FIRST QUARTER 1999 GROUNDWATER MONITORING RESULTS B&C Gas Mini Mart Livermore, California

Prepared by
CONOR PACIFIC/EFW
2650 East Bayshore Road
Palo Alto, California 94303
April, 1999

Project BNC103

EVA CHU,

MATERIALS SPECIALS BLC GLAS MINIMART

AL. COUNTY HEALTH DEPT. 2008 FIRST St fivermore

ENVIRONMENTAL HEALTH DEPT. CA 945-10

ALAMEDA CA Dalee 4/26/99

Dear MS FVa FIRST Quality of Griwality Montoling Results — B te Gos min IMPART ENCLOSE FOR YOUR REVIEW TILES THE CAPTIONED REPORT FROM CONOR PACIFIC.

THE RONTENTS ARE SELF EXPLICIT.

CLOUR REVIEW WILL DISCHOSE THAT THERE

FOUR REVIEW WILL DISCHOSE THAT THERE
HAS BEEN CONSIDERABLE AND PERCEPTBLE
IMPROVEMENTS IN THE CLUANTITY OF VARIOUS
ITEMS OF HAZARDOUS MATERIALS AND THE
TREND OF IMPROVEMENT HAS BEEN CONSISTENT
AND RECIPITOUS EVIDENCING THAT THE NATURAL
BIOREMEDIATION PROCESS IS EFFECTIVE ISHALL
BE GRATEFUL TO KNOW OF YOUR CONCLUSIONS.

Thanks in advance

Sincerey 3

Dree: 1

Bis Angle

April 22, 1999 Project No. BNC103

Mr. Balaji Angle Angle Enterprises 5131 Shattuck Avenue Oakland, California 94609

Re: First Quarter 1999 Groundwater Monitoring Results, B&C Gas Mini

Mart, 2008 First Street, Livermore, California

Dear Mr. Angle:

Conor Pacific/EFW (formerly Einarson, Fowler & Watson) has compiled first quarter 1999 groundwater monitoring results for B&C Gas Mini Mart (B&C), 2008 First Street, Livermore, California (Figure 1). This report includes first quarter 1999 groundwater elevation data, groundwater sampling methods, and results of groundwater chemical analyses.

SITE INFORMATION

B&C Gas Mini Mart	Mr. Balaji Angle
2008 First Street	Angle Enterprises
Livermore, California 94550	5131 Shattuck Avenue
	Oakland, California 94609

(510) 654-3461

Site Contact

Site Description

Site Name

The B&C property is located on the northeast corner of First and South L Streets in Livermore, California, and currently serves as a gasoline station and mini market. From at least 1988 until 1994, Desert Petroleum (DP) owned and operated the site. In January 1994, DP sold the site to the current owner, Mr. Balaji Angle. The following site description has been compiled from reports on file with Alameda County Environmental Health Services (ACEHS) and information provided by the site owner.

The site is located in the Livermore Valley groundwater basin, an area of sedimentary deposition containing braided channel systems with complex interfingering. Subsurface investigations conducted to the west of the B&C site have found an upper unconfined aquifer consisting primarily of gravels with sand and clay. A low-permeability clayey unit is found at depths of approximately 75 to 110 feet below ground surface (bgs).

Below the clayey unit, the top of a lower, semi-confined aquifer is found at depths ranging from 110 to 145 feet bgs.¹

Subsurface work conducted at the B&C site has found the soil to be predominantly sandy clay, silty sand, silty gravel, and sandy gravel to a maximum explored depth of 77 feet.² Over the last nine years, static water levels have ranged from 68.7 feet bgs (January 1992) to 17.0 feet bgs (February 1997). The groundwater flow generally ranges from west of north during the summer and fall months, to north of west during the winter and spring months. Table 1 presents historical site groundwater elevations.³ Table 2 summarizes all B&C monitoring well constructions.

Previous Work Performed at Site

A preliminary site assessment was conducted in September 1988. Three soil borings were completed, one of which was converted to a monitoring well (MW-1). In March 1994, a 280-gallon waste oil underground storage tank (UST) and 25 cubic yards of soil were removed as part of closing the auto repair shop at the station. Three months later in June, wells MW-2, MW-3, and MW-4 were installed (Figure 2).⁴

In August 1994, free product was encountered in well MW-2, and product removal commenced twice a month. By the end of January 1995, no measurable thickness of product remained, only sheen could be detected.⁵ In March 1995, a release was reported to have occurred from the union between a tank subpump and product line. The quantity of the release is unknown.

One gasoline UST at the B&C site failed an integrity test in September 1995. The tank was immediately taken out of commission and ACEHS was notified. In July 1996, further source removal was conducted. Two more gasoline USTs were removed, and new double-walled fiberglass USTs and fiberglass piping with automated leak detection were installed. Other remedial activities included the removal of two hydraulic lifts and approximately 700 cubic yards of impacted soil. Also, one 1,000-gallon UST discovered during excavation activities was closed in place with approval from ACEHS and the Livermore Fire Department by grouting with a cement sand slurry. In October 1995, two additional monitoring wells (off-site well MW-5 and well MW-6) were installed for the B&C site (Figure 2).

¹ H⁺GCL, Inc. Deep Groundwater Conduit Study, Livermore Arcade Shopping Center, First Street and South P Street, Livermore, California. December 6, 1993.

² Remediation Service Int'l. Soil & Groundwater Investigation Report for 2008 First Street, Livermore, California. July 22, 1994.

³ Groundwater elevation and flow direction data from Remediation Service Int'l quarterly reports.

⁴ Remediation Service Int'l. Soil & Groundwater Investigation Report for 2008 First Street, Livermore, California. July 22, 1994.

⁵ Product thickness information from Remediation Service, Int'l field records, "Free Product Removal Logs."

The primary constituents of concern are total petroleum hydrocarbons as gasoline (TPH-G); the aromatic compounds benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX); and methyl tertiary-butyl ether (MTBE). Since 1994, concentrations of TPH-G in groundwater have generally decreased.

Interim Remedial Action at Well MW-5

Well MW-5 was installed in October 1995. Hydrocarbon odor was noted at the water table, encountered at a depth of 40 feet bgs during drilling. The groundwater sampled from the well following well installation was found to contain high concentrations of TPH-G, BTEX, and MTBE (Table 3). However, floating product was not observed until July 30, 1998 (Table 1). The well is screened from 15 feet to 40 feet, below ground surface. The depth to groundwater has historically ranged from 18 to 33 feet, well within the screened interval of the well.

Due to the presence of floating free product in well MW-5, interim remedial actions were taken to remove the floating product from the well. Several methods can be used to remove product from a well:

- Active bailing or pumping
- Passive passive bailer or absorbent sock.

The decision on which method to use is governed by well access, the thickness of the product, and the rate at which the product enters the well as it is removed.

Well MW-5 is located in North L Street, across from the B & C Gas Mini Mart. Because the well is located in a public right-of-way, a passive product removal method was selected. The layer of floating product in well MW-5 was determined to be thin, varying between a sheen to 0.22 feet (Table 4). After the product was bailed from the well on both July 30, 1998 and January 18, 1999, only a sheen returned. Because the product recharge rate appeared to be slow and the product layer was relatively thin, the hydrocarbon-absorbent sock method for product removal was selected.

A summary of the free product removal and thickness of free product are presented in Table 4. A thin layer of free product was first observed in July 1998. This product was bailed from the well and a grab groundwater sample was obtained. No measurable product returned to the well that day. The well was next monitored in November 1998 and a 0.22-foot thick layer of free product was observed. No action was taken at this time. In January 1999, the product was removed from the well by bailing and a hydrocarbon absorbent SoakEaseTM sock was installed across the groundwater-free product interface. At intervals of approximately two weeks from January to April 1999, the sock was replaced in the well and the thickness of floating product was measured. Over the time period monitored, the absorbent socks have removed sufficient product to reduce the free product thickness to a sheen or less.

A recent test was performed to determine whether free product would re-enter the well over an extended period of time. On April 13, 1999, the sock was raised above the water table. No floating product was measured on the water surface. Two days later, on April 15, 1999, no floating product was measured. The sock was left above the water table, and will again be checked for floating product after approximately two weeks.

Groundwater and free product removed from well MW-5, along with used absorbent socks were placed in lined drums and stored on site prior to proper disposal.

GROUNDWATER SAMPLING AND ANALYSIS

First quarter activities are reviewed below. Groundwater sampling methods and results are presented and a discussion of historical analytical trends for site monitoring wells is included.

Free Product

During the first quarter 1999 sampling event, EFW checked for free product in all site wells. Well MW-2, which previously has been reported to contain free product, did not contain a measurable thickness of product this quarter. Well MW-6 also previously has been reported to contain free product; however, during the first quarter event, the well did not contain free product. Off-site well MW-01, located approximately 800 feet downgradient from the B&C site on the Mill Springs Park property (MSP), was also checked for product (Figure 1). MSP well MW-01 did not contain a measurable thickness of product. However, a product sheen was observed during purging and a groundwater sample was not collected from this well.

Groundwater Elevations

On March 23, 1999, EFW measured the depth to water in all groundwater monitoring wells. Water levels were measured to the nearest 0.01 foot using a float-activated product probe, according to EFW's standard measuring protocol,⁶ and were recorded on a water level data sheet (Appendix A). Groundwater elevations are calculated by subtracting depth-to-water measurements from the top of well casing elevations, for those wells that have been surveyed to mean sea level (MSL). Two wells, MW-5 and MW-6, have not been surveyed. (The surveying of these wells is included in the scope of work for the additional downgradient groundwater investigation that is scheduled to commence this winter.)

Table 1 summarizes available groundwater elevations from August 1990 to March 1999. A comparison of well screen elevations (Table 2) and first quarter measurements shows that the water levels were above the well screens in wells MW-1, MW-2, MW-3, and MW-4. The water levels in wells MW-5 and MW-6 intercepted the screened intervals of

⁶ Einarson, Fowler & Watson. Third Quarter 1998 Groundwater Monitoring Results, B&C Gas Mini Mart, Livermore, California, Appendix A. September 10, 1998.

the site wells at the time of groundwater sampling. A groundwater contour map, based on March 1999 measurements, is shown in Figure 2. First quarter groundwater elevations are generally over seven feet higher than the fourth quarter 1998 levels, which are roughly equal to the third quarter 1998 water levels. Groundwater flow at the site was slightly west of north during first quarter 1999. Based on first quarter measurements, the hydraulic gradient is approximately 0.02 foot per foot. The flow direction and gradient are in accordance with previous results and reflect the seasonal flow direction that has been observed at the site.

Sampling Methods

EFW sampled six monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6) on March 23, 1999, following EFW's standard protocol. Well MSP MW-01 was not sampled due to the presence of free product in the groundwater during well purging. Wells were purged using either a submersible pump or a polyvinyl chloride (PVC) bailer. Samples were collected from each well using a disposable PVC bailer. Field measurements of temperature, pH, turbidity, and electrical conductivity were taken and recorded on water sample field data sheets (Appendix B). All purge water was contained in 55-gallon drums and stored on site pending proper disposal. All samples were properly stored on the day of sampling. Chain-of-custody documentation accompanied the samples through collection and delivery to the analytical laboratory.

Analytical Program

All groundwater analyses were performed by Clayton Laboratory Services (Clayton) of Pleasanton, a state-certified laboratory. All groundwater samples were analyzed for TPH-G by modified Environmental Protection Agency (EPA) Method 8015 and BTEX by EPA Method 8020. MTBE was analyzed for in all samples by EPA Method 8020. MTBE was confirmed in the sample from well MW-1 by EPA Method 8260. Laboratory analyses occurred within specified holding times and within laboratory quality control standards. The certified analytical report is located in Appendix A.

Analytical Results

Over the last five years of monitoring at the site, concentrations of benzene have steadily decreased in all site wells. Analysis of site groundwater samples for MTBE began in June 1995. Since then, concentrations of MTBE have decreased significantly. Table 3 presents a historical summary of groundwater analytical results from the B&C site. First quarter 1999 analytical results for TPH-G, benzene, and MTBE are also presented on Figure 3.

Upgradient Well

Well MW-4 did not contain detectable concentrations of TPH-G, BTEX or MTBE. Since June 1995, concentrations of petroleum hydrocarbons have been very low to non-detectable in this well.

Tank Area Wells

Concentrations in well MW-1 were similar to the results from the previous quarter. TPH-G was detected at a concentration 6,600 micrograms per liter (µg/l) in well MW-1. BTEX concentrations ranged from 240 to 990 µg/l. MTBE was detected at 60 µg/l.

Well MW-2 concentrations were much lower than the previous quarter. In well MW-2, TPH-G was detected at a concentration of 22,000 μ g/l. Concentrations of BTEX compounds ranged from 780 to 1,730 μ g/l. MTBE was detected at 300 μ g/l.

The hydrocarbon concentrations in well MW-3 were the lowest concentrations detected to date in the well. TPH-G was detected at a concentration of 6,900 μ g/l in well MW-3. Benzene was detected at 100 μ g/l and the other aromatic compounds ranged from 100 to 265 μ g/l. MTBE was detected at a concentration of 220 μ g/l.

Groundwater was above the obstruction in well MW-6 and the well was purged and sampled. The well is located adjacent to well MW-1 and yielded hydrocarbon concentrations similar to those in well MW-1. The similarity in groundwater concentrations in wells located so close to each other indicate that the results from well MW-6 are valid. The obstruction appears to be gravel that has entered the well. This well may need to be abandoned, as it appears to be damaged. Because the groundwater concentrations are similar to those found in well MW-1, replacing the well is not necessary.

Downgradient Wells

Well MW-5, located 75 feet downgradient of the site, has recently contained free petroleum product. Removal of the free product has been performed since January 1999 and has resulted in no measurable product during the first quarter sampling. The well was purged and sampled, with a hydrocarbon sheen observed during purging. Petroleum hydrocarbons were detected at concentrations similar to the previous sampling events.

MSP well MW-01, located approximately 800 feet downgradient from the B&C site, was not sampled during the first quarter event, due to the presence of free product during well purging. Because there was more than a hydrocarbon sheen present in the groundwater purged from well MSP MW-01, the well was not sampled.

FUTURE MONITORING

Second quarter 1999 groundwater monitoring is currently scheduled for June 1999. EFW will measure depth to water in all site wells. All wells without a measurable thickness of product will be sampled for TPH-G, BTEX, and MTBE. Second quarter 1999 monitoring results will be reported to ACEHS.

If you have any questions regarding this report, please call us at (650) 843-3828.

Sincerely, Einarson, Fowler & Watson

Kris H. Johnson

Senior Engineering Geologist

C.E.G. 1763

Martha J. Watson

Principal Environmental Engineer

artha O. Watson

Attachments:

Tables

Table 1 - Summary of Groundwater Elevations

Table 2 - Monitoring Well Constructions

Table 3 - Historical Groundwater Analytical Results

Table 4 - Summary of Well MW-5 Product Removal

Figures

Figure 1 - Site Location

Figure 2 - Groundwater Elevation Contours (March 1999)

Figure 3 - Petroleum Hydrocarbons in Groundwater (March 1999)

Appendices

Appendix A - Water Sample Field Data Sheets and Certified Analytical Reports

cc: Eva Chu, ACEHS

Regional Water Quality Control Board, USTCF

Table 1 Summary of Groundwater Elevations B & C Gas Mini Mart Livermore, California

			Etromoro, Camon			
	Top-of-Casing	Date	Depth to	Groundwater	Depth to	Product
	Elevation	Measured	Water	Elevation	Free product	Thickness
Well No	(feet, MSL)		(feet)	(feet, MSL)	(feet)	(feet)
MW-I	487.00	09/22/88	60,50	426.50		
		08/02/90	43 10	443.90		
		10/10/91	66 39 68 72	420.61		
		01/08/92 05/11/93	34 76	418 28 452.24		
		09/21/93	38,70	448 30		
		05/22/94	33,57	453 43		
	484.07	06/19/94	37.51	446.56		
		08/25/94	43 27	440.80		
		11/22/94	40 58	443.49		
		03/13/95	28.06	456 01		
		06/01/95	21.76	462.31		
		02/29/96	18 86	465 21		
		Feb-97	NM 25.00	NM		
		07/30/98	25.90	458 17		
		11/05/98	33 23 25.49	450.84 458 58		
		03/23/99				
MW-2	483 86	06/19/94	38.15	-445.71		
		08/25/94	44.13	*	43 47	0 66
		11/22/94	40 96	-	40 92	0 04
		03/09/95	29 28	•	28 47	0.81
		03/13/95 06/01/95	28.71 22.61	461.25	28 29	0.42
		02/29/96	20 05	463 81		
		Feb-97	18.30	465.56		
		07/30/98	25.75		25.74	0.01
		11/05/98	33.31	450.55		
		03/23/99	25.51	458.35		
MW-3	484.24	06/19/94	37.15	447.09		
		08/25/94	42 31	441 93		
		11/22/94	40,07	444 17		
		03/13/95	27 94	456 30		
		06/01/95	21.31	462 93		
		02/29/96	18 78	465.46		
		Feb-97	16.97	467.27		
		07/30/98	24.88	459 36		
		11/05/98	32.09	452.15 450.75		•
		03/23/99	24.49	459.75		
MW-4	485.04	06/19/94	37.49	447 55		
		08/25/94	42.25	442 79		
		11/22/94	40 59	444.45		
		03/13/95 06/01/95	28,00 21 51	457 04 463.53		
		02/29/96	18,42	466 62		
		Feb-97	17.47	467.57		
		07/30/98	25,47	459 57		
		11/05/98	32.67	452.37		
		03/23/99	25.09	459 95		
MW-5*	NS	02/29/96	19,35			<u></u>
		Feb-97	18,19			
		07/30/98	25 25		25.24	0.01
		11/05/98	32.70		32 48	0.22
		03/23/99	25.15		<u>.</u>	
MW-6	NS	02/29/96	20.32			
		Feb-97	18,92			
		07/30/98	25.59		25.58	0 01
		11/05/98	NA			
		03/23/99	25.43			
MSP MW-01	477 79	07/30/98	30,37	447 42	30 35	0 02
**************************************		11/05/98	38.01	439,78	(1)	

Notes

Data prior to 1998 from RSI quarterly reports February 1997 date unknown
MSL = mean sea level
NM - not measured, NS - not surveyed, NA - well not accessible, blocked at 28 4 feet
MSP - Mill Springs Park

EINARSON, FOWLER & WATSON I\BNC\103\CORRES\1q99 xls{GWELEV}

^{• -} see Table 1a for well MW-5 monitoring during interim remedial action

^{(1) -} free product visible in purge or sample water

Table 2
Monitoring Well Constructions
B&C Gas Mini Mart
Livermore, California

Well	Drilling	Date	T.D. Boring	T.D. Well	Borehole Diameter	Casing Material	Casing Diameter	Screen Size	Sand Pack	Screened Interval	Sand Pack Interval
No.	Method	Installed	(ftbgs)	(ftbgs)	(in.)	(PVC)	(in.)	(in.)	Material	(ftbgs)	(ftbgs)
MW-1	HSA	Sep-88	77.0	77.0	8	PVC	2	0.020	#3 sand	27 - 77	25 - 77
MW-2	HSA	Jun-94	60.0	60.0	10	PVC	4	0.020	#2/20 sand	30 - 60	27 - 60
MW-3	HSA	Jun-94	60.0	60.0	10	PVC	4	0.020	#2/20 sand	30 - 60	27 - 60
MW-4	HSA	Jun-94	60.0	60.0	10	PVC	4	0.020	#2/20 sand	30 - 60	27 - 60
MW-5	HSA	Oct-95	42.0	40.0	10	PVC	4	0.020	#2 sand	15 - 40	12 - 40
MW-6	HSA	Oct-95	42.0	40.0	10	PVC	4	0.020	#2 sand	15 - 40	12 - 40

HSA Hollow-Stem Auger

T.D. Total Depth

ft.-bgs feet below ground surface

Well construction information for wells MW-2 through MW-6 collected from Remediation Service Int'l boring logs.

I:\BNC\103\CORRES\wellcon.xls EINARSON, FOWLER & WATSON

Table 3 Historical Groundwater Analytical Results B&C Gas Mim Mart Livermore, California

Well	Sample	TPH-G	Benzene	Toluene	Ethylbenzene	Xylenes	MTB
No	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/
MW-1	Aug-90	24,000	1,300	1,300	400	2,700	N.A
	Oct-91	2,000	430	170	100	290	N.
	Jan-92	1,000	200	120	30	150	N.
	May-93	960	66	8	41	90	N.
	Sep-93	1,900	311	118	34	112	N.
	May-94	10,000	690	1,100	340	1,200	N,
	Aug-94	13,000	290	690	120	670	N.
	Nov-94	19,000	400 900	770	230 980	130	N.
	Mar-95 Jun-95	6,000	210	100 380	980 53	740 280	N. 13,00
	Sep-95	2,400 7,800	69	1,300	220	1,200	2,00
	Feb-96	120	4,2	1,300	47	5 6	2,00
	Feb-97	NS*	NS*	NS*	NS*	NS*	N:
	Jul-98	1,400	26	110	57	243	
	Nov-98	6,000	230	330	240	1,060	<1
	Mar-99	6,600	280	420	240	990	
MW-2	Jun-94	290,000	18,000	36,000	4,600	26,000	N.
	Aug-94	NS**	NS**	NS**	NS**	NS**	N
	Nov-94	NS**	NS**	NS**	NS**	NS**	N.
	Mar-95	NS**	NS**	NS**	NS**	. NS**	N
	Jun-95	25,000	2,300	3,400	720	3,100	16,00
	Sep-95	NS**	NS**	NS**	NS**	NS**	NS
	Feb-96	57,000	2,500	650	3,700	3,100	6,50
	Feb-97	20,000	860	1,500	480	1,000	1,30
	Jul-98	NS**	NS**	NS**	NS**	NS**	NS
	Nov-98 Mar-99	40,000 22,000	2,400 780	2,500 880	2,100 780	7,200 1,730	1,20 30
	Mai-99	22,000	780	880	760	1,750	30
MW-3	Jun-94	11,000	640	580	270	790	N
	Aug-94	41,000	1,600	2,300	330	1,800	N
	Nov-94	18,000	8,000	10,000	900	5,000	N
	Mar-95	44,000	1,600	1,300	5,000	6,600	N
	Jun-95	15,000	600	1,900	490	2,600	4,20
	Sep-95	8,000	710 260	1,100 200	180 200	870 1,100	2,70 1,50
	Feb-96 Feb-97	13,000 11,000	260	550	170	600	90
	Jul-98	25,000	330	1,200	490	1,860	30
	Nov-98	26,000	400	2,100	820	3,600	30
	Mar-99	6,900	100	160	110	265	22
201/4	Jun-94	810	12	25	<0.5	22	N
MW-4	Jun-94 Aug-94	850	37	51	95	35	N
	Nov-94	1,700	110	110	5 8	58	N
	Mar-95	1,300	180	8	52	77	N
	Jun-95	ND	3	1	ND	1	N
	Sep-95	<50	0.69	< 0.5	<0.5	<0.5	<2
	Feb-96	87	<0.5	<0.5	< 0.5	<0.5	<0
	Feb-97	<50	<0.5	<0.5	<0.5	<0.5	2
	Jul-98	<50	<0 4	0,60	<0.3	0 80	<
	Nov-98	<50	07	<03	<0.3	<0.8	2
	Mar-99	<50	<0,4	<0.3	<0.3	<0.8	
MW-5	Oct-95	120,000	16,000	26,000	3,100	15,000	39,00
	Feb-96	47,000	3,400	4,200	860	4,100	20,00
	Feb-97	28,000	1,300	1,500	480 ·	1,000	2,20
	Jul-98	47,000	1,400	4,000	2,000	8,500	60
	Nov-98	NS**	NS**	NS**	NS**	NS**	NS
	Mar-99	36,000	1,500	2,400	1,500	5,500	9
MW-6	Oct-95	110,000	9,900	22,000	3,200	17,000	47,00
	Feb-96	23,000	2,000	460	2,900	2,600	6,30
	Feb-97	12,000	450	780	200	590	79
	Jul-98	NS**	NS**	NS**	NS**	NS**	NS
	Nov-98	NS*	NS*	NS*	NS*	NS*	N
	Mar-99	5,700	240	260	120	440	1
MSP MW-01	Aug-95	11,000	190	260	110	900	2
MSP MW-01	Jul-98	NS**	NS**	NS**	NS**	NS**	NS
	Juryo	110	110				
	Nov-98	10,000	260	120	500	1,100	2

ug/l = micrograms per liter

TPH-G = total petroleum hydrocarbons as gasoline

MTBE = methyl tertiary-butyl ether

MSP = Mill Springs Park

NA= not analyzed

NS= not sampled • = well inaccessible •• = floating hydrocarbon present

ND = not detected above reporting limit, limit not available

< = less than method reporting limit

Table 4
Summary of Well MW-5 Product Removal
B & C Gas Mini Mart
Livermore, California

Date	Depth to	Depth to	Product	
Measured	Water	Free product	Thickness	Comments
	(feet)	(feet)	(feet)	
02/29/96	19.35	None	0	
Feb-97	18.19	None	0	
07/30/98	25.25	25.24	0.01	Bailed product from well. Approximately 5 gallons of water mixed with product removed from well. Grab groundwater sample obtained.
11/05/98	32.70	32.48	0.22	
01/18/99	31.65	31.60	0.05	Bailed product from well. Approximately 0.5 gallons of water mixed with about 10% product removed from well. Sheen present following bailing. Installed 3-foot long, 3.5-inch diameter SoakEase TM absorbent sock in well.
01/22/99	30.93	sheen .	sheen	Replaced SoakEase™ sock.
01/29/99	29.80	sheen	sheen	Replaced SoakEase™ sock.
02/05/99	29.64	sheen	sheen	Replaced SoakEase™ sock.
02/23/99	26.26	sheen	sheen	Replaced SoakEase™ sock.
03/12/99	25.29	sheen	sheen	Replaced SoakEase™ sock.
03/23/99	25.19	None	0	Bailed about 5 gallons of water from well and sheen returned. No measureable product present. Obtained groundwater sample after standard well purge. Replaced sock.
04/13/99	25.05	None	0	Raised SoakEase™ sock above groundwater level in well.
04/15/99	24.85	None	0	No sheen observed, left sock above groundwater level in well.

Notes: sheen = product present, but too thin to measure accurately (<0.01 feet)

APPENDIX A

WATER SAMPLE FIELD DATA SHEETS AND CERTIFIED ANALYTICAL REPORT

WATER LEVEL DATA SHEET

EINARSON, FOWLER & WATSON

Project: B&C Gas Mini Mart							
Project No : PNC102							
Date(s): 3 23 99 Name: Pfavt Weather: Cloudy, drizzle Sounder #: LECK							
Name: 2F	ant						
Weather: C	Dudy d	rizzle		Sounder #:	12EC1	<i>L</i>	
Well		DTFR	DTW	Total	Meas	Comments	
		(foc)	(TOC)	Depth	By		
MW-1	325 99		25.49 25.51	75.9			
MW-2			25.51	54.9 54.9 60.0			
MW-3			24.49	54.9		9llu"	
MW-4			25.09	60.0			
MW-5			25.15	139.7		15 lui	
MW-6			25.43	20.5*		* Obstructed	
MS MW01	Ý		29.94	20.5* 59.U		9lu"	
						,	
·							
		-					
			·				
					ļ		
						, •	
			 				
						4	
				 			
					ļ		
			<u> </u>		 		
				ļ	 		
			 		-		
				ļ			
			<u></u>		ļ <u> </u>		
	ļ	<u> </u>	<u> </u>		ļ <u>-</u>		
			ļ		ļ		
			ļ				
			ļ	<u> </u>	<u> </u>		
					<u></u>		
L	<u> </u>		. T				

LOCATION: BACGOS MM; MOVA	SAMPLE ID: MW-
PROJECT NO: BNC 103	SAMPLED BY: PPAW
	REGULATORY AGENCY:
\sim \sim	Leachate Treatment Effluent Other
CASING DIAMETER (OD-inches): 3/4 1	2 4 4.5 6 8_
GALLONS PER LINEAR FOOT: (0.02) (0.04)	$(0.17) \qquad (0.66) \qquad (0.83) \qquad (1.5) \qquad (2.6)$
Well Total Depth (ft): 75.9	Volume in Casing (gal):
Depth to Water (ft): 25.49	Calculated Purge (volumes / gal.): 25.0
Height of Water Column (ft): 50.41	Actual Pre-Sampling Purge (gal): 26.0
PURGE: Device (Depth of Intake from TOC): Submersible Pump S.S. Bailer Teflon Bailer Purge Water Containment: PVC Bailer	Peristaltic Pump PVC Hand Pump Disposable Bailer Other
Field QC Samples Collected at this Well (Equipment or Field Bla	ank); EB Other
Specific Conductant Time Volume Temp. Horiba QuickChe (2400 Hr) (gallons) (°C) (μmhos/cm) (μS) 131(μ 9.0 20.4 1110	
1321 10.0 20.5 1110	7.21 wollet
1325 20.0 20.4 1110 /	$\frac{7.20}{}$ $\frac{10\omega}{}$
	Purge Date: 3 2399
C. M. C. V. C.	Turgo Date. 117
SAMPLE: Device (Depth of Intake from TOC): Submersible Pump Teflon Bailer PVC Bailer Disposable Bailer.	Peristaltic Pump PVC Hand Pump
Specific Conductance	Dissolved
Time Temp. Horiba QuickChecl (2400 Hr) (°C) (μmhos/cm) (μS)	k pH Oxygen Color Turbidity (std. units) (mg/l) (visual) (NTU)
1331 19.9 1110	7.23 2.06 Hisrowy 7999
Sheen: None Odgr: Wodbata	Sample Date: 3 23 99
	nickCheck D.O. Test Kit
REMARKS:	
	•
	•
SIGNATURE: MANN	DATE: 3/23/99
SIGNATURE.	

1047

M \FORMS\SAMPLING\WTRSMPL DOC

LOCATION: B C C C C WIN I WOV PROJECT NO: BNC 103 CLIENT: B C C C WIN I WOV SAMPLE TYPE: Groundwater Surface Water CASING DIAMETER (OD-inches): 3/4 1 GALLONS PER LINEAR FOOT: (0.02) (0.04	SAMPLE ID: WW -2 SAMPLED BY: ZFAUL REGULATORY AGENCY: Leachate Treatment Effluent Other 2
Well Total Depth (ft): 54.0) (0.17) (0.66) (0.83) (1.5) (2.6) Volume in Casing (gal): ZO. Z
Depth to Water (ft): 25.51	Calculated Purge (volumes / gal.): UO. 4
Height of Water Column (ft): 30.49	Actual Pre-Sampling Purge (gal): ULO
PURGE: Device (Depth of Intake from TOC): Submersible Pump (5)	Peristaltic Pump PVC Hand Pump Disposable Bailer Other
Time Volume Temp. Specific Conducta	heck pH Color Turbidity) (std. units) (visual) (visual) Observation 1.90 1.5000 1000
1240 41.0 20.4 1060	(0.92 coloruss trace)
	•
	Purge Date: 3 23 99
SAMPLE: Device (Depth of Intake from TOC): Submersible Pump Teflon Bailer PVC Bailer Disposable Baile	Peristaltic Pump PVC Hand Pump
Specific Conductance Time Temp. Horiba QuickChe	Dissolved ck pH Oxygen Color Turbidity
(2400 Hr) (°C) (µmhos/cm) (µS)	1
Sheen: NOW Odor: Strang	Sample Date: 3 23 99
	QuickCheck D.O. Test Kit .
REMARKS:	
	<u> </u>
SIGNATURE: WWW.	DATE: 3/23/99

20f7

M.\FORMS\SAMPLING\WTRSMPL DOC

LOCATION: BiCGUSWINI MART	SAMPLE ID: MW-3				
PROJECT NO: BUC 103	SAMPLED BY: PRUM				
CLIENT: PIC GAS WINI MAUT	REGULATORY AGENCY:				
<i>n</i>	Leachate Treatment Effluent Other				
CASING DIAMETER (OD-inches): 3/4 1	2				
GALLONS PER LINEAR FOOT: (0.02) (0.04)					
Well Total Depth (ft): 56.9	Volume in Casing (gal): 21.4				
Depth to Water (ft): 24.49	Calculated Purge (volumes / gal.): <u>U4.7</u>				
Height of Water Column (ft): 32.41	Actual Pre-Sampling Purge (gal): U5.0				
DUDCE.	•				
Device (Depth of Intake from TOC): Submersible Pump	PVC Hand PumpPVC Hand Pump				
S.S. Bailer Teflon Bailer PVC Bailer Purge Water Containment:	Disposable Bailer Other				
Field QC Samples Collected at this Well (Equipment or Field B	lank): EB- FB- Other				
<u>Specific Conductar</u> Time Volume Temp, Horiba QuickCl					
Time Volume Temp. Horiba QuickCl (2400 Hr) (gallons) (°C) (μmhos/cm) (μS)					
1111 720 196 1040	17.14 Herour Low				
1170 440 70.1 1050	711				
1100 1110 111	1,14				
1127 45.0 202 1050 /	<u>7.15</u>				
	•				
	Purge Date: 3/23/99				
SAMPLE:					
Device (Depth of Intake from TOC): Submersible Pump_	Peristaltic Pump PVC Hand Pump				
Teflon Bailer PVC Bailer Disposable Bailer					
Specific Conductance	Dissolved				
Time Temp. Horiba QuickChe					
(2400 Hr) (°C) (μmhos/cm) (μS)					
Sheen: None Odor: Moderate	Sample Date: 3 73 99				
Field Measurement Devices: Horiba — Omega O	QuickCheck D.O. Test Kit				
REMARKS:					
	· p-				
	· · · · · · · · · · · · · · · · · · ·				
00000	alaalaa				
SIGNATURE: VYYVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	DATE: 5(23/90)				

30f7

WATER SAMPLE FIELD DATA

LOCATION: B3C Gas Wini Mart	SAMPLE ID: MW-4				
PROJECT NO: BALCIOS	SAMPLE ID: SAMPLED BY: Paue				
CLIENT: B'S C GOS WINI MAY+	REGULATORY AGENCY:				
	Leachate Treatment Effluent Other				
CASING DIAMETER (OD-inches): 3/4 1					
GALLONS PER LINEAR FOOT: (0.02) (0.04)					
Well Total Depth (ft): <u>UO.O</u>	Volume in Casing (gal): 23.1				
Depth to Water (ft):	Calculated Purge (volumes / gal.): 69.2				
Height of Water Column (ft): 34.91	Actual Pre-Sampling Purge (gal): 70.0				
PUBCE					
Device (Depth of Intake from TOC): Submersible Pump	PVC Hand Pump				
S.S. Bailer Tetlon Bailer PVC Bailer Purge Water Containment:	Disposable Bailer Other				
Field QC Samples Collected at this Well (Equipment or Field B	lank): EB- FB- Other				
Specific Conductar					
Time Volume Temp. Horiba QuickCl (2400 Hr) (gallons) (°C) (μmhos/cm) (μS)					
1 2 2 4 5 10 11	/ 7.18 11 Gaustin (Visual) Coservation				
	7.10 11.07000/10/1 (000				
1029 47.0 19.7 1070	7.19				
1037 70.0 19.0 1070	7.20 V				
,					
	•				

	WEST-MANUAL AND				
	<u>a [na]m</u>				
·	Purge Date: 3/23/99				
SAMPLE:					
Device (Depth of Intake from TOC): Submersible Pump_	Peristaltic Pump PVC Hand Pump				
Teflon Bailer PVC Bailer Disposable Bailer	Other				
Specific Conductance	Dissolved				
Time Temp. Horiba QuickChe	, -				
(2400 Hr) (°C) (μmhos/cm) (μS)	(std. units) (mg/l) (visual) (NTU)				
1042 14.3 1060	7.19 5.41 H.brown 207				
Sheen: NONC Odor: NONC	Sample Date: 3/23/99				
Field Measurement Devices: Horiba Omega O	QuickCheck D.O. Test Kit				
REMARKS:					
Calibrated metriois, 3/23/99: pt: 705,0	LAN POLO AND TWO DA GUANTINGO				
and the following of the first	100,000,000,000,000,000,000,000				
α	2/12/04				
SIGNATURE:	DATE: 310011				
M FORMSISAMPLINGIWTRSMPL DOC 40F	1				

LOCATION: B'7C GOS MIN! Mart	SAMPLE ID: MW-5					
PROJECT NO: BNC 103	SAMPLED BY: RAWL					
to 1000 1000 1000 1000 1000 1000 1000 10	REGULATORY AGENCY:					
	Leachate Treatment Effluent Other					
CASING DIAMETER (OD-inches): 3/4 1	24 4.568					
GALLONS PER LINEAR FOOT: (0.02) (0.04)						
Well Total Depth (ft): 39.7	Volume in Casing (gal): 9.7					
Depth to Water (ft): 25.15	Calculated Purge (volumes / gal.): 28.9					
Height of Water Column (ft): 14.55	Actual Pre-Sampling Purge (gal): 29.0					
PURGE:						
Device (Depth of Intake from TOC): Submersible Pump	Peristaltic Pump PVC Hand Pump					
S.S. Bailer Teflon Bailer PVC Bailer Purge Water Containment:	Disposable Bailer Other					
Field QC Samples Collected at this Well (Equipment or Field Bl	ank): EB- FB- Other					
<u>Specific Conductan</u> Time Volume Temp. Horiba QuickCh						
(2400 Hr) (gallons) (°C) (µmhos/cm) (µS)	1					
11413 10.0 19.0 1000	7.06 Hary high heavy Shely					
1621 20.0 20.1 1000	1009					
	1000					
1025 24.0 20.0 1000 /	<u> </u>					
						
	Purge Date: 3 23 99					
CAMPY E.	<u> </u>					
SAMPLE: Device (Depth of Intake from TOC): Submersible Pump	Peristaltic Pump PVC Hand Pump					
Teflon Bailer PVC Bailer Disposable Bailer						
Specific Conductance	Dissolved					
Time Temp. Horiba QuickChed						
(2400 Hr) (°C) (μmhos/cm) (μS)	(std. units) (mg/l) (visual) (NTU)					
<u>\$1033 19.8 1070</u>	7.00 1.46 gry 7999					
Sheen: Wavy Odor: Strong	Sample Date: 3 23 99					
Field Measurement Devices: Horiba 2 Omega Q	uickCheck D.O. Test Kit					
REMARKS:						
	• •					
	-					
^	\{\bar{\}\}_{-}					
SIGNATURE:	DATE: 3/23/99					
WA WALLE U AND THE COLUMN TO THE COLUMN THE						

50F7

M \FORMS\SAMPLING\WTRSMPL DOC

WATER SAMPLE FIELD DATA

LOCATION: BICGAS MINI WART	SAMPLE ID: MW-4
PROJECT NO: 12NC103	SAMPLED BY: Pour
CLIENT: BACGOS WIN, WORT	REGULATORY AGENCY:
SAMPLE TYPE: Groundwater Surface Water	Leachate Treatment Effluent Other
CASING DIAMETER (OD-inches): 3/41_	244.568
GALLONS PER LINEAR FOOT: (0.02) (0.04	
Well Total Depth (ft): $\frac{A0.0}{26.42}$	Volume in Casing (gal): 4.
Depth to Water (ft): 25.43	Calculated Purge (volumes / gal.): 20.9
Height of Water Column (ft): 14.57	Actual Pre-Sampling Purge (gal): 29-0
S.S. Bailer Teflon Bailer PVC Bailer Purge Water Containment:	Peristaltic Pump PVC Hand Pump Disposable Bailer Other
Field QC Samples Collected at this Well (Equipment or Field E	Blank): EB FB Other
Time Volume Temp. (2400 Hr) (gallons) (°C) (μmhos/cm) (μS) (1410 10.0 19.9 10.0 1050	heck pH Color Turbidity
1433 74.0 20.1 1050	<u>U.87</u>
	Purge Date: 3/23/99
SAMPLE:	
Device (Depth of Intake from TOC): Submersible Pump Teflon Bailer PVC Bailer Disposable Baile	Peristaltic Pump PVC Hand Pump Other
Specific Conductance	Dissolved
Time Temp. Horiba QuickChe (2400 Hr) (°C) (μmhos/cm) (μS) 1440 20.1 1950	(std. units) (mg/l) (visual) (NTU) U.05 1.93 Harylanum 7999
Sheen: Mgnt odor: Strong	Sample Date: 3 23 99
REMARKS. WILL OBSTRUCKE at 20.5. PWZ	DuickCheck D.O. Test Kit Obstruction. Water
SIGNATURE: WWW	DATE: 3/23/99
M. FORMSISAMPLINGIWTRSMPL DOC USF	

LOCATION: B7C COS MM i WOUX+ PROJECT NO: BNC 103 CLIENT: B7C COS Min. MOUX+ SAMPLE TYPE: Groundwater	SAMPLE ID: WS WWO SAMPLED BY:
PURGE: Device (Depth of Intake from TOC): Submersible Pump S.S. Bailer Teflon Bailer PVC Bailer Purge Water Containment: Field QC Samples Collected at this Well (Equipment or Field B	Disposable Bailer Other
Specific Conductar Time Volume Temp. Horiba QuickCl (2400 Hr) (gallons) (°C) (μmhos/cm) (μS)	heck pH Color Turbidity
	Purge Date:
<u> </u>	Turge Date.
SAMPLE: Device (Depth of Intake from TOC): Teflon Bailer PVC Bailer Disposable Bailer	Peristaltic Pump PVC Hand Pump Other
Specific Conductance Time Temp. Horiba QuickChe (2400 Hr) (°C) (μmhos/cm) (μS)	Dissolved ck pH Oxygen Color Turbidity (std. units) (mg/l) (visual) (NTU)
Sheen: Odor:	Sample Date:
Field Measurement Devices: Horiba Omega OMEMARKS: NO WAS WASHAW PROMICE. DRIEN	DuickCheck D.Q. Test Kit MASWEMH. Mt awing Mitial watruw maswemt. Ditained small brown product globules.
SIGNATURE: MM	DATE: 3/23/99

70F7

1252 Quarry Lane P.O. Box 9019 Pleasanton, CA 94566 (925) 426-2600 Fax (925) 426-0106

April 14, 1999

Mr. Kris Johnson CONOR PACIFIC 2680 East Bayshore Road Palo Alto, CA 94303

> Client Ref.: BNC103 Clayton Project No.: 99032.56

Dear Mr. Kris Johnson:

Attached is our analytical laboratory report for the samples received on March 23, 1999. Also enclosed is a copy of the Chain-of-Custody record acknowledging receipt of these samples.

As requested, one of the MTBE results was confirmed by GC/MS. The MTBE result for sample MW-1 was confirmed by GC/MS and this confirmation result is reported for this sample.

Please note that any unused portion of the samples will be discarded after May 14, 1999, unless you have requested otherwise.

We appreciate the opportunity to assist you. If you have any questions concerning this report, please contact Client Services at (925) 426-2657.

Sincerely,

Patricia Flynn

Client Services Representative San Francisco Regional Office

PVF/pvf

Attachments

California DHS ELAP Certification Number 1196

Page 2 of 8

Analytical Results for CONOR PACIFIC

Client Reference: BNC103 Clayton Project No. 99032.56

Sample Identification: MW-1

9903256-01A

Lab Number:

Sample Matrix/Media:

WATER

Preparation Method: Method Reference:

EPA 5030

EPA 8015/8020

Date Sampled:

03/23/99 Date Received: 03/23/99

Date Prepared: Date Analyzed:

04/06/99 04/06/99

Analyst	:	D.TT.

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
BTEX/Gasoline			
Benzene	71-43-2	280	4
Ethylbenzene	100-41-4	240	3
Toluene	108-88-3	420	3
o-Xylene	95-47-6	350	4
p,m-Xylenes		640	4
Gasoline		6600	500
MTBE		60 .	50
Surrogates		Recovery (%)	QC Limits (%)
a,a,a-Trifluorotoluene	98-08-8	97	50 - 150

ND: Not detected at or above limit of detection Information not available or not applicable

Detection limits increased due to dilution necessary for quantitation.

MTBE result is from GC/MS run

of 8 Page 3

Analytical Results for

CONOR PACIFIC

Client Reference: BNC103 Clayton Project No. 99032.56

Sample Identification: MW-2

Lab Number:

ample Matrix/Media: WATER

reparation Method: EPA 5030
Method Reference: EPA 8015/8020

9903256-02A

Date Sampled:

03/23/99 Date Received: 03/23/99 Date Prepared: 04/06/99

Date Analyzed:

04/06/99

Analyst:	דדת

71-43-2	780	8
100-41-4	780	6
108-88-3	880	6
95-47-6	730	8
	1000	8
	22000	1000
	300 -	100
	Recovery (%)	QC Limits (%)
98-08-8	111	50 - 150
	100-41-4 108-88-3 95-47-6 	100-41-4 780 108-88-3 880 95-47-6 730 1000 22000 300 • Recovery (%)

Not detected at or above limit of detection Information not available or not applicable

Detection limits increased due to dilution necessary for quantitation.

of 8 Page 4

03/23/99

Analytical Results for

CONOR PACIFIC

Client Reference: BNC103 Clayton Project No. 99032.56

Sample Identification: MW-3

9903256-03A

Date Received: 03/23/99

Sample Matrix/Media:

WATER

Date Prepared: 04/06/99 Date Analyzed: 04/06/99

Preparation Method:

EPA 5030

DTT

Date Sampled:

Method Reference:

Lab Number:

EPA 8015/8020

Analyst:

71-43-2	100	4
100-41-4	110	3
108-88-3	160	3
95-47-6	85	4
	180	4
	6900	500
	220 -	50
	Recovery (%)	OC Limits (%)
98-08-8	105	50 - 150
	100-41-4 108-88-3 95-47-6 	100-41-4 108-88-3 95-47-6 180 6900 220 - Recovery (%)

Not detected at or above limit of detection ND: Information not available or not applicable

Detection limits increased due to dilution necessary for quantitation. Note:

of 8 Page 5

Analytical Results for

CONOR PACIFIC

Client Reference: BNC103 Clayton Project No. 99032.56

ample Identification: MW-4

9903256-04A

Lab Number: ample Matrix/Media: reparation Method:

Method Reference:

WATER EPA 5030

EPA 8015/8020

Date Sampled:

Date Received: Date Prepared:

Date Analyzed:

03/23/99 03/23/99 04/06/99

04/06/99 TTG

Analyst:

nalyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
TEX/Gasoline			
Benzene	71-43-2	ND	0.4
Ethylbenzene	100-41-4	ND	0.3
Toluene	108-88-3	0.3	0.3
- O-Ayreile	95-47-6	ND	0.4
p,m-Xylenes		0.5	0.4
Gasoline	<u></u>	ND	50
, MTBE		ND .	5
urrogates		Recovery (%)	QC Limits (%)
a,a,a-Trifluorotoluene	98-08-8	104	50 - 150

Not detected at or above limit of detection ND: Information not available or not applicable

Clayton

Page 6 of 8

Analytical Results for CONOR PACIFIC

Client Reference: BNC103 Clayton Project No. 99032.56

Sample Identification: MW-5

9903256-05A

Lab Number:

WATER

Sample Matrix/Media: Preparation Method:

Method Reference:

EPA 5030

EPA 8015/8020

Date Sampled:

03/23/99

Date Received: Date Prepared: 03/23/99 04/06/99

Date Analyzed:

04/06/99

Analyst:

DTT

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
BTEX/Gasoline			
Benzene	71-43-2	1500	40

Benzene Ethylbenzene Toluene o-Xylene p,m-Xylenes	71-43-2 100-41-4 108-88-3 95-47-6	1500 1500 2400 2000 3500	40 30 30 40 40
Gasoline		36000	5000
MTBE		900 -	500

Surrogates		Recovery (%)	QC Limits (%)
a,a,a-Trifluorotoluene	98-08-8	97	50 - 150

Not detected at or above limit of detection ND: Information not available or not applicable

Detection limits increased due to dilution necessary for quantitation. Note:

Page 7 of 8

03/23/99

Analytical Results for CONOR PACIFIC

Client Reference: BNC103 Clayton Project No. 99032.56

sample Identification: MW-6

Lab Number:

ample Matrix/Media: WATER reparation Method: EPA 5030 Method Reference:

9903256-06A

EPA 8015/8020

Date Sampled:

Date Received: 03/23/99 Date Prepared: 04/06/99

Date Analyzed: 04/06/99

Analyst: DTT

nalyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
TEX/Gasoline			
Benzene	71-43-2	240	4
≜ Ethylbenzene	100-41-4	120	3
Toluene	108-88-3	260	3
o-Xylene	95-47-6	170	4
_ p,m-Xylenes		270	4
Gasoline		5700	500
MTBE	- -	150 .	50
urroqates		Recovery (%)	QC Limits (%)
a,a,a-Trifluorotoluene	98-08-8	99	50 - 150

Not detected at or above limit of detection Information not available or not applicable

Detection limits increased due to dilution necessary for quantitation.

Page 8 of 8

Analytical Results for CONOR PACIFIC

Client Reference: BNC103 Clayton Project No. 99032.56

Sample Identification: METHOD BLANK

Date Sampled:

Lab Number:

9903256-07A

Date Received:

Sample Matrix/Media: Preparation Method:

WATER

Date Prepared: 04/06/99

EPA 5030

Date Analyzed:

04/06/99

Method Reference:

EPA 8015/8020

Analyst:

DTT

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
BTEX/Gasoline			
Benzene Ethylbenzene Toluene o-Xylene p,m-Xylenes Gasoline MTBE	71-43-2 100-41-4 108-88-3 95-47-6	ND ND ND ND ND ND ND	0.4 0.3 0.3 0.4 0.4 50
Surrogates		Recovery (%)	QC Limits (%)
a,a,a-Trifluorotoluene	98-08-8	100	50 - 150

Not detected at or above limit of detection Information not available or not applicable

	₹ EIN/	A ŘSC)N	
	FOW/	FR &	WATS	:ON
_	IOVVE	LIN α	77/AIS	ON

CHAIN OF CUSTODY

Page ___ of __

CONTRACT LABORATORY: Clayton TURN-AROUND TIME: SAW (W) Analyses Project No. Site Name Mease confirm TPHSUS, BIEKIMINDE BEC Gas Mini Mart BNC103 MITBE in any 1(One) Sample by EPA 8260. Remarks Sampler(s): (printed) (signature) mynn Collection Container Information Sample Lab Depth Matrix LD. Type/Volume Onty Filt Prsry LD. Date Time Please provide Chromatograms with results. 3/23/91 1331 Water 4 mw-1254 4 MW-Z 1133 4 4 MW-3 WW-4 1042 1433 MW5 4 4 1440 MW-6 4 A MS WIWOI nosami Relinquished by: (signature) Received by. (signature) Send Results To: Attn: 2015 John SON 3/23/99 mamma @ 1800 EINARSON, FOWLER & WATSON Received by: (signature) Relinquished by: (signature) 2650 East Bayshore Road Palo Alto, CA 94303 Phone (650) 843-3828 Relinquished by: (signature) Received by: (signature) Date/Time: Fax (650) 843-3815