

Transmittal

To:

Ms. Eva Chu

Hazardous Materials Specialist Alameda County Environmental

Health Services

1131 Harbor Bay Parkway, Suite 250

Alameda, CA 94502-6577

From:

Katrin Schliewen

Date:

August 25, 2000

Proj. No.: BNC 103

Copies	Description	Sent by:
1	Second Quarter 2000 Groundwater Monitoring Results, B&C Gas Mini Mart, Livermore, California	Regular Mail FedEx Courier Other

Comments:

cc:

Copies	Name & Address	Sent by:
2	Mr. Balaji Angle, Angle's AM-PM Mini Mart	🛛 Regular Mail
1	Ms. Eva Chu, Alameda County Env. Health Services	☐ FedEx
1	Mr. Matt Katen, Alameda County Zone 7	☐ Courier
1	Regional Water Quality Control Board, LUFT	☐ Other

SECOND QUARTER 2000 GROUNDWATER MONITORING RESULTS B&C Gas Mini Mart Livermore, California

Prepared by

Conor Pacific 2650 East Bayshore Road Palo Alto, California 94303

August 2000

Conor Pacific

August 25, 2000 Project No. BNC103

Mr. Balaji Angle Angle Enterprises 5131 Shattuck Avenue Oakland, California 94609

> Second Quarter 2000 Groundwater Monitoring Results, B&C Gas Mini Re:

Mart, 2008 First Street, Livermore, California (Station ID 1689)

Dear Mr. Angle:

Conor Pacific has compiled second quarter 2000 groundwater monitoring results for B&C Gas Mini Mart (B&C), 2008 First Street, Livermore, California (Figure 1). This report includes second quarter 2000 groundwater elevation data, groundwater sampling methods, and results of groundwater chemical analyses. Eight out of the nine wells to be sampled on a quarterly basis were sampled during the second quarter 2000 monitoring.

SITE INFORMATION

Site Name & Contact

Canada Vancouver

Victoria

Mr. Balaji Angle B&C Gas Mini Mart 2008 First Street

Calgary Livermore, California 94550

Edmonton (510) 654-3461

Saskatoon

Mississauga

Toronto

Ottawa Halifax

St. John's

U.S.

Richmond Palo Alto

Site Description

The B&C property is located on the northeast corner of First and South L Streets in Livermore, California, and currently serves as a gasoline station and mini market and is called Valley Gas. From at least 1988 until 1994, Desert Petroleum (DP) owned and operated the site. In January 1994, DP sold the site to the current owner, Mr. Balaji Angle. The following site description has been compiled from reports on file with Alameda County Environmental Health Services (ACEHS) and information provided by the site owner.

The site is located in the Livermore Valley groundwater basin, an area of sedimentary deposition containing braided channel systems with complex interfingering. Subsurface investigations conducted to the west of the B&C site have found an upper unconfined water-bearing zone consisting primarily of gravels with sand and clay. A low-

Einarson, Fowler & Watson is a wholly owned subsidiary of Conor Pacific Environmental U.S., Inc.

permeability clayey unit is found at depths of approximately 75 to 110 feet below ground surface (bgs). Below the clayey unit, the top of a lower, semi-confined aquifer is found at depths ranging from 110 to 145 feet bgs.¹

Subsurface work conducted in the B&C area has found predominantly sandy clay, silty sand, silty gravel, and sandy gravel. Over the last eleven years, static water levels have ranged from 68.7 feet bgs (January 1992) to 17.0 feet bgs (February 1997). The groundwater flow generally ranges from west of north during the summer and fall months, to north of west during the winter and spring months. Table 1 presents historical site groundwater elevations.² Table 2 summarizes all B&C monitoring well constructions.

Previous Work Performed at Site

A preliminary site assessment was conducted in September 1988. Three soil borings were completed; one of which was converted to a monitoring well (MW-1). In March 1994, a 280-gallon waste oil underground storage tank (UST) and 25 cubic yards of soil were removed as part of closing the auto repair shop at the station. Three months later in June, wells MW-2, MW-3, and MW-4 were installed (Figure 2).³

In August 1994, free product was encountered in well MW-2, and product removal commenced twice a month. By the end of January 1995, no measurable thickness of product remained, only sheen could be detected.⁴ In March 1995, a release was reported to have occurred from the union between a tank subpump and product line. The quantity of the release is unknown.

One gasoline UST at the B&C site failed an integrity test in September 1995. The tank was immediately taken out of commission and ACEHS was notified. In July 1996, further source removal was conducted. Two more gasoline USTs were removed, and new double-walled fiberglass USTs and fiberglass piping with automated leak detection were installed. Other remedial activities included the removal of two hydraulic lifts and approximately 700 cubic yards of impacted soil. Also, one 1,000-gallon UST discovered during excavation activities was closed in place with approval from ACEHS and the Livermore Fire Department by grouting with a cement sand slurry. In October 1995, two additional monitoring wells (off-site well MW-5 and well MW-6) were installed for the B&C site (Figure 2).

¹ H⁺GCL, Inc. Deep Groundwater Conduit Study, Livermore Arcade Shopping Center, First Street and South P Street, Livermore, California. December 6, 1993.

² Groundwater elevation and flow direction data from Remediation Service Int'l quarterly reports.

³ Remediation Service Int'l. Soil & Groundwater Investigation Report for 2008 First Street, Livermore, California. July 22, 1994.

⁴ Product thickness information from Remediation Service, Int'l field records, "Free Product Removal Logs."

Nine downgradient wells (MW-7, MW-8, MW-9, MW-10, MW-11, MW-12, MW-13, D-1, and D-2) were installed during June and July 1999 to define the downgradient and lateral extent of the plume and provide long-term monitoring locations (Figure 2).⁵ Two of the wells, D-1 and D-2, are installed in the semi-confined aquifer below the aquitard. The other wells are installed in the upper water-bearing zone. Table 1 summarizes the well construction details for all on-site and off-site wells installed to date.

The primary constituents of concern are total petroleum hydrocarbons as gasoline (TPH-G); the aromatic compounds benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX); and methyl tertiary-butyl ether (MTBE). Since 1994, concentrations of TPH-G in groundwater have generally decreased.

Interim Remedial Action at Well MW-5

Floating product was first observed in well MW-5 on July 30, 1998 (Table 2). The well is screened from 15 feet to 40 feet bgs, and the depth to groundwater has historically ranged from 18 to 33 feet bgs, well within the screened interval of the well. Due to the presence of floating free product in well MW-5, interim remedial actions were taken to remove the floating product from the well. A passive bailer or absorbent sock was selected to remove product from well MW-5 based on well access, the thickness of the product, and the rate at which the product enters the well as it is removed.

Over the time period monitored, the absorbent socks have removed sufficient product to reduce the free product thickness to a sheen or less. In April 1999, the absorbent sock was raised above the water table. In December 1999, 0.07 feet of free product was measured in well MW-5 and the absorbent sock was replaced in the well. In March and June 2000, no free product was measured or visible in MW-5 and groundwater samples were collected.

GROUNDWATER SAMPLING AND ANALYSIS

Second quarter activities are reviewed below. Groundwater sampling methods and results are presented and a discussion of historical analytical trends for site monitoring wells is included.

Free Product

During the second quarter 2000 sampling event, Conor Pacific checked for free product in all site wells. Of the wells which previously have been reported to contain free product (Wells MW-2, MW-5, and MW-6), none contained a measurable thickness of product this quarter. Off-site well (MS)MW-1, located approximately 800 feet downgradient from the B&C site on the Mill Springs Park property, was also checked for product (Figure 1). (MS)MW-1 did not contain a measurable thickness of product although

\L\BNC\103\Corres\2Q00.doc CONOR PACIFIC

⁵ Einarson, Fowler & Watson, November 5, 1999, Report of Downgradient Investigation, B&C Gas Mini Mart, 2008 First Street, Livermore, California.

globules of product were observed in the bailer during purging. No sample was collected from (MS)MW-1 during this quarter.

Groundwater Elevations

On June 21, 2000, Conor Pacific measured the depth to water in all groundwater monitoring wells. Water levels were measured to the nearest 0.01 foot using a float-activated product probe, according to Conor Pacific's standard measuring protocol,⁶ and were recorded on a water level data sheet (Appendix A). Groundwater elevations are calculated by subtracting depth-to-water measurements from the top of well casing elevations, surveyed to Livermore City datum, mean sea level (MSL).

Table 2 summarizes available groundwater elevations from August 1990 to June 2000. A comparison of well screen elevations (Table 1) and second quarter measurements shows that the water levels were above the well screens in all wells except MW-5, MW-6, MW-9, and (MS)MW-1. The water level in these four wells intercepted the well screen interval at the time of groundwater sampling. A groundwater contour map, based on June 2000 measurements, is shown in Figure 2. Second quarter groundwater elevations are generally two to almost three feet lower than the first quarter 2000. Groundwater flow was generally due west during second quarter 2000. Based on second quarter measurements, the hydraulic gradient is approximately 0.013 foot per foot. The flow direction and gradient are in accordance with previous results.

A vertically downward gradient was observed between the upper water-bearing zone (MW-11 and MW-12) and the semi-confined aquifer (D-1 and D-2), similar to, although less significant, than in previous quarters. This may be the result of the effects of slower recharge to the deeper, semi-confined aquifer compared with more rapid recharge to the upper water-bearing zone.

Sampling Methods

Conor Pacific sampled 8 monitoring wells on June 21-22, 2000, following Conor Pacific's standard protocol. The remaining wells will be sampled during the regular annual sampling event in the third quarter. Off-site well (MS)MW-1 was not sampled this quarter due to the presence of free product globules observed during well purging. Wells were purged using either a submersible pump or a polyvinyl chloride (PVC) bailer. Samples were collected from each well using a disposable PVC bailer. Field measurements of temperature, pH, dissolved oxygen, turbidity, and electrical conductivity were taken and recorded on water sample field data sheets (Appendix A). All purge water was contained in 55-gallon drums and stored on-site pending proper disposal. Purge water with low hydrocarbon concentrations is pumped to the sanitary sewer under City of Livermore Groundwater Discharge Permit # 1514. All samples were

⁶ Einarson, Fowler & Watson. Third Quarter 1998 Groundwater Monitoring Results, B&C Gas Mini Mart, Livermore, California, Appendix A. September 10, 1998.

properly stored on the day of sampling. Chain-of-custody documentation accompanied the samples through collection and delivery to the analytical laboratory.

Analytical Program

All groundwater analyses were performed by Sequoia Analytical of Petaluma, California, a state-certified laboratory. All groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-G) by U.S. Environmental Protection Agency (EPA) Method 8015M and benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tertiary-butyl ether (MTBE) by EPA Method 8020M. At the request of the ACEHS, the groundwater sample collected from MW-5 was also analyzed by EPA Method 8260B for seven oxygenates including MTBE. Laboratory analyses occurred within specified holding times and within laboratory quality control standards. The certified analytical report is located in Appendix A.

Analytical Results

Over the last five years of monitoring at the site, concentrations of benzene have steadily decreased in all site wells. Analysis of site groundwater samples for MTBE began in June 1995. Since then, concentrations of MTBE have decreased significantly. Table 3 presents a historical summary of groundwater analytical results from the B&C site. Second quarter 2000 analytical results for benzene and MTBE are also presented on Figure 3.

Site Wells

Only one of the five wells located on the B&C Gas Mini Mart property was sampled during the second quarter 2000, namely MW-2. Hydrocarbon concentrations in the groundwater sample collected from MW-2 were lower during this quarter than during all previous sampling events. During this quarter, TPH-G was detected at 5,820 micrograms per liter (μ g/L), the concentrations of BTEX compounds were respectively 128 μ g/L, 94.4 μ g/L, 155 μ g/L, and 161 μ g/L, and the concentration of MTBE was measured at 67.8 μ g/L.

Downgradient Wells

Seven of the eight downgradient wells were sampled during second quarter. In general, hydrocarbon concentrations in groundwater samples collected from these wells during the second quarter 2000 were similar to the previous sampling event, with the notable exception of MW-5 where certain hydrocarbon concentrations were significantly higher this quarter.

Well MW-5, located 75 feet downgradient of the site, was sampled this quarter since no free product was measured in the well. Hydrocarbon concentrations for TPH-G and all BTEX compounds were almost twice as high this quarter as they were during first quarter 2000. However, concentrations generally are significantly below hydrocarbon levels reported in samples collected up to and including September 1999. The

\I:\BNC\103\Corres\2Q00.doc CONOR PACIFIC

concentration of MTBE in the groundwater sample collected during second quarter 2000 is the lowest reported to date. The MTBE result reported in Table 3 (131 μ g/L) was obtained using EPA Method 8260B for oxygenates and differed by more than 40% from the MTBE concentration obtained from EPA Method 8020 (244 μ g/L), as noted in the certified analytical report. No other oxygenates analyzed were detected in the groundwater sample collected from well MW-5.

Well MW-7, located on the Mill Springs Park Apartments property approximately 550 feet downgradient from the site, had lower concentrations for TPH-G and xylenes during this quarter. Ethylbenzene was detected at a low concentration (0.875 μ g/L) after being not detected during last quarter. The concentration of MTBE was slightly higher this quarter at 4.87 μ g/L.

Well MW-8, located on Railroad Avenue at the Bank of America building contained only a low concentration of MTBE (5.56 μ g/L) during this quarter, slightly higher than last quarter (4.65 μ g/L).

Well MW-10 is located on Railroad Avenue at the Granada Bowling Alley building. No hydrocarbons were detected this quarter, including TPH-G which was detected for the first time last quarter.

Well MW-13, located on Railroad Avenue east of the Bank of America, contained low concentrations of benzene (7.83 μ g/L), ethylbenzene (0.732 μ g/L), and MTBE (38.8 μ g/L). The concentration of benzene this quarter was the highest measured since the first sample was collected in July 1999.

Well (MS)MW-1, located approximately 800 feet downgradient from the B&C site, was not sampled during second quarter 2000 since globules of free product were observed in the PVC bailer during well purging.

No TPH-G, BTEX compounds, or MTBE were detected in downgradient wells MW-12 and D-2. These results are consistent with historical results from these wells.

RECOMMENDATIONS

It is recommended that additional monitoring wells be installed in the upper water-bearing zone north of existing wells MW-5, MW-7, MW-8, and MW-13. These would help define the lateral extent of MTBE, benzene, and TPH-G and be used to monitor possible plume migration towards the north-northwest. Currently, the extent of the plume to the north is poorly defined as seen in Figure 3.

The installation of two monitoring wells (referred to at the time as MW-11, MW-12, and MW-13) to the north of the present plume was proposed originally in a September 1998

Einarson, Fowler and Watson workplan.⁷ As discussed in the November 1999 report summarizing the June-July 1999 drilling, these wells were not installed due to access constraints of properties between Railroad Avenue, the railroad track, North P Street, and North L Street. Negotiations with the City of Livermore and surrounding private property owners will need to be made prior to proposing well locations.

SUMMARY

The second quarter 2000 groundwater monitoring results are consistent with previous monitoring results. Hydrocarbon concentrations were generally lower or similar to previous sampling events, with the exception of the groundwater sample collected from well MW-5. During the previous quarter, the furthest downgradient hydrocarbon concentration was reported from a sample collected from well MW-10. This quarter no hydrocarbons were detected in MW-10. Third quarter 2000 groundwater monitoring, scheduled for September 2000, is an annual sampling event where all wells, both on-site and off-site will be sampled.

\I:\BNC\103\Corres\2Q00.doc CONOR PACIFIC

⁷ Einarson, Fowler & Watson. Workplan for Additional Downgradient Investigation, B&C Gas Mini Mart, 2008 First Street, Livermore, California. September 8, 1998.

If you have any questions regarding this report, please call us at (650) 843-3828.

Sincerely, Conor Pacific

ORIGINAL SIGNED BY

Katrin Schliewen Project Hydrogeologist

ORIGINAL SIGNED BY

Kris H. Johnson, CEG 1763 Senior Engineering Geologist

Attachments:

Tables

Table 1 - Summary of Groundwater Elevations

Table 2 - Monitoring Well Constructions

Table 3 - Historical Groundwater Analytical Results

Figures

Figure 1 - Site Location

Figure 2 - Well Locations and Groundwater Contours (June 2000)

Figure 3 - Groundwater Chemistry (June 2000)

Appendices

Appendix A - Water Sample Field Data Sheets and Certified Analytical Reports

cc: Eva Chu, Alameda County Environmental Health Services
Mr. Matt Katen, Alameda Co. Flood Control and Water Cons. District Zone 7
Regional Water Quality Control Board, San Francisco Bay Region LUFT
State Water Resources Control Board, UST Fund

Table 1
Monitoring Well Constructions
B&C Gas Mini Mart
Livermore, California

Well No.	Drilling Method	Date Installed	T.D. Boring (ftbgs)	T.D. Well (ftbgs)	Borehole Diameter (inches)	Casing Material (PVC)	Casing Diameter (inches)	Screen Size (inches)	Sand Pack Material	Screened Interval (ftbgs)	Sand Pack Interval (ftbgs)
MW-1	HSA	Sep-88	77	77	8	PVC	2	0.020	#3 sand	27 - 77	25 - 77
MW-2	HSA	Jun-94	60	60	10	PVC	4	0.020	#2/20 sand	30 - 60	27 - 60
MW-3	HSA	Jun-94	60	60	10	PVC	4	0.020	#2/20 sand	30 - 60	27 - 60
MW-4	HSA	Jun-94	60	60	10	PVC	4	0.020	#2/20 sand	30 - 60	27 - 60
MW-5	HSA	Oct-95	42	40	10	PVC	4	0.020	#2 sand	15 - 40	12 - 40
MW-6	HSA	Oct-95	42	40	10	PVC	4	0.020	#2 sand	15 - 40	12 - 40
MW-7	HSA	Jun-99	62	49	8	PVC	2	0.020	#3 sand	29-49	27-51
MW-8	HSA	Jun-99	62	54	8	PVC	2	0.020	#3 sand	34-54	32-54
MW-9	HSA	Jun-99	45	45	8	PVC	2	0.020	#3 sand	25-45	23-45
MW-10	HSA	Jun-99	55	53.5	8	PVC	2	0.020	#3 sand	33.5-53.5	23-55
MW-11	HSA	Jun-99	50	49	8	PVC	2	0.020	#3 sand	29-49	27-49
MW-12	HSA	Jun-99	45	43.5	8	PVC	2	0.020	#3 sand	23.5-43.5	21-45
MW-13	HSA	Ju l- 99	55	55	8	PVC	2	0.020	#3 sand	35-55	32-55
D-1	HSA	Jun-99	125	125	8	PVC	2	0.020	#3 sand	110-125	104-125
D-2	HSA	Jun-99	115	114	8	PVC	2	0.020	#3 sand	99-114	94-114
(MS)MW-1	HSA	Apr-89	62	60	NA	PVC	2	NA	NA	30-60	NA

HSA Hollow-Stem Auger

T.D. Total Depth

ft.-bgs feet below ground surface

NA Not available

Well construction information for wells MW-2 through MW-6 collected from Remediation Service Int'l boring logs.

\\BNC\103\Corres\2q00.x\ls\\WELLCON\] . CONOR PACIFIC/EFW

Table 2
Summary of Groundwater Elevations
B & C Gas Mini Mart
Livermore, California

Well Number	Top-of-Casing Elevation (feat MSI)	Date Measured	Depth to Water	Groundwater Elevation (feet MSI)	Depth to Free product	Product Thicknes
	(feet, MSL)		(feet)	(feet, MSL)	(feet)	(feet)
MW-I	487.00	09/22/88	60.50	426.50		
		08/02/90	43.10	443.90		
		10/10/91	66.39	420.61		
		01/08/92	68.72	418.28		
		05/11/93	34.76	452.24		
		09/21/93	38.70	448.30		
		05/22/94	33.57	453.43		
	484.07	06/19/94	37.51	446.56		
		08/25/94	43.27	440.80		
		11/22/94	40.58	443.49		
		03/13/95	28.06	456.01		
		06/01/95	21.76	462.31		
		02/29/96	18.86	465.21		
		Feb-97	NM	NM		
		07/30/98	25.90	458.17		
		11/05/98	33.23	450.84		
		03/23/99	25.49	458.58		
		06/08/99	27.78	456.29		
		09/27/99	30.65	453.42		
		12/20/99	32.99	451.08		
		03/21/00	23.95	460.12		
		06/21/00	26.55	457.52		
MW-2	483.86	06/19/94	38.15	445.71		
		08/25/94	44.13	•	43.47	0.66
		11/22/94	40.96	-	40.92	0.04
		03/09/95	29.28	•	28.47	0.81
		03/13/95	28.71	-	28.29	0.42
		06/01/95	22.61	461.25		
		02/29/96	20.05	463.81		
		Feb-97	18.30	465.56		
		07/30/98	25.75	-	25.74	0.01
		11/05/98	33.31	450.55		
		03/23/99	25.51	458.35		
		06/08/99	27.54	456.32		
		09/27/99	30.73	453.13		
		12/20/99	33.02	450.84		
		03/21/00	24.13	459.73		
		06/21/00	26.26	457.60		
MW-3	484.24	06/19/94	37.15	447.09		
		08/25/94	42.31	441.93		
		11/22/94	40.07	444.17		
		03/13/95	27.94	456.30		
		06/01/95	21.31	462.93		
		02/29/96	18.78	465,46		
		Feb-97	16.97	467 27		
		07/30/98	24.88	459.36		
		11/05/98	32.09	452.15		
		03/23/99	24.49	459.75		
		06/08/99	26.77	457.47		
		09/27/99	29.52	454.72		,
		12/20/99	31.85	452.39		
		03/21/00	22.95	461.29		
		06/21/00	25.60	458.64		

Table 2
Summary of Groundwater Elevations
B & C Gas Mini Mart
Livermore, California

Well Number	Top-of-Casing Elevation (feet, MSL)	Date Measured	Depth to Water (feet)	Groundwater Elevation (feet, MSL)	Depth to Free product (feet)	Product Thickness (feet)
MW-4	485.04	06/19/94	37.49	447.55		
172111	705.07	08/25/94	42.25	442.79		
		11/22/94	40.59	444.45		
		03/13/95	28.00	457.04		
		06/01/95	21.51	463.53		
		02/29/96	18.42	466.62		
		Feb-97	17.47	467.57		
		07/30/98	25.47	459.57		
		11/05/98	32.67	452.37		
		03/23/99	25.09	459.95		
		06/08/99	27.43	457.61		
		09/27/99	30.16	454.88		
		12/20/99	32.52	452.52		
		03/21/00	23.43	461.61		
		06/21/00	26.14	458.90		
MW-5	481.97	02/29/96	19.35	462.62		
		Feb-97	18.19	463.78	0.504	0.04
		07/30/98	25.25	456.72	25.24	0.01
		11/05/98	32.70	449.27	32.48	0.22
		03/23/99	25.15	456.82		
		06/08/99	27.27	454.70		
		09/27/99	30.00	451.97	22.22	0.05
		12/20/99	32.30	449.67	32.23	0.07
		03/21/00	23.55	458.42		
		06/21/00	26.04	455.93		
MW-6	483.93	02/29/96	20.32	463.61		
		Feb-97	18.92	465.01		
		07/30/98	25.59	458.34	25.58	0.01
		11/05/98	NA	NA		
		03/23/99	25.43	458.50		
		06/08/99	27.43	456.50		•
		09/27/99	NM >28.6	NM		
		12/20/99	NM > 28.7	NM		
		03/21/00	24.02 *	459.91		
		06/21/00	26.04 *	457.89		
MW-7	478.14	7/12/99	28.37	449.77		
TAY 44 - 1	770.17	09/27/99	30.20	447.94		
		12/20/99	32.44	445.70		
		03/21/00	24.18	453.96		
		06/21/00	26.70	451.44		
MW-8	473.23	7/12/99	34.29	438.94		
		09/27/99	37.11	436.12		
		12/20/99	39.79	433.44		
		03/21/00	29.10	444.13		
		06/21/00	31.90	441,33		
MW-9	477.08	7/12/99	30.71	446.37		
		09/27/99	32.61	444.47		
		12/20/99	34.99	442.09		
		03/21/00	26.75	450.33		
		06/21/00	29.28	447.80		

Table 2
Summary of Groundwater Elevations
B & C Gas Mini Mart
Livermore, California

Well Number	Top-of-Casing Elevation (feet, MSL)	Date Measured	Depth to Water (feet)	Groundwater Elevation (feet, MSL)	Depth to Free product (feet)	Product Thickness (feet)
MW-10	471.42	7/12/99	34.60	436.82		
		09/27/99	37.62	433.80		
		12/20/99	40.04	431.38		
		03/21/00	29.50	441.92		
		06/21/00	32.19	439.23		
MW-11	464.93	7/12/99	31.00	433.93		
		09/27/99	33.83	431.10		
		12/20/99	35.91	429.02		
		03/21/00	26.41	438.52		
		06/21/00	28.79	436.14		
MW-12	458.34	7/12/99	25.50	432.84		
		09/27/99	28.28	430.06		
		12/20/99	30.26	428.08		
		03/21/00	20.70	437.64		
		06/21/00	23.11	435.23		
MW-13	474.79	7/12/99	30.65	444.14		
		09/27/99	32.74	442.05		
		12/20/99	34,98	439.81		
		03/21/00	26.03	448.76		
		06/21/00	28.74	446.05		
D-1	464.70	7/12/99	30.67	434.03		
		09/27/99	35.32	429.38		
		12/20/99	36.32	428.38		
		03/21/00	27.84	436.86		
		06/21/00	30.40	434.30		
D-2	457.61	7/12/99	25.72 ·	431.89		
		09/27/99	28.44	429.17	•	
		12/20/99	29.40	428.21		
		03/21/00	20.91	436.70		
		06/21/00	23.56	434.05		
(MS)MW-1	477.79	07/30/98	30.37	447.42	30.35	0.02
•		11/05/98	38.01	439.78	(1)	
		03/23/99	29.44	448.35	(1)	
		06/08/99	31.70	446.09	(1)	
		09/27/99	34.38	443.41		
		12/20/99	37.36	440 43		
		03/21/00	28.22	449.57		
		06/21/00	30.95	446.84		

Notes.

Data prior to 1998 from RSI quarterly reports February 1997 date unknown.

MSL = mean sea level

NM = not measured; NA = not accessible, blocket at 28.4 feet.

MS = Mill Springs Park

(1) - free product visible in purge or sample water

* Obstruction in well at 28.6 feet below top of casing

Table 3
Historical Groundwater Analytical Results
B&C Gas Mini Mart
Livermore, California

Well	Sample	TPH-G	Benzene	Toluene	Ethylbenzene	Xylenes	MTBI
No.	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)_	(ug/l)	(ug/l
MW-1	Aug-90	24,000	1,300	1,300	400	2,700	NA
	Oct-91	2,000	430	170	100	290	NA
	Jan-92	1,000	200	120	30	150	NA
	May-93	960	66	8	41	90	NA
	Sep-93	1,900	311	118	34	112	NA
	May-94	10,000	690	1,100	340	1,200	NA
	Aug-94	13,000	290	690	120	670	NA
	Nov-94	19,000	400	770	230	130	NA
	Mar-95	6,000	900	100	980	740	NA
	Jun-95	2,400	210	380	53	280	13,000
	Sep-95	7,800	69	1,300	220	1,200	2,000
	Feb-96	120	4.2	1.4	4.7	5.6	14
	Feb-97	NS*	NS*	NS*	NS*	NS*	NS*
	Jul-98	1,400	26	110	57	243	5
	Nov-98	6,000	230	330	240	1,060	<100
	Mar-99	6,600	280	420	240	990	60
	Jun-99	1,630	70	52	55	138	67
	Dec-99	NS	NS	NS	NS	NS	NS
	Mar-00	300	17.6	14.2	9.89	40.7	7.84
	Jun-00	NS	NS	NS	NS	NS	NS NS
MW-2	Jun-94	290,000	18,000	36,000	4,600	26,000	NA
	Aug-94	NS**	NS**	NS**	NS**	NS**	NA
	Nov-94	NS**	NS**	NS**	NS**	NS**	NA
	Mar-95	NS**	NS**	NS**	NS**	NS**	N.A
	Jun-95	25,000	2,300	3,400	720	3,100	16,000
	Sep-95	NS**	NS**	NS**	NS**	NS**	NS*
	Feb-96	57,000	2,500	650	3,700	3,100	6,50
	Feb-97	20,000	860	1,500	480	1,000	1,30
	Jul-98	NS**	NS**	NS**	NS**	NS**	NS*
	Nov-98	40,000	2,400	2,500	2,100	7,200	1,20
	Mar-99	22,000	780	880	780	1,730	30
	Jun-99	11,200	352	454	540	639	34
	Sep-99	18,000	992	331	901	2,140	22:
	Dec-99	19,200	1,340	818	1,050	2,130	57
	Mar-00	6,340	281	184	233	348	90.
	Jun-00	5,820	128	94.4	155	161	67.
MW-3	Jun-94	11,000	640	580	270	790	N
	Aug-94	41,000	1,600	2,300	330	1,800	Νz
	Nov-94	18,000	8,000	10,000	900	5,000	N.
	Mar-95	44,000	1,600	1,300	5,000	6,600	N
	Jun-95	15,000	600	1,900	490	2,600	4,20
	Sep-95	8,000	710	1,100	180	870	2,70
	Feb-96	13,000	260	200	200	1,100	1,50
	Feb-97	11,000	260	550	170	600	90
	Jul-98	25,000	330	1,200	490	1,860	30
	Nov-98	26,000		2,100	820	3,600	30
	Mar-99	6,900	100	160	110	265	22
	Jun-99	1,210	5.4	9.0	6.9	4.3	53.
		1,210 NS	NS	NS	NS	NS	N
	Dec-99 Mar-00	465	4.56	1.87	6.20	7.45	15.
				NS	0.20 NS	7.43 NS	N
	Jun-00	NS	NS	NS	142	149	N

Table 3
Historical Groundwater Analytical Results
B&C Gas Mini Mart
Livermore, California

Well	Sample	TPH-G	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
No.	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l
MW-4	Jun-94	810	12	25	<0.5	22	NA
	Aug-94	850	37	51	9.5	35	NA
	Nov-94	1,700	110	110	5.8	58	NA
	Mar-95	1,300	180	8	52	77	NA
	Jun-95	ND	3	1	ND	1	ND
	Sep-95	<50	0.7	· <0.5	<0.5	< 0.5	<2.5
	Feb-96	87	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Feb-97	<50	< 0.5	< 0.5	< 0.5	<0.5	2.9
	Jul-98	<50	< 0.4	0.6	<0.3	0.8	<5
	Nov-98	< 50	0.7	< 0.3	< 0.3	<0.8	27
	Mar-99	< 50	< 0.4	< 0.3	< 0.3	<0.8	<5
	Jun-99	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
	Dec-99	NS	NS	NS	NS	NS	NS
	Mar-00	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	Jun-00	NS	NS	NS	NS	NS	NS
MW-5	Oct-95	120,000	16,000	26,000	3,100	15,000	39,000
	Feb-96	47,000	3,400	4,200	860	4,100	20,000
	Feb-97	28,000	1,300	1,500	480	1,000	2,200
	Jul-98	47,000	1,400	4,000	2,000	8,500	600
	Nov-98	NS**	NS**	NS**	NS**	NS**	NS**
	Mar-99	36,000	1,500	2,400	1,500	5,500	900
	Jun-99	34,500	722	1,980	1,720	7,170	765
	Sep-99	49,100	540	2,500	1,730	8,040	255
	Dec-99	NS**	NS**	NS**	NS**	NS**	NS**
	Mar-00	10,700	217	300	332	1,480	160
	Jun-00	23,000	537	533	1,040	2,590	131***
MW-6	Oct-95	110,000	9,900	22,000	3,200	17,000	47,000
	Feb-96	23,000	2,000	460	2,900	2,600	6,300
	Feb-97	12,000	450	780	200	590	790
	Jul-98	NS**	NS**	NS**	NS**	NS**	NS**
	Nov-98	NS*	NS*	NS*	NS*	NS*	NS*
	Mar-99	5,700	240	260	120	440	150
	Jun-99	7,610	259	334	283	567	275
	Dec-99	NS	NS	NS	NS	NS	NS
	Mar-00	10,100	276	170	200	673	159
	Jun-00	NS	NS	NS	NS	NS	NS
MW-7	Jul-99	5,090	31.9	4.8	60	219	43.6
	Sep-99	2,160	2.8	8.2	5.9	27.3	14.0
	Dec-99	2,630	<2.5	<2.5	13.8	44.9	26.3
	Mar-00	624	<0.5	< 0.5	<0.5	1.61	3.87
	Jun-00	435	<0.5	<0.5	0.875	1.28	4.87
MW-8	Jun-99	<50	<0.5	<0.5	<0.5	< 0.5	88.:
	Sep-99	<50	<0.5	<0.5	<0.5	<0.5	52
	Dec-99	<50	< 0.5	< 0.5	<0.5	<0.5	47.3
	Mar-00	<50	<0.5	< 0.5	<0.5	<0.5	4.65
	Jun-00	<50	<0.5	<0.5	<0.5	<0.5	5.56
MW-9	Jun-99	<50	<0.5	<0.5	<0.5	<0.5	<
	Dec-99	NS	NS	NS	NS	NS	NS
	Mar-00	<50	<0.5	<0.5	<0.5	< 0.5	<2.3
	Jun-00	NS	NS	NS	NS	NS	NS

Table 3
Historical Groundwater Analytical Results
B&C Gas Mini Mart
Livermore, California

Well	Sample	TPH-G	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
No.	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
MW-10	Jun-99	<50	< 0.5	< 0.5	<0.5	< 0.5	<2
	Sep-99	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	Dec-99	<50	< 0.5	< 0.5	< 0.5	< 0.5	46.5
	Mar-00	52.7	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	Jun-00	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5
MW-11	Jun-99	91	0.7	2.0	1.1	2.6	<2
	Sep-99	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5
	Dec-99	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	Mar-00	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	Jun-00	NS	NS	NS	NS	NS	NS
MW-12	Jun-99	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2
	Sep-99	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	Dec-99	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5
	Mar-00	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	Jun-00	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
MW-13	Jul-99	214	42.8	<0.5	4.5	< 0.5	332
	Sep-99	<100	5.8	<1	<1	<1	160
	Dec-99	71	6.7	< 0.5	1.4	< 0.5	132
	Mar-00	< 50	2.32	< 0.5	< 0.5	< 0.5	53.5
	Jun-00	<50	7.83	< 0.5	0.732	< 0.5	38.8
D-1	Jun-99	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2
	Sep-99	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5
	Dec-99	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	Mar-00	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	Jun-00	NS	NS	NS	NS	NS	NS
D-2	Jun-99	<50	< 0.5	<0.5	<0.5	< 0.5	<2
	Sep-99	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5
	Dec-99	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	Mar-00	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	Jun-00	<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5
(MS)MW-1	Aug-95	11,000	190	260	110	900	210
	Jul-98	NS**	NS**	NS**	NS**	NS**	NS**
	Nov-98	10,000	260	120	500	1,100	200
	Mar-99	NS**	NS**	NS**	NS**	NS**	NS**
	Jun-99	NS**	NS**	NS**	NS**	NS**	NS**
	Dec-99	661	9.7	3.5	21.7	31.1	7.2
	Mar-00	NS**	NS**	NS**	NS**	NS**	NS**
	Jun-00	NS**	NS**	NS**	NS**	NS**	NS**

ug/l = micrograms per liter

TPH-G = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

MS = Mill Springs Park

NA= not analyzed NS= not sampled

* = well inaccessible ** = free product hydrocarbon present

*** = analytical result from EPA method 8260B

ND = not detected above reporting limit, limit not available

<= less than method reporting limit

WATER LEVEL DATA SHEET

Conor Pacific/EFW

Decises Dec	Coc Mini M	Tout				
Project: B&C		ıart				
Date(s):	BNC103					
Name: Z	Dund					•
Weather.	MANIA 1	of	· · · · · · · · · · · · · · · · · · ·	Sounder # 3	350	KECK
	J-+					
Well	Tale / Time	DTPP (TOC)	DTW (TOC)	Total Depth	Meas By	Comments
MW-1	1128	NP	24.55	715.3	SW	
MW-2	1134		26.2Le	56.0	1	
MW-3	1123		25.40	57.5		Mu"
MW-4	1120		26.14	59.9		
MW-5	1003	ļ <u> </u>	24.04	39.7 (20.6)	<u> </u>	15/14
MW-6	1131		26.04	(20.0)		obstructed.
MW-7	1219		24.70	49.3		7114, 0909
MW-8	1730		31,90"	53.1		
MW-9	1147		29.20	44.0		
MW-10	1240		32.19	53.9		
MW-11	1322		28.79	49.2		
MW-12	1331		28.74		 	
MW-13	1220	 	30.40	54.4		
D-1 D-2	1335		23.54	124.3.	-	
MS MW01	1154		30.95	MM	Ŋ	9 _{KU} "
IVIS IVI W U I	noq	V	70.113	17411		'NU
				-		
			 			
			ļ			
					}	
	· · · · · · · · · · · · · · · · · · ·	<u> </u>			<u> </u>	
		<u> </u>	ļ ,	 	ļ	
L	ļ	<u>L</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

Conor Pacific WATER SAMPLE FIELD DATA LOCATION: B'C GASMINI MAY+ SAMPLE ID: MW-2 PROJECT NO: 13NC103 SAMPLED BY: 2 Park CLIENT: BOCGASMINIMONT REGULATORY AGENCY: SAMPLE TYPE: Groundwater - Surface Water Leachate _____ Other ____ Other CASING DIAMETER (OD-inches): 3/4 2 Other GALLONS PER LINEAR FOOT: (0.04)(0.17)(0.66)(1.5)(2.6)Volume in Casing (gal): 6-19.7 Well Total Depth (ft): 50.0 26.29 Calculated Purge (volumes / gal.): 19.7 Depth to Water (ft): Height of Water Column (ft): 29.71 Actual Pre-Sampling Purge (gal): 20.0 PURGE: Device (Depth of Intake from TOC): S.S. Bailer_____ Teflon Bailer____ PVC Bailer____ Disp. Bailer_____ PVC Hand Pump_____ Peristaltic Pump _____ Centrifugal Pump _____ Bladder Pump _____ Pneumatic Displacement Pump | Electric Submersible Pump | Dedicated Other Purge Water Containment: Www.C Field QC Samples Collected at this Well (Equipment or Field Blank): EB- FB- Other Elec. Conductivity Color Turbidity Time Temp. Hα Volume (std. units) (visual) Other (2400 Hr) (gallons) (°C) (µmhos/cm) (visual) Observation UUD H.GMHMF DW (e lele 1000 (e.124 1000 (0.70 Purge Date: SAMPLE: Dedicated Pneumatic Displacement Pump Electric Submersible Pump Dissolved Electical Time Temp. Conductivity pН Oxygen Color **Turbidity** Other (2400 Hr) (umhos/cm) (std. units) (mg/l)(visual), (°C) (NTU) 1.14 1443 1020 (e.70 Sample Date: (0/22/90 Sheen: NOTE Odor: Strong Field Measurement Devices: Horiba Omega ____ QuickCheck ____ D.O. Test Kit ____ REMARKS: I Casing Volume Dunge. \sqrt{m} DATE: 4/22/00

M:\FORMS\\$AMPLING\WTR\$MPL2000,DOC

Conor Pacific	
₹EFW	WATER SAMPLE FIELD DATA
LOCATION: BICGOSMINI WANT	SAMPLE ID: WW-5
PROJECT NO: BNC103	SAMPLED BY: ZPam/
CLIENT: B7CGas MINI WAVT	REGULATORY AGENCY:
SAMPLE TYPE: Groundwater Surface Water	**
CASING DIAMETER (OD-inches): 3/4111	24
GALLONS PER LINEAR FOOT: (0.02) (0.04)	(0.17) (0.66) (0.83) (1.5) (2.6)
Well Total Depth (ft): 39.7	Volume in Casing (gal):
Depth to Water (ft): 24.04	Calculated Purge (volumes / gal.):
Height of Water Column (ff): 13.66	Actual Pre-Sampling Purge (gal): 9.5
PVC Hand Pump Peristaltic Pump	Teflon Bailer PVC Bailer Disp.
Time Volume Temp. Elec. Conductivity	pH Color Turbidity
l * * * * * * * * * * * * * * * * * * *	l, units) (visual) (visual) Other Observation
	O() ligration low
	95
	<u>e5</u>
- William Control Cont	
	1 Lanks
	Purge Date: U(22/00
SAMPLE: Device (Depth of Intake from TOC): S.S. Bailer PVC Hand Pump Peristaltic Pump Pneumatic Displacement Pump Electric Sul	Teflon Bailer PVC Bailer Disp. Bailer (35') Centrifugal Pump Bladder Pump bmersible Pump Dedicated Other
Electical	Dissolved
1 · · · · · · · · · · · · · · · · · · ·	H Oxygen Color Turbidity Other
(2400 Hr) (°C) (µmhos/cm) (std. 1	$\begin{array}{cccc} \text{(mits)} & \text{(mg/l)} & \text{(visual)} & \text{(NTU)} \\ \text{(O)} & \text{(L_{OALA}} & \text{40U} \end{array}$
1317 21.1 1050 4.4	VI V
Sheen: NOW Odor: Wolfatte	Strong Sample Date: U22/00
Field Measurement Devices: Horiba omega	
SIGNATURE: MANN	DATE: U 72 90

M;\FORMS\SAMPLING\WTRSMPL2000.DOC

2049

Conor Pacinic	WATER SAMPLE FIELD DATA				
₩ EFW					
LOCATION: B&CGasminiMary	SAMPLE ID: WW - 7				
PROJECT NO: RAIC 103	SAMPLED BY: ZVWV				
CLIENT: 139 C Gas Min [Mart	REGULATORY AGENCY:				
SAMPLE TYPE: Groundwater Surface Water	//				
CASING DIAMETER (OD-inches): 3/4 1 (0.02) (0.04)	2—l 4 4.5 6 8 Other (0.17) (0.66) (0.83) (1.5) (2.6)				
Well Total Depth (ft): <u>4</u> 9.3	Volume in Casing (gal): S.이				
Depth to Water (ft): 20.71	Calculated Purge (volumes / gal.):				
Height of Water Column (ft): 27,59	Actual Pre-Sampling Purge (gal): 12-0				
PVC Hand Pump Peristaltic Pump Pneumatic Displacement Pump Electric Sub Purge Water Containment:	Teflon Bailer PVC Bailer Disp. Bailer Centrifugal Pump Bladder Pump Dedicated Other				
Time Volume Temp. Elec. Conductivity	pH Color Turbidity				
(2400 Hr) (gallons) (°C) (µmhos/cm) (std	l. units) (visual) (visual) Other Observation				
	197 Il. Man high				
1213 80 20.5 1040 6.	97				
	7.05				
	11/20/00				
	Purge Date: U[V 00				
SAMPLE: Device (Depth of Intake from TOC): S.S. Bailer	Teflon Bailer PVC Bailer Disp. Bailer (45')				
Preumatic Displacement Pump Electric Sul	Centrifugal Pump Bladder Pump mersible Pump Dedicated Other				
Thedinate Displacement Lump Block to Sat	771010100 Tallip				
Electical	Dissolved				
Time Temp. Conductivity pI (2400 Hr) (°C) (µmhos/cm) (std. v	•				
l ` , , , , , , ,					
	1 100100				
Sheen: NOW Odor: light	Sample Date: 4127100				
Field Measurement Devices: Horiba Omega					
SIGNATURE: WWW	DATE. 4(22/00				

3049

M.\FORMS\SAMPLING\WTRSMPL2000 DOC

Conor Pacific	WATER SAMPLE FIELD DATA
LOCATION: BOCGASWINI MANT	_
	SAMPLE ID: WW- & SAMPLED BY: POW
PROJECT NO: BYC 103 CLIENT: BYC GAS MINI WOV	REGULATORY AGENCY:
SAMPLE TYPE: Groundwater — Surface Water	Leachate Treatment System Other
CASING DIAMETER (OD-inches): 3/411	
GALLONS PER LINEAR FOOT: (0.02) (0.04)	(0.17) (0.66) (0.83) (1.5) (2.6)
Well Total Depth (ft): 53. Depth to Water (ft): 31.91	Volume in Casing (gal): 3.7
Depth to Water (ft): 31,91	Calculated Purge (volumes / gal.): 10.9
Height of Water Column (ft): 21, 19	Actual Pre-Sampling Purge (gal): 11-0
Purge Water Containment: (V \(\lambda \tag{V} \)	Teflon Bailer PVC Bailer Disp. Bailer Centrifugal Pump Bladder Pump mersible Pump Dedicated Other d Blank): EB- FB- Other
Time Volume Temp. Elec. Conductivity	pH Color Turbidity
(2400 Hr) (gallons) (°C) (µmhos/cm) (std	units) (visual) (visual) Other Observation
1120 4.0 20.0 1030 6.	Ob Ulbour high
1133 7.5 20.5 1040 U.	84 1
1136 11.0 20.1 1090 6.	ē9
	10/22/00
	Purge Date: 4 22 00
SAMPLE: Device (Depth of Intake from TOC): S.S. Bailer PVC Hand Pump Peristaltic Pump Pneumatic Displacement Pump Electric Sub-	Teflon Bailer PVC Bailer Disp. Bailer (49') Centrifugal Pump Bladder Pump mersible Pump Dedicated Other
Electical	Dissolved
	I Oxygen Color Turbidity Other
(2400 Hr) (°C) (µmhos/cm) (std. u	mits) (mg/l) (visual) (NTU)
1142 20.6 1050 6.8	
Sheen: None Odor: None	Sample Date: 4 172100
Field Measurement Devices: Horiba — Omega	QuickCheck D.O. Test Kit
ADDITION AND ADDITION ADDITION AND ADDITION AND ADDITION AND ADDITION ADDITION ADDITION ADDITION ADDITION ADDITION ADDITION AND ADDITION	
SIGNATURE: MMA	DATE: (2/22/00

4009

M·\FORMS\SAMPLING\WTRSMPL2000.DOC

Conor Pacific WATER SAMPLE FIELD DATA LOCATION: B'& CCOUS MINIMONT SAMPLE ID: WW-10 SAMPLED BY: POML PROJECT NO: BKIC103 CLIENT: BYC GUS MiniMar REGULATORY AGENCY: Leachate ___ Treatment System ____ Other SAMPLE TYPE: Groundwater Surface Water ____ CASING DIAMETER (OD-inches): 3/4 Other (0.04)(0.17)(0.83)GALLONS PER LINEAR FOOT: (0.02)(0.66)Well Total Depth (ft): 53,9 Volume in Casing (gal): S. 7 Depth to Water (ft): 32.19 Calculated Purge (volumes / gal.): Height of Water Column (ft): 21.71 Actual Pre-Sampling Purge (gal): 11.5 PURGE: Device (Depth of Intake from TOC): S.S. Bailer_____ Teflon Bailer____ PVC Bailer_____ Disp. Bailer_____ PVC Hand Pump Peristaltic Pump Centrifugal Pump Bladder Pump Pneumatic Displacement Pump Electric Submersible Pump Dedicated Other Purge Water Containment: WWWW Field QC Samples Collected at this Well (Equipment or Field Blank): EB- FB- Other Temp. Elec. Conductivity Color рН Turbidity Time Volume (2400 Hr) (gallons) (°C) (µmhos/cm) (std. units) (visual) (visual) Other Observation 920 modelf 1074 NIGH moduati Purge Date: U 200 SAMPLE: Device (Depth of Intake from TOC): S.S. Bailer Teflon Bailer PVC Bailer Disp. Bailer 49') PVC Hand Pump Peristaltic Pump Centrifugal Pump Bladder Pump Pneumatic Displacement Pump Electric Submersible Pump Dedicated Other Electical Dissolved Other pН Oxygen Color Turbidity Time Temp. Conductivity (2400 Hr) (umhos/cm) (std. units) (mg/l)(visual) (NTU) (°C) 471 11. brown 7.43 234 940 1534 20.4 Odor: NOW Sheen: NDNL Field Measurement Devices: Horiba Tomega QuickCheck D.O. Test Kit

REMARKS: DATE: 4/21/00

M: FORMS SAMPLING WTRSMPL 2000 DOC

Conor Pacific WATER SAMPLE FIELD DATA SAMPLE ID: MW-12 LOCATION: BACGASMINI MAY PROJECT NO: BNC103 SAMPLED BY: POW CLIENT: B&CGaSMin Mart REGULATORY AGENCY: SAMPLE TYPE: Groundwater Surface Water Leachate ____ Treatment System ____ Other CASING DIAMETER (OD-inches): 3/4 Other GALLONS PER LINEAR FOOT: (0.04)(0.66) (0.83)(1.5)(0.17)(2.6)Well Total Depth (ft): 43-3 Volume in Casing (gal): 3.5 Calculated Purge (volumes / gal.): 10.3 Depth to Water (ft): 23.11 Actual Pre-Sampling Purge (gal): 10.5 Height of Water Column (ft): 20.19 **PURGE:** Device (Depth of Intake from TOC): S.S. Bailer Teflon Bailer PVC Bailer Disp. Bailer PVC Hand Pump Peristaltic Pump Centrifugal Pump Bladder Pump Pneumatic Displacement Pump Electric Submersible Pump Dedicated Other Purge Water Containment: Field QC Samples Collected at this Well (Equipment or Field Blank): EB- FB- Other Elec. Conductivity Time Volume Temp. Hg Color Turbidity (umhos/cm) (std. units) (visual) (visual) Other Observation (2400 Hr) (gallons) (°C) 430 474 Niah Hoomer 1353 U.7U 6.65 940 Purge Date: U Z1/90 SAMPLE: Device (Depth of Intake from TOC): S.S. Bailer Teflon Bailer PVC Bailer Disp. Bailer 38' PVC Hand Pump Peristaltic Pump Centrifugal Pump Bladder Pump Pneumatic Displacement Pump Electric Submersible Pump Dedicated Electical Dissolved Color Turbidity Other Time Temp. Conductivity pН Oxygen (2400 Hr) (µmhos/cm) (std. units) (visual) (mg/l)(°C) H. brown 450 1403

Sample Date: 6 2100 Sheen: NONL Odor: NOM Field Measurement Devices: Horiba — Omega QuickCheck D.O. Test Kit _____ Calibrated vinter 1045, W21/00: pt: 7:00, 10:00; EC:0, 2000; turb:0:0:00; curto: T: 25, 2°C

DATE: 6/21/00

Conor Pacific. WATER SAMPLE FIELD DATA ₹ EFW SAMPLE ID: WW-13 LOCATION: BACGOSMINI MONT PROJECT NO: BNO 103 SAMPLED BY: ZYWW CLIENT: B4 CGOS MINI MORT REGULATORY AGENCY: SAMPLE TYPE: Groundwater + Surface Water Leachate _____ Treatment System ____ Other CASING DIAMETER (OD-inches): 3/4 Other (0.17)(2.6)GALLONS PER LINEAR FOOT: (0.02)(0.04)(0.66)(0.83)(1,5)Well Total Depth (ft): 54.4 Volume in Casing (gal): 4-4 Depth to Water (ft): 20.74 Calculated Purge (volumes / gal.): 13-1 Height of Water Column (ft): 25.64 Actual Pre-Sampling Purge (gal): 13.5 PURGE: Device (Depth of Intake from TOC): S.S. Bailer Teflon Bailer PVC Bailer Disp. Bailer PVC Hand Pump Peristaltic Pump Centrifugal Pump Bladder Pump Pneumatic Displacement Pump Electric Submersible Pump Dedicated Other Purge Water Containment: CV WWW. Field QC Samples Collected at this Well (Equipment or Field Blank): EB-___ FB-__ Other Color Turbidity Temp. Elec. Conductivity рН Time Volume (2400 Hr) (gallons) (°C) (µmhos/cm) (std. units) (visual) (visual) Other Observation 10.914 Niah 20.1 rupord. H 1030 Purge Date: SAMPLE: Device (Depth of Intake from TOC): S.S. Bailer Teflon Bailer PVC Bailer Disp. Bailer Q () PVC Hand Pump Peristaltic Pump Centrifugal Pump Bladder Pump Pneumatic Displacement Pump Electric Submersible Pump Dedicated Electical Dissolved Conductivity Oxygen Color Turbidity Other Time Temp. pН (visual) (2400 Hr) (µmhos/cm) (std. units) (mg/l) 0.95 H. Woun 10U0 1.74 1105 Sample Date: U22/00 ___Odor: Von Sheen: NOM Field Measurement Devices: Horiba Omega QuickCheck D.O. Test Kit_____ REMARKS: Calibrated muter 1020, 4/21/20: pt. 7.00, 4.00, EC:0, 2060; twb:0, DO: auto; T: 24.9°C

M:\FORMS\SAMPLING\WTRSMFL2000 DOC

7049

DATE: 4/20/20

Conor Pacific WATER SAMPLE FIELD DATA LOCATION: Backasmini Mart SAMPLE ID: D-2 PROJECT NO: 13NC103 SAMPLED BY: 2 Punk CLIENT: BSCGAS WINIWAY+ REGULATORY AGENCY: SAMPLE TYPE: Groundwater & Surface Water Leachate Treatment System Other CASING DIAMETER (OD-inches): 3/4 4.5 Other GALLONS PER LINEAR FOOT: (0.02)(0.04)(0.17)(0.66)(0.83)(1.5)(2.6)Well Total Depth (ft): 1118 Volume in Casing (gal): \5.0 Calculated Purge (volumes / gal.): 45.0 Depth to Water (ft): 23.56 Height of Water Column (ft): 39.24 Actual Pre-Sampling Purge (gal): 45.0 PURGE: Device (Depth of Intake from TOC): S.S. Bailer_____ Teflon Bailer____ PVC Bailer Disp. Bailer PVC Hand Pump Peristaltic Pump Centrifugal Pump Bladder Pump Pneumatic Displacement Pump Electric Submersible Pump (95) Dedicated Purge Water Containment: Field QC Samples Collected at this Well (Equipment or Field Blank): EB- FB-Other Time Volume Temp. Elec. Conductivity Hq Color Turbidity (°C) (µmhos/cm) (std. units) (visual) (visual) Other Observation (2400 Hr) (gallons) 990 21.1 7.26 Huspun Low 15.0 990 7.20 H.Coourfort 30.0 20.7 45.0 990 728 Purge Date: SAMPLE: Device (Depth of Intake from TOC): S.S. Bailer Teflon Bailer PVC Bailer Disp. Bailer 100' PVC Hand Pump Peristaltic Pump Centrifugal Pump Bladder Pump Pneumatic Displacement Pump Electric Submersible Pump Dedicated Electical Dissolved Turbidity Other Time Temp. Conductivity рH Oxygen Color (visual) (2400 Hr) (umhos/cm) (std. units) (mg/l)(NTU) Word. H 1440 7,33 Odor: None W21100 Sample Date: Field Measurement Devices: Horiba Omega QuickCheck D.O. Test Kit REMARKS: 4/2/100 DATE:

M'\FORMS\SAMPLING\WTRSMPL2000.DOC

Conor Pacific WATER SAMPLE FIELD DATA F EFW LOCATION: Bàc Gaswin 1 Mart SAMPLE ID: WS MWO 1 SAMPLED BY: 12 Pink PROJECT NO: BNC 103 CLIENT: BiCGas MiniMart REGULATORY AGENCY: SAMPLE TYPE: Groundwater — Surface Water Leachate Treatment System Other 2 CASING DIAMETER (OD-inches): 3/4 4.5 Other (0.83)GALLONS PER LINEAR FOOT: (0.02)(0.04)(0.17)(0.66)(1.5)(2.6)Volume in Casing (gal): 4.9 Well Total Depth (ft): 59.5 Depth to Water (ft): 30.95 Calculated Purge (volumes / gal.): Height of Water Column (ft): 70.55 Actual Pre-Sampling Purge (gal): PURGE: Device (Depth of Intake from TOC): S.S. Bailer Teflon Bailer PVC Bailer Disp. Bailer PVC Hand Pump Peristaltic Pump Centrifugal Pump Bladder Pump Pneumatic Displacement Pump Electric Submersible Pump Dedicated Other Purge Water Containment: Other Field QC Samples Collected at this Well (Equipment or Field Blank): EB-___ FB-__ Other Elec. Conductivity Time Temp. рΗ Color Turbidity (visual) (2400 Hr) (gallons) (°C) (µmhos/cm) (std. units) (visual) Other Observation Purge Date: SAMPLE: Device (Depth of Intake from TOC): S.S. Bailer Teflon Bailer PVC Bailer Disp. Bailer Centrifugal Pump ______ Bladder Pump _____ PVC Hand Pump Peristaltic Pump Pneumatic Displacement Pump Electric Submersible Pump Dedicated Other Electical Dissolved Time Temp. Conductivity pН Oxygen Color Turbidity Other (2400 Hr) (°C) (µmhos/cm) (std. units) (mg/l)(visual) (NTU) Sheen: Sample Date:

Field Measurement Devices: Horiba REMARKS: Brown product	Omega Olauks in 6	QuickCheck_	D.O. Test Ki	toail. Enc	t pung,
No samples dollected.	V				- (/

SIGNATURE: MANN

M:\FORMS\SAMPLING\WTRSMPL2000.DOC

DATE: 4/21/00

July 7, 2000

Katrin Schliewen Conor Pacific / EFW 2650 East Bayshore Rd. Palo Alto, CA 94303

RE: B&C Gas Mini Mart/P006648

Dear Katrin Schliewen:

Enclosed are the results of analyses for sample(s) received by the laboratory on June 23, 2000. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Michelle M. Portis
Project Manager

CA ELAP Certificate Number 2374

Conor Pacific / EFW 2650 East Bayshore Rd. Palo Alto, CA 94303

Project:

Project Manager:

B&C Gas Mini Mart

Project Number: BNC103 Katrin Schliewen Sampled: 6/21/00 to 6/22/00

Received: 6/23/00 Reported: 7/7/00

ANALYTICAL REPORT FOR P006648

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
MW-2	P006648-01	Water	6/22/00
MW-5	P006648-02	Water	6/22/00
MW-7	P006648-03	Water	6/22/00
MW-8	P006648-04	Water	6/22/00
MW-10	P006648-05	Water	6/21/00
MW-12	P006648-06	Water	6/21/00
MW-13	P006648-07	Water	6/22/00
D-2	P006648-08	Water	6/21/00

Conor Pacific / EFWProject:B&C Gas Mini MartSampled:6/21/00 to 6/22/002650 East Bayshore Rd.Project Number:BNC103Received:6/23/00Palo Alto, CA 94303Project Manager:Katrin SchliewenReported:7/7/00

Sample Description:

Laboratory Sample Number:

MW-2 P006648-01

Analyte	Batch Number	Date Prepared	Date Analyzed	Specific Method/ Surrogate Limits	Reporting Limit	Result	Units	Notes*
				<u> </u>				
		<u>Sequ</u>	<u>oia Analytica</u>	al - Petaluma				
Total Petroleum Hydrocarbons as Ga	isoline and BT	EX by EPA	8015M/8020	<u>)M</u>				1
Gasoline	0070019	7/5/00	7/5/00		500	5820	ug/l	
Benzene	e	n	III		5.00	128	u	
Toluene	0	u .	TP .		5.00	94.4	Tr.	
Ethylbenzene	er .	TT.	tr.		5.00	155	**	
Xylenes (total)	IT.	U	19		5.00	161	Tr.	
Methyl tert-butyl ether	u	11	11		25.0	67.8	11	2
Surrogate: a,a,a-Trifluorotoluene	H	"	н	65.0-135		101	%	
Surrogate: 4-Bromofluorobenzene	n	"	n	65.0-135		100	n	

Conor Pacific / EFW

Project: B&C Gas Mini Mart

Sampled: 6/21/00 to 6/22/00

2650 East Bayshore Rd. Palo Alto, CA 94303

Project Number: BNC103

Project Manager: Katrin Schliewen

Received: 6/23/00 Reported: 7/7/00

Sample Description:

Laboratory Sample Number:

MW-5 P006648-02

	Batch	Date	Date	Specific Method/	Reporting			
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
			oia Analytica					
Total Petroleum Hydrocarbons as Gase	oline and BT.	EX by EPA		<u>'M</u>				<u>1</u>
Gasoline	0070019	7/5/00	7/5/00		1000	23000	ug/l	
Benzene	19	Iŧ	11		10.0	537	11	
Toluene	10	11	11		10.0	533	*1	
Ethylbenzene	11	19	10		10.0	1040	**	
Xylenes (total)	19	н	10		10.0	2590	#1	+
Methyl tert-butyl ether	н	1)	11		50.0	244	91	2
Surrogate: a,a,a-Trifluorotoluene	"	"	н	65.0-135		100	%	
Surrogate: 4-Bromofluorobenzene	"	и	n	65.0-135		96.0	H	
-			4					
Volatile Organic Compounds by EPA	<u>Method 8260</u>	Ē						<u>1,3</u>
Tert-amyl methyl ether	0060749	7/2/00	7/2/00		200	ND	ug/l	
Tert-butyl alcohol	11	ŧı	II		4000	ND	11	į
Di-isopropyl ether	11	li .	n		200	ND	11	
1,2-Dibromoethane (EDB)	**	II	11		100	ND	**	
1,2-Dichloroethane	11	H	H		100	ND	85	
Ethanol	n	n	н		20000	ND	Ħ	1
Ethyl tert-butyl ether	Ħ	н	н		200	ND	**	ļ
Methyl tert-butyl ether	н	н	н		100	131	н	
Surrogate: Dibromofluoromethane	11	"		86.0-118		96.2	%	
Surrogate: 1,2-Dichloroethane-d4	n	n .	H	80.0-120		111	"	\
Surrogate: Toluene-d8	"	"	n	88.0-110		94.6	#	:

Conor Pacific / EFWProject:B&C Gas Mini MartSampled:6/21/00 to 6/22/002650 East Bayshore Rd.Project Number:BNC103Received:6/23/00Palo Alto, CA 94303Project Manager:Katrin SchliewenReported:7/7/00

Sample Description:

Laboratory Sample Number:

MW-7 P006648-03

	Batch	Date	Date	Specific Method/	Reporting	······		
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
			•					
		<u>Sequ</u>	oia Analytica	<u>al - Petaluma</u>				
Total Petroleum Hydrocarbons as Gas	oline and BT	EX by EPA	8015M/8020	<u>) M</u>				1
Gasoline	0070019	7/5/00	7/5/00		50.0	435	ug/l	
Benzene	11	11			0.500	ND	19	
Toluene	11	10	17		0.500	ND	11	
Ethylbenzene	II .	п	ti .		0.500	0.875	11	
Xylenes (total)	u u	11	17		0.500	1.28	11	
Methyl tert-butyl ether	tr.	10	10		2.50	4.87	11	
Surrogate: a,a,a-Trifluorotoluene	μ	н	n	65.0-135		101	%	
Surrogate: 4-Bromofluorobenzene	ri	#	H	65.0-135		97.0	"	

Conor Pacific / BFW Project: B&C Gas Mini Mart Sampled: 6/21/00 to 6/22/00 2650 East Bayshore Rd. Project Number: BNC103 Received: 6/23/00

Palo Alto, CA 94303 Project Manager: Katrin Schliewen Reported: 7/7/00

Sample Description: Laboratory Sample Number: MW-8 P006648-04

	Batch	Date	Date	Specific Method/	Reporting			
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
		Sequ	oia Analytica	al - Petaluma				
Total Petroleum Hydrocarbons as Ga	soline and BT	EX by EPA	8015M/8020	<u>M</u>				<u>1</u>
Gasoline	0070019	7/5/00	7/5/00		50.0	ND	ug/l	
Benzene	Ħ	Ħ	11		0.500	ND	#	
Toluene	н	10	11		0.500	ND	*	
Ethylbenzene	н	19	11		0.500	ND	H	
Xylenes (total)	11	19	lr .		0.500	ND	*1	
Methyl tert-butyl ether	ii.	0	It		2.50	5.56	+1	
Surrogate: a,a,a-Trifluorotoluene	11		"	65.0-135		101	%	
Surrogate: 4-Bromofluorobenzene	"	"	"	65.0-135		96.0	<i>11</i>	

Conor Pacific / EFW Project: B&C Gas Mini Mart Sampled: 6/21/00 to 6/22/00
2650 East Bayshore Rd. Project Number: BNC103 Received: 6/23/00
Palo Alto, CA 94303 Project Manager: Katrin Schliewen Reported: 7/7/00

Sample Description: Laboratory Sample Number: MW-10 P006648-05

	Batch	Date	Date	Specific Method/				
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
							1	
				al - Petaluma				
Total Petroleum Hydrocarbons as Gas	oline and BT	EX by EPA	<u>8015M/8020</u>	<u>)M</u>				<u>1</u>
Gasoline	0070051	7/5/00	7/5/00		50.0	ND	ug/l	
Benzene	et .	н	••		0.500	ND	H	
Toluene	Ħ	17	n .		0.500	ND	et	
Ethylbenzene	H	18	H.		0.500	ND	11	
Xylenes (total)	н	17	н		0.500	ND	+1	
Methyl tert-butyl ether		1)	H		2.50	ND	••	
Surrogate: a,a,a-Trifluorotoluene	11	"	11	65.0-135		101	%	
Surrogate: 4-Bromofluorobenzene	"	H	"	65.0-135		89.0	n	

Conor Pacific / EFW Project: B&C Gas Mini Mart Sampled: 6/21/00 to 6/22/00

2650 East Bayshore Rd. Project Number: BNC103 Received: 6/23/00 Palo Alto, CA 94303 Project Manager: Katrin Schliewen Reported: 7/7/00

Sample Description: Laboratory Sample Number: MW-12 P006648-06

	Batch	Date	Date	Specific Method/	Reporting			
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
		<u>Sequ</u>	ıoia Analytic	<u>al - Petaluma</u>				
Total Petroleum Hydrocarbons as Ga	soline and BT.	EX by EPA	8015M/802	<u>)M</u>				<u>1</u>
Gasoline	0070051	7/5/00	7/5/00		50.0	ND	ug/l	
Benzene	11	19	II.		0.500	ND	H	
Toluene	ш	li .	10		0.500	ND	II.	
Ethylbenzene	U	(1	U		0.500	ND	H	
Xylenes (total)	ŧŧ	н	н		0.500	ND	11	
Methyl tert-butyl ether	11	H	0		2.50	ND	п	
Surrogate: a,a,a-Trifluorotoluene	"	tt .	II .	65.0-135		103	%	
Surrogate: 4-Bromofluorobenzene	**	ıı .	n	65.0-135		92.3	"	

Conor Pacific / EFW Project: B&C Gas Mini Mart Sampled: 6/21/00 to 6/22/00 Project Number: BNC103 Received: 6/23/00 2650 East Bayshore Rd.

Palo Alto, CA 94303 Project Manager: Katrin Schliewen Reported: 7/7/00

MW-13 Sample Description: Laboratory Sample Number:

P006648-07

	Batch	Date	Date	Specific Method/	Reporting			
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
		_						
		<u>Sequ</u>	<u>ıoia Analytic</u>	<u>al - Petaluma</u>				
Total Petroleum Hydrocarbons as C	Sasoline and BT	EX by EPA	8015M/8020	<u>om</u>				1
Gasoline	0070019	7/5/00	7/5/00		50.0	ND	ug/l	
Benzene	tr .	11	N		0.500	7.83	11	
Toluene	W	u	н		0.500	ND	11	
Ethylbenzene	u	н	н		0.500	0.732	O .	
Xylenes (total)	u	19	11		0.500	ND	*1	
Methyl tert-butyl ether	11	H	и		2.50	38.8	u	
Surrogate: a,a,a-Trifluorotoluene	ri .	"	II .	65.0-135		73.3	%	
Surrogate: 4-Bromofluorobenzene	ii .	n	H	65.0-135		97.0	u	

Conor Pacific / EFW Project: B&C Gas Mini Mart Sampled: 6/21/00 to 6/22/00 2650 East Bayshore Rd. Project Number: BNC103 Received: 6/23/00

Palo Alto, CA 94303 Project Manager: Katrin Schliewen Reported: 7/7/00

Sample Description: Laboratory Sample Number: D-2

P006648-08

	Batch	Date	Date		•			
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
		Samu	ioia Analytica	\ _ Petaluma				
Total Petroleum Hydrocarbons as Gas	oline and BT							<u>1</u>
Gasoline	0070051	7/5/00	7/5/00		50.0	ND	ug/l	
Benzene	11	U	И		0.500	ND	11	
Toluene	11	н	п		0.500	ND	11	
Ethylbenzene	a a	H	Ħ		0.500	ND	n	
Xylenes (total)	11	н	H		0.500	ND	п	
Methyl tert-butyl ether	It	u	*1		2.50	ND	a a	
Surrogate: a,a,a-Trifluorotoluene	Ħ	11	n .	65.0-135		103	%	
Surrogate: 4-Bromofluorobenzene	#	H	"	65.0-135		91.3	"	

Conor Pacific / EFW

Project: B&C Gas Mini Mart

Sampled: 6/21/00 to 6/22/00

2650 East Bayshore Rd. Palo Alto, CA 94303 Project Number: BNC103 Project Manager: Katrin Schliewen Received: 6/23/00 Reported: 7/7/00

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M/Quality Control Seguoia Analytical - Petaluma

		, ~: x (1) = 2	hine a mena idi s ani.		RZ:3 "F '					
	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 0070019	Date Prepa	red: 7/5/00)		Extrac	tion Method: EP.	A 5030 w	aters		
Blank	0070019-B		_		***************************************					
Gasoline Range Organics	7/5/00			ND	ug/l	50.0				
Gasoline	и			ND	11	50.0				
Benzene	U			ND	t !	0,500				
Toluene	10			ND	11	0.500				
Ethylbenzene	н			ND	I‡	0.500				
Xylenes (total)	II			ND	n	0.500				
Methyl tert-butyl ether	и			ND	11	2,50				
Surrogate: a,a,a-Trifluorotoluene	н	300		305	H	65.0-135	102			
Surrogate: 4-Bromofluorobenzene	n	300		297	Ħ	65.0-135	99.0			
burroguic. 4 Bromojiuorobonium		200				0210 120	22.0			
<u>LCS</u>	0070019-B									
Benzene	7/5/00	100		90.7	ug/l	65.0-135	90.7			
Toluene	11	100		92.2	Ħ	65.0-135	92.2			
Ethylbenzene	11	100		92.2	11	65.0-135	92.2			
Xylenes (total)	11	300		273	11	65.0-135	91.0			
Methyl tert-butyl ether	o o	100		91.7	11	65.0-135	91.7			
Surrogate: a,a,a-Trifluorotoluene	н	300		291	n .	65.0-135	97.0		· · · · · · · · · · · · · · · · · · ·	
Matrix Spike	0070019-M	S1 P0	006681-01							
Benzene	7/5/00	100	ND	90.4	ug/l	65.0-135	90.4			
Toluene	0	100	ND	92.0	11	65.0-135	92.0			
Ethylbenzene	10	100	ND	91.8	11	65,0-135	91.8			
Xylenes (total)	10	300	ND	273	10	65.0-135	91.0			
Methyl tert-butyl ether	II.	100	7.21	97.3	11	65.0-135	90.1			
Surrogate: a,a,a-Trifluorotoluene	н	300		289	H	65.0-135	96.3			
Matrix Spike Dup	0070019-M	CD1 D	006 <u>681-01</u>							
Benzene	7/5/00	100	ND	89.9	ug/I	65.0-135	89.9	20.0	0.555	
Toluene	1/3/00	100	ND	91.5	ug/i	65.0-135	91.5	20.0	0.535	
	10			91.3	11	65.0-135	91.3	20.0	0.437	
Ethylbenzene		100	ND		Iŧ.		90.3			
Xylenes (total)	10	300	ND	271	п	65.0-135		20.0	0.772	
Methyl tert-butyl ether Surrogate: a,a,a-Trifluorotoluene		300	7.21	98.3 287	#	65.0-135 65.0-135	91.1 95.7	20.0	1.10	
Surroguie. a,a,a-17ijiaoroioiaene		300		207		05.0-155	75.7			
Batch: 0070051	Date Prepa	red: 7/5/00	1		Extrac	tion Method: EP	4 5030 w	aters		
Blank	0070051-BI									
Gasoline Range Organics	7/5/00			ND	ug/l	50.0				
Gasoline	10			ND	41	50.0				
Benzene	16			ND	II	0.500				
Toluene	11			ND	18	0.500				

Sequoia Analytical - Petaluma

*Refer to end of report for text of notes and definitions.

Conor Pacific / EFW

Project: B&C Gas Mini Mart

Sampled: 6/21/00 to 6/22/00

2650 East Bayshore Rd. Palo Alto, CA 94303

Project Number: BNC103

Project Manager: Katrin Schliewen

Received: 6/23/00 Reported: 7/7/00

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M/Quality Control Sequoia Analytical - Petaluma

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
WI 1 ()	00#00#1 PY	¥7.1								
Blank (continued)	0070051-BL	<u>K1</u>		275	и	0.500				1
Ethylbenzene	7/5/00			ND	ug/l	0.500				
Xylenes (total)	H			ND		0.500				
Methyl tert-butyl ether	Н			ND	11	2.50				
Surrogate: a,a,a-Trifluorotoluene	n	300		300	n	<i>65.0-135</i>	100			
Surrogate: 4-Bromofluorobenzene	н	300		280	H	65.0-135	93.3			
<u>LCS</u>	0070051-BS1									
Benzene	7/5/00	100		98.2	ug/l	65.0-135	98.2			ı
Xylenes (total)	H .	300		293	# T	65.0-135	97.7			
Methyl tert-butyl ether	•1	100		86.7	19	65.0-135	86.7			J
Surrogate: a,a,a-Trifluorotoluene	"	300	·	305	11	65.0-135	102			
Matrix Spike	0070051-M	S1 D	0066 27- 04							
Benzene	7/5/00	100	ND	104	ug/l	65.0-135	104			•
Toluene	n	100	ND	105	н .	65.0-135	105			
Ethylbenzene	н	100	ND	96.7	11	65.0-135	96.7			
Xylenes (total)	N	300	ND	310	10	65.0-135	103			1
Methyl tert-butyl ether	н	100	ND	92.2	r i	65.0-135	92.2			1
Surrogate: a,a,a-Trifluorotoluene	н	300		303	#	65.0-135	101			
	00000000	and in	00//05 04							
Matrix Spike Dup	0070051-M		006627-04		,,	CC 0 105	100	20.0	2.02	1
Benzene	7/5/00	100	ND	100	ug/l	65.0-135	100	20.0	3.92	
Toluene	11	100	ND	101		65.0-135	101	20.0	3.88	
Ethylbenzene	"	100	ND	93.6	*1	65.0-135	93.6	20.0	3.26	f
Xylenes (total)	**	300	ND	299	91	65.0-135	99.7	20.0	3.26	1
Methyl tert-butyl ether	O	100	ND	88.8	11	65.0-135	88.8	20.0	3.76	
Surrogate: a,a,a-Trifluorotoluene	и	300		302	11	65.0-135	101			

Conor Pacific / EFW Project: B&C Gas Mini Mart Sampled: 6/21/00 to 6/22/00 2650 East Bayshore Rd. Project Number: BNC103 Received: 6/23/00

Palo Alto, CA 94303 Project Manager: Katrin Schliewen Reported: 7/7/00

Volatile Organic Compounds by EPA Method 8260B/Quality Control Sequoia Analytical - Petaluma

 	Date	Spike	Sample	QC		Reporting Limit		RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	<u>%</u>	Notes*
1										
Batch: 0060749	Date Prepa		<u>j</u>		Extract	tion Method: EP	<u>4 5030 w</u>	aters		
<u>Blank</u>	<u>0060749-Bl</u>	<u>LK1</u>								
Tert-amyl methyl ether	7/1/00			ND	ug/l	1.00				
Tert-butyl alcohol	N .			ND	H	20.0				
Di-isopropyl ether	Ħ			ND	н	1.00				
1,2-Dibromoethane (EDB)	\$1			ND	11	0.500				
1,2-Dichloroethane	Ħ			ND	н	0.500				
Ethanol	ŧ1			ND	н	100				
Ethyl tert-butyl ether	ŧi			ND	H	1.00				
Methyl tert-butyl ether	ti .			ND	1)	0.500	·			
Surrogate: Dibromofluoromethane	"	5.00		4.54	"	86.0-118	90.8			
Surrogate: 1,2-Dichloroethane-d4	n	5.00		5.18	#	80.0-120	104			
Surrogate: Toluene-d8	. "	5.00		4.75	H	88.0-110	95.0			
Blank	0060749-B1	LK2								
Tert-amyl methyl ether	7/2/00	<u> </u>		ND	ug/l	1.00				
Tert-butyl alcohol	H			ND	11	20.0				
Di-isopropyl ether	ti			ND	н	1.00				
1,2-Dibromoethane (EDB)	н			ND		0.500				
1,2-Dichloroethane	н			ND	**	0.500				
Ethanol	н			ND	н	100				
Ethyl tert-butyl ether	н			ND	н	1.00				
Methyl tert-butyl ether	#			ND	et .	0.500				
Surrogate: Dibromofluoromethane	· · ·	5.00		4.61	n	86.0-118	92.2			
Surrogate: 1,2-Dichloroethane-d4	n	5.00		5.12	"	80.0-120	102			
Surrogate: Toluene-d8	,,	5.00		4.91	"	88.0-110	98.2			
LCS	0060749-BS	_		4.06	п	72.7.110	07.2			
Methyl tert-butyl ether	7/1/00	5.00		4.86	ug/l	72.7-119 86.0-118	97.2 93.8			
Surrogate: Dibromofluoromethane	"	5.00		4.69			93.8 108			
Surrogate: 1,2-Dichloroethane-d4	,,	5.00		5.40		80.0-120 88.0-110	108 96.8			
Surrogate: Toluene-d8		5.00		4.84		60.U-11U	90.0			
LCS	0060749-BS	<u>82</u>								
Methyl tert-butyl ether	7/2/00	5.00		4.91	ug/l	72.7-119	98.2			
Surrogate: Dibromofluoromethane	"	5.00		4.70	11	86.0-118	94.0			
Surrogate: 1,2-Dichloroethane-d4	u .	5.00		5.19	II	80.0-120	104			
Surrogate: Toluene-d8	u .	5.00		4.86	n	88. 0 -110	97.2			
Matrix Spike	0060749-M	S1 D/	006681-04							
Methyl tert-butyl ether	7/2/00	<u>5.00</u>	ND	5.15	ug/l	72.7-119	103			
Surrogate: Dibromofluoromethane	"	5.00	IND	5.03	ug/1	86.0-118	101			
Sarroguie. 1210/0/10/10/10/10/10/10/10/10		3.00		5.05		50.0-110	101			

Sequoia Analytical - Petaluma

*Refer to end of report for text of notes and definitions.

Conor Pacific / EFW 2650 East Bayshore Rd. Palo Alto, CA 94303

Project: B&C Gas Mini Mart

Sampled: 6/21/00 to 6/22/00

Project Number: BNC103

Project Manager: Katrin Schliewen

Received: 6/23/00 Reported: 7/7/00

Volatile Organic Compounds by EPA Method 8260B/Quality Control Sequola Analytical - Petaluma

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	<u>%</u>	Notes'
Matrix Spike (continued)	0060749-MS	<u>31 1</u>	P006681-04							
Surrogate: 1,2-Dichloroethane-d4	7/2/00	5.00		6.01	ug/l	80.0-120	120			
Surrogate: Toluene-d8	н	5.00		4.76	n T	88.0-110	95.2			
Matrix Spike Dup	0060749-MS	<u>3D1 1</u>	P006681-04							
Methyl tert-butyl ether	7/2/00	5.00	ND	4.99	ug/l	72.7-119	99.8	20.0	3.16	
Surrogate: Dibromofluoromethane	н	5.00		4.94	n n	86.0-118	98.8			
Surrogate: 1,2-Dichloroethane-d4	"	5.00		<i>5.78</i>	Ħ	80.0-120	116			
Surrogate: Toluene-d8	"	5.00		4.93	11	88.0-110	<i>98.6</i>			

Conor Pacific / EFW Project: B&C Gas Mini Mart Sampled: 6/21/00 to 6/22/00 2650 East Bayshore Rd. Project Number: BNC103 Received: 6/23/00

Palo Alto, CA 94303 Project Manager: Katrin Schliewen Reported: 7/7/00

Notes and Definitions

#	Note
1	The EPA recommended storage temperature of 4 degrees C was exceeded prior to analysis.
2	Results between the primary and confirmation columns varied by greater than 40% RPD.
3	The sample was diluted due to the presence of high levels of non-target analytes resulting in elevated reporting limits.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

EINARSON	
FOWLER & WATSON	

CHAIN OF CUSTODY

PO#

Seguoia-Petaluma TURN-ARQUND TIME: Acad and **CONTRACT LABORATORY:** Analyses Project No. Site Name SETTHONG BIES WHIRE BNC 193 Bic Gas Minimart Sampler(s): (printed) (signature) Pran Container Information Collection Lab Sample Depth Matrix I.D. I.D. Qnty Filt Prsrv. Date Type/Volume. Remarks Time 12> Hel H006648-91 3 U/27100 1993 Water 3 MW-2 mw-5 3 1317 mw-7 3 1234 mw-B 3 3 142 3 4/2/100 1534 MW-10 3 3 3 MW-12 1403 3 10/210 1105 3 MW-13 3 CAAD colusia D-2 3 nosample MSMWOI Send Results To: Attn: Yatrin Schliewen EINARSON, FOWLER & WATSON Relinquished by: (signature) Received by: (signeture) Relinquished by: (signature) 1430 2650 East Bayshore Road Palo Alto, CA 94303 Phone (650) 843-3828 Received by: (signature) Relinguished by: (signature) Fax (650) 843-3815