

November 1, 1995

Dale Klettke
Alameda County Department of
Environmental Health
UST Local Oversight Program
1131 Harbor Bay Parkway, 2nd Floor
Alameda, CA 94502

Re: Third Quarter Monitoring Report

Former Exxon Service Station 3055 35th Avenue Oakland, California Cambria Project #20-105-104

Dear Ms. Hugo:

This report summarizes the third quarter 1995 ground water monitoring results for the site referenced above. Described below are the third quarter 1995 activities, anticipated fourth quarter 1995 activities and a discussion of the hydrocarbon distribution in ground water.

Third Quarter 1995 Activities:

Blaine Tech Services, Inc. of San Jose, California (BTS) collected ground water samples from wells MW-1, MW-2 and MW-3 on August 22, 1995. The samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) and benzene, toluene, ethylbenzene and xylenes (BTEX). BTS also gauged all site wells and checked them for liquid-phase hydrocarbons. No liquid-phase hydrocarbons were detected.

Cambria also sampled the stockpiled soil at the site, and Ms. Susan Hogo confirmed that the concentrations were sufficiently low that the soil could be returned to the tank excavation and remediated *in situ*, along with the rest of the site.

Anticipated Fourth Quarter 1995 Activities:

BTS will gauge all site wells, check the wells for liquid-phase hydrocarbons, and collect water samples from the wells. Cambria will tabulate the data and prepare a quarterly monitoring report. We also anticipate performing feasibility tests and submitting a corrective action plan.

Hydrocarbon Distribution in Ground Water:

TPHg and benzene were detected in all three of the site wells, at up to 74,000 and 14,000 parts per billion (ppb), respectively (Table 1, Attachment A). Hydrocarbon concentrations in ground water are highest downgradient of the former underground gasoline tanks and the southernmost pump island. Based on the ground water flow direction (Figure 1) and hydrocarbon concentrations at the downgradient property line, it appears that hydrocarbons are migrating offsite to the west.

Please call if you have any questions or comments.

Sincerely,

Cambria Environmental Technology, Inc.

N. Scott MacLeod, R.G Principal Geologist

F:\PROJECT\SB-2004\OAKL-002\QM-3B-95.WPD

Attachments: A - Analytic Reports for Ground Water

cc: Lynn Worthington, Better Homes Realty, 5942 MacArthur Boulevard, Suite B, Oakland, California 94605

2

CAMBRIA

Table 1. Ground Water Elevation and Analytic Data - 3055 35th Avenue, Oakland, California

Well/ Boring ID	Date	Casing Elev.	GW Depth	LPH (ft)	GW Elev.	TPHg	TPHd	TPHmo	В	T	E	X	Notes
Loning L		(ft)	(ft)	(7	(ft)			(Cor	ncentration in	parts per billio	n)		
Wells													
MW-1	5/25/94	100.85	16.79	Sheen	84.06	120,000	25,000	<50,000	22,000	17,000	2,800	16,000	a
	7/19/94		20.77	0	80.08							***	
	8/18/94		21.04	Sheen	79.81	925,000			16,500	6,200	1,000	9,400	
	11/11/94		15.80	0	85.05	57,000			14,000	4,400	1,400	6,400	
	2/27/95		15.53	0	85.32	45,000	77.		2,900	2,500	760	4,100	
	5/23/95		15.29	0	85.56	22,000			9,900	990	790	2,000	
3	8/22/95		20.90	0	79.95	23,000 👟	-77		-e;se- *	340	1,200	1,900	
MW-2	5/25/94	100.00	15.65	0	84.35	61,000	6,900	<5,000	9,900	7,400	960	4,600	a
	7/19/94		19.81	0	80.19								
	8/18/94		20.37	0	79.63	88,000			10,750	10,500	1,850	9,600	
	11/11/94		15.52	0	84.48	54,000			5,900	6,700	1,300	7,500	
	2/27/95		14,46	Sheen	85.54	44,000			5,100	5,300	930	6,400	
	5/23/95		14.17	0	85.83	33,000			8,200	5,600	900	6,600	
	0.00383		19.80	0	80.20	82,000	X		.6,400	5,000	1,100	5,600	
MW-3	5/25/94	96.87	13.93	Sheen	82.94	56,000	14,000	<50,000	14,000	14,000	1,300	11,000	a
	7/19/94		17.04	0	79.83		Pag		***				
	8/18/94		17.75	0	79.12	116,000	***		28,300	26,000	2,400	15,000	
	11/11/94		17.80	0	79.07	89,000			1,600	1,900	1,900	14,000	
	2/27/95		11.86	Sheen	85.01	250,000			22,000	26,000	7,800	21,000	
	5/23/95		11.60	Sheen	85.27	310,000			18,000	17,000	4,500	2,800	
3	8/22/95		17.10	0	79:77	74.600	96.		.4400 0	13,000	1,900	11,000	: :

CAMBRIA

Abbreviations

Casing Elevation = Top of casing elevation with respect to an onsite benchmark

GW = Ground water

LPH = Liquid-phase hydrocarbons

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015

TPHmo = Total petroleum hydrocarbons as motor oil by modified EPA Method 8015

B = Benzene by EPA Method 8020

E = Ethylbenzene by EPA Method 8020

T = Toluene by EPA Method 8020

X = Xylenes by EPA Method 8020

DTSC MCLs = Department of Toxic Substances

Control maximum contaminant level for drinking

water

NE = Not established

Notes

a = The positive TPHd result appears to be a hydrocarbon lighter than diesel.

CAMBRIA

ATTACHMENT A

Analytic Reports for Ground Water

(08/1995 for May 2018)

Scott Macleod Cambria Env. Technology 1144 65th Street Suite C Oakland, CA 94608 Date: 09/08/1995 NET Client Acct. No: 98900 NET Pacific Job No: 95.03362

Received: 08/23/1995

Client Reference Information

3055 35th Avenue, Oakland, CA/Proj. No. 950822-M3

Sample analysis in support of the project referenced above has been completed and results are presented on following pages. Results apply only to these samples analyzed. Reproduction of this report is permitted only in its entirety. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please feel welcome to contact Client Services.

Submitted by:

NET Santa Rosa Preliminary Report

Enclosure(s)

Client Name: Cambrie Env. Technology

Client Acct: 98900

NET Job No: 95.03362

Date: 09/08/1995

ELAP Cert: 1386

Page: XXX

Ref: 3055 35th Avenue, Oakland, CA/Proj. No. 950822-M3

SAMPLE DESCRIPTION: MW-1

Date Taken: 08/22/1995

Time Takon:

Time Taken: NET Sample No: 249377			Reporting			Date	Date Analyzed	Run Batch No.
Parameter	Results	Flags	Limit	Units	<u>Method</u>	Extracted	HIJO CYCES	
TPH (Gas/BTXE, Liquid)							09/05/1995	3143
METHOD 5030/M8015							09/05/1995	
DILUTION FACTOR*	100						09/05/1995	
as Gasoline	23		5	mg/L	50 30		09/05/1995	
METHOD 8020 (GC, Liquid)	. -							
Benzene	6,900	FI	500	ug/L	8020		09/05/1995	
Toluene	340		50	ug/L	8020		09/05/1995	
	1,200		50	ug/L	8020	•	09/05/1995	
Ethylbenzena	,		50	ug/L	8020		09/05/1995	3143
Xylenes (Total)	1,900		30	93, 5	••••		09/05/1995	3143
SURROGATE RESULTS				4			09/05/1995	
Bromofluorobenzene (\$URR)	98			% Rec.	5030		Q#/ UJ/ 1772	4 17 -

FI : Compound quantitated at a 1000X dilution factor.

Client Name: Cambria Env. Technology

Client Acct: 98900

NET Job No: 95.03362

Date: 09/08/1995

ELAP Cert: 1386

Page: XXX

Ref: 3055 35th Avenue, Oakland, CA/Proj. No. 950822-M3

SAMPLE DESCRIPTION: MW-Z

Date Taken: 08/22/1995

Time Taken:

NET Sample No: 249378	Results	Flaga	Reporting Limit	Units	Method	Date Extracted	Date Analyzed	Run Batch No.
TPH (Gas/BTXE, Liquid)				_				
METHOD 5030/M8015	• •						09/05/1995	
DILUTION FACTOR*	100						09/05/1995	
	38		5	mg/L	5030		09/05/1995	3143
as Gasoline			•				09/05/1995	3143
METHOD 8020 (GC, Liquid)			500	/1	8020		09/05/1995	
Benzene	6,400	F I	500	ug/L			09/05/1995	
Toluene	5,000	Fi	500	ug/L	8020		09/05/1995	
Ethylbenzene	1,100		50	ug/L	8020		09/05/1995	
Xylenes (Total)	5,600		50	ug/L	8020			
SURROGATE RESULTS							09/05/1995	-
Bromofluorobenzene (SURR)	98			% Rec.	5030		09/05/1995	3143

FI : Compound quantitated at a 1000X dilution factor.

Client Name: Cambria Env. Technology

Client Acct: 98900

Date: 09/08/1995

ELAP Cert: 1386 Page: xxx

NET Job No: 95.03362

Ref: 3055 35th Avenue, Oakland, CA/Proj. No. 950822-M3

SAMPLE DESCRIPTION: MW-3

Date Taken: 08/22/1995

Time Taken:

NET Sample No: 249379			Reporting		ad - ach acid	Date Extracted	Date Analyzed _	Run Batch No.
Parameter	Results	Flags	Limit	Units	Method	SXCLPCTER	VIIGELSEA .	17.5.1
TPH (Gas/BTXE, Liquid)							09/05/1995	31/3
METHOD 5030/H8015								
DILUTION FACTOR*	10 0						09/05/1995	
as Gasoline	74		5	mg/L	5030		09/05/1995	
METHOD 8020 (GC.Liquid)							09/05/1995	3143
Benzenc (02,2140.2)	14.000	F1	500	ug/L	8020		09/05/1995	3143
	13.000	FI	500	ug/L	8020		09/05/1995	3143
Toluene	1.900	1.	50	ug/L	8020		09/05/1999	3143
Ethylbenzene	• • • •		50	ug/L	8020		09/05/1995	
Xylenes (Total)	11,000		30	ag, r	0020		09/05/1999	
SURROGATE RESULTS					F070		09/05/1995	
Bromofluorobenzene (SURR)	100			% Rec.	5030		בעצו /כט/עט	7143

FI : Compound quantitated at a 1000x dilution factor.

WELL GAUGING DATA

Project	. 9	508 A	2-1130	te 8-2	2-95	Client 🕻	:AMBRIA	<u> </u>
Site	30 <i>5</i>	5	35th	AVE	OAL	LIND	ct	
Well I.D.	Well Size (in.)	Sheen/ Odor	Depth to Immiscible Liquid (feet)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to Water (feet)	Depth to Well Bottom (feet)	Survey Point TOB or TOC
MV-1	4			100.85	79.95	20.90	27.50	TOC
MW-2	E .			100.00	80.20	19.80	27.50 27.60	
MW-3	2	 		96.87	79.77	17.10	25.18	1
	,					 		
							and the same of th	
								(Madd, 1944) 1
	 	<u> </u>						
	<u> </u>							
						<u> </u>		

WELL MONITORING DATA SHEET

	*95082	10-11								
Sempler:				Start Date:						
	": MW-1			L Diameter: (d		2 3 🚯 6				
	11 Depth:			th to Water:						
Before	Α	fter	Bef		After					
Depth to	Free Produ	et:	Thi	ckness of Free	Product (feet):				
Measuren	ents refere	nced to:	PVC	Grade	Other:					
	Well Diamet	ėr	Act.	Well Diamete	₽ r	VCF 1.47				
	Ž"		0:16 0:37	8" 10"		2 61 4 08				
	4 "		1:62	12# 16"		5.87				
	.4	×	7		17	.2				
	Volume	- ^ -	Specified V	olumes =	gallons	***************************************				
Purging:	Bailer Disposable Middleburg Reactric	lubmerolib	5	Sampli		ble Bailer ion Port				
TIME	Other	рH	COND.	TURBIDITY:	VOLUME REMOVED;	OBSERVATIONS:				
15:30	_	7.0	1800	160	5	ODEK ORGAN				
5:37	72.7	68	1800	175	16	,				
5:34	71.8	6.8	1800	150	14					
	_									
		_								
	_									
nid wal	1 Departure		gale	Gallons	Actually E	_ vacuated: KZ				
	1 Dewater?		· · · · · · · · · · · · · · · · · · ·		Actually Ev	vacuated: //				
Samplin	g Time: /5	-38	San	pling Date:	1-22	vacuated: K				
Sampling Sample		-38	San Lab		1-22	vacuated: //				
Sampling Sample Analyse (Circle	g Time: /5	-38	San Lab TPH-D OT	pling Date:	VET	vacuated://				

WELL MONITORING DATA SHEET

9	* #: 9508			ant: CAMBA		W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-				
	x: MM		,	Start Date: 9-22						
Well I	.D.: MW-2			Well Diameter: (circle one) 2 3 1 6						
Total Before	Well Depth:	27.60 ^{ster}	Dept Bef	th to Water:/						
Depth	to Free Produ	ct:	Thi	ckness of Fra	e Product (feat):				
Messux	ements refere	nced to:	(FVC)	Grade	Other:					
	Well Diamet	er	VCF 4 C 11752 C 11752 C 11752	Well Diamet. 6" 8" 10" 12" 16"	e r	VCF 1.47 2.61 4.08 5.87 10.43				
	5.1	_ x	3		_/5.3	7				
1 Ca	se Volume	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Specified V	olumes =	gallons) t.				
Purgis	ng: Bailer Disposable Middlaburg	ubmersib	D	Sampli.		ble Bailer ion Port				
	Other	- Pump	•							
TIME	Other	Hq	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:				
TIME 15:/5	Other	рн	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:				
TIME 15:/5	TEMP.			TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:				
TIME 15:/5 15:/5	Other	7.0 7.0	1400	TURBIDITY: /200 /85 /60	VOLUME REMOVED:	OBSERVATIONS:				
15:15	Other	7.0 7.0	1400	185	VOLUME REMOVED:	OBSERVATIONS:				
15:15 15:17 15:19	Other	7.0 7.0 7.0	1400 1400 1400	7200 185 160	6 11 16	OBSERVATIONS: ORGANIC Pacuated:				
5:/5 5:/5 5:/6	Other	7.0 7.0 7.0	1400 1400 1400 ., gale.	7200 185 160	6 11 16	ODSR4 ORGANIC				
5:/5 5:/5 5:/6	Other	7.0 7.0 7.0 7.0	/400 /400 /400 8, gals.	7200 /85 /60	// /C	ODSR4 ORGANIC				
15:/5 /5:/5 5:/6	Other	7.0 7.0 7.0 7.0	/400 /400 /400 8, gale.	7360 /85 /60 Gallons	// /C	ODSR/ ORGANIC				
5:/5 /5:/5 /5:/6 Did We Sample Sample (Circ	Other	7.0 7.0 7.0 7.0 2.5 2/	/YOU /YOU a, gale. Part Lab	Gallons rling Data: coratory: R/E	G // /C /C Actually Ex	ODSR4 ORGANIC				

WELL MONITORING DATA SHEET

Project	95082	2-11	Clie	int: CAMBO	IA	_			
Sampler:	Am		Star	t Date: 82	>				
Well I.D	· MW-3		Well	Diameter: (circle one)	2 3 4 6			
	ll Depth: 📮		Dept	h to Water:	7.10				
Before	λ:	fter	Bef	Before After					
Depth to	Free Produc	et:	Thic	kness of Fre	e Product (feet):			
Messurem	ents refere	nced to:	®	Grade	Other:				
	Wall Diamet 2" 3" 4" 5"	÷r	VO 13602	Well Diamet	4r	VCF 7 7 24 - 66 1 4 - 68 4 3 10 - 43			
1 Case	Volume	_ × _	Specified Vo	lumes =	gallons	2			
Purging:	Bailer Disposable Middleburg Electric S Extraction Other	ubmersibi	le	Sampli:	ng: Bailer Disposa Extract Other	ble Bailer ion Port			
TIME	TEMP.	рн	COND.	TURBIDITY:	Volume Removed:	OBSERVATIONS:			
15:44	68.6	6.9	2000	7200	/.5	0000			
15:47	67.0	6.5	1800	7340	3.0	ORGANIC			
- F	60-91	.c.e	100		-, 2, -	A, cert.			
Did Well	Dowater? A	OIC yes				equated:45			
Sampling	Time: /5:	22	Sam	pling Date: &	1-27				
Sample X	.D.: MW.	7	Lab	oratory: NC	7				
(Circle)	for: PH	G TER	трн-о От	HER:					
Duplicat	a I.D.:	"	Cle	aning Blank I	.D.:				
Analyzed (Circle)	for: TPH-	G BTEX	TPH-D OT	HER:					
				·					