PROTECTION
August 13, 1999
93 AUG 16 PH 4: 24

Mr. Barney Chan Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

515

Re: Second Quarter 1999 Monitoring and Interim Remedial Action Report

Former Exxon Service Station 3055 35th Avenue Oakland, California Cambria Project #130-0105-109

Dear Mr. Chan:

On behalf of Mr. Lynn Worthington of Golden Empire Properties, Cambria Environmental Technology, Inc., (Cambria) has prepared this second quarter 1999 groundwater monitoring report for the site referenced above. Presented below are the second quarter 1999 activities and results, early third quarter activities, and anticipated future activities. The interim remedial action required by the Alameda County Health Care Services Agency (ACHCSA) is also presented below.

SECOND QUARTER 1999 ACTIVITIES

Groundwater Monitoring

On June 29, 1999, Cambria gauged, inspected for separate-phase hydrocarbons (SPH), and collected groundwater samples from wells MW-1, MW-2, and MW-3 (Figure 1). Well MW-4 was inaccessible during field activities. The samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg), total petroleum hydrocarbons as diesel (TPHd), benzene, toluene, ethylbenzene and xylenes (BTEX), and methyl tert-butyl ether (MTBE). Cambria also measured dissolved oxygen (DO) concentrations in the wells. The groundwater analytical data are summarized in Table 1. The analytical report is included in Attachment A.

Ground Water Analytic Results

No SPH were detected in any of the wells. TPHd expectations in the sampled monitoring wells ranged from 3,300 parts per billion (ppb) in MW-3 to 6,900 ppb in MW-3. TPHg concentrations ranged from 28,000 ppb in both MW-1 and MW-2 to 71,000 ppb in MW-3. Benzene concentrations ranged from 3,500 ppb in MW-2 to a maximum concentration of 12,000 ppb in MW-3. MTBE was reported at below detection limits for all sampled wells. These analytical results are consistent with historic results.

Oakland, CA Sonoma, CA Portland, OR Seattle, WA

Cambria Environmental Technology, Inc.

1144 65th Street Suite B Oakland, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

Groundwater Flow Direction

Depth-to-water measurements collected on June 29, 1999, indicated a groundwater gradient of 0.010 ft/ft toward the northwest (Figure 1). Since 1994, the primary groundwater flow direction has been toward the northwest with a change toward the southwest usually occurring during the fourth quarter. Groundwater elevation data are presented in Table 1.

EARLY THIRD QUARTER ACTIVITIES

Remedial System Installation Preparation

Cambria has completed the system design, and has solicited and received bids for system installation and remediation equipment. Mark Owens of the UST Cleanup Fund is currently reviewing the bid package. Mr. Owens informed Cambria that the package looks complete, and that written pre-approval of remedial costs may be granted next week. To expedite procurement of remediation equipment (which is the longest lead time component of the proposed system installation), Cambria requested and received verbal pre-approved the proposed cost of the dual phase extraction equipment. Accordingly, Cambria has instructed Onion Enterprises to begin fabrication of the selected equipment.

Cambria has also initiated permitting of the remediation system with the Bay Air Quality Management District (air permit) and with the East Bay Municipal Utility District (water discharge permit). Cambria has begun coordinating installation of electrical service by PG&E for the remediation system.

Interim Remedial Action (H₂O₂ Injection)

As requested by the ACHSCA, Cambria performed interim remedial action while system installation is pending. The interim remedial action involved injecting hydrogen peroxide into all site wells to oxygenate site groundwater and to chemically oxidize residual hydrocarbons in the immediate vicinity of each well. This interim measure was conducted as described in Cambria's June 25, 1999 letter to Mr. Worthington, and detailed below.

On August 5, 1999, Cambria injected a 7.5% hydrogen peroxide (H_2O_2) solution into each of the fourteen site monitoring/remediation wells. Prior to injecting the H_2O_2 solution, DO concentrations and the depth to water in each well was measured. Table A below presents the volumes of H_2O_2 solution injected into each well, dissolved oxygen concentrations, and depth-to-water measurements.

Table A - H₂O₂ Solution Injection Data

Well ID (Injection Point)	Time (PDT)	Depth-to- Water (ft)	Pre-Injection DO (mg/l)	Pre-Injection Temp. (C)	Volume 7.5% H ₂ O ₂ Injected (gals)
MW-1	13:00	19.45	1.2	18.0	10
MW-2	14:10	18.30	0.7	19.0	10
MW-3	13:45	15.71	0.6	18.5	7
MW-4	13:35	16.36	1.4	17.5	7
RW-5	13:55	15.10	0.7	19.0	12
RW-6	13:50	15.54	0.4	18.5	12
RW-7	13:40	15.81	1.4	18.0	12
RW-8	13:30	16.99	0.8	18.0	10
RW-9	13:25	16.25	0.9	18.0	10
RW-10	13:15	15.35	1.3	18.0	10
RW-11	14:00	15.04	0.4	19.0	10
RW-12	14:05	15.51	0.6	19.0	10
RW-13	12	15.72	0.6	19.5	10
RW-14	19	15.67	0.7	19.0	10

ANTICIPATED FUTURE ACTIVITIES

Groundwater Monitoring: Cambria will gauge the site wells, measure DO concentrations, check the wells for SPH, and collect groundwater samples from the wells on a quarterly basis. Cambria will tabulate the data and incorporate the results into a groundwater monitoring report.

Receptor Survey: As required by the ACHSCA, Cambria will perform a receptor survey to verify that no wells of any type are being used within a radius of 200' from the subject property. The survey will include an inspection of residences/buildings within the same radius for the presence of basements or other subsurface structures.

Remediation System Installation: Cambria plans to commence installation of the dual phase extraction system in September 1999. System startup is scheduled for late September, and is dependent upon quick pre-approval by the UST Cleanup Fund and prompt equipment delivery.

CLOSING

If you have any questions or comments regarding this report or anticipated site activities, please call Bob Clark-Riddell at (510) 420-3303.

Sincerely,

Cambria Environmental Technology, Inc.

Jacquelyn Jones Staff Geologist

Bob Clark-Riddell, P.E. Principal Engineer

H:\SB-2004\Oakl-002 - Lynn\qm\Qm-2-99.wpd

Bob Certildell

Attachments: Figure 1- Groundwater Elevation Contours

Table 1 - Groundwater Elevation and Analytical Data

Attachment A - Analytical Report and Field Data Sheets

cc: Mr. Lynn Worthington, Golden Empire Properties, Inc. 5942 MacArthur Boulevard, Suite B, Oakland, CA 94605

Former Exxon Station

3055 35th Avenue Oakland, California

Groundwater Elevation Contour Map

June 29, 1999

Table 1. Groundwater Elevation and Analytical Data - Former Exxon Service Station, 3055 35th Avenue, Oakland, California

Well ID	Date	GW	SPH	GW	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DO
(TOC)		Depth (ft)	(ft)	Elev. (ft)	<-		Concen	trations in par	ts per billion	(μg/L)	>	•	(mg/L
MW-1	05/25/94	16.79	Sheen	84.06	120,000	25,000	<50,000	22,000	17,000	2,800	16,000		be well
100.85	07/19/94	20.77		80.08									
	08/18/94	21.04	Sheen	79.81	925,000			16,500	6,200	1,000	9,400		
	11/11/94	15.80		85.05	57,000			14,000	4,400	1,400	6,400		
	02/27/95	15.53		85.32	45,000			2,900	2,500	760	4,100		
	05/23/95	15.29		85.56	22,000			9,900	990	790	2,000		
	08/22/95	20.90		79.95	23,000			6,900	340	1,200	1,900		
	11/29/95	22.19		78.66	37,000			9,900	530	1,600	2,900		
	02/21/96	11.69		89.16	33,000	4,300		10,000	480	1,000	1,800	3,300	
	05/21/96	14.62		86.23	36,000	8,500		8,500	1,400	1,300	2,800	1,900	
	08/22/96	22.30		78.55	41,000	6,200		8,600	1,300	1,500	2,900	<200	8.0
	11/27/96	17.24	Sheen	83.61	38,000	6,100		9,600	950	1,600	3,100	<400	5.6
	03/20/97	16.65		84.20	33,000	10,000		6,100	560	970	2,200	<400	8.5
	06/25/97	19.77		81.08	31,000	7,400°		7,400	440	890	1,800	<400	3.7
	09/17/97	20.12		80.73	$32,000^{d}$	3,500°		9,100	550	1,000	2,000	<1,000	2.1
	12/22/97	12.95		87.90	$26,000^{d}$	5,800°		7,900	370	920	1,500	<790	0.7
	03/18/98	12.34	Sheen	88.51	$30,000^{d}$	4,200°,f		7,800	820	840	2,000	<1,100	1.3
	07/14/98	17.34		83.51	$41,000^{d}$	8,900 ^{e,f}		8,200	1,100	1,200	3,000	<200	1.8
	09/30/98	19.90		80.95	37,000	3,300		11,000	950	1,200	2,800	<20	2.0
	12/08/98	15.62		85.23	22,000	3,700		3,000	1,200	730	3,100	<900	
	03/29/99	11.98		88.87	$36,000^{d}$	6,800 ^e		12,000	750	1,300	2,400	950	0.50
	06/29/99	20.77		80.08	28,000 ^d	3,500°		7,300	420	810	1,700	<1,300	0.10
MW-2	05/25/94	15.65	***	84.35	61,000	6,900	<5,000	9,900	7,400	960	4,600		
100.00	07/19/94	19.81		80.19									
	08/18/94	20.37		79.63	88,000			10,750	10,500	1,850	9,600		
	11/11/94	15.52		84.48	54,000			5,900	6,700	1,300	7,500		
	02/27/95	14.46	Sheen	85.54	44,000			5,100	5,300	930	6,400		
	05/23/95	14.17		85.83	33,000			8,200	5,600	900	6,600		
	08/22/95	19.80		80.20	38,000			6,400	5,000	1,100	5,600		

Table 1. Groundwater Elevation and Analytical Data - Former Exxon Service Station, 3055 35th Avenue, Oakland, California

Well ID	Date	GW	SPH	GW	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DO
(TOC)		Depth (ft)	(ft)	Elev. (ft)	<-		Concen	trations in par	ts per billion	(μg/L)	>	•	(mg/L
	11/29/95	21.05		78.95	46,000			7,100	5,300	1,300	6,000		
	02/21/96	10.53		89.47	59,000			8,000	6,000	1,800	8,900	4,500	
	05/21/96	13.47		86.53	51,000	3,400		8,200	5,200	1,300	6,600	2,400	+
	08/22/96	19.12		80.88	37,000	5,700		5,100	3,500	960	4,500	<200	3.0
	11/27/96	16.61	Sheen	83.39	54,000	10,000		9,800	7,000	1,800	7,900	<2,000	3.1
	03/20/97	15.39		84.61	27,000	6,100		3,700	2,300	580	2,800	<400	8.1
	06/25/97	18.62		81.38	42,000	7,800 ^b		7,400	3,800	1,200	5,700	<200	0.9
	09/17/97	19.05	Sheen	80.95	41,000 ^d	8,900 ^e		5,200	3,400	1,300	5,900	<700	1.2
	12/22/97	14.09		85.91	47,000 ^d	6,100 ^e		8,500	4,600	1,800	8,400	<1,200	1.2
	03/18/98	10.83	Sheen	89.17	58,000 ^d	$7,000^{e,f}$		9,300	6,100	1,800	8,200	<1,100	1.1
	07/14/98	16.07	~~~	83.93	$42,000^{d}$	5,300 ^{e,f}		6,000	3,000	1,000	4,800	<200	1.5
	09/30/98	18.71		81.29	22,000	2,400		3,600	1,300	720	3,200	<30	1.8
	12/08/98	14.80		85.20	32,000	3,100		9,200	680	1,100	2,300	<2,000	
	03/29/99	11.81		88.19	$28,000^{d}$	7,500 ^{e,f}		4,400	1,600	950	4,100	410	1.8
	06/29/99	19.54	***	80.46	28,000 ^d	3,300°		3,500	1,100	690	3,100	<1,000	0.41
MW-3	05/25/94	13.93	Sheen	82.94	56,000	14,000	<50,000	14,000	14,000	1,300	11,000	***	•
96.87	07/19/94	17.04		79.83									
	08/18/94	17.75		79.12	116,000			28,300	26,000	2,400	15,000		
	11/11/94	17.80		79.07	89,000			1,600	1,900	1,900	14,000		
	02/27/95	11.86	Sheen	85.01	250,000			22,000	26,000	7,800	21,000		
	05/23/95	11.60	Sheen	85.27	310,000			18,000	17,000	4,500	2,800		
	08/22/95	17.10		79.77	74,000			14,000	13,000	1,900	11,000		
	11/29/95	16.34		80.53	220,000			25,000	25,000	3,500	19,000		
	02/21/96	7.92		88.95	60,000			10,000	7,800	1,500	8,800	3,400	
	05/21/96	10.86	Sheen	86.01	69,000	13,000		17,000	9,400	1,700	9,400	2,600	
	08/22/96	16.50		80.37	94,000	16,000		17,000	15,000	2,100	12,000	330	2.0
	11/27/96	13.47	Sheen	83.40	82,000	24,000		14,000	13,000	2,400	13,000	<1,000	2.4
	03/20/97	12.86		84.01	56,000	11,000		9,900	6,900	1,300	8,000	3,500	9.0
	06/25/97	15.98		80.89	49,000	7,700 ^b		9,700	7,100	1,300	7,000	220	5.8

Table 1. Groundwater Elevation and Analytical Data - Former Exxon Service Station, 3055 35th Avenue, Oakland, California

17/97 22/97 18/98 14/98 30/98 08/98 09/99 29/99	Depth (ft) 16.34 10.71 8.41 13.51 16.14 11.20 7.95 16.98	Sheen Sheen Sheen	80.53 86.16 88.46 83.36 80.73 85.67 88.92 79.89	78,000 ^d 49,000 ^d 120,000 ^d 94,000 ^{d,g} 91,000 51,000 39,000 ^d 71,000 ^d	15,000° 14,000° 20,000°·f 65,000°·f 9,800 4,200 4,600° 6,900°	Concen	11,000 7,300 21,000 18,000 17,000 8,000 8,900	9,900 5,300 19,000 14,000 13,000 6,800	1,800 1,400 2,600 1,900 2,100 1,400	10,000 7,500 15,000 11,000 12,000 7,500	<1,200 <1,100 <1,600 <1,400 <1300 <1,100	0.7 3.1 1.6 1.8 2.0
22/97 18/98 14/98 30/98 38/98 29/99 29/99	10.71 8.41 13.51 16.14 11.20 7.95 16.98	Sheen Sheen	86.16 88.46 83.36 80.73 85.67 88.92 79.89	49,000 ^d 120,000 ^d 94,000 ^{d,g} 91,000 51,000 39,000 ^d	14,000° 20,000°,f 65,000°,f,g 9,800 4,200 4,600°	 	7,300 21,000 18,000 17,000 8,000	5,300 19,000 14,000 13,000 6,800	1,400 2,600 1,900 2,100 1,400	7,500 15,000 11,000 12,000 7,500	<1,100 <1,600 <1,400 <1300	3.1 1.6 1.8 2.0
22/97 18/98 14/98 30/98 38/98 29/99 29/99	10.71 8.41 13.51 16.14 11.20 7.95 16.98	Sheen Sheen	86.16 88.46 83.36 80.73 85.67 88.92 79.89	49,000 ^d 120,000 ^d 94,000 ^{d,g} 91,000 51,000 39,000 ^d	14,000° 20,000°,f 65,000°,f,g 9,800 4,200 4,600°	 	7,300 21,000 18,000 17,000 8,000	5,300 19,000 14,000 13,000 6,800	1,400 2,600 1,900 2,100 1,400	7,500 15,000 11,000 12,000 7,500	<1,100 <1,600 <1,400 <1300	3.1 1.6 1.8 2.0
18/98 14/98 30/98 08/98 08/99 29/99	8.41 13.51 16.14 11.20 7.95 16.98	Sheen 	88.46 83.36 80.73 85.67 88.92 79.89	120,000 ^d 94,000 ^{d,g} 91,000 51,000 39,000 ^d	20,000°,f 65,000°,f,g 9,800 4,200 4,600°	 	21,000 18,000 17,000 8,000	19,000 14,000 13,000 6,800	2,600 1,900 2,100 1,400	15,000 11,000 12,000 7,500	<1,600 <1,400 <1300	1.6 1.8 2.0
14/98 30/98 08/98 29/99 2 9/99	13.51 16.14 11.20 7.95 16.98	 	83.36 80.73 85.67 88.92 79.89	94,000 ^{d,g} 91,000 51,000 39,000 ^d	65,000°-f.g 9,800 4,200 4,600°	 	18,000 17,000 8,000	14,000 13,000 6,800	1,900 2,100 1,400	11,000 12,000 7,500	<1,400 <1300	1.8 2.0
30/98 08/98 09/99 29/99	16.14 11.20 7.95 16.98	 	80.73 85.67 88.92 79.89	91,000 51,000 39,000 ^d	9,800 4,200 4,600°		17,000 8,000	13,000 6,800	2,100 1,400	12,000 7,500	<1300	2.0
08/98 29/99 29/99 20/97	11.20 7.95 16.98		85.67 88.92 79.89	51,000 39,000 ^d	4,200 4,600°		8,000	6,800	1,400	7,500		
29/99 29/99 20/97	7.95 16.98	***	88.92 79.89	39,000 ^d	4,600°		·	•	•	•	<1,100	
29/99 20/97	16.98 13.75	***	79.89		*		8.900	4 400				
20/97	13.75			71,000 ^d	6,900°		~,. ~~	4,400	940	4,500	810	0.56
		***			•		12,000	7,300	1,400	8,400	<1,700	0.19
5/97			83.59	47,000	3,100		11,000	4,500	1,100	5,200	3,400	8.4
JJ1 J 1	16.15		81.19	61,000	5,800 ^b		16,000	6,100	1,500	5,900	780°	1.4
17/97	17.10		80.24	$60,000^{4}$	4,400°		17,000	4,900	1,500	5,700	<1,500	1.5
22/97	9.21		88.13	$43,000^{d}$	3,100°		13,000	3,900	1,100	4,200	<960	3.7
18/98	9.54		87.80	$58,000^{d}$	5,500°,1		14,000	4,700	1,400	5,700	<1,200	0.8
4/98	14.15		83.19	73,000 ^d	2,900 ^{e,f}		22,000	7,000	1,800	7,300	<200	1.0
30/98	16.84		80.50	39,000	2,100		12,000	2,700	1,000	3,400	510	1.1
)8/98	13.45		83.89	27,000	1,600		8,900	1,600	730	2.300	<1.500	
29/99	9.10		88.24		2,400°,f,h		15.000	3.000	1.300	•	·	1.32
9/99*												
14/98				<50	<50		<0.5	< 0.5	<0.5	<0.5	~5.0	
49/99												
)8 29 9/ 14 30	i/98 i/99 /99 *	13.45 1999 9.10 1998 1998 1998 1998 1999	1/98 13.45 1/99 9.10 1/99* 1/98 1/98 1/98 1/99	1/98	13.45 83.89 27,000 1999 9.10 88.24 48,000 ^d 199* 198 <50	13.45 83.89 27,000 1,600 1/99 9.10 88.24 48,000 ^d 2,400°.Ch 1/99* 1/98 <50	13.45 83.89 27,000 1,600 1/99 9.10 88.24 48,000 ^d 2,400 ^{e,f,h} 1/98 1/98 <50	1/98 13.45 83.89 27,000 1,600 8,900 1/99 9.10 88.24 48,000 ^d 2,400°.(h 15,000 1/98 1/98 -50 -50 -0.5 1/98 -50 -0.5 1/99 1/99	1/98 13.45 83.89 27,000 1,600 8,900 1,600 1/99 9.10 88.24 48,000 ^d 2,400 ^{e,Ch} 15,000 3,000 1/99* 1/98 <50	13.45 83.89 27,000 1,600 8,900 1,600 730 1/99 9.10 88.24 48,000 ^d 2,400°.Ch 15,000 3,000 1,300 1/98 1/98 <50	13.45 83.89 27,000 1,600 8,900 1,600 730 2,300 1/99 9.10 88.24 48,000 ^d 2,400 ^{e,f,h} 15,000 3,000 1,300 5,000 1/98	1/98

Table 1. Groundwater Elevation and Analytical Data - Former Exxon Service Station, 3055 35th Avenue, Oakland, California

Well ID	Date	GW	SPH	GW	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DO
(TOC)		Depth (ft)	(ft)	Elev. (ft)	<	<	Concen	trations in par	ts per billion	(μg/L)	>		(mg/L)

Abbreviations:

TOC = Top of casing elevation relative to an aribitrary datum

GW = Groundwater

SPH = Separate-phase hydrocarbons

--- = not observed/not analyzed

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015

TPHmo = Total petroleum hydrocarbons as motor oil by modified EPA Method 8015

Benzene, Ethylbenzene, Toluene, and Xylenes by EPA Method 8020

MTBE = Methyl Tertiary-Butyl Ether by EPA Method 8020

DO = Dissolved oxygen

μg/L = Micrograms per liter, equivalent to parts per billion in water

mg/L = Milligrams per liter, equivalent to parts per million in water

* = Well inaccessible during site visit

Notes:

- a = Result has an atypical pattern for diesel analysis
- b = Result appears to be a lighter hydrocarbon than diesel
- c = There is a >40% difference between primary and confirmation analysis
- d = Unmodified or weakly modified gasoline is significant
- e = Gasoline range compounds are significant
- f = Diesel range compounds are significant
- g = lighter than water immiscible sheen is present
- h = one to a few isolated peaks present

TOC Elevation of Well MW-4 surveyed relative to an arbitrary site datum by David Hop,

Licensed Surveyor on April 19, 1997

ATTACHMENT A

Analytical Report and Field Data Sheets

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Environmental Technology	Client Project ID: #130-0105-108;	Date Sampled: 06/29/99
1144 65 th Street, Suite C	Worthington	Date Received: 06/30/99
Oakland, CA 94608	Client Contact: Jacquelyn Jones	Date Extracted: 07/02-07/03/99
	Client P.O:	Date Analyzed: 07/02-07/03/99

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030) Ethylben-% Recovery Lab ID Client ID Matrix TPH(g)[†] **MTBE** Benzene Toluene **Xylenes** zene Surrogate 14747 MW1 w 28,000,a ND<1300 7300 420 810 1700 109 14748 MW2 W 28,000,a ND<1000 3500 1100 690 3100 105 14749 MW3 W 71,000,a ND<1700 12,000 7300 1400 8400 103 14750 TB W ND ND ND ND ND ND 104 Reporting Limit unless W 50 ug/L 5.0 0.5 0.5 0.5 0.5 otherwise stated; ND means not detected above the reporting S 1.0 mg/kg0.05 0.005 0.005 0.005 0.005 limit

^{*}The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

[#] cluttered chromatogram; sample peak coelutes with surrogate peak

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env	ironmental Technolog		ent Project ID: #130-0105-108;	Date Sampled: 0	6/29/99
1144 65 th Stre	eet, Suite C	Wo	orthington	Date Received:	06/30/99
Oakland, CA	94608	Cli	ent Contact: Jacquelyn Jones	Date Extracted:	06/30/99
		Cli	ent P.O:	Date Analyzed:	07/02-07/06/99
EPA methods m		~ ·	O-C23) Extractable Hydrocarbon ifornia RWQCB (SF Bay Region) method		D(3510)
Lab ID	Client ID	Matrix	TPH(d) ⁺		% Recovery Surrogate
14747	MW1	W	3500,d		95
14748	MW2	W	3300,d		99
14749	MW3	W	6900,d		104
			-		
					l

I	* water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP
ı	extracts in ug/L

W

S

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment.

50 ug/L

1.0 mg/kg

Reporting Limit unless otherwise stated; ND means not detected above the reporting limit

^{*} cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env	vironmental Techn	ology	Client Project ID: #130-0105-108;	Date Sampled: 0	6/29/99
1144 65 th Str			Worthington	Date Received: (06/30/99
Oakland, CA	94608		Client Contact: Jacquelyn Jones	Date Extracted:	06/30/99
			Client P.O:	Date Analyzed:	07/06/99
			Methyl tert-Butyl Ether *		
EPA method 82	260 modified				
Lab ID	Client ID	Matri	x MTBE*		% Recovery Surrogate
14747	MW1	W	110	:	113
				-	
					1 18 11
				:	
				:	
					, , , , , , , , , , , , , , , , , , , ,
Reporting Lin	nit unless otherwise ns not detected above	w	1.0 ug/L		"
	orting limit	S	5.0 ug/kg		

Edward Hamilton, Lab Director

^{*} water samples are reported in ug/L, soil and sludge samples in ug/kg, wipe samples in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 07/02/99-07/03/99 Matrix:

WATER

	Concent	ration	(ug/L)		% Reco	very	
Analyte	Sample			Amount			RPD
	(#14490) 	MS	MSD	Spiked	MS	MSD	
TPH (gas)	0.0	106.5	104.4	100.0	106.5	104.4	2.0
Benzene	0.0	9.3	9.5	10.0	93.0	95.0	2.1
Toluene	0.0	9.5	9.7	10.0	95.0	97.0	2.1
Ethyl Benzene	0.0	9.7	9.8	10.0	97.0	98.0	1.0
Xylenes	0.0	29.0	29.4	30.0	96.7	98.0	1.4
TPH(diesel)	0.0	7485	7226	7500	100	96	3.5
TRPH (oil & grease)	 N/A 	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

QC REPORT FOR VOCs (EPA 8240/8260)

Date: 07/06/99-07/07/99 Matrix:

WATER

ļ i	Concentr	ation	(ug/kg,u		% Reco	very	131113
Analyte	Sample (#13574)	MS	MSD	Amount Spiked	 MS 	MSD	RPD
1,1-Dichloroethe	0	102	109	100	102	109	6.6
Trichloroethene EDB	0 N/A	99 N/A	113 N/A	100 N/A	99 N/A	113 N/A	13.2 N/A
Chlorobenzene	0	93	109	100	93	109	15.8
Benzene	0	96	102	100	96	102	6.1
Toluene	0	103	105	100	103 	105	1.9

% Rec. = (MS - Sample) / amount spiked x 100

RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100

15790235.dc

	McCAM	IPBELI	ANAI	YT	CAI	JIN	IC.	,			,							$\overline{\mathbf{C}}$	HA	NI.	IO	F	ci	<u></u>	Ŕ	$\overline{\mathbf{D}}$	Z R	EC	O	RD		
		10 2 nd A	VENUE SO	OUTH,									ł		TI	JRI	ΝA						~ ~					ם ם	-	ū		D
Telephor	ne: (925) 798	. РАСН -1620	IECO, CA S	94553	F	ax: (925	791	3-16	22			ı											RÜ		2			R 4	8 HC	UR	5 DAY
Report To: Jacquel			E	ill To):	4 ~-	X		·a				十					Ar	alys	is R	equ	est						<u> </u>	Oth	er	C	omments
Company: Cambria		ıtal Tech	nology		<u></u>	<i></i>		<u> </u>							6		T															·
	th Street, Suit	e C							·],		138			}													ľ	
	l, CA 94608												_		.8.F.								310						Į			
Tele: (510) 420-07		., 			10) 4								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		201	18.1			l				8/0,									
Project #: 130 -					t Nam	ie: (N 6	2/2	4160	<u> </u>	حرك	7.			8) SI		ବ୍ଲ	j	~			/ 827									
Project Location:		35 <u>1</u> 2	7 AV	<u>e</u>	0a	Eli	<i>4</i> √¢	<u>, , , , , , , , , , , , , , , , , , , </u>	Ci	%			- 7000	3	Teas	arboi		8	}	ž			625			2010			ļ			•
Sampler Signature	In		1	$\overline{}$			=			λ	ART:	HŌD	- है	1 1	, 8	120		8		3.5	8		PΑ			9.20		7				
]	0	SAM	LING		<u> </u>		MA'	TRL	X	PR	ESE	RVE	D à	TPH as Diesel (8015)	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)		BTEX ONLY (EPA 602 / 8020)	_	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260		PAH's / PNA's by EPA 625 / 8270 / 8310			Lead (7240/7421/239.2/6010)]	0128				
		1		Containers	Type Containers									3		l is	EPA 601 / 8010		EPA 608 / 8080	808	8240	EPA 625 / 8270	A's	CAM-17 Metals	LUFT 5 Metals	7742		6	•			
SAMPLE ID	LOCATION	Date	Time	Itai				g					Ouner prev e mare	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	1 8 9 9 9 9 9 9 9 9 9 9	E G	01/	8	/ 80	/ 80	24 /	757	/P	17 N	5 M	7240		2				
		Date	*****	[දූ	8	Water	Soi!	Alf	Other	o	HCI	ος O		\$ ±	<u> </u>	ISI F	9 V	戶	V	8 Y	9 ¥.	9 Y.	H's	Ę.	된) pe	RCI	MIRE	.			
				*		≥	ιχ	Y S	0	Ice	Ħ	ΗC				ĭ	団	m	苗	苗	団	ם	4	ਹ	בו	13	×			_!	j	
MWI		729	1230	3	X	Ω.			\prod	25	Ŋ		7	1X	"													X		_;' ;'		14747
MWZ			1210			Ш	_		1	Ш				Ш	1_			<u> </u>											\perp	_i,		17/7/
MW3		<u>*</u>	1240	1	U		_		\perp	Ш					3	1	↓_	<u> </u>														14748
TB				<u> </u>	VOA	Y			+	Ľ	4		+	4	+-	-	┾-	├_	-		-								-			14776
		<u> </u>				$\ \cdot\ $		-	╀		\dashv	_		_	+	╂	 	 						<u>.</u>		_			\dashv	<u>.</u>		14749
				 					\dagger			_	+		\dagger	+	\dagger	 											+	_i		14750
		-																												<u> </u>	1_	
							.		$oldsymbol{\perp}$				_ _	_	\downarrow		igspace	<u> </u>									_		\dashv	_	_	
				ļ			_	-	+		\dashv	\dashv	+	IC:	E/P	-		-				_			V	AST	nxr	I KATI	Bi Ci	OTHER	+	
				ļ	ļ		+			-			-	G	opi	THI		11				RES	AV	TIO ATE	-	1	-		-	ULPER	╙	
			<u> </u>		<u> </u>		_	1	1			_	1	-TE	ADS	PAC	HAN	CENI	×	-	A	PPR	Der	ATE							4	
			 		ļ		_	_ _	 			_		1	1		4 70	DEN		4.	. U	ONT	NNH	BS_	\checkmark				_		ļ	
				<u>.</u>	ļ			\perp				\perp	┸	1	\bot	ļ	<u> </u>	<u> </u>					_						_		╄	
									<u>.</u>								<u>L</u>														<u>L</u>	
Relinquished By:	\	mail /	Time:	Rece	ved B				, -	/-]	lem	arks	:	Λ															
Xu	1	4 3 49	3 (230)			jun	<u>L</u>	100	wi	٧_			_	5	1	in	Ha.	ion l	٠,	٧,												
Relinquished By.	1-1	Date:	Time:	Rece	ivedB	⁵ 70	7	/	7	7	•		1	/	U	J	,		- U,	ب <i>د</i> مر	A	,	,	1	11		\					
Don Val		150/99	1430		//4	W	\nearrow	<u> </u>	u	* *	_		_						4	V	14	ک ک	, (_+	17	L.)					
Kelinquished By:		Date: '	Time:	Kece	ived B	y:	•													a	6	S	رم	7	1	no	5 ~4		\			10

Wirmington

WELL DEPTH MEASUREMENTS

Well ID	.Time	Product Depth	Water Depth	Product Thickness	Well Depth	Comments
MW3	10.17		16.98		24.96	
MWZ	10:22		19.54		27.40	
MWI	10:25		20.77		27.06	oreignon
MW4	inacci	ssile	Jue	to are	remont.	h '
					o .	
	, p. p. s.					
,						
	÷					

Measured By:	A
•	

Date: 4/21/99

WELL SAMPLING FORM

Project Name: Worthington	Cambria Mgr: RAS/BCR	Well ID: MW
Project Number: 130-0105	Date: 6/29/99	Well Yield:
Site Address: 3055 Rose Street	Sampling Method:	Well Diameter: 4 "pvc
Oakland, California	Disposable bailer	Technician(s):
Initial Depth to Water: 20.77	Total Well Depth: 27.26	Water Column Height: 6,49
Volume/ft: 0.615	1 Casing Volume: 4.22-gal	3 Casing Volumes: 12.669
Purging Device: sub. pump	Did Well Dewater?: 🗸 🔿	Total Gallons Purged: 13
Start Purge Time:	Stop Purge Time: //25	Total Time: // win

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1 47

Time	Casing Volume	Temp.	pН	Cond.	Comments
1118	<u>2</u> 3	18.7 18.7 18.7	6.6	1452	

$\mathbf{D.O.} = \underline{0.00} \mathbf{ppm}$

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
Mur	1239	(230	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015
u	(C	ч	1 amber	none	TPHd	

WELL SAMPLING FORM

Project Name: Worthington	Cambria Mgr: RAS / BCR	Well ID: MW7
Project Number: 130-0105	Date: 4/29/99	Well Yield:
Site Address: 3055 Rose Street	Sampling Method:	Well Diameter: 4 "pvc
Oakland, California	Disposable bailer	Technician(s):
Initial Depth to Water: 19.4	Total Well Depth: 27, 40	Water Column Height: 7,86
Volume/ft:	1 Casing Volume: 5 11 pd	3 Casing Volumes: 157, 334
Purging Device: sub. pump	Did Well Dewater?:	Total Gallons Purged: / Loos
Start Purge Time: 1047	Stop Purge Time: //00	Total Time: 13min

1 Casing Volume = Water column height x Volume/ft.

Well Diam.	Volume/ft (gallons		
2"	0.16		
· 4"	0.65		
6"	1.47		

Time	Casing Volume	Temp.	pН	Cond.	Comments
1047	1	19.7	4.7	1570	
1050		19.2	6.6	1607	
1052	2	19.3	6.6	954	
104	2	19.4	الم الما	1210	
1057	3	19.2	66	1646	
100	3	19.3	ت. رہ	1632	

D.O. = $\frac{h \cdot 4}{p}$ ppm

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW2	47999	1210	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015
`(u	L _f	1 amber	none	TPHd	

D:\TEMPLATE\FORMS\FIELD\WELLSAMP.WPD NSM 5/31/94

WELL SAMPLING FORM

Project Name: Worthington	Cambria Mgr: RAS / BCR	Well ID: MW 3
Project Number: 130-0105	Date: 6/21/99	Well Yield:
Site Address: 3055 Rose Street	Sampling Method:	Well Diameter: "pvc
Oakland, California	Disposable bailer	Technician(s):
Initial Depth to Water: 16,98	Total Well Depth: 24,96	Water Column Height: 7.98
Volume/ft:	1 Casing Volume: 1,285al	3 Casing Volumes: 3, 8 3
Purging Device: sub. pump	Did Well Dewater?: v O	Total Gallons Purged: 45al
Start Purge Time: 1142	Stop Purge Time: ////	Total Time: (Min

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons		
2"	0.16		
4"	0.65		
6"	1.47		

Time	Casing Volume	Temp.	pН	Cond.	Comments
1142		19.4	69	1442	
1144	フ	194	6.5	1527	
11117	3	19.5	الما ما	1498	
(, ,	_			,	
					·
				ļ	

 $\mathbf{D.O.} = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \mathbf{ppm}$

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MMI	6/2/99	1240	4 voa's	HCL	TPHg, BTEX, MTBE	8020 8015
			1 amber	none	TPHd	

D:\TEMPLATE\FORM\$\FIELD\WELL\SAMP.\WPD\N\SM\\5/31/94