

RECEIVED

By lopprojectop at 8:25 am, May 18, 2006

SUBSURFACE INVESTIGATION REPORT

for:

Former Exxon Service Station 3055 35th Avenue Oakland, California

prepared by:

Cambria Environmental Technology, Inc.

1144 65th Street, Suite C Oakland, California 94608 Cambria Project #20-105-20

All work performed by Cambria Environmental Technology, Inc. for the project at 3055 35th Avenue, Oakland, California was conducted under my supervision. To the best of my knowledge, the data contained herein are true and accurate and satisfy the scope of work prescribed by the client for this project. The data, findings, recommendations, specifications or professional opinions presented herein were prepared in accordance with generally accepted professional engineering and geologic practice. We make no other warranty, either expressed or implied.

N. Scott MacLeod, R.G. #\$747

Principal Geologist

TABLE OF CONTENTS

EXECUTIVE SUMMARY	iii
INTRODUCTION	1
Objectives	1
Site Background	1
Previous Investigations	2
INVESTIGATION RESULTS	2
Soil Borings	
Well Construction	3
Hydrocarbon Distribution in Soil	4
Hydrocarbon Distribution in Ground Water	5
FIGURES	
1. Site Location Map	
2. Soil Boring and Well Locations	
3. Ground Water Elevations - May 17, 1994	
4. TPHg Concentrations in Soil at 15 ft Depth	
5. TPHg Concentrations in Ground Water - May 1994	
5. Benzene Concentrations in Ground Water - May 1994	

TABLES

- 1. Soil Analytic Data
- 2. Ground Water Elevation and Analytic Data

APPENDICES

- A. Well Permits
- B. Boring and Well Construction LogsC. Analytic Results for Soil and Ground Water

EXECUTIVE SUMMARY

a see established to

This report presents the results of the subsurface investigation conducted by Cambria Environmental Technology, Inc. (Cambria) at the former Exxon service station at 3055 35th Avenue in Oakland, California (Figure 1). The site is located in a mixed commercial and residential area and is downgradient of one former and one active service station.

Between May 5 and 9, 1994, Cambria drilled seven soil borings and installed three ground water monitoring wells at the site. Total petroleum hydrocarbons as gasoline (TPHg) were detected in soil samples from six of the seven borings, at concentrations up to 2,900 parts per million (ppm). TPHg and benzene, ethylbenzene, toluene and xylenes (BETX) were detected in ground water samples from all borings, at up to 130,000 parts per billion (ppb) TPHg and 22,000 ppb benzene. In addition, a hydrocarbon sheen was observed on several soil samples and on water in two of the three wells. Ground water is about 15 ft below grade and flows westward.

Based on the distribution of hydrocarbons in soil and ground water and the ground water flow direction, hydrocarbons appear to extend offsite in several directions including to the west, which is downgradient of the site. Since boring SB-A is upgradient of the potential onsite hydrocarbon sources and no significant hydrocarbon concentrations were detected in unsaturated soil, the hydrocarbons detected in soil and ground water from this boring may originate from the former Texaco station that is upgradient of the site.

INTRODUCTION

OBJECTIVES

This report presents the results of the subsurface investigation conducted by Cambria Environmental Technology (Cambria) at the former Exxon Service Station at 3055 35th Avenue in Oakland, California. The objectives of this investigation were to summarize the available site history and previous environmental investigations, assess the extent of hydrocarbons in soil and ground water beneath the property, and to determine whether hydrocarbons are migrating onto the site from upgradient sources.

SITE BACKGROUND

Site Location: The site is located at the northeast corner of 35th Avenue and School Street in Oakland, California (Figure 1). Topography in the area slopes generally westward. The nearest surface water is Peralta Creek, which is about 0.1 miles north of the site and flows westward.

Adjacent Hydrocarbon Sources: Two active or former gasoline service stations are located within one block of the site. A British Petroleum (BP) site is on 35th Avenue one block east (upgradient) of the site and appears to have a remediation system installed. We could not determine whether the remediation system was operating at the time of this investigation. A former Texaco station is located across School Street immediately east (upgradient) of the former Exxon site. According to discussions with the current owner of the former Texaco property, the underground storage tanks were removed by Texaco about 15 years ago. Apparently, no soil samples were collected during the tank removal and no investigation has been conducted at the former Texaco site.

PREVIOUS INVESTIGATIONS

October 1990 Geotechnical Investigation: In October 1990, Geotechnical Engineering of Fremont, California drilled two soil borings at the site for an engineering analysis. Although a variety of geotechnical tests were performed on soil samples collected from the borings, no chemical analyses were performed.

January 1991 Tank Removal: In January 1991, Pacific Excavators removed four underground gasoline storage tanks and one 500-gallon waste oil tank from the site. The former gasoline tanks appear to have capacities between 4,000 and 6,000 gallons. According to a September 24, 1992 workplan prepared by Consolidated Technologies of San Jose, California (CT), soil samples were collected during the tank removal, but were not analyzed or reported by Pacific Excavators (CT, 1992).

November 1991 Subsurface Investigation: In November 1991, CT drilled twelve soil borings to depths of up to 35 ft (Figure 2). Total petroleum hydrocarbons as gasoline (TPHg) were detected in soil samples collected from 11 of the 12 soil borings, at up to 2,100 parts per million (ppm). No total petroleum hydrocarbons as diesel (TPHd) or oil and grease (O&G) were detected in boring B-7, which is immediately downgradient of the former waste oil tank.

INVESTIGATION RESULTS

e i www.apsis.

The results of Cambria's May 1994 subsurface investigation are summarized below. Copies of monitoring well permits are presented in Appendix A. Boring log and well construction diagrams are presented in Appendix B. Analytic results for soil and ground water are presented in Tables 1 and 2, respectively, and the analytic reports are presented in Appendix C.

SOIL BORINGS

Permits:

No permits required for soil borings. Monitoring well permits are presented

in Appendix A.

Drilling Dates:

May 5 to 9, 1994.

Drilling Methods:

Solid flight augers for borings used only for soil and grab water sampling and

hollow-stem augers for borings converted to wells.

Number of Borings:

Seven (Figure 2).

Boring Depths:

20 to 26.5 ft below grade (Appendix B).

Sediment Lithology:

The site is underlain by gravelly silts to about 12 ft depth, and by interbedded silty sands and clayey silts to the total depth explored of 26.5 ft depth

(Appendix B).

Soil Analyses:

Selected soil samples were analyzed for:

- TPHg by modified EPA Method 8015,
- TPHd by modified EPA Method 8015,
- TPH as motor oil (TPHmo) by modified EPA Method 8015, and
- Benzene, ethylbenzene, toluene and xylenes (BETX) by EPA Method 8020.

Waste Disposal:

Soil cuttings were stockpiled on and covered with plastic sheeting. Soil will

be disposed at a later date.

WELL CONSTRUCTION

Wells MW-1 and MW-2 were installed west of the tanks and southernmost pump island, respectively, to monitor water quality downgradient of these possible hydrocarbon source areas (Figure 3). Well MW-3 was installed along the downgradient property line to determine whether hydrocarbons were migrating offsite and for triangulation. Well MW-3 was installed in boring SB-C because a hydrocarbon sheen was observed on soil samples from the capillary fringe in this boring.

Well Materials:

Wells MW-1 and MW-2 were constructed using four-inch diameter, 0.010-inch slotted Schedule 40 PVC well screen and well casing. Well MW-3 was constructed using two-inch diameter, 0.010-inch slotted Schedule 40 PVC well screen and well casing.

Screened Interval:

Ground water stabilized in the soil borings at 15 ft depth and a hydrocarbon sheen was observed on soil samples collected near the water table from several borings. Therefore, we constructed all three wells to screen between five ft above and ten ft below the water table (Appendix B).

Development Method:

Wells were developed using surge block agitation and purged using submersible electric pumps.

Ground Water Analyses:

Ground water samples from the borings and wells were analyzed for:

- TPHg by modified EPA Method 8015,
- TPHd by modified EPA Method 8015,
- TPHmo by modified EPA Method 8015, and
- BETX by EPA Method 8020.

Gradient and Flow Direction:

Ground water flows westward at about 0.013 ft/ft (Figure 3).

Waste Disposal:

Purge water from the borings and wells and steam clean rinseate were stored in D.O.T. approved 55-gallon drums pending disposal. Water is scheduled for transport and recycling to the Gibson recycling facility in Redwood City, California.

HYDROCARBON DISTRIBUTION IN SOIL

The highest hydrocarbon concentrations are located near the water table at about 15 ft depth near the former underground gasoline storage tanks and the southernmost pump island (Figure 4, Table 1). A hydrocarbon sheen was observed on soil samples collected near the water table from several borings including the boring for downgradient well MW-3. Well MW-3 was installed in boring SB-C because a hydrocarbon sheen was observed on soil samples collected near the water table in this boring. No sheen was observed on the other downgradient borings.

Gasoline-range hydrocarbons were detected in six of the seven borings drilled for this investigation and in all but one boring drilled during the previous investigation. The extent of hydrocarbons in soil is defined to the northwest by borings SB-D and B-8 (Figure 4, Table 1). The southeastern extent of hydrocarbons is nearly defined by boring SB-A. Based on the hydrocarbon concentrations detected in soil samples collected from the downgradient borings, hydrocarbons are likely in soil downgradient of the site.

Although TPHd were detected in most of the soil samples, the analytic laboratory indicated that all of the positive TPHd results were due to hydrocarbons that are lighter than diesel. Therefore, the TPHd detected is likely due to the gasoline-range hydrocarbons.

HYDROCARBON DISTRIBUTION IN GROUND WATER

Hydrocarbon concentrations in ground water are highest downgradient of the former underground gasoline tanks and the southernmost pump island (Figures 5 and 6, Table 2). A hydrocarbon sheen was observed in two of the three wells during sampling and TPHg/BETX concentrations detected in ground water are near the saturation concentrations of these compounds in ground water. Based on the ground water flow direction and hydrocarbon concentrations at the downgradient property line, it appears that aqueous-phase hydrocarbons are migrating offsite to the west.

Up to 1,600 ppm TPHg were detected in soil from upgradient boring SB-A and 7,000 parts per billion (ppb) TPHg were detected in grab ground water samples from the boring. The hydrocarbons detected in this boring could either have migrated in soil and/or ground water from onsite source areas or, alternately, could have originated from the upgradient former Texaco station.

REFERENCES

- GEI, 1990, Soil Investigation Report, 3055 35th Avenue, Oakland, California, Consultant's letter-report prepared for Lynn Worthington, November 19, 1990, 10 pages plus attachments.
- CT, 1991, Workplan for Preliminary Subsurface Site Investigation, 3055 35th Avenue, Oakland, California, Consultant's workplan prepared for Lynn Worthington, not dated, 19 pages plus attachments.
- CT, 1991, Results for Preliminary Subsurface Site Investigation, 3055 35th Avenue, Oakland, California, Consultant's report prepared for Lynn Worthington, not dated, 9 pages plus attachments.
- CT, 1992, Workplan for a Subsurface Petroleum Hydrocarbon Contamination Assessment, 3055 35th Avenue, Oakland, California, Consultant's workplan prepared for Lynn Worthington, September 24, 1992, 5 pages plus attachments.
- CT, 1993, Addendum to Workplan for a Subsurface Petroleum Hydrocarbon Contamination Assessment, 3055 35th Avenue, Oakland, California, Consultant's workplan prepared for Lynn Worthington, September 24, 1993, 4 pages.

FIGURES

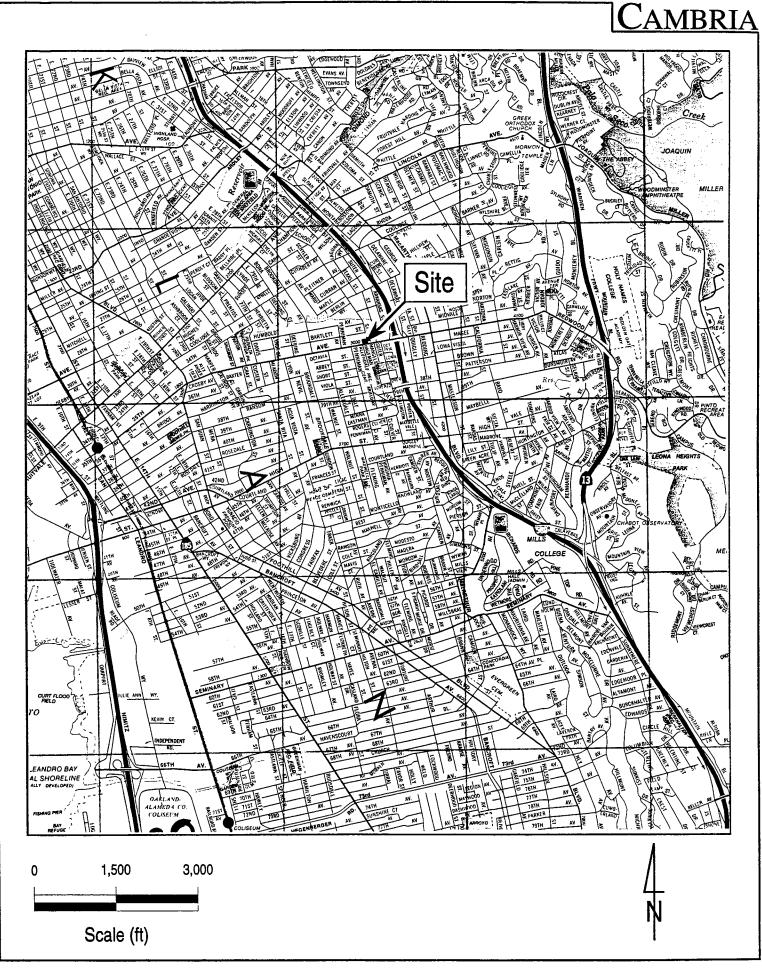
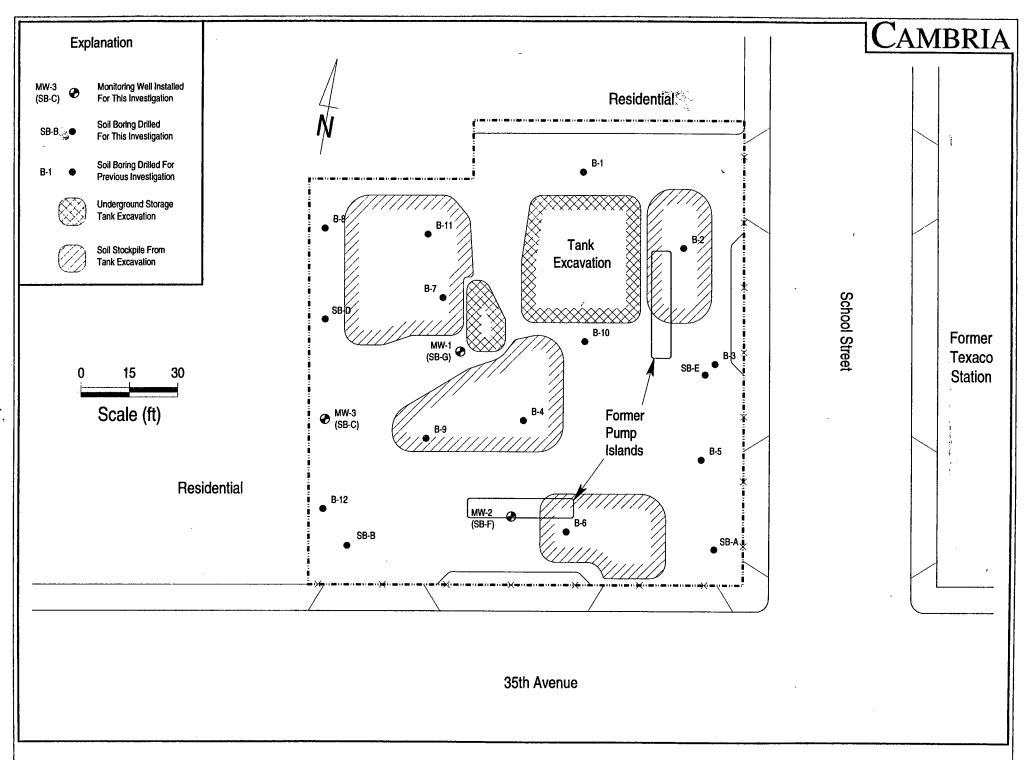
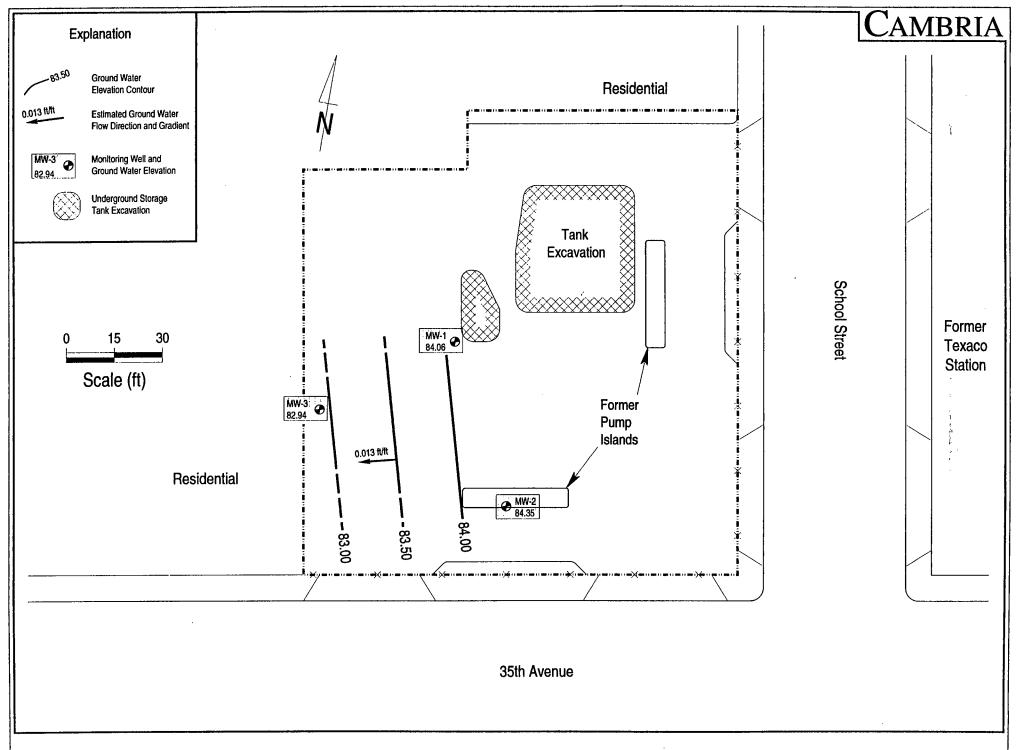




Figure 1. Site Location Map - 3055 35th Avenue, Oakland, California

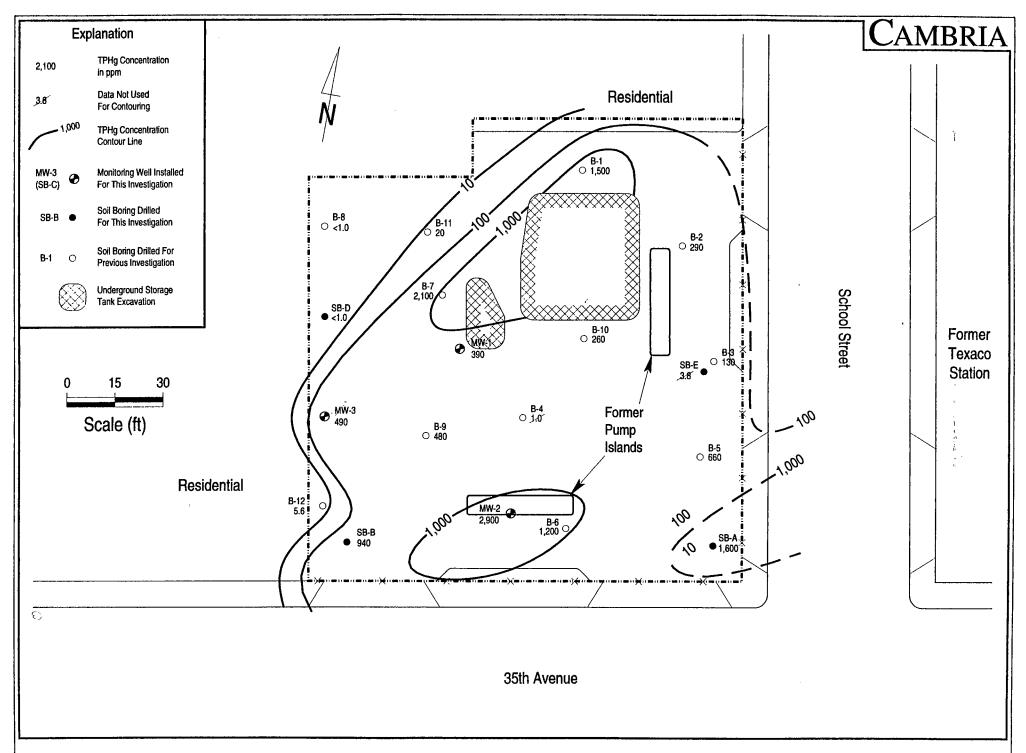
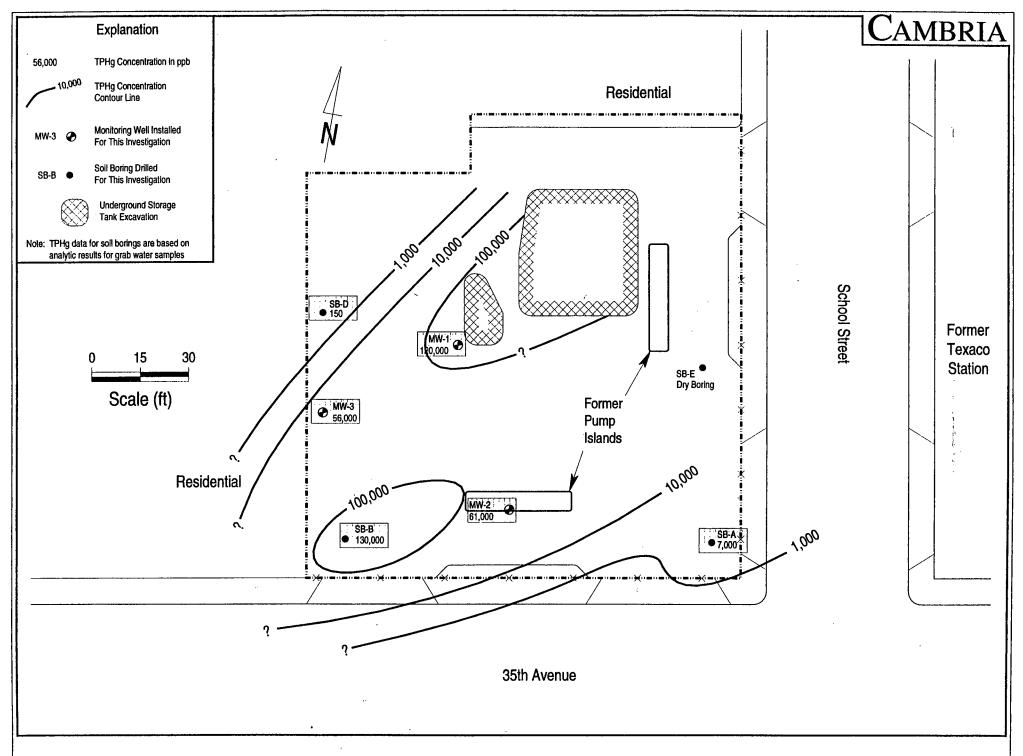
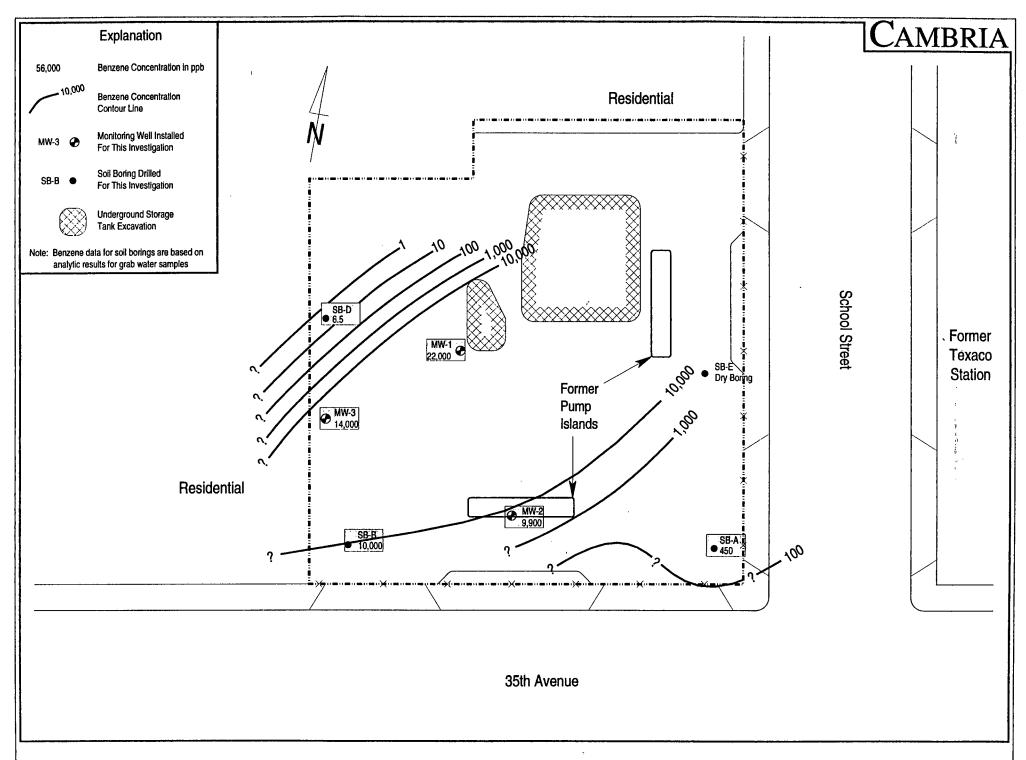




Figure 4. Maximum TPHg Concentrations (ppm) in Soil at 15 ft Depth - 3055 35th Avenue, Oakland, California

TABLES

Table 1. Soil Analytic Data - 3055 35th Avenue, Oakland, California

Boring/	Date	Sample	GW	TPHg	TPHd	TPHmo	В	T	E	X	Notes
Well ID	Sampled	Depth Depth (ft) (Concentration in		ncentration in mg/k	g)						
SB-A	5/5/94	11	14.5	3.4	4.2	<10	0.0072	0.0015	0.015	0.031	а
	5/5/94	16		1,600	620	<1,000	1.8	3.4	17	54	a
SB-B	5/6/94	11	15.0	170	52	<100	0.45	2.5	1.7	11	a
	5/6/94	16		940	120	<100	6.3	28	12	70	a
SB-C	5/6/94	11	13.9	25	6.7	<10	0.22	0.62	0.49	2.1	a
(MW-3)	5/6/94	16		490	280	<500	1.9	14	7.4	42	a
SB-D	5/6/94	11	19.5	<1	5.2	<10	<0.0025	<0.0025	<0.0025	<0.0025	
	5/6/94	16		<1	<1	<10	<0.0025	<0.0025	<0.0025	<0.0025	
SB-E	5/9/94	11	dry boring	220	56	<10	0.55	2.1	1.7	2.8	a
	5/9/94	16		3.8	1.4	<10	0.19	0.20	0.059	0.20	a
SB-F	5/9/94	11	13.3	370	57	<10	<0.25	<0.25	3.9	6.2	a
(MW-2)	5/9/94	15		2,900	450	<100	24	41	48	196	a
SB-G	5/9/94	11	14.5	20	18	<10	0.061	0.014	0.093	0.34	a
(MW-1)	5/9/94	15		390	52	<10	1.4	6.1	3.9	16	b

Abbreviations

GW = Ground water

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015

TPHmo = Total petroleum hydrocarbons as motor oil by modified EPA Method 8015

B = Benzene by EPA Method 8020

E = Ethylbenzene by EPA Method 8020

T = Toluene by EPA Method 8020

X = Xylenes by EPA Method 8020

Notes Notes

a = The positive TPHd response appears to be a lighter hydrocarbon than diesel

b = The positive TPHd result has an atypical chromatographic pattern

Table 2.	Ground W	later Elevation au	nd Analvt	ic Data -	3055 35th	Avenue.	. Oakland.	. California
radio 2.	Oloulia II	ator Dioration a	, .	IU Dull	JOJJ JJIII	1 1 V V I I U U -	, ~~~~~~~	,

Well/	Date	Casing	GW	LPH	GW Elev.	ТРНд	TPHd	TPHmo	В	Т	Е	X	Notes
Boring ID		Elevation (ft)	Depth (ft)	(ft)	(ft)			(C	oncentration in	μg/l)			
Wells													
MW-1	5/25/94	100.85	16.79	Sheen	84.06	120,000	25,000	<50,000	22,000	17,000	2,800	16,000	a
MW-2	5/25/94	100.00	15.65		84.35	61,000	6,900	<5,000	9,900	7,400	960	4,600	a
MW-3	5/25/94	96.87	13.93	Sheen	82.94	56,000	14,000	<50,000	14,000	14,000	1,300 -	11,000	a
								,					
Borings													
SB-A	5/6/94		14.50			7,000	9,100	<25,000	450	75	180	330	
SB-B	5/6/94		15.00			130,000	3,800	<5,000	10,000	11,000	2,200	11,000	
SB-D	5/9/94		19.30			150	210	<500	6.5	10	2.9	12	
DTSC MC	CLs or State A	Action Level				NE	NE	NE	1	100	680	1,750	

<u>Abbreviations</u>

Casing Elevation = Top of casing elevation with respect to onsite benchmark GW = Ground water

LPH = Liquid-phase hydrocarbons

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015

TPHmo = Total petroleum hydrocarbons as motor oil by modified EPA Method 8015

B = Benzene by EPA Method 8020

E = Ethylbenzene by EPA Method 8020

T = Toluene by EPA Method 8020

X = Xylenes by EPA Method 8020

DTSC MCLs = Department of Toxic Substances

Control maximum contaminant level for drinking

water

NE = Not established

Notes

a = The positive TPHd resul appears to be a hydrocarbon lighter than diesel APPENDIX A

Well Permits

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

ا دا رافاریستوند چا

5997 PARKSIDE DRIVE | PLEASANTON, CALIFORNIA 94586 | (415) 484-2600

GROUNDWATTER PROTECTION ORDINANCE PERSON APPROVATION

	FOR APPLICANT TO COMPLETE	FOR OFFICE USE
13	LOCATION OF PROJECT 3055 35 TA AVE CHARCAMO, LA 94615	PERMIT NUMBER 94278 LOCATION NUMBER
2)	CLIENT Name LYNN WORTHINGTON Address 5942 MacAnimus, STB Phone (774) 571-1600 City Onicland Zip 94605	PERMIT CONDITIONS Circled Parmit Requirements Apply
3)	APPLICANT Nome SCUTT MACLEUD CAMBRIA ENVIRUMENTAL Address // L/Y GT ST, STTE Phone (CIV) 420-0700 City ON-16-LAND ZIP 5460F	A. GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date.
4)	DESCRIPTION OF PROJECT Water Well Construction Seneral Well Costruction Contemination	 Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well projects, or drilling logs and location sketch for geotechnical projects. Permit is void if project not begun within 90
5)	PROPOSED WATER WELL USE Domestic Industrial irrigation Municipal Monitoring Other	days of approval date. B. WATER WELLS, INCLUDING PLEZOMETERS 1. Minimum surface seal thickness is two inches of coment grout placed by tremie.
6)	PROPOSED CONSTRUCTION Drilling Method: Mud Rotary Air Rotary Auger Cable Other DRILLER'S LICENSE NO	 Minimum seal depth is 50 feet for municipal and industrial wells or 20 fact for domestic, irrigation, and monitoring wells unless a lesser depth is specially approved. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings. CATHODIC. Fill hole above anode zone with concrete placed by tremie. MELL DESTRUCTION. See attached.
7)	ESTIMATED STARTING DATE ESTIMATED COMPLETION DATE APRIL 28/1554	.10
6 }	I hereby agree to comply with all requirements of this parmit and Alameda County Ordinance, No. 73-68,	Approved Wyman Hong Data 9 May 94 Wyman Hong
	APPLICANT'S RIGHATURE APPLICANT'S RIGHATURE	

APPENDIX B

Boring and Well Construction Logs

			BC	RING LOG		Boring ID SB-A						
Clie	nt: Lynn Wo	rth	ington			Locati	on 305	5 35th Ave, O	akland			
Proj	ect No: 20-10	5-	20	Phase 4 Ta	ask 4	Surfac	e Elev. N	/A ft,		Page 1 of 1		
Depth Feet	Blow Count	Sample	Interval	Lithologic Description		TPHg (ppm)	Graphic Log	Boring Completion Graphics	Depth Feet	Additional Comments		
5	Ground Surface			Silty GRAVEL Orange-brown damp; 5% clay, 30% silt, 20, 45% angular gravel to 1" did low plasticity; low estimated conductivity. Sandy to Clayey SILT Brown green mottling; hard; damp; clay, 50% silt, 20% sand, 1 gravel; medium to high plast low to low estimated hydrau conductivity.	o% sand, am.; no to i hydraulic with 20% o% icity; very				5			
15	25 6 9	X		Strong weathered gasoline of Silty SAND Brownish green; stiff; moist; <5% clay, 40% 55% sand, <5% gravel; low plasticity; low estimated hydronductivity. Very strong weathered gasol	very o silt, v Iraulic line odor.	3			15			
<u>20</u> 	10 15 18	X		Clayey to Sandy SILT Dark g brown; hard; damp; 15% cla silt, 30% sand, 10% gravel; plasticity, low estimated hyd conductivity. Slight to mode weathered gasoline odor.	y, 45% medium Iraulic				20			
30	11 18 20	X		No hydrocarbon odor					- 30	Bottom of boring		
[D	riller Soils Ex	ple	ration	Drilling Starte	d 5/5/9/			Notes				
Lo		Scc	ott Mac	Leod Drilling Comp		/94	nt	Notes:				

				DRING LOG	Boring ID SB-B					
	nt: Lynn Wo		_	n 4 - 4			5 35th Ave, 0	akland		
Depth	Blow	Sample 6		Phase 4 Task 4 Lithologic	Surface (mdd)	Graphic Reserved Log	Boring Completion	Depth Feet	Page 1 of 1 Additional	
	Count	Ś	=	Description	-=	ō	Graphics		Comments	
0	Ground Surfac	е		Sandy to gravelly SILT Brown with green mottled fractures; hard; damp; 5-10% clay, 50-55% silt, 15-20%				0		
5	6			sand, 10-20% angular gravel to 1.5" diam.; no to low plasticity; low to moderate estimated hydraulic conductivity. No hydrocarbon odor.				- - - - 5	•	
- - - -	15 34	X						- -		
10	10 15 24	X		Strong weathered gasoline odor.	170			10		
15	15 16 18	X		Strong, fresh to slightly weathered gasoline odor.	940			15 		
20	11 18	M		Silty SAND Brown; hard; wet; 40% silt, 50% sand, 10% gravel; no plasticity, moderate estimated hydraulic conductivity. Strong, fresh to slightly weathered gasoline odor				20		
25	8				:			25		
30	15							30	Bottom of boring	
Lo	iller Soils Ex gged By N. S ater-Bearing Zor	Sco	ott Mac		/94	ent	Notes:			

			ВС	RING LOG			Boring ID SB-D						
	nt: Lynn Wo		_				Location 3055 35th Ave, Oakland						
Proj	ect No: 20-1 0	5-	20	Phase 4	Т	ask 4	Surfac	e Elev. N	/A ft,		Page	1 of 1	
Depth Feet	Blow Count	Sample	Interval		Lithologic Description		TPHg (mdd)	Graphic Log	Boring Completion Graphics	Depth Feet	Addi Com	tional ments	
0 5 5 20 25 30	13 19 21 11 11 13 22	X		Silty GRAVEL damp; <5% c sand, 40% an no plasticity; r hydraulic cond No hydrocarbo sand; 1 silt, 40% sand plasticity; low conductivity. No hydrocarbo silty SAND Briclay, 40% silt, gravel; low pla hydraulic cond Very strong w Clayey to Sand plasticity, low conductivity. No hydrocarbo silt, 45% sand plasticity, low conductivity. No hydrocarbo silt, 45% sand plasticity, low conductivity. No hydrocarbo	clay, 40% silt, agular gravel to moderate estinductivity. on odor. y SAND Light 0-20% clay, 2d, 10% gravel estimated hy on odor. own; hard; many process of the sand, asticity; low eductivity. Weathered gason odor. dy SILT Dark wet; 15% clay is 10% gravely estimated hy estimated hy	brown; 20-30%; mated brown; 20-30%; medium draulic oist; < 5% stimated oline odor. green to y, 30% ; medium	<1			10	Bottom of	boring	
Dr	iller Soils Ex	nlc	ration		Drilling Start	ed 5/6/94			Notes: Bor	ina dia	l not rech	arge	
"	mei <u>gons ex</u>	PIL	nation		Jiming Starte	50 <u>5/5/5</u> 4			_ Notes. <u>BOT</u>	ing uit	, not reoll	4190	
	gged By N. S			Leod	Drilling Comp			nt	overnight	····			
W	ater-Bearing Zon	es	N/A		Grout Type	<u>Portland</u>	ceme	nţ					

				RING LOG		Boring ID SB-E						
	t: Lynn Wo l ct No: 20-10		_	Phase 4	Task 4		on 305 e Elev. N	5 35th Ave, O I/A ft,	akland	Page 1 of 1		
Depth Feet	Blow Count	Sample	i	Liti	hologic cription	TPHg (mdd)	Graphic Log	Boring Completion Graphics	Depth Feet	Additional Comments		
10 20 25	5 8 14 5 20 30 5 5 9 9	e X		damp; 10% clay, sand, 25% angul diam.; medium p moderate estimate conductivity. No hydrocarbon of the clay of the	lar gravel to 1.2" lasticity; low to ted hydraulic odor. wn with orange and very stiff; damp; 30% 0% sand; high ow estimated stivity. ered gasoline odor, green mottled areas.	220		Notes: Dr	0	Bottom of boring		
	riller Soils E							INULESDI	, 50111	3		
Lo	ogged By <u>N.</u>	Sc	ott Mac	Leod	Orilling Completed 5/5							
1 w	/ater-Bearing Zo	nes	Dry b	oring (Grout Type Portlan	d cem	ent					

		-	DR	LLING LOG			Boring ID SB-G Well ID MW-1					
Clie	nt: Lynn Wo	rtł					_					
1	ect No: 20-10		_	Phase 4	L та	sk 4		on 305 : e Elev		th Ave, O	akland	
<u> </u>		Т		Triase -	r 10	5K -F	Juriac		10,		<u> </u>	Page 1 of 1
Depth Feet	Blow	Sample	nterva		Lithologic		TPHg (ppm)	Graphic Log	_	Well	동늄	Well
P. P. P.	Count	an) te	ſ	Description		TPI dd	rag	Con	struction raphics	Depth Feet	Construction Details
L	334	ဟ	=)	9				Details
												T.O.C. Elev. 100.85
_	Ground Surfac								ı			
	- Glodila Suriac	<u>. </u>		Sandy SILT B	rown; hard; dar	np; 10%				·····kkr	0	Locking well plug and
					:, 20% sand, 10 I to 1" diam.; lo						_	above-grade steel stovepipe
_				medium plast	icity; low to mo	derate						stovepipe
				estimated hyd No hydrocarb	iraulic conducti on odor.	vity.					-	
5	1			,				17]-[1]-[[1]-			5	
	10	M						. [] [- [] [- []] [- [] [- []] [- [_	
	20 32										<u>-</u>	
-	- -										-	
											-	
10						_				12,12	10	
	9 - 16	M		Strong weath	ered gasoline o	dor.						
	18						20				_	
-	1				frown; very stiff 6 clay, 55% silt						_	
				sand; high pla	sticity; very lov	v					_	
15	<u> </u>				Iraulic conductive thereof the state of the						15	
:	5 9	И			·		390				-	
:	15										-	
-	1						!				-	
	1										-	
20	6			Moderate gas	oline odor.						20	
	13	M			ark green; very						_	
_	20			sand; no plast	lay, 60% silt, 1 ticity; moderate	to high					L	
					fraulic conductive trong weathere						_	
25 ·				gasoline odor.	•	-					25	
25	5			Clayey SILT B	rown mottled gist; 40% clay, 5	reen; 55% silt.				2408408	- 2 5	
	- 7 - 12	Λ		5% sand; high	h plasticity; ver	y low		ЩЩ			-	
-				No odor to ve	fraulic conductions of the street of the str						_	
	1			gasoline odor.		!						
30	1										30	
	iller Soils Ex	nle	ration		Development '	Vield N/	Δ	<u> </u>		entonite Sea	75	to 9 5 ft
H				l and				45 40	_			
	gged By <u>N.S</u>			Levu	į.	4 D			_	and Pack		onterey sand
	illing Started 5				Casing Type				1	and Pack Ty		
l i	illing Completed				Well Screen 4 Dia. 10 to 25				Static Water Level 14.53 ft Depth			
					Screen Type Schedule 40 PVC				-	Date <u>5/25/94</u>		
					Slot Size <u>0.010-inch</u>				- [№]	Notes:		
W	ater Bearing Zon	es	<u>21 to</u>	23.5 ft	Drilling Mud N/A				_ -			
l I_				Grout Type Portland cement				_ .				

DRILLING LOG							Boring ID SB-F Well ID MW-2					
Clier	•		_		_	_	1		5	akland	l .	
Proje	ect No: 20-10	5-	20	Phase 4	1 Ta	sk 4	Surfac	e Elev	- ft,		Page 1 of 1	
Depth Feet	Blow Count	Sample	Interval		Lithologic Description		TPHg (ppm)	Graphic Log	Well Construction Graphics	Depth Feet	Well Construction Details	
									<u> </u>		T.O.C. Elev. 100.00	
10	9 13 21 7 10 11	X		hard; damp; 15% sand, 1 diam.; medium moderate est conductivity. No hydrocarb Sandy SILT G 5% clay, 55% gravel; no to estimated hydrocarbon Silty SAND B wet; 30% silt angular grave moderate to b conductivity. Very strong f Hydrocarbon Moderate gas Clayey SILT E 30% clay, 60 plasticity; ver hydraulic con Very strong f Hydrocarbon Silty SAND B 30% silt, 50% gravel to 1";	arey green; hare 6 silt, 30% san low plasticity; in draulic conduct lered gasoline of the foliation of the f	silt, vel to 1" v to 1" v to c ; damp; d, 10% moderate ivity. dor. hard; 0% asticity; hydraulic dor. amples. if; moist; nd; high d dor. amples.	370 2,900			10	Locking well plug and above-grade steel stovepipe	
							<u> </u>					
11	iler <u>Soils Ex</u>				Development				Bentonite Sea			
	gged By <u>N. S</u> -			Leod	Well Casing			to <u>10</u>	_	· ·	onterey sand	
H	lling Started <u>5</u>			·	Casing Type				_ Sand Pack Ty		1	
l I	lling Completed			Well Screen <u>4</u> Dia. <u>10</u> to <u>25</u>								
. }	nstruction Com		•	Screen Type Schedule 40 PVC				Date				
Development Completed 5/17/94 Water Bearing Zones 13 to 20.5 ft					Slot Size 0.010-inch				Notes:			
w	ater Bearing Zor	es	13 to	20.5 ft	Drilling Mud				_			
l I					Grout Type Portland cement				_			

		_		ILLING LOG			Boring	ID SB	-C We	7777		
ì	nt: Lynn Wo		•	- : 4					5 35th Ave,	Oakland		
<u> </u>	ect No: 20-10]	T	Phase 4	4 T.	ask 4	Surfac	e Elev	- ft,		Page 1 of 2	
Depth Feet	Blow Count	Sample	Interva	Ì	Lithologic Description		TPHg (ppm)	Graphic Log	Well Construction Graphics	Depth Feet	Well Construction Details	
		<u> </u>									T.O.C. Elev. 96.87	
5	damp; 5% 40% angul to moderat estimated i No hydroca			damp; 5% cla 40% angular to moderate p	Light brown; ay, 40% silt, 1 gravel to 1" di blasticity; mode draulic conduct on odor.	5% sand, am.; low erate				0	Locking well plug and above-grade steel stovepipe	
10	11 18 35	X		with green mo 30% clay, 30 gravel; high po hydraulic cond Moderate wes Silty SAND Br moist; <5% of sand, 15% gr	athered gasolin rownish-green; clay, 35% silt, ravel; no plastic	noist; and, 30% stimated e odor. hard; 40% city;	25			10		
15	7 10 16	X		conductivity. Very strong fr gasoline odor. Sandy to Clay stiff; wet; 20 sand, 10% gr plasticity; low conductivity.	yey SILT Brown % clay, 50% s ravel; medium to y estimated hyd	red n; very ilt, 20% to high draulic	490			15		
25	7 11 20 N/A	X		Hydrocarbon silty SAND Br 5% clay, 35% gravel; no to lestimated hydrocarbon silty by the strong from the stron	resh gasoline o sheen on soil s rown; very stif 6 silt, 60% san low plasticity; draulic conduct resh gasoline o sheen on soil s srown; very stif	amples. f; wet; id, 10% moderate ivity. dor. amples.				25		
30		X		plasticity; very hydraulic cond Very strong fr Hydrocarbon s Sitty SAND Br <5% clay, 20	9% silt, 15% say low estimate ductivity. resh gasoline o sheen on soil srown; very stif- 0% silt, 60% sinued Next Paginate of the silt, 60% sinued Next Paginate of the silt, 60% sinued Next Paginate of the silt, 60% silt, 60% sinued Next Paginate of the silt, 60% silt, 60% sinued Next Paginate of the silt, 60% silt	dor. amples. f; wet; and, 20%		89398		30		
<u> </u>	u. Caile Fee			Conti			Δ	·			0.64	
Log Dri Dri Co	Iller Soils Expanded By N. Soils Expanded By N. Soiling Started 5/Illing Completed Instruction Comp	66/ 6/ 5	ott MacI 94 6/6/94 ed <u>5/9</u>	0/94	Development Yield N/A Well Casing 2 Dia. 0 to 1 Casing Type Schedule 40 PVC Well Screen 2 Dia. 10 to 2 Screen Type Schedule 40 PVC			to <u>25</u>	Sand Pack Sand Pack Static Wate	M Type #2	onterey sand 2/16	
i I	velopment Compater Bearing Zon				Slot Size 0,010-inch				Notes:			

1	DRILLING LOG Client: Lynn Worthington Project No: 20-105-20 Phase 4 Task 4						B-C Well II		
Proje	ect No: 20-10	7	<i>-</i>	Phase 4 Task 4	Surfac	e Elev	ft,	1	Page 2 of 2
Depth Feet	Blow Count	Sample	Interval	Lithologic Description	TPHg (ppm)	Graphic Log	Well Construction Graphics	Depth Feet	Well Construction Details
94 30 40 45 50 55 60	Count	Sam	Inte	Continued from previous page gravel; no plasticity; moderate to high estimated hydraulic conductivity. Very strong fresh gasoline odor. Hydrocarbon sheen on soil samples.	TP (pp	Gray Lo	Graphics	30 - 35 - 40 - 45 	Construction Details
65								70	

APPENDIX C

Analytic Results for Soil and Ground Water

Santa Rosa Division 435 Tesconi Circle Santa Rosa, CA 95401

Tel: (707) 526-7200 Fax: (707) 526-9623

Scott Macleod Cambria 1144 65th Street Suite C Oakland, CA 94608 Date: 05/25/1994

NET Client Acct. No: 98900 NET Pacific Job No: 94.01914

Received: 05/06/1994

Client Reference Information

35th Ave., Oakland

Sample analysis in support of the project referenced above has been completed and results are presented on following pages. Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please feel welcome to contact Client Services.

Approved by:

Jady Rigley
Project Coordinator

Operations Manager

Jim Hoch

Enclosure(s)

Client Acct: 98900 Client Name: Cambria NET Job No: 94.01914 Page: 2

Date: 05/25/1994 ELAP Certificate: 1386

Ref: 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-A 11'

Date Taken: 05/05/1994 Time Taken: 15:15 NET Sample No: 193713

-		Reporting				Date	Date	
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed	
TPH (Gas/BTXE, Solid)								
METHOD 5030/M8015							05/18/1994	
DILUTION FACTOR*	1						05/18/1994	
as Gasoline	3.4		1	mg/kg	5030		05/18/1994	
METHOD 8020 (GC, Solid)							05/18/1994	
Benzene	7.2		2.5	ug/kg	8020		05/18/1994	
Toluene	1.5		2.5	ug/kg	8020		05/18/1994	
Ethylbenzene	15		2.5	ug/kg	8020		05/18/1994	
Xylenes (Total)	31		2.5	ug/kg	8020		05/18/1994	
SURROGATE RESULTS							05/18/1994	
Bromofluorobenzene (SURR)	96			% Rec.	5030		05/18/1994	
METHOD 3550/M8015						05/17/1994		
DILUTION FACTOR*	1						05/19/1994	
as Diesel	4.2	\DL	1	mg/kg	3550		05/19/1994	
as Motor Oil	ND		10	mg/kg	3550		05/19/1994	

DL : The positive result appears to be a lighter hydrocarbon than Diesel.

Client Acct: 98900 Client Name: Cambria

NET Job No: 94.01914 Page: 3

Date: 05/25/1994 ELAP Certificate: 1386

Ref: 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-A 16'

Date Taken: 05/05/1994 Time Taken: 15:50 NET Sample No: 193714

-			Reportin	Reporting			Date	
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed	
TPH (Gas/BTXE, Solid)	•							
METHOD 5030/M8015							05/19/1994	
DILUTION FACTOR*	200						05/19/1994	
as Gasoline	1,600		200	mg/kg	5030		05/19/1994	
METHOD 8020 (GC, Solid)							05/19/1994	
Benzene	1,800		500	ug/kg	8020		05/19/1994	
Toluene	3,400		500	ug/kg	8020		05/19/1994	
Ethylbenzene	17,000		500	ug/kg	8020		05/19/1994	
Xvlenes (Total)	54,000		500	ug/kg	8020		05/19/1994	
SURROGATE RESULTS							05/19/1994	
Bromofluorobenzene (SURR)	77			% Rec.	5030		05/19/1994	
METHOD 3550/M8015						05/17/1994		
DILUTION FACTOR*	100						05/19/1994	
as Diesel	620	_DL	100	mg/kg	3550		05/19/1994	
as Motor Oil	ND	-	1000	mg/kg	3550		05/19/1994	

 $\mathtt{DL}\xspace$: The positive result appears to be a lighter hydrocarbon than Diesel.

Client Name: Cambri

NET Job No: 94.01914

Date: 05/25/1994 ELAP Certificate: 1386

Page: 4

Ref: 35th Ave., Oakland

CONTINUING CALIBRATION VERIFICATION STANDARD REPORT

		CCA	CCV			
	CCV	Standard	Standard			
	Standard	Amount	Amount		Date	Analyst
Parameter	% Recovery	Found	Expected	Units	Analyzed	<u>Initials</u>
TPH (Gas/BTXE, Solid)						
as Gasoline	102.0	5.10	5.00	mg/kg	05/18/1994	pbg
Benzene	93.2	23.3	25.0	ug/kg	05/18/1994	pbg
Toluene	94.8	23.7	25.0	ug/kg	05/18/1994	pbg
Ethylbenzene	93.2	23.3	25.0	ug/kg	05/18/1994	pbg
Xylenes (Total)	93.5	70.1	75.0	ug/kg	05/18/1994	pbg
Bromofluorobenzene (SURR)	89.0	89	100	% Rec.	05/18/1994	pbg
TPH (Gas/BTXE, Solid)						
as Gasoline	106.8	5.34	5.00	mg/kg	05/19/1994	pbg
Benzene	100.0	25.0	25.0	ug/kg	05/19/1994	pbg
Toluene	101.2	25.3	25.0	ug/kg	05/19/1994	pbg
Ethylbenzene	98.4	24.6	25.0	ug/kg	05/19/1994	pbg
Xylenes (Total)	98.4	73.8	75.0	ug/kg	05/19/1994	pbg
Bromofluorobenzene (SURR)	910.0	910	100	% Rec.	05/19/1994	pbg
METHOD 3550/M8015						
as Diesel	112.9	1129	1000	mg/kg	05/19/1994	fyh
as Motor Oil	103.2	1032	1000	mg/kg	05/19/1994	fyh

Client Name: Cambria

NET Job No: 94.01914 Page: 5

Date: 05/25/1994 ELAP Certificate: 1386

Ref: 35th Ave., Oakland

METHOD BLANK REPORT

Method

	Blank				
	Amount	Reporting		Date	Analyst
Parameter	Found	Limit	Units	Analyzed	<u>Initials</u>
TPH (Gas/BTXE, Solid)					
as Gasoline	ND	1	mg/kg	05/18/1994	pbg
Benzene	ND	2.5	ug/kg	05/18/1994	pbg
Toluene	ND	2.5	ug/kg	05/18/1994	pbg
Ethylbenzene	ND	2.5	ug/kg	05/18/1994	pbg
Xylenes (Total)	ND	2.5	ug/kg	05/18/1994	pbg
Bromofluorobenzene (SURR)	85		% Rec.	05/18/1994	pbg
TPH (Gas/BTXE, Solid)					
as Gasoline	ND	1	mg/kg	05/19/1994	pbg
Benzene	ND	2.5	ug/kg	05/19/1994	pbg
Toluene	ND	2.5	ug/kg	05/19/1994	pbg
Ethylbenzene	ND	2.5	ug/kg	05/19/1994	pbg
Xylenes (Total)	ND	2.5	ug/kg	05/19/1994	pbg
Bromofluorobenzene (SURR)	82		% Rec.	05/19/1994	pbg
METHOD 3550/M8015	S				
as Diesel	ND	1	mg/kg	05/18/1994	fyh
as Motor Oil	ND	10	mg/kg	05/18/1994	fyh

Client Acct: 98900 Client Name: Cambri

Ref: 35th Ave., Oakland

NET Job No: 94.01914

Date: 05/25/1994

ELAP Certificate: 1386

Page: 6

MATRIX SPIKE / MATRIX SPIKE DUPLICATE

	Matrix	-				Matrix	Matrix Spike		Page 2	
	Spike	Dup		Spike	Sample	Spike	Dup.		Date	Analyst
Parameter	₹ Rec.	% Rec.	RPD	Amount	Conc.	Conc.	Conc.	Units	Analyzed	<u>Initials</u>
TPH (Gas/BTXE, Solid)										
as Gasoline	90.2	90.4	0.2	6.04	ND	5.45	5.46	mg/kg dw	05/18/1994	pbg
Benzene	92.7	89.8	3.2	214	ND	198	192	ug/kg dw	05/18/1994	pbg
Toluene	92.1	89.9	2.4	611	ND	562	549	ug/kg dw	05/18/1994	pbg
TPH (Gas/BTXE, Solid)										
as Gasoline	57.4	55.8	2.8	5.00	ND	2.87	2.79	mg/kg dw	05/19/1994	pbg
Benzene	71.3	70.8	0.7	171	ND	122	121	ug/kg dw	05/19/1994	pbg
Toluene	67.5	66.9	0.9	493	ND	333	330	ug/kg dw	05/19/1994	pbg
METHOD 3550/M8015					-					
as Diesel	119.8	77.8	42.4	16.7	18	38	31	mg/kg	05/18/1994	fyh

Client Acct: 98900 Date: 05
Client Name: Cambria ELAP Cer
NET Job No: 94.01914 Page: 7

Date: 05/25/1994 ELAP Certificate: 1386

Ref: 35th Ave., Oakland

LABORATORY CONTROL SAMPLE REPORT

		LCS	LCS			
	LCS	Amount	Amount		Date	Analyst
Parameter	% Recovery RPD	Found	Expected	Units	Analyzed	Initials
METHOD 3550/M8015						
as Diesel	95.8	16.0	16.7	mg/kg	05/18/1994	fyh

KEY TO ABBREVIATIONS and METHOD REFERENCES

: Less than; When appearing in results column indicates analyte not detected at the value following. This datum supercedes the listed Reporting Limit.

: Reporting Limits are a function of the dilution factor for any given sample. Actual reporting limits and results have been multiplied by the listed dilution factor. Do not multiply the reporting limits or reported values by the dilution factor.

dw : Result expressed as dry weight.

mean : Average; sum of measurements divided by number of measurements.

mg/Kg (ppm) : Concentration in units of milligrams of analyte per kilogram of

sample, wet-weight basis (parts per million). .

mg/L : Concentration in units of milligrams of analyte per liter of sample.

mL/L/hr : Milliliters per liter per hour.

MPN/100 mL : Most probable number of bacteria per one hundred milliliters of sample.

N/A : Not applicable.

NA : Not analyzed.

ND : Not detected; the analyte concentration is less than the applicable

listed reporting limit.

NTU : Nephelometric turbidity units.

RPD : Relative percent difference, 100 [Value 1 - Value 2]/mean value.

SNA : Standard not available.

ug/Kg (ppb) : Concentration in units of micrograms of analyte per kilogram of sample,

wet-weight basis (parts per billion).

ug/L : Concentration in units of micrograms of analyte per liter of sample.

umhos/cm : Micromhos per centimeter.

Method References

Methods 100 through 493: see "Methods for Chemical Analysis of Water & Wastes", U.S. EPA, 600/4-79-020, Rev. 1983.

<u>Methods 601 through 625</u>: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants" U.S. EPA, 40 CFR, Part 136, Rev. 1988.

<u>Methods</u> 1000 through 9999: see "Test Methods for Evaluating Solid Waste", U.S. EPA SW-846, 3rd edition, 1986., Rev. 1, December 1987.

 \underline{SM} : see "Standard Methods for the Examination of Water & Wastewater, 17th Edition, APHA, 1989.

Revised September, 1993 abb.93

NATIONAL
ENVIRONMENTAL
TECTING INC
® TESTING, INC.

N			NATIONAL ENVIRONMENTA ® TESTING, INC.	AL COM ADDR PHOR	PANY - RESS - NE - S JECT N	1144 STSJ 4.	CUST BBBBBB BST SO-070 CATION_	7,5 3	is p	NE NUE	FA)	04	1/4	ANI Y) Ç	460 -917	P.O. NO. NET QUOTE NO	
AMPL	ED BY	MAL	LEWS		<u> </u>	\supset			. 4341 64542	San San	11. (4)				AN	ALYSE	SES	
PRINT NA			<u></u>	SIGNATURE						2. A.				//	//			
DATE	TIME		SAMPLE ID/DESCRIPTIO	DN .	GRAB	COMP # OF CONTAINERS TYPE	MATRIX	PRESERVED Y/N		ŽŽ	\$2°		//			//	comments	
tsky	14155	53	8-A 6'		X	THE	Soil		hol								100 - WILL CALL MONDAY	2300
-	12:10	· ·	il		44			1	X	K				_ _				_
	15:20	ļ	16		+++	+	 	++	$\stackrel{\wedge}{\prec}$	X			+	\dashv	-			
-	16:25	 	26		+++	++	 	$+ \downarrow$	1 No		+ -			-	-			
	JL `5Z				+++		Y	+	1 NO	la	-	\vdash	+	\dashv	<u> </u>		-1	
					+		 		-	 	-		+	+	+-		Standard fat per Scott II	
																	to NF 5/9	
					$\downarrow \downarrow$	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>					_			
	 	 		_	$\downarrow \downarrow$		<u> </u>	↓	<u> </u>	 	<u> </u>	\vdash		_				
					++		-	 		├—		-	+					
		 			++		<u> </u>	+	-		-	\vdash	+					_
					++		 	1	+	-	\vdash	\sqcap	+	+	 			-
CONDI	TION OF	F SAMP	PLE: BOTTLES INTACT? FIELD FILTERED?				COC SEAL VOLATILES								-	_	TEMPERATURE UPON RECEIPT: /, 4°C	
				SAMPLE REMA				MAIND	ERS .	1	<i></i>						DATE	
RELINQU	IISHED BY:	\mathcal{N}	DATE/TIME SK/44 フン/	RECEIVE		Inh	(me 3/	025		ELMO	ydenst V	SBY:	he			DATE/TI 3/6/4	TIME RECEIVED FOR NET BY:	
METHO	OD OF S	HIPME	NT	ŔEMA	RKS:					- -	/ 						, , , , , , , , , , , , , , , , , , ,	

Santa Rosa Division 435 Tesconi Circle Santa Rosa, CA 95401

Tel: (707) 526-7200 Fax: (707) 526-9623

Scott Macleod Cambria 1144 65th Street Suite C Oakland, CA 94608 Date: 05/25/1994

NET Client Acct. No: 98900 NET Pacific Job No: 94.01905

Received: 05/10/1994

Client Reference Information

35th Ave., Oakland

Sample analysis in support of the project referenced above has been completed and results are presented on following pages. Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please feel welcome to contact Client Services.

Approved by:

roject Coordinator

Jim Hoch Operations Manager

Enclosure(s)

Client Name: Cambria ELAP Certificate: 1386
NET Job No: 94.01905 Page: 2

Ref: 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-B 11'

Date Taken: 05/06/1994 Time Taken: 08:40 NET Sample No: 193646

			Reportin	ıg		Date	Date
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE, Solid)							
METHOD 5030/M8015							05/18/1994
DILUTION FACTOR*	50						05/18/1994
as Gasoline	170		50	mg/kg	5030		05/18/1994
METHOD 8020 (GC, Solid)							05/18/1994
Benzene	450		120	ug/kg	8020		05/18/1994
Toluene	2,500		120	ug/kg	8020		05/18/1994
Ethylbenzene	1,700		120	ug/kg	8020		05/18/1994
Xylenes (Total)	11,000		120	ug/kg	8020		05/18/1994
SURROGATE RESULTS							05/18/1994
Bromofluorobenzene (SURR)	87			% Rec.	5030		05/18/1994
METHOD 3550/M8015						05/17/1994	
DILUTION FACTOR*	10						05/18/1994
as Diesel	52	DL	10	mg/kg	3550		05/18/1994
as Motor Oil	ND		100	mg/kg	3550	-	05/18/1994

 ${\tt DL}$: The positive result appears to be a lighter hydrocarbon than ${\tt Diesel.}$

Client Name: Cambria ELAP Certificate: 1386
NET Job No: 94.01905

Ref: 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-B 16'

Date Taken: 05/06/1994 Time Taken: 08:50 NET Sample No: 193647

			Reportin	ıg		Date	Date
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE, Solid)							
METHOD 5030/M8015							05/18/1994
DILUTION FACTOR*	200						05/18/1994
as Gasoline	940		200	mg/kg	5030		05/18/1994
METHOD 8020 (GC, Solid)							05/18/1994
Benzene	6,300		500	ug/kg	8020		05/18/1994
Toluene	28,000		500	ug/kg	8020		05/18/1994
Ethylbenzene	12,000		500	ug/kg	8020		05/18/1994
Xylenes (Total)	70,000		500	ug/kg	8020		05/18/1994
SURROGATE RESULTS							05/18/1994
Bromofluorobenzene (SURR)	93			% Rec.	5030		05/18/1994
METHOD 3550/M8015						05/17/1994	
DILUTION FACTOR*	10						05/19/1994
as Diesel	120	DL	10	mg/kg	3550		05/19/1994
as Motor Oil	ND		100	mg/kg	3550		05/19/1994

 $\mathtt{DL}\xspace$: The positive result appears to be a lighter hydrocarbon than Diesel.

Client Acct: 98900 Date: 05
Client Name: Cambria ELAP Cer
NET Job No: 94.01905 Page: 4

Date: 05/25/1994 ELAP Certificate: 1386

Ref: 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-C 11'

Date Taken: 05/06/1994 Time Taken: 10:00 NET Sample No: 193648

			Reportin	ng .		Date	Date
Parameter	Results	Flags	Limit_	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE, Solid)							•
METHOD 5030/M8015							05/19/1994
DILUTION FACTOR*	10						05/19/1994
as Gasoline	25		10	mg/kg	5030		05/19/1994
METHOD 8020 (GC, Solid)							05/19/1994
Benzene	220		25	ug/kg	8020		05/19/1994
Toluene	620		25	ug/kg	8020		05/19/1994
Ethylbenzene	490		25	ug/kg	8020		05/19/1994
Xylenes (Total)	2,100		25	ug/kg	8020		05/19/1994
SURROGATE RESULTS							05/19/1994
Bromofluorobenzene (SURR)	84			% Rec.	5030		05/19/1994
METHOD 3550/M8015						05/17/1994	
DILUTION FACTOR*	1						05/19/1994
as Diesel	6.7	-DL	1	mg/kg	3550		05/19/1994
as Motor Oil	ND		10	mg/kg	3550		05/19/1994

DL : The positive result appears to be a lighter hydrocarbon than Diesel.

Client Acct: 98900 Date: 05/25/1994
Client Name: Cambria ELAP Certificate: 1386
NET Job No: 94.01905 Page: 5

Ref: 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-C 16'

Date Taken: 05/06/1994 Time Taken: 10:15 NET Sample No: 193649

			Reportin	ıa		Date	Date
Parameter	Results	Flags	Limit	Units _	Method	Extracted	Analyzed
TPH (Gas/BTXE, Solid)							
METHOD 5030/M8015							05/19/1994
DILUTION FACTOR*	200						05/19/1994
as Gasoline	490		200	mg/kg	5030		05/19/1994
METHOD 8020 (GC, Solid)							05/19/1994
Benzene	1,900		500	ug/kg	8020		05/19/1994
Toluene	14,000		500	ug/kg	8020		05/19/1994
Ethylbenzene	7,400		500	ug/kg	8020		05/19/1994
Xylenes (Total)	42,000		500	ug/kg	8020		05/19/1994
SURROGATE RESULTS							05/19/1994
Bromofluorobenzene (SURR)	83			% Rec.	5030		05/19/1994
METHOD 3550/M8015						05/17/1994	
DILUTION FACTOR*	50						05/18/1994
as Diesel	280	DL	50	mg/kg	3550		05/18/1994
as Motor Oil	ND		500	mg/kg	3550		05/18/1994

 $\mathtt{DL}\xspace$: The positive result appears to be a lighter hydrocarbon than Diesel.

Client Acct: 98900 Date: 05
Client Name: Cambria ELAP Cer
NET Job No: 94.01905 Page: 6

Date: 05/25/1994 ELAP Certificate: 1386

Ref: 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-D 11'

Date Taken: 05/06/1994

Time Taken: 11:55

NET Sample No: 193650

			Reportin	g		Date	Date
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE, Solid)							
METHOD 5030/M8015							05/18/1994
DILUTION FACTOR*	1						05/18/1994
as Gasoline	ND		1	mg/kg	5030		05/18/1994
METHOD 8020 (GC, Solid)							05/18/1994
Benzene	ND		2.5	ug/kg	8020		05/18/1994
Toluene	ND		2.5	ug/kg	8020		05/18/1994
Ethylbenzene	ND		2.5	ug/kg	8020		05/18/1994
Xylenes (Total)	N D		2.5	ug/kg	8020		05/18/1994
SURROGATE RESULTS							05/18/1994
Bromofluorobenzene (SURR)	70			% Rec.	5030		05/18/1994
METHOD 3550/M8015						05/17/1994	
DILUTION FACTOR*	1						05/19/1994
as Diesel	5.2	`-	1	mg/kg	3550		05/19/1994
as Motor Oil	ND		10	mg/kg	3550		05/19/1994

Client Acct: 98900 NET Job No: 94.01905

ELAP Certificate: 1386

Page 7

Date: 05/25/1994

Ref: 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-D 16'

Date Taken: 05/06/1994 Time Taken: 12:20 NET Sample No: 193651

			Reportin	ıg		Date	Date
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE, Solid)							
METHOD 5030/M8015							05/18/1994
DILUTION FACTOR*	1						05/18/1994
as Gasoline	ND		1	mg/kg	5030		05/18/1994
METHOD 8020 (GC, Solid)					•		05/18/1994
Benzene	ND		2.5	ug/kg	8020		05/18/1994
Toluene	ND		2.5	ug/kg	8020		05/18/1994
Ethylbenzene	ND		2.5	ug/kg	8020		05/18/1994
Xylenes (Total)	ND		2.5	ug/kg	8020		05/18/1994
SURROGATE RESULTS							05/18/1994
Bromofluorobenzene (SURR)	73			% Rec.	5030		05/18/1994
METHOD 3550/M8015						05/17/1994	
DILUTION FACTOR*	1						05/19/1994
as Diesel	ND	`-	1	mg/kg	3550		05/19/1994
as Motor Oil	ND		10	mg/kg	3550		05/19/1994

 Client Acct: 98900
 Date: 05/25/1994

 Client Name: Cambria
 ELAP Certificate: 1386

 NET Job No: 94.01905
 Page: 8

Ref: 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-A GW

Date Taken: 05/06/1994 Time Taken: 08:20 NET Sample No: 193652

			Reportin	g		Date	Date
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE, Liquid)							
METHOD 5030/M8015							05/20/1994
DILUTION FACTOR*	50						05/20/1994
as Gasoline	7.0		2	mg/L	5030		05/20/1994
METHOD 8020 (GC, Liquid)							05/20/1994
Benzene	450		20	ug/L	8020		05/20/1994
Toluene	75		20	ug/L	8020		05/20/1994
Ethylbenzene	180		20	ug/L	8020		05/20/1994
Xylenes (Total)	330		20	ug/L	8020		05/20/1994
SURROGATE RESULTS							05/20/1994
Bromofluorobenzene (SURR)	101			% Rec.	5030		05/20/1994

Client Acct: 98900 Client Name: Cambria ELAP Cer NET Job No: 94.01905 Page: 9

Date: 05/25/1994 ELAP Certificate: 1386

Ref: 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-B GW

Date Taken: 05/06/1994 Time Taken: 11:30 NET Sample No: 193653

			Reportin		Date	Date	
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE, Liquid)							
METHOD 5030/M8015							05/16/1994
DILUTION FACTOR*	100						05/16/1994
as Gasoline	130		5	mg/L	5030		05/16/1994
METHOD 8020 (GC, Liquid)							05/16/1994
Benzene	10,000	FI	50	ug/L	8020		05/16/1994
Toluene	11,000	FI	50	ug/L	8020		05/16/1994
Ethylbenzene	2,200		50	ug/L	8020		05/16/1994
Xylenes (Total)	11,000		50	ug/L	8020		05/16/1994
SURROGATE RESULTS							05/16/1994
Bromofluorobenzene (SURR)	170	MI		% Rec.	5030		05/16/1994

 ${\tt FI}$: Compound quantitated at a 1000X dilution factor.

MI : Matrix Interference Suspected

Client Acct: 98900 Client Name: Cambria

NET Job No: 94.0190

Date: 05/25/1994

Page: 10

Ref: 35th Ave., Oakland

CONTINUING CALIBRATION VERIFICATION STANDARD REPORT

		CCV	CCV			
	ÇCV	Standard	Standard			
	Standard	Amount	Amount		Date	Analyst
Parameter	% Recovery	Found	Expected	Units	Analyzed	Initials
TPH (Gas/BTXE, Liquid)						
as Gasoline	86.0	0.86	1.00	mg/L	05/20/1994	aal
Benzene	99.6	4.98	5.00	ug/L	05/20/1994	aal
Toluene	95.8	4.79	5.00	ug/L	05/20/1994	aal
Ethylbenzene	93.4	4.67	5.00	ug/L	05/20/1994	aal
Xylenes (Total)	94.0	14.1	15.0	ug/L	05/20/1994	aal
Bromofluorobenzene (SURR)	96.0	96	100	% Rec.	05/20/1994	aal
TPH (Gas/BTXE,Liquid)						
as Gasoline	104.0	1.04	1.00	mg/L	05/20/1994	klh
Benzene	102.2	5.11	5.00	ug/L	05/20/1994	klh
Toluene	102.0	5.10	5.00	ug/L	05/20/1994	klh
Ethylbenzene	98.8	4.94	5.00	ug/L	05/20/1994	klh
Xylenes (Total)	104:7	15.7	15.0	ug/L	05/20/1994	klh
Bromofluorobenzene (SURR)	94.0	94	100	% Rec.	05/20/1994	klh
TPH (Gas/BTXE, Solid)						
as Gasoline	102.0	5.10	5.00	mg/kg	05/18/1994	pbg
Benzene	93.2	23.3	25.0	ug/kg	05/18/1994	pbg
Toluene	94.8	23.7	25.0	ug/kg	05/18/1994	pbg
Ethylbenzene	93.2	23.3	25.0	ug/kg	05/18/1994	pbg
Xylenes (Total)	93.5	70.1	75.0	ug/kg	05/18/1994	pbg
Bromofluorobenzene (SURR)	89.0	89	100	% Rec.	05/18/1994	pbg
TPH (Gas/BTXE, Solid)						
as Gasoline	106.8	5.34	5.00	mg/kg	05/19/1994	pbg
Benzene	100.0	25.0	25.0	ug/kg	05/19/1994	pbg
Toluene	101.2	25.3	25.0	ug/kg	05/19/1994	pbg
Ethylbenzene	98.4	24.6	25.0	ug/kg	05/19/1994	pbg
Xylenes (Total)	98.4	73.8	75.0	ug/kg	05/19/1994	pbg
Bromofluorobenzene (SURR)	910.0	910	100	* Rec.	05/19/1994	pbg
METHOD 3550/M8015						
as Diesel	113.3	1133	1000	mg/kg	05/18/1994	fyh
as Motor Oil	101.0	1010	1000	mg/kg	05/18/1994	fyh

Client Acct: 98900 Client Name: Cambria

NET Job No: 94.01905

Date: 05/25/1994 ELAP Certificate: 1386

Page: 12

Ref: 35th Ave., Oakland

MATRIX SPIKE / MATRIX SPIKE DUPLICATE

		Matrix					Matrix			
	Matrix	Spike				Matrix	Spike			
	Spike	Dup		Spike	Sample	Spike	Dup.		Date	Analyst
Parameter	% Rec.	% Rec.	RPD	Amount	Conc.	Conc.	Conc.	Units	Analyzed	Initials
TPH (Gas/BTXE,Liquid)										
as Gasoline	87.0	85.0	2.3	1.00	ND	0.87	0.85	mg/L	05/20/1994	aal
Benzene	100.8	98.2	2.5	39.0	ND	39.3	38.3	ug/L	05/20/1994	aal
Toluene	101.2	98.1	3.0	100.5	ND	101.7	98.6	ug/L	05/20/1994	aal
TPH (Gas/BTXE, Liquid)										
as Gasoline	104.0	87.0	17.7	1.00	ND	1.04	0.87	mg/L	05/20/1994	klh
Benzene	102.1	91.2	11.2	33.1	ND	33.8	30.2	ug/L	05/20/1994	klh
Toluene	98.6	90.5	8.6	80.9	ND	79.8	73.2	ug/L	05/20/1994	klh
TPH (Gas/BTXE, Solid)										
as Gasoline	90.2	90.4	0.2	6.04	ND	5.45	5.46	mg/kg dw	05/18/1994	pbg
Benzene	92.7	89.8	3.2	214	ND	198	192	ug/kg dw	05/18/1994	pbg
Toluene	92.1	89.9	2.4	611	ND	562	549	ug/kg dw	05/18/1994	pbg
TPH (Gas/BTXE, Solid)										
as Gasoline	57.4	55.8	2.8	5.00	ND	2.87	2.79	mg/kg dw	05/19/1994	pbg
Benzene	71.3	70.8	0.7	171	ND	122	121	ug/kg dw	05/19/1994	pbg
Toluene	67.5	66.9	0.9	493	ND	333	330	ug/kg dw	05/19/1994	pbg
METHOD 3550/M8015										
as Diesel	119.8	77.8	42.4	16.7	18	38	31	mg/kg	05/18/1994	fyh

Client Acct: 98900 Date: 05/25/1994
Client Name: Cambria ELAP Certificate: 1386
NET Job No: 94.01905 Page: 11

Ref: 35th Ave., Oakland

METHOD BLANK REPORT

Method

	Blank				
	Amount	Reporting		Date	Analyst
Parameter	Found	Limit	Units	Analyzed	<u>Initials</u>
TPH (Gas/BTXE, Liquid)					
as Gasoline	ND	0.05	mg/L	05/20/1994	aal
Benzene	ND	0.5	ug/L	05/20/1994	aal
Toluene	ND	0.5	ug/L	05/20/1994	aal
Ethylbenzene	ND	0.5	ug/L	05/20/1994	aal
Xylenes (Total)	ND	0.5	ug/L	05/20/1994	aal
Bromofluorobenzene (SURR)	93		% Rec.	05/20/1994	aal
TPH (Gas/BTXE, Liquid)					
as Gasoline	ND	0.05	mg/L	05/20/1994	klh
Benzene	ND	0.5	ug/L	05/20/1994	klh
Toluene	ND	0.5	ug/L	05/20/1994	klh
Ethylbenzene	ND	0.5	ug/L	05/20/1994	klh
Xylenes (Total)	ND	0.5	ug/L	05/20/1994	klh
Bromofluorobenzene (SURR)	82		% Rec.	05/20/1994	klh
TPH (Gas/BTXE, Solid)	~				
as Gasoline	ND	1	mg/kg	05/18/1994	pbg
Benzene	ND	2.5	ug/kg	05/18/1994	pbg
Toluene	ND	2.5	ug/kg	05/18/1994	pbg
Ethylbenzene	ND	2.5	ug/kg	05/18/1994	pbg
Xylenes (Total)	ND	2.5	ug/kg	05/18/1994	pbg
Bromofluorobenzene (SURR)	85		% Rec.	05/18/1994	pbg
TPH (Gas/BTXE, Solid)					
as Gasoline	ND	1	mg/kg	05/19/1994	pbg
Benzene	ND	2.5	ug/kg	05/19/1994	pbg
Toluene	ND	2.5	ug/kg	05/19/1994	pbg
Ethylbenzene	ND	2.5	ug/kg	05/19/1994	pbg
Xylenes (Total)	ND	2.5	ug/kg	05/19/1994	pbg
Bromofluorobenzene (SURR)	82		% Rec.	05/19/1994	pbg
METHOD 3550/M8015					
as Diesel	ND	1	mg/kg	05/18/1994	fyh
as Motor Oil	ND	10	mg/kg	05/18/1994	fyh

Client Acct: 98900 Date: 05/25/1994
Client Name: Cambria ELAP Certificate: 1386
NET Job No: 94.01905 Page: 12

Ref: 35th Ave., Oakland

MATRIX SPIKE / MATRIX SPIKE DUPLICATE

		Matrix					Matrix			
	Matrix	Spike				Matrix	Spike			
	Spike	Dup		Spike	Sample	Spike	Dup.		Date	Analyst
Parameter	% Rec.	% Rec.	RPD	Amount	Conc.	Conc.	Conc.	Units	Analyzed	Initials
TPH (Gas/BTXE,Liquid)										
as Gasoline	87.0	85.0	2.3	1.00	ND	0.87	0.85	mg/L	05/20/1994	aal
Benzene	100.8	98.2	2.5	39.0	ND	39.3	38.3	ug/L	05/20/1994	aal
Toluene	101.2	98.1	3.0	100.5	ND	101.7	98.6	ug/L	05/20/1994	aal
TPH (Gas/BTXE,Liquid)										
as Gasoline	104.0	87.0	17.7	1.00	ND	1.04	0.87	mg/L	05/20/1994	klh
Benzene	102.1	91.2	11.2	33.1	ND	33.8	30.2	ug/L	05/20/1994	klh
Toluene	98.6	90.5	8.6	80.9	ND	79.8	73.2	ug/L	05/20/1994	klh
TPH (Gas/BTXE,Solid)										
as Gasoline	90.2	90.4	0.2	6.04	ND	5.45	5.46	mg/kg dw	05/18/1994	pbg
Benzene	92.7	89.8	3.2	214	ND	198	192	ug/kg dw	05/18/1994	pbg
Toluene	92.1	89.9	2.4	611	ND	562	549	ug/kg dw	05/18/1994	pbg
TPH (Gas/BTXE, Solid)										
as Gasoline	57.4	55.8	2.8	5.00	ND	2.87	2.79	mg/kg dw	05/19/1994	pbg
Benzene	71.3	70.8	0.7	171	ND	122	121	ug/kg dw	05/19/1994	pbg
Toluene	67.5	66.9	0.9	493	ND	333	330	ug/kg dw	05/19/1994	pbg
METHOD 3550/M8015										
as Diesel	119.8	77.8	42.4	16.7	18	38	31	mg/kg	05/18/1994	fyh

Client Acct: 98900 Client Name: Cambria ELAP Cert
NET Job No: 94.01905 Page: 13

Date: 05/25/1994

ELAP Certificate: 1386

Ref: 35th Ave., Oakland

LABORATORY CONTROL SAMPLE REPORT

		LCS	LCS			
	rcs '	Amount	Amount		Date	Analyst
Parameter	% Recovery RPD	Found	Expected	Units	Analyzed	Initials
METHOD 3550/M8015						
as Diesel	95.8	16.0	16.7	mg/kg	05/18/1994	fyh

KEY TO ABBREVIATIONS and METHOD REFERENCES

 Less than; When appearing in results column indicates analyte not detected at the value following. This datum supercedes the listed Reporting Limit.

: Reporting Limits are a function of the dilution factor for any given sample. Actual reporting limits and results have been multiplied by the listed dilution factor. Do not multiply the reporting limits or reported values by the dilution factor.

w dw : Result expressed as dry weight.

mean : Average; sum of measurements divided by number of measurements.

mg/Kg (ppm) : Concentration in units of milligrams of analyte per kilogram of

sample, wet-weight basis (parts per million).

mg/L : Concentration in units of milligrams of analyte per liter of sample.

mL/L/hr : Milliliters per liter per hour.

MPN/100 mL : Most probable number of bacteria per one hundred milliliters of sample.

N/A : Not applicable.

NA : Not analyzed.

ND : Not detected; the analyte concentration is less than the applicable

listed reporting limit.

NTU : Nephelometric turbidity units.

RPD : Relative percent difference, 100 [Value 1 - Value 2]/mean value.

SNA : Standard not available.

ug/Kg (ppb) : Concentration in units of micrograms of analyte per kilogram of sample,

wet-weight basis (parts per billion).

ug/L : Concentration in units of micrograms of analyte per liter of sample.

umhos/cm : Micromhos per centimeter.

Method References

Methods 100 through 493: see "Methods for Chemical Analysis of Water & Wastes", U.S. EPA, 600/4-79-020, Rev. 1983.

Methods 601 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants" U.S. EPA, 40 CFR, Part 136, Rev. 1988.

Methods 1000 through 9999: see "Test Methods for Evaluating Solid Waste", U.S. EPA SW-846, 3rd edition, 1986., Rev. 1, December 1987.

 \underline{SM} : see "Standard Methods for the Examination of Water & Wastewater, 17th Edition, APHA, 1989.

Revised September, 1993 abb.93

	NATIONAL
	NATIONAL
	ENVIRONMENTAL
	TESTING, INC.
(E) I ESTING, INC.

NATIONAL ENVIRONMENTAL ® TESTING, INC.	COM ADDI PHOI PROJ PROJ	PANY RESS NE IECT N IECT N	114		n -14 -070	SH		14/ - FAX 4-UB	X	3/Y/	$Z \circ$	1-91 LAM	<u> フ</u> ロ の		REPORT TO: SATT PARTICLES INVOICE TO: CAMESTOLE P.O. NO NET QUOTE NO
	NATURE	9		4					7 12 32		0	Wal	ANAL	SES	
DATE TIME SAMPLE ID DESCRIPTION	NATURE	GRAB	COMP # OF CONTAINERS TYPE	MATRIX	PRESERVED		2 ³ /,								COMMENTS
14948:30 513-13 61		χ	1-11.17	e Soic		1	γ_	<i>/ /</i>	7	$ \wedge $		f		f	1+11-D
8,40 11	· <u>······</u>		1 70.5	1		176	X	X:						\dagger	- 170
8:57 16		111		1 1	11	 	+	X					- 		
9.05 21'		111				 	-	 	-				_	+	HOLD
9:20 + 26'		+		 	++	+							_	T	1th S
9:45 5/3-6 6'		1 //		+ +	++	+-	 							 	thie
10'00 11'		+++	++	+ +	++	+	-	Y	_			<u> </u>		+-	Here.
1015 16		+++	+	1	++		X	X	-				+-	+	
1019 21		+++		 -		+	-					-	-	+-	115
		+++		1	+H	+	-	╁							HOLD
11:41 SB-D C		+++		+	++	-	 	1/2	<u> </u>				+	╁	ITOLO
11:54 (1		-	1	 	+	X	1	1				_	-	┼	
12124 16				1 1	1	X		×						-	CUSTODY SEALED
5/8120 S/3-A GW		X	3/40	Hei		-+	K) —					+		(a) Bound
11)72 513-3 GW		×			ļ ·	×	7	 						-	seal intact
CONDITION OF SAMPLE: BOTTLES INTACT? YES				COC SEA			TANE	NTA	ACT?	YES	NO.	<u>v</u> 4	s -v		TEMPERATURE UPON RECEIPT: 1.0°C
SAMPLE REMAINDER DISPOSAL: RETURN SAMP	IIO DIS	OSE	R TO CLIE	ENT VIA _	EMAINE			1						/ ,	DATE
DATE/TIME 5/2/54 3 Judget			inte	1/2	125	_ ^f	FLING	IUSHE!	ygy: UA	W	Tu.		3	9/9	4 16:45 & Schandle 5/10/94 000
METHOD OF SHIPMENT ★ Via NCS	ŘEMAI	HKS:	•												
XX V/Q IV L.S															

Santa Rosa Division 435 Tesconi Circle Santa Rosa, CA 95401

Tel: (707) 526-7200 Fax: (707) 526-9623

Scott Macleod Cambria 1144 65th Street Suite C Oakland, CA 94608 Date: 05/25/1994

NET Client Acct. No: 98900 NET Pacific Job No: 94.01945

Received: 05/11/1994

Client Reference Information

3055 35th Ave., Oakland

Sample analysis in support of the project referenced above has been completed and results are presented on following pages. Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please feel welcome to contact Client Services.

Jim Hoch

Operations Manager

Approved by:

Jydy Ridley

Project Coordinator

Enclosure(s)

Client Acct: 98900 Client Name: Cambria

NET Job No: 94.01945 Page: 2

Date: 05/25/1994 ELAP Certificate: 1386

Ref: 3055 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-E 11'

Date Taken: 05/09/1994 Time Taken: 07:40 NET Sample No: 193983

			Reportin	ıg		Date	Date
Parameter	Results	Flags	<u>Limit</u>	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE, Solid)							
METHOD 5030/M8015							05/19/1994
DILUTION FACTOR*	10						05/20/1994
as Gasoline	220		10	mg/kg	5030		05/20/1994
METHOD 8020 (GC, Solid)							05/20/1994
Benzene	550		25	ug/kg	8020		05/20/1994
Toluene	2,100		25	ug/kg	8020		05/20/1994
Ethylbenzene	1,700		25	ug/kg	8020		05/20/1994
Xylenes (Total)	2,800	FF	25	ug/kg	8020		05/23/1994
SURROGATE RESULTS							05/20/1994
Bromofluorobenzene (SURR)	98			% Rec.	5030		05/20/1994
METHOD 3550/M8015						05/17/1994	
DILUTION FACTOR*	1						05/18/1994
as Diesel	56	^DL	1	mg/kg	3550		05/18/1994
as Motor Oil	ND		10	mg/kg	3550		05/18/1994

 $[\]mathtt{DL}\,:\,\mathtt{The}\,$ positive result appears to be a lighter hydrocarbon than Diesel.

FF : Compound quantitated at a 100% dilution factor.

Client Acct: 98900 Client Name: Cambria Client Name: Cambria ELAP Cer NET Job No: 94.01945 Page: 3

Date: 05/25/1994 ELAP Certificate: 1386

Ref: 3055 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-E 16'

Date Taken: 05/09/1994 Time Taken: 07:45 NET Sample No: 193984

			Reportin	ıg		Date	Date
<u>Parameter</u>	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE,Solid)							
METHOD 5030/M8015							05/19/1994
DILUTION FACTOR*	1						05/19/1994
as Gasoline	3.8		1	mg/kg	5030		05/19/1994
METHOD 8020 (GC, Solid)							05/19/1994
Benzene	190	FC	2.5	ug/kg	8020		05/20/1994
Toluene	200	FC	2.5	ug/kg	8020		05/20/1994
Ethylbenzene	59		2.5	ug/kg	8020		05/19/1994
Xylenes (Total)	200		2.5	ug/kg	8020		05/19/1994
SURROGATE RESULTS							05/19/1994
Bromofluorobenzene (SURR)	97			% Rec.	5030		05/19/1994
METHOD 3550/M8015						05/17/1994	
DILUTION FACTOR*	1						05/18/1994
as Diesel	1.4	-DL	1	mg/kg	3550		05/18/1994
as Motor Oil	ND		10	mg/kg	3550		05/18/1994

DL : The positive result appears to be a lighter hydrocarbon than Diesel.

FC : Compound quantitated at a 10% dilution factor.

NOTE: Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety.

Client Acct: 98900 Client Name: Cambria ELAP Certificate: 1386
NET Job No: 94.01945 Page: 4

Date: 05/25/1994

Ref: 3055 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-F 11'

Date Taken: 05/09/1994 Time Taken: 08:35 NET Sample No: 193985

			Reportin	ıg		Date	Date
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE, Solid)							
METHOD 5030/M8015							05/19/1994
DILUTION FACTOR*	100						05/19/1994
as Gasoline	370		100	mg/kg	5030		05/19/1994
METHOD 8020 (GC, Solid)					•		05/19/1994
Benzene	ND		250	ug/kg	8020		05/19/1994
Toluene	ND		250	ug/kg	8020		05/19/1994
Ethylbenzene	3,900		250	ug/kg	8020		05/19/1994
Xylenes (Total)	6,200		250	ug/kg	8020		05/19/1994
SURROGATE RESULTS							05/19/1994
Bromofluorobenzene (SURR)	97			% Rec.	5030		05/19/1994
METHOD 3550/M8015						05/17/1994	
DILUTION FACTOR*	1						05/18/1994
as Diesel	57	_DL	1	mg/kg	3550		05/18/1994
as Motor Oil	ND		10	mg/kg	3550		05/18/1994

 ${\tt DL}$: The positive result appears to be a lighter hydrocarbon than ${\tt Diesel}\,.$

Client Acct: 98900 Client Name: Cambria ELAP Cer
NET Job No: 94.01945 Page: 5

Date: 05/25/1994 ELAP Certificate: 1386

Ref: 3055 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-F 15'

Date Taken: 05/09/1994 Time Taken: 09:00 NET Sample No: 193986

			Reportin	ıg		Date	Date
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE,Solid)							
METHOD 5030/M8015							05/20/1994
DILUTION FACTOR*	1,000						05/20/1994
as Gasoline	2,900		1000	mg/kg	5030		05/20/1994
METHOD 8020 (GC, Solid)							05/20/1994
Benzene	24,000		2500	ug/kg	8020		05/20/1994
Toluene	41,000		2500	ug/kg	8020		05/20/1994
Ethylbenzene	48,000		2500	ug/kg	8020		05/20/1994
Xylenes (Total)	196,000		2500	ug/kg	8020		05/20/1994
SURROGATE RESULTS							05/20/1994
Bromofluorobenzene (SURR)	96			% Rec.	5030		05/20/1994
METHOD 3550/M8015						05/17/1994	
DILUTION FACTOR*	10						05/18/1994
as Diesel	450	.DT	10	mg/kg	3550		05/18/1994
as Motor Oil	ND		100	mg/kg	3550		05/18/1994

 ${\tt DL}$: The positive result appears to be a lighter hydrocarbon than ${\tt Diesel.}$

Client Acct: 98900 Client Name: Cambria

NET Job No: 94.01945 Page: 6

Date: 05/25/1994 ELAP Certificate: 1386

Ref: 3055 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-G 11'

Date Taken: 05/09/1994 Time Taken: 11:00 NET Sample No: 193987

			Reportin	ıg		Date	Date
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE, Solid)							
METHOD 5030/M8015							05/19/1994
DILUTION FACTOR*	1						05/19/1994
as Gasoline	20		1	mg/kg	5030		05/19/1994
METHOD 8020 (GC, Solid)							05/19/1994
Benzene	61		2.5	ug/kg	8020		05/19/1994
Toluene	14		2.5	ug/kg	8020		05/19/1994
Ethylbenzene	93		2.5	ug/kg	8020		05/19/1994
Xylenes (Total)	340	FC	2.5	ug/kg	8020		05/20/1994
SURROGATE RESULTS							05/19/1994
Bromofluorobenzene (SURR)	117			% Rec.	5030		05/19/1994
METHOD 3550/M8015						05/17/1994	
DILUTION FACTOR*	1						05/18/1994
as Diesel	18	DL	1	mg/kg	3550		05/18/1994
as Motor Oil	ND		10	mg/kg	3550		05/18/1994

 ${\tt DL}$: The positive result appears to be a lighter hydrocarbon than ${\tt Diesel.}$

FC : Compound quantitated at a 10% dilution factor.

Client Acct: 98900 Date: 05/25/1994
Client Name: Cambria ELAP Certificate: 1386
NET Job No: 94.01945 Page: 7

Ref: 3055 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-G 15'

Date Taken: 05/09/1994

Time Taken: 11:00 NET Sample No: 193988

•							
			Reportin	Reporting			Date
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE,Solid)							
METHOD 5030/M8015							05/19/1994
DILUTION FACTOR*	100						05/19/1994
as Gasoline	390		100	mg/kg	5030		05/19/1994
METHOD 8020 (GC, Solid)							05/19/1994
Benzene	1,400		250	ug/kg	8020		05/19/1994
Toluene	6,100		250	ug/kg	8020		05/19/1994
Ethylbenzene	3,900		250	ug/kg	8020		05/19/1994
Xylenes (Total)	16,000		250	ug/kg	8020		05/19/1994
SURROGATE RESULTS							05/19/1994
Bromofluorobenzene (SURR)	98			% Rec.	5030		05/19/1994
METHOD 3550/M8015						05/17/1994	
DILUTION FACTOR*	1						05/18/1994
as Diesel	52	~ D -	1	mg/kg	3550		05/18/1994
as Motor Oil	ND		10	mg/kg	3550		05/18/1994

 $\ensuremath{\text{D-}}$: The positive result has an atypical pattern for Diesel analysis.

Client Acct: 98900 Date: 05
Client Name: Cambria ELAP Cer
NET Job No: 94.01945 Page: 8

Date: 05/25/1994

ELAP Certificate: 1386

Ref: 3055 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-A GW

Date Taken: 05/09/1994 Time Taken: 07:20 NET Sample No: 193989

			Reportin	ng		Date	Date
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
METHOD 3510/M8015							
DILUTION FACTOR*	50						
as Diesel	9.1		2.5	mg/L	3510		05/18/1994
as Motor Oil	ND		25	mg/L	3510		

Client Acct: 98900 Client Name: Cambria

NET Job No: 94.01945

Date: 05/25/1994

ELAP Certificate: 1386

Ref: 3055 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-B GW

Date Taken: 05/09/1994 Time Taken: 07:30 NET Sample No: 193990

		Date	Date			
Parameter	Results Flag	s Limit	Units	Method	Extracted	Analyzed
METHOD 3510/M8015						- -
DILUTION FACTOR*	10					
as Diesel	3.8	0.5	mg/L	3510		05/18/1994
as Motor Oil	ND	5.0	mg/L	3510		

 Client Acct: 98900
 Date: 05/

 Client Name: Cambria
 ELAP Cert

 NET Job No: 94.01945
 Page: 10

Date: 05/25/1994

ELAP Certificate: 1386

Ref: 3055 35th Ave., Oakland

SAMPLE DESCRIPTION: SB-D GW

Date Taken: 05/09/1994 Time Taken: 08:00 NET Sample No: 193991

		Reportin	ıg		Date	Date
Parameter	Results Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE,Liquid)						
METHOD 5030/M8015						05/23/1994
DILUTION FACTOR*	1					05/23/1994
as Gasoline	0.15	0.05	mg/L	5030		05/23/1994
METHOD 8020 (GC, Liquid)				•		05/23/1994
Benzene	6.5	0.5	ug/L	8020		05/23/1994
Toluene	10	0.5	ug/L	8020		05/23/1994
Ethylbenzene	2.9	0.5	ug/L	8020		05/23/1994
Xylenes (Total)	12	0.5	ug/L	8020		05/23/1994
SURROGATE RESULTS						05/23/1994
Bromofluorobenzene (SURR)	100		% Rec.	5030		05/23/1994
METHOD 3510/M8015						
DILUTION FACTOR*	1					
as Diesel	0.21	0.05	mg/L	3510		05/18/1994 -
as Motor Oil	ND	0.5	mg/L	3510		

Client Acct: 98900 Client Name: Cambria NET Job No: 94.01945

Date: 05/25/1994 ELAP Certificate: 1386

Page: 11

Ref: 3055 35th Ave., Oakland

CONTINUING CALIBRATION VERIFICATION STANDARD REPORT

		CCV	CCV			
	ĊCA	Standard	Standard			
	Standard	Amount	Amount		Date	Analyst
Parameter	% Recovery	Found	Expected	Units	Analyzed	Initials
TPH (Gas/BTXE, Liquid)						
as Gasoline	85.0	0.85	1.00	mg/L	05/23/1994	aal
Benzene	103.4	5.17	5.00	ug/L	05/23/1994	aal
Toluene	100.0	5.00	5.00	ug/L	05/23/1994	aal
Ethylbenzene	95.4	4.77	5.00	ug/L	05/23/1994	aal
Xylenes (Total)	96.7	14.5	15.0	ug/L	05/23/1994	aal
Bromofluorobenzene (SURR)	96.7	96.7	100	% Rec.	05/23/1994	aal
METHOD 3510/M8015						
as Diesel	105.0	845	805	mg/L	05/17/1994	sub/port
TPH (Gas/BTXE, Solid)						
as Gasoline	112.2	5.61	5.00	mg/kg	05/19/1994	pbg
Benzene	85.2	21.3	25.0	ug/kg	05/19/1994	pbg
Toluene	94.4	23.6	25.0	ug/kg	05/19/1994	pbg
Ethylbenzene	91.6	22.9	25.0	ug/kg	05/19/1994	pbg
Xylenes (Total)	95.1	71.3	75.0	ug/kg	05/19/1994	pbg
Bromofluorobenzene (SURR)	880.0	880	100	% Rec.	05/19/1994	pbg
TPH (Gas/BTXE, Solid)						
as Gasoline	114.4	5.72	5.00	mg/kg	05/20/1994	aal
Benzene	89.2	22.3	25.0	ug/kg	05/20/1994	aal
Toluene	98.4	24.6	25.0	ug/kg	05/20/1994	aal
Ethylbenzene	96.0	24.0	25.0	ug/kg	05/20/1994	aal
Xylenes (Total)	98.7	74.0	75.0	ug/kg	05/20/1994	aal
Bromofluorobenzene (SURR)	91.0	91	100	% Rec.	05/20/1994	aal
TPH (Gas/BTXE, Solid)						
as Gasoline	107.6	5.38	5.00	mg/kg	05/23/1994	lss
Benzene	98.8	24.7	25.0	ug/kg	05/23/1994	lss
Toluene	108.8	27.2	25.0	ug/kg	05/23/1994	lss
Ethylbenzene	106.8	26.7	25.0	ug/kg	05/23/1994	lss
Xylenes (Total)	109.6	82.2	75.0°	ug/kg	05/23/1994	lss
Bromofluorobenzene (SURR)	100.0	100	100	% Rec.	05/23/1994	lss
METHOD 3550/M8015						
as Diesel	113.3	1133	1000	mg/kg	05/18/1994	fyh
as Motor Oil	101.0	1010	1000	mg/kg	05/18/1994	fyh

 Client Acct:
 98900
 Date:
 05/25/1994

 Client Name:
 Cambria
 ELAP Certificate:
 1386

 NET Job No:
 94.01945
 Page:
 12

Ref: 3055 35th Ave., Oakland

METHOD BLANK REPORT

Method Blank

	Prair						
	Amount	Reporting		Date	Analyst		
Parameter	. Found	Limit	Units	Analyzed	Initials		
TPH (Gas/BTXE, Liquid)							
as Gasoline	ND	0.05	mg/L	05/23/1994	aal		
Benzene	ND	0.5	ug/L	05/23/1994	aal		
Toluene	ND	0.5	ug/L	05/23/1994	aal		
Ethylbenzene	ND	0.5	ug/L	05/23/1994	aal		
Xylenes (Total)	ND	0.5	ug/L	05/23/1994	aal		
Bromofluorobenzene (SURR)	98		% Rec.	05/23/1994	aal		
METHOD 3510/M8015							
as Diesel	ND	0.05	mg/L	05/17/1994	sub/port		
TPH (Gas/BTXE, Solid)							
as Gasoline	ND	1	mg/kg	05/19/1994	pbg		
Benzene	ND	2.5	ug/kg	05/19/1994	pbg		
Toluene	ND	2.5	ug/kg	05/19/1994	pbg		
Ethylbenzene	ND	2.5	ug/kg	05/19/1994	pbg		
Xylenes (Total)	`ND	2.5	ug/kg	05/19/1994	pbg		
Bromofluorobenzene (SURR)	99		% Rec.	05/19/1994	pbg		
TPH (Gas/BTXE, Solid)							
as Gasoline	ND	1	mg/kg	05/20/1994	aal		
Benzene	ND	2.5	ug/kg	05/20/1994	aal		
Toluene	ND	2.5	ug/kg	05/20/1994	aal		
Ethylbenzene	ND	2.5	ug/kg	05/20/1994	aal		
Xylenes (Total)	ND	2.5	ug/kg	05/20/1994	aal		
Bromofluorobenzene (SURR)	92		% Rec.	05/20/1994	aal		
TPH (Gas/BTXE, Solid)							
as Gasoline	ND	1	mg/kg	05/23/1994	lss		
Benzene	ND	2.5	ug/kg	05/23/1994	lss		
Toluene	ND	2.5	ug/kg	05/23/1994	lss		
Ethylbenzene	ND	2.5	ug/kg	05/23/1994	lss		
Xylenes (Total)	ND	2.5	ug/kg	05/23/1994	lss		
Bromofluorobenzene (SURR)	89		% Rec.	05/23/1994	lss		
METHOD 3550/M8015							
as Diesel	ND	1	mg/kg	05/18/1994	fyh		
as Motor Oil	ND	10	mg/kg	05/18/1994	fyh		

Client Acct: 98900 Client Name: Cambria

NET Job No: 94.01949

Ref: 3055 35th Ave., Oakland

Date: 05/25/1994

Page: 13

MATRIX SPIKE / MATRIX SPIKE DUPLICATE

		Matrix					Matrix			
	Matrix	Spike -				Matrix	Spike		5 -4-	
	Spike	Dup		Spike	Sample	Spike	Dup.		Date	Analyst
Parameter	% Rec.	% Rec.	RPD	Amount	Conc.	Conc.	Conc.	Units	Analyzed	Initials
TPH (Gas/BTXE, Liquid)										
as Gasoline	88.0	89.0	1.1	1.00	0.15	1.03	1.04	mg/L	05/23/1994	aal
Benzene	101.3	101.8	0.5	39.0	6.5	46.0	46.2	ug/L	05/23/1994	aal
Toluene	100.0	100.2	0.2	101.3	10	111.3	111.5	ug/L	05/23/1994	aal
METHOD 3510/M8015										
as Diesel			1.9**					mg/L	05/17/1994	sub/port
TPH (Gas/BTXE, Solid)										
as Gasoline	107.4	100.0	7.1	5.00	ND	5.37	5.00	mg/kg	05/19/1994	pbg
Benzene	98.9	97.8	1.1	183	ND	181	179	ug/kg	05/19/1994	pbg
Toluene	99.8	101.8	2.00	507	2.7	508	498	ug/kg	05/19/1994	pbg
TPH (Gas/BTXE, Solid)										
as Gasoline	100.6	104.0	3.3	5.00	ND	5.03	5.20	mg/kg	05/20/1994	aal
Benzene	92.6	94.2	1.7	190	ND	176	179	ug/kg	05/20/1994	aal
Toluene	95.0	95.4	0.4	517	ND	491	493	ug/kg	05/20/1994	aal
TPH (Gas/BTXE, Solid)										
as Gasoline	94.0	94.4	0.4	5.00	ND	4.70	4.72	mg/kg	05/23/1994	lss
Benzene	80.2	85.8	6.7	197	ND	158	169	ug/kg	05/23/1994	lss
Toluene	87.2	90.2	3.4	523	ND	456	472	ug/kg	05/23/1994	lss
METHOD 3550/M8015										
as Diesel	119.8	77.8	42.4	16.7	18	38	31	mg/kg	05/18/1994	fyh

^{**} Sample duplicates RPD.

 Client Acct: 98900
 Date: 05/

 Client Name: Cambria
 ELAP Cert

 NET Job No: 94.01945
 Page: 14

Date: 05/25/1994 ELAP Certificate: 1386

Ref: 3055 35th Ave., Oakland

LABORATORY CONTROL SAMPLE REPORT

		LCS	LCS			
	LCS .	Amount	Amount		Date	Analyst
Parameter	% Recovery RPD	Found	Expected	Units	Analyzed	Initials
METHOD 3510/M8015						
as Diesel	82.9	834	1006	mg/L	05/17/1994	sub/port
METHOD 3550/M8015						
as Diesel	95.8	16.0	16.7	mg/kg	05/18/1994	fyh

KEY TO ABBREVIATIONS and METHOD REFERENCES

 Less than; When appearing in results column indicates analyte not detected at the value following. This datum supercedes the listed Reporting Limit.

: Reporting Limits are a function of the dilution factor for any given sample. Actual reporting limits and results have been multiplied by the listed dilution factor. Do not multiply the reporting limits or reported values by the dilution factor.

v dw : Result expressed as dry weight.

mean : Average; sum of measurements divided by number of measurements.

mg/Kg (ppm) : Concentration in units of milligrams of analyte per kilogram of

sample, wet-weight basis (parts per million).

mg/L : Concentration in units of milligrams of analyte per liter of sample.

mL/L/hr : Milliliters per liter per hour.

MPN/100 mL : Most probable number of bacteria per one hundred milliliters of sample.

N/A : Not applicable.

NA : Not analyzed.

ND : Not detected; the analyte concentration is less than the applicable

listed reporting limit.

NTU : Nephelometric turbidity units.

RPD : Relative percent difference, 100 [Value 1 - Value 2]/mean value.

SNA : Standard not available.

ug/Kg (ppb) : Concentration in units of micrograms of analyte per kilogram of sample,

wet-weight basis (parts per billion).

ug/L : Concentration in units of micrograms of analyte per liter of sample.

umhos/cm : Micromhos per centimeter.

Method References

Methods 100 through 493: see "Methods for Chemical Analysis of Water &
Wastes", U.S. EPA, 600/4-79-020, Rev. 1983.

Methods 601 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants" U.S. EPA, 40 CFR, Part 136, Rev. 1988.

Methods 1000 through 9999: see "Test Methods for Evaluating Solid
Waste", U.S. EPA SW-846, 3rd edition, 1986., Rev. 1, December 1987.

 \underline{SM} : see "Standard Methods for the Examination of Water & Wastewater, 17th Edition, APHA, 1989.

Revised September, 1993 abb.93

	-		NATIONAL ENVIRONMENTA TESTING, INC.	AL COM	CHAIN OF CUSTODY RECORD COMPANY CAMISIZIA FENURUMENTAL ADDRESS 11 44 65 ANE OBKLAND 94608 PHONE (570) 420-0700 FAX (570) 420-9170 PROJECT NAME/LOCATION 3055 35 AME, OAKLAND								PEPORT TO: SOUT MALLEUD INVOICE TO: CAMBILIA					
				PROJ	JECT N	UMBER_	ation_ Sci							J 7	y 5		P.O. NO	
	•	MAE	LZOD	SIGNATURE	57						<i>y</i>				ANA	YSE		
DATE	TIME		SAMPLE ID DESCRIPTI		GRAB	ONTAINERS	MATRIX	PRESERVED			SA SA					//	COMMENTS	
19kg	7:30		E GA		X	I TUSE	501	μ				/					How	200000000000000000000000000000000000000
<u> </u>	7:40	 	11		14	11		11_	T	X			_	$\perp \perp$				
-	7:45	 	16	······································	+++			₩.	大	X	K	<u> </u>	_		_	_ _		
1-	7:50	 	21		++				ļ			\vdash	_ _		_	\perp	How	
┼		513-			111-	++		 		2.0			\perp	+	-		thus	_
 	8:35		10		 -		 	┼┼	X	$\overline{}$				4-4	\perp			
	9:00		15						x	X	×				\dashv	- -	- <u> </u>	
	9:00		16	_ .				╁╁	ļ							+	How	
	9:15	 	21		 	-	 -	+		,			_			+	Itaco	
	Ī	53-			+++			╁-\					-			_	Horo	
	11,00	-	15		+++-			}-}-		×					_	-		
	11710	},				1			*	8	<u>x</u>			-	\dashv	_		
<u> </u>	11:25	-	2(V	+		Ψ					_	-	- -		140	
								-						-			CUSTODY SEALED	
	<u></u>	L				.1		1	<u> </u>									
AMPI	E REMA	AINDER	FIELD FILTERED?	YES/NO	DSE/S	TÓ CLIFI	COC SEAI VOLATILE NT VIA MPLE RE	S FREE	OF I		SPAC	E? YES) 		ATE/TIN	DATE	9°c
1	DD OF S	·		REMAI	Xa AKS:	nor	< 0	9:50		Ł		<pre>///</pre>	pu		3	// 8 /4	24 16:00 \$ 15 mgs 5/11/93	

		Ņ	IATION	AL	CH	CHAIN OF CUSTODY RECORD)		9269				
	. [3	L B	:NVIHC ESTIN	NMENTAL G, INC.	COM			13:21A			11/20	N	IEN	n	<u>ر</u>			i		\α ^N REPORT TO: <u>5</u> 6
					AUUF	KESS. Ne						FAX	 ($\sqrt{2}$	A	5/1	INVOICE TO:
					PROJ	ECT N	NAME/LO	CATION					`			-0		, A		P.O. NO.
					PROJ	ECT N	NUMBER_								(لىو	-			
					PROJ	ECT N	MANAGEF			Political Control	··· · · ·				Ø					NET QUOTE NO.
	ED BY							•			1 10	e de la companya de La companya de la co	13.4	/	77		AN	ALYS	si≅s ∕	
RINT NA	ME)				SIGNATURE			,			salása:	ď			/ D	/ /	//	/	//	
RINT NA	ME)				SIGNATURE						7		/\(\ ?)/:	(8)	7/	//	//	//] 	
DATE	TIME		SAMPL	E ID DESCRIPTION		GRAB	COMP # OF CONTAINERS	MATRIX	PRESERVED Y/N	13			// //	<i>y</i> /	/	/:/	/		/	COMMENTS
kki	フル	53 -	A	CW		Y	Il	Had	Y	X			1							-
L	7:20						Il		N		x			·						
\perp	フシン	1			- 12		3 VUM	-	14											Horo
_	7:30	513-	3	GW			12		Ý	X										
	7:20	1		· · ·		Ш	ıl		<u>Ú</u>		×									. ;
	7:30	1				\coprod	3VUA		14										\	HOLD * 2 of 3 roas w/headspace
	812	5/3-	D	6W		4	12		У	V	łX	Ì								AL 5/1
<u>¥</u>	8200	4				W	3000	Y	14			x								
																		_>	*	IF POSSIBLE, ANDLYZE SB-D
										<u> </u>										GW BAMPLE IN I'L BOTTLE
	,										<u> </u>									FUR TPH-D.
										ļ	<u> </u>									preserved w/ HZ504. AL 5/11
						Ш		ļ	<u> </u>	<u> </u>										
									<u> </u>	ļ				_/						CUSTODY SEALED
							<u> </u>													6/10/94 / Haple
OND	TION OI	F SAMPLE:		LES INTACT?				COC SEA											T	EMPERATURE UPON RECEIPT: 0.9°C
		AINDER DI			MPLE REMA	INDE	R TO CLIE	NT VIA _			_/	!	-1	<u> </u>						hi .
	DECLES NET TO DISPOSE OF ALL SAMPLE RELINQUISHED BY: DATE/TIME RECENT/ BY										MSHED	#		_			DATE DATE RECEIVED FOR NET BY:			
	25	~	سد ا	s/sy #4:	w	Zu	nbee	- 0	9:50	· >				nt	u			110	74	RECEIVED FOR NET BY: A Kengle 5/4/94 080
IETH		HIPMENT	1h-	/	REMAF	RKS:													7	
	MP 1	MAL	Nes																	(

Santa Rosa Division 435 Tesconi Circle Santa Rosa, CA 95401

Tel: (707) 526-7200 Fax: (707) 526-9623

Scott Macleod Cambria Env. Technology 1144 65th Street Suite C Oakland, CA 94608 Date: 06/08/1994

NET Client Acct. No: 98900 NET Pacific Job No: 94.02247

Received: 05/28/1994

Client Reference Information

3055 35th Ave., Oakland

Sample analysis in support of the project referenced above has been completed and results are presented on following pages. Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please feel welcome to contact Client Services.

Approved by:

roject coordinator

Operations Manager

Enclosure(s)

Client Name: Cambria Env. Technology ELAP Cer NET Job No: 94.02247 Page: 2

Date: 06/08/1994 ELAP Certificate: 1386

Ref: 3055 35th Ave., Oakland

SAMPLE DESCRIPTION: MW-1

Date Taken: 05/25/1994

Time Taken: 10:30 NET Sample No: 195737

		Reportin	ıg		Date	Date
Results	Flags	Limit	Units	Method	Extracted	Analyzed
						06/02/1994
1,000						06/02/1994
120		50	mg/L	5030		06/02/1994
						06/02/1994
22,000		500	ug/L	8020		06/02/1994
17,000		500	ug/L	8020		06/02/1994
2,800		500	ug/L	8020		06/02/1994
16,000		500	ug/L	8020		06/02/1994
						06/02/1994
102			% Rec.	5030		06/02/1994
					06/01/1994	
100						06/03/1994
25	-DL	5	mg/L	3510		06/03/1994
ND		50	mg/L	3510		06/03/1994
	1,000 120 22,000 17,000 2,800 16,000 102	1,000 120 22,000 17,000 2,800 16,000 102	Results Flags Limit 1,000 120	1,000 120	Results Flags Limit Units Method 1,000 120	Results Flags Limit Units Method Extracted 1,000 120

 $\mathtt{DL}\xspace$: The positive result appears to be a lighter hydrocarbon than Diesel.

NOTE: Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety.

Client Name: Cambria Env. Technology ELAP Certificate: 1386
NET Job No: 94.02247 Page: 3

Date: 06/08/1994

Ref: 3055 35th Ave., Oakland

SAMPLE DESCRIPTION: MW-2

Date Taken: 05/25/1994 Time Taken: 11:30 NET Sample No: 195738

			Reportin	ıg		Date	Date
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE,Liquid)							
METHOD 5030/M8015							06/03/1994
DILUTION FACTOR*	1						06/03/1994
as Gasoline	61		0.05	mg/L	5030		06/03/1994
METHOD 8020 (GC, Liquid)							06/03/1994
Benzene	9,900		0.5	ug/L	8020		06/03/1994
Toluene	7,400		0.5	ug/L	8020		06/03/1994
Ethylbenzene	960		0.5	ug/L	8020		06/03/1994
Xylenes (Total)	4,600		0.5	ug/L	8020		06/03/1994
SURROGATE RESULTS							06/03/1994
Bromofluorobenzene (SURR)	103			% Rec.	5030		06/03/1994
METHOD M8015 (EXT., Liquid)						06/01/1994	
DILUTION FACTOR*	10						06/03/1994
as Diesel	6.9	DL	0.5	mg/L	3510		06/03/1994
as Motor Oil	ND		5	mg/L	3510		06/03/1994

 $\mathtt{DL}\,:\,\mathtt{The}\,$ positive result appears to be a lighter hydrocarbon than $\mathtt{Diesel}\,.$

100

14

ND

,DT

5

50

mg/L

mg/L

3510

3510

Client Name: Cambria Env. Technology

NET Job No: 94.02247

Date: 06/08/1994

ELAP Certificate: 1386

06/01/1994

06/03/1994

06/03/1994

06/03/1994

Page: 4

Ref: 3055 35th Ave., Oakland

SAMPLE DESCRIPTION: MW-3

Date Taken: 05/25/1994

Time Taken: 11:00 NET Sample No: 195739

METHOD M8015 (EXT., Liquid)

DILUTION FACTOR*

as Diesel

as Motor Oil

Reporting Date Date <u>Parameter</u> Results Flags Limit Units Method Extracted Analyzed TPH (Gas/BTXE, Liquid) METHOD 5030/M8015 06/02/1994 DILUTION FACTOR* 1,000 06/02/1994 as Gasoline 56 50 mg/L 5030 06/02/1994 METHOD 8020 (GC, Liquid) --06/02/1994 Benzene 14,000 500 ug/L 8020 06/02/1994 Toluene 14,000 500 ug/L 8020 06/02/1994 Ethylbenzene 1,300 500 ug/L 8020 06/02/1994 Xylenes (Total) 11,000 500 ug/L 8020 06/02/1994 SURROGATE RESULTS 06/02/1994 Bromofluorobenzene (SURR) 70 % Rec. 5030 06/02/1994

 ${\tt DL}$: The positive result appears to be a lighter hydrocarbon than Diesel.

Client Acct: 98900 Date: 06/08/1994
Client Name: Cambria Env. Technology ELAP Certificate: 1386
NET Job No: 94.02247 Page: 5

Ref: 3055 35th Ave., Oakland

CONTINUING CALIBRATION VERIFICATION STANDARD REPORT

		CCV	CCV			
	CĊV	Standard	Standard			
	Standard	Amount	Amount		Date	Analyst
Parameter	% Recovery	Found	Expected	Units	Analyzed	Initials
TPH (Gas/BTXE,Liquid)						
as Gasoline	94.0	0.94	1.00	mg/L	06/03/1994	aal
Benzene	114.4	5.72	5.00	ug/L	06/03/1994	aal
Toluene	107.6	5.38	5.00	ug/L	06/03/1994	aal
Ethylbenzene	105.8	5.29	5.00	ug/L	06/03/1994	aal
Xylenes (Total)	104.0	15.6	15.0	ug/L	06/03/1994	aal
Bromofluorobenzene (SURR)	100.0	100	100	% Rec.	06/03/1994	aal
TPH (Gas/BTXE, Liquid)						
as Gasoline	101.0	1.01	1.00	mg/L	06/02/1994	aal
Benzene	112.2	5.61	5.00	ug/L	06/02/1994	aal
Toluene	110.2	5.51	5.00	ug/L	06/02/1994	aal
Ethylbenzene	108.4	5.42	5.00	ug/L	06/02/1994	aal
Xylenes (Total)	107.3	16.1	15.0	ug/L	06/02/1994	aal
Bromofluorobenzene (SURR)	104.0	104	100 -	% Rec.	06/02/1994	aal
METHOD M8015 (EXT., Liquid)						
as Diesel	102.0	1020	1000	mg/L	06/03/1994	fyh
as Motor Oil	107.6	1076	1000	mg/L	06/03/1994	fyh

Client Name: Cambria Env. Technology ELAP Certificate: 1386
NET Joh No: 94 02247 Page: 6

Date: 06/08/1994

Page: 6

Ref: 3055 35th Ave., Oakland

METHOD BLANK REPORT

Method Blank

	Amount	Reporting		Date	Analyst
Parameter	Found	Limit	Units	Analyzed	Initials
TPH (Gas/BTXE, Liquid)					
as Gasoline	ND	0.05	mg/L	06/03/1994	aal
Benzene	ND	0.5	ug/L	06/03/1994	aal
Toluene	ND	0.5	ug/L	06/03/1994	aal
Ethylbenzene	ND	0.5	ug/L	06/03/1994	aal
Xylenes (Total)	ND	0.5	ug/L	06/03/1994	aal
Bromofluorobenzene (SURR)	100		% Rec.	06/03/1994	aal
TPH (Gas/BTXE, Liquid)					
as Gasoline	ND	0.05	mg/L	06/02/1994	aal
Benzene	ND	0.5	ug/L	06/02/1994	aal
Toluene	ND	0.5	ug/L	06/02/1994	aal
Ethylbenzene	ND	0.5	ug/L	06/02/1994	aal
Xylenes (Total)	ND	0.5	ug/L	06/02/1994	aal
Bromofluorobenzene (SURR)	105		% Rec.	06/02/1994	aal
METHOD M8015 (EXT., Liquid)	~				
as Diesel	ND	0.05	mg/L	06/03/1994	fyh
as Motor Oil	ND	0.5	mg/L	06/03/1994	fyh

Client Acct: 98900 Date: 06/08/1994
Client Name: Cambria Env. Technology ELAP Certificate: 1386
Page: 7

Ref: 3055 35th Ave., Oakland

MATRIX SPIKE / MATRIX SPIKE DUPLICATE

		Matrix					Matrix			
	Matrix	Spike				Matrix	Spike			
	Spike	Dup		Spike	Sample	Spike	Dup.		Date	Analyst
Parameter	% Rec.	% Rec.	RPD	Amount	Conc.	Conc.	Conc.	Units	Analyzed	Initials
TPH (Gas/BTXE, Liquid)										
as Gasoline	82.0	82.0	0.0	1.00	0.33	1.15	1.15	mg/L	06/02/1994	klh
Benzene	N/A	N/A	1.6	34.2	62	39.2	38.8	ug/L	06/03/1994	aal
Toluene	99.4	98.5	0.9	96.5	1.1	97.0	96.2	ug/L	06/02/1994	klh
TPH (Gas/BTXE,Liquid)	•							•		
as Gasoline	101.0	100.0	1.0	1.00	ND	1.01	1.00	mg/L	06/02/1994	aal
Benzene	102.6	101.2	1.4	34.5	ND	35.4	34.9	ug/L	06/02/1994	aal
Toluene	102.5	100.5	2.0	99.5	ND	102	100	ug/L	06/02/1994	aal
METHOD M8015 (EXT., Liquid)								-		
as Diesel	80.5	69.5	14.7	2.00	0.21	1.82	1.60	mg/L	06/03/1994	fyh

Client Acct: 98900 Date: 06/08/1994
Client Name: Cambria Env. Technology ELAP Certificate: 1386
NET Job No: 94.02247 Page: 8

Ref: 3055 35th Ave., Oakland

LABORATORY CONTROL SAMPLE REPORT

		LCS	LCS			
	LCS ,	Amount	Amount		Date	Analyst
Parameter	% Recovery RPD	Found	Expected	Units	Analyzed	Initials
METHOD M8015 (EXT., Liquid)						
as Diesel	64.0	0.64	1.00	mg/L	06/03/1994	fyh

KEY TO ABBREVIATIONS and METHOD REFERENCES

Less than; When appearing in results column indicates analyte not detected at the value following. This datum supercedes the listed Reporting Limit.

: Reporting Limits are a function of the dilution factor for any given sample. Actual reporting limits and results have been multiplied by the listed dilution factor. Do not multiply the reporting limits or

reported values by the dilution factor.

😯 dw : Result expressed as dry weight.

: Average; sum of measurements divided by number of measurements. mean

mg/Kg (ppm) : Concentration in units of milligrams of analyte per kilogram of

sample, wet-weight basis (parts per million). .

: Concentration in units of milligrams of analyte per liter of sample. mg/L

mL/L/hr : Milliliters per liter per hour.

: Most probable number of bacteria per one hundred milliliters of sample. MPN/100 mL

N/A : Not applicable.

NA : Not analyzed.

ND : Not detected; the analyte concentration is less than the applicable

listed reporting limit.

NTU : Nephelometric turbidity units.

: Relative percent difference, 100 [Value 1 - Value 2]/mean value. RPD

SNA : Standard not available.

ug/Kg (ppb) : Concentration in units of micrograms of analyte per kilogram of sample,

wet-weight basis (parts per billion).

: Concentration in units of micrograms of analyte per liter of sample. ug/L

umhos/cm : Micromhos per centimeter.

Method References

Methods 100 through 493: see "Methods for Chemical Analysis of Water & Wastes", U.S. EPA, 600/4-79-020, Rev. 1983.

Methods 601 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants" U.S. EPA, 40 CFR, Part 136, Rev. 1988.

Methods 1000 through 9999: see "Test Methods for Evaluating Solid Waste", U.S. EPA SW-846, 3rd edition, 1986., Rev. 1, December 1987.

SM: see "Standard Methods for the Examination of Water & Wastewater, 17th Edition, APHA, 1989.

Revised September, 1993 abb.93

BLAINE	985 TIMOTHY DRIVE SAN JOSE, CA 95133	COI	NDUCT ANA	LYSIS TO	DETECT		ILAB 10 (4581)
TECH SERVICES INC.	(408) 995-5535 FAX (408) 293-8773	3000					ALL ANALYSES MUST MEET SPECIFICATIONS AND DETECTION LIMITS SET BY CALIFORNIA DHS AND
CHAIN OF CUSTODY	=/	801578020 m2019180	GO8				□ EPA □ RWQCB REGION
CLIENT (Amb C: A		X S					OTHER
SITE 3055 35Th		10/2					SPECIAL INSTRUCTIONS
CLIENT CAMBRIA SITE 3055 35Th AVE OAKland CA	ALL CONTAINERS	187	S				INVOICE & Report to: C'Ambria Environmental
	ESO	200		$Y \mid$			
MATE JOS H SAMPLE I.D.	CONTAINERS HOME VOA HU	10 1					
SAMPLE I.D.	TOTAL / LAPRE 5	1 63 6				,	ADD'L INFORMATION STATUS CONDITION LAB SAMPLE #
MW-1 5/25/44 1030	5	XX					Routine
	5	Ϋ́X					
mw-2 1130 mw-3 1100	5 V	χ					
							CUSTODY SENCED
							357/94 DET
			1				The state of the s
							E.
		/ 					_
SAMPLING DATE TIME SAMI COMPLETED SAMI PERF	PLING FORMED BY TOM P	Tory	.1	.ll	1		RESULTS NEEDED HORMAL TURNAROUND
RELEASED BY	DATE 5/27	/ TIM	E):00 Am	RECE	VAD BY		DATE TIME 5 27/94 10'00
RELEASED BY JUNGLE	DATE /	/ / TIM			IVED BY	700	DATE TIME
REYEASED BY	IDATE/	ТІМ		RECEI	VED BY	1	DATE TIME 5/28/94 1000
SHIPPED VIA	DATE SE	NT TIM	E SENT	COOLE	R#	T	
Ncs /				<u> </u>			Temp Rend: 9.1%

APPENDIX D

Standard Field Procedures

STANDARD FIELD PROCEDURES

This document describes standard field methods for drilling and sampling soil borings and installing, developing and sampling ground water monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

SOIL BORING AND SAMPLING

<u>Objectives</u>

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor or staining, and to collect samples for analysis at a State-certified laboratory. All borings are logged using the Unified Soil Classification System by a trained geologist working under the supervision of a California Registered Geologist (RG) or a Certified Engineering Geologist (CEG).

Soil Boring and Sampling

Soil borings are typically drilled using solid flight or hollow-stem augers. Soil samples are collected at least every five ft to characterize the subsurface sediments and for possible chemical analysis. Additional soil samples are collected near the water table and at lithologic changes. Samples are collected using split-barrel samplers lined with steam-cleaned brass or stainless steel tubes that are driven through the hollow auger stem into undisturbed sediments at the bottom of the borehole. Samples are driven using a 140 pound hammer dropped 30 inches.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Analysis

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labelled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable photoionization detector (PID) measures volatile hydrocarbon vapor

concentrations in the tube headspace, extracting the vapor through a slit in the cap. PID measurements are used along with the stratigraphy and ground water depth to select soil samples for analysis.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe. If wells are completed in the borings, the well installation, development and sampling procedures summarized below are followed.

MONITORING WELL INSTALLATION, DEVELOPMENT AND SAMPLING

Well Construction and Surveying

Wells are installed to monitor ground water quality and determine the ground water elevation, flow direction and gradient. Well depths and screen lengths are based on ground water depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 ft below and 5 ft above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three ft thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two ft above the well screen. A two ft thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I,II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security.

The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Well Development

Wells are generally developed using a combination of ground water surging and extraction. Surging agitates the ground water and dislodges fine sediments from the sand pack. After about ten minutes of surging, ground water is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of ground water are extracted and the sediment volume in the ground water is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

CAMBRIA

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Ground Water Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of ground water are purged prior to sampling. Purging continues until ground water pH, conductivity, and temperature have stabilized. Ground water samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labelled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.