2307 Pacific Ave. Alameda, CA 94552 Phone: 510-865-9503 Fax: 510-865-1889

E-Mail: xtraoil a sbeglobal.net

Xtra Oil Company

April 22, 2005

Mr. Amir Gholami Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502 Environmental County Alameda County

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING

REPORT TRANSMITTAL

Xtra Oil Company

3495 Castro Valley Blvd.

Castro Valley, CA

Dear Mr. Gholami:

ant.

You will find enclosed one copy each of the following report prepared by P&D Environmental.

Quarterly Groundwater Monitoring and Sampling Report (July Through September 2003) dated October 10, 2003 (Report 0014.R49).

Quarterly Groundwater Monitoring and Sampling Report (October Through December 2003) dated January 15, 2004 (Report 0014.R50).

Quarterly Groundwater Monitoring and Sampling Report (January Through April 2004) dated April 15, 2004 (Report 0014.R51).

Quarterly Groundwater Monitoring and Sampling Report (May Through July 2004) dated July 28, 2004 (Report 0014.R52).

Quarterly Groundwater Monitoring and Sampling Report (August Through October 2004) dated November 5, 2004 (Report 0014.R53).

Quarterly Groundwater Monitoring and Sampling Report (November 2004 Through January 2005) dated February 11, 2005 (Report 0014.R54).

Quarterly Groundwater Monitoring and Sampling Report (February Through April 2005) dated April 21, 2005 (Report 0014.R55).

I declare under penalty of perjury that the contents and conclusions in the report are true and correct to the best of my.knowledge...............

Should you have any questions, please do not hesitate to contact me at (510) 865-9503.

Sincerely,

Keith Simas

Operations Supervisor

P & D Environmental

A Division of Paul H. King, Inc. 4020 Panama Court Oakland, CA 94611 (510) 658-6916

April 21, 2005 Report 0014.R55

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT:

GROUNDWATER MONITORING AND SAMPLING REPORT

(FEBRUARY THROUGH APRIL 2005)

Xtra Oil Company

3495 Castro Valley Blvd. Castro Valley, California

Gentlemen:

P&D Environmental, a division of Paul H. King, Inc. (P&D) is pleased to present this report documenting the results of quarterly monitoring and sampling of both the on- and off-site wells for the subject property. This work was performed in accordance with P&D's proposal 020599.P1 dated February 5, 1999. Offsite observation wells OW1 and OW2 and onsite wells MW1, MW3, MW4, and EW1 were monitored and all of the wells except MW4 were sampled on April 13, 2005. The reporting period for this report is for February through April 2005. A Site Location Map (Figure 1), a Site Plan showing onsite well locations (Figure 2), and a Site Vicinity Map showing offsite observation well locations (Figure 3) are attached with this report.

BACKGROUND

The site is currently used as a gasoline station. Four 12,000 gallon underground fuel storage tanks are present at the site. Three of the tanks contain gasoline and the fourth tank contains diesel fuel. A 550 gallon waste oil tank was removed from the site in November, 1988. The fuel tanks were replaced during August, 1992.

Three monitoring wells, designated as MW1, MW2 and MW3 were installed at the site on February 14 and 15, 1990 by Western Geo-Engineers. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The locations of the monitoring wells are shown in Figure 2. Soil samples collected during drilling of the boreholes for the monitoring wells revealed the presence of total petroleum hydrocarbons as gasoline (TPH-G) and total petroleum hydrocarbons as diesel (TPH-D). TPH-G was encountered in borehole MW1 at depths of 5 and 10 feet below grade at concentrations of 40 and 1,400 mg/kg, respectively; in borehole MW2 at depths of 10 and 15 feet below grade at concentrations of 230 and 95 mg/kg, respectively; and in borehole MW3 at depths of 5, 10 and 15 feet at concentrations of 140, 250 and 25 mg/kg, respectively. In addition, 120 mg/kg TPH-D was detected in borehole MW3 at a depth of 5 feet. Soil samples collected at a depth of 20 feet in borehole MW1 and at a depth of 18 feet in boreholes in MW2 and MW3 did not show any detectable concentrations of TPH-G or TPH-D. Groundwater was encountered in the boreholes at depths of approximately 15 to 16 feet below grade.

April 21, 2005 Report 0014.R55

On February 15, 1990 Western Geo-Engineers drilled three exploratory boreholes at the site designated as SB1, SB2 and SB3. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The approximate locations of the boreholes are shown on Figure 2. It is P&D's understanding that soil samples were collected from the exploratory boreholes at depths of 10 and 12 feet and evaluated in the field using a photo ionization detector. In borehole SB1, TPH-G was detected at the depths of 10 and 12 feet at concentrations of 1,700 and 450 mg/kg, respectively. In boreholes SB2 and SB3, TPH-G was detected at the depths of 10 and 12 feet in both boreholes at concentrations of 800 mg/kg and greater than 2,000 mg/kg, respectively. A groundwater monitoring and sampling program was initiated at the site on February 20, 1990.

It is P&D's understanding that during fuel tank replacement activities in August, 1992 soil surrounding the tank pit was removed and disposed of offsite. An extraction well, designated as EW1, was designed and constructed in one corner of the new tank pit by K&B Environmental at the time of installation of the new tanks. The location of EW1 is shown on Figure 2.

On February 7, 1996 well MW2 was destroyed for the purpose of widening Redwood Road. The destruction was overseen by ACC Environmental Consultants of Oakland, California.

On August 15, 1997 P&D personnel oversaw the installation of one groundwater monitoring well, designated as MW4 at the subject site. The location of the monitoring well is shown on the attached Site Plan, Figure 2. This work was performed in accordance with P&D's work plan 0014.W4 dated June 27, 1997. The work plan was approved by the Alameda County Department of Environmental Health (ACDEH) in a telephone conversation with Mr. Scott Seery on August 14, 1997. During the conversation, Mr. Seery indicated that he would record his approval of the work plan in the county file for the site. In accordance with an October 25, 2002 letter from Mr. Seery, groundwater samples are to be analyzed for fuel oxygenates (MTBE, TAME, ETBE, TAME and TBA), and lead scavengers (EDB, 1,2-DCA/EDC) using EPA Method 8260; and data for observation wells OW1 and OW2, located in Redwood Road, are to be incorporated into monitoring and sampling reports for the subject site.

FIELD ACTIVITIES

Offsite observation wells OW1 and OW2 and onsite wells MW1, MW3, MW4, and EW1 were monitored and all of the wells except MW4 were sampled on April 13, 2005. A joint groundwater monitoring with Allisto Engineering, Inc. was not performed.

The wells were monitored for depth to water and the presence of free product or sheen. In wells MW4, OW1 and OW2 the depth to water and depth to free product was measured to the nearest 1/32-inch with a steel tape and water-finding or product-finding paste. In wells MW1, MW3, and EW1, the depth to water was measured to the nearest 0.01 foot using an electric water level indicator. The presence of free product and sheen was evaluated using a transparent bailer in wells MW1, MW3, and EW1.

No free product or sheen were detected in any of the wells except for well MW4, where a floating separate phase hydrocarbon layer measuring 0.01 feet in thickness was measured. Measurements were made in well MW4 following removal of the passive hydrocarbon collection device from the well.

April 21, 2005 Report 0014.R55

After monitoring, offsite observation well OW1 was sampled on April 13, 2005 using a vacuum pump and 0.25-inch diameter polyethylene tubing. The water sample from the well was decanted to sample bottles and managed as described below. Because of the small sample volume in the well, the well was not purged prior to sampling.

Prior to well sampling on April 13, 2005, onsite wells MW1, MW3, and EW1 were purged of a minimum of three casing volumes of water, or until the wells had been purged dry. During purging operations, the field parameters of electrical conductivity, temperature, and pH were monitored. Once the field parameters were observed to stabilize, and a minimum of three casing volumes had been purged or the wells had purged dry and partially recovered, water samples were collected using a clean Teflon bailer.

The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials and 1-liter amber glass bottles that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to assure that no air bubbles were present.

The VOA vials and bottles were then transferred to a cooler with ice, until they were transported to McCampbell Analytical, Inc. in Pacheco, California. McCampbell Analytical, Inc. is a State-certified hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

HYDROGEOLOGY

Water levels were measured in all of the wells once during the quarter. The measured depth to water in offsite observation wells OW1 and OW2 on April 13, 2005 was 6.99 and 7.06 feet, respectively. The measured depth to water in onsite wells MW1, MW3, MW4 and EW1 on April 13, 2005 was 6.90, 6.35, 6.78, and 5.23 feet, respectively. The separate phase hydrocarbon layer in MW4 was 0.01 feet in thickness. Using a specific gravity of 0.75, the corrected depth to water in well MW4 is 6.77 feet. Since the previous quarter, the measured depth to water has increased in offsite wells OW1 and OW2 by 0.04 and 0.23 feet, respectively, and in onsite wells MW1, MW3, MW4 and EW1 by 0.30, 0.44, 0.56 and 1.02 feet, respectively. The corrected groundwater elevation in well MW4 has increased by 0.43 feet since the previous quarter.

Based on the groundwater surface elevations in monitoring wells MW1 and MW3 and the corrected groundwater surface elevation in well MW4, the groundwater flow direction at the site on April 13, 2005 was calculated to be to the east with a gradient of 0.011. Since the previous monitoring event the groundwater flow direction at the site has remained relatively unchanged and the gradient has decreased slightly from 0.0012. The groundwater flow direction on April 13, 2005 is shown on Figure 2.

LABORATORY RESULTS

The groundwater sample collected from offsite wells OW1 and OW2 and onsite wells MW1, MW3 and EW1 on April 13, 2005 were analyzed for TPH-D and TPH-G using Modified EPA Method 8015; and benzene, toluene, ethylbenzene, and total xylenes (BTEX) as well as fuel oxygenates (MTBE, TAME, ETBE, TAME, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC) using EPA Method 8260.

The laboratory analytical results of the samples from wells OW1 and OW2 show that TPH-D was detected at concentrations of 590 and 0.22 mg/L, respectively, TPH-G was detected at concentrations of 35 and 0.065 mg/L, respectively, and benzene was detected in well OW2 at a concentration of 2 mg/L. No fuel oxygenates or lead scavengers were detected in either of the samples with the exception of MTBE in well OW2 at a concentration of 0.0097 mg/L. Review of the laboratory analytical reports indicates that the TPH-D results for each of the wells consist of both diesel- and gasoline-range compounds. In addition, the TPH-D results for well OW1 were also reported to consist of oil-range compounds.

The laboratory analytical results of the samples from wells MW1, MW3, and EW1 show TPH-D concentrations of 9.3, 19 and 2.2 mg/L, respectively. Review of the laboratory analytical reports indicates that the TPH-D results for each of the wells consist of both diesel- and gasoline-range compounds. In addition, laboratory results from MW1, MW3, and EW1 show TPH-G concentrations of 30, 96 and 0.38 mg/L, respectively; and benzene concentrations of 1.9 and 31 mg/L, and not detected, respectively. MTBE was detected at concentrations of 0.3, 28, and 2.7 mg/L, respectively. No other fuel oxygenates or lead scavengers were detected except for t-butyl alcohol (TBA) at concentrations of 12 and 1.6 mg/L in wells MW3 and EW1, respectively.

Since the previous sampling on January 31, 2005, TPH-D, TPH-G, MTBE and TBA concentrations have decreased in well EW1. In well MW1, TPH-D and benzene concentrations have decreased, and in well MW3 MTBE and benzene concentrations have increased. Also since the previous quarter in well MW1 TPH-G and MTBE concentrations have increased, and in well MW3 TPH-D and TPH-G concentrations have increased. The laboratory analytical results for the groundwater samples are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

DISCUSSION AND RECOMMENDATIONS

Offsite observation wells OW1 and OW2 and onsite wells MW1, MW3, MW4, and EW1 were monitored and all of the wells except MW4 were sampled on April 13, 2005. A 0.01-foot thick floating separate phase layer was measured in well MW4 following removal of a passive hydrocarbon collection device. Based on the small volume of liquid in wells OW1 and OW2, samples were not purged prior to sample collection from these wells.

It is P&D's understanding that the hydrocarbon collection device in well MW4 is maintained by Xtra Oil Company personnel. P&D recommends that a log be maintained of product removed. P&D recommends that use of petroleum hydrocarbon absorbent socks in well MW1 be continued.

The presence of petroleum hydrocarbons in both offsite observation wells OW1 and OW2 during previous quarters, followed by the absence of liquids in well OW2 during the present quarter suggests that petroleum hydrocarbons could be preferentially migrating in the sanitary sewer trench where the observation wells are located on a seasonal basis. However, it is unclear from the available information if petroleum hydrocarbon migration is occurring preferentially in the utility trench. The presence of separate phase hydrocarbons in well OW1 during previous quarters indicates that separate phase hydrocarbons detected in well MW4 are migrating eastward seasonally.

April 21, 2005 Report 0014.R55

The laboratory analytical results for the groundwater samples from wells MW1, MW3, and EW1 showed that TPH-D concentrations ranged from 0.22 to 590 mg/L, TPH-G concentrations ranged from 0.065 to 96 mg/L, and benzene concentrations ranged from not detected to 31 mg/L. Review of the results for the fuel oxygenate and lead scavenger analysis shows that only MTBE and TBA were detected, with MTBE concentrations ranging from not detected to 28 mg/L and TBA detected in wells MW3 and EW1 at concentrations of 12 and 1.6 mg/L, respectively.

Based on the laboratory analytical results of the water samples collected from the monitoring wells, P&D recommends that groundwater monitoring and sampling be continued. In addition, P&D recommends that future monitoring and sampling efforts be coordinated with other sites in the vicinity of the subject site that are presently being monitored and sampled.

DISTRIBUTION

Copies of this report should be sent to Mr. Amir Gholami at the Alameda County Department of Environmental Health. Copies of the report should be accompanied by a transmittal letter signed by an authorized representative of Xtra Oil Company.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly-revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

April 21, 2005 Report 0014.R55

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental

Paul H. King

President

California Registered Geologist

1 Zul H. King

Registration No. 5901

Expires: 12/31/05

Attachments:

Tables 1 & 2

Site Location Map (Figure 1)

Site Plan (Figure 2)

Site Vicinity Map (Figure 3)

Field Parameter Forms

Laboratory Analytical Results Chain of Custody Documentation

PHK 0014,R55

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW1	04/13/05	177.37*	6.90	170.47
	01/31/05		7.20	170.17
	10/15/04		8.52	168.85
	07/13/04		8.33	169.04
	04/06/04		7.93	169.44
	12/18/03		7,65	169.72
	09/18/03		8.15	169,22
	06/19/03		8.13	169.24
	03/18/03		7.77	169.60
	12/21/02		5.74	171.63
	9/10/02		8,28	169.09
	3/30/02		7,43	169.94
	12/22/01		6,92	170.45
	9/23/01		8.53	168.84
	6/22/01		8.30	169.07
	4/22/ 01		7.77	169.60
	12/14/00		8.49	168.88
	9/18/00		8.56	168.81
1	6/08/00		7.97	169.40
	3/09/00		6,68	170.69
	12/09/99		8.15	169.22
	8/31/99		8.36	169.01
	4/29/99		7.68	169.69

NOTES:
* = Surveyed on August 20, 1997

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing	Depth to Water (ft.)	Water Table Elev. (ft.)
140.	Monttored	Elev. (ft.)	water (It.)	Liev. (II.)
MW1	1/29/99	177.37*	6,99	170.38
(Continued)	4/26/98	2	7.50	169.87
()	1/24/98		6.61	170.76
	11/06/97		8.79	168.58
	8/26/97	177.37*	8.51	168.86
	7/24/97	211.27	8.71	168.72
	4/25/97		7.98	169.45
	1/20/97		7.12	170.31
	7/26/96		8.39	169.04
	7/09/96		8.16	169.27
	4/23/96		7.47	169,96
	2/07/96		6.09	171.34
	1/29/96		6.17	171.26
	10/26/95		8.45	168,98
	7/28/95		8.27	169,16
	5/02/95		6.96	170.47
	2/23/95		7.72	169.71
	11/18/94		7.14	170.29
	8/22/94		8.67	168.76
	5/19/94	177.43**	8.05	169.38
	2/28/94		7.44	169.99
	11/24/93		8.74	168.69
	8/30/93		8.78	168.65
	5/18/93		8.12	169.31
	2/23/93		7.34	170.09
	11/13/92	200.00***	9.13	190.87
	5/29/92	175,73	8.59	167.14
	1/14/92		8.57	167.16
•	12/23/91		9.65	166.08
	11/25/91		9.41	166.32
	10/10/91		9.70	166.03
	9/17/91		9.50	166,23
	8/19/91		9.31	166.42

^{*=} Surveyed on August 20, 1997

^{** =} Surveyed on March 24, 1993 *** = Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW2	NOT MEASU	RED (DESTROYED C	ON FEBRUARY 7, 1996	5)
	2/07/96	176.04**	5.70	170.34
	1/29/96		5.16	170.88
	10/26/95		8.21	167,83
	7/28/95		7.99	168.05
	5/02/95		6.79	169.25
	2/23/95		7.51	168.53
	11/18/94		6.92	169.12
	8/22/94		8.59	167,45
	5/19/94		7.70	168.34
	2/28/94		6.99	169,05
	11/24/93		8.47	167.57
	8/30/93		8.64	167,40
	5/18/93		7.73	168,31
	2/23/93		6.39	169.65
	11/13/92	198.61***	8.70	189,91
	5/29/92	175.45	9.31	166.14
*	1/14/92		8.97	166.48
	12/23/91		10.39	165.06
	11/25/91		9.81	165.64
	10/10/91		10.39	165.06
	9/17/91		10.23	165.22
	8/19/91		9.60	165.85

^{* =} Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993 *** = Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW3	04/13/05	176.40*	6.35	170.05
	01/31/05		6.79	169.61
	10/15/04		8.28	168.12
	07/13/04		8.11	168.29
	04/06/04		7.4 1	168.99
	12/18/03		6.99	169.41
	09/18/03		7.91	168.49
	06/19/03		7.60	168.80
	03/18/03		7.35	169.05
	12/21/02		5,43	170.97
	9/10/02		7.97	168.43
	3/30/02		6.97	169.43
	12/22/01		6.44	169,96
	9/23/01		8.17	168.23
	6/22/01		8.06	168.34
	4/22/01		7.50	168,90
	12/14/00		8.13	168,27
	9/18/00		7.83	168.57
	9/26/00		7.77	168.63
	6/08/00		7.50	168.90
	3/09/00		6.08	170.32
	12/09/99		7.90	168.50

^{* =} Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993

^{*** =} Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
N#11/2	9/21/00	1 <i>76 1</i> 1**	7.05	160 45
MW3	8/31/99 4/29/99	176.41**	7.95	168.45
(Continued)	4/29/99 1/29/99		7.09	169.31
	1/29/99 4/26/98		6.42	169.98
	4/20/98 1/24/98		6.85	169.55
	1/24/98		5.90	170.50
	8/26/97		7.80	168.80
	8/20/97 7/24/97	1 <i>74 4</i> 1**	7.67	168.93
	4/25/97	176.41**	7.90	168.51
	4/23/97 1/20/97		7.12 6.35	169.29 170.06
	7/26/96			169.57
	7/20/90 7/09/96		7.84 7.61	168.80
	4/23/96		6.81	169.60
	2/07/96		5.05	170.36
	1/29/96		5.77	170.56
	10/26/95		7,72	168.69
	7/28/95		7.72	168.61
	5/02/95		6.50	169.91
	2/23/95		7.24	169.17
	11/18/94		6.05	170.36
	8/22/94	190.97***	7.65	168.76
	5/19/94	170.71	7.15	169.26
	2/24/94		6.68	169.73
	11/24/93		7.55	168.86
	8/30/93		7.64	168.77
	5/18/93		7.12	169.29
	2/23/93		8.01	168.40
	11/13/92		7,86	191.12
	5/29/92	175.00	8.45	166.55
	1/14/92	175,00	8.24	166.55
	12/23/91		9.37	165.63
	11/25/91		9.19	165.81
	10/10/91		9.43	165.57
	9/17/91		9.20	165.80
	8/19/91		8.95	166.05
			=** =	= = = -

^{*=} Surveyed on August 20, 1997 **= Surveyed on March 24, 1993 *** = Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (fl.)
			` ,	` ,
MW4	04/13/05	176.35*	6.78 (0.01)#	169.58
	01/31/05		7.34 (0.19)#	169.15
	10/15/04		8.73 (0.15)#	167.73
	07/13/04		8,44 (0.03)#	167.93
	04/06/04		9.58 (2.83)#	168.89
	02/11/04		9.43 (2.70)#	168.95
	12/18/03		9.75 (1.51)#	167.73
	9/18/03		9.13 (1.80)#	168.57
	6/19/03		8.56 (0.31)#	168.02
	3/18/03		7.49 (0.06)#	168.91
	12/21/02		8.58 (4.39)#	171.06
	9/10/02		9.09 (1.60)#	168.46
	3/30/02		9.86 (2.49)#	168.36
	12/22/01		7.79 (1.75)#	169.87
	9/23/01		8.97 (1.17)#	168,26
	6/22/01		7.79	168.56
	4/22/01		9.07 (2.20)#	168.93
	12/14/00		8.87 (0.72)#	168.02
	9/18/00		8.50 (0.45)#	168,19
	6/08/00		7.34	169.01
	3/09/00		6.61 (0.46)#	170.08
	12/09/99		8,80	167,55
	8/31/99		8.28	168.07
	4/29/99		7.14	169.21
	1/29/99		6.68	169.67
	4/26/98		6.87	169.48
	1/24/98		6.61	169.74
	11/06/97		9.16	167.19
	8/26/97		8.92	167.43
	8/20/97		7.66 (prior to dev	relopment)

^{* =} Surveyed on August 20, 1997

^{# =} Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

TABLE 1 WELL MONITORING DATA

Well	Date	Top of Casing	Depth to
No.	Monitored	Elev. (ft.)	Water (ft.)
EW1	04/13/05 01/31/05 10/15/04 07/13/04 04/06/04 12/18/03 9/18/03	Not Surveyed	5.23 6.25 7.65 7.51 6.63 6.72 7.29

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Total Well Depth (ft.)
110.	04/13/05	Liov. (II.)	Water (it.)	Dopai (II.)
OW1	0 1/31/0 5	Not Surveyed	6.99	7.44
	01/31/05	-	7.03	7.44
	10/15/04		7.19 (0.08)#	7.44
	07/14/04		7.02	7.44
	04/06/04		7.01	7.44
	02/11/04		7.01	7.44
	10/06/03		7.07 (0.01)#	7.44
	11/02/00	-	7.12,+	
	12/09/99		7.27	
	01/29/99		7.12	
OW2	04/13/05	Not Surveyed	7.06	7.35
	01/31/05	•	7.29	7.37
	10/15/04		No Water or Product	7.35
	07/14/04		No Water or Product	7,35
	04/06/04		7.27	7.33
	02/11/04		7.19	7.33
	10/06/03		7.29	7.34
	11/02/00		7.19	
	12/09/99		7.17	
	01/29/99		7.19	

^{#=} Indicates free product thickness in feet.
+= Petroleum hydrocarbon odor reported on probe for water level indicator.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
4/13/05	9.3, b	30	0.3	1.9	0.6	1.7	3	ND<0.05, TBA ND<0.5
1/31/05	1 4,b	29	0,27	2.2	1.2	1.9	5,0	ND<0.05, TBA ND<0.5
10/15/04	16,a,b	36, a	ND<0.05	1.5	1.0	2.1	5.1	ND<0.05, TBA ND<0.5
7/13/04	22a,b	34,a	0.053	2.1	0.59	2.1	4.4	ND<0.5, TBA ND<0.5
4/6/04	18,a,b	28,a	0.11	2.3	8,0	0.99	4.5	ND<0.1 TBA ND<1
12/18/03	13,b	33	0.038	2.1	0.77	1.8	4.4	ND<0.005 TBA ND<0.05

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- = Not Analyzed.
- a = Lighter than water immiscible sheen present on the sample.
- b = TPH-D results consist of both diesel-range and gasoline-range compounds.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (continued)

						1	<u> </u>	Other Fuel
						Ethyl-	Total	Additives
Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	benzene	Xylenes	by 8260*
9/18/03	15,a,b	32	0.052	2.2	0.62	1.8	3.8	ND<0.017
								, TBA
								ND<0.17
6/26/03	67,a,b	45	ND<0.05	2.1	0.72	2.3	- 5.5	ND
3/18/03	7.3,a,b	33	ND<0.05	2.4	0.9	1.6	1.0	ND
12/21/02	11,a,b	32	ND<0.1	2.6	0.98	2.2	5.5	ND
9/10/02	18,c	31	ND<0.25	2.2	0.65	1.7	4.8	
3/30/02	12,a,b	99	ND	4.1	1.2	2.5	6.4	
12/22/01	22,a,b	60	ND	3.2	1.9	2	6.2	
9/23/01	16,a,c	49	ND	4	1.4	2.2	6.2	
6/22/01	85,a,b	35	ND	3.1	0.75	1.2	4.0	
4/22/01	16,a	43	ND	3.6	1.2	1.6	5.8	
12/14/00	11,a,d	49	ND	5.8	1.6	2	6.9	
9/18/00	15,a,b	86	ND	7.2	2	3.2	13	_
6/8/00	6.5,a,c	50	ND	5.7	1.5	1.8	7	-
3/9/00	7.4,a,b	48	ND	5.3	3.1	1.6	8.1	
12/9/99	12,a,b	65	ND	9.3	2.9	2.2	8.8	
8/31/99	22,b	66	0.71	8.7	2.7	2.4	10	
4/29/99	22,b	48	ND	8.4	2.8	2.0	8.1	
1/29/99	9.1,b	47	ND	9.0	2.9	1.9	8,0	
4/26/98	7.8,c	60	ND	9.3	5.7	2.1	9.1	
1/24/98	24,b	57	ND	6.9	5,5	2.0	8.7	
11/6/97	17,c	63	ND	7.4	6.7	2.3	9.9	
7/27/97	28,c	66	1.8	8.6	8.1	2.2	10	
4/25/97	170,b	77	ND	7,4	7.9	2.1	9.8	
1/21/97	57,c	80	0,25	7.8	8.3	1.9	8.9	
7/26/96	11,c	76	ND	11	13	2.4	10	
4/23/96	5.7,c	73	ND	8.6	12	2.2	9.8	
1/29/96	6.6,c	81	0.25	7.6	13	1.9	8.9	
10/26/95	62,c	89	ND	7.8	12	2.4	11	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Lighter than water immiscible sheen present on the sample.
- b = TPH-D results consist of both diesel-range and gasoline-range compounds.
- c = TPH-D results consist of both gasoline-range compounds.
- d = TPH-D results consist of both oil-range and gasoline-range compounds.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

								Other Fuel
		1				Ethyl-	Total	Additives
Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	benzene	Xylenes	by 8260*
7/28/95	2.0,c	35	==	3.8	8.7	1.1	6.5	
5/2/95	6.5,c	86		8.9	14	2.3	11	
2/24/95	9.1	90		7.5	12	1.5	11	
11/18/94	10	96		9.3	14	2.5	11	
8/22/94	8.3	100		9.0	11	2.1	9.4	
5/19/94	30	100		12	14	3.5	17	
2/28/94	110	90		11	9,6	2.1	9.9	
11/24/93	8.2	66		8.3	8.9	2.0	121	
8/30/93	9.4	77		6.4	11	2.2	. 12	
5/18/93	30	92		4.0	11	2.5	15	
2/23/93	I 4	100		4.5	11	2.1	12	
11/13/92	4.4	120	==	5.8	10	2.1	13	
5/27/92	11	120		8.8	16	2.3	15	
1/24/92	19	39		7.3	8.7	1.3	8.9	
12/23/91	34	78		9.3	7.3	0.54	13	
11/25/91	36	170		5.5	5.6	1.6	8.4	
10/10/91	19	28		4.1	4.7	1.0	4.8	-
9/17/91	19	39		4.9	4.1	1.2	5.9	
8/19/91	47	48		13	8.4	0.99	29	·
7/20/91	49	100		11	14	2.3	17	
6/20/91	42	76		4.7	7.1	1.5	9.8	
5/17/91	26	72		7.7	9.9	ND	11	
4/15/91		56		6.5	8.5	0.41	9.9	
3/21/91		36		4.5	5.7	0.087	7.3	
2/15/91		120		7.4	6.6	ND	13	
1/15/91		33		3.9	2.9	0.21	5.3	
9/27/90		28		3.7	3.5	0.01	6.5	
8/23/90		40		5.1	4.9	0.35	6.0	
7/20/90	44			5.1	4.2	ND	9.1	
3/19/90		40		3.7	1.1	ND	3.3	
2/20/90**		7.6		1.6	ND	ND	1.3	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

b = TPH-D results consist of both diesel-range and gasoline-range compounds.

c = TPH-D results consist of both gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

** Inorganic lead not detected in sample.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW2

Date	TPH-D	TPH-G	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
2/7/96		•	·	-	estroyed	L		1 2
1/29/96	4.6,c	38	0.0071	1.9	5.7	1.1	5,9	
10/26/95	900	74	ND	2.9	5.9	2.0	10	
7/28/95	2.0,c	15		1.4	2.3	0.62	3.2	
5/2/95	6.6,b	55		3.3	10	1.8	10	
2/24/95	22	67		4.9	11	1.8	11	
11/18/94	5.0	86		11	17	1.8	12	
8/22/94	4.1	91		10	13	1.5	9.0	
5/19/94	5.8	62		92	13	1.3	8.4	
2/28/94	13	91		13	16	1.5	9.0	
11/24/93	79	12		13	17	2.5	17	
8/30/93	110	110		11	14	1.8	11	
5/18/93	44	67		9.2	12	1,4	9.3	
2/23/93	7.0	76		12	17	1,6	9.6	
11/13/92	8.2	79		10	13	1.4	8.6	
5/27/92	130	89		18	19	1.7	14	
1/14/92	1600	59		17	14	1.8	15	
12/23/91	700	2100		36	130	79	560	
11/25/91	130	230		11	9.7	1.4	9.7	
10/10/91	360	85		21	25	2,1	14	
9/17/91	56	74		10	11	1.4	8.1	
8/19/91	19	69		26	22	2.1	18	
7/20/91	100	51		9.9	7.7	1.2	7.5	
6/20/91	69	87		8.1	8.4	1.1	8.9	
5/17/91	33	62		5.9	6.3	1.2	9.0	
4/15/91		82		5,3	7.4	1.0	9.4	
3/21/91		62		9.3	11	0.35	9.7	
2/15/91		200		12	12	1.7	14	
1/14/91		78	-	11	8.7	0.58	8.0	
9/27/90		59		8.4	12	0.88	9.0	
8/23/90		96		8.1	8.4	1.5	8,6	
7/20/90	86		7=	9.1	14	0.94	13	
3/19/90		50		7.7	8.7	0.075	5.6	
2/20/90**		38		7.3	3.1	0,075	6.8	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-= Not Analyzed.

b = TPH-D results consist of both diesel-range and gasoline-range compounds.

c = TPH-D results consist of both gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

** Inorganic lead not detected in sample.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
4/13/05	19,a,b	96,a	28	31	4	2.3	12	ND<0.5, except TBA = 12
1/31/05	13,a,b	93,a	31	36	1.5	2.5	11	ND<1, except TBA = 24
10/15/04	13,a,b	76,a	24	28	ND<0.5	1.1	3.6	ND<0.5, except TBA = 18
7/13/04	57,a,b	98,a	15	28	2.9	1.7	8.9	ND<0.5, except TBA = 11
4/6/04	32,a,b	81,a	17	34	5.9	1.5	9.9	ND<0.5, except TBA = 8.8
12/18/03	32,a,b	130,a	32	33	5.4	0.72	11	ND<0.5, except TBA = 17
9/18/03	140,a,b	130	23	34	11	2.5	14	ND<0.5, except TBA = 10

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Lighter than water immiscible sheen present on the sample.

b = TPH-D results consist of both diesel-range and gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

								Other Fuel
			ļ			Ethyl-	Total	Additives
Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	benzene	Xylenes	by 8260*
6/26/03	27,a,b	96	21	29	5,2	2.0	10	ND, except
	,,-							TBA = 8.9
3/18/03	11,a,b	120	16	36	12	1.8	2.4	ND, except
			;			-		TBA = 5.1
12/21/02	21,a,b	110	33	34	9.3	2.0	13	ND, except
								TBA = 14
9/10/02	43,b	70	19	21	2.2	1.6	7.6	
3/30/02	8.5,a,b	170	26	40	17	2.6	16	
12/22/01	9.2, a , b	140	27	37	20	2.6	15	
9/23/01	47,a,b	130	26	32	9.1	2.4	12	
6/22/01	33,a,b	110	25	31	7.2	1.9	11	
4/22/01	61,a	140	24	25	5.4	1.7	11	
12/14/00	120,a,b	140	35	37	16	2.4	15	
9/18/00	43,a,b	130	33	39	91	2.3	14	
7/26/00			21					ND***,
_								except tert-butanol = 19
6/8/00	74,a,b	130	23	41	16	1.9	13	
3/9/00	14,a,b	180	24	39	22	2.5	16	
12/9/99	17,a,b	120	16	35	6.7	2.4	12	
8/31/99	22,b	120	4.7	35	3.7	2.4	14	
4/29/99	48,b	100	2.5	33	8.0	2.1	14	
1/29/99	240,b	84	1.3	31	2.8	1.8	12	
4/26/98	380,b	100	9.7	29	7.1	1.8	14	==
1/24/98	77,b	97	ND	28	7.1	1.8	11	
11/6/97	120,b	140	ND	37	19	2.4	14	
7/24/97	91,c	120	1.4	33	17	2.2	12	
4/25/97	760,b	240	1.6	24	18	4.1	24	
1/21/97	34,c	150	1.3	40	14	2.6	12	
7/26/96	24,c	130	0.89	40	22	2.4	12	
4/23/96	280,c	170	0.72	34	22	2.2	14	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Lighter than water immiscible sheen present on the sample.
- b = TPH-D results consist of both diesel-range and gasoline-range compounds.
- c = TPH-D results consist of gasoline-range compounds.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).
- ***Review of laboratory analytical reports indicate that oxygenated volatile organic compounds (including TAME, DIPE, ETBE, methanol, ethanol, EDB, and 1,2-DCA) were not detected except MTBE at 21 ppm and tert-butanol at 19 ppm. Results in milligrams per liter (mg/L), unless otherwise indicated.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

			<u>.</u>					Other Fuel
				İ		Ethyl-	Total	Additives
Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	benzene	Xylenes	by 8260*
1/29/96	45,c	150	0.54	32	21	1.9	12	
10/26/95	33	130	0.69	37	21	0.21	11	
7/28/95	1.9,b	86		1.4	2.3	0,62	3.2	
5/2/95	9.7,b	170		43	30	2.5	14	
2/24/95	9.2	130		31	19	1.8	10	
11/18/94	23	140		38	22	2.0	11	
7/22/94	5.3	170		35	20	1.8	10	
5/19/94	30	150		38	25	2.4	14	
2/28/94	210	110		36	21	1.9	11	
11/24/93	24	160		48	26	2.2	12	
7/30/93	32	130		36	21	1.9	8.2	
5/18/93	7.2	130		36	21	2.1	12	
2/23/93	8.1	110		31	18	1.9	11	
11/13/92	4.7	140		38	24	2.0	12	
5/27/92	27	370		91	57	3.0	21	
7/14/92	270	130		76	30	3.4	21	
12/23/91	540	740		30	61	31	180	
11/25/91	74	150		65	31	3.4	18	
10/10/91	39	140		57	31	2.2	14	
9/17/91	140	180		47	25	2.6	15	_
8/19/91	150	170		82	31	4.4	22	
7/20/91	270	450		46	29	3,5	21	
6/20/91	210	920		39	49	13	69	
5/17/91	70.	170		32	22	2.2	18	
4/15/91		110		31	15	0.88	7.4	-
3/21/91		87		30	14	0.69	5.4	
2/15/91		230		44	40	ND	31	-
1/14/91		160	_	48	25	1.0	16	
9/27/90		25		7.2	6.4	0.42	3.4	
8/23/90		220		67	46	27	18	
7/20/90	86			9.1	14	0.94	13	
3/19/90		210		38	28	1.8	12	
2/20/90**		46		20	15	1.8	9.7	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- = Not Analyzed.

b = TPH-D results consist of both diesel-range and gasoline-range compounds.

c = TPH-D results consist of gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

** Inorganic lead not detected in sample.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW4

						Ethyl-	Total	Other Fuel Additives		
Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	benzene	Xylenes	by 8260*		
4/13/05	11112	Not Sampled (Free Product Present in Well)								
1/31/05				npled (Free I						
10/15/04			707 0007	npled (Free I						
7/13/04				npled (Free I				****		
2/11/04	Free Produ	ct sampled					diesel, with	less significant		
		•			ange patterr	_	,	Ü		
12/18/03			Not Sai	npled (Free I						
9/18/03			Not Sar	npled (Free I	roduct Prese	ent in Well)				
6/26/03			Not Sar	npled (Free I	roduct Prese	ent in Well)				
3/18/03			Not Sar	npled (Free I	roduct Pres	ent in Well)	·			
12/21/02			Not Sar	npled (Free F	roduct Prese	ent in Well)				
9/10/02			Not Sar	npled (Free I	roduct Pres	ent in Well)				
3/30/02			Not Sar	npled (Free F	roduct Prese	ent in Well)				
12/22/01			Not Sar	npled (Free F	roduct Prese	ent in Well)				
9/23/01			Not Sar	npled (Free F	roduct Prese	ent in Well)				
6/22/01	440,a,b	140	15	35	19	2.0	10			
4/22/01			Not Sar	npled (Free F	roduct Prese	ent in Well)				
12/14/00			Not Sar	npled (Free F	roduct Prese	ent in Well)				
9/18/00			Not Sar	npled (Free F	roduct Prese	ent in Well)				
6/8/00			Not Sar	npled (Free F	roduct Prese	ent in Well)				
3/9/00	2,100,a,b	130	6.9	35	13	2.1	11			
12/9/99	9,000,a,b	120	8.1	33	6	2.4	12			
8/31/99	9.4,b	190	4.4	46	30	2.8	15			
4/29/99	9.4,b	210	3.2	42	35	2.8	15			
1/29/99	7.3, b	190	2.4	44	40	3.1	17			
4/26/98	13,b	190	ND	49	37	3.2	18			
1/24/98	20,b	200	ND	50	40	3.1	17			
11/6/97	110,b	160	ND	48	30	2.8	16			
8/26/97	5.5,b	210	1.7	48	42	3.4	19			
8/15/97				MW4	Installed					

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Lighter than water immiscible sheen present on the sample.

b = TPH-D results consist of both diesel-range and gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well EW1

· · · · · · · · · · · · · · · · · · ·		- -			T-:		I	ı
Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
4/13/05	2.2,b	0.38	2.7	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05,
	,-							except
								TBA = 1.6
1/31/05	3.4,b	1.9	38	ND<1	ND<1	ND<1	ND<1	ND<1,
	,					1		except
								TBA = 32
10/15/04	4.1,a,b	ND<5.0,a,	96	ND<1.7	ND<1.7	ND<1.7	ND<1.7	ND<1.7,
		e						except
								TBA = 97
7/13/04	3.3,a,b	2.6,a	73	ND<1.2	ND<1.2	ND<1.2	ND<1.2	ND<1.2,
								except
								TBA = 40
4/6/04	3.4,a,b	2.6,a	72	ND<1	ND<1	ND<1	ND<1	ND<1,
								except
		1						TBA = 34
12/18/03	3.0,b	ND<5.0,e	160	0.22	ND<50	ND<50	0.073	ND<5,
								except
0/19/02	0.2 - 1-	7.5	220	0.22	ND<0.05	ND<0.05	ND<0.05	TBA = 64 $ND < 2.5,$
9/18/03	8.2,a,b	7.5	22 0	0.33	ND<0.03	ND<0.03	ND<0.03	except
						Ì		TBA = 51
2/23/93	9,6	66		14	8.5	1.4	9.8	1DA - 31
11/13/92	13	62		11	9.2	1.1	9,6	
8/92		<u>.</u>		EW1 I	nstalled			

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Lighter than water immiscible sheen present on the sample.
- b = TPH-D results consist of both diesel-range and gasoline-range compounds.
- e = reporting limit raised due to high MTBE content
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW1

Date	TPH-D	TPH-G	ТРН-МО	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, including MTBE**
4/13/05	590a,b,d	35,a		2	ND<0.05	0.46	0.14	ND<0.05,
								TBA ND<0.5
1/31/05		No sample recovered						
10/15/04		· v v · medar		No sample	e recovered			***************************************
7/14/04	240,a,b	66,a	ND<0.05	1.8	ND<0.05	1.8	0.056	ND<0.05, TBA ND<0.5
4/6/04	74,a,b	50,a		3.1	ND<0.1	0.21	0.14	ND<0.1, TBA ND<1
2/11/04	450,a,b	15,a	130	2.2	0.031	0.16	0.054	ND<0.025, TBA ND<0.25
11/21/03	1,900,a,b	38,e	570	2.0	0.059	0.19	0.095	ND<0.05, TBA ND<0.5
6/10/98		,		OW1 I	nstalled			

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample,
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- d = Laboratory analytical report note: oil range compounds are significant.
- e = Laboratory analytical report note: unmodified or weakly modified gasoline is significant.
- ** = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW2

Date 4/13/05	TPH-D 0.22,b	TPH-G 0.065	TPH-MO 	Benzene ND <0.0005	Toluene ND <0.0005	Ethyl- benzene ND <0.0005	Total Xylenes ND <0.0005	Other Fuel Additives by 8260, incl. MTBE** ND<0.0005, except MTBE = 0.0097
1/31/05	No sample recovered							
10/15/04		No sample recovered						
07/14/04				No sa	mple recovere	ed		
4/6/04	****	0.069,a		ND <0.00062	NID <0.00062	ND <0.00062	ND <0.00062	
2/11/04		0.21	_	ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	ND<0.0005, except MTBE = 0.0064 TBA = 0.0070
11/21/03				No sa	mple recovere	ed.	L	1
6/10/98	OW2 Installed							

NOTES:

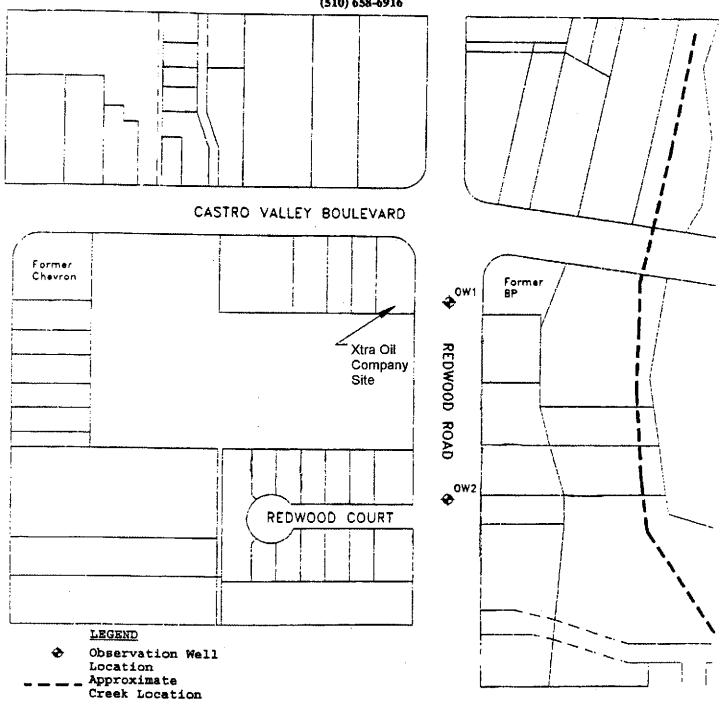
TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.


MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- e = Laboratory analytical report note: unmodified or weakly modified gasoline is significant.
- * = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).


P & D ENVIRONMENTAL

A Division of Paul H. King, Inc. 4020 Panama Court Oakland, CA 94611 (510) 658-6916

P & D ENVIRONMENTAL A Division of Paul H. King, Inc. CASTRO VALLEY BOULEVARD 4020 Panama Court Oakland, CA 94611 (510) 658-6916 sidewalk (170.47)ф MW1 Planter UST Pit Location 0 0 MW4 $(169.58)^*$ 0 O Сапору 0 0 REDWOOD ROAD sidewalk EW1 (170,05) Pump Island Building LEGEND Monitoring Well Location Groundwater Surface Elevation on April 13, 2005 Groundwater Flow Direction Groundwater Surface Elevation Corrected for the Presence of Free Product. North Base Map From: Figure 2 20 RHL Design Group, Inc. SITE PLAN June, 1997 Xtra Oil Company 3495 Castro Valley Blvd Scale in Feet Castro Valley. CA

P & D ENVIRONMENTAL
A Division of Paul H. King, Inc.
4020 Panama Court
Oakland, CA 94611
(510) 658-6916

Base Map From: Castro Valley Sanitation District Undated

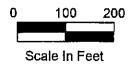


Figure 3 SITE VICINITY MAP Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, CA

Site Name X.O. Costro Valley	Well No. MW1
Job No	Date 4/13/05
TOC to Water (ft.) 5.23-6,	90 Sheen
Well Depth (ft.) 20	Pree Product Thickness
Well Diameter 411. (0.646 gul/Fr	Sample Collection Method
Gal./Casing Vol	Teffon Baller
TIME GAL. PURGED DH	TEMPERATURE ELECTRICAL CONDUCTIVITY
1380 3 7.24	645 0.90
1331 6 6.86	65.4 0.97
1333 9 /263	656 0.93
13:40 15 6.81	66.3
25	
purged day at	17901 13:43
Dused day at Surph Time 13:4	5
	,
NOTES: Nosheenen baile, or pu	y water
Nosheenen baile or pur Sheen on Samp	Le
T'	

Site Name X.O. Custro Valley	well No. MW3
Job No. <u>0014</u>	Date 4-13-05
TOC to Water (ft.) 6.35	Sheen Or Sample
Well Depth (ft.) 18.7	Free Product Thickness_
Well Diameter 411. (0.646 90/fr)	Sample Collection Method
Gal./Casing Vol.	Teflor Baler
TIME CAL DURGED	ELECTRICAL
1427 3 683 68	RATURE CONDUCTIVITY . S /- 2.1
1429 6 69	1 /25
1431 9 6.71 /4	9 1211
1434 1872 6.58 699	1:28
20 Duged done	1291
	•
Sample Time	1436
<u> </u>	
NOTES:	
Sheer on frogge worker	
NOTES: Sheer on frage work	

Site Name X.O. Costro Valley	Well No. Ewg
Job No. <u>0014</u>	Date 4-13-05
TOC to Water (ft.) 5.23	Sheen M Souple
Well Depth (ft.) 13.2	Pree Product Thickness
Well Diameter 8 11. (2.584 gal/Fr)	Sample Collection Method
Gal./Casing Vol. 21	Teffor Bailer
£=63	Tellm Isa, ler ELECTRICAL CONDUCTIVITY G. G
NOTES:	7 . 7
Masken in boiler, while particles F of werer inbailer, Shien Noted	In Sample
PURGE10.92 Saypetme 12:28	

	VA Complete	A4
	Site Name X.O. Casto Valley	Well No. MW4
	Job No	Date 4-13-05
	TOC to Water (ft.)	Sheen
	Well Depth (ft.) Not Recorded	Free Product Thickness
	Well Diameter 211.	Sample Collection Method
	Gal./Casing Vol	
	Mensurance w/steel tape TIME GAL PURGED DH	FC1767C ELECTRICAL CONDUCTIVITY
	7'0"80" P	T.O.C.
•		
६८		
		·
	- 13 11 - 2	
	$\frac{213^{11}}{0.01} = 0.23$	TOP OF Product
		TOPOF Waver
	21111=0.22	Topor waren
	0"	Boton of Tape
	NOTES:	
	`	

FP correction = 0.01 X0.75 = 0.01

Depth to water Correction = 6.78-0.01 = 6.77

	Sice Name 1.0, - (astroValley	Well No. OW
	JOD NO. 0014	Date 4/13/05
	TOC to Water (ft.)	Sheen Yes
	Well Depth (ft.)	Free Product Thickness
	Well Diameter 1 in	Sample Collection Method
	Gal./Casing Vol	Dacuum Pump
	Longth on Steel Tape in)	Continue ELECTRICAL
	TIME GAN: PURGED THE	CONDUCTIVITY
,	$\frac{7.44}{} = \frac{89}{4}$ "	T.O.C.
1	<i>)</i>	
6,99 (
	/	
/	′ —— — — — — —	
(
	- 0,45 = 5 76" - Tap	of Water
•		
		bottom of Well
	NOTES: Water in Christic box	above T.O.C.
	Steel tape w waters aduct	Sinding profes used
	PURGE10.92 Strong dante shown	The same
	Steel tape w water product PURGE10.92 Strong dante sheen	on sample.

	Site Name X. O. Casto Valley	Well No. OW Z
	JOD NO. 0014	Date 4/13/05
	TOC to Water (ft.)	Sheen None
	Well Depth (ft.)	Free Product Thickness
	Well Diameter 11h.	Sample Collection Method
	Gal./Casing Vol	Vacyum Pump
	TIME LENGTH ON Steel Tape in)	TEMPERATURE CONDUCTIVITY
	7.35= 88 7 1	D.C
(
7,06 <		
(,00		
/		
	0.79' = 35"	To pof water
		1000
	. O4 s	Bottom of well
	NOTES: Water in Christelio	x below T.O.C.
	Steel tape to water a pr	odust Kuding Pastes used
	PURGE10.92	J 1 43 A 1,

M	cCampbell An	alytical,	Inc.	Telepho	venne South, #D7, Pacheco, Come: 925-798-1620 Fex: 92 mccarupbell.com E-mail: man	5-798-1622		
P & D Enviro	nmental		ject ID: #0014;	Xtra Oil, Castro	Date Sampled: 04.	/13/05		
55 Santa Clar	McCampbell Analytical, Inc. Telephone: 925-798-1620 Fax: Website: www.mccarpbell.com E-mail in the project ID: #0014; Xtra Oil, Castro				/14/05			
Caldand CA	04610	Client Con	ntact: Eric Olson	1	Date Extracted: 04	/14/05		
Oakland, CA 94610 Client P.O.: Date Analyzed: Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel* Extraction method: SW3510C Analytical unthods: SWB015C Lab ID Client ID Matrix TPH(d) 0504226-001C MW1 W 9300,d,b 0504226-002C MW3 W 19,000,d,a,h 0504226-003C EWi W 2200,a,d 0504226-004C OW1 W 590,000,a,d,g,h						/15/05-04/20/0)5	
Extraction method:		el Range (Ci			ns as Diesel*	Work Order:	0504226	
Lab ID	Client ID	Matrix		TPH(d)		DF	% SS	
0504226-001C	MWI	w		9300,d,b		ì	117	
0504226-002C	MW3	w		19,000.d.a.	h	10	96	
0504226-003C	EWI	w	·	2200,a,d		1	105	
0504225-004C	owı	w		590,000,a,d,	g,h	100	125	
0504226-005C	ow2	w		220,d,a		1	102	
					· .			
							ļ	
				····				
L							<u> </u>	
	ng Limit for DF =1;	w		50		μ	g/L	
	the reporting limit	DF = 1; W 50 ted at or						

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/soiid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in µg/L.

clustered chromatogram resulting in cocluted surrogate and sample peaks, or, surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) immediated or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~i vol. % sediment; k) kerosene/kerosene range/jet fuel range; i) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

DHS Certification No. 1644

J.

_Angela Rydelius, Lab Manager

Me Me	Campbell A	Analytical,	Inc.	Teleph	ivenus South, #D7, Pacheco, CA 9 none: 925-798-1620 Fax: 925-79 mocampbell.com E-mail: main@n	8-1622	·
P & D Enviror	nmental	Client Proj	ect LD: #0014;	Xtra Oil, Castro	Date Sampled: 04/13	/05	
55 Santa Clare	a, Ste.240	Valley		Date Received: 0 Date Extracted: 0		/05	
Oakland, CA 9	94610	Client Cont	tact: Eric Olson		Date Extracted: 04/16	/05-04/19/	05
		Client P.O.	:		Date Analyzed: 04/16	/05-04/19/	05
Extraction method: S	Gasoline Rang	e (C6-C12) Vol				j∗ Work Order:	0504226
Lah ID	Client ID	Matrix		TPH(g)		DF	% SS
D01A	MWI	w		30,000,a		100	113
D02A	MW3	w		96,000,a,h	1	100	114
003A	EWI	w		380,a		2	104
004A	OW1	w		35,000,a,h)	20	IOR
005A	OW2	w		65,a		1	107
					76 bi		
				·			
				<u> </u>			
							
				·			
	and the same of th				marin agaminana ili kala salah adalah 1872 daga dalah		

The state of the s	The state and delegated at the	w S	37.6	μg/L Nα
* Water 480 Vanor complex and all TCT D & SDI Day	above the reporting limit	13	NA.	NA.

water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/studge/solid samples in mg/kg, wipe samples in mg/L.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

[#] cluttered chromatogram; sample peak coefutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; b) oldgically altered gasoline?; c) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas), m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Pax: 925-798-1622 Website: www.mecampbell.com E-mail: main@mecampbell.com

Oxygenates and BTEX by GC/MS*								
01171010	Client P.O.:	Date Analyzed: 04/18/05						
Oakland, CA 94610	Client Contact: Eric Olson	Date Extracted: 04/18/05						
55 Santa Clare, Ste.240	Valley	Date Received: 04/14/05						
P & D Environmental	Client Project ID: #0014; Xtra Oil, Castro Valley	Date Sampled: 04/13/05						

	Client P.O.:			ate Analyzett 04/.			
Extraction Method: SW5030B	• •	tes and BTEX i	*		Work Ord	er: 0504226	
Lab ID	0504226-001B	0504226-002B	0504226-003E	0504226-004B			
Client ID	MW1	MW3	EWI	OW1	Reporting		
Matrix	w	w	w	W	DF=1		
DF	100	1000	100	100	\$	w	
Compound		Conc	ntration		ug/kg	μ g /L	
tert-Amyl methyl ether (TAME)	ND<50	ND<500	ND<50	NID<50	NA	0.5	
Berrzens	1900	31,000	ND<50	2000	NA	0.5	
t-Butyl alcohol (TBA)	ND<500	12,000	1600	ND<500	NA	5.0	
Disopropyl ether (DIPE)	ND<50	ND<500	ND<50	ND<50	NA	0.5	
Bthylbenzene	1700	2300	ND<50	460	NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND<50	ND<500	ND<50	ND<50	NA.	0.5	
Methyl-t-butyl other (MTBE)	300	28,000	2700	ND<50	NA	0.5	
Toluene	600	4000	ND<50	ND<50	NA	0.5	
Xylenes	3000	12,000	ND<50	140	NA	0.5	
	Surr	ogate Recoveries	s (%)				
%SS1:	89	86	88	87			
%8S2:	95	96	98	97			
%SS3:	95	98	99	97		,	

* water and vapor samples are reported in µg/L, soit/studge/solid samples in mg/kg, product/oit/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~! vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

Angela Rydelius, Lab Manager

McCampbell An	alytical, Inc.	110 2nd Averne South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.maxampbell.com E-mail: main@mccampbell.com						
P & D Environmental	Client Project ID: #0014	1; Xtra Oil, Castro	Date Sampled: 04/	13/05				
55 Santa Clara, Stc.240	Valley		Date Received: 04/14/05					
	Client Contact: Eric Olso	10.	Date Extracted: 04/	18/05				
Oakiand, CA 94610	Client P.O.:	18/05						
Extraction Method: SW\$030B	Oxygenates and I	BTEX by GC/MS*		Work Ord	er: 0504226			
Lab ID	0504226-005B	-						
Client ID	OW2			Reporting				
Matrix	W) DF	=1			
DF	1			S	W			
Compound		Concentration		шg/kg	µg/L			
tert-Amyl methyl ether (TAME)	ND			NA	0.5			
Benzene	ND			NA	0.5			
t-Butyl alcohol (TBA)	ND			NA	5.0			
Diisopropyl ether (DPE)	ND			NA	0.5			
Ethylbenzene	ND			NA	0.5			
Ethyl tert-butyl ether (ETBE)	ND			NA	0.5			
Methyl-t-butyl ether (MTBE)	9.7			NA	0.5			
Toluene	ND			NA	0.5			
Xylenes	ND			NA	0.5			
	Surrogate Re	coveries (%)						
%\$S1:	88							
%\$\$2:	94							
%S\$3:	99							
Comments								

Angela Rydelius, Lab Manager

water and vapor samples are reported in µg/L, soil/studge/soild samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than -1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.nocampbell.com E-sigil: main@mccumpbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0504226

EPA Method: BW8260B	E	xtraction	SW50309		Batc	hID: 1587	0	Spiked Sample ID: N/A		
B. and a de	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Analyte	μg/L μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS/MSD	LCS / LCSD
tert-Amyl methyl ether (TAME)	N/A	10	N/A	n/a	N/A	96.3	96.5	0.239	N/A	70 - 130
Benzene	N/A	10	N/A	N/A	N/A	106	107	1.19	N/A	70 - 130
t-Butyl alcohol (TBA)	N/A	50	N/A	N/A	N/A	94.9	92.3	2.74	N/A	70 - 130
Diisapropyl ether (DIPE)	N/A	10	N/A	N/A	N/A	104	103	1.43	N/A	70 - 130
Ethyl tert-butyl ether (ETBE)	N/A	10	N/A	N/A	N/A	97.4	95.3	2.18	N/A	70 - 130
Methyl-t-butyl ether (MTBE)	N/A	10	N/A	N/A	N/A	99.5	98.8	0.703	N/A	70 - 130
Toluene	N/A	16	N/A	N/A	N/A	103	107	3.31	N/A	70 - 130
%SS1:	N/A	10	N/A	N/A	N/A	97	94 .	2.54	N/A	70 - 130
%SS2:	N/A	10	N/A	N/A	N/A	98	97	1.24	N/A	70 - 130
%\$\$3:	N/A	10	N/A	N/A	N/A	111	117	5.45	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

EATCH 15876 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0504226-001B	4/13/05 1:45 PM	4/18/05	4/18/05 6:53 PM	0504226-002B	4/13/05 2:36 PM	4/18/05	4/18/05 7:36 PM
0504226-003B	4/13/05 12:28 PM	4/18/05	4/18/05 8:19 PM	0504226-004B	4/13/05 11:00 AM	4/18/05	4/18/05 9:02 PM
0504226-005B	4/13/05 10:45 AM	4/18/05	4/18/05 9:46 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample cliuted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and ecotone may occasionally appear in the matrix or blank at low levels.

DHS Certification No. 1644

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: nam@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0504226

EPA Method: SW8015G	E	Extraction: SW351DC				hID: 1585	3	Spiked Sample ID: N/A			
a noise	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
Analyte	μg/L μg/L %R	% Rec.	Rec. % Rec.		% Rec.	% Rec.	% RPD	MS/MSD	LCS / LCSD		
TPH(d)	N/A	1000	N/A	N/A	N/A	105	103	1.66	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	103	101	2.81	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 15853 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0504226-001C	4/13/05 1:45 PM	4/14/05	4/16/05 5:06 AM	0504226-002C	4/13/05 2:36 PM	4/14/05	4/15/05 6:50 PM
0504226-003C	4/13/05 12:28 PM	4/14/05	4/18/05 2:50 PM	0504226-004C	4/13/05 11:00 AM	4/14/05	4/20/05 2:24 AM
0504226-005C	4/13/05 10:45 AM	4/14/05	4/18/05 3:59 PM	}		·	

MS = Metrix Spike; MSD = Matrix Spike Duplicate; LCS = Leboratory Control Sample: LCSD = Leboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD splike recovertes and / or %RPD may fall outside of laboratory acceptance criteris due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount-spliked, or b) the spliked sample's matrix interferes with the splike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds epike amount for soil matrix or exceeds by spike amount for water matrix or sample diluted due to high metrix or analyte content.

DHS Certification No. 1644

QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fex: 925-798-1622
Website: www.mocampbell.com B-mail: main@mccampbell.com

9257984612

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0504228

EPA Method: SW6015Cm	5	xtraction:	8W5030B	3	Bato	hID: 1567	7	Spiked Sample ID: 0504237-091A			
1	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
Anziyte	µg/L	µg/L % Rec. % Rec	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSC		
TPH(btex) [£]	ND	60	94.3	94.6	0.312	93.9	95	1.18	70 - 130	70 - 130	
MTBE	ND	10	86.5	95.5	9.90	89.6	87.4	2.55	70 - 130	70 - 130	
Benzene	ND	10	104	94.5	9.50	98.4	97.1	1.33	70 - 130	70 - 130	
Toluene	ND	10	106	94	12.4	105	99.9	5.42	70 - 130	70 - 130	
Ethylbenzene	ND	10	109	100	8.49	105	104	1.36	70 - 130	70 - 130	
Xylenes	ND	30	95.7	90	6.10	91	91.3	0.366	70 - 130	70 - 130	
%S5:	94	10	119	110	7.29	113	112	0.253	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 15877 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sempled	Date Extracted	Date Analyzed
0504226-001A	4/13/05 1:45 PM	4/16/05	4/16/05 6:54 AM	0504226-002A	4/13/05 2:36 PM	4/16/05	4/16/05 7:27 AM
0504226-003A	4/13/05 12:28 PM	4/16/05	4/16/05 8:00 AM	0504226-003A	4/13/05 12:28 PM	4/19/05	4/19/05 6:17 AM
0504226-004A	4/13/05 11:00 AM	4/19/05	4/19/05 7:22 AM	0504226-005A	4/13/05 ID:45 AM	4/16/05	4/16/05 9:06 AM

MS = Metrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount apliced, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not arough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds apike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted dusgo high matrix or analyte content

DHS Certification No. 1644

QA/QC Officer

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

110 Second Avenue South, #D7 Pacheon, CA 94553-5560 (925) 798-1620

WorkOrder: 0504226

Bill to:

ClientID: PDEO

Report to:

Eric Otson

TEL: FAX (510) 658-6916

510-834-0152 ProjectNo: #0014; Xtra Oil, Castro Valley Accounts Payable

Xtra Oil Company 2307 Pacific Avenue

Date Received:

Requested TAT:

04/14/2005

5 days

04/14/2005

Oakland, CA 94610

P & D Environmental

55 Santa Clera, Ste.240

Alameda, CA 94507

Date Printed:

				[Requested Tests (See legend below)																	
Sample ID	ClientSampli)	Matrix	Collection Date	Hold	1	2	3	4		5	6		7	1	8	9	10	11	12	13	14	15
				•								-										
0504226-001	MW1	Water	4/13/05 1:45:00 PM		A	В	C		\top			\Box				I .						T
0504226-002	MW3	Water	4/13/05 2:36:00 PM		A	B	C							1								T
0504226-003	EW1	Water	4/13/05 12:28:00		Α	В	C		\top													
0504226-004	OW1	Water	4/13/05 11:00:00		٨	В	С		7								[T
0604226-005	OW2	Water	4/13/05 10:45:00		Α	В	С														-	T

Test Legend:

1	G-MBTEX_W
6	
11	

2	MBTEXOXY-8260B_W
7	
12	

3	TPH(D)_W
8	
13	

4	
9	
14	

5	
10	
15	

Prepared by: Elisa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

P&

P&DENVIRONMENTAL

A Division of Paul H. King, Inc. 55 Santa Clara Ave, Suite 240 Oakland, CA 94610 0804226

CHAIN OF CUSTODY RECORD

PAGE __ OF _ (510) 658-6916 PROJECT NAME: PROJECT NUMBER: Xta Oil, Custro Volley 10014 SAMPLED BY: (PRINTED AND SIGNATIONS) REMARKS Eric Olson SAMPLE LOCATION TYPE SAMPLE NUMBER TIME BATE Normal Turnaround 4-13-05 3:45 MW1 WATER 14.36 MW3 12:28 FW1 Ц 11.00 OWI 0W2 10:45 CONTAINERS TOTAL NO. OF SMITHES RECEIVED DY: [SIGNATURE] LABORATORY: TIME RELINGUISHED/BY: (SIGNATURE) DATE THE SHE'MENT TOTAL NO. OF CONTAINERS (RES SHIPMENT) 4-1405 LABORATORY PHONE NUMBER: LABORATORY CONTACT: DATE RECEIVED BY: (SIGNATURE) TIME RELINCOISHED BY: (SIGNATURE) RECEIVED FOR LABORATORY BY: SAMPLE ANALYSIS REQUEST SHEET RELINQUISHED BY: (SIGNATURE) ATTACHED: ()YES (X)NO (SIGNATURÉ) NoAs preserved w/ HCC REMARKS:

L HNHLYTICHL 8257884

7 TOBBEL

. V