7/29/2004<br>10/28/2004<br>1/24/2005<br>4/28/2005<br>7/19/2005<br>1/30/2006<br>4/18/2006<br>7/19/2006<br>10/26/2006<br>1/15/2007<br>4/19/2007 | 65,000 n/a n/a 62,000 33,000 97,000 39,000 47,000 130,000 n/a 150,000 89,000 39,000 58,000 61,000 36,000 49,000 55,000 34,000 29,000 | 12,000* 9,100 12,000 13,000 7,500 18,000 12,000 11,000 23,000 n/a 22,000 18,000 11,000 15,000 13,000 16,000 14,000 11,000 11,000 | 20,000* 6,600 8,300 14,000 2,200 20,000 11,000 5,500 25,000 N/A 25,000 11,000 200 410 5,500 490 460 430 88 63 | 1,600* 720 ND<250 1,300 490 ND<120 920 690 2,000 N/A 2,100 1,600 710 1,000 1,100 660 ND<50 1200 720 700 | 7,100* 4,000 2,100 5,200 1,600 7,900 4,300 2,800 9,700 N/A 12,000 8,900 1,700 6,600 5,600 3,300 7,700 6,700 2,600 2,200 | ND<100 ND<100 ND<250 nd<250 nd<250 nd<1,000 nd<1,000 nd<1,000 nd<1,000 nd<500 ND<130                                     |
| MP   | 10/21/2002<br>1/28/2003<br>4/28/2003<br>7/25/2003<br>10/30/2003<br>1/23/2004<br>4/27/2004<br>7/29/2004<br>10/28/2004<br>12/8/2004<br>1/24/2005<br>4/28/2005<br>7/19/2005<br>1/30/2006<br>4/18/2006<br>7/19/2006<br>10/26/2006<br>1/15/2007 | 65,000 n/a n/a 62,000 33,000 97,000 39,000 47,000 130,000 n/a 150,000 89,000 39,000 58,000 61,000 36,000 49,000 55,000 34,000        | 12,000* 9,100 12,000 13,000 7,500 18,000 11,000 23,000 n/a 22,000 11,000 17,000 15,000 13,000 16,000 14,000 11,000               | 20,000* 6,600 8,300 14,000 2,200 20,000 11,000 5,500 25,000 N/A 25,000 11,000 200 410 5,500 490 460 430 88    | 1,600* 720 ND<250 1,300 490 ND<120 920 690 2,000 N/A 2,100 1,600 710 1,000 1,100 660 ND<50 1200 720     | 7,100* 4,000 2,100 5,200 1,600 7,900 4,300 2,800 9,700 N/A 12,000 8,900 1,700 6,600 5,600 3,300 7,700 6,700 2,600       | ND<100 ND<100 ND<250 nd<250 nd<250 nd<1,000 nd<1,000 nd<1,000 nd<1,000 nd<500 nd<1,000 ND<250                                          |

### NOTES:

| nd  | Analyte not detected at stated reporting limit                       |
|-----|----------------------------------------------------------------------|
| n/a | Not analyzed                                                         |
| u/n | Unless otherwise noted (Reporting limit)                             |
| MP  | Sampling by Micro Purge technique                                    |
| *1  | Analyzed by EPA method 8260B, reporting limit was 1 µg/l.            |
| *2  | Estimated value below method reporting limit of 2 µg/l.              |
| *3  | Inconsistent contaminant pattern. Sample result spurious, re-sampled |
| *4  | Reporting limit at 2.5 μg/l.                                         |

# TEST EQUIPMENT CALIBRATION LOG

| PROJECT NAM           | 1E Sultun Gro       | up@ 2600 Gran        | el Auc.            | PROJECT NUMBER 071017-151  |                                  |           |          |
|-----------------------|---------------------|----------------------|--------------------|----------------------------|----------------------------------|-----------|----------|
| EQUIPMENT<br>NAME     | EQUIPMENT<br>NUMBER | DATE/TIME OF<br>TEST | STANDARDS<br>USED, | EQUIPMENT<br>READING       | CALIBRATED TO:<br>OR WITHIN 10%: | TEMP.     | INITIALS |
| Myron L<br>ul Name W  | 17813               | 0825                 | pH 7   cond.       | 9.03   3868<br>9.93   3868 | Y                                | 19.70     | RE       |
| 2100P<br>Tarbidimeter | 21019               | 0830                 | 20<br>155 NTU      | 19<br>95<br>814            | Y                                | Camerings | 6        |
|                       |                     |                      |                    |                            |                                  |           |          |
|                       |                     |                      |                    |                            |                                  |           |          |
|                       |                     |                      |                    |                            |                                  |           |          |
|                       |                     |                      |                    |                            |                                  |           |          |
|                       |                     |                      |                    |                            |                                  |           |          |
|                       |                     |                      |                    |                            |                                  |           |          |
|                       |                     |                      |                    |                            |                                  |           |          |
|                       |                     |                      |                    |                            |                                  |           |          |
|                       |                     |                      |                    |                            |                                  |           |          |

# WELLHEAD INSPECTION CHECKLIST

Page \_\_\_\_\_of \_\_\_\_

| Date 10/17/0             | 7                                                    | Client                          | Suffor                                  | - Gront         | >                         |                  |                                   |                                   |  |
|--------------------------|------------------------------------------------------|---------------------------------|-----------------------------------------|-----------------|---------------------------|------------------|-----------------------------------|-----------------------------------|--|
| Site Address7            | 2600 40                                              | ant A                           | м.                                      | , San           | Loren                     | 20               |                                   |                                   |  |
| Job Number               | ob Number 07/017-1051                                |                                 |                                         | 1               |                           | (CF              |                                   |                                   |  |
| Well ID                  | Well Inspected -<br>No Corrective<br>Action Required | Water Bailed<br>From<br>Wellbox | Wellbox<br>Components<br>Cleaned        | Cap<br>Replaced | Debris<br>Removed<br>From | Lock<br>Replaced | Other Action<br>Taken<br>(explain | Well Not<br>Inspected<br>(explain |  |
|                          | ><                                                   | VIO.IDOX                        | Oloumou                                 |                 | Wellbox                   |                  | below)                            | below)                            |  |
| MWI                      |                                                      |                                 |                                         |                 |                           |                  |                                   |                                   |  |
| MWZ                      | 3/                                                   |                                 |                                         |                 | 1 4                       |                  |                                   |                                   |  |
| MWS                      |                                                      |                                 |                                         |                 | Jan. A ser                | <u> </u>         |                                   |                                   |  |
| MW2<br>MW3<br>MW4<br>MW5 |                                                      |                                 | & 1 m                                   | £.              |                           |                  |                                   |                                   |  |
| MWS                      | ×                                                    |                                 | \$                                      | Alexa, 1        |                           |                  |                                   | ÷ .                               |  |
|                          |                                                      |                                 |                                         |                 |                           |                  |                                   |                                   |  |
|                          |                                                      |                                 |                                         | eas.            |                           |                  |                                   |                                   |  |
|                          |                                                      |                                 |                                         |                 |                           |                  |                                   |                                   |  |
|                          |                                                      |                                 |                                         |                 |                           |                  |                                   |                                   |  |
|                          |                                                      |                                 |                                         |                 |                           |                  |                                   |                                   |  |
| ***                      |                                                      |                                 |                                         |                 |                           |                  |                                   | , ,                               |  |
|                          |                                                      |                                 |                                         |                 |                           |                  |                                   | A second                          |  |
|                          |                                                      |                                 |                                         | 74              |                           |                  |                                   |                                   |  |
|                          |                                                      |                                 | :                                       |                 |                           |                  |                                   |                                   |  |
|                          |                                                      |                                 | _ & K                                   |                 |                           | · :              | 1.4                               | ,                                 |  |
|                          |                                                      |                                 |                                         |                 |                           |                  |                                   |                                   |  |
| NOTES:                   | ٠.                                                   |                                 |                                         |                 |                           |                  |                                   |                                   |  |
|                          |                                                      | )<br>- (1888)                   |                                         |                 | - A                       |                  |                                   |                                   |  |
|                          | i                                                    |                                 |                                         |                 | 4                         |                  |                                   | æ                                 |  |
|                          |                                                      |                                 |                                         | ·               | ,<br>,                    |                  |                                   |                                   |  |
|                          |                                                      |                                 | ·····                                   |                 |                           |                  |                                   |                                   |  |
| april 1                  |                                                      |                                 | • • • • • • • • • • • • • • • • • • • • |                 | todaya kariffani          | <u> </u>         |                                   | ,                                 |  |

# WELL GAUGING DATA

| Project | # 07101 | 7-KF1    | _ Date _ | 10/17/0- | 7(     | Client | Sutton | Group | 1 |
|---------|---------|----------|----------|----------|--------|--------|--------|-------|---|
| Site    | 7600    | Grant Au | e> 1,    | Sen      | Lorenz | _o     |        | į     |   |

| Well ID | Time | Well<br>Size<br>(in.)                 | Sheen /<br>Odor | Depth to<br>Immiscible<br>Liquid (ft.) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1    | Depth to well bottom (ft.) | Survey Point: TOB or TOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Notes  |
|---------|------|---------------------------------------|-----------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| MUI     | 0857 | 7                                     |                 | 1                                      | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ()   | 7.35 | 12.33                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Notes  |
| MWZ     | 3907 | 7                                     |                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      | 15.32                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| MU3     | 0855 | 2                                     |                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 6.53 | 15.32                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| MWY     | 0844 | 2                                     |                 |                                        | sv.<br>Sv.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ÷    | 5-A  | 13.88                      | The second secon |        |
| MWS     | 0903 | 2                                     |                 |                                        | e de la companya de l |      | 4.54 | 13.70                      | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •      |
|         |      |                                       |                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ,    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|         |      |                                       |                 |                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|         |      | · · · · · · · · · · · · · · · · · · · |                 | de                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|         |      |                                       |                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 1. |      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|         |      |                                       |                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 23   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rich ( |
|         |      |                                       |                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|         |      | 900.                                  |                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|         |      |                                       |                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      | · 0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|         |      |                                       |                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·    |      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|         |      |                                       |                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|         |      |                                       |                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1  |      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|         |      | ·                                     |                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |

# WELL MONITORING DATA SHEET

| Project #: 07,017-1CF1 Client: Suffer |                                                           |              |                                                                    |                                               |                       |                                                                              |  |  |  |  |
|---------------------------------------|-----------------------------------------------------------|--------------|--------------------------------------------------------------------|-----------------------------------------------|-----------------------|------------------------------------------------------------------------------|--|--|--|--|
| Sampler: Date: (0/17/57               |                                                           |              |                                                                    |                                               |                       |                                                                              |  |  |  |  |
| Well I.D.:                            | ALL                                                       | 3 /          | MWZ                                                                | Well Diameter                                 | :(2) 3 4              | 6 8                                                                          |  |  |  |  |
| Total Well                            | Depth (TD                                                 | ): <u>(5</u> | 1.60                                                               | Depth to Wate                                 | r (DTW): +5           | 6.53                                                                         |  |  |  |  |
| Depth to Fr                           | ee Product                                                | t:           |                                                                    | Thickness of F                                | Free Product (fee     | et):                                                                         |  |  |  |  |
| Referenced                            | to:                                                       | PVC          | Grade                                                              | D.O. Meter (if                                | req'd):               | YSI HACH                                                                     |  |  |  |  |
| DTW with                              | 80% Rech                                                  | arge [(H     | leight of Water                                                    | Column x 0.20                                 | ) + DTW]: {           | 1.34                                                                         |  |  |  |  |
| Purge Method:                         | Bailer<br>Disposable B<br>Positive Air I<br>Electric Subn | Displaceme   | *                                                                  | Waterra Peristaltic tion Pump  Well Diamet 1" | 0.04 4"               | Disposable Bailer Extraction Port Dedicated Tubing  Diameter Multiplier 0.65 |  |  |  |  |
| 1 Case Volume                         | Gals.) X<br>Speci                                         | fied Volun   | ${\text{nes}} = \frac{\text{Calculated Vo}}{\text{Calculated Vo}}$ | _ Gals. 2" 3"                                 | 0.16 6"<br>0.37 Other | 1.47<br>radius <sup>2</sup> * 0.163                                          |  |  |  |  |
| Time                                  | Temp<br>(°F or 🔊                                          | рН<br>6.94   | Cond.<br>(mS or (µS))                                              | Turbidity<br>(NTUs)                           | Gals. Removed         | Observations                                                                 |  |  |  |  |
| 0948                                  | 22.6                                                      | 6.84         | 16,670                                                             | ี                                             | 2 201                 | 70000                                                                        |  |  |  |  |
| 0951                                  | 22.3                                                      | 6.81         | 17,910                                                             | *41                                           | 4.5                   | Yellow<br>Yellow                                                             |  |  |  |  |
|                                       |                                                           |              |                                                                    |                                               |                       | vi.                                                                          |  |  |  |  |
| Did well de                           | water?                                                    | Yes /        | No)                                                                | Gallons actual                                | ly evacuated:         | 1.5                                                                          |  |  |  |  |
| Sampling D                            | ate: (5/17                                                | 1/07         | Sampling Time                                                      | e: 0955                                       | Depth to Water        |                                                                              |  |  |  |  |
| Sample I.D.                           | : MW3                                                     | ,            |                                                                    | Laboratory:                                   | Kiff CalScience       | r: 11.93 Other McCampbell                                                    |  |  |  |  |
| Analyzed fo                           | or: TPH-G                                                 | BTEX         | MTBE TPH-D                                                         | Oxygenates (5)                                | Other: See            | DC                                                                           |  |  |  |  |
| EB I.D. (if a                         | applicable)                                               |              | @<br>Time                                                          | Duplicate I.D.                                | (if applicable):      |                                                                              |  |  |  |  |
| Analyzed fo                           | or: TPH-G                                                 | BTEX         | MTBE TPH-D                                                         | Oxygenates (5)                                | Other:                |                                                                              |  |  |  |  |
| D.O. (if req                          | d): Pr                                                    | e-purge:     |                                                                    | mg/ <sub>L</sub> F                            | ost-purge:            | mg/ <sub>L</sub>                                                             |  |  |  |  |
| O.R.P. (if re                         | eq'd): Pr                                                 | e-purge:     |                                                                    | mV F                                          | ost-purge:            | mV                                                                           |  |  |  |  |

# WELL MONITORING DATA SHEET

| Project #: 071017-1051 |                                                           |            |                      | Client: Sutton                       |                |                              |                                                    |  |  |
|------------------------|-----------------------------------------------------------|------------|----------------------|--------------------------------------|----------------|------------------------------|----------------------------------------------------|--|--|
| Sampler:               |                                                           |            | Date:                | 10/1-                                | 1/07           |                              |                                                    |  |  |
| Well I.D.:             | MWY                                                       |            |                      | Well Diameter: 2 3 4 6 8             |                |                              |                                                    |  |  |
| Total Well             | Depth (TD                                                 | p): 13     | 5.88                 | Depth to Water (DTW): 5.79           |                |                              |                                                    |  |  |
| Depth to Fr            | ee Produc                                                 | <b>.</b>   | <i>r</i>             | Thick                                | ness of F      | ree Product (fe              | et):                                               |  |  |
| Referenced             | to:                                                       | Q AVO      | Grade                | D.O. N                               | Meter (if      | req'd):                      | YSI HACH                                           |  |  |
| DTW with               | 80% Rech                                                  | arge [(H   | leight of Water      | Colum                                | n x 0.20)      | $) + DTW]: - \frac{1}{\ell}$ | 7,41                                               |  |  |
| Purge Method:          | Bailer<br>Disposable B<br>Positive Air I<br>Electric Subn | Displaceme | ent Extrac<br>Other  | Waterra<br>Peristaltic<br>ction Pump |                | Sampling Method: Other:      | Disposable Bailer Extraction Port Dedicated Tubing |  |  |
| 1.7                    | 7-1- ) V                                                  | 3          | = 3.9                | C-I-                                 | 1"<br>2"       | 0.04 4"<br>0.16 6"           | 0.65<br>1.47                                       |  |  |
| 1 Case Volume          | Gals.) X<br>Speci                                         | fied Volun |                      | _ Gals.<br>olume                     | 3"             | 0.37 Other                   | 3                                                  |  |  |
| Time                   | Temp                                                      | pH         | Cond.<br>(mS or (S)) | (N                                   | bidity<br>TUs) | Gals. Removed                | Observations                                       |  |  |
| 1590                   | 35.2                                                      | 6.78       | 4743                 | 1.                                   | 27             | 1.3                          | yellow                                             |  |  |
| 0923                   | 73.5                                                      | 6.64       | 13,630               | 1                                    | 75             | 7.6                          | i                                                  |  |  |
| 0926                   | 23.2                                                      | 6.64       | 14,140               | (                                    | 17             | 3,9                          | Li                                                 |  |  |
|                        |                                                           |            |                      |                                      | <u> </u>       |                              |                                                    |  |  |
| Did well de            | water?                                                    | Yes        | (No)                 | Gallon                               | s actuall      | y evacuated:                 | 3.9                                                |  |  |
| Sampling D             | ate: \0/17                                                | 107        | Sampling Time        | e: ()97                              | 30             | Depth to Wate                | r: (0.61                                           |  |  |
| Sample I.D.            | : MW4                                                     |            |                      | Labora                               | ıtory:         | Kiff CalScience              | Other Mc Cany Gel                                  |  |  |
| Analyzed fo            | or: TPH-G                                                 | BTEX       | MTBE TPH-D           | Oxygen                               | ates (5)       | Other: See                   | Coc                                                |  |  |
| EB I.D. (if a          | applicable)                                               | :          | @<br>Time            | Duplic                               | ate I.D.       | (if applicable):             |                                                    |  |  |
| Analyzed fo            | or: TPH-G                                                 | BTEX       | MTBE TPH-D           | Oxygen                               | ates (5)       | Other:                       |                                                    |  |  |
| D.O. (if req           | d): Pr                                                    | e-purge:   |                      | mg/ <sub>L</sub>                     | P              | ost-purge:                   | mg/L                                               |  |  |
| O.R.P. (if re          | eq'd): Pr                                                 | e-purge:   |                      | mV                                   | P              | ost-purge:                   | mV                                                 |  |  |

# WELL MONITORING DATA SHEET

| Project #: 071817-KE1                                                                 | (                     | Client:                           | Sut                | ton                  |              |                                                              |  |  |  |
|---------------------------------------------------------------------------------------|-----------------------|-----------------------------------|--------------------|----------------------|--------------|--------------------------------------------------------------|--|--|--|
| Sampler: KF                                                                           | I                     | Date:                             | (0/10              | 7/27                 |              |                                                              |  |  |  |
| Well I.D.: MU5                                                                        | V                     | Well D                            | iameter            | : (2) 3              | 4            | 6 8                                                          |  |  |  |
| Total Well Depth (TD): \3                                                             | 0 1                   | Depth to Water (DTW): 4.54        |                    |                      |              |                                                              |  |  |  |
| Depth to Free Product:                                                                | Т                     | Thickness of Free Product (feet): |                    |                      |              |                                                              |  |  |  |
| Referenced to: PVC                                                                    | Grade I               | D.O. N                            | leter (if          | req'd):              |              | YSI HACH                                                     |  |  |  |
| DTW with 80% Recharge [(Heig                                                          | ht of Water C         | Columi                            | n x 0.20)          | + DTW]:              |              |                                                              |  |  |  |
| Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible |                       | Waterra<br>eristaltic<br>on Pump  |                    | Sampling N           | fethod:      | Disposable Bailer Extraction Port Dedicated Tubing           |  |  |  |
| 15                                                                                    |                       |                                   | Well Diamete<br>1" | r Multiplier<br>0.04 | Well I<br>4" | Diameter Multiplier<br>0.65                                  |  |  |  |
| (Gals.) X Specified Volumes =                                                         | Calculated Volum      | Gals.<br>me                       | 2"<br>3"           | 0.16<br>0.37         | 6"<br>Other  | 1.47<br>radius <sup>2</sup> * 0.163                          |  |  |  |
| Temp (°F or CC) pH (0) 73.1 6.73 7 (0) 7 72.8 6.81                                    | Cond. mS or (µS) 8776 | TN)                               | oidity<br>TUs)     | Gals. Rem            | oved         | Observations  Yellow, color  Wellow, color  durtyplits, odol |  |  |  |
|                                                                                       |                       |                                   |                    |                      |              |                                                              |  |  |  |
| Did well dewater? Yes No                                                              | G                     | allons                            | actually           | y evacuate           | d:           | ( ) J                                                        |  |  |  |
| Sampling Date: 10/17/07 San                                                           | npling Time:          | 102                               | 5                  | Depth to             | Wate         | r: (2.86                                                     |  |  |  |
| Sample I.D.: MUS                                                                      | L                     | aborat                            | tory:              | Kiff CalS            | cience       | Other McCarpbell                                             |  |  |  |
| Analyzed for: трн-с втех мте                                                          | BE TPH-D O            | xygena                            | tes (5)            | Other: Se            | e            | Count Co                                                     |  |  |  |
| EB I.D. (if applicable):                                                              | Time D                | uplica                            | ite I.D. (         | if applical          | ole):        | , ,                                                          |  |  |  |
| Analyzed for: трн-G втех мте                                                          | BE TPH-D O            | xygena                            | tes (5)            | Other:               |              |                                                              |  |  |  |
| D.O. (if req'd): Pre-purge:                                                           |                       | mg/L                              | Po                 | ost-purge:           |              | $^{ m mg}/_{ m L}$                                           |  |  |  |
| O.R.P. (if req'd): Pre-purge:                                                         |                       | тV                                | Po                 | ost-purge:           |              | mV                                                           |  |  |  |

| Blaine Tech Services Inc | Client Project ID: #071017-KFI | Date Sampled: 10/17/07   |
|--------------------------|--------------------------------|--------------------------|
| 1680 Rogers Avenue       |                                | Date Received: 10/18/07  |
| San Jose, CA 95112-1105  | Client Contact: John Sutton    | Date Reported: 10/24/07  |
| 54113050, 011 75112 1105 | Client P.O.:                   | Date Completed: 10/24/07 |

WorkOrder: 0710645

October 24, 2007

Dear John:

Enclosed are:

- 1). the results of 4 analyzed samples from your #071017-KFI project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

0710645 1680 ROGERS AVENUE BLAINE McCampbell CONDUCT ANALYSIS TO DETECT SAN JOSE, CALIFORNIA 95112-1105 ALL ANALYSES MUST MEET SPECIFICATIONS AND DETECTION FAX (408) 573-7771 LIMITS SET BY CALIFORNIA DHS AND TECH SERVICES, INC. PHONE (408) 573-0555 ☐ EPA RWQCB LIA CHAIN OF CUSTODY OTHER BTS# 071017-KF1 CONTAINERS CLIENT SPECIAL INSTRUCTIONS The Sutton Group SITE 2600 Grant Ave. Invoice and Report to :The Sutton Group / John Sutton ALL San Lorenzo, CA 8015 Sample ID = Field Point Name 8021 Please provide results in EDF format to John Sutton @ suttongeo@sbcglobal.net by CONTAINERS MATRIX BTEX Global ID = T0600101928 S= SOIL W=H<sub>2</sub>0 SAMPLE I.D. DATE TIME TOTAL ADD'L INFORMATION STATUS CONDITION LAB SAMPLE # 1000 TB W HCL voas X X X Trip Blank 0955 MW3 W HCL voas X X X HCL voas MW4 X X X 025 MW5 HCL voas X X X APPROPRIATE DECHLORINATED IN LAB O&G | METALS | 1075 SAMPLING DATE SAMPLING TIME RESULTS NEEDED K. Cordes COMPLETED PERFORMED BY NO LATER THAN Standard TAT RELEASED BY DATE TIME RECEIVED BY DATE TIME 10/17/07 1600 10/17/07 16000 TIME DATE DATE TIME RECEIVED BY 1300 1305 DATE TIME RECEIVED BY DATE TIME 10/18/07 1450 SHIPPED VIA DATE SENT TIME SENT COOLER#

# McCampbell Analytical, Inc.



1534 Willow Pass Rd

# CHAIN-OF-CUSTODY RECORD

✓ Email

Fax

HardCopy

Page 1 of 1

ThirdParty

Date Received: 10/18/2007

| ssburg, CA 94565-1701 | WLOL 0710/45       | CP4ID. DTCC    |
|-----------------------|--------------------|----------------|
| 5) 252-9262           | WorkOrder: 0710645 | ClientID: BTSS |

✓ EDF

Bill to: Report to: Requested TAT: 5 days

Excel

Email: John Sutton John Sutton

Blaine Tech Services Inc TEL: (510) 521-3773 FAX: (408) 573-7771 The Sutton Group

ProjectNo: #071017-KFI 1680 Rogers Avenue 2600 Grant Ave San Jose, CA 95112-1105 PO: San Lorenzo, CA 94580 Date Printed: 10/18/2007

|             |              |        |                        |      | Requested Tests (See legend below) |   |   |   |   |   |   |   |   |    |    |    |
|-------------|--------------|--------|------------------------|------|------------------------------------|---|---|---|---|---|---|---|---|----|----|----|
| Sample ID   | ClientSampID | Matrix | <b>Collection Date</b> | Hold | 1                                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 0710645-001 | TB           | Water  | 10/17/07 10:00:00      |      | Α                                  | А |   |   |   |   |   |   |   |    |    |    |
| 0710645-002 | MW3          | Water  | 10/17/07 9:55:00       |      | Α                                  |   |   |   |   |   |   |   |   |    |    |    |
| 0710645-003 | MW4          | Water  | 10/17/07 9:30:00       |      | Α                                  |   |   |   |   |   |   |   |   |    |    |    |
| 0710645-004 | MW5          | Water  | 10/17/07 10:25:00      |      | Α                                  |   |   |   |   |   |   |   |   |    |    |    |

#### Test Legend:

| 1 G-MBTEX_W | 2 PREDF REPORT | 3 | 4 | 5  |  |
|-------------|----------------|---|---|----|--|
| 6           | 7              | 8 | 9 | 10 |  |
| 11          | 12             |   |   |    |  |

| Prepared | by: | Ana | Venegas |
|----------|-----|-----|---------|
|----------|-----|-----|---------|

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

# **Sample Receipt Checklist**

| Client Name:      | Blaine Tech S        | ervices Inc    | C             |       |          | Date a       | and Time Received:      | 10/18/07 2    | :47:09 PM     |
|-------------------|----------------------|----------------|---------------|-------|----------|--------------|-------------------------|---------------|---------------|
| Project Name:     | #071017-KFI          |                |               |       |          | Check        | klist completed and r   | eviewed by:   | Ana Venegas   |
| WorkOrder N°:     | 0710645              | Matrix         | <u>Water</u>  |       |          | Carrie       | r: <u>Michael Herna</u> | ndez (MAI Cou | <u>ırier)</u> |
|                   |                      |                | <u>Chain</u>  | of Cu | stody (C | OC) Informa  | ation                   |               |               |
| Chain of custody  | present?             |                |               | Yes   | <b>V</b> | No 🗆         |                         |               |               |
| Chain of custody  | signed when relir    | nquished and   | received?     | Yes   | <b>V</b> | No 🗆         |                         |               |               |
| Chain of custody  | agrees with sam      | ple labels?    |               | Yes   | <b>✓</b> | No 🗌         |                         |               |               |
| Sample IDs noted  | by Client on COC     | ?              |               | Yes   | <b>V</b> | No 🗆         |                         |               |               |
| Date and Time of  | collection noted by  | y Client on CC | OC?           | Yes   | ✓        | No 🗆         |                         |               |               |
| Sampler's name r  | noted on COC?        |                |               | Yes   | ✓        | No 🗆         |                         |               |               |
|                   |                      |                | <u>Sa</u>     | mple  | Receipt  | Information  | ļ                       |               |               |
| Custody seals in  | tact on shipping co  | ontainer/coole | er?           | Yes   |          | No 🗆         |                         | NA 🔽          |               |
| Shipping contain  | er/cooler in good o  | condition?     |               | Yes   | <b>V</b> | No 🗆         |                         |               |               |
| Samples in prope  | er containers/bottle | es?            |               | Yes   | <b>~</b> | No 🗆         |                         |               |               |
| Sample containe   | rs intact?           |                |               | Yes   | <b>✓</b> | No 🗆         |                         |               |               |
| Sufficient sample | volume for indica    | ited test?     |               | Yes   | ✓        | No 🗌         |                         |               |               |
|                   |                      | San            | nple Preserv  | vatio | n and Ho | old Time (HT | ) Information           |               |               |
| All samples recei | ived within holding  | time?          |               | Yes   | <b>✓</b> | No 🗌         |                         |               |               |
| Container/Temp I  | Blank temperature    |                |               | Coole | er Temp: | 7.7°C        |                         | NA $\square$  |               |
| Water - VOA via   | ls have zero head    | space / no bu  | ıbbles?       | Yes   | <b>✓</b> | No 🗆         | No VOA vials subm       | itted 🗆       |               |
| Sample labels ch  | necked for correct   | preservation'  | ?             | Yes   | <b>✓</b> | No 🗌         |                         |               |               |
| TTLC Metal - pH   | acceptable upon r    | eceipt (pH<2)  | ?             | Yes   |          | No 🗆         |                         | NA 🗹          |               |
|                   |                      |                |               |       |          |              |                         |               |               |
|                   |                      |                |               |       |          |              |                         |               |               |
|                   |                      |                |               |       |          |              |                         |               |               |
| =====             | =====                |                |               |       |          | ====         | =====                   | =====         | ======        |
|                   |                      |                |               |       |          |              |                         |               |               |
| Client contacted: |                      | I              | Date contacte | ed:   |          |              | Contacted               | by:           |               |
| Comments:         |                      |                |               |       |          |              |                         |               |               |

| Blaine Tech Services Inc | Client Project ID: #071017-KFI                         | Date Sampled: 10/17/07   |
|--------------------------|--------------------------------------------------------|--------------------------|
| 1680 Rogers Avenue       |                                                        | Date Received: 10/18/07  |
| San Jose, CA 95112-1105  | Client Contact: John Sutton                            | Date Extracted: 10/19/07 |
| 2112                     | Client P.O.:                                           | Date Analyzed 10/19/07   |
| G 11 5 (G                | 2 04 A 3 3 4 4 3 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |                          |

#### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE\*

| Extracti | on method SW5030B                                |        | Analy    | tical methods SV | /8021B/8015Cm |         |              | Work Order | 0710 | 645   |
|----------|--------------------------------------------------|--------|----------|------------------|---------------|---------|--------------|------------|------|-------|
| Lab ID   | Client ID                                        | Matrix | TPH(g)   | MTBE             | Benzene       | Toluene | Ethylbenzene | Xylenes    | DF   | % SS  |
| 001A     | ТВ                                               | W      | ND       | ND               | ND            | ND      | ND           | ND         | 1    | 97    |
| 002A     | MW3                                              | W      | 55,a     | 42               | 1.5           | ND      | ND           | 1.3        | 1    | 97    |
| 003A     | MW4                                              | W      | 28,000,a | ND<390           | 5900          | 87      | 1700         | 1400       | 50   | 95    |
| 004A     | MW5                                              | W      | 32,000,a | ND<100           | 9200          | 57      | 650          | 1900       | 20   | 89    |
|          |                                                  |        |          |                  |               |         |              |            |      |       |
|          |                                                  |        |          |                  |               |         |              |            |      |       |
|          |                                                  |        |          |                  |               |         |              |            |      |       |
|          |                                                  |        |          |                  |               |         |              |            |      |       |
|          |                                                  |        |          |                  |               |         |              |            |      |       |
|          |                                                  |        |          |                  |               |         |              |            |      |       |
|          |                                                  |        |          |                  |               |         |              |            |      |       |
|          |                                                  |        |          |                  |               |         |              |            |      |       |
|          |                                                  |        |          |                  |               |         |              |            |      |       |
|          |                                                  |        |          |                  |               |         |              |            |      |       |
|          |                                                  |        |          |                  |               |         |              |            |      |       |
|          |                                                  |        |          |                  |               |         |              |            |      |       |
| Rep      | porting Limit for DF =1;                         | W      | 50       | 5.0              | 0.5           | 0.5     | 0.5          | 0.5        | 1    | μg/L  |
|          | means not detected at or ove the reporting limit | S      | NA       | NA               | NA            | NA      | NA           | NA         | 1    | mg/Kg |

<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.



<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

### QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0710645

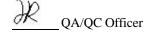
| EPA Method SW8021B/8015Cm | Cm Extraction SW5030B BatchID: 31421 Spiked Sample ID: 0710644-0 |        |        |        |        |        |        |          |          | 0710644-00 | 1A           |     |
|---------------------------|------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|----------|----------|------------|--------------|-----|
| Analyte                   | Sample                                                           | Spiked | MS     | MSD    | MS-MSD | LCS    | LCSD   | LCS-LCSD | Acce     | eptance    | Criteria (%) |     |
| ,                         | μg/L                                                             | μg/L   | % Rec. | % Rec. | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD | RPD        | LCS/LCSD     | RPD |
| TPH(btex)                 | ND                                                               | 60     | 94.9   | 99.3   | 4.56   | 114    | 97.9   | 15.1     | 70 - 130 | 30         | 70 - 130     | 30  |
| MTBE                      | ND                                                               | 10     | 99.7   | 102    | 2.50   | 103    | 111    | 7.30     | 70 - 130 | 30         | 70 - 130     | 30  |
| Benzene                   | ND                                                               | 10     | 98.5   | 99.4   | 0.890  | 92.1   | 95.7   | 3.87     | 70 - 130 | 30         | 70 - 130     | 30  |
| Toluene                   | ND                                                               | 10     | 91.2   | 92.2   | 1.17   | 102    | 107    | 5.00     | 70 - 130 | 30         | 70 - 130     | 30  |
| Ethylbenzene              | ND                                                               | 10     | 101    | 99.7   | 1.28   | 101    | 105    | 4.25     | 70 - 130 | 30         | 70 - 130     | 30  |
| Xylenes                   | ND                                                               | 30     | 100    | 96.7   | 3.39   | 113    | 113    | 0        | 70 - 130 | 30         | 70 - 130     | 30  |
| %SS:                      | 107                                                              | 10     | 97     | 95     | 1.92   | 86     | 97     | 12.3     | 70 - 130 | 30         | 70 - 130     | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### **BATCH 31421 SUMMARY**

| Sample ID    | Date Sampled      | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled     | Date Extracted | Date Analyzed    |
|--------------|-------------------|----------------|------------------|--------------|------------------|----------------|------------------|
| 0710645-001A | 10/17/07 10:00 AM | 10/19/07       | 10/19/07 8:41 PM | 0710645-002A | 10/17/07 9:55 AM | 10/19/07       | 10/19/07 5:12 AM |
| 0710645-003A | 10/17/07 9:30 AM  | 10/19/07       | 10/19/07 6:44 AM |              |                  |                |                  |


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.



QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0710645

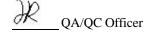
| EPA Method SW8021B/8015Cm Extraction SW5030B BatchID: 31425 Spiked Sample ID: 0710655-0 |        |        |        |        |        |        |        |          |          | 0710655-00 | 4B           |     |
|-----------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|----------|----------|------------|--------------|-----|
| Analyte                                                                                 | Sample | Spiked | MS     | MSD    | MS-MSD | LCS    | LCSD   | LCS-LCSD | Acce     | eptance    | Criteria (%) |     |
| Analyte                                                                                 | μg/L   | μg/L   | % Rec. | % Rec. | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD | RPD        | LCS/LCSD     | RPD |
| TPH(btex <sup>f</sup> )                                                                 | ND     | 60     | 79.1   | 80     | 1.25   | 91.7   | 101    | 10.1     | 70 - 130 | 30         | 70 - 130     | 30  |
| MTBE                                                                                    | ND     | 10     | 97     | 104    | 7.04   | 105    | 101    | 3.80     | 70 - 130 | 30         | 70 - 130     | 30  |
| Benzene                                                                                 | ND     | 10     | 101    | 106    | 4.42   | 86.5   | 94.2   | 8.47     | 70 - 130 | 30         | 70 - 130     | 30  |
| Toluene                                                                                 | ND     | 10     | 100    | 105    | 4.64   | 97.3   | 106    | 8.27     | 70 - 130 | 30         | 70 - 130     | 30  |
| Ethylbenzene                                                                            | ND     | 10     | 101    | 105    | 4.16   | 95.3   | 102    | 6.96     | 70 - 130 | 30         | 70 - 130     | 30  |
| Xylenes                                                                                 | ND     | 30     | 93.5   | 95.1   | 1.74   | 107    | 113    | 6.06     | 70 - 130 | 30         | 70 - 130     | 30  |
| %SS:                                                                                    | 110    | 10     | 107    | 107    | 0      | 83     | 88     | 5.27     | 70 - 130 | 30         | 70 - 130     | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### BATCH 31425 SUMMARY

| Sample ID    | Date Sampled      | Date Extracted | Date Analyzed    | Sample ID | Date Sampled | Date Extracted | Date Analyzed |
|--------------|-------------------|----------------|------------------|-----------|--------------|----------------|---------------|
| 0710645-004A | 10/17/07 10:25 AM | 1 10/19/07     | 10/19/07 5:43 AM |           |              |                |               |


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

