

June 11, 2001

Mr. Barney Chan Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

JUN 1 5 2001

Re: Groundwater Monitoring and System Progress Report First Quarter 2001

Former Exxon Service Station 3055 35th Avenue Oakland, California Cambria Project #130-0105

· Some supstan down time

Dear Mr. Chan:

On behalf of Mr. Lynn Worthington of Golden Empire Properties, Cambria Environmental Technology, Inc. (Cambria) has prepared this groundwater monitoring and system progress report for the above-referenced site. Presented in the report are the first quarter 2001 activities and the anticipated second quarter 2001 activities.

If you have any questions or comments regarding this report, please call me at (510) 450-1983.

Sincerely,

Cambria Environmental Technology, Inc.

Ron Scheele, RG Senior Geologist

L Schul

Attachments: Groundwater Monitoring and System Progress Report, First Quarter 2001

Mr. Lynn Worthington, Golden Empire Properties, Inc. 5942 MacArthur Boulevard, Suite B, Oakland, CA 94605 Mr. Robert Cave, BAAQMD, Permit Services Division, 939 Ellis Street, San Francisco, CA 94109

Ms. Marie Kulka, Source Control Division, EBMUD, 375 11th Street, Oakland, CA 94607

Oakland, CA San Ramon, CA Sonoma, CA

Cambria Environmental Technology, Inc.

1144 65th Street Suite B Oakland, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

GROUNDWATER MONITORING AND SYSTEM PROGRESS REPORT

FIRST QUARTER 2001

Former Exxon Service Station 3055 35th Avenue Oakland, California Cambria Project #130-0105

June 11, 2001

Prepared for:

Mr. Lynn Worthington Golden Empire Properties, Inc. 5942 MacArthur Boulevard, Suite B Oakland, CA 94605

Prepared by:

Cambria Environmental Technology, Inc. 6262 Hollis Street Emeryville, California 94608 No. 6842

No. 6842

No. 6842

Jasøn Olson

Senior Staff Environmental Scientist

Ron Scheele, RG

Senior Geologist

GROUNDWATER MONITORING AND SYSTEM PROGRESS REPORT

FIRST QUARTER 2001

Former Exxon Service Station 3055 35th Avenue Oakland, California Cambria Project #130-0105

June 11, 2001

INTRODUCTION

On behalf of Mr. Lynn Worthington of Golden Empire Properties, Cambria Environmental Technology, Inc. (Cambria) has prepared this groundwater monitoring and system progress report for the above-referenced site (see Figure 1). Presented in the report are the first quarter 2001 groundwater monitoring and corrective action activities and the anticipated second quarter 2001 activities.

FIRST QUARTER 2001 ACTIVITIES

Monitoring Activities

Field Activities: On March 7, 2001, Cambria conducted quarterly monitoring activities. Cambria gauged and inspected for separate-phase hydrocarbons (SPH) monitoring wells MW-1, MW-2, MW-3 and MW-4 (Figure 1). Groundwater samples were collected from all scheduled wells not containing SPH. Field data sheets are presented in Appendix A.

Sample Analyses: Groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) and total petroleum hydrocarbons as diesel (TPHd) by modified EPA Method 8015, and benzene, toluene, ethylbenzene and xylenes (BTEX) and methyl tert-butyl ether (MTBE) by EPA Method 8020. The groundwater analytical results are summarized in Table 1. The laboratory analytical report is presented as Appendix B.

Monitoring Results

Groundwater Flow Direction: Based on depth-to-water measurements collected during Cambria's March 7, 2001 site visit, groundwater beneath the site flows to the southwest at a gradient of 0.050 ft/ft (Figure 1). Since 1994, the primary groundwater flow direction has been toward the northwest with a change towards the southwest usually occurring during the fourth and/or first quarters. Groundwater elevation data is presented in Table 1.

First Quarter 2001 Monitoring Report Former Exxon Service Station Oakland, California June 11, 2001

Hydrocarbon Distribution in Groundwater: Hydrocarbon concentrations detected this quarter are consistent with the previous sampling event. No SPH were detected in any of the wells. The maximum TPHg and TPHd concentrations were detected in well MW-3 at 60,000 and 13,000 micrograms per liter (μ g/l), respectively. The maximum benzene concentration was detected in well MW-4 at 13,000 µg/l. MTBE concentrations were below detection limits in all sampled wells. Analytical results are summarized in Table 1.

Corrective Action Activities

System Design: The dual phase extraction (DPE) remediation system consists of a skid mounted allelectric catalytic oxidizer, a 300 cfm positive-displacement blower, a 150-gallon moisture knockout with automatic float controls, a 1 hp centrifugal transfer pump, and two 1000-lb carbon vessels connected in series. Nine wells are connected to the remediation system (RW-5 through RW-13). See Figure 2 for the location of remediation enclosure and wells.

Cambria performed soil was struction system out make and maintain and activities. On Farmary 23, 2001, the supplication region was along down due to employe machinized problems and the FRE equipment. In an effort to reduce repair costs, improve system uptime, and reduce rental costs, the rental blower and catalytic oxidizer were replaced with brand new rental equipment from another vendor.

During operation and maintenance activities, individual well flow, vacuum, and hydrocarbon concentration measurements were collected from all remediation system wells and from the catalytic oxidizer/blower. During site visits, system operation parameters were also recorded in specialized field forms for future system optimization and agency inspection. As per the Bay Area Air Quality Management (BAAQMD) permit, a catalytic oxidizer operating temperature greater than 600 degrees Fahrenheit was maintained and system operation parameters were continuously measured using a chart recorder. Due to the system being down during much of the first quarter, system influent and effluent vapor samples were not collected and submitted for laboratory analysis. Groundwater treatment system influent and effluent samples were collected on January 23, 2001. Table 2 summarizes soil vapor extraction system operations and analytical results. Table 3 summarizes groundwater extraction system operations and analytical results. The analytical laboratory reports are included as Attachment C.

First Quarter 2001 Monitoring Report Former Exxon Service Station Oakland, California June 11, 2001

Remediation System Performance: The DPE system operated intermittently during the beginning of the first quarter, due to operational problems with the rental DPE equipment. New DPE equipment was installed and the system was re-started on March 28, 2001.

To date a total of 400 noundered bud resultant dates been desired. The testing out and contained a 400.9 pour de thy hour many galler of carler?)

ANTICIPATED SECOND QUARTER 2001 ACTIVITIES

Monitoring Activities

Cambria will gauge the site wells, check the wells for SPH, and collect groundwater samples from all wells not containing SPH. Groundwater samples will be analyzed for TPHg and TPHd by Modified EPA Method 8015 and BTEX and MTBE by EPA Method 8020. Cambria will prepare a groundwater monitoring report summarizing the monitoring activities and results.

Corrective Action Activities:

Cambria plans to resume DPE operations and maintenance activities twice per month during the second quarter. Soil vapor samples will be collected on a monthly basis, groundwater influent and effluent samples will be collected monthly, and system operation and performance will be evaluated and submitted to the BAAQMD for the second quarter 2001 as part of the groundwater monitoring report. Records will be kept for a period of two years for possible future BAAQMD inspection.

ATTACHMENTS

Figure 1 - Groundwater Monitoring Field Data Sheets

Figure 2 - Remediation System Layout

Table 1 – Groundwater Elevation and Analytical Data

Table 2 – DPE System Performance and Analytical Results - Soil Vapor Extraction

Table 3 – DPE System Performance and Analytical Results - Groundwater Extraction

Appendix A – Water Sampling Field Notes

Appendix B – Analytical Results for Quarterly Groundwater Sampling

Appendix C – Analytical Results for DPE System Operation

Former Exxon Station

3055 35th Avenue Oakland, California

CAMBRIA

Groundwater Elevation Contour Map

Former Exxon Station

3055 35th Avenue Oakland, California

Remediation System Layout

Table 1. Groundwater Elevation and Analytical Data - Former Exxon Service Station, 3055 35th Avenue, Oakland, California

Well ID	Date	GW	SPH	GW	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DO
(TOC)		Depth (ft)	(ft)	Elev. (ft)	<		Concentr	ations in part	s per billion ((μg/L)	>		(mg/L)
	04.47.01			2124	120.000	25.000	50.000	** ***	17.000	2.000	14.000		
MW-1	05/25/94	16.79	Sheen	84.06	120,000	25,000	<50,000	22,000	17,000	2,800	16,000		
100.85	07/19/94	20.77		80.08									
	08/18/94	21.04	Sheen	79.81	925,000			16,500	6,200	1,000	9,400		
	11/11/94	15.80		85.05	57,000			14,000	4,400	1,400	6,400		
	02/27/95	15.53		85.32	45,000			2,900	2,500	760	4,100		
	05/23/95	15.29		85.56	22,000			9,900	990	790	2,000		
	08/22/95	20.90		79.95	23,000			6,900	340	1,200	1,900		
	11/29/95	22.19		78.66	37,000			9,900	530	1,600	2,900		
	02/21/96	11.69		89.16	33,000	4,300		10,000	480	1,000	1,800	3,300	
	05/21/96	14.62		86.23	36,000	8,500		8,500	1,400	1,300	2,800	1,900	
	08/22/96	22.30		78.55	41,000	6,200		8,600	1,300	1,500	2,900	<200	8.0
	11/27/96	17.24	Sheen	83.61	38,000	6,100		9,600	950	1,600	3,100	<400	5.6
	03/20/97	16.65		84.20	33,000	10,000		6,100	560	970	2,200	<400	8.5
	06/25/97	19.77		81.08	31,000	7,400 ^a		7,400	440	890	1,800	<400	3.7
	09/17/97	20.12		80.73	$32,000^{d}$	3,500°		9,100	550	1,000	2,000	<1,000	2.1
	12/22/97	12.95		87.90	26,000 ^d	5,800°		7,900	370	920	1,500	<790	0.7
	03/18/98	12.34	Sheen	88.51	$30,000^{d}$	4,200 ^{e,f}		7,800	820	840	2,000	<1,100	1.3
	07/14/98	17.34		83.51	$41,000^{d}$	8,900 ^{e,f}		8,200	1,100	1,200	3,000	<200	1.8
	09/30/98	19.90		80.95	37,000	3,300		11,000	950	1,200	2,800	<20	2.0
	12/08/98	15.62	***	85.23	22,000	3,700		3,000	1,200	730	3,100	<900	
	03/29/99	11.98		88.87	36,000 ^d	6,800°		12,000	750	1,300	2,400	950	0.50
	06/29/99	20.77		80.08	28,000 ^d	3,500 ^e		7,300	420	810	1,700	<1,300	0.10
	09/28/99	19.68		81.17	13,000 ^d	3,600 e,f		3,200	130	320	1,100	<210	0.55
	12/10/99	17.02		83.83	25,000 ^d	2,900 ^{e,f}		5,400	130	620	1,400	<1,000	1.03
	03/23/00	12.76		88.09	21,000 ^d	3,300 ^f		4,700	140	470	1,100	<350	
	09/07/00	19.45		81.40	40,000 ^{d.g}	12,000 ^{e,g}		3,700	1,400	910	4,900	<50	0.17
	12/05/00	18.60		82.25	26,000°	3,400 ^e		7,900	150	580	810	<300	0.35
	03/07/01	16.19		84.66	13,000	2,400	242	2,700	43	69	300	<100	0.49

Table 1. Groundwater Elevation and Analytical Data - Former Exxon Service Station, 3055 35th Avenue, Oakland, California

Well ID	Date	GW	SPH	GW	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DO
(TOC)		Depth (ft)	(ft)	Elev. (ft)	<-		Concent	rations in part	s per billion ((μg/L)	·>		(mg/L)
MW-2	05/25/94	15.65		84.35	61,000	6,900	<5,000	9,900	7,400	960	4,600		
100.00	07/19/94	19.81		80.19									
	08/18/94	20.37		79.63	88,000			10,750	10,500	1,850	9,600		
	11/11/94	15.52		84.48	54,000			5,900	6,700	1,300	7,500		
	02/27/95	14.46	Sheen	85.54	44,000		***	5,100	5,300	930	6,400		
	05/23/95	14.17		85.83	33,000			8,200	5,600	900	6,600		
	08/22/95	19.80		80.20	38,000			6,400	5,000	1,100	5,600		
	11/29/95	21.05		78.95	46,000			7,100	5,300	1,300	6,000		
	02/21/96	10.53		89.47	59,000			8,000	6,000	1,800	8,900	4,500	
	05/21/96	13.47		86.53	51,000	3,400		8,200	5,200	1,300	6,600	2,400	
	08/22/96	19.12		80.88	37,000	5,700		5,100	3,500	960	4,500	<200	3.0
	11/27/96	16.61	Sheen	83.39	54,000	10,000		9,800	7,000	1,800	7,900	<2,000	3.1
	03/20/97	15.39		84.61	27,000	6,100		3,700	2,300	580	2,800	<400	8.1
	06/25/97	18.62		81.38	42,000	7,800 ^b		7,400	3,800	1,200	5,700	<200	0.9
	09/17/97	19.05	Sheen	80.95	$41,000^{d}$	8,900°		5,200	3,400	1,300	5,900	<700	1.2
	12/22/97	14.09		85.91	$47,000^{d}$	6,100°		8,500	4,600	1,800	8,400	<1,200	1.2
	03/18/98	10.83	Sheen	89.17	58,000 ^d	7,000 ^{e,f}		9,300	6,100	1,800	8,200	<1,100	1.1
	07/14/98	16.07	our day bin	83.93	$42,000^{d}$	5,300 ^{e,f}		6,000	3,000	1,000	4,800	<200	1.5
	09/30/98	18.71		81.29	22,000	2,400		3,600	1,300	720	3,200	<30	1.8
	12/08/98	14.80		85.20	32,000	3,100		9,200	680	1,100	2,300	<2,000	
	03/29/99	11.81		88.19	$28,000^{d}$	7,500°,f		4,400	1,600	950	4,100	410	1.86
	06/29/99	19.54		80.46	28,000 ^d	3,300 ^e		3,500	1,100	690	3,100	<1,000	0.41
	09/28/99	18.61		81.39	15,000 ^d	3,400 ^{e,f}		1,200	540	230	2,300	<36	1.18
	12/10/99	16.53		83.47	17,000 ^d	2,500 ^{e,f}		1,300	780	420	2,700	<40	0.17
	03/23/00	13.56		86.44	25,000 ^d	3,100 ⁱ		1,900	1,100	660	3,700	<500	
	09/07/00	18.25		81.75	62,000 ^{d,g}	32,000 ^{c,g}		5,300	2,300	1,500	8,400	<100	0.39
	12/05/00	17.45		82.55	60,000 ^{d,g}	87,000 ^{e,f,g}		5,100	2,200	1,600	9,000	<200	0.31
	03/07/01	15.68		84.32	34,000	3,900		1,200	770	620	4,300	<200	0.44
	20,01134				- /	,		•			•		

Table 1. Groundwater Elevation and Analytical Data - Former Exxon Service Station, 3055 35th Avenue, Oakland, California

Well ID	Date	GW	SPH	GW	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DO
(TOC)		Depth (ft)	(ft)	Elev. (ft)	<		Concentr	rations in part	s per billion (μg/L)	>		(mg/L
MW-3	05/25/94	13.93	Sheen	82.94	56,000	14,000	<50,000	14,000	14,000	1,300	11,000		
96.87	07/19/94	17.04	Silecti	79.83	50,000					1,500	11,000		
90.87	08/18/94	17.75		79.12	116,000			28,300	26,000	2,400	15,000		
	11/11/94	17.73		79.07	89,000			1,600	1,900	1,900	14,000	-+-	
	02/27/95	11.86	Sheen	85.01	250,000	***		22,000	26,000	7,800	21,000		
	05/23/95	11.60	Sheen	85.27	310,000			18,000	17,000	4,500	2,800		
	08/22/95	17.10		79.77	74,000			14,000	13,000	1,900	11,000		
	11/29/95	16.34		80.53	220,000			25,000	25,000	3,500	19,000	4	
	02/21/96	7.92		88.95	60,000			10,000	7,800	1,500	8,800	3,400	
	05/21/96	10.86	Sheen	86.01	69,000	13,000		17,000	9,400	1,700	9,400	2,600	
	08/22/96	16.50		80.37	94,000	16,000		17,000	15,000	2,100	12,000	330	2.0
	11/27/96	13.47	Sheen	83.40	82,000	24,000		14,000	13,000	2,400	13,000	<1,000	2.4
	03/20/97	12.86		84.01	56,000	11,000		9,900	6,900	1,300	8,000	3,500	9.0
	06/25/97	15.98		80.89	49,000	7,700 ^b		9,700	7,100	1,300	7,000	220	5.8
	09/17/97	16.34	Sheen	80.53	78,000 ^d	15,000 ^e		11,000	9,900	1,800	10,000	<1,200	0.7
	12/22/97	10.71	Sheen	86.16	49,000 ^d	14,000 ^e		7,300	5,300	1,400	7,500	<1,100	3.1
	03/18/98	8.41	Sheen	88.46	120,000 ^d	20,000 ^{e,f}		21,000	19,000	2,600	15,000	<1,600	1.6
	07/14/98	13.51		83.36	94,000 ^{d,g}	65,000 ^{e,f,g}		18,000	14,000	1,900	11,000	<1,400	1.8
	09/30/98	16.14		80.73	91,000	9,800		17,000	13,000	2,100	12,000	<1300	2.0
	12/08/98	11.20		85.67	51,000	4,200		8,000	6,800	1,400	7,500	<1,100	
	03/29/99	7.95		88.92	$39,000^{d}$	4,600°		8,900	4,400	940	4,500	810	0.5
	06/29/99	16.98		79.89	71,000 ^d	6,900°		12,000	7,300	1,400	8,400	<1,700	0.1
	09/28/99	15.99		80.88	$60,000^{d}$	7,800°		9,400	9,200	1,000	9,900	200	0.5
	12/10/99	13.31		83.56	53,000 ^d	5,300 ^{e,f}		8,000	6,400	1,100	8,100	<200	0.4
	03/23/00	8.98		87.89	77,000 ^{d,g}	11,000 ^g j		10,000	9,400	1,600	11,000	<430	
	09/07/00	15.61		81.26	100,000 ^{d,g}	19,000 ^{e.f,g}		17,000	12,000	1,600	11,000	<500	
	12/05/00	14.80		82.07	110,000 ^{d,g}	17,000 ^{e,g}		17,000	11,000	1,900	12,000	<750	0.3
	03/07/01	14.27		82.60	60,000	13,000		7,000	4,600	900	7,100	<350	0.49

Table 1. Groundwater Elevation and Analytical Data - Former Exxon Service Station, 3055 35th Avenue, Oakland, California

Well ID	Date	GW	SPH	GW	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DO
(TOC)		Depth (ft)	(ft)	Elev. (ft)	<		Concent	rations in part	s per billion (μg/L)	>		(mg/L)
MW-4	03/20/97	13.75		83.59	47,000	3,100		11,000	4,500	1,100	5,200	3,400	8.4
97.34	06/25/97	16.15	***	81.19	61,000	5,800 ^b		16,000	6,100	1,500	5,900	780^{c}	1.4
	09/17/97	17.10		80.24	$60,000^{d}$	4,400°		17,000	4,900	1,500	5,700	<1,500	1.5
	12/22/97	9.21		88.13	43,000 ^d	3,100 ^e		13,000	3,900	1,100	4,200	<960	3.7
	03/18/98	9.54		87.80	$58,000^{d}$	5,500 ^{e,f}		14,000	4,700	1,400	5,700	<1,200	0.8
	07/14/98	14.15		83.19	$73,000^{d}$	2,900 ^{e,f}		22,000	7,000	1,800	7,300	<200	1.0
	09/30/98	16.84		80.50	39,000	2,100		12,000	2,700	1,000	3,400	510	1.1
	12/08/98	13.45		83.89	27,000	1,600		8,900	1,600	730	2,300	<1,500	
	03/29/99	9.10		88.24	$48,000^{d}$	2,400 ^{e,f,h}		15,000	3,000	1,300	5,000	1,300	1.32
	06/29/99*												
	09/28/99	16.58		80.76	$24,000^{d}$	3,200 ^{e,f}		7,500	1,200	190	2,200	210	14.29#
	12/10/99	13.99		83.35	47,000 ^d	3,100 ^{e,f}		12,000	1,800	1,000	4,400	<100	0.62
	03/23/00	10.22		87.12	$40,000^{4}$	3,100 ^{e,f}		11,000	1,600	910	3,100	690	
	09/07/00	16.40		80.94	43,000 ^d	5,900°		10,000	1,100	1,100	3,400	<450	1.04
	12/05/00	15.55		81.79	$69,000^{d,g}$	2,600 ^{e.g}		16,000	1,300	1,300	3,400	<200	0.35
	03/20/01	14.03		83.31	46,000			13,000	1,000	900	2,800	<350	0.39
Trip Blank	07/14/98		*		<50	<50		<0.5	<0.5	<0.5	<0.5	<5.0	
•	09/30/98				<50	< 50		<0.5	<0.5	<0.5	<0.5	<5.0	
	12/08/98				<50			<0.5	< 0.5	<0.5	<0.5	< 5.0	
	03/29/99				<50			<0.5	<0.5	<0.5	< 0.5	<5.0	
	06/29/99				<50			<0.5	< 0.5	< 0.5	<0.5	< 5.0	
	03/23/00				<50			<0.5	<0.5	<0.5	<0.5	<5.0	
	09/07/00				<50			<0.5	1.1	<0.5	1.1	<5.0	

Table 1. Groundwater Elevation and Analytical Data - Former Exxon Service Station, 3055 35th Avenue, Oakland, California

								_					
Well ID	Date	GW	SPH	GW	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DO
(TOC)		Depth (ft)	(ft)	Elev. (ft)	<-			ations in part	s per billion ((μg/L)	>		(mg/L)

Abbreviations:

TOC = Top of casing elevation relative to an aribitrary datum

GW = Groundwater

SPH = Separate-phase hydrocarbons

--- = not observed/not analyzed

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015

TPHmo = Total petroleum hydrocarbons as motor oil by modified EPA Method 8015

Benzene, Ethylbenzene, Toluene, and Xylenes by EPA Method 8020

MTBE = Methyl Tertiary-Butyl Ether by EPA Method 8020

DO = Dissolved oxygen

µg/L = Micrograms per liter, equivalent to parts per billion in water

mg/L = Milligrams per liter, equivalent to parts per million in water

* = Well inaccessible during site visit

Notes:

- a = Result has an atypical pattern for diesel analysis
- b = Result appears to be a lighter hydrocarbon than diesel
- c = There is a >40% difference between primary and confirmation analysis
- d = Unmodified or weakly modified gasoline is significant
- e = Gasoline range compounds are significant
- f = Diesel range compounds are significant; no recognizable pattern
- g = lighter than water immiscible sheen is present
- h = one to a few isolated peaks present
- i = medium boiling point pattern does not match diesel (stoddard solvent)
- j = aged diesel? is significant

TOC Elevation of Well MW-4 surveyed relative to an arbitrary site datum by David Hop,

Licensed Surveyor on April 19, 1997

= abnormally high reading due to added hydrogen peroxide

Table 2. DPE System Performance and Analytical Results - Soil Vapor Extraction -

Golden Empire Properties (Worthington), 3055 35th Street, Oakland, California

	5055 5541 Second Cultural,													
Date	Hour Meter Readings (hrs)	System Uptime (per interval)	Total Well Flow Rate (prior to dilution)	Total Well HC Conc. (ppmv)	System Inlet Temp.	System Flow Rate (after dilution)	System Influent HC Conc. 1 (ppmv)	HC C	Effluent Conc. ² mv)	HC Removal Rate ³ (lbs/day)	Emis Ra (Ibs/c	te	TPHg Destruction Efficiency	Gasoline Cumulative Removal
ļ		(%)	(scfm)		(degree F)	(scfm)	TPHg	TPHg	Benz	TPHg	TPHg	Benz	(%)	(lbs)
6/24/00	0													0
9/28/00	454	20%	175	420	789	175	420	22	0.24	23.6	1.24	0.012	95	0
10/12/00	696	72%	88	360	950	88	360	<10	<0.15	10.1	0.28	0.004	*	238
11/9/00	1251	83%	55	590	820	55	590	<10	<0.15	10.5	0.18	0.002	*	472
1/23/01	1313	3%									~-		*	499

Notes and Abbreviations:

15×24×,2=

TPHg = Total petroleum hydrocarbons as gasoline

Benz = Benzene

HC Conc. = Hydrocarbon Concentrations

ppmv = Parts per million by volume. Analytical lab results converted from micrograms per liter (ug/l) to ppmv assumes the molecular weight of gasoline to be equal to that of hexane. at 1 atmosphere of pressure and 20 degrees Celsius.

¹ TPHg and benzene concentrations based on lab results by Modified EPA Methods 8015 and 8020.

² The hydrocarbon removal/emission rate is based on the Bay Area Air Quality Management's District's (BAAQMD) Procedures for Soil Vapor Extraction where Rate = concentration (ppmv) x flow rate (scfm) x 1 lb-mole/386x10⁶ft³ x molecular weight (86 lb/lb-mole for TPHg, 78 lb/lb-mole for benzene) x 1440 min/day.

³ Gasoline Removal = The previous removal rates multiplied by the interval days of operation plus the previous total removal amount. The total TPHg removal is based on lab analytical results.

^{*} As per BAAQMD permit conditions, system destruction efficiency need not be calculated for effluent TPHg concentrations less than 10 ppmv

Table 3. I	PE System	Performance	e and Analy	tical Resu	lts - Gro	undwater l	Extraction -		-	ies (Worthing nd, California		
Date	Hour Meter Readings (hrs)	Water Meter Readings (gallons)	Total Groundwater Extracted (gallons)	System Flow Rate (gpm)	Sample ID	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	HCs Removed Per Period (lbs)	Total HCs Removed (lbs)
10/20/00	878	0	0	0	Inf Eff		<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		
10/30/00	1004	0	50		Inf Eff	1-	170 <0.5	140 <0.5	16 <0.5	200 <0.5		
11/9/00	1,251	0	50		Inf Eff	760 <50	120 <0.5	86 <0.5	4.2 <0.5	84 <0.5	NC	NC
12/15/00	1,267	760a	50							⁻		
1/23/01	1,313	3,790	3,080	1.1	In Mid Eff	3,000 <50 <50	440 <0.5 <0.5	360 <0.5 <0.5	<0.5 <0.5	-350 <0.5 <0.5	0.019	0.019
				Sewer Effi	uent Disch	arge Limits: (ug/L)	5.0	5.0	5.0	5.0		

Notes:

TPHg = Total Petroleum Hydrocarbons as Gasoline

BTEX = Benzene, Toluene, Ethylbenzene, Total Xylenes

MTBE = Methyl tert-butyl ether

ug/l = micrograms per liter

a = Malfunctioning totalizer replaced 12/15/00 (intial reading at 760 gallons)

3,0800 3000 NOD ,3000 (3,0800) (3xxx) = 9x0

ND = non detect

<n = below noted practical laboratory quantitation limits

Inf = Influent Sample

Eff = Effluent Sample

NC = Not calculated, insufficient data

antitation limits

4.2 ppm (ToTAL TOH)

=(013)

APPENDIX A

Groundwater Monitoring Field Data Sheets

WELL DEPTH MEASUREMENTS

Well 1D	Time	Product Depth	Water Depth	Product Thickness	Well Depth	Comments
MW-1	11-18	****	16.19		27.13	
MW- 2	11:20	· · · · · · · · · · · · · · · · · · ·	15.68		27.45	
Mw. 3	11.52		14.27		25.06	
MW-4	11:30	**************************************	14.03		30.10	
			· · · · · · · · · · · · · · · · · · ·		Commence and the commence	
		···			·	je se s
·		<u></u>				
						2
	!	· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
					•	

Project Number: 130 - 010 5
Date: 3-7-81

C A M B R I A

WELL SAMPLING FORM

Project Name: Warthington	Cambria Mgr: RS	Well ID: MW-
Project Number: 130-0105	Date: 3-7-01	Weil Yield:
Site Address: 3085 35th Ave	Sampling Method:	Well Diameter: 2" pvc
	Disposable bailer	Technician(s): 54
Initial Depth to Water: 16-19	Total Well Depth: 27.13	Water Column Height: 10.94
Volume/fi: 0-65	l Casing Volume: 7-1	
Purging Device: " Puc buller	i	Total Gallons Purged: 21
Start Purge Time: 12:30	Stop Purge Time: /2: 3	

l Casing Volume = Water column height x Volume/ ft.

Weil Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
ó"	1.47

Time	Casing Volume	Temp.	pH	Cond.	Comments
12:33	7	17.9	7.15	1352	
12:36	14	17. 4	7.35	1394	
12:40 3	21	17.7	7. 49	1361	
			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		·····
				<u> </u>	
					
	<u> </u>			!	00=0-49m

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-	3-7-01	12:45	1 Amber		TPM d	3015
MW-			YVOR	lac i	TPHS BTEX MIBE	602/8020
· · · · · · · · · · · · · · · · · · ·						

WELL SAMPLING FORM

Project Name: Vosthington	Cambria Mgr: RS	Well ID: MW-2
Project Number: 130-0105	Date: 3-7-01	Well Yield:
Site Address: 3055 35th Aur Onkland, Ca	Sampling Method:	Well Diameter: 4" pvc
	Disposable bailer	Technician(s): S4
Initial Depth to Water: 15.68	Total Well Depth: 27.45	Water Column Height: /1.77
Volume/fi: 0.65	I Casing Volume: 7.65	3 Casing Volumes: 22.95
Purging Device: 4 / prc bailer	Did Well Dewater?:	Total Gallons Purged: 23
Start Purge Time: 17:00	Stop Purge Time: /2:/1	Total Time: // mins

1 Casing Volume = Water column height x Volume/ft.

Well Diam.
2"
0.16
4"
0.65

Time Casing Temp pH Cond C

Time	Casing Volume	Temp.	pН	Cond. uS	Comments
12:03	8	17.4	7.53	1017	
12:09	16	16-3	7.09	1150	
12:12	23	16.5	7. 2.7	1312	
<u> </u>			· · · · · · · · · · · · · · · · · · ·		
<u> </u>					
- 1					
				-	DO = 0.44 ms/c
				İ	210

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW- 2	3-7-01	12:17	4 VOG	HICI	TOHS BIEL MIBE	605 / 8050
MW- L			lamber		TPMO	8015
				!		

WELL SAMPLING FORM

Project Name: Worthing ton	Cambria Mgr: RS	Well ID: MW- 3
Project Number: 130-0105	Date: 3-7-01	Well Yield:
Site Address: 3055 35th Ave	Sampling Method:	Well Diameter: 2" pvc
	Disposable bailer	Technician(s): 54
Initial Depth to Water: /4-27	Total Well Depth: 25.00	Water Column Height: 10.73
Volume/ft: 0.16	l Casing Volume: /.71	3 Casing Volumes: 5:15
Purging Device: Lisposable bailer	Did Well Dewater?:	Total Gallons Purged: 5
Start Purge Time: /1:40	Stop Purge Time: //: 46	Total Time: 6 mins

Volume/ft (gailons) I Casing Volume = Water column height x Volume/ ft.

0.16 0.65 1.47

Time	Casing Volume	Temp. C	pН	Cond. uS	Comments
11:42	1.5	16.8	7.89	/874	
11:44	2 3	17.4	7.40	1319	
11:47	3_5	16.9	7-13	/379	
<u> </u>	_			!	
<u> </u>					
				•	DO = 0.49 m

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW- 3	3-7-01	11:52	4000	MCI	TPMS OTEX MTBE	602/8020
MV-			lamber		TPMd	8015
			.			

WELL SAMPLING FORM

Project Name: Worthington	Cambria Mgr: RS	Well ID: MW- 4
Project Number: 130-0105	Date: 03 - 17-01	Well Yield:
Site Address: 3055 35th Av.	Sampling Method:	Well Diameter: 2" pvc
Odic and Cc	Disposable bailer	Technician(s): SG
Initial Depth to Water: 14.03	Total Well Depth: 30.0	Water Column Height: 15.53
Volume/ft: $0 \cdot /b$	1 Casing Volume: 7.55	3 Casing Volumes: 7.65
Purging Device: disposable bule.	Did Well Dewater?: n0	Total Gallons Purged: 7.5
Start Purge Time: 14:07	Stop Purge Time: 14:14	Total Time: 7 mins

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp. C	рН	Cond. uS	Comments
14:09	2.5	14.8	7.51	1380	
14:12	2 5	14.5	7. 22	list	
14:15	3 7.5	14.6	7.29	1192	
<u> </u>					DO =0.39mg/
					10
				·	

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-L	3-20-01	14:20	Ly voa	HCI	TONS BPEX	8015/8020
MW- 4			Amber		TPtid	

DITEMPLATE/FORMS/FIELD/WELLSAMP WPD NSM 3/31/94

APPENDIX B

Analytical Results for Quarterly Groundwater Sampling

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Environmental Technology	Client Project ID: #130-0105-116;	Date Sampled: 03/07/2001
6262 Hollis Street	Worthington	Date Received: 03/08/2001
Emeryville, CA 94607	Client Contact: Ron Scheele	Date Extracted: 03/08/2001
	Client P.O:	Date Analyzed: 03/08/2001

03/15/2001

Dear Ron:

Enclosed are:

- 1). the results of 3 samples from your #130-0105-116; Worthington project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Edward Hamilton, Lab Director

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Environmental Technology	Client Project ID: #130-0105-116;	Date Sampled: 03/07/2001				
6262 Hollis Street	Worthington	Date Received: 03/08/2001				
Emeryville, CA 94607	Client Contact: Ron Scheele	Date Extracted: 03/09/2001				
	Client P.O:	Date Analyzed: 03/09/2001				

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX* EPA methods 5030, modified 8015, and 8020 or 602; California RWOCB (SF Bay Region) method GCFID(5030)

Lab ID	ods 5030, modifie Client ID	Matrix	TPH(g) ⁺	МТВЕ	Benzene	Toluene	Ethyl- benzene	Xylenes	% Recovery Surrogate
61955	MW-1	w	13,000,a	ND<100	2700	43	69	300	112
61956	MW-2	W	34,000,a	ND<200	1200	770	620	4300	96
61957	MW-3	W	60,000,a	ND<350	7000	4600	900	7100	98
		1							
				·					
									····
- Reportin	g Limit unless	w	50 ug/L	5.0	0.5	0.5	0.5	0.5	<u></u>
means not	se stated; ND detected above porting limit	s	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

^{&#}x27;The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Envi	ironmental Technolo	gy		nt Project ID: #130-0	0105-116;	Date Sampled: 0	3/07/2001
6262 Hollis S	treet		Wort	thington		Date Received: (03/08/2001
Emeryville, C	CA 94607		Clier	nt Contact: Ron Sche	eele	Date Extracted: (03/08/2001
			Clier	nt P.O:	u?-	Date Analyzed: (03/09-03/14/2001
EDA mathoda ma		-		C23) Extractable H	•		2/2510)
	odified 8015, and 3550 or			ппа к w QCB (5г вау к		CF1D(3550) of GCFII	% Recovery
Lab ID	Client ID	Mat	rix		TPH(d) [†]		Surrogate
61955	MW-1	W	V		2400,d		115
61956	MW-2	W	v		3900,d		111
61957	MW-3	W	7		13,000,d,b		108
							····
				· · ·			
		•					
					 		
Z. Reporting Lin	oit unless otherwise	W	7		50 ng/L		

S

h

1.0 mg/kg

stated; ND means not detected above the reporting limit

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in ug/L

[&]quot;cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment.

110 2nd Ave. South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

QC REPORT

Date:

03/09/01-03/10/01

Matrix:

Water

Extraction:

TTLC

	- ,	Concent	ration: t	ıg/L	%Rec	overy	
Compound	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
SampleID: 22601				Instru	ıment: G	C-3	
Surrogate1	0.000	104.0	104.0	100.00	104.	104	0.0
Xylenes	0.000	26.3	26.1	30.00	88	87	0.8
Ethyl Benzene	0.000	8.9	8.8	10.00	89	88	1.1
Toluene	0.000	9.1	9.0	10.00	91	90	1.1
Benzene	0.000	9.4	9.3	10.00	94	93	1.1
МТВЕ	0.000	9.2	9.6	10.00	92	96	4.3
GAS	0.000	84.6	83.3	100.00	85	83	1.5
SampleiD: 22601				Instru	ıment; G	C-2 A	-
Surrogate1	0.000	104.0	103.0	100.00	104	103	1.0

Gampleib. 22001			III JUI GI	ment oc		
Surrogate1	0.000	104.0 103.0	100.00	104	103	1.0
TPH (diesel)	0.000	7950.0 7900.0	7500.00	106	105	0.6

 $\% \text{ Re covery} = \frac{\left(MS - Sample \right)}{AmountSpiked} \cdot 100$

 $RPD = \frac{(MS - MSD)}{(MS + MSD)} \cdot 2.100$

24815-10327-down McCAMPBELL ANALYTICAL INC CUAIN OF CUSTODY RECORD 110 2nd AVENUE SOUTH, #D7 TURN AROUND TIME \Box \Box K) PACHECO, CA 94553 Telephone: (925) 798-1620 Fax: (925) 798-1622 RUSII 24 HOUR 48 HOUR 5 DAY Report To: Ron Scheel
Company: Cambria Environmental Technology Bill To: Cambria Env. Analysis Request Other Comments Grease (5520 E&F/B&F) HALL Street Suite Total Petroleum Hydrocarbons (413.1) SPA 608 / 3080 PCB's ONL ? (7240/7421/239.2/6010) Sampler Signature: METHOD Total Petroleum Oii & EPA 624 / 8240 / 8260 SAMPLING MATRIX TPH as Diesel (8015) PRESERVED Type Containers # Containers EP.A 501 / 8010 EPA 608 / 8080 CAM-i7 Metals EPA 6237 8270 SAMPLE ID LOCATION Date Time BTEX & Other HNO, Other RC 61955 (+) MW-1 3-7-01 MW-2 61956 × × 3-7-01 MW-3 7-7-0 X 61957(2) Relinquished By Date: Time: Remarks: Ultraex 280 3-8-01 3-801 9:10 VOAS O&G | METALS OTHER Relinational By:

11177EX 280 Time: Date: PRESERVATION_ 3-8-ICE/+° GOOD CONDITION APPROPRIATE
HEAD SPACE ABSENT CONTAINERS Relinquished By: Date: Time: Received By:

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Environmental Technology	Client Project ID: #130-0105-1983;	Date Sampled: 03/20/2001
6262 Hollis Street	Worthington	Date Received: 03/21/2001
Emeryville, CA 94608	Client Contact: Ron Scheele	Date Extracted: 03/21/2001
	Client P.O:	Date Analyzed: 03/21/2001

03/28/2001

Dear Ron:

Enclosed are:

- 1). the results of 1 samples from your #130-0105-1983; Worthington project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Edward Hamilton, Lab Director

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Environmental Technology	Client Project ID: #130-0105-1983;	Date Sampled: 03/20/2001
6262 Hollis Street	Worthington	Date Received: 03/21/2001
Emeryville, CA 94608	Client Contact: Ron Scheele	Date Extracted: 03/23/2001
	Client P.O:	Date Analyzed: 03/23/2001

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030)

Lab ID	Client ID	Matrix	TPH(g) ⁺	МТВЕ	Benzene	Toluene	Ethyl- benzene	Xylenes	% Recovery Surrogate
63522	MW-4	w	46,000,a	ND<350	13,000	1000	900	2800	106
						<u> </u>			
									-
		-							
						 	<u>.</u>		
Reportin	g Limit unless	w	50 ug/I	5.0	0.5	0.5	0.5	0.5	
otherwi	se stated; ND detected above		50 ug/L			0.5			
the rep	orting limit	S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L.

"The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

[&]quot; cluttered chromatogram; sample peak coelutes with surrogate peak

110 2nd Ave. South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC REPORT

Date:

03/23/01-03/24/01

Matrix:

Water

Extraction:

TTLC

		Concent	ration:	ug/L	%Red			
Compound	Sample	MS	MSD	Amount Spiked	мѕ	MSD	RPD	
SampleID: 31201				Instr	ument	G	C-3	
Surrogate1	0.000	97.0	98.0	100.00	97	98	1.0	
Xyienes	0.000	24.7	25.0	30.00	82	83	1.2	
Ethyl Benzene	0.000	8.3	8.4	10.00	83	84	1.2	
Toluene	0.000	8.4	8.5	10.00	84	85	1.2	
Benzene	0.000	8.6	8.8	10.00	86	88	2.3	
MTBE	0.000	9.3	9.3	10.00	93	93	0.0	
GAS	0.000	82.2	81.5	100.00	82	82	0.9	
SampleID: 32001				Instr	ument	GC-1	1 A	
Surrogate1	0.000	110.0	108.0	100.00	110	108	1.8	
TPH (diesel)	0.000	7875.0	7625.0	7500.00	105	102	3.2	

% Re covery = $\frac{(MS - Sample)}{AmountSpiked} - 100$

 $RPD = \frac{(MS - MSD)}{(MS + MSD)} \cdot 2.100$

RPD means Relative Percent Deviation

25055 ZO 340 doc

ı	McCAN					_ IN	C.	,										CI	-LA	<u>IN</u>	O	F (JU	SI	ľŌ	D١	Z R	ŒC	OJ	RD)		
		PACH	VENUE SO IECO, CA 9)UTH, 14553	#D7										TU	RN	IA	RO]				2	A
Telephon	ie: (925) 798	1620			Г	ax: (925)	798	-162	2			1_								-			RU	SH	2	4 H	IUUI	ζ 4	18 H	UO	R 5 D	AY
Report To: Ron Company: Cambria	Scheel	<u>S</u>	B	ill To	<u>: C</u>	هم	bç	-4-	FI	\ <u>/</u> _			_ _					Δna	ilys	is R	equ	est			,	,,			Oth	ier		Commo	ents
Company: Cambria	Street, Suit	ital Techi	nology										_		<u>(</u>											[
Oakland	CA 94608	<u>-1.</u>	62 62	H	11	22	<u> </u>		<u> </u>				يو إ		FB3								0						Ì				
Tele: (510) 420 070	10 4 CD -	19 % 7	- me	ax: (5	10) d	<u>و</u> 1400	<u>ک</u> (70	4	77	60) 87	<u> </u>	-	- ½	1	왕	<u>-</u> ;						ı	831	_		ŀ			ļ				
H44-65 Oakland Tele: (510) 420-020 Project #: 13D Project Location: Sampler Signature:	-010 C-	116	P	roject	Nam	ic: /	7.	. 11			رد. د ا	<u> </u>	- 3		Greasu (5520 E&F/B&F)	(418)							70/2								-		
Project Location:	3055	357	6 Ave	<u> </u>	0	k 14	~ d		71-	35	-CLA		- -		วรต (Suci		3020		7			5 / 8:			6							
Sampler Signature:		J. Li	U						4				2/802		Ö	Scarb		32 / 8		NO.	_	i	EPA 625 / 8270 / 8310	:		199%							
		SAME	LING		ξŋ	N	/AT	RIX		M) PRE	ETHO SER'	DD VED	Gas (602/8020 + 3015)/ MTBE	13	জ IIO	Total Petroleum Hydrocarbons (418.1)		BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8080	Ö	EPA 624 / 8240 / 8260		/ EP.			Lead (7240/7421/239.2/6010)				1			
	j			STS	iner	П				T		1	្ន	(38)	mu (H.	010	(E)	88	80 P	10/	8	, S b	sla	sits	421/			.				
SAMPLE ID	LOCATION			# Containers	Type Containers								TPH	TPH as Diesel (8015)	Total Petroleum	trole	EPA 601 / 3010	NI	7 80	38/	/ 82	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Memis	LUFT 5 Metals	407				- 1	ı		
		Date	Time	Con	9. S.	Water	₌│.	Sludge	jer	_		្រំ		Si	Pe	유	109	X	309	309	625	623	1,2/	M-17	7 S	207							
				71:	Ţ	$\left \stackrel{\circ}{\mathbb{R}} \right = 0$	A ir	S.	7	Ice		Other		Ė	Tota	Tor	E. G.	BTE	EP.	EP.A	EPA	EPA	P.A.F	8	5	Lea	RCI				<u> </u>	1	•
MW-4		3-20-01	190	_	VOA Media	X	1	 		X	X	1	X	†										- ,-¦	-,					٠.	63	522	
			-1120							_	1	+	-	-							-							<u>-</u>	_1				* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
											1	-		 						}	-	-		\dashv					-				
			<u></u>				-	-			1		-	†			-		\dashv	-	[\dashv							-				
							- -			_	_	+	-	-			-	-					-		_					-	— -		
			:				_	+			+-	+	1	 	-														-		-		
						 -	-	+			-		-}	-		<u></u>							-	-	<u></u>								
								+			-	-	1-	 -			-									-			-				
						┟─├	- -	-				+-	-}									-	-	-							- -		
	 -					\vdash		+			- -	+	-	-	-												_		_	-			
			<u> </u>		<u> </u>	-				+	- -		-			<u> </u>										·			\dashv		- -		
											+	-	-[_								_	_ -	-		
							-					-	-	-		[+			_ -		
	··-···································		_			$\mid \rightarrow \mid$		-				+	-	\vdash				_		_		_	;	_					_		_ -		
						 -			[.		4	\bot	-	ļ				_			_	_						.	_	_ _	_ .		·
Relinquished By:	1	B-1			1.5		<u> </u>							<u> </u>																			
. 0 . 13/1		Date:	Time:	Rece.	iyed B	y: ~ {	\geq	, 4	(7))			R	ema												OAS	08G	MET	ALS	OTH	ER		:
Relinquished By:	.V.	Date:	<i>[ታነ/ካ</i> Time:	Rece	ہ قر iyed B∙	<u> </u>	<u>/_</u>	M	10			,	\dashv		-	<u> \</u>			V		_	RESE						l			-		
BIRSIS	A	3-21	2:00	/ t	m	•	,	/	n	N		١				CON			117	t		PRO ONT/				V							i
Relinquished By:	<u> </u>	Date:	Time:		ived B			<u> </u>				1	1	HE	:AU :	SPA(jヒA	BSE	N I _		_ (,1	7 Y 1.7	'(HYC	11/0		_							\

Company Capper

APPENDIX C

Analytical Results for DPE System Operation

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Environmental Technology	Client Project ID: #130-0105-336;	Date Sampled: 01/23/01
1144 65 th Street, Suite C	Worthington	Date Received: 01/24/01
Oakland, CA 94608	Client Contact: Ron Scheele	Date Extracted: 01/26/01
	Client P.O:	Date Analyzed: 01/26/01

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030)

Lab ID	Client ID	Matrix	TPH(g) ⁺	МТВЕ	Benzene	Toluene	Ethyl- benzene	Xylenes	% Recovery Surrogate
58668	IN	w	3000,a		440	360	57	350	102
58669	MID	w	ND		ND	ND	ND	ND	109
58670	EF	W	ND		ND	ND	ND	ND	107
						<u> </u>			
	<u>.</u>								
Reportin	g Limit unless	w	50 ug/L	5.0	0.5	0.5	0.5	0.5	
means not	se stated; ND detected above porting limit	S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

Edward Hamilton, Lab Director

[#] cluttered chromatogram; sample peak coelutes with surrogate peak

24/88 zc299

McCAMPBELL ANALYTICAL INC.					CHAIN OF CUSTODY RECORD											
110 2 nd AVENUE SOUTH, #D7					TURN AROUND TIME 🔘 🚨 🗅										M	
PACHECO, CA 94553 Telephone: (925) 798-1620 Fax: (925) 798-1622					RUSH 24 HOUR 48 HOUR 5 DA										UR 5 DAY	
Report To: Ron Scheele	Analysis Request Other Comm											Comments				
Company: Cambria Environmental Technology		£										{				
6262 Hollis Street Smc									_							
Emeryville, CA 94608									8310							
Tele: (510) 450-1983 Fax: (510) 450-8295									EPA 625 / 8270 / 8310							
Project #: 130-0105-336 Project Name: Worthington Project Location: Northington Sampler Signature: Agentic Age					29		→		/ 82	ļ					1	
Project Location: Wasthingto	020	Grease (5520 E&F/B&F) carbons (418.1)	8		ž		625		100				1			
		METHOD	81.1	& G froca	602		% S		PA		9.27					
SAMPLI	NG g	I MAIRIX I	BTEX & TPH as Gas (602/8020 + TPH as Diescl (8015)	H, Qi	EPA 601 / 8010 BTEX ONLY (EPA 602 / 8029)		EPA 608 / 8080 PCB's ONLY EPA 624 / 8240 / 8260		by E	S	LUF1 5 Metals Lead (7240/7421/239.2/6010)					
	# Containers Type Containers		ss (eum	EPA 601 / 8010 BTEX ONLY (EPA 608 / 8080	8080	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFI 5 Metals Lead (7240/742			[
SAMPLE ID LOCATION	ontainers	43	BTEX & TPH as TPH as Diesel	etrol etrol		86	8 4	25 /	4	7 2	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1			
Date T	ime tig g	Water Soil Air Sludge Other HCI HNO3	EX & H as	tal P	A A	A 66	A 4	9 V	E.E.	ġ !	7 () pg	RCI				
	7 #	Water Soil Air Sludge Other Ice HCI HNO3	BT TP	To To		늄		日	Ad	Ö ;	크 [크	NZ.				
IN Warth 1-23 9	7:00 A 3 VOA	+ X A	X		,								<u>l</u> .	ocei	• / A)	
MID Worth 1	1		}										5	0001	(1)	
EE Worth	-1-1-1-1												Ţ			
EE Wordh											1	58669 (+)				
						1-1							1 .			
													1	586	70 /	
							WOAS!	O&G	MA IA	ISI	RHER	1	1	-		
		ICENO 2		(P)	ESERVI	MOIT	7					\top	1			
		ann countr		A	PHOPR	ALE		7		\exists			1		1	
		GUOD COMDITION HEAD SPACE ASS	PNI Z			S.			-+		-	ļ <u> </u>	+ +	+		
									+		3	-				
										-		-	1			
				 			ļ	-				+-	1			
									1			_				
									{							
Relinquiet By Date: T	ime: Received I	By:	Rema	rks: 🔁		==1			Δź		- -	-				
01/24 9:20 G. Beyder						-		-	b.k		,	•				
reconstruction 2.7.	Time: Received I	By:														
G Beyder 24 U	1:55 (VM	Was V UNY)	1													
Relinquished By: Date: T	Time: Received	By:	1													