P & D Environmental

A Division of Paul H. King, Inc. 4020 Panama Court Oakland, CA 94611 (510) 658-6916

April 15, 2004 Report 0014.R51

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT:

GROUNDWATER MONITORING AND SAMPLING REPORT

(JANUARY THROUGH APRIL 2004)

Xtra Oil Company

3495 Castro Valley Blvd. Castro Valley, California

Gentlemen:

P&D Environmental, a division of Paul H. King, Inc. (P&D) is pleased to present this report documenting the results of quarterly monitoring and sampling of both the on- and off-site wells for the subject property. This work was performed in accordance with P&D's proposal 020599.P1 dated February 5, 1999. Offsite observation wells OW1 and OW2 and onsite groundwater monitoring well MW4 were monitored and sampled on February 11, 2004. Offsite observation wells OW1 and OW2 and onsite wells MW1, MW3, MW4, and EW1 were monitored on April 6, 2004. In addition, all of the offsite and onsite wells were sampled on April 6, 2004, with the exception of well MW4. The reporting period for this report is for January through April 2004. A Site Location Map (Figure 1), a Site Plan showing onsite well locations (Figure 2), and a Site Vicinity Map showing offsite observation well locations (Figure 3) are attached with this report.

BACKGROUND

The site is currently used as a gasoline station. Four 12,000 gallon underground fuel storage tanks are present at the site. Three of the tanks contain gasoline and the fourth tank contains diesel fuel. A 550 gallon waste oil tank was removed from the site in November, 1988. The fuel tanks were replaced during August, 1992.

Three monitoring wells, designated as MW1, MW2 and MW3 were installed at the site on February 14 and 15, 1990 by Western Geo-Engineers. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The locations of the monitoring wells are shown in Figure 2. Soil samples collected during drilling of the boreholes for the monitoring wells revealed the presence of total petroleum hydrocarbons as gasoline (TPH-G) and total petroleum hydrocarbons as diesel (TPH-D). TPH-G was encountered in borehole MW1 at depths of 5 and 10 feet below grade at concentrations of 40 and 1,400 mg/kg, respectively; in borehole MW2 at depths of 10 and 15 feet below grade at concentrations of 230 and 95 mg/kg, respectively; and in borehole MW3 at depths of 5, 10 and 15 feet at concentrations of 140, 250 and 25 mg/kg, respectively. In addition, 120 mg/kg TPH-D was detected in borehole MW3 at a depth of 5 feet. Soil samples collected at a depth of 20 feet in borehole MW1 and at a depth of 18 feet in boreholes in MW2 and MW3 did not show any detectable concentrations of TPH-G or TPH-D. Groundwater was encountered in the boreholes at depths of approximately 15 to 16 feet below grade.

On February 15, 1990 Western Geo-Engineers drilled three exploratory boreholes at the site designated as SB1, SB2 and SB3. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The approximate locations of the boreholes are shown on Figure 2. It is P&D's understanding that soil samples were collected from the exploratory boreholes at depths of 10 and 12 feet and evaluated in the field using a photo ionization detector. In borehole SB1, TPH-G was detected at the depths of 10 and 12 feet at concentrations of 1,700 and 450 mg/kg, respectively. In boreholes SB2 and SB3, TPH-G was detected at the depths of 10 and 12 feet in both boreholes at concentrations of 800 mg/kg and greater than 2,000 mg/kg, respectively. A groundwater monitoring and sampling program was initiated at the site on February 20, 1990.

It is P&D's understanding that during fuel tank replacement activities in August, 1992 soil surrounding the tank pit was removed and disposed of offsite. An extraction well, designated as EW1, was designed and constructed in one corner of the new tank pit by K&B Environmental at the time of installation of the new tanks. The location of EW1 is shown on Figure 2.

On February 7, 1996 well MW2 was destroyed for the purpose of widening Redwood Road. The destruction was overseen by ACC Environmental Consultants of Oakland, California.

On August 15, 1997 P&D personnel oversaw the installation of one groundwater monitoring well, designated as MW4 at the subject site. The location of the monitoring well is shown on the attached Site Plan, Figure 2. This work was performed in accordance with P&D's work plan 0014.W4 dated June 27, 1997. The work plan was approved by the Alameda County Department of Environmental Health (ACDEH) in a telephone conversation with Mr. Scott Seery on August 14, 1997. During the conversation, Mr. Seery indicated that he would record his approval of the work plan in the county file for the site. In accordance with an October 25, 2002 letter from Mr. Seery, groundwater samples are to be analyzed for fuel oxygenates (MTBE, TAME, ETBE, TAME and TBA), and lead scavengers (EDB, 1,2-DCA/EDC) using EPA Method 8260; and data for observation wells OW1 and OW2, located in Redwood Road, are to be incorporated into monitoring and sampling reports for the subject site.

FIELD ACTIVITIES

Offsite observation wells OW1 and OW2 and onsite groundwater monitoring well MW4 were monitored and sampled on February 11, 2004. In well MW4, only the separate phase hydrocarbon layer was sampled. Offsite observation wells OW1 and OW2 and onsite wells MW1, MW3, MW4, and EW1 were monitored on April 6, 2004. In addition, all of the offsite and onsite wells were sampled on April 6, 2004, with the exception of well MW4. A joint groundwater monitoring with Allisto Engineering, Inc. was not performed.

The wells were monitored for depth to water and the presence of free product or sheen. In wells MW4, OW1 and OW2 the depth to water and depth to free product was measured to the nearest 1/32-inch with a steel tape and water-finding or product-finding paste. In wells MW1, MW3, and EW1, the depth to water was measured to the nearest 0.01 foot using an electric water level indicator. The presence of free product and sheen was evaluated using a transparent bailer in wells MW1, MW3, and EW1.

On February 11, 2004 offsite observation wells OW1 and OW2 and onsite monitoring well MW4 were monitored for depth to water and the presence of free product prior to sampling. No free product was detected in either of the observation wells. A 2.70-foot thick separate phase petroleum hydrocarbon layer was measured in well MW4 on February 11, 2004.

On April 6, 2004 offsite observation wells OW1 and OW2 and onsite wells MW1, MW3 and EW1 were monitored prior to sampling. Well MW4 was also monitored but not sampled. No free product was observed in any of the wells with the exception of well MW4 where 2.70 feet of free product was encountered.

The passive hydrocarbon collection device in well MW4 was accidentally disconnected and sank in the well during the monitoring and sampling event on June 19, 2003 and was not present in well MW4 at the time of the sampling event on February 11, 2004 or the monitoring event on April 6, 2004. Depth to water level and free product layer thickness measurements are presented in Table 1.

On February 11, 2004, and again on April 6, 2004 offsite observation wells OW1 and OW2 were sampled using a vacuum pump and 0.25-inch diameter polyethylene tubing. On February 11, 2004, the floating separate phase layer in well MW4 was sampled using the same method. Based on the small sample volumes in wells OW1 and OW2, the wells were not purged prior to sample collection. Similarly, well MW4 was not purged prior to sampling the floating separate phase layer. The water samples from the wells were decanted to sample bottles and managed as described below. Because of the small sample volume obtained from well OW2, only one VOA vial was partially filled with sample from well OW2.

Prior to well sampling on April 6, 2004, onsite wells MW1, MW3, and EW1 were purged of a minimum of three casing volumes of water, or until the wells had been purged dry. During purging operations, the field parameters of electrical conductivity, temperature, and pH were monitored. Once the field parameters were observed to stabilize, and a minimum of three casing volumes had been purged or the wells had purged dry and partially recovered, water samples were collected using a clean Teflon bailer.

The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials and I-liter amber glass bottles that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to assure that no air bubbles were present.

The VOA vials and bottles were then transferred to a cooler with ice, until they were transported to McCampbell Analytical, Inc. in Pacheco, California. McCampbell Analytical, Inc. is a State-certified hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

HYDROGEOLOGY

Water levels were measured in all of the wells once during the quarter, and in wells OW1, OW2 and MW4 twice during the quarter. The measured depth to water in offsite observation wells OW1 and OW2 on February 11, 2004 was 7.01 and 7.19 feet, respectively. The measured depth to water in well MW4 on February 11, 2004 was 9.75 feet. The floating separate phase layer in well MW4

on February 11, 2004 was measured as 2.70 feet in thickness. The measured depth to water for onsite wells MW1, MW3, MW4 and EW1 on April 6, 2004 was 7.93, 7.41, 9.58 and 6.63 feet, respectively. The floating separate phase layer in MW4 on April 6, 2004 was 2.83 feet in thickness. Using a specific gravity of 0.75, the corrected depth to water in well MW4 on April 6, 2004 is 7.46 feet. Since the previous quarter, the measured depth to water on April 6, 2004 has decreased in wells MW1 and MW3 by 0.28 and 0.42 feet, respectively and increased in well EW1 by 0.09 feet. In well MW4, the separate phase layer thickness has increased 1.32 feet from 1.51 feet in thickness on December 18, 2003 to 2.83 feet in thickness on April 6, 2004. The corrected groundwater elevation in well MW4 has increased by 1.16 feet since the previous quarter.

Based on the groundwater surface elevations in monitoring wells MW1 and MW3 and the corrected groundwater surface elevation in well MW4, the groundwater flow direction at the site on April 6, 2004 was calculated to be to the southeast east with a gradient of 0.0060. Since the previous monitoring event the groundwater flow direction at the site has shifted from the east toward the southeast and the gradient has increased from 0.0053. The groundwater flow direction on April 6, 2003 is shown on Figure 2.

LABORATORY RESULTS

The groundwater sample collected from offsite observation well OW1 on February 11, 2004 was analyzed for TPH-Multirange using Modified EPA Method 8015; and for benzene, toluene, ethylbenzene, and total xylenes (BTEX), as well as, fuel oxygenates (MTBE, TAME, ETBE, TAME, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC). Because of the limited sample volume collected from well OW2 on February 11, 2004, the sample from well OW2 was analyzed for TPH-G, MTBE and BTEX using EPA Method 8021 and Modified EPA Method 8015. Adequate sample volume remained after the initial analysis to also analyze the sample for BTEX, fuel oxygenates and lead scavengers using EPA Method 8260. The floating separate phase layer collected from well MW4 on February 11, 2004 was analyzed for fuel finger print evaluation using EPA Method 8015C.

The groundwater samples collected from offsite well OW1 and onsite monitoring wells MW1, MW3, and EW1 on April 6, 2004 were analyzed for TPH-D and TPH-G using Modified EPA Method 8015; BTEX, fuel oxygenates, and lead scavengers using EPA Method 8260. Because of the limited sample volume collected from well OW2 on April 6, 2004, the sample from well OW2 was analyzed for TPH-G, MTBE and BTEX using EPA Method 8021 and Modified EPA Method 8015.

The laboratory analytical results for the groundwater sample from well OW1 show that TPH-G, TPH-D and TPH-MO were detected at concentrations of 38, 1900, and 570 mg/L, respectively. In addition benzene was detected at a concentration of 2 mg/L. None of the fuel oxygenates or lead scavengers were detected. Review of the laboratory analytical reports shows that the results reported as TPH-D are identified by the laboratory as consisting of both gasoline and diesel-range compounds. Review of the fuel finger print results shows that the sample is identified as diesel, with a small amount of gasoline present.

The laboratory analytical results of the samples collected February 11, 2004 from wells OW1 and OW2 showed that TPH-G, TPH-D, and TPH-MO were detected in well OW1 at concentrations of 15, 450 and 130 mg/L, respectively. Review of the laboratory analytical reports shows that the results reported

as TPH-D are identified by the laboratory as consisting of both gasoline and diesel-range compounds. Benzene was detected at a concentration of 2.2 mg/L, and MTBE was not detected. In well OW1, the only analytes detected were TPH-G, MTBE and TBA at concentrations of 0.21, 0.0064 and 0.007 mg/L, respectively (MTBE was also detected using EPA Method 8021 at a concentration of 0.0059 mg/L).

Review of the fuel finger print analysis for the sample of the floating separate phase layer collected from well MW4 on February 11, 2004 shows that the laboratory identified the sample as consisting predominantly of diesel, with a less significant amount of gasoline present.

The laboratory analytical results of the samples collected April 6, 2004 from wells OW1 and OW2 showed that TPH-G and TPH-D were detected in well OW1 at concentrations of 50 and 74 mg/L, respectively. Review of the laboratory analytical reports shows that the results reported as TPH-D are identified by the laboratory as consisting of both gasoline and diesel-range compounds. Benzene was detected at a concentration of 3.1 mg/L, and MTBE was not detected. In well OW1, the only analyte detected was TPH-G at a concentration of 0.069 mg/L.

The laboratory analytical results for the samples collected on April 6, 2004 from wells MW1, MW3 and EW1 show TPH-D concentrations of 18, 32, and 3.4 mg/L, respectively. Review of the laboratory analytical reports indicates that the TPH-D results for each of the wells consist of both diesel- and gasoline-range compounds. In addition, laboratory results from MW1, MW3, and EW1 show TPH-G concentrations of 28, 81 and 2.6 mg/L, respectively, and benzene was detected at concentrations of 2.3, 34 mg/L and not detected, respectively. MTBE was detected at concentrations of 0.11, 17 and 72 mg/L, respectively. No other fuel oxygenates or lead scavengers were detected except for t-butyl alcohol (TBA) at concentrations of 8.8 and 34 mg/L in wells MW3 and EW1, respectively.

Since the previous sampling of wells MW1, MW3 and EW1 on December 18, 2003, TPH-D concentrations have increased in wells MW1 and EW1, benzene concentrations have increased in wells MW1 and MW3, and TPH-G and MTBE concentrations have increased in wells EW1 and MW1, respectively. The laboratory analytical results for the groundwater samples are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

DISCUSSION AND RECOMMENDATIONS

Wells OW1 and OW2 were monitored and sampled twice during the quarter. Wells MW1, MW3, EW1 were monitored and sampled once during the quarter. Well MW4 was monitored twice and sampled once during the quarter. No separate phase hydrocarbon layer was observed in wells OW1 or OW2. Based on the small sample volumes associated with well OW2, it is suspected that the water detected in the bottom of the well was water that had accumulated in the bottom cap of the well.

A floating separate phase layer was measured in well MW4 on February 11, 2004 and April 6, 2004 with a thickness of 2.70 and 2.83 feet, respectively. A sample of the separate phase layer showed the petroleum hydrocarbons to consist predominantly of diesel, with a small amount of gasoline. The passive hydrocarbon collection device in well MW4 was accidentally disconnected and sank in the well during the previous monitoring and sampling event on June 19, 2003 and was not present in well MW4

at the time of the monitoring and sampling event on February 11, 2004 and the monitoring event on April 6, 2004. The separate phase layer thickness in well MW4 has increased from 1.51 feet in thickness on December 18, 2003 to 2.83 feet in thickness on April 6, 2004.

It is P&D's understanding that the hydrocarbon collection device in well MW4 is maintained by Xtra Oil Company personnel. P&D recommends that the collection device be repaired for use, and a log be maintained of product removed. P&D recommends that use of petroleum hydrocarbon absorbent socks in well MW1 be continued. The sock in MW1 needs to be replaced, and socks should be checked periodically and replaced as needed.

The laboratory analytical results of the water samples collected from well OW1 show that TPH-G, TPH-D and benzene were detected on April 6, 2004 at concentrations of 0.050, 0.074, and 3.1 mg/L, respectively. The TPH-D detected in well OW1 was identified as consisting of both gasoline- and diesel-range compounds. In well OW2, based on the very small sample volume in the observation well, less than one VOA vial of sample was collected during each of the sampling events on February 11 and April 6, 2004. Review of the sample results shows that the sample collected on February 11 contained TPH-G, MTBE and TBA at concentrations of 0.21, 0.0064 and 0.0070 mg/L, respectively, and that the sample collected on April 6, 2004 contained 0.069 mg/L TPH-G. Because of the small sample volume, TPH-D analysis was not possible for either of the sampling events, and EPA 8260 analysis was not possible for the April 6, 2004 sampling event. The presence of petroleum hydrocarbons in both observation wells suggests that petroleum hydrocarbons could be preferentially migrating in the sanitary sewer trench where the observation wells are located.

The laboratory analytical results for the groundwater samples collected on April 6, 2004 from wells MW1, MW3, and EW1 showed that TPH-D concentrations ranged from 3.4 to 32 mg/L, TPH-G concentrations ranged from 2.6 to 81 mg/L, and benzene concentrations ranged from not detected to 34 mg/L. Review of the results for the fuel oxygenate and lead scavenger analysis shows that only MTBE and TBA were detected with MTBE detected in all of the wells at concentrations ranging from 0.11 to 72 mg/L and TBA detected in wells MW3 and EW1 at concentrations of 8.8 and 34 mg/L, respectively.

Based on the laboratory analytical results of the water samples collected from the monitoring wells, P&D recommends that groundwater monitoring and sampling be continued. In addition, P&D recommends that future monitoring and sampling efforts be coordinated with other sites in the vicinity of the subject site that are presently being monitored and sampled.

DISTRIBUTION

Copies of this report should be sent to Mr. Scott Seery at the Alameda County Department of Environmental Health. Copies of the report should be accompanied by a transmittal letter signed by an authorized representative of Xtra Oil Company.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which

may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly-revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental

Paul H. King

President

California Registered Geologist

1 and H. King

Registration No. 5901

Expires: 12/31/05

Attachments:

Tables 1 & 2

Site Location Map (Figure 1)

Site Plan (Figure 2)

Site Vicinity Map (Figure 3)

Field Parameter Forms

Laboratory Analytical Results Chain of Custody Documentation

PHK/wrw 0014.R51

TABLE 1 WELL MONITORING DATA

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MW1	04/06/04 12/18/03 09/18/03 06/19/03 03/18/03	177.37*	7.93 7.65 8.15 8.13 7.77	169.44 169.72 169.22 169.24 169.60

NOTES:
* = Surveyed on August 20, 1997

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW1	12/21/02	177.37*	5.74	171.63
(Continued)	9/10/02		8.28	169.09
,	3/30/02		7.43	169.94
	12/22/01		6.92	170.45
	9/23/01		8.53	168.84
	6/22/01		8.30	169.07
	4/22/01		7.77	169.60
	12/14/00		8.49	168,88
	9/18/00		8.56	168.81
	6/08/00		7.97	169.40
	3/09/00		6.68	170.69
	12/09/99		8.15	169.22
	8/31/99		8.36	169.01
	4/29/99		7.68	169.69
	1/29/99		6.99	170.38
	4/26/98		7.50	169.87
	1/24/98		6.61	170.76
	11/06/97		8.79	168.58
	8/26/97		8.51	168.86
	7/24/97	177.43**	8.71	168.72
	4/25/97		7.98	169.45
	1/20/97		7.12	170.31
	7/26/96		8.39	169.04
	7/09/96		8.16	169.27
	4/23/96		7.47	169.96
	2/07/96		6.09	171.34
	1/29/96		6.17	171.26
	10/26/95		8.45	168.98
	7/28/95		8.27	169.16
	5/02/95		6.96	170.47
	2/23/95		7.72	169.71
	11/18/94		7.14	170.29
	8/22/94		8.67	168. 7 6
NOTES:				

^{*=} Surveyed on August 20, 1997 **= Surveyed on March 24, 1993 *** = Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW1 (Continued)	5/19/94 2/28/94 11/24/93 8/30/93 5/18/93 2/23/93 11/13/92 5/29/92 1/14/92 12/23/91 11/25/91 10/10/91 9/17/91 8/19/91	177.43** 200.00*** 175.73	8.05 7.44 8.74 8.78 8.12 7.34 9.13 8.59 8.57 9.65 9.41 9.70 9.50 9.31	169.38 169.99 168.69 168.65 169.31 170.09 190.87 167.14 167.16 166.08 166.32 166.03 166.23
	0/17/71		7.31	100.42

^{* =} Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993 *** = Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW2	NOT MEASU	JRED (DESTROYED (ON FEBRUARY 7, 199	96)
	2/07/96	176.04**	5.70	170.34
	1/29/96		5.16	170.88
	10/26/95		8.21	167.83
	7/28/95		7.99	168.05
	5/02/95		6.79	169.25
	2/23/95		7.51	168.53
	11/18/94		6.92	169.12
	8/22/94		8.59	167.45
	5/19/94		7.70	168.34
	2/28/94		6.99	169.05
	11/24/93		8.47	167.57
	8/30/93		8.64	167.40
	5/18/93		7.73	168.31
	2/23/93		6.39	169.65
	11/13/92	198.61***	8.70	189.91
	5/29/92	175.45	9.31	166.14
	1/14/92		8.97	166.48
	12/23/91		10.39	165.06
	11/25/91		9.81	165.64
	10/10/91		10.39	165.06
	9/17/91		10.23	165.22
	8/19/91		9.60	165.85

^{* =} Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993

^{*** =} Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (fl.)	Water Table Elev. (ft.)
MW3	04/06/04	176.40*	7.41	168,99
	12/18/03		6.99	169.41
	09/18/03		7.91	168.49
	06/19/03		7.60	168.80
	03/18/03		7.35	169.05
	12/21/02		5.43	170.97
	9/10/02		7.97	168.43
	3/30/02		6.97	169.43
	12/22/01		6.44	169.96
	9/23/01		8.17	168.23
	6/22/01		8.06	168.34
	4/22/01		7.50	168.90
	12/14/00		8.13	168.27
	9/18/00		7.83	168.57
	9/26/00		7.77	168.63
	6/08/00	•	7.50	168.90
	3/09/00	-	6.08	170.32
	12/09/99		7.90	168.50
	8/31/99		7.95	168.45
	4/29/99		7.09	169.31
	1/29/99		6.42	169.98
	4/26/98		6.85	169.55
	1/24/98		5.90	170.50

^{* =} Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993 *** = Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW3	11/06/97		7.80	168.80
(Continued)	8/26/97		7.67	168.93
	7/24/97	176.41**	7.90	168.51
	4/25/97		7.12	169.29
	1/20/97		6.35	170.06
	7/26/96		7.84	169.57
	7/09/96		7.61	168.80
	4/23/96		6.81	169.60
	2/07/96		5.05	170.36
	1/29/96		5.77	170.64
	10/26/95		7.72	168.69
	7/28/95		7.80	168.61
	5/02/95		6.50	169.91
	2/23/95		7.24	169.17
	11/18/94		6.05	170.36
	8/22/94	190.97***	7.65	168.76
	5/19/94		7.15	169.26
	2/24/94		6.68	169.73
	11/24/93		7.55	168.86
	8/30/93		7.64	168.77
	5/18/93		7.12	169.29
	2/23/93		8.01	168.40
	11/13/92		7.86	191.12
	5/29/92	175.00	8.45	166.55
	1/14/92		8.24	166.55
	12/23/91		9.37	165.63
	11/25/91		9.19	165.81
	10/10/91		9.43	165.57
	9/17/91		9.20	165.80
	8/19/91		8.95	166.05

^{* =} Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993 *** = Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
140.	Wontorca	Liev. (It.)	vvator (11.)	LACV. (II.)
MW4	04/06/04	176.35*	9.58 (2.83)#	168.89
	02/11/04		9.43 (2.70)#	168.95
	12/18/03		9.75 (1.51)#	167.73
	9/18/03		9.13 (1.80)#	168.57
	6/19/03		8.56 (0.31)#	168.02
	3/18/03		7.49 (0.06)#	168.91
	12/21/02		8.58 (4.39)#	171.06
	9/10/02		9.09 (1.60)#	168.46
	3/30/02		9.86 (2.49)#	168.36
	12/22/01		7.79 (1.75)#	169.87
	9/23/01		8.97 (1.17)#	168.26
	6/22/01		7. 7 9	168.56
	4/22/01		9.07 (2.20)#	168.93
	12/14/00		8.87 (0.72)#	168.02
	9/18/00		8.50 (0.45)#	168.19
	6/08/00		7.34	169.01
	3/09/00		6.61 (0.46)#	170.08
	12/09/99		8.80	167.55
	8/31/99		8.28	168.07
	4/29/99		7.14	169.21
	1/29/99		6.68	169.67
	4/26/98		6.87	169.48
	1/24/98		6.61	169.74
	11/06/97		9.16	167.19
	8/26/97		8.92	167.43
	8/20/97		7.66 (prior to develop	ment)

^{* =} Surveyed on August 20, 1997

^{# =} Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)
EW1	04/06/04	Not Surveyed	6.63
	12/18/03		6.72
	9/18/03		7.29

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Total Well Depth (ft.)
OW1	04/06/04 02/11/04 10/06/03 11/02/00 12/09/99 01/29/99	Not Surveyed	7.01 7.01 7.07 (0.01)# 7.12,+ 7.27 7.12	7.44 7.44 7.44
OW2	04/06/04 02/11/04 10/06/03 11/02/00 12/09/99 01/29/99	Not Surveyed	7.27 7.19 7.29 7.19 7.17 7.19	7.33 7.33 7.34

^{# =} Indicates free product thickness in feet.

^{+ =} Petroleum hydrocarbon odor reported on probe for water level indicator.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1

Date	TPH-D	TPH-G	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
4/6/04	18,a,b	28,a	0.11	2.3	0.8	0.99	4.5	ND<0.1 TBA ND<1
12/18/03	13,b	33	0.038	2.1	0.77	1.8	4.4	ND<0.005 TBA ND<0.05
9/18/03	15,a,b	32	0.052	2.2	0.62	1.8	3.8	ND<0.017, TBA ND<0.17
6/26/03	67,a,b	45	ND<0.05	2.1	0.72	2.3	5.5	ND
3/18/03	7.3,a,b	33	ND<0.05	2.4	0.9	1.6	1.0	ND
12/21/02	ll,a,b	32	ND<0.1	2.6	0.98	2.2	5.5	ND
9/10/02	18,c	31	ND<0.25	2.2	0.65	1.7	4.8	
3/30/02	12,a,b	99	ND	4.1	1.2	2.5	6.4	
12/22/01	22,a,b	60	ND	3.2	1.9	2	6.2	
9/23/01	16,a,c	49	ND	4	1.4	2.2	6.2	
6/22/01	85,a,b	35	ND	3.1	0.75	1.2	4.0	
4/22/01	16,a	43	ND	3.6	1.2	1.6	5.8	
12/14/00	11,a,d	49	ND	5.8	1.6	2	6.9	
9/18/00	15,a,b	86	ND	7.2	2	3.2	13	
6/8/00	6.5,a,c	50	ND	5.7	1.5	1.8	7	
3/9/00	7.4,a,b	48	ND	5.3	3.1	1.6	8.1	
12/9/99	12,a,b	65	ND	9.3	2.9	2.2	8.8	
8/31/99	22, b	66	0.71	8.7	2.7	2.4	10	
4/29/99	22,b	48	ND	8.4	2.8	2.0	8.1	
1/29/99	9.1,b	47	ND	9.0	2.9	1.9	8.0	
4/26/98	7.8,c	. 60	ND	9,3	5,7	2.1	9.1	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Lighter than water immiscible sheen present on the sample.
- b = TPH-D results consist of both diesel-range and gasoline-range compounds.
- c = TPH-D results consist of both gasoline-range compounds.
- d = TPH-D results consist of both oil-range and gasoline-range compounds.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2
SUMMARY OF LABORATORY ANALYTICAL RESULTS
Well MW1 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
1/24/98	24,b	57	ND	6.9	5.5	2.0	8.7	
11/6/97	17,c	63	ND	7.4	6.7	2.3	9.9	-
7/27/97	28,c	66	1.8	8.6	8,1	2.2	10	
4/25/97	170,b	77	ND	7.4	7.9	2.1	9.8	
1/21/97	57,c	80	0.25	7.8	8.3	1.9	8.9	
7/26/96	11,c	76	ND	11	13	2.4	10	
4/23/96	5.7,c	73	ND	8.6	12	2.2	9.8	
1/29/96	6.6,c	81	0.25	7.6	13	1.9	8.9	
10/26/95	62,c	89	ND	7.8	12	2.4	11	
7/28/95	2.0,c	35		3.8	8.7	1.1	6.5	
5/2/95	6.5,c	86	~~	8.9	14	2.3	11	
2/24/95	9.1	90		7,5	12	1.5	11	
11/18/94	10	96		9.3	14	2.5	11	
8/22/94	8.3	100		9.0	11	2.1	9.4	7-
5/19/94	30	100		12	14	3.5	17	
2/28/94	110	90	4 8	11	9.6	2.1	9.9	
11/24/93	8.2	66		8.3	8.9	2.0	121	
8/30/93	9.4	77	<u></u>	6.4	11	2.2	12	
5/18/93	30	92		4.0	11	2.5	15	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

b = TPH-D results consist of both diesel-range and gasoline-range compounds.

c = TPH-D results consist of both gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

Date	TPH-D	TPH-G	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
2/23/93	14	100		4.5	11	2.1	12	
11/13/92	4.4	120		5.8	10	2.1	13	
5/27/92	11	120		8,8	16	2.3	15	
1/24/92	19	39	==	7.3	8.7	1.3	8.9	
12/23/91	34	78		9.3	7.3	0.54	13	
11/25/91	36	170		5,5	5.6	1.6	8.4	
10/10/91	19	28		4.1	4.7	1.0	4.8	<u></u>
9/17/91	19	39		4.9	4.1	1.2	5.9	
8/19/91	47	48		13	8.4	0.99	29	
7/20/91	49	100		11	14	2.3	17	-
6/20/91	42	76		4.7	7.1	1.5	9.8	-
5/17/91	26	72		7.7	9.9	ND	11	**
4/15/91		56	A 10.	6.5	8.5	0.41	9.9	
3/21/91		36		4.5	5.7	0.087	7.3	
2/15/91		120		7.4	6.6	ND	13	
1/15/91		33		3.9	2,9	0,21	5.3	
9/27/90		28		3.7	3.5	0.01	6.5	
8/23/90		40		5.1	4.9	0.35	6.0	
7/20/90	44			5.1	4.2	ND	9.1	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
3/19/90	-	40		3.7	1.1	ND	3.3	
2/20/90**		7.6	70	1.6	ND	ND	1.3	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- = Not Analyzed.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

** Inorganic lead not detected in sample.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW2

		`		1				
Date 2/7/96	TPH-D	TPH-G	MTBE	Benzene	Toluene Destroyed	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
211190				1014021	esitoyea			
1/29/96	4.6,c	38	0.0071	1.9	5.7	1.1	5.9	
10/26/95	900	74	ND	2.9	5.9	2.0	10	
7/28/95	2.0,c	15		1.4	2,3	0.62	3.2	
5/2/95	6.6,b	55		3,3	10	1.8	10	
2/24/95	22	67		4.9	11	1.8	11	
11/18/94	5.0	86	==	11	17	1.8	12	
8/22/94	4.1	91		10	13	1.5	9.0	
5/19/94	5.8	62	==	92	13	1.3	8.4	
2/28/94	13	91		13	16	1.5	9.0	
11/24/93	79	12		13	17	2.5	17	
8/30/93	110	110		11	14	1.8	11	
5/18/93	44	67		9.2	12	1.4	9.3	
2/23/93	7.0	76		12	17	1.6	9.6	
11/13/92	8.2	79		10	13	1.4	8.6	
5/27/92	130	89		18	19	1.7	14	
1/14/92	1600	59		17	14	1.8	15	
12/23/91	700	2100		. 36	130	79	560	
11/25/91	130	230	*-	11	9.7	1.4	9.7	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- = Not Analyzed.

b = TPH-D results consist of both diesel-range and gasoline-range compounds.

c = TPH-D results consist of both gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW2 (Continued)

Date 10/10/91	TPH-D 360	TPH-G 85	MTBE 	Benzene 21	Toluene 25	Ethyl- benzene 2.1	Total Xylenes 14	Other Fuel Additives by 8260*
9/17/91	56	74		10	11	1.4	8.1	_
8/19/91	19	69	-	26	22	2.1	18	
7/20/91	100	51		9,9	7.7	1.2	7.5	
6/20/91	69	87		8.1	8.4	1.1	8.9	
5/17/91	33	62		5.9	6.3	1.2	9.0	
4/15/91		82	apa kang	5.3	7.4	1.0	9.4	
3/21/91		62		9.3	11	0.35	9.7	
2/15/91		200		12	12	1.7	14	
1/14/91		78		11	8.7	0.58	8.0	
9/27/90		59		8.4	12	0.88	9.0	
8/23/90		96		8.1	8.4	1.5	8.6	
7/20/90	86			9.1	14	0.94	13	
3/19/90		50		7.7	8.7	0.075	5.6	·
2/20/90**		38		7.3	3.1	0.075	6.8	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

* = This column summarizes results for analysis using EPA Method 8260 f

•	ı	,				
					-	

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3

Date	TPH-D	трн-б	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
4/6/04	32,a,b	81,a	17	34	5.9	1.5	9.9	ND<0.5, except TBA = 8.8

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Lighter than water immiscible sheen present on the sample.

b = TPH-D results consist of both diesel-range and gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

Date 12/18/03	TPH-D 32,a,b	TPH-G 130,a	MTBE 32	Benzene	Toluene 5.4	Ethyl- benzene 0.72	Total Xylenes	Other Fuel Additives by 8260* ND<0.5,
12/16/03	32,4,0	130,4	32	33	J,Ŧ	0.72		except TBA = 17
9/18/03	140,a,b	130	23	34	11	2.5	14	ND<0.5, except TBA = 10
6/26/03	27,a,b	96	21	29	5.2	2.0	10	ND, except TBA = 8.9
3/18/03	11,a,b	120	16	36	12	1.8	2.4	ND, except TBA = 5.1
12/21/02	21,a,b	110	33	34	9.3	2.0	13	ND, except TBA = 14
9/10/02	43,b	70	19	21	2.2	1.6	7.6	
3/30/02	8.5,a,b	170	26	40	17	2.6	16	
12/22/01	9.2,a,b	140	27	37	20	2.6	15	
9/23/01	47,a,b	130	26	32	9.1	2.4	12	
6/22/01	33,a,b	110	25	31	7.2	1.9	11	
4/22/01	61,a	140	24	25	5.4	1.7	11	
12/14/00	120,a,b	140	35	37	16	2.4	15	
9/18/00	43,a,b	130	33	39	91	2.3	14	
7/26/00	4-		21					ND***, except tert- butanol = 19
6/8/00	74,a,b	130	23	41	16	1.9	13	
3/9/00	14,a,b	180	24	39	22	2.5	16	
12/9/99	17,a,b	120	16	35	6.7	2.4	12	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Lighter than water immiscible sheen present on the sample.
- b = TPH-D results consist of both diesel-range and gasoline-range compounds.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).
- ***Review of laboratory analytical reports indicate that oxygenated volatile organic compounds (including DIPE, ETBE, TAME, methanol, ethanol, EDB, and 1,2-DCA) were not detected except MTBE at 21 ppm and tert-butanol at 19 ppm. Results in milligrams per liter (mg/L), unless otherwise indicated.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

Date	TPH-D	ТРН-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
8/31/99	22,b	120	4.7	35	3.7	2.4	14	
4/29/99	48,b	100	2.5	33	8.0	2.1	14	
1/29/99	240,b	84	1.3	31	2.8	1.8	12	
4/26/98	380,b	100	9.7	29	7.1	1.8	14	
1/24/98	77,b	97	ND	28	7.1	1.8	11	
11/6/97	120,b	140	ND	37	19	2.4	14	
7/24/97	91,c	120	1.4	33	17	2.2	12	
4/25/97	760,b	240	1.6	24	18	4.1	24	
1/21/97	34,c	150	1.3	40	14	2.6	12	
7/26/96	24,c	130	0.89	40	22	2.4	12	
4/23/96	280,c	170	0.72	34	22	2.2	14	<u></u>
1/29/96	45,c	150	0.54	32	21	1.9	12	
10/26/95	33	130	0.69	37	21	0.21	11	
7/28/95	1.9,b	86	4	1.4	2.3	0.62	3.2	
5/2/95	9.7,b	170		43	30	2.5	14	
2/24/95	9.2	130		31	19	1.8	10	
11/18/94	23	140		38	22	2.0	11	
7/22/94	5.3	170		35	20	1.8	10	
5/19/94	30	150		38	25	2.4	14	<u></u>
2/28/94	210	110		36	21	1.9	11	
11/24/93	24	160		48	26	2.2	12	
7/30/93	32	130		36	21	1.9	8.2	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- = Not Analyzed.

b = TPH-D results consist of both diesel-range and gasoline-range compounds.

c = TPH-D results consist of gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes 12	Other Fuel Additives by 8260*
5/18/93	7.2	130		36	21	2.1		
2/23/93	8.1	110		31	18	1.9	11	
11/13/92	4.7	140		38	24	2.0	12	
5/27/92	27	370		91	57	3.0	21	
7/14/92	270	130		76	30	3.4	21	
12/23/91	540	740		30	61	31	180	
11/25/91	74	150		65	31	3.4	18	
10/10/91	39	140		57	31	2,2	14	
9/17/91	140	180		47	25	2.6	15	
8/19/91	150	170		82	31	4.4	22	
7/20/91	270	450		46	29	3.5	21	
6/20/91	210	920		39	49	13	69	
5/17/91	70	170		32	22	2.2	18	
4/15/91		110		31	15	0.88	7.4	
3/21/91		87		30	14	0.69	5.4	
2/15/91		230		44	40	ND	31	-
1/14/91		160		48	25	1.0	16	
9/27/90		25		7.2	6.4	0.42	3.4	
8/23/90		220		67	46	27	18	
7/20/90	86			9.1	14	0.94	13	_
3/19/90		210		38	28	1.8	12	
2/20/90**		46		20	15	1.8	9.7	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

** Inorganic lead not detected in sample.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW4

								Other Fuel				
						Ethyl-	Total	Additives				
Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	benzene	Xylenes	by 8260*				
2/11/04	Free P	roduct san	pled. Laborate				nbling diesel,	with less				
12/18/03		significant gasoline-range pattern. Not Sampled (Free Product Present in Well)										
9/18/03		Not Sampled (Free Product Present in Well)										
6/26/03			Not Sar	npled (Free I	Product Pres	ent in Well)						
3/18/03			Not Sar	npled (Free I	Product Pres	ent in Well)						
12/21/02			Not Sar	npled (Free I	Product Pres	ent in Well)						
9/10/02			Not Sar	npled (Free I	roduct Pres	ent in Well)						
3/30/02			Not Sar	npled (Free I	Product Pres	ent in Well)						
12/22/01	_		Not Sar	npled (Free I	Product Pres	ent in Well)		•				
9/23/01		·•	Not Sar	npled (Free I	Product Pres	ent in Well)	· · · · · ·					
6/22/01	440,a,b	140	15	35	19	2.0	10					
4/22/01			Not Sar	npled (Free I	Product Pres	ent in Well)						
12/14/00			Not Sar	npled (Free I	Product Pres	ent in Well)						
9/18/00			Not Sar	npled (Free I	Product Pres	ent in Well)						
6/8/00			Not Sar	npled (Free I	Product Pres	ent in Well)						
3/9/00	2,100,a,b	130	6.9	35	13	2.1	11					
12/9/99	9,000,a,b	120	8.1	33	6	2.4	12					
8/31/99	9.4,b	190	4,4	46	30	2.8	15					
4/29/99	9.4,b	210	3.2	42	35	2.8	15					
1/29/99	7.3, b	190	2.4	44	40	3.1	17					
4/26/98	13,b	190	ND	49	37	3.2	18					

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-= Not Analyzed.

a = Lighter than water immiscible sheen present on the sample.

b = TPH-D results consist of both diesel-range and gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW4 (Continued)

Date	TPH-D	трн-с	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*	
1/24/98	20,b	200	ND	50	40	3,1	17		
11/6/97	110,b	160	ND	48	30	2.8	16		
8/26/97	5.5,b	210	1.7	48	42	3.4	19		
8/15/97	MW4 Installed								

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- = Not Analyzed.

b = TPH-D results consist of both diesel-range and gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well EW1

<u>Date</u> 4/6/04	TPH-D 3.4,a,b	TPH-G 2.6,a	MTBE 72	Benzene ND<1	Toluene ND<1	Ethyl- benzene ND<1	Total Xylenes ND<1	Other Fuel Additives by 8260* ND<1, except TBA = 34		
12/18/03	3.0,b	ND<5.0,e	160	0.22	ND<50	ND<50	0.073	ND<5, except TBA = 64		
9/18/03	8.2,a,b	7.5	220	0.33	ND<0.05	ND<0.05	ND<0.05	ND<2.5, except TBA = 51		
2/23/93	9.6	66		14	8.5	1.4	9.8			
11/13/92	13	62		11	9.2	1.1	9.6			
8/92	EW1 Installed									

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- = Not Analyzed.
- a = Lighter than water immiscible sheen present on the sample.
- b = TPH-D results consist of both diesel-range and gasoline-range compounds.
- e = reporting limit raised due to high MTBE content
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW1

Date	TPH-D	ТРН-G	ТРН-МО	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, incl. MTBE**	
4/6/04	74,a,b	50,a		3.1	ND<0.1	0.21	0.14	ND<0.1, TBA ND<1	
2/11/04	450,a,b	15,a	130	2.2	0.031	0.16	0.054	ND<0.025, TBA ND<0.25	
11/21/03	1,900,a,b	38,e	570	2.0	0.059	0.19	0.095	ND<0.05, TBA ND<0.5	
6/10/98	OW1 Installed								

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-= Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

e = Laboratory analytical report note: unmodified or weakly modified gasoline is significant.

** = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW2

Date	TPH-D	TPH-G	ТРН-МО	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, incl. MTBE**
4/6/04		0.069,a		ND	ND	ND	ND	
				<0.00062	<0.00062	< 0.00062	<0.00062	
2/11/04		0.21		ND	ND	ND	ND	ND<0.0005,
				<0.0005	< 0.0005	<0.0005	<0.0005	except
								MTBE =
								0.0064***
								TBA =
								0.0070
11/21/03	No sample recovered.							
6/10/98	OW2 Installed							

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

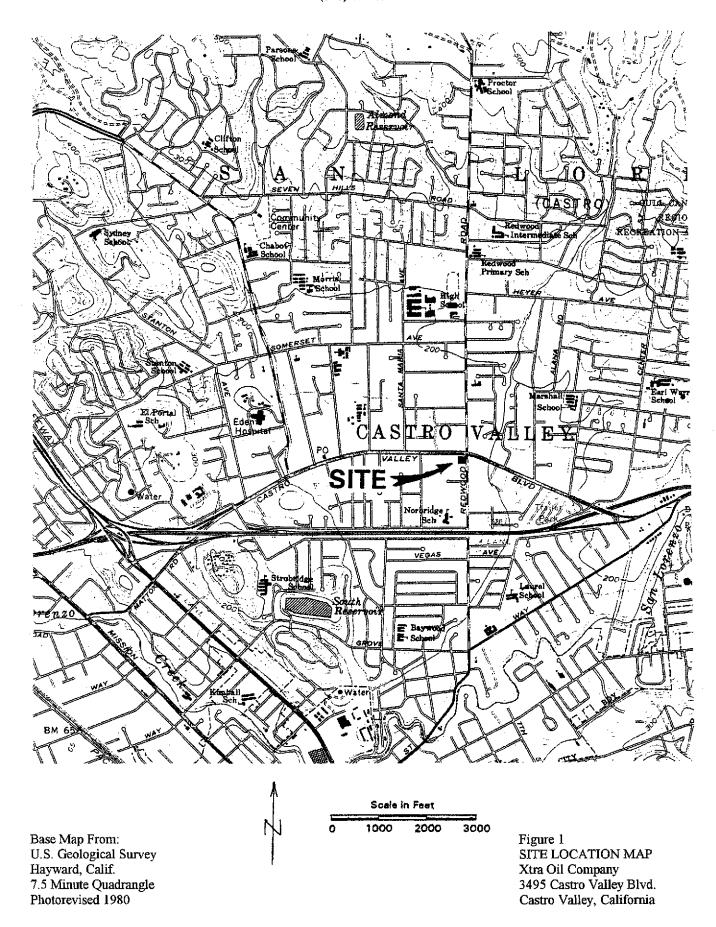
MTBE = Methyl tert-Butyl Ether.

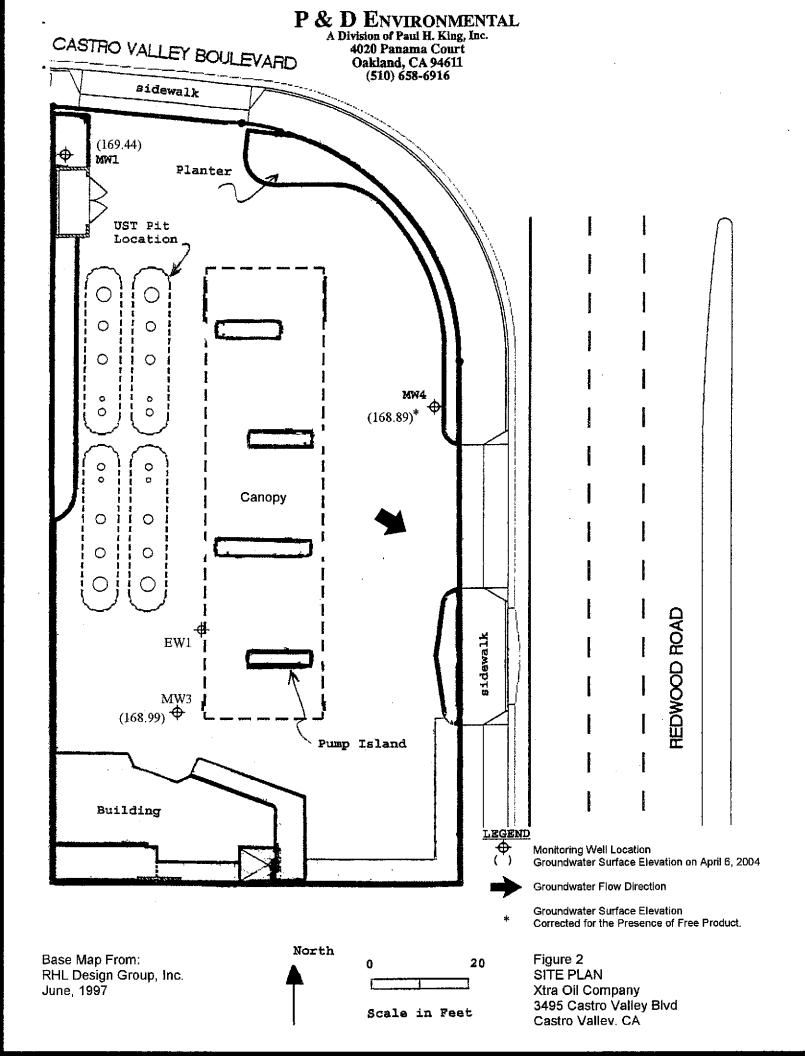
ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

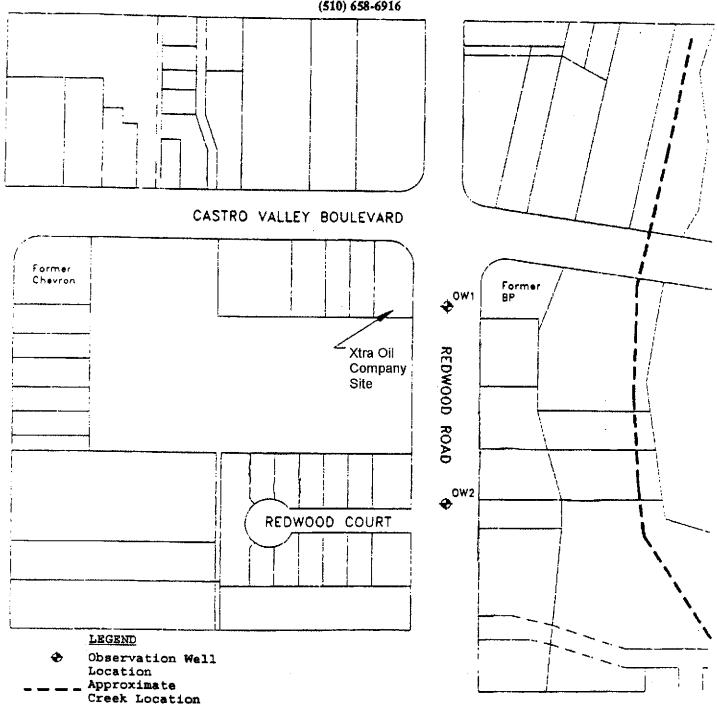
** = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).


*** = MTBE was detected at a concentration of 0.0059 mg/L by EPA Method 5030/8021/8015 modified.


4/19/05 0014.1257 Please print report dated 4/15/04.

on 18 page vas.
Pelse chech Frage numbering for test 2 tables.

P & D ENVIRONMENTAL


A Division of Paul H. King, Inc. 4020 Panama Court Oakland, CA 94611 (510) 658-6916

P & D ENVIRONMENTAL A Division of Paul H. King, Inc.

A Division of Paul H. King, Inc. 4020 Panama Court Oakland, CA 94611 (510) 658-6916

Base Map From: Castro Valley Sanitation District Undated

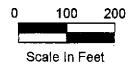


Figure 3 SITE VICINITY MAP Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, CA

restally to mean mean

Site Name	Xtra Oil	- Castro V	allen	Well No	OWI
Job No	0014			Date 2/	11/04
	er (ft.)	100 T	201	Sheen	
Well Depth	(ft.) 594"	=7,44		Free Produ	ct Thickness NA
	eter			Sample Col	lection Method
Gal./Casir	ıg Vol				
TIME	GAL. PURGED	<u> Hq</u>	TEMPER	ATURE	ELECTRICAL CONDUCTIVITY
NOTES:	total doorh) ler hickness) Nater in (5" of hickness)	christe	box a	ature Thore amediale	
PUKGETU.92	Sampling	(12	:10 pm) _	~

	Site Name	Xtra Oil-(a	stro Valley	well No. Dw2	
	Job No			Date 2/11/04	
		er (ft.)	7.19	Sheen	
	Well Depth	(ft.) <u>48"</u>		Free Product Thicknes	s TENA
	Well Diame			Sample Collection Met	
	Gal./Casing	g Vol. <u>V</u> A		Vacuum primp	w Tellon
	ТТМ Б			ELECTRICA	I tubina
	TIME	GAL PURGED	1 1	ERATURE CONDUCTIV	ITY_
			ft T.O.	<u> </u>	
}					
	 ,				
		0011			
	1 //	80			
_	133 (-	total			
7,19')	septh)			
7511					
	· · · · · · · · · · · · · · · · · · ·				
					
			 	<u> </u>	
				0.14	<u> </u>
			7/7//15	E bylan of 1	1100
		VA TOOLOG	V TILL / JULY	potom of	22-11
		- bod. +	L	(whu, 3/17/04)	
	NOTES: K)	o water	wode	+	
	Character		enly troa	uc) in well.	
	PURGE10.92	murea maga	pastes and	Steel tape	
		Water in	Christie b	ex below to), &
	wat	er sample	d 11:40 cem,		
	No	fer level 1	a 11711	11.116	
	C/fa	hoth -C	in 1位,	11.40 an	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 NVIPE OF WE	ハノ・・・・ノ・		

	site Name <u>Xtra Oil - Castro</u> Valley	Well No. MWY
	Job No. (2014)	Data 7 /11 //74
	TOC to Water (ft.) $(0'6''-1'73''-9.43')$	*\
	Well Depth (ft.)	Sheen $\frac{NH}{NH}$ Free Product Thickness $\frac{2'8}{6}$ $\frac{5}{6}$ $\frac{2.7}{2.6}$
	Well Diameter Zin.	Sample Collection Method
	Gal./Casing Vol	Vacuum pump a Teflon
	TIME GAL. PURGED DH TEMPE	ELECTRICAL Tobled CONDUCTIVITY
	T To).C
- 1		
((
0 ^b .	tape tength)	
(-tosta)	fall -	/
(h)		
<i>*</i>		/
10:50		
		10,50
		9.43
	311	
	7 96 / / / ROW	WC1 Soft 2.70
	3,17) / ////	
\	12"1	Ev - (bollow of steel tage)
-	18_1_	
	NOTES: Steel take water and	d-11 - f.d.
	pastes used	gasolhe - thing
	PURGE10.92 Water in Christic b	lox above T.O.C.
	way in Christic	

FP Correction 2.70 x 0.75 = 2.03 Corrected Depth to water = 9.43-2.03 = 7.40

Site Name Atra Oil Castro Valley	Well No. Ow
	Date 4/6/04
TOC TO Mator /ft	Sheen
$QQ \perp V = 7.44$	Free Product Thickness_
	Sample Collection Method
Gal./Casing Vol	Vac was Pump
TIME GAL, PURGED OH TEMPER	ELECTRICAL CONDUCTIVITY
7,0.6. 891	
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7,44
Top of water 1 5 5 5 13"	
Bottom 6 " = 8.43	
	ibore T.o.C.
PURGE10.92 Sura	Sheen on sample

Site Name Xtra Oil - Cachel	alley well no. Owz
Job No. 0014	Date_ 4/6/04
TOC to Water (ft.)	Sheen
Well Depth (ft.) 8 % "	Free Product Thickness
Well Depth (ft.) 8 % " Well Diameter 1000	Sample Collection Method
Gal./Casing Vol	
TIME GAL. PURGED DH	ELECTRICAL TEMPERATURE CONDUCTIVITY
- Fro.C. 98"	- m
	-
	- / /
	_/
	-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	-\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\
	- (-0.06
· · · · · · · · · · · · · · · · · · ·	-
	-
To the second of	
TOP of water 3/4"	30.06
Bettern of well 5	
NOTES: Water in Christie	box at T.O.C.
water in christie	box at 1.0.C.

Site Name	Xtra Oil	-Castro Valler	Well No.	MWI
Job No	10014) Date	4/6/04
TOC to Wat	er (ft.) 7.0	13_	Sheen	None
Well Depth	(ft.) 20		Free Prod	luct Thickness 🧭
Well Diame	ter Hin	<u> </u>		ollection Method
Gal./Casin	g Vol. 7.			eflon bailer
TIME	Ezzz34	1	oF	ELECTRICAL MS
2:08	GAL. PURGED	, S.40 m	TEMPERATURE 73, Z	CONDUCTIVITY CON
2:10	5	<u>-2.10</u> 3.09	70,2	10,04
2:11	10-	Woll a	and do	10.04
	+5	zere p wi	mpca org.	
	20			····
	24			
				
		 ,		
				
		-		
·				
				
	:			
LOGING.				
NOTES:	Strong 1	PHC odor,	but no s	sheen
		m dural	water.	
PURGE10.92		1 - 0	4	·

Site Name _	Xtra Oil	- Castro Valley	Well No.	MW3
Job No	_	i i	Date 4	16/04
TOC to Wate	r (ft.) 7.41	· .	Sheen	None
Well Depth	(ft.) 18.7	· · · · · · · · · · · · · · · · · · ·	Free Produc	ct Thickness 👲
Well Diamet	er <u> </u>			lection Method
Gal./Casing	vol. 6,2		Telle	on bailer
TIME	£=18.6		(oF)	ELECTRICAL MS/Cas
2.45	GAL. PURGED	ы <u>т</u> 307	EMPERATURE 1	CONDUCTIVITY CON
2 -,49	5	305	690	11.50
2.52	8	3.11	64.7	 ()
2.58	12	3,00	69.0	11,28
2:00	45	funted	dn.	
3:05	-19		na thind	
			J	
 		 -		
·				
				
 .	iΛ i λ -		1	
NOTES:	rHC	olor +	Theen on	Inrae water.
				The same of

V.I and I continue	ATA SHEET			
Site Name / Tra Oil - (astro)	Palley	Well No	mwy	
JOB NO		Date4/(6/04	
TOC to Water (ft.)		Sheen		
Well Depth (ft.)		Free Product	Thickness 2/	10"
Well Diameter Zin			ection Method	
Gal./Casing Vol		Tette	n bailer	
TIME GAL, PURGED TO C. 10 611 Top of 319 11 Potom of 111 Potom of 111	TEMPER 10,50°	ATURE	ELECTRICAL CONDUCTIVITY	9.58
OTES: Jepths measured w	steel	tape o	and	
water + product f) '			
FP Correction				
Corrected dep	the to wat	-er = 9.	1= 31,5-87	1.46

DATA SI	HEET
Sice Name Ktra Oll-Castro Valler	Well No. Ewl
JOB NO. 0014	Date 4/6/04
TOC to Water (ft.) <u>6.63</u>	Sheen NONE
Well Depth (ft.) 13.2	Free Product Thickness
Well Diameter Sia.	Sample Collection Method
Gal./Casing Vol. 17.1	_Teflon bailer
€=51	(OF) ELECTRICAL (MS/C)
TIME GAL PURGED DH	TEMPERATURE CONDUCTIVITY Chi
$\frac{1128}{1120} = \frac{5}{5}$	- G+1+ - 5174
$\frac{1}{1}\frac{32}{32}$ $\frac{1}{25}$ $\frac{3}{6}\frac{3}{23}$	-5.5
$\frac{1.32}{35}$ $\frac{5.25}{531}$	5.73
1.76 45 5.33	-b*() -5.36
11.37 57	- Disb
1186 6 3	041 5.36
- 11) Compley The	
	-
Į.	
NOTES: NO OIL COM	
Nofth Sheen but	Tslight odor
- on purge water	r. Theen on Sample.
PURGE10.92	V

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccamobell.com E-mail: main@mccarmobell.com

2_8			11 555165, 17 17 11	meanpooncom z nan		poemeom	
P & D Environmental 4020 Panama Court		Client Project ID: #0014; Xtra Oil-Castro		Date Sampled:	02/11/04		-
		Valley		Date Received:	02/12/04		
Oakland, CA	94611-4931	Client Contact	: Paul King	Date Extracted:	02/20/04		
Client P.O.:				Date Analyzed:	02/20/04		
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*							
						rk Order:	0402178
Lab ID	Client ID	Matrix	TPH(g)			DF	% SS
A100	OW1	w	15,000,a,h	· · · · · · · · · · · · · · · · · · ·		10	119
							
				· · · · · · · · · · · · · · · · · · ·			
	-						
Reporting	Limit for DF =1;	w	50			μg	/L
	s not detected at or ne reporting limit	S	NA			N	

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/soild samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

									
P & D Environ	nmental				ite Sampled:	02/11/04	· - · · · · · · · · · · · · · · · · · ·		
4020 Panama Court Oakland, CA 94611-4931		Valley	Valley			Date Received: 02/12/04			
		Client Co	ntact: Paul King	Da	Date Extracted: 02/12/04				
		Client P.C	Client P.O.:			Date Analyzed: 02/12/04-02/13/04			
		23) and Oil (C18	3+) Range Extractable Hydre	carbons as D	iesel and Motor	r Oil*			
Extraction method: S	SW3510C		Analytical methods: SW8015C			Work Or	der: 0402178		
Lab ID	Client ID	Matrix	TPH(d)	Т	PH(mo)	DF	% SS		
0402178-001A	OWI	w	450,000,a,d,h	1	30,000	100	#		
	· 								
				·					
	•								

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant;; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

Z. Year	

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@

P & D Environmental	Website: www	v.mccampbell.com E-mail: main@mccampbell.com
4020 Panama Court	Client Project ID: #0014; Xtra Oil-Castro Valley	Date Sampled: 02/11/04
	Client Co.	Date Received: 02/12/04
_	Client Contact: Paul King	Date Extracted: 02/14/04
Gasoline Range (Client P.O.:	Date Analyzed: 02/14/04

Lab ID	Client ID	Matrix	TPH(g)				15Cm	ith BTEX and	Want	. .	
002A	OWA	╼┞╼╼╌┼╸	11 11(g)	MTBE	Benze	ene	Toluene	Ethylbenzene	Xylenes	Order: 0	_
ODER	OW2	W	210,ь	5.9	ND		ND			DF	9
								ND	ND	1	
										1 1	
		 								 	
											
										ĺ	
											_
			.								
											
				<u>·</u>	 						_
					<u> </u>						
											
						 					
						 					_
orting Limit for D)F = 1:									+-	_
neans not detecte tive the reporting	dator	 	50	5.0	0.5	0.5		0.5			_
and trans-		S	IA	NA	NA	NA NA	/	0.5	0.5	μg/	T.

	ND means not detected at or	W	50	5.0	0.0			<u></u>		1	
	above the reporting limit	S	NA		0.5	0.5	0.5	0.5			
	* Water and		TIA	NA	NA	NA	774			μg/L	
	* water and vapor samples and product/oil/non-aqueous liquid	d all TCL	P & SPLP extrac	ts are reported in			, NA	NA	I n	ng/Kg	
-1	A TELEVISION APPROVED IT IT	d sample:	in ma/l	i-boited III	ug/L, soil/sludge	/enlid no			ļ	- 9	

water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant (aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

		<u> </u>						
P & D Environmental		Client Project ID: #0014; Xtra Oil-Castro Date Sampled:						
4020 Panama Court	Valley			Date Received: 0	2/12/04			
0.11 1.04.04(11.4004	Client Contact:	Paul King		Date Extracted: 02/13/04				
Oakland, CA 94611-4931	Client P.O.:		-	Date Analyzed: (2/13/04			
		ates and BTEX b	y GC/MS*					
Extraction Method: SW5030B		alytical Method: SW8260	B		Work Ord	er: 0402178		
Lab ID	0402178-001B	0402178-002B						
Client ID	OW1	OW2				Reporting Limit for DF=1		
Matrix	W	W				•		
DF	50	1	top at attached to the second	TANDALAH MARANE AMAMA MARANE M	S	w		
Compound		Conce	entration		ug/kg	μg/L		
tert-Amyl methyl ether (TAME)	ND<25	ND			NA	0.5		
Benzene	2200	ND			NA	0.5		
t-Butyl alcohol (TBA)	ND<250	7.0			NA	5.0		
1,2-Dibromoethane (EDB)	ND<25	ND			NA	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<25	ND			NA	0.5		
Diisopropyl ether (DIPE)	ND<25	ND			NA	0.5		
Ethylbenzene	160	, ND			NA	0.5		
Ethyl tert-butyl ether (ETBE)	ND<25	ND			NA	0.5		
Methyl-t-butyl ether (MTBE)	ND<25	6.4			NA	0.5		
Toluene	31	ND			NA	0.5		
Xylenes	54	ND			NA	0.5		
	Surre	ogate Recoveries	(%)					
%SS1:	105	111						
%SS2:	96.4	95.4				,		
%SS3:	113	115						
Comments	h							

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	,	Date Sampled: 02/11/04				
4020 Panama Court	Valley	Date Received: 02/12/04				
0.111.04.04611.4021	Client Contact: Paul King	Date Extracted: 02/12/04				
Oakland, CA 94611-4931	Client P.O.:	Date Analyzed: 02/13/04				

Fuel FingerPrint *

Extraction method: SW3550C			Analytical methods: SW8015C	Work Order: 040217		
Lab ID	Client ID	Matrix	Fuel Fingerprint			
			This sample shows a significant hydrocarbon pattern b diesel. It also contains a less significant gas range p	tern between C10 and C23 that resembles ange pattern. Chromatograms enclosed.		
0402178-003A	MW4	0				
1						
	·					
				·		
į		İ				

Quantitation Report (Not Reviewed)

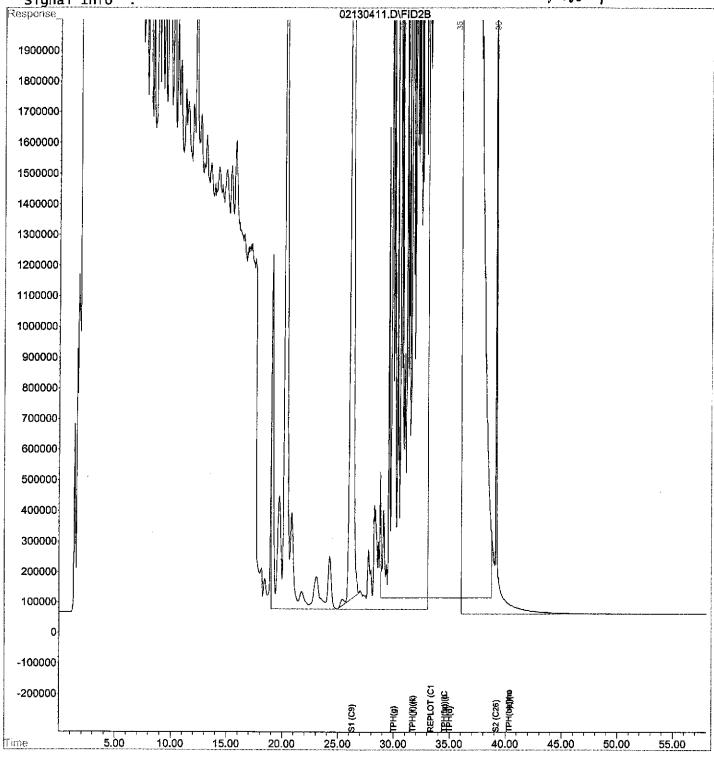
Data File : D:\HPCHEM\GC11\DATAB\02130411.D
Acq On : 13 Feb 2004 3:59 pm

Vial: 56 Operator: Thu : 0402178-003A O Inst ; GC-11 : TPH(D)_OIL Multiplr: 1.0

Misc IntFile : EVENTS.E

Sample

Quant Time: Feb 13 17:05 2004 Quant Results File: GC11BR.RES


Quant Method : D:\HPCHEM\GC11\METHODS\GC11BR.M (Chemstation Integrator)

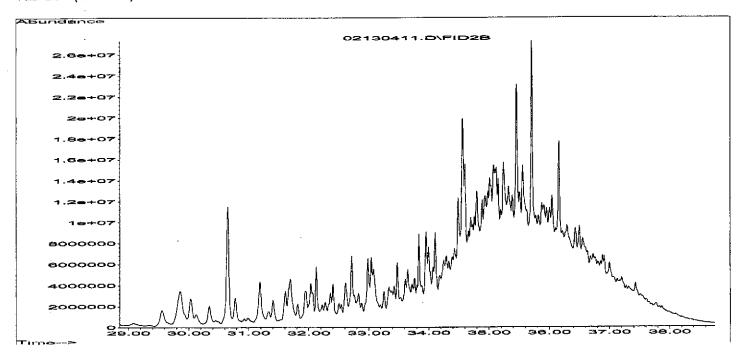
Title : GC-11A

Last Update : Mon Dec 29 15:56:55 2003 Response via: Multiple Level Calibration

DataAcq Meth : GC11AR.M

D:\HPCHEM\GC11\DATAB\02130411.D

Instrument Name	GC-11	DETECTOR B		
Data File Name	02130411.D	Sample Name	0402178-003A O	
Date Acquired	2/13/2004 3:59	Data File Path	D:\HPCHEM\GC11\DATAB\	
Acq. Method File	GC11AR.M	Misc Info	TPH(D)_OIL	C
Vial Number	56	Sample Multiplier	1	"MW-4"


NOTE: THE MULTIPLIER IS THE DILUTION FACTOR ONLY, NOT WITH THE EXTRACTION FACTOR

NOTE: S1 & S2 % recoveries are based on dilution without SS

NOTE: TPH(d,bo) and TPH(mo) values are based on diesel & motor oil calibrations, TPH(bo) and TPH(mo) use the same RL

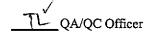
NOTE: Ignore TPH(g) & TPH(k) values from Chem Station; after that they are based on the diesel RF & area

				Amount Using D &		
Name	Ret Time	CS (mg/Ls)	Area	MO RFs only (mg/Ls)	Soil mg/kg)	Water (ug/L)
S1 (C9)	26.27	104.5	749470090	104.5	105%	105%
S2 (C26)	39.16	115.9	648343664	115.9	116%	116%
TPH(d)	C10-C23	657.5	23730730519	657.5	328.7	16437
TPH(mo)	C18+	178.5	6622728368	178.5	89.3	4463
TPH(k)(K)	C10-C18	741.4	18886484833	523.3	261.6	13081
TPH(g)	<c12< td=""><td>1609.6</td><td>5037212674</td><td>139.6</td><td>69.8</td><td>3489</td></c12<>	1609.6	5037212674	139.6	69.8	3489
TPH(bo) (C10+)	C10+	682.4	24763498928	682.4	341.2	17061
REPLOT (C10-C2	5)					

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0402178


EPA Method: SW802	21B/8015Cm E	Extraction:	on: SW5030B BatchID: 10358 Spik				piked Sampi	ked Sample ID: 0402177-027A		
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	ND	60	105	102	3.37	106	104	2.07	70	130
МТВЕ	ND	10	96.4	94.7	1.81	102	99.9	1.83	70	130
Benzene	ND	10	110	110	0	106	103	2.99	70	130
Toluene	ND	10	106	106	0	102	97.6	4.49	70	130
Ethylbenzene	ND	10	110	112	1.39	108	105	2.28	70	130
Xylenes	ND	30	100	100	0	100	96.3	3.74	70	130
%SS:	106	10	103	104	1.37	105	99.7	5.29	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% If: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8015C

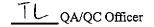
Matrix: O

WorkOrder: 0402178

EPA Method: SW8015C	SW35500	3	BatchID: 10354 Spiked Sample ID: 040217					75-002A		
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(d)	N/A	150	N/A	N/A	N/A	93.6	95.4	1.90	70	130
%SS:	N/A	50	N/A	N/A	N/A	93.7	95	1.42	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% If: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0402178

EPA Method: SW8015C Extraction: SW3510C			BatchID: 10360			Spiked Sample ID: N/A				
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(d)	N/A	7500	N/A	N/A	N/A	94.9	97.1	2.27	70	130
%SS:	N/A	2500	N/A	N/A	N/A	90.4	92	1.70	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

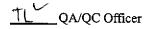
NR = analyte concentration in sample exceeds spike amount for soll matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

TV QA/QC Officer

QC SUMMARY REPORT FOR SW8260B

Matrix: W

WorkOrder: 0402178


EPA Method: SW8260B	E	Extraction:	SW5030E	3	BatchID:	10361	S	piked Sampl	e ID: 04021	186-001A
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
tert-Amyl methyl ether (TAME)	ND	10	120	112	7.28	103	105	2.40	70	130
Benzene	ND	10	127	120	5.70	119	122	1.81	70	130
t-Butyl alcohol (TBA)	ND	50	97.7	88.6	9.77	101	105	3.74	70	130
Diisopropyl ether (DIPE)	ND	10	121	116	4.13	99.8	102	2.18	70	130
Ethyl tert-butyl ether (ETBE)	ND	10	119	112	5.89	99.4	102	2.79	70	130
Methyl-t-butyl ether (MTBE)	ND	10	117	109	7.28	100	102	2.28	70	130
Toluene	ND	10	116	106	8.74	91.8	93.3	1.68	70	130
%SS1:	104	10	109	107	1.86	100	99.9	0.536	70	130
%SS2:	95.8	10	106	103	2.44	98.2	98.3	0.0923	70	130
%SS3:	99.7	10	110	107	2.79	99.5	101	1.20	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Splke; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix splke and matrix spike duplicate.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or enalyte content.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0402178

Report to:

Paul King

P & D Environmental

4020 Panama Court Oakland, CA 94611-4931

TEL: (510) 658-6916

FAX:

510-834-0152 ProjectNo: #0014; Xtra Oil-Castro Valley

PO:

Bill to:

Requested TAT:

5 days

Accounts Payable

P & D Environmental 4020 Panama Court

Date Received:

2/12/04

Oakland, CA 94611-4931

Date Printed:

2/12/04

Sample ID	ClientSampiD	Matrix	Callagette B.							Request	ed Test	s (See le	egend t	pelow)					
	onontoumpio	mauix	Collection Date	Hold	1	2_	3	4	5	6	7	8	9	10	11	12	13	14	15
0402178-001	OW1	Water	2/11/04			A	В	Τ -	 	Τ		 			1 ~~~	т—	, <u>.</u> .		
0402178-002	OW2	Water	2/11/04			A	В	 			<u> </u>				ļ		 		
0402178-003	MW4	Oil	2/11/04		Α			<u> </u>			<u> </u>			 		<u> </u>			

Test Legend:

1	G-MBTEX_Oil
6	
11	

2	G-MBTEX_W
7	
12	

3	MBTEXOXY-8260B_W
8	
13	

4	
9	
14	

5	
10	
15	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.nccampbell.com B-mail; main@mccampbell.com

Light .				Website: www.	naccampbell.com E-mail	: main@mccam	pbell.com	
P & D Environn	nental		t ID: #0014	; Xtra Oil-Castro	Date Sampled:	04/06/04	·	
4020 Panama C	ourt	Valley			Date Received:	04/07/04		
Oakland, CA 94	IG11 4021	Client Contac	t: Paul King	3	Date Extracted:	04/07/04		
Oakiand, CA 94	-4951	Client P.O.:			Date Analyzed:	04/08/04-	04/09/0	04
Extraction method: SW		sel Range (C10-	•	ctable Hydrocarbo	ns as Diesel*	Wo	rk Order:	0404075
Lab ID	Client ID	Matrix	Fib. 1470	TPH(d)			DF	% SS
0404075-001A	MW-I	w		18,000,d,a,	h		10	104
0404075-002A	MW3	w		32,000,a,d,	h		10	102
0404075-003A	EWI	w	<u></u>	3400,a,d,l	l		10	82.0
0404075-004A	OW1	w		74,000,a,d,	h		10	104
	· ··							
-						,		
								1

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

Jh

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stod@ard solvent/mineral spirit.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Enviro	onmental		et ID: #0014; Xtra Oil-Castro	Date Sampled:	04/06/04		<u></u> `
4020 Panama	. Court	Valley		Date Received:	04/07/04		
Oakland, CA	04611-4031	Client Conta	ct: Paul King	Date Extracted:	04/08/04	04/09/0	04
Oakland, CA	94011-4931	Client P.O.:		Date Analyzed:	04/08/04-	04/09/0)4
Extraction method:		ine Range (C	6-C12) Volatile Hydrocarbons Analytical methods: SW8015Cm	as Gasoline*	We	rk Order.	0404075
Lab ID	Client ID	Matrix	TPH(g)			DF	% SS
001A	MW-1 .	w	28,000,a,h			100	105
002A	MW3	W	81,000,a,h			100	106
003A	EWI	w	2600,a,h			50	99.3
004A	ow1	w	50,000,a,h			50	83.3
				·			
					-		
							
							
Reporting	g Limit for DF =1;	w	50				;/L
ND means not detected at or						**	,

above the reporting limit

NA

NA

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0014; Xtra Oil-Castro	Date Sampled: 04/06/04
4020 Panama Court	Valley	Date Received: 04/07/04
Oakland, CA 94611-4931	Client Contact: Paul King	Date Extracted: 04/09/04
Oakiaiid, CA 94011-4931	Client P.O.:	Date Analyzed: 04/09/04

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction 1	nethod: SW5030B			Analytical:	methods: SW8021	B/8015Cm		Work (Order: 0	404075
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% S
005A	OW2	w	69,b,h	ND<6.2	ND<0.62	ND<0.62	ND<0.62	ND<0.62	1.2	96.9
	<u>.</u>									
								 		
	-									
										-
	<u></u>									
						_				
									1	
ND means	Limit for DF =1; not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/
above th	e reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/F

* water and vapor samples and all TCLP & SPLP extracts are reported	d in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe,
product/oil/non-aqueous liquid samples in mg/L.	

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project II	D: #0014. Van- 4	O'I Contus	D-to Commission 04	U06/04				
P&D Environmental	Valley	D: #0014; Xtra (Jii-Castro	Date Sampled: 04	1/06/04				
4020 Panama Court	V diffey			Date Received: 04	·/07/04				
Oakland, CA 94611-4931	Client Contact:	Client Contact: Paul King Date Extracted: 04/							
Oaklaild, CA 74011-4331	Client P.O.:	Client P.O.: Date Analyzed: 04/0							
	Oxygen:	ates and BTEX b	y GC/MS*						
Extraction Method: SW5030B	An	alytical Method: SW8260)B		Work Ore	der: 040407 <i>5</i>			
Lab ID	0404075-001B	0404075-002B	0404075-00	3B 0404075-004B					
Client ID	Client ID MW-1 MW3 EW1 OW1					g Limit for			
Matrix	W	W	W	W	DF =1				
DF	200	1000	2000	200	S	w			
Compound		Conce	entration		ug/kg	μg/L			
tert-Amyl methyl ether (TAME)	ND<100	ND<500	ND<1000	ND<100	NA	0.5			
Benzene	2300	34,000	ND<1000	3100	NA	0.5			
t-Butyl alcohol (TBA)	ND<1000	8800	34,000	ND<1000	NA	5.0			
1,2-Dibromoethane (EDB)	ND<100	ND<500	ND<1000	ND<100	NA	0.5			
1,2-Dichloroethane (1,2-DCA)	ND<100	ND<500	ND<1000	ND<100	NA	0.5			
Diisopropyl ether (DIPE)	ND<100	ND<500	ND<1000	ND<100	NA	0.5			
Ethylbenzene	990	1500	ND<1000	210	NA	0.5			
Ethyl tert-butyl ether (ETBE)	ND<100	ND<500	ND<1000	ND<100	NA	0.5			
		'		112	1	1 0.5			

17,000

5900

9900

72,000

ND<1000

ND<1000

ND<100

ND<100

140

NA

NA

NA

0.5

0.5

0.5

	Surr	ogate Recoverie	s (%)		
%SS1:	94.3	94.1	96.0	91.1	
%SS2:	93.0	93.1	92.6	94.2	
%SS3:	105	105	105	107	
Comments	h	h	h	h	

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

110

800

4500

Methyl-t-butyl ether (MTBE)

Toluene

Xylenes

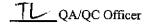
[#] surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

QC SUMMARY REPORT FOR SW8015Cm

Matrix: W

WorkOrder: 0404075


EPA Method: SW8015Cm	E	Extraction: SW5030B			BatchID:	11036	S	Splked Sample ID: 0404074-004A						
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)				
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High				
TPH(btex) [£]	ND	60	99.7	102	2.65	103	103	0	70	130				
МТВЕ	ND	10	89.3	92.3	3.26	97	95.8	1.16	70	130				
Benzene	ND	10	93.1	110	16.3	111	111	0	70	130				
Toluene	ND	10	90.4	99.1	9.24	113	112	0.445	70	130				
Ethylbenzene	ND	10	113	108	4.29	115	113	1.34	70	130				
Xylenes	ND	30	93.3	107	13.3	107	100	6.45	70	130				
%SS:	99.9	10	106	107	0.746	103	103	0	70	130				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD splke recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8015C

Matrix: W

Marke	\rdoe.	0404074	2
WVMM	TO OF	11404117	η.

EPA Method: SW8015C	Extraction: SW3510C			BatchID: 11001			Spiked Sample ID: N/A					
Sample Spiked		MS*	AS* MSD* MS-MSD LCS L		LCSD LCS-LCSD Acce			ptance Criteria (%)				
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
TPH(d)	N/A	7500	N/A	N/A	N/A	91.8	94.4	2.80	70	130		
%SS:	N/A	2500	N/A	N/A	N/A	98.5	101	2.50	70	130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

QC SUMMARY REPORT FOR SW8260B

Matrix: W

WorkOrder: 0404075

EPA Method: SW8260B	SW50308	3	BatchID:	11009	s	piked Sampi	le ID: 04040	065-001C		
	Sample	Spiked	MS*	MSD*	MS-MSD*	LÇS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
tert-Amyl methyl ether (TAME)	ND	10	101	101	0	89.8	91.5	1.86	70	130
Benzene	ND	10	128	129	0.515	119	119	0	70	130
t-Butyl alcohol (TBA)	ND	50	75.3	75.5	0.216	75.8	76.3	0.607	70	130
1,2-Dibromoethane (EDB)	ND	10	102	104	2.17	92	93.8	1.99	70	130
1,2-Dichloroethane (1,2-DCA)	ND	10	114	114	0	104	105	0.712	70	130
Diisopropyl ether (DIPE)	ND	10	108	107	0.731	100	99.6	0.600	70	130
Ethyl tert-butyl ether (ETBE)	ND	10	99	99	0	89.5	90.2	0.779	70	130
Methyl-t-butyl ether (MTBE)	ND	10	98.6	100	1.46	87.8	89	1.32	70	130
Toluene	ND	10	107	108	0.711	96	96.9	0.867	70	130
%SS1:	103	10	99.6	99.2	0.383	98.4	97.8	0.606	70	130
%SS2:	100	10	91.8	91.9	0.148	92.4	93.4	1.02	70	130
%SS3:	108	10	96.9	96	0.932	94.2	97.1	2.99	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

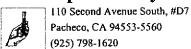
MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.


NR = analyte concentration in sample exceeds spike amount for soil metrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

P & D ENVIRONMENTAL
A Division of Paul H. King, Inc.
4020 Panama Court

Oakland, CA 94611 (510) 658-6916

CHAIN OF CUSTODY RECORD PAGE _ OF PROJECT NUMBER: PROJECT NAME: 0014 SAMPLED BY: (PRINTED AND SIGNATURE) REMARKS Wilhelm Welzenbach SAMPLE LOCATION SAMPLE NUMBER DATE TIME I TYPE Z/11/09 wife OWI 6 0W2 GOOD CONDITION APPROPRIATE, CONTAINERS HEAD SPACE ABSENT DECILORINATED IN LAI PRESERVED IN LAB RELINQUISHED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) LABORATORY: DATE TIME (THIS SHIPMENT) William Walchoce & RELINGUISHED BY: (SIGNATURE) McCambol Analytical TOTAL NO. OF CONTAINERS (THIS SHIPMENT) (975) 798-(620 RELINQUISHED BY: (SIGNATURE) DATE RECEIVED FOR LABORATORY BY: SAMPLE ANALYSIS REQUEST SHEET ATTACHED: ()YES (X)NO (SIGNATURE) Follow with 8260, it possible.

ــــــــــــــــــــــــــــــــــــــ	P&DENVIR			•								_1	a	ردي	^		
	4020 Panam Oakland, C	a Court A 94611		c	ו א נור	N OE	CUSTO	יט ר ב		\sim	כור	76	Ĭ	Property of	,		
	(510) 658-	6916 0404	107	5	>IJ HI	N OF		וטו ר	(<u>L</u>	C	ハ	*/	go b	\$ 100 m	P.A	AGE	OF <u>/</u> _
	PROJECT NUMBER:		1.	ROJECT	NAME:	C 1				ig/	N F	7.7	7	77	T		
ŀ	OO 14 SAMPLED BY: (PRI	NTED AND		Xtra URE)	011-	Castro	Valley	۳. ۳.	3/0/		DE LOS	\d*		/ / ;	1 / L		
	wilhelm				(2)	holling	and a	NUMBER OF	(\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SK.	+/	A	/ /	PRESERVA		REMA	RKS
	SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LO	CATION	NON LNOO	To the			*/		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
+	nwl	4/6/04		water	!			7	X		X			ICE	No	rmal Ti	nruamued
H	MW3		ļ					7	X		X						
+	EWI		*			· · · · · · · · · · · · · · · · · · ·		7	X		XL		<u> </u>			······	
#	ow I		-					4	X		$X\!\!\!\perp$			\			
	OW2	~					W	1.		X				-	Yoa(1)	1/3 Fu	ווע
A)	,													· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
-																	
												_ _					
ŀ												_ _					
ŀ					·						-		ļ				
L																	
-				 													
									_		_		ļ		 		
١					<u> </u>										,		
		<u> </u>											ļ		·- 		i
			<u> </u>			/	·						ļ				
	RELINQUISHED BY:	ASIGNATURE	E)	DATE 1/7	TIME 10:36	RECEIVED B	Y: (SIGNATURE ≠∂20	Ξ)	TOTAL	THIS S	HPME	HTAINER	5	TYR	Camp		aly Vice I
	RELINOUISHED BY:	`	ブニ	DATE	TIME	RECEIVED B	Y: (SIGNATURE	E) _	LAE	BORA	ATOR	Y CO	NTAC	:T:]LAB0	ORATORY	PHONE	NUMBER:
ı	uttraex.	#22	0	77	14:00	MANA	Men	- O	1	nge	<u>Ja</u> 1	fud	بإياره	(92	25)79	8-162	20
	RELINQUISHED BY:	(SIGNATURE	Ξ)	DATE	TIME	RECEIVED F (SIGNATURE	OR LABORATOR	RY BY:		0	SAI			YSIS RE	EQUEST	SHEET	
	ICE/C		PROPRIA NTAINER ESERVET	S		REMARKS:	UOAs p	reser	ve	d	To	+	<u> </u>	L.			

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0404075

Report to:

Paul King

P & D Environmental

4020 Panama Court

Oakland, CA 94611-4931

TEL: FAX: (510) 658-6916

510-834-0152

ProjectNo: #0014; Xtra Oil-Castro Valley

PO:

Bill to:

Requested TAT:

5 days

Accounts Payable

P & D Environmental

4020 Panama Court

Date Received:

4/7/04

Oakland, CA 94611-4931

Date Printed:

4/7/04

									F	Request	ed Test	s (See le	egend b	elow)					
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0404075-001	MW-1	Water	4/6/04		Λ	В		1		<u> </u>		<u></u>	1				Ι		
0404075-001	MW3	Water	4/6/04	+	A	В		-	· ·										+
0404075-003	EW1	Water	4/6/04		Α	В	1				 	 				-			+
0404075-004	OW1	Water	4/6/04		A	В			****										
0404075-005	OW2	Water	4/6/04		Α]				<u></u>	<u></u>							

Test Legend:

1	G-MBTEX_W
6	
11	

2	MBTEXOXY-8260B_W
7	
12	

3	
8	
13	

4	
9	
14	

5	
10	
15	

Prepared by: Maria Venegas

Comments:

NOTE; Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.