May 5, 1999

Eva Chew Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject:

Phase II Subsurface Investigation

5865 Broadway Terrace Oakland, California Project No. 3177

Dear Mr. Gilmore:

Enclosed is a copy of the Phase II Subsurface Investigation report for the work performed at the above referenced property.

Please contact me at (925) 283-6000 if you have any questions.

Sincerely,

ALL ENVIRONMENTAL, INC.

Peter McIntyre

Project Geologist

PHASE II SUBSURFACE INVESTIGATION

5865 Broadway Terrace Oakland, California

Project No. 3177

Prepared For

Mike Gilmore 123 Scenic Drive Oakland, CA 94563

Prepared By

May 5, 1999

Mike Gilmore 123 Scenic Drive Oakland, CA 94563

Subject:

Phase II Subsurface Investigation

5865 Broadway Terrace Oakland, California Project No. 3177

Dear Mr. Gilmore:

The following letter report describes the activities and results of the subsurface investigation performed by All Environmental, Inc. (AEI) at the above referenced property (Figure 1: Site Location Map). The investigation included the advancement of five shallow borings in the vicinity of three former underground storage tanks and associated piping and dispenser systems. This investigation was designed to assess the extent of impacted soil identified during the tank removal activities and determine whether groundwater had been impacted by the identified hydrocarbon release.

I Background

The property is located in a residential area of the City of Oakland and currently supports the operation of C.A.R. Service, an automobile repair facility. In October 1998, one 7,500 gasoline underground storage tank (UST), one 3,000 gallon gasoline UST, and one 250 gallon waste oil UST along with the associated piping and dispensers were removed from the property. According to the owner of the property, Mr. Gilmore, no indication of any tank or piping failure was observed during the removal activities. According to Mr. Gilmore, impacted soil observed appeared to be associated with the fill pipe areas of the gasoline USTs and was a likely a result of spillage during tank filling activities. The excavation was backfilled with the stockpilled soil and imported fill. Please refer to Figure 2 for the former locations of the tanks and dispensers.

Soil samples were collected from 13 to 14 feet below ground surface (bgs) beneath the gasoline USTs. Analytical results of these samples indicated that soil was impacted with up to 3,800 mg/kg of total petroleum hydrocarbons (TPH) as gasoline, 2 mg/kg of benzene, and 11 mg/kg of MTBE. A soil sample analyzed from 7 feet bgs from beneath the waste oil tank was impacted with 2 mg/kg of TPH as gasoline. Groundwater was not encountered during the tank removal activities.

Mike Gilmore May 5, 1999 Project No. 3177 Page 2

Based on the evidence that an unauthorized release of petroleum hydrocarbons had occurred, the Alameda County Health Care Services Agency (ACHCSA) requested further investigation to define the extent of impacted soil and determine whether groundwater beneath the site had been impacted. A workplan was prepared and submitted to the ACHCSA by Subsurface Consultants, Inc., (SCI) to investigate the release. This workplan was approved by Eva Chew of the ACHCSA.

II Investigative Efforts

All Environmental, Inc. (AEI) performed a subsurface investigation at the property on April 5, 1999. AEI performed the scope of work presented in the workplan prepared by SCI. The locations of the borings were chosen in the field under the guidance of Eva Chew. A total of five soil borings (AEI-1 through AEI-5) were advanced. Two of the borings, AEI-1 and AEI-2, were advanced in the locations of each of two former product dispensers. The three other borings were advanced around the backfilled excavation. The locations of the soil borings are shown on Figure 2.

The near surface native soil encountered during the drilling activities generally consisted of silty sand and clay. Refer to Attachment A for detailed logs of the borings. Based on local topography, groundwater flow direction is estimated to be to the west.

Soil Sample Collection

The borings were advanced with a truck-mounted Geoprobe drilling rig to a depth of 6 feet bgs in the locations of the dispensers and to between 12 and 16 feet in the other three locations. Refusal conditions were encountered at 15 feet and 12 feet bgs during the advancement of AEI-4 and AEI-5, respectively. Soil samples were collected from AEI-1 and AEI-2 at 3 and 5 feet bgs. In the other three borings, soil samples were collected at 5-foot intervals beginning at 5 feet bgs.

A strong hydrocarbon odor was observed during the advancement of AEI-4. The soil samples were screened in the field using a photo-ionizing detector (PID). The soil screening data is presented on the borings logs (Attachment A). Soil samples were collected in 4-foot long, 2-inch acrylic liners, from which a six inch sample was chosen. The soil samples were sealed with teflon tape and plastic caps and placed in a cooler with wet ice to await transportation to the laboratory.

Groundwater Sample Collection

Groundwater was encountered at 14 feet bgs during the advancement of boring AEI-3. Groundwater was not encountered in the other borings. A screened interval of the direct push rods was inserted into the boring and exposed below the water table. A groundwater sample was collected using a drop tube inserted through the push rods. Water was collected into 1-liter amber bottles and 40-mL VOA vials. The groundwater samples were capped so that there was

Mike Gilmore May 5, 1999 Project No. 3177 Page 3

no head space or visible air bubbles within the vials, then placed in a cooler with wet ice to await transportation to the laboratory.

Following sample collection, each boring was backfilled with cement grout.

Laboratory Analysis

On April 5, 1999, the soil samples were transported to McCampbell Analytical Inc. (DOHS Certification Number 1644) under chain of custody protocol for analysis. Analytical results and chain of custody documents are included as Attachment B.

One soil sample was analyzed from each dispenser location. Two soil samples were analyzed from each of the other three borings. One groundwater sample collected from AEI-3 was analyzed. The soil samples were analyzed for total petroleum hydrocarbons (TPH) as gasoline, TPH as diesel, benzene, toluene, ethylbenzene and xylenes (BTEX) and methyl tertiary butyl ether (MTBE). One soil sample was also analyzed for Polynuclear Aromatic Hydrocarbons (PAHs) by EPA method 8270. The water sample was analyzed for TPH as gasoline and Volatile Organic Compounds by EPA method 8260. At the request of the ACHCSA, the soil sample with the highest level of MTBE detected during the initial analysis was also reanalyzed for fuel oxygenates only by EPA method 8260, as was the groundwater sample.

The remaining soil samples were placed on hold at the laboratory.

III Findings

TPH as gasoline and MTBE were detected in AEI-4 10' at 19 mg/kg and 930 μ g/kg (.93 mg/kg), respectively. No significant levels of BTEX or TPH as diesel were detected in any of the soil samples analyzed.

MTBE and tert-Amyl Methyl Ether (TAME) were detected in the groundwater sample at 72 μ g/L and 11 μ g/L, respectively. TPH as gasoline, BTEX and VOCs were not detected in the water sample analyzed.

Results of the analytical testing are summarized in Table 1.

IV Conclusions and Recommendations

Soil samples analyzed during this investigation did not indicate extensive impacted soil associated with the former USTs. However, significant concentrations of petroleum hydrocarbons were detected in soil samples collected from beneath the former USTs during the tank removal activities. No concentrations of TPH as gasoline or BTEX were detected in the groundwater sample however MTBE was detected at 72 μ g/L in the water sample. The soil stockpiled during the tank removal activities was returned to the excavation. Based on this

Mike Gilmore May 5, 1999 Project No. 3177 Page 4

investigation, it appears that impacted soil is localized to beneath the former tank locations. AEI recommends that if new USTs are installed in the location of the former excavation, the newly excavated soil be analyzed prior to reuse or for treatment and disposal, if necessary.

V Report Limitation

This report presents a summary of work completed by All Environmental, Inc. (AEI). The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide the required information, but it cannot be assumed that they are representative of areas not sampled. All conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices, in the environmental engineering and construction field, which existed at the time and location of the work.

If you have any questions regarding our investigation, please do not hesitate to contact me at (510) 283-6000.

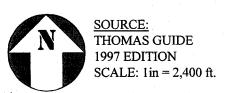
Sincerely,

Peter McIntyre

Project Geologist

Joseph P. Derhake, PE, CAC

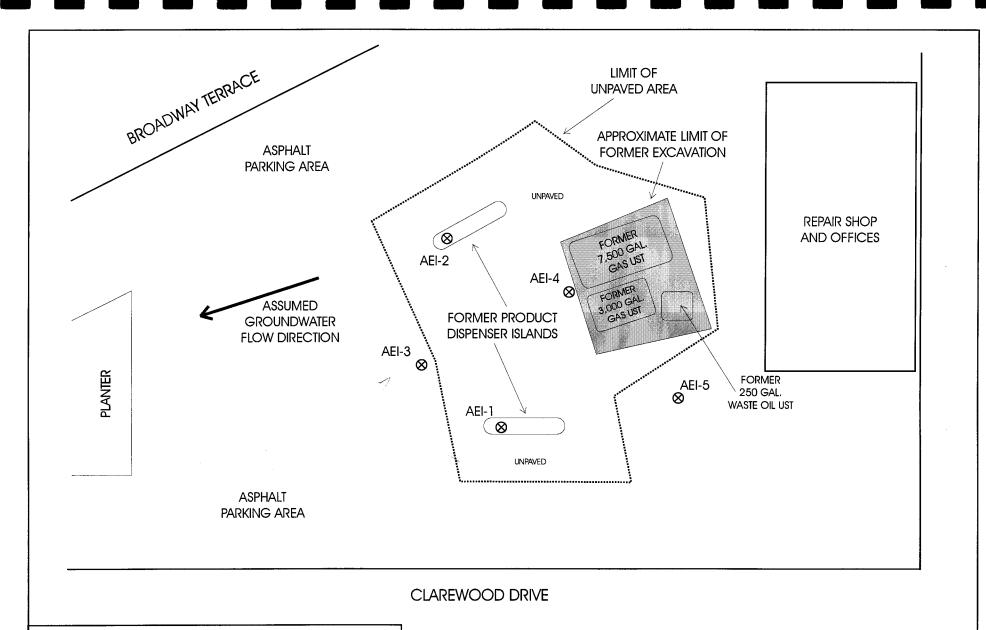
Principal


Figures Tables

Attachment A: Soil Boring Logs

Attachment B: Sample Analytical Documentation

cc. Eva Chew, Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502



ALL ENVIRONMENTAL, INC. 901 MORAGA ROAD, SUITE C, LAFAYETTE, CA

SITE LOCATION MAP

5865 BROADWAY TERRACE OAKLAND, CALIFORNIA

FIGURE 1

ALL ENVIRONMENTAL, INC. 901 MORAGA ROAD, SUITE C, LAFAYETTE, CA

SITE PLAN

5865 BROADWAY TERRACE OAKLAND, CALIFORNIA

FIGURE 2

SOIL BORING LOCATIONS
AEI-1 AND IDENTIFICATION

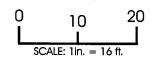


Table 1: Soil Sample Analytical Results

April 5, 1999

Sample	TPH	TPH		Fuel Oxyg	genates by	EPA 826	0	Benzene	Toluene	Ethylbenzene	V-1-	D.C.
ID	as gasoline mg/kg	as diesel mg/kg	DIPE μg/kg	ETBE µg/kg	MTBE μg/kg	TAME µg/kg	t-Butanol µg/kg		mg/kg	mg/kg	Xylenes mg/kg	PAHs* mg/kg
AEI-1 3'	<1.0	<1.0	-	-	<50	-	-	< 0.005	< 0.005	< 0.005	<0.005	
AEI-2 3'	<1.0	<1.0	-	-	<50	-	-	< 0.005	< 0.005	< 0.005	<0.005	-
AEI-3 5'	<1.0	<1.0	-	-	<50	-	-	< 0.005	< 0.005	< 0.005	< 0.005	<u>-</u> -
AEI-3 10' AEI-4 10'	<1.0	<1.0	-	-	<50	-	-	< 0.005	<0.005	<0.005	< 0.005	_
AEI-4 10' AEI-4 15'	19 <1.0	9.2	<50	<50	930	<50	<250	0.18	0.076	0.15	0.45	< 0.33
AEI-5 5'	<1.0	<1.0	-	-	130	-	-	< 0.005	0.011	< 0.005	0.007	-
AEI-5 9'	<1.0	6.8 <1.0	-	-	<50	-	-	< 0.005	<0.005	< 0.005	< 0.005	_
	`1.0	`1.0	-	-	<50	-	-	<0.005	< 0.005	< 0.005	< 0.005	-
MDL	1.0	1.0	50	50	50	50	250	0.005	0.005	0.005	0.005	0.33

MDL = Method Detection Limit

ND = Not detected above the Method Detection Limit (unless otherwise noted)

ug/kg = micrograms per kilogram (ppb)

mg/kg = milligrams per kilogram (ppm)

- Not Analyzed
- * All Polynuclear Aromatic Hydrocarbons (PAH) by EPA method 8270 were not detected above the MDL

Table 2: Groundwater Sample Analytical Results

April 5, 1999

Sample	TPH		Fuel Oxy	genates by	EPA 826	0	Benzene	Toluene	Ethylbenzene	Xvlenes	VOCs*	
ID	as gasoline μg/L	DIPE μg/L	ETBE μg/L	MTBE μg/L	TAME μg/L	t-Butanol μg/L	μ g/L					
AEI-3 W	<50	<1.0	<1.0	72	11	<5.0	<0.5	<0.5	<0.5	<0.5	<1.0	
MDL	50	1.0	1.0	1.0	1.0	5.0	0.5	0.5	0.5	0.5	1.0	

MDL = Method Detection Limit

ND = Not detected above the Method Detection Limit (unless otherwise noted)

 μ g/L = micrograms per liter (ppb)

mg/L = milligrams per liter (ppm)

^{* -} All Volatile Organic Compounds (VOC) analyzed by EPA method 8260 were not detected above the MDL

ATTACHMENT A SOIL BORING LOGS

Sheet: 1 of 1

Project Name: Broadway Terrace

Log of Borehole: AEI-1

Client: Mike Gilmore

Location: South Dispenser

				Samp	le Data			
Depth	Soil Symbol	Subsurface Description	Sample Label	Туре	Blow Counts/	Recovery	Well Data	Remarks
oft m		Ground Surface						Discours P
								Discrete sampling
2	1,11,11,11	SAND						Slight product odor
3 - 1		Fine sand with minor silt and gravel	AEI-1 3'	ss	NA	60		PID = 0.0 ppm
5		Clay increasing	AEI-1 5'	ss	NA	60		PID = 3 ppm
6-2	1 11 11 11	End of Borehole						
7								
8-								
9								
10 3								
11								
12								
134								
14 -								
15								
16 5								
17-								
18-								
19								
20								

Drill Date 4/5/99

Drill Method: Direct Push

Total Depth: 6 Depth to Water: NA Reviewed by: JPD

Logged by: PJM

Sheet: 1 of 1

Project Name: Broadway Terrace

Log of Borehole: AEI-2

Client: Mike Gilmore

Location: North Dispenser

				Samp	le Data			
Depth	Soil Symbol	Subsurface Description	Sample Label	Type	Blow Counts/	Recovery	Well Data	Remarks
oft m		Ground Surface						Discrete sampling
1 1								
2	1,0,0,0	SAND						No product odor
3-1		Fine silty sand with minor silt and gravel up to 1 cm	AEI-2 3'	SS	NA	60		PID = 5 ppm
4-1			-					
5		Minor clay	AEI-2 5'	ss	NA	90		PID = 0 ppm
6 - 2 7 - 2		End of Borehole						
8								
9								
10 - 3								
11								
12								
13 4								
14	:							
15								
16 5								
17								
18 -								
19								
20 - 6								

Drill Date 4/5/99

Drill Method: Direct Push

Total Depth: 6 Depth to Water: NA Reviewed by: JPD

Logged by: PJM

Sheet: 1 of 1

Project Name: Broadway Terrace

Log of Borehole: AEI-3

Client: Mike Gilmore

Location: West of excavation

			,	Samp	le Data			
Depth	Soil Symbol	Subsurface Description	Sample Label	Type	Blow Counts/	Recovery	Well Data	Remarks
0 tt m 0 0		Ground Surface PEA GRAVEL AND SAND FILL						Continuous coring
3- 		SAND Silty sand with minor clay and gravel up to 1 cm				1		PID = 8 ppm
		CLAY	AEI-3 5'	SS	NA	-		
6 _ 2		Clay with silt and sand and 10% gravels up to 3 cm, damp						PID = 6 ppm
7-		gravoio up to o om, damp						No product odor
8		, , , , , , , , , , , , , , , , , , ,						
9 🕂								PID = 6 ppm
10 3			AEI-3 10'	22	NA	_		Static Water Level at 10 feet bgs
11			ALI O TO	-	101			
12_								No product odor
13 4		Saturated	AEI-3 13'	SS	NA	-	•	Initial Water Level
14								
15		SILT Silt with sand and clasts up to 1.5						
16 5		cm, saturated End of Borehole	4					
17		Flid of poletions						
18				:				
19								
20 - 6								

Drill Date 4/5/99

Drill Method: Direct Push

Total Depth: 16 Depth to Water: 13 Reviewed by: JPD

Logged by: PJM

Project Name: Broadway Terrace

Log of Borehole: AEI-4

Client: Mike Gilmore

Location: Near former USTs

				Samp	le Data			
Depth	Soil Symbol	Subsurface Description	Sample Label	Type	Blow Counts/	Recovery	Well Data	Remarks
0 tt m 0 1	***	Ground Surface PEA GRAVEL AND SAND FILL						Continuous coring
3 - 1 4 - 5 - 1		SAND Sand with silt and angular clasts up to 2 cm						PID Malfunction
		SAND and CLAY	AEI-4 5'	SS	NA	-		
6-2		Interbedded sand and clay with angular clasts up to 2 cm						Strong Hydrocarbon Odor
7-						Ē		
8-								
9-								
10 3			AEI-4 10'	SS	NA			Strong Hydrocarbon Odor
11		Sand decreasing	AEI-4 10	33	INA	-		
-		Cand decreasing						
12								
13 4								Strong Hydrocarbon Odor
14		Angular clasts > 50%						No Groundwater Generated
15		End of Borehole	AEI-4 15'	SS	NA	-		Refusal Encountered
16		Elia di Boleticie						
17 - 5				:				
18—								
19								
20 - 6								

Drill Date 4/5/99

Drill Method: Direct Push

Total Depth: 15 Depth to Water: NA Reviewed by: JPD

Logged by: PJM

All Environmental, Inc. 901 Moraga Road, Suite C Lafayette, CA 94549 (800) 801-3224

Sheet: 1 of 1

Sheet: 1 of 1

Project Name: Broadway Terrace

Log of Borehole: AEI-5

Client: Mike Gilmore

Location: South of Excavation

				Samp	le Data			
Depth	Soil Symbol	Subsurface Description	Sample Label	Туре	Blow Counts/	Recovery	Well Data	Remarks
oft m	XXXX	Ground Surface						
1 =		ASPHALT and FILL						Continuous coring
2 - 1 3 - 1 4 - 1		SAND Coarse sand with clay and coarse gravel up to 3 cm, loose		Table and the state of the stat				PID Malfunction
5 - - 6			AEI-5 5'	SS	NA	-		No thateacatan Otto
7-1 1-2								No Hydrocarbon Odor
8-								No Hydrocarbbon Odor
9 -		Sand decreasing	AEI-5 9'	SS	NA	_		
10 3		Clay increasing						
11_		CLAY Sandy clay with angular clasts, wet						Wet sample, no significant water generated
12		End of Borehole						Refusal Encountered
13 4								
14-								
15								
16								
17			:					
18								
19								
20		_						

Drill Date 4/5/99

Drill Method: Direct Push

Total Depth: 11.5 Depth to Water: NA Reviewed by: JPD

Logged by: PJM

ATTACHMENT B SAMPLE ANALYTICAL DOCUMENTATION

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

All Environmental, Inc.	Client Project ID: #3177; Broadway	Date Sampled: 04/05/99
901 Moraga Road, Suite C		Date Received: 04/05/99
Lafayette, CA 94549	Client Contact: Peter McIntyre	Date Extracted: 04/05/99
	Client P.O:	Date Analyzed: 04/05/99

04/12/99

Dear Peter:

Enclosed are:

- 1). the results of 9 samples from your #3177; Broadway project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Edward Hamilton, Lab Director

Light Riddle for

All Environmental, Inc.	Client Project ID: #3177; Broadway	Date Sampled: 04/05/99
901 Moraga Road, Suite C		Date Received: 04/05/99
Lafayette, CA 94549	Client Contact: Peter McIntyre	Date Extracted: 04/05-04/14/99
	Client P.O:	Date Analyzed: 04/06-04/14/99

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX* EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030)

Lab ID	Client ID	Matrix	TPH(g) ⁺	МТВЕ	Benzene	Toluene	Ethylben- zene	Xylenes	% Recovery Surrogate
08639	AEI-1 3'	S	ND	0.16	ND	ND	ND	ND	99
08641	AEI-2 3'	S	ND	ND	ND	ND	ND	ND	96
08643	AEI-3 5'	S	ND	ND	ND	ND	ND	ND	94
08644	AEI-3 10'	S	ND	ND	ND	ND	ND	ND	99
08647	AEI-4 10'	S	19,a	2.1	0.18	0.076	0.15	0.45	108
08648	AEI-4 15'	S	ND	0.13	ND	0.011	ND	0.007	102
08649	AEI-5 5'	S	ND	ND	ND	ND	ND	ND	96
08650	AEI-5 9'	S	ND	ND	ND	ND	ND	ND	94
08651	AEI-3 W	W	ND,i	80	ND	ND	ND	ND	107
otherwi	ng Limit unless ise stated; ND	W	50 ug/L	5.0	0.5	0.5	0.5	0.5	!
	t detected above porting limit	S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

[#] cluttered chromatogram; sample peak coelutes with surrogate peak

^{*}The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

All Environmental, Inc.	Client Project ID: #3177; Broadway	Date Sampled: 04/05/99
901 Moraga Road, Suite C		Date Received: 04/05/99
Lafayette, CA 94549	Client Contact: Peter McIntyre	Date Extracted: 04/05/99
	Client P.O:	Date Analyzed: 04/07-04/12/99
Discol	Dongo (C10 C22) E-two stable Hadronoul	one on Discol #

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel *

EPA methods modified 8015, and 3550 or 3510; California RWQCB (SF Bay Region) method GCFID(3550) or GCFID(3510)

Lab ID	Client ID	Matrix	TPH(d) ⁺	% Recovery Surrogate
08639	AEI-1 3'	S	ND	94
08641	AEI-2 3'	S	ND	94
08643	AEI-3 5'	S	ND	100
08644	AEI-3 10'	S	ND	103
08647	AEI-4 10'	S	9.2,d,g	101
08648	AEI-4 15'	S	ND	98
08649	AEI-5 5'	S	6.8,g	103
08650	AEI-5 9'	S	ND	97
				, , , , , , , , , , , , , , , , , , ,
Reporting Limit	unless otherwise	w	50 ug/L	
the repor	tated; ND means not detected above the reporting limit		1.0 mg/kg	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in ug/L

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

^{*}The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment.

All Environmental, Inc.	Client Project	t ID: #3177; Broadway	Date Sampled: 04/05/99 Date Received: 04/05/99 Date Extracted: 04/14-04/15/99			
901 Moraga Road, Suite C						
Lafayette, CA 94549	Client Contac	et: Peter McIntyre				
	Client P.O:		Date Analyzed: 0	04/14-04/15/99		
	Volatil	e Organics By GC/MS				
EPA method 8260						
Lab ID		08651				
Client ID		AEI-3	W			
Matrix		W				
Compound	Concentration*	Compou	nd	Concentration*		
Acetone (b)	ND<20	trans-1,3-Dichloropropene	ND			
	ND ND	Ethylene dibromide	ND			
Benzene	ND ND	Ethylbenzene Ethylbenzene	ND			
Bromobenzene Bromochloromethane	· ND	Hexachlorobutadiene	ND			
Bromodichloromethane	ND	Iodomethane		ND		
	ND	Isopropylbenzene	ND			
Bromoform	ND	p-Isopropyl toluene	ND			
Bromomethane	ND ND	Methyl butyl ketone (d)	ND			
n-Butyl benzene	ND	Methylene Chloride ^(e)	ND			
sec-Butyl benzene	ND	Methyl ethyl ketone (1)	ND			
tert-Butyl benzene	ND	Methyl isobutyl ketone (g)	ND			
Carbon Disulfide Carbon Tetrachloride	ND	Methyl tert-Butyl Ether (MTBE				
	ND	Naphthalene	ND			
Chlorobenzene	ND	n-Propyl benzene		ND		
Chloroethane 2-Chloroethyl Vinyl Ether ^(c)	ND	Styrene (1)		ND		
	ND	1,1,1,2-Tetrachloroethane		ND		
Chloroform	ND ND	1.1.2.2-Tetrachloroethane		ND		
Chloromethane	ND ND	Tetrachloroethene		ND		
2-Chlorotoluene	ND ND	Toluene (m)		ND		
4-Chlorotoluene	ND ND	1,2,3-Trichlorobenzene		ND		
Dibromochloromethane	ND ND	1,2,4-Trichlorobenzene		. ND		
1,2-Dibromo-3-chloropropane	ND ND	1,1,1-Trichloroethane		ND		
Dibromomethane 1.2-Dichlorobenzene	ND	1,1,2-Trichloroethane		ND		
	ND	Trichloroethene		ND		
1,3-Dichlorobenzene	ND	Trichlorofluoromethane		ND		
Dichlorodifluoromethane	ND ND	1,2,3-Trichloropropane		ND		
1,1-Dichloroethane	ND	1,2,4-Trimethylbenzene		ND		
1,2-Dichloroethane	ND	1,3,5-Trimethylbenzene		ND		
1,1-Dichloroethene	ND	Vinyl Acetate (n)		ND		
cis-1,2-Dichloroethene	ND	Vinyl Chloride (0)		ND		
trans-1,2-Dichloroethene	ND	Xylenes, total (p)		ŅD		
1,2-Dichloropropane	ND	Comments: i				
	ND		ogate Recoveries (%)			
1,3-Dichloropropane 2,2-Dichloropropane	ND ND	Dibromofluoromethane	<u>````</u>	96		
1,1-Dichloropropene	ND	Toluene-d8		106		
cis-1,3-Dichloropropene	ND ND	4-Bromofluorobenzene		85		

^{*}water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg, wipes in ug/wipe and all TCLP / SPLP extracts in ug/L

Reporting limits unless otherwise stated: water samples 1 ug/L; vapor samples 0.5 ug/L; solid and sludge samples 5 ug/kg; wipes 0.2ug/wipe

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) 2-propanone or dimethyl ketone; (c) (2-chloroethoxy) ethene; (d) 2-hexanone; (e) dichloromethane; (f) 2-butanone; (g) 4-methyl-2pentanone or isopropylacetone; (h) lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~5 vol. % sediment; (j) sample diluted due to high organic content; (k) ethenylbenzene; (l) methylbenzene; (m) acetic acid ethenyl ester; (n) chloroethene; (o) dimethylbenzenes Edward Hamilton, Lab Director

All Environmental, Inc.	Client Project I	D: #3177; Broa	Date Sampled: 04/05/99					
901 Moraga Road, Suite C				Date Received	red: 04/05/99			
Lafayette, CA 94549	Client Contact:	Peter McIntyre		Date Extracted	racted: 04/14/99			
	Client P.O:			Date Analyzed	d: 04/14-04/15/99			
EPA method 8260 modified	Oxygenated Vo	olatile Organic	s By GC/	MS				
Lab ID	08647	08651	<u></u>			*		
Client ID	AEI-4 10'	AEI-3 W			Reporting Limi			
Matrix	S	w			S	w		
Compound		ug/kg	ug/L					
Di-isopropyl Ether (DIPE)	ND<50	ND			5.0	1.0		
Ethyl tert-Butyl Ether (ETBE)	ND<50	ND	,		5.0	1.0		
Methyl-tert Butyl Ether (MTBE)	930	72			5.0	1.0		
tert-Amyl Methyl Ether (TAME)	ND<50	11			5.0	1.0		
tert-Butanol	ND<250	ND			25	5.0		
	Surro	ogate Recoveries (%)					
Dibromofluoromethane	95	96						
Comments:		i			1			

^{*} water samples are reported in ug/L, soil and sludge samples in ug/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L ND means not detected above the reporting limit; N/A means surrogate not applicable to this analysis

Edward Hamilton, Lab Director

⁽h) lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~5 vol. % sediment; (j) sample diluted due to high organic content

All Environmental, Inc.	Client Pro	ject ID: #317	7: Broadway	Date	Sampled: 04/0)5/99			
901 Moraga Road, Suite C		,000 <u>22</u> 1 ,10	,,,	Date	Received: 04/	05/99			
Lafayette, CA 94549	Client Con	Client Contact: Peter McIntyre				Date Extracted: 04/06/99			
•	Client P.C):		Date	Analyzed: 04	lyzed: 04/12/99			
Polynue EPA methods 625 (modified 610) and	clear Aromat 3510 or 8270 (ma	ic Hydrocar odified 8100) and	bons (PAH / P i 1 3550	NA) by G	C-MS				
Lab ID	08644					Reporti	ing Limit		
Client ID	AEI-3 10'					s	w, stlo		
Matrix	S						TCLP		
Compound		Concentration*							
Acenaphthene	ND					0.33	10		
Acenaphthylne	ND					0.33	10		
Anthracene	ND					0.33	10		
Benzo(a)anthracene	ND			-		0.33	10		
Benzo(b)fluoranthene	ND					0.33	10		
Benzo(k)fluoranthene	ND					0.33	10		
Benzo(g,h,i)perylene	ND					0.33	10		
Benzo(a)pyrene	ND					0.33	10		
Chrysene	ND					0.33	10		
Dibenzo(a,h)anthracene	ND					0.33	10		
Fluoranthene	ND					0.33	10		
Fluorene	ND					0.33	10		
Indeno(1,2,3-cd)pyrene	ND					0.33	10		
Naphthalene	ND					0.33	10		
Phenanthrene	ND	1				0.33	10		

ND

114

118

10

Phenanthrene

Comments

% Recovery Surrogate 1

% Recovery Surrogate 2

Pyrene

^{*} water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

[#] surrogate diluted out of range or surrogate coelutes with another peak

⁽h) a lighter than water immiscible sheen is present; (i) liquid sample that contains >~5 vol. % sediment; (j) sample diluted due to high organic content.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 04/06/99

Matrix: SOIL

	Concent	ration	(mg/kg)		% Reco	rery	
Analyte	Sample (#01930)	MS	MSD	Amount Spiked	MS	MSD	RPD
TPH (gas) Benzene	0.000	2.131	2.133	2.03	105 90 93	105 94 96	0.1 4.3 3.2
Toluene Ethylbenzene - Xylenes	0.000	0.186 0.188 0.564	0.192 0.196 0.588	0.2	94 94	98 98	4.2
TPH(diesel)	0	327	329	300	109	110	0.8
TRPH	0.0	23.2	23.2	20.8	112	112	0.1

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

QC REPORT FOR HYDROCARBON ANALYSES

Date: 04/07/99-04/08/99 Matrix: SOIL

	Concent	ration	(mg/kg)		% Reco		
Analyte	Sample			Amount			RPD
	(#01930)	MS	MSD	Spiked	MS	MSD	
							
TPH (gas)	0.000	1.994	1.946	2.03	98	96	2,.4
Benzene	0.000	0.186	0.186	0.2	93	93	0.0
Toluene	0.000	0.190	0.190	0.2	95	95	0.0
Ethy-lbenzene	0.000	0.188	0.188	0.2	94	94	0.0
Xylenes	0.000	0.552	0.552	0.6	92	92	0.0
:							
TPH(diesel)	0	266	266	300	89	89	0.1
TRPH (oil and grease)	0.0 	24.3	24.4	20.8	117	117	0.4
							

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

QC REPORT FOR VOCs (EPA 8240/8260)

Date: 04/14/99-04/15/99 Matrix: WATER

	Concentr	ation	(ug/kg,u		% Recovery			
Analyte	Sample (#08838)	MS	MSD	Amount Spiked	MS	MSD	RPD	
1,1-Dichloroethe	0	127	133	100	127	133	4.6	
Trichloroethene	. 0	108	106	100	108	106	1.9	
EDB	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Chlorobenzene	0	94	98	100	94	98	4.2	
Benzene	0	128	133	100	128	133	3.8	
Toluene	0	110	118	100	110	118	7.0	

[%] Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

McCAMPBELL ANALYTICAL INC.

QC REPORT FOR VOCs (EPA 8240/8260)

Date: 04/14/99-04/15/99 Matrix: SOIL

·	Concentr	ation	(ug/kg,u		% Reco	% Recovery		
Analyte	Sample (#01930) 	MS	MSD	Amount Spiked	MS	MSD	RPD 	
1,1-Dichloroethe	0	82	106	100	82	106	25.5	
Trichloroethene	0	101	103	100	101	103	2.0	
EDB	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Chlorobenzene	0	97	101	100	97	101 -	4.0	
Benzene	0	125	135	100	125	135	7.7	
Toluene	0	115	115	100	115	115	0.0	

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

QC REPORT FOR SVOCs (EPA 8270/625/525)

Date: 04/12/99-04/13/99 Matrix: SOIL

	Concenti	ration	(ug/Kg,m		% Reco	very	
Analyte	Sample (#01932)	MS	MSD	Amount Spiked	MS	MSD	RPD
Phenol	0	62	64	100	62 74	64 67	6.3
2-Chlorophenol 1, 4-Dichlorobenzene N-nitroso-di-n-propyl	0 0 - 0	74 82 72	67 100 84	100 100 100	82 72	100	19.8 15.4
1, 2, 4-Trichlorobenz 4-Chloro-3-methylphen	0	92 78	110 78	100	92	110 78	17.8
4-Nitrophenol Acenaphthene	0	88 79	89 93	100 100	88 79	89 93	1.1 16.3
2, 4- Dinitrotoluene Pentachlorophenol	0	64 50	80 52	100 100	64 50	80 52	22.2 3.9
Pyrene	0	86	103	100	86	103	18.0

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

PHONE (

ALL ENVIRONMENTAL, INC.

Environmental Engineering & Construction

901 Moraga Road, Suite C Lafavette, CA 94549

FAX (

14600 zale 7. doc

CHAIN OF CUSTODY

COMPANY

DATE/5/49 TIME 4:10

COMPANY

PIME UC

PAGE OF

TAT: RUSH / 24 hr / 48 hr // 5 day other (925) 283-6000 Fax: (925) 283-6121 McIntune OF CONTAINERS AEI PROJECT MANAGER Peter PROJECT NAME Broadway 08639 PROJECT NUMBER 3 08640 TOTAL # OF CONTAINERS RCVD. GOOD CONDITION/COLD Fuel 08641 **MATRIX** DATE TIME **SAMPLE ID** 08642 AEI-08643 AEI -08644 08645 08646 10' 08647 131 08648 AEI 08649 X 101 08650 151 08651 RELINQUISHED BY REXIMONUISHED BY RECEIVED BY COMMENTS / INSTRUCTIONS SIGNATURE SIGNATURE H.TOICCA PRINTED NAME PRINTED NAME