

RECEIVED

10:58 am, May 03, 2010

Alameda County Environmental Health **Aaron Costa**Project Manager
Marketing Business Unit

Chevron Environmental Management Company 6111 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 543-2961 Fax (925) 543-2324 acosta@chevron.com

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Service Station No. 9-0329

340 Highland Avenue

Piedmont, CA

I have reviewed the attached report dated April 30, 2010.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Aaron Costa Project Manager

Attachment: Report

5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

http://www.craworld.com

April 30, 2010 Reference No. 311776

Mr. Mark Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: First Semi-Annual 2010 Groundwater Monitoring and Sampling Report

Former Chevron Service Station 9-0329

340 Highland Avenue Piedmont, California

Fuel Leak Case No. RO0000269

Dear Mr. Mark Detterman

Conestoga-Rovers & Associates (CRA) is submitting this *First Semi-Annual 2010 Groundwater Monitoring and Sampling Report* on behalf of Chevron Environmental Management Company (Chevron) for the site referenced above. Groundwater monitoring data is being submitted in accordance with the reporting requirements of 23CCR2652d. Presented below are the site background, current monitoring and sampling results, CRA's conclusions, and anticipated future activities.

SITE BACKGROUND

Site Description

The site is a former Chevron service station located at the northeast corner of the intersection of Highland and Magnolia Avenues in Piedmont, California (Figure 1). Chevron sold the property and station facilities to Hoffman Investment Company in 1990. The site is currently operated as Piedmont Valero (Figure 1).

Surrounding land use is commercial, residential and recreational. Piedmont Park is across Highland Avenue immediately down-gradient of the site.

Site Geology

The site is on a south facing hillside and is approximately 345 feet above mean sea level with a relatively steep topographic gradient. The site is underlain at shallow depths by siltstone and sandstone bedrock with the bedrock/sediment interface generally paralleling surface

Equal Employment Opportunity Employer

topography. Native sediments encountered during drilling were silts and sands that appear to be derived from bedrock weathering.

Hydrogeology

Groundwater has been as deep as 9.31 feet below grade (fbg) and has occasionally been above well top of casing. Groundwater is generally less than about 5 fbg and flows southward. The nearest surface water is a small creek located within Piedmont Park.

RESULTS OF 2009 MONITORING EVENTS

Groundwater Monitoring

On February 25, 2010 Blaine Tech Services, Inc. (Blaine Tech) gauged and sampled monitoring wells C-2 through C-6 and tank backfill wells A and B. Depth to groundwater ranged from 0.30 fbg (C-3) to 3.0 fbg (B). Groundwater flowed southward at a gradient of about 0.05. Blaine Tech's *First Quarter 2010 Monitoring Report* is included as Attachment A. The most recent groundwater elevation data and concentrations for total petroleum hydrocarbons as gasoline (TPHg), benzene and methyl tertiary butyl ether (MTBE) are included on Figure 2. Lancaster Laboratories' March 10, 2010 analytical report is included as Attachment B.

Current hydrocarbon concentrations are presented and compared to environmental screening levels (ESLs) where groundwater is a potential source of drinking water¹ in Table A. TPHg, benzene, toluene, ethylbenzene, xylenes (BTEX), and MTBE concentrations are near the low end of historical ranges. Blaine Tech's field notes indicate a sheen was observed on well C-2, but aqueous-phase concentrations are not indicative of light-non-aqueous-phase liquid (LNAPL) hydrocarbons.

_

Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Prepared by California Regional Water Quality Control Board San Francisco Bay Region, Interim Final -November 2007, (Revised May 2008), Table F-1a-Groundwater Screening Levels-Current or Potential Drinking Water Resource.

	TABLE A. HYDROCARBONS IN GROUNDWATER									
	Date	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE			
Groundwater										
ESLs										
(Table F-1a)		100	1	40	30	20	5			
			concentr	ations in m	iicrograms per l	iter (µg/L)				
C-2	2/25/10	5,600	79	3	15	17	150			
C-3	2/25/10	<50	<0.5	<0.5	<0.5	<0.5	<0.5			
C-4	2/25/10	<50	<0.5	<0.5	<0.5	<0.5	<0.5			
C-5	2/25/10	<50	<0.5	<0.5	<0.5	<0.5	<0.5			
C-6	2/25/10	<50	<0.5	<0.5	<0.5	<0.5	<0.5			
A	2/25/10	<50	<0.5	<0.5	<0.5	<0.5	8			
В	2/25/10	<50	<0.5	<0.5	<0.5	<0.5	3			

Dissolved Hydrocarbon and Oxygenate Delineation

Hydrocarbons and/or oxygenates are detected above ESLs in monitoring well C-2 and tank backfill well A. The extent of hydrocarbons and oxygenates in groundwater is fully defined by the existing well network.

Hydrocarbon and Oxygenate Concentration Trends

Hydrocarbon and oxygenate concentrations in C-2 and A continue to decrease:

- TPHg concentrations are an order of magnitude below historic highs in C-2
- Benzene and MTBE concentrations are two orders of magnitude below historic highs in C-2
- MTBE concentrations are one order of magnitude below historic highs in A

CONCLUSIONS

The first semi-annual 2010 sampling results indicate:

- Dissolved hydrocarbon concentrations continue to decrease since monitoring began in 1989
- The dissolved hydrocarbon plume is fully defined and no hydrocarbons or oxygenates are detected in offsite wells

ANTICIPATED FUTURE ACTIVITIES

Semi-Annual Groundwater Sampling

Blaine will gauge and sample site wells during third quarter 2010. CRA will prepare the second semi-annual 2010 sampling report within 60 days of the sampling date.

Low-Risk Case Closure Review

Based on 21 years of groundwater data and declining concentration trends, CRA will review this site for potential low-risk case closure.

We appreciate the opportunity to work with you on this project. Please contact Nate Lee at (510) 420-3333 if you have any questions or comments regarding this report.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

N. Scott MacLeod, P.G. #5747

SM/mws/2 Encl.

Figure 1 Vicinity Map

Figure 2 Groundwater Elevation and Hydrocarbon Concentration Map

Table 1 Groundwater Monitoring Data and Analytical ResultsTable 2 Groundwater Analytical Results – Oxygenate Compounds

Attachment A Blaine Tech's March 2, 2010 First Quarter 2010 Monitoring report

Attachment B Lancaster Laboratories' March 10, 2010 analytical report

cc: Mr. Aaron Costa, Chevron

Mr. Chuck Headlee, California Regional Water Quality Control Board – San Francisco Bay Region

Mr. Chester Nakahara, City of Piedmont

Bains Tarvinder Trust

FIGURES

Former Chevron Station 9-0329

Vicinity Map

TABLES

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	В	T	E	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
C-2										
08/07/89	94.19	2.88	91.31		34,000	580	60	170	270	
11/15/89	94.19	2.80	91.39		8,100	500	36	420	180	
02/01/91	94.19	3.75	90.44		6,800	490	21	310	86	
04/16/91	94.19	2.55	91.64		9,600	810	43	550	270	
10/16/91	94.19	3.52	90.67		7,100	320	23	200	60	
01/08/92	94.19	4.15	90.04		2,400	190	9.0	83	22	
04/10/92	94.19	2.96	91.23		6,600	550	33	340	170	
07/14/92	94.19	2.83	91.36		9,000	680	330	580	690	
10/05/92	94.19	4.38	89.81		5,500	250	17	130	82	
01/06/93	94.19	3.94	90.25		5,500	190	32	41	54	
03/29/93	94.19	2.09	92.10		19,000	670	40	180	370	
07/02/93	94.19	2.09	92.10		8,000	1,100	41	420	500	
10/11/93	94.19	2.76	91.43		42,000	940	34	140	87	
01/10/94	94.19	4.82	89.37		12,000	770	20	220	74	
04/06/94	94.19	2.49	91.70		40,000	820	33	190	110	
07/06/94	94.19	2.47	91.72		8,800	870	28	140	95	
11/11/94	94.19	2.87	91.32		8,600	460	81	180	120	
01/06/95	94.19	2.55	91.64		15,000	880	48	270	140	
04/13/95	94.19	2.06	92.13		56,000	2,500	130	730	360	
07/25/95	94.19	2.14	92.05		11,000	1,000	34	540	160	
10/05/95	94.19	2.51	91.68		13,000	1,000	<20	160	170	
01/02/96	94.19	2.22	91.97		9,500	1,300	<50	380	87	64,000

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	В	T	Е	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
C-2 (cont)										
04/11/96	94.19	1.92	92.27		<10,000	1,300	<100	<100	<100	74,000
07/08/96	94.19	2.05	92.14		<20,000	1,200	<200	<200	<200	110,000
10/03/96	94.19	2.29	91.90		<25,000	1,200	<250	<250	<250	140,000
01/23/97	343.39	1.90	341.49		20,000	1,100	<200	460	<200	110,000
02/14/97	343.39	1.97	341.42							150,000 ¹
04/08/97	343.39	2.27	341.12		<50,000	1,100	< 500	< 500	< 500	160,000
07/09/97	343.39	1.98	341.41		<50,000	1,300	< 500	< 500	< 500	210,000
10/08/97	343.39	2.30	341.09		18,000	1,400	<50	300	95	160,000
01/22/98	343.39	1.68	341.71		10,000	860	10	140	37	70,000
04/15/98	343.39	1.20	342.19		<10,000	1,400	<100	510	<100	46,000
07/09/98	343.39	1.47	341.92		33,000	1,700	<50	650	<50	120,000
10/02/98	343.39	2.13	341.26		11,000	920	11	130	76	100,000
01/18/99	343.39	1.84	341.55		<25,000	1,770	<250	<250	<250	48,400/78,300 ¹
04/19/99	343.39	1.17	342.22		9,900	1,110	26.6	455	82	33,300
09/28/99	343.39	2.81	340.58		11,500	1,100	<50	93.9	53.1	26,200
10/27/99	343.39	2.98	340.41		9,440	711	<20	74.9	42.4	17,500
01/17/00	343.39	2.35	341.04		12,200	813	<50	133	<50	21,200
04/11/00	343.39	1.31	342.08		210^{4}	26	< 0.50	3.7	1.1	580
07/12/00	343.39	1.79	341.60		18,100 ⁵	1,350	480	800	1,240	19,200
10/07/00	343.39	1.70	341.69		8,860 ⁵	1,070	<20.0	406	90.5	20,000
01/05/01	343.39	1.57	341.82		14,000 ⁴	2,000	55	560	120	17,000
04/05/01	343.39	1.37	342.02		4,900 ⁴	330	38	120	32	1,200

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	В	T	E	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)						
C-2 (cont)										
08/20/01	343.39	2.52	340.87		7,300	1,100	42	290	55	7,200
11/26/01	343.39	1.35	342.04		9,500	650	13	66	44	3,100
02/25/02	343.39	0.82	342.57		5,300	340	6.9	83	22	$1,200/1,400^7$
05/17/02	343.39	1.85	341.54		6,300	160	5.1	45	14	5,100
08/13/02	343.39	1.95	341.44		8,800	670	16	380	73	3,700
11/23/02	343.39	1.62	341.77		9,400	490	11	250	47	1,900
02/17/03	343.39	0.65	342.74		7,000	340	9.9	160	35	4,200/3,800 ⁷
05/19/03 ⁸	343.39	0.92	342.47		2,500	390	8	90	26	6,000
08/18/03 ⁸	343.39	1.05	342.34		6,400	300	7	62	23	3,500
11/17/038	343.39	1.08	342.31		5,900	290	6	13	25	2,200
05/03/06 ⁸	343.39	0.32	343.07	2,400	6,100	400	9	110	27	690
$03/22/07^8$	343.39	0.92	342.47		6,700	260	6	52	23	380
$09/25/09^8$	343.39	1.41	341.98		9,100	320	8	68	41	65
02/25/10 ⁸	343.39	0.51	342.88		5,600	79	3	15	17	150
C-3										
08/07/89	97.65	4.29	93.36		<50	< 0.5	<1.0	<1.0	<3.0	
11/15/89	97.65	5.17	92.48		<500	< 0.5	2.8	< 0.5	1.1	
02/01/91	97.65	6.38	91.27		<50	< 0.5	<0.5	< 0.5	< 0.5	
04/16/91	97.65	3.72	93.93		<50	<0.5	<0.5	< 0.5	< 0.5	
10/16/91	97.65	8.20	89.45		<50	<0.5	<0.5	< 0.5	< 0.5	
01/08/92	97.65	6.68	90.97		<50	< 0.5	<0.5	< 0.5	< 0.5	

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	В	T	E	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)						
C-3 (cont)										
04/10/92	97.65	4.50	93.15		<50	< 0.5	< 0.5	< 0.5	<0.5	
07/14/92	97.65	6.21	91.44		<50	< 0.5	< 0.5	< 0.5	<0.5	
10/05/92	97.65	9.31	88.34		<50	< 0.5	< 0.5	< 0.5	<0.5	
01/06/93	97.65	3.41	94.24		<50	< 0.5	< 0.5	< 0.5	<0.5	
03/29/93	97.65	0.50	97.15		<50	< 0.5	< 0.5	< 0.5	0.8	
07/02/93	97.65	2.59	95.06		<50	4.0	3.0	< 0.5	3.0	
10/11/93	97.65	4.90	92.75		<50	< 0.5	<0.5	< 0.5	< 0.5	
01/10/94	97.65	4.39	93.26		<50	< 0.5	1.0	< 0.5	0.8	
04/06/94	97.65	2.68	94.97		<50	< 0.5	1.0	0.7	4.5	
07/06/94	97.65	2.10	95.55		<50	2.2	4.1	< 0.5	2.8	
11/11/94	97.65	1.23	96.42		<50	<0.5	0.8	< 0.5	< 0.5	
01/06/95	97.65	0.60	97.05		<50	<0.5	<0.5	< 0.5	< 0.5	
04/13/95	97.65	0.60	97.05		<50	<0.5	<0.5	< 0.5	< 0.5	
07/25/95	97.65	1.65	96.00		<50	<0.5	<0.5	< 0.5	< 0.5	
10/05/95	97.65	3.63	94.02		<50	<0.5	<0.5	< 0.5	< 0.5	
01/02/96	97.65	3.12	94.53		<50	<0.5	<0.5	< 0.5	< 0.5	<2.5
04/11/96	97.65	0.82	96.83		<50	<0.5	<0.5	< 0.5	< 0.5	<2.5
07/08/96	97.65	1.50	96.15		<50	<0.5	<0.5	< 0.5	< 0.5	<2.5
10/03/96	97.65	2.48	95.17		<50	< 0.5	<0.5	<0.5	<0.5	<2.5
01/23/97	347.08	0.21	346.87		<50	< 0.5	<0.5	<0.5	<0.5	3.2
04/08/97	347.08	0.75	346.33		<50	< 0.5	<0.5	<0.5	<0.5	<2.5
07/09/97	347.08	1.47	345.61		<50	<0.5	<0.5	<0.5	<0.5	<2.5

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	В	T	Е	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
C-3 (cont)										
10/08/97	347.08	2.04	345.04		<50	<0.5	<0.5	<0.5	< 0.5	<2.5
01/22/98	347.08	FLOODED			<50	< 0.5	<0.5	<0.5	<0.5	40
04/15/98	347.08	FLOODED			<50	< 0.5	<0.5	<0.5	< 0.5	<2.5
$05/13/98^2$	347.20									
07/09/98	347.20	0.47	346.73		<50	< 0.5	<0.5	<0.5	< 0.5	<2.5
10/02/98	347.20	0.98	346.22		<50	< 0.5	<0.5	<0.5	<1.5	<2.5
01/18/99	347.20	0.77	346.43		<50	<0.5	<0.5	<0.5	<1.5	<2.0
04/19/99	347.20	0.53	346.67		<50	< 0.5	<0.5	<0.5	< 0.5	< 5.0
07/19/99	347.20	0.81	346.39		<50	<0.5	<0.5	<0.5	< 0.5	< 5.0
10/27/99	347.20	1.47	345.73		<50	< 0.5	<0.5	<0.5	< 0.5	<2.5
01/17/00	347.20	0.94	346.26		<50	<0.5	<0.5	<0.5	< 0.5	<2.5
04/11/00	347.20	0.30	346.90		<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
07/12/00	347.20	0.42	346.78		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
10/07/00	347.20	1.01	346.19		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
01/05/01	347.20	1.38	345.82		<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
04/05/01	347.20	0.35	346.85		<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
08/20/01	347.20	0.80	346.40		<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
11/26/01	347.20	0.36	346.84		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
02/25/02	347.20	0.36	346.84		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5/<2 ⁷
05/17/02	347.20	0.45	346.75		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/13/02	347.20	1.11	346.09		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
11/23/02	347.20	1.49	345.71		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	В	T	Е	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
C-3 (cont)										
02/17/03	347.20	0.51	346.69		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5/<0.5 ⁷
05/19/03 ⁸	347.20	0.30	346.90		<50	<0.5	<0.5	<0.5	< 0.5	<0.5
$08/18/03^8$	347.20	0.35	346.85		<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/17/03 ⁸	347.20	0.28	346.92		<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/03/06 ⁸	347.20	0.21	346.99	240	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
$03/22/07^8$	347.20	0.22	346.98		<50	< 0.5	<0.5	< 0.5	< 0.5	< 0.5
$09/25/09^8$	347.20	1.85	345.35		<50	<0.5	<0.5	< 0.5	<0.5	< 0.5
02/25/10 ⁸	347.20	0.30	346.90		<50	<0.5	<0.5	<0.5	<0.5	<0.5
C-4										
08/07/89	95.60	DRY								
11/15/89	95.60	4.95	90.65		1300	2.9	310	0.5	2.9	
02/01/91	95.60	4.78	90.82		72	<0.5	9.0	< 0.5	<0.5	
04/16/91	95.60	4.83	90.77		<50	< 0.5	<0.5	<0.5	<0.5	
10/16/91	95.60	4.23	91.37		<50	<0.5	<0.5	< 0.5	<0.5	
01/08/92	95.60	4.81	90.79		<50	<0.5	<0.5	< 0.5	<0.5	
04/10/92	95.60	4.26	91.34		<50	< 0.5	<0.5	< 0.5	< 0.5	
07/14/92	95.60	4.28	91.32		<50	< 0.5	3.8	< 0.5	< 0.5	
10/05/92	95.60	4.29	91.31		<50	< 0.5	<0.5	< 0.5	< 0.5	
01/06/93	95.60	4.29	91.31		<50	0.7	<0.5	< 0.5	< 0.5	
03/29/93	95.60	4.30	91.30		<50	0.5	1.0	<0.5	2.0	
07/02/93	95.60	4.22	91.38		<50	< 0.5	< 0.5	<0.5	<0.5	

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	\boldsymbol{B}	T	\boldsymbol{E}	\boldsymbol{X}	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
C-4 (cont)										
10/11/93	95.60	4.30	91.30		<50	0.6	<0.5	<0.5	< 0.5	
01/10/94	95.60	4.44	91.16		<50	0.7	3.0	<0.5	1.0	
04/06/94	95.60	4.24	91.36		130	2.2	5.4	3.3	24	
07/06/94	95.60	4.24	91.36		99	5.9	7.5	2.0	12	
11/11/94	95.60	4.21	91.39		<50	< 0.5	9.5	<0.5	< 0.5	
01/06/95	95.60	4.42	91.18		<50	0.7	1.0	<0.5	1.1	
04/13/95	95.60	4.24	91.36		67	0.54	7.2	<0.5	1.1	
07/25/95	95.60	4.24	91.36		390	<2.0	150	<2.0	<2.0	
10/05/95	95.60	4.38	91.22		130	< 0.5	66	<0.5	< 0.5	
01/02/96	95.60	4.26	91.34		<50	< 0.5	<0.5	<0.5	< 0.5	34
04/11/96	95.60	4.39	91.21		<50	< 0.5	0.93	<0.5	< 0.5	56
07/08/96	95.60	4.28	91.32		<50	< 0.5	<0.5	<0.5	< 0.5	21
10/03/96	95.60	4.22	91.38		80	< 0.5	31	<0.5	< 0.5	9.9
01/23/97	344.94	4.39	340.55		<50	< 0.5	<0.5	<0.5	< 0.5	23
04/08/97	344.94	4.25	340.69		87	< 0.5	3.6	<0.5	1.7	7.0
07/09/97	344.94	4.21	340.73		93	< 0.5	32	<0.5	< 0.5	26
10/08/97	344.94	4.34	340.60		<50	< 0.5	0.63	<0.5	< 0.5	12
01/22/98	344.94	4.26	340.68		<50	< 0.5	4.3	<0.5	< 0.5	10
04/15/98	344.94	1.01	343.93	SAMPLED SE	MI-ANNUALL	LΥ				
07/09/98	344.94	4.25	340.69		<50	< 0.5	<0.5	<0.5	< 0.5	37
10/02/98	344.94	4.35	340.59							
01/18/99	344.94	4.21	340.73		<50	< 0.5	<0.5	<0.5	< 0.5	25.4

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	В	T	E	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
C-4 (cont)										
04/19/99	344.94	2.31	342.63							
$07/19/99^3$	344.94	1.53	343.41		10,000	1,160	23	178	50.4	45,600
09/28/99	344.94	4.70	340.24		<50	< 0.5	0.919	< 0.5	<0.5	<2.5
10/27/99	344.94	1.26	343.68							
01/17/00	344.94	4.22	340.72		<50	<0.5	21.4	<0.5	<0.5	4.6
04/11/00	344.94	4.21	340.73							
07/12/00	344.94	4.21	340.73		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
10/07/00	344.94	4.23	340.71							
01/05/01	344.94	4.22	340.72		<50	< 0.50	< 0.50	< 0.50	< 0.50	27
04/05/01	344.94	4.23	340.71							
08/20/01	344.94	4.27	340.67		<50	< 0.50	< 0.50	< 0.50	< 0.50	18
11/26/01	344.94	4.26	340.68	SAMPLED SE	MI-ANNUALI	LY				
02/25/02	344.94	4.25	340.69		<50	< 0.50	1.8	< 0.50	<1.5	$24/24^{7}$
05/17/02	344.94	3.30	341.64	SAMPLED SE	MI-ANNUALI	LY				
08/13/02	344.94	4.10	340.84		<50	< 0.50	< 0.50	<1.0	<1.5	7.3
11/23/02	344.94	3.04	341.90	SAMPLED SE	MI-ANNUALI	LY				
02/17/03	344.94	2.12	342.82		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5/<0.5 ⁷
05/19/03	344.94	2.57	342.37	SAMPLED SE	MI-ANNUALI	LY				
08/18/03 ⁸	344.94	2.99	341.95		<50	< 0.5	< 0.5	< 0.5	<0.5	<0.5
11/17/03	344.94	2.25	342.69	SAMPLED SE	MI-ANNUALI	LY.				
05/03/06 ⁸	344.94	2.15	342.79	360	<50	<0.5	<0.5	<0.5	< 0.5	3
$03/22/07^8$	344.94	2.44	342.50		<50	<0.5	<0.5	<0.5	< 0.5	16

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	В	T	E	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
C-4 (cont)										
09/25/09 ⁸	344.94	6.40	338.54		<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
02/25/108	344.94	1.48	343.46		<50	<0.5	<0.5	<0.5	<0.5	<0.5
C-5										
11/25/96		3.30			<50	< 0.5	<0.5	<0.5	< 0.5	<2.5
01/23/97	345.14	1.45	343.69		<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5
04/08/97	345.14	2.32	342.82		<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5
07/09/97	345.14	2.30	342.84		<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
10/08/97	345.14	3.00	342.14		<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5
01/22/98	345.14	1.00	344.14		<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
04/15/98	345.14	3.25	341.89	SAMPLED AN	NNUALLY					
07/09/98	345.14	0.20	344.94							
10/02/98	345.14	2.32	342.82							
01/18/99	345.14	2.13	343.01		<50	< 0.5	< 0.5	<0.5	< 0.5	<2.0
04/19/99	345.14	2.07	343.07							
07/19/99	345.14	2.42	342.72							
10/27/99	345.14	2.37	342.77							
01/17/00	345.14	2.50	342.64		<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
04/11/00	345.14	2.18	342.96							
07/12/00	345.14	2.08	343.06							
10/07/00	345.14	2.38	342.76							
01/05/01	345.14	2.13	343.01		<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

TOC*	DTW	GWE	TPH-D	TPH-G	В	T	Е	X	MTBE
(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
345.14	1.80	343.34							
345.14	2.08	343.06							
345.14	2.25	342.89	SAMPLED A	NNUALLY					
345.14	2.80	342.34		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5/<2 ⁷
345.14	1.81	343.33	SAMPLED A	NNUALLY					
345.14	1.82	343.32	SAMPLED A	NNUALLY					
345.14	2.36	342.78	SAMPLED A	NNUALLY					
345.14	1.89	343.25		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5/<0.5 ⁷
345.14	1.91	343.23	SAMPLED A	NNUALLY					
345.14	1.92	343.22	SAMPLED A	NNUALLY					
345.14	2.08	343.06	SAMPLED A	NNUALLY					
345.14	1.27	343.87	<50	<50	< 0.5	<0.5	<0.5	<0.5	< 0.5
345.14	1.43	343.71		< 50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
345.14	3.49	341.65		<50	< 0.5	<0.5	<0.5	<0.5	< 0.5
345.14	2.20	342.94		< 50	<0.5	<0.5	<0.5	<0.5	<0.5
	2.13			<50	<0.5	<0.5	<0.5	<0.5	<2.5
338.61	FLOODED			<50	< 0.5	<0.5	<0.5	<0.5	<2.5
338.61	FLOODED			<50	< 0.5	<0.5	<0.5	<0.5	<2.5
338.61	2.77	335.84		<50	< 0.5	<0.5	<0.5	<0.5	<2.5
338.61	1.44	337.17		<50	< 0.5	<0.5	<0.5	<0.5	<2.5
	345.14 345.14 345.14 345.14 345.14 345.14 345.14 345.14 345.14 345.14 345.14 345.14 345.14 345.14 345.15.14 345.14 345.14 345.14	(ft.) (ft.) 345.14 1.80 345.14 2.08 345.14 2.25 345.14 1.81 345.14 1.82 345.14 1.89 345.14 1.91 345.14 1.92 345.14 1.92 345.14 1.27 345.14 1.43 345.14 3.49 345.14 2.20 2.13 338.61 FLOODED 338.61 FLOODED 338.61 2.77	(ft.) (ft.) (msl) 345.14 1.80 343.34 345.14 2.08 343.06 345.14 2.25 342.89 345.14 2.80 342.34 345.14 1.81 343.33 345.14 1.82 343.32 345.14 1.89 343.25 345.14 1.91 343.23 345.14 1.92 343.22 345.14 1.92 343.06 345.14 1.27 343.87 345.14 1.43 343.71 345.14 3.49 341.65 345.14 3.49 341.65 345.14 3.49 341.65 345.14 2.20 342.94 2.13 2.13 338.61 FLOODED 338.61 FLOODED 338.61 FLOODED 338.61 FLOODED 335.84	(ft.) (ft.) (msl) (ppb) 345.14 1.80 343.34 345.14 2.08 343.06 345.14 2.25 342.89 SAMPLED AND AND AND AND AND AND AND AND AND AN	(ft.) (ft.) (msl) (ppb) (ppb) 345.14 1.80 343.34 345.14 2.08 343.06 345.14 2.25 342.89 SAMPLED ANNUALLY 345.14 2.80 342.34 <50	(ft.) (ft.) (msl) (ppb) (ppb) (ppb) 345.14 1.80 343.34 345.14 2.08 343.06 345.14 2.25 342.89 SAMPLED ANNUALLY 345.14 2.80 342.34 <50	(ft.) (ft.) (msl) (ppb) (ppb) (ppb) (ppb) 345.14 1.80 343.34 345.14 2.08 343.06 345.14 2.25 342.89 SAMPLED ANNUALLY 345.14 1.81 343.33 SAMPLED ANNUALLY 345.14 1.82 343.32 SAMPLED ANNUALLY 345.14 1.82 343.32 SAMPLED ANNUALLY 345.14 1.89 343.25 <-50	(ft.) (ft.) (msl) (ppb) (ppb) <th< td=""><td>(ft.) (ft.) (msl) (ppb) <th< td=""></th<></td></th<>	(ft.) (ft.) (msl) (ppb) (ppb) <th< td=""></th<>

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	В	T	Е	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
C-6 (cont)										
01/22/98	338.61	1.54	337.07		<50	< 0.5	<0.5	<0.5	< 0.5	<2.5
04/15/98	338.61	1.30	337.31		<50	<0.5	< 0.5	<0.5	< 0.5	<2.5
07/09/98	338.61	FLOODED			<50	<0.5	<0.5	<0.5	< 0.5	<2.5
10/02/98	338.61	2.80	335.81		<50	< 0.5	<0.5	<0.5	<1.5	<2.5
01/18/99	338.61	1.29	337.32		<50	<0.5	<0.5	<0.5	< 0.5	<2.0
04/19/99	338.61	1.31	337.30		<50	<0.5	<0.5	<0.5	< 0.5	<5.0
07/19/99	338.61	1.56	337.05		<50	<0.5	<0.5	<0.5	< 0.5	<5.0
10/27/99	338.61	1.45	337.16		<50	<0.5	<0.5	<0.5	< 0.5	<2.5
01/17/00	338.61	1.65	336.96		<50	<0.5	<0.5	<0.5	< 0.5	<2.5
04/11/00	338.61	1.56	337.05		<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
07/12/00	338.61	1.01	337.60		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
10/07/00	338.61	1.19	337.42		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
01/05/01	338.61	0.87	337.74		<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
04/05/01	338.61	0.32	338.29		<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
08/20/01	338.61	6			<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
11/26/01	338.61	0.76	337.85		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
02/25/02	338.61	6			<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5/<2 ⁷
05/17/02	338.61	6			<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/13/02	338.61	0.90	337.71		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
11/23/02	338.61	1.03	337.58		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
02/17/03	338.61	0.85	337.76		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5/<0.5 ⁷
05/19/03 ⁸	338.61	6			<50	<0.5	<0.5	<0.5	< 0.5	<0.5

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

TOC*	DTW	GWE	TPH-D	TPH-G	В	T	E	X	MTBE
(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
338.61	0.00	338.61		<50	<0.5	< 0.5	<0.5	< 0.5	< 0.5
338.61	0.00	338.61		<50	< 0.5	< 0.5	<0.5	<0.5	< 0.5
338.61	0.00	338.61	150	<50	< 0.5	< 0.5	<0.5	<0.5	< 0.5
338.61	0.00	338.61		<50	< 0.5	< 0.5	<0.5	<0.5	< 0.5
338.61	3.95	334.66		<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
338.61	0.60	338.01		<50	<0.5	<0.5	<0.5	<0.5	<0.5
A									
	2.10			1,000	50	6.0	5.0	22	
	2.04			3,700	98	2.1	4.3	55	
	3.05			36,000	1,100	750	130	6,100	
	2.01			8,000	370	6.0	86	750	
	4.15								
	0.75			<50	< 0.5	< 0.5	<0.5	<0.5	27
	1.33			<50	<0.5	< 0.5	<0.5	<0.5	16
	0.64			<50	<0.5	<0.5	<0.5	<0.5	8
В									
	4.12								
	5.03								
	4.00								
	338.61 338.61 338.61 338.61 338.61 338.61 B	(ft.) (ft.) 338.61 0.00 338.61 0.00 338.61 0.00 338.61 3.95 338.61 0.60 A 2.10 2.04 3.05 2.01 4.15 0.75 1.33 0.64 B 4.12 5.03	(ft.) (ft.) (msl) 338.61 0.00 338.61 338.61 0.00 338.61 338.61 0.00 338.61 338.61 0.00 338.61 338.61 0.60 338.01 A 2.10 2.04 2.04 2.01 4.15 2.01 4.15 1.33 0.64 1.33 0.64 B 4.12 5.03 5.03	(ft.) (ft.) (msl) (ppb) 338.61 0.00 338.61 338.61 0.00 338.61 338.61 0.00 338.61 338.61 0.00 338.61 338.61 0.60 338.01 A 2.10 2.04 2.01 4.15 4.15 1.33 0.64 B 4.12 5.03 5.03	(ft.) (ft.) (insl) (ppb) (ppb) 338.61 0.00 338.61 <50	(ft.) (ft.) (msl) (ppb) (ppb) (ppb) 338.61 0.00 338.61 <50	(ft.) (ft.) (msl) (ppb) (ppb) (ppb) (ppb) 338.61 0.00 338.61 <50	(ft.) (ft.) (msl) (ppb) (ppb) <th< td=""><td> (ft.) (ft.) (msl) (ppb) (ppb</td></th<>	(ft.) (ft.) (msl) (ppb) (ppb

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	\boldsymbol{B}	T	E	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Backfill Well:	B (cont)									
10/16/91		6.24								
$03/22/07^8$		3.08			<50	<0.5	< 0.5	<0.5	< 0.5	16
09/25/09 ⁸		3.60			<50	< 0.5	< 0.5	< 0.5	< 0.5	5
02/25/10 ⁸		3.00			<50	<0.5	<0.5	<0.5	<0.5	3
Trip Blank										
TB-LB										
01/06/93					<50	<0.5	<0.5	<0.5	< 0.5	
03/29/93					<50	<0.5	< 0.5	<0.5	1.0	
07/02/93					<50	< 0.5	< 0.5	< 0.5	< 0.5	
10/11/93					<50	< 0.5	< 0.5	< 0.5	< 0.5	
01/10/94					<50	<0.5	< 0.5	< 0.5	< 0.5	
04/06/94					<50	< 0.5	<0.5	<0.5	< 0.5	
07/06/94					<50	< 0.5	<0.5	<0.5	< 0.5	
11/11/94					<50	<0.5	<0.5	<0.5	<0.5	
01/06/95					<50	< 0.5	<0.5	<0.5	<0.5	
04/13/95					<50	<0.5	<0.5	<0.5	<0.5	
07/25/95					<50	<0.5	<0.5	<0.5	<0.5	
10/05/95					<50	<0.5	<0.5	<0.5	<0.5	
01/02/96					< 50	<0.5	<0.5	<0.5	<0.5	<2.5
04/11/96					<50	<0.5	<0.5	<0.5	<0.5	<2.5
07/08/96					<50	<0.5	<0.5	<0.5	<0.5	<2.5

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	В	T	E	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Trip Blank (co	ont)									
10/03/96					<50	<0.5	<0.5	<0.5	<0.5	
01/23/97					<50	<0.5	<0.5	<0.5	<0.5	<2.5
04/08/97					<50	<0.5	<0.5	<0.5	<0.5	<2.5
07/09/97					<50	<0.5	<0.5	<0.5	<0.5	<2.5
10/08/97					<50	< 0.5	<0.5	<0.5	< 0.5	<2.5
01/22/98					<50	< 0.5	<0.5	<0.5	< 0.5	<2.5
07/09/98					<50	< 0.5	<0.5	<0.5	<0.5	<2.5
10/02/98					<50	<0.5	< 0.5	<0.5	<0.5	<2.5
01/18/99					<50	<0.5	< 0.5	<0.5	<0.5	<2.0
04/19/99					<50	< 0.5	< 0.5	<0.5	<0.5	< 5.0
07/19/99					<50	< 0.5	< 0.5	<0.5	<0.5	< 5.0
10/27/99					<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
01/17/00					<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
04/11/00					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
07/12/00					<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
10/07/00					<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
01/05/01					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
04/05/01					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
08/20/01					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
QA										
11/26/01					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
02/25/02					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	В	T	E	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
QA (cont)										
05/17/02					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/13/02					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
11/23/02					< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
02/17/03					< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
$05/19/03^8$					< 50	< 0.5	<0.5	<0.5	< 0.5	< 0.5
$08/18/03^8$					< 50	< 0.5	<0.5	<0.5	< 0.5	< 0.5
$11/17/03^8$					< 50	< 0.5	<0.5	<0.5	< 0.5	< 0.5
05/03/06 ⁹					< 50					
$03/22/07^8$					< 50	< 0.5	<0.5	<0.5	< 0.5	< 0.5
$09/25/09^8$					< 50	< 0.5	<0.5	<0.5	< 0.5	<0.5
02/25/108					< 50	<0.5	<0.5	<0.5	< 0.5	<0.5

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS FORMER CHEVRON SERVICE STATION 9-0329 340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID/	TOC*	DTW	GWE	TPH-D	TPH-G	В	T	Е	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)						

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to April 11, 2000 were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing TPH-D = Total Petroleum Hydrocarbons as Diesel X = Xylenes

(ft.) = Feet TPH-G = Total Petroleum Hydrocarbons as Gasoline MTBE = Methyl tertiary butyl ether

DTW = Depth to Water B = Benzene (ppb) = Parts per billion

GWE = Groundwater Elevation T = Toluene -- = Not Measured/Not Analyzed (msl) = Mean sea level E = Ethylbenzene QA = Quality Assurance/Trip Blank

- TOC elevations are relative to msl.
- MTBE confirmation run.
- TOC elevation adjusted due to broken top of casing.
- Anomalous results: Results for this sample are likely the result of a mislabeling of sample containers; results most closely resemble those of well C-2.
- Laboratory report indicates gasoline C6-C12.
- Laboratory report indicates weathered gasoline C6-C12.
- Unable to determine DTW, water overflowing TOC.
- MTBE by EPA Method 8260.
- BTEX and MTBE by EPA Method 8260.
- Due to QC issues at the Laboratory; BTEX and MTBE could not be reported.

TABLE 2

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
C-2	02/25/02	<500	210	1,400	<2	2	97	<2	<2
	02/17/03		890	3,800	<1	6	110	<1	<1
	05/19/03			6,000					
	08/18/03	<250		3,500					
	11/17/03	<200		2,200					
	05/03/06			690					
	03/22/07		16	380	<0.5	< 0.5	35	< 0.5	< 0.5
	09/25/09		4 J	65	<1	<1	7		
	02/25/10			150					
C-3	02/25/02	<500	<100	<2	<2	<2	<2	<2	<2
	02/17/03		<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	05/19/03			<0.5					
	08/18/03	<50		<0.5					
	11/17/03	<50		<0.5					
	05/03/06			< 0.5					
	03/22/07		<2	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
	09/25/09		<2	< 0.5	<0.5	<0.5	<0.5		
	02/25/10			<0.5					
C-4	02/25/02	<500	<100	24	<2	<2	<2	<2	<2
	02/17/03		< 5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
		SAMPLED SEMI		v. .					

TABLE 2

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
C-4 (cont)	08/18/03	<50		<0.5					
	05/03/06			3					
	03/22/07		<2	16	<0.5	<0.5	<0.5	<0.5	< 0.5
	09/25/09		<2	< 0.5	< 0.5	<0.5	<0.5		
	02/25/10			<0.5					
C-5	02/25/02	<500	<100	<2	<2	<2	<2	<2	<2
	02/17/03		<5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5
	05/19/03	SAMPLED ANN	IUALLY						
	05/03/06			<0.5					
	03/22/07		<2	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5
	09/25/09		<2	<0.5	<0.5	< 0.5	< 0.5		
	02/25/10	-		<0.5					
C-6	02/25/02	<500	<100	<2	<2	<2	<2	<2	<2
	02/17/03		<5	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5
	05/19/03			<0.5					
	08/18/03	<50		<0.5					
	11/17/03	<50		<0.5					
	05/03/06			<0.5					
	03/22/07		<2	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5
	09/25/09		<2	<0.5	<0.5	< 0.5	<0.5		
	02/25/10			<0.5					

TABLE 2

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS
FORMER CHEVRON SERVICE STATION 9-0329
340 HIGHLAND AVENUE, PIEDMONT, CALIFORNIA

WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Backfill W	a11. A								
Dackilli vv									
	03/22/07		39	27	<0.5	<0.5	<0.5	<0.5	<0.5
	09/25/09		<2	16	<0.5	< 0.5	< 0.5		
	02/25/10			8					
Backfill W	ell: B								
	03/22/07		11	16	< 0.5	<0.5	<0.5	< 0.5	<0.5
	09/25/09		<2	5	< 0.5	<0.5	< 0.5		
	02/25/10			3					

EXPLANATIONS:

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

(ppb) = Parts per billion

-- = Not Analyzed

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

ATTACHMENT A
BLAINE TECH'S MARCH 2, 2010 FIRST QUARTER 2010 MONITORING REPORT

March 2, 2010

Chevron Environmental Management Company Aaron Costa 6111 Bollinger Canyon Rd. San Ramon, CA 94583

> First Quarter 2010 Monitoring at Chevron Service Station 90329 340 Highland Ave. Piedmont, CA

Monitoring performed on February 25, 2010

Blaine Tech Services, Inc. Groundwater Monitoring Event 100225-FS1

This submission covers the routine monitoring of groundwater wells conducted on February 25, 2010 at this location. Seven monitoring wells were measured for depth to groundwater (DTW). Seven monitoring wells were sampled. All sampling activities were performed in accordance with local, state and federal quidelines.

Water levels measurements were collected using an electronic slope indicator. All sampled wells were purged of three case volumes, depending on well recovery, or until water temperature, pH and conductivity stabilized. Purging was accomplished using electric submersible pumps, positive air-displacement pumps or stainless steel, Teflon or disposable bailers. Subsequent sample collection and sample handling was performed in accordance with EPA protocols using disposable bailers. Alternately, where applicable, wells were sampled utilizing no-purge methodology. All reused equipment was decontaminated in an integrated stainless steel sink with de-ionized water supplied Hotsy pressure washer and Liquinox or equivalent.

Samples were delivered under chain-of-custody to Lancaster Laboratories of Lancaster, Pennsylvania, for analysis. Monitoring well purgewater and equipment rinsate water was collected and transported under bill-of-lading to IWM facilities of San Jose, California.

Enclosed documentation from this event includes copies of the Well Gauging Sheet, Well Monitoring Data Sheets, and Chain-of-Custody.

Blaine Tech Services, Inc.'s activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrogeologic conditions or formulation of recommendations was performed.

Please call if you have any questions.

Sincerely,

Dustin Becker

Blaine Tech Services, Inc. Senior Project Manager

2A San

attachments: SOP

Well Gauging Sheet

Individual Well Monitoring Data Sheets

Chain of Custody

Wellhead Inspection Form

Bill of Lading Calibration Log

cc: CRA

Attn: Charlotte Evans 5900 Hollis St. Suite A Emeryville, CA 94608

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT CHEVRON SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Chevron comply with Chevron's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Chevron site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. GeoTech). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be

evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed approximately 2 hours to recharge prior to sampling or will be sampled at site departure. All wells requiring off-site traffic control in the public right-of-way, the 80% recharge rule may be disregarded in the interests of Health and Safety. The sample may be collected as soon as there is sufficient water. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Chevron approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using disposable bailers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Duplicate sample is collected, typically from the well containing the most measurable contaminants. The Duplicate sample is labeled the same as the original.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with deionized water.

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 550) or HACH field test kits.

The YSI meters are able to collect accurate in-situ readings. The probe allows downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe is lowered into the water column and the reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS

All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

WELL GAUGING DATA

Project #	100225-	FS2_ Date	2-25-10	Client	CHEVR	
Cite 2	3 Ho HII	6 H LAND	AVE. PIE	DMant	<u>, </u>	

		Well Size	Sheen /	Depth to	of Immiscible	l .	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
Well ID	Time	(in.)	Odor SH66M		Liquid (ft.)	(1111)	0.51	(1.73	Toc	
c-3	(000	2	6 DOR				0-30	13_64		
c-4	9010	2					148	9.671		
C-5	1100	2					2.2 0	1678		
c - 6	1135	2					0.60	(7.20		
A	1027	6					0.64	8.13		
ß	1050	6					3.00	9.(1	\ \ \	
	COLUMN TO THE PARTY OF THE PART									

Project #	: 1002	225 -	FS2	Station #: 9-0329						
Sampler:	7	Ž		Date: 2	-25-10					
Weather	: 50	r~1		Ambient Air T	emperature:	68° F				
Well I.D	.:	-2		Well Diameter	: (2) 3 4	6 8				
Total We	ell Depth:	(1,73	3	Depth to Wate	r: 0.5 \					
Depth to	Free Produ	ıct:		Thickness of F	ree Product (fe	et):				
Referenc	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH				
DTW wi	th 80% Rec	harge [(H	Height of Water	Column x 0.20) + DTW]:	2.75				
Purge Meth	Bailer D isposable Ba	isplacement	Waterra Peristaltic Extraction Pump Other	Well Diamet	Extraction Port Dedicated Tubing	Diameter Multiplier				
(.8) I Case Volum	(Gals.) X me Spe	3 ecified Volun	= 5.4 nes Calculated Vo	_ Gals. lume 1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 or radius ² * 0.163				
Time	Temp (°F)	рН	Cond. (mS or KS)	Turbidity (NTUs)	Gals. Removed	Observations				
1338	65.4	7.3	692	71000	1.8					
1342	63.2	6.8	686	71000	3.6					
1345	63.3	6.8	721	7:000	5.4					
Did well	dewater?	Yes	No	Gallons actuall	y evacuated:	5.4				
Sampling	g Date: 2-	25-10	Sampling Time	e: 1350	Depth to Water	r: 4.21 (517E				
Sample I	.D.:	C-2		Laboratory:	Lancaster Otl	her				
Analyzec	l for: (TPH-	G (BTEX)	MTBE OXYS	Other:						
Duplicate	e I.D.:		Analyzed for:		MTBE OXYS	Other:				
D.O. (if r	eq'd):		Pre-purge:	mg/ _L	Post-purge:	mg/ ₁				
O.R.P. (i	f req'd):		Pre-purge:	mV	Post-purge:	mV				

Project #	: 1002	225 -	F52	Station #: 9-0329						
Sampler:	F	5		Date: 2 -	- 25-10					
Weather:	;	50 H H .	1	Ambient Air T	emperature:	67°				
Well I.D.	: (C - 3		Well Diameter	: ② 3 4	6 8				
Total We	ll Depth:	13.	64	Depth to Water: 0.30						
Depth to	Free Produ	ıct:		Thickness of Free Product (feet):						
Referenc	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH				
DTW wit	th 80% Rec	harge [(H	Height of Water	Column x 0.20) + DTW]:	2.96				
Purge Meth	Bailer Disposable Ba	visplacement	Waterra Peristaltic Extraction Pump Other	Well Diamete	Extraction Port Dedicated Tubing	<u> Diameter Multiplier</u>				
2 - 2 1 Case Volum	(Gals.) X ne Sp	3 ecified Volun	= 6.0 nes Calculated Vo	Gals. 1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 r radius ² * 0.163				
Time	Temp (°F)	рН	Cond. (mS or (LS))	Turbidity (NTUs)	Gals. Removed	Observations				
1219	59.7	7.5	290	71000	2.2					
1223	60.5	7.3	263	71000	4.4					
1226	61.4	7.2	267	7(050	6.6					
Did well	dewater?	Yes	No	Gallons actuall	ly evacuated:	6.6				
Sampling	g Date: 2-	-25-10	Sampling Time	e: /3 00	Depth to Wate	r: 6.82 SITE DEPART				
Sample I	.D.:	C-3		Laboratory:	Lancaster Ot	her				
Analyzed	l for: (TPH	-G (BTEX)	MTBE OXYS	Other:						
Duplicate	e I.D.:		Analyzed for:	TPH-G BTEX N	MTBE OXYS	Other:				
D.O. (if 1	req'd):		Pre-purge:	mg/L	Post-purge:	mg/				
O.R.P. (i	f req'd):		Pre-purge:	mV	Post-purge:	mV				

Project #:	100 2	225 -	FS Z	Station #: 9	-0329					
Sampler:	F	5		Date: 2-25-10						
Weather:	C	LOUDY		Ambient Air Temperature: 64°7						
Well I.D.	•	C-4		Well Diameter: 2 3 4 6 8						
Total We	ll Depth:	9.9.	7	Depth to Water: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
	Free Produ	ıct:		Thickness of Free Product (feet):						
Reference		(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH				
DTW wit	h 80% Rec	charge [(H	Height of Water	Column x 0.20) + DTW]:	3.17				
Purge Metho	Bailer Disposable Ba	Displacement	Waterra Peristaltic Extraction Pump Other	Well Diamet	Extraction Port Dedicated Tubing	Diameter Multiplier 0.65 1.47				
1 Case Volum		ecified Volun			0.37 Othe	er radius² * 0.163				
Time	Temp (°F)	рН	Cond. (mS or 🕬)	Turbidity (NTUs)	Gals. Removed	Observations				
1232	-	7. 6	526	7(000	(Obscivations				
1235	59.7	6.7	335	71000	2.8					
1238	59.8	6.6	337	71000	4.2					
	1	V. 1								
	× ×									
Did well	dewater?	Yes	No	Gallons actual	y evacuated:	4.2				
Sampling	Date: 2-	-25-10	Sampling Time	: 1245	Depth to Wate	r: (.52				
Sample I.	D.: C.	- 4		Laboratory:	Lancaster Ot	her				
Analyzed	for: (TPH		(MTBE OXYS	Other:						
Duplicate			Analyzed for:		MTBE OXYS	Other:				
D.O. (if re	eq'd):		Pre-purge:	mg/ _L	Post-purge:	mg/L				
O.R.P. (if	rea'd):		Pre-purge:	mV	Post-purge:	mV				

Project #:	/002	225 -	FS2	Station #: 9-0329						
Sampler:	73	>		Date:	2 -	25-10				
Weather:	50	ことて		Ambient Air Temperature: 63°F						
Well I.D.	: C	-5		Well Diameter: 2 3 4 6 8						
Total We	ll Depth:	16:	78	Depth to Water: 220						
Depth to	Free Produ	ıct:		Thickness of Free Product (feet):						
Reference	ed to:	(PVC)	Grade	D.O. I	Meter (if	req'd):	YSI HACH			
DTW wit	h 80% Rec	harge [(H	leight of Water	Colun	nn x 0.20)) + DTW]: <				
Purge Metho	Bailer Disposable Ba	isplacement	Waterra Peristaltic Extraction Pump Other	·		Bailer Disposable Bailer Extraction Port Dedicated Tubing				
2.4 1 Case Volum	_(Gals.) X ne Sp	3 ecified Volum	= 7.2 nes Calculated Vo		Well Diamete 1" 2" 3"	n Multiplier Well I 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 r radius ² * 0.163			
			Cond.	1	rbidity		THE PROPERTY OF THE PROPERTY O			
Time	Temp (°F)	рН	(mS or (iS)	(1)	ITUs)	Gals. Removed	Observations			
1108	59.4	8. 2	785	>,	८ ८७	2,14				
1110	59.3	7.4	755	>1	000	4.8				
1112	60. 2	7.2	744	フ	1000	7.2				
Did well	dewater?	Yes	No	Gallo	ns actuall	y evacuated:	7. 2			
Sampling	Date: 2-	-25-10	Sampling Time	e: (115	Depth to Water	: 8.21 (TRAFFIC			
Sample I.	D.:	C - 5		Labor	atory:	Lancaster Oth	ner			
Analyzed	for: (TPH	-G (BTEX)	MTBE OXYS	Other:	414741 (000000000000000000000000000000000000					
Duplicate	e I.D.:	#	Analyzed for:	ТРН-G	BTEX N	MTBE OXYS	Other:			
D.O. (if r	eq'd):		Pre-purge:	e: Post-purge:			$^{ m mg}/_{ m L}$			
O.R.P. (if	f rea'd):		Pre-purge:		mV	Post-purge:	mV			

Project #	: 1002	225 -	FS 2	Station #: 9	-0329					
Sampler:	Ŧ			Date: 2	- 25-10					
Weather:	50	pr 7		Ambient Air T	emperature:	65°F				
Well I.D	.:	6		Well Diameter: ② 3 4 6 8						
Total We	ell Depth:	17.2	. 🖰	Depth to Water: 0.60						
Depth to	Free Produ	ıct:		Thickness of Free Product (feet):						
Referenc	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH				
DTW wi	th 80% Rec	harge [(H	leight of Water	Column x 0.20) + DTW]:	3.92				
Purge Meth	Bailer Disposable Ba	isplacement	Waterra Peristaltic Extraction Pump Other	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier				
2. 7 1 Case Volu	(Gals.) X	3 ecified Volun	= 8.1 nes Calculated Vo	Gals. 1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47				
	(07)		Cond.	Turbidity						
Time	Temp (°F)	рН	(mS or (LS)	(NTUs)	Gals. Removed	Observations				
1146	61.2	7.3	641	523	2.7					
1150	62.3	7. (638	71000	5.4					
1153	63.0	7.0	677	71000	8.1					
5 (\$15) 5 (44.5)	The second secon	۸.								
ko (MACA a kort) Postar a kort										
Did well	dewater?	Yes	No	Gallons actual	ly evacuated:	8.1				
Sampling	, Date: 2-	-25-10	Sampling Time	: 1200	Depth to Water	r: 8.58 (TAAFFIC				
Sample I	.D.:	C-6		Laboratory:	(Lancaster Otl	ner				
Analyzec	I for: (TPH-	G (BTEX)	(MTBE OXYS	Other:						
Duplicate			Analyzed for:		MTBE OXYS	Other:				
D.O. (if r	eq'd):		Pre-purge:	mg/L	Post-purge:	mg/L				
O.R.P. (i	f req'd):		Pre-purge:	mV	Post-purge:	mV				

Blaine Tech Services, Inc., 1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

Project #	(007	225 -	FS Z	Station #: 9-0329						
Sampler:	F			Date: 2 -	- 25-10					
Weather:	S	7 7 7 1		Ambient Air Temperature: 67° 7						
Well I.D.	: (4		Well Diameter: 2 3 4 6 8						
Total We	ll Depth:	8. 13		Depth to Water	r: 0.64					
Depth to	Free Produ	ct:		Thickness of F	ree Product (fee	et):				
Reference	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH				
DTW wit	h 80% Rec	harge [(F	Height of Water	Column x 0.20) + DTW]:	1.48				
Purge Meth	Bailer Disposable Ba	isplacement	Waterra Peristaltic Extraction Pump Other	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier 0.65				
1 Case Volum	_(Gals.) X ne Spo	3 ecified Volun	$\frac{1}{\text{nes}} = \frac{33.3}{\text{Calculated Vo}}$	_ Gals. 2"	0.16 6" 0.37 Othe	1.47				
Time	Temp (°F)	рН	Cond. (mS or (18)	Turbidity (NTUs)	Gals. Removed	Observations				
1317	60.8	7.1	744	33	\(. \					
1319	60.1	7.0	752	12	22.2					
1321	59.6	7.0	752	5	33.3					
Did well	dewater?	Yes	No.	Gallons actuall	y evacuated:	3). 3				
Sampling	; Date: 2-	-25-10	Sampling Time	: 1325	Depth to Water	r: 0.71				
Sample I.	.D.:	A		Laboratory:	Lancaster Otl	her				
Analyzed	for: TPH	G (BTEX)	MTBE OXYS	Other:						
Duplicate	e I.D.:		Analyzed for:	TPH-G BTEX N	MTBE OXYS	Other:				
D.O. (if r	eq'd):		Pre-purge:	mg/L	Post-purge:	mg/ _L				
O.R.P. (i	f req'd):		Pre-purge:	mV	Post-purge:	mV				

Project #	: 100 2	225 -	FS Z	Station #: 9-0329						
Sampler:	75	\$		Date: 2	- 25-10					
Weather:	S	U D P 7		Ambient Air T	emperature:	67°F				
Well I.D.	. 1	3		Well Diameter: 2 3 4 6 8						
Total We	ell Depth:	9.1	((Depth to Water: 3.66						
Depth to	Free Produ	ıct:		Thickness of F	ree Product (fee	et):				
Referenc	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH				
DTW wit	th 80% Rec	charge [(F	Height of Water	r Column x 0.20) + DTW]: 4.22						
Purge Meth	Bailer Disposable Ba	isplacement	Waterra Peristaltic Extraction Pump Other	Sampling Method: Other: Well Diamete	Disposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier 0.65				
1 Case Volum	_(Gals.) X _ ne Sp	3 ecified Volum	= 27.0 mes Calculated Vo	_ Gals. 2" lume 3"	0.16 6" 0.37 Othe	1.47 r radius² * 0.163				
Time	Temp (°F)	рН	Cond. (mS or as)	Turbidity (NTUs)	Gals. Removed	Observations				
1250	61.5	C.L	740	161	9					
1251	61.5	6.7	748	26	18					
1253	60.8	6.8	7-19	(0	27					
					·					
Did well	dewater?	Yes	(No)	Gallons actuall	y evacuated:	27				
Sampling	Date: 2	-25-10	Sampling Time	e: 1255	Depth to Water	r: 3,01				
Sample I	.D.:	В		Laboratory:	(Lancaster Otl	ner				
Analyzec	l for: (TPH	-G (BTEX)	(MTBE)OXYS	Other:		±.,				
Duplicate	e I.D.:		Analyzed for:		MTBE OXYS	Other:				
D.O. (if r	eq'd):		Pre-purge:	mg/L	Post-purge:	mg/ _L				
O.R.P. (i	f req'd):		Pre-purge:	mV	Post-purge:	mV				

022510-06

CHAIN OF CUSTODY FORM

		Environ	menta	ai Mana	agement Compar		linger (Canyon	Rd.■	Sar	ı Ra	non						:of	
Chevron Site Number	r: <u>90329</u>				Chevron Consulta	ınt: <u>CRA</u>				8 -	· · · · · ·	Т	ANA	LYSI	SRE	QUI	RED	77.00]
Chevron Site Global I	D: <u>T060010</u>	01885			Address: _5900 Holl	lis St. Suite A E	meryville,		H	H		+	-	+-		\vdash		Preservation Codes	\dashv
Chevron Site Address	s: <u>340 High</u>	land Ave.,			CAConsultant Con	tact: Charlotte Eva	ins		COAT				0		, W			H =HCL T= Thiosulfate	
Pledmont, CA					Consultant Phone	No. <u>510-420-3351</u>	<u>l</u>		}	SCREEN			ALKALINITY		GREASE []	İ		N =HNO ₃ B = NaOH	
Chevron PM: AARON	COSTA				Consultant Projec	t No	225-	F32				١.	_ 嫯		ి			S = H ₂ SO ₄ O = Other	
Chevron PM Phone N	vo.: <u>(925)54</u>	3-2961			Sampling Compar	ny: Blaine Tech Se	ervices		SH			'			.1 OIL				
⊠ Retail and Termina		Unit (RTBU)	Job	-	Sampled By (Print		vent.	ton 6	OXYGENATEST	ORO [413.1				
☑ Construction/Retai	II JOD				Sampler Signature	F	<u> </u>		}	₽			EPA3		EPA		-		
harge Code: NWF NWRTB (WBS ELEMENTS	00SITE NU	329-0-OML JMBER-0- W			Lancaster Laboratories	Other Lab	Time	enk Check Temp.	MTREME			- 1		YTIVI				Special Instructions Must meet lowest	
SITE ASSESSMENT: A1L SITE MONITORING: OML	REMEDIATION OPERATION	MAINTENANCE 8	& MONITOR		図 Lancaster, PA Lab Contact: Jill Parker		1200	0.1		Ă	MTBE	Mg, Mn, Na	E 22 ME	CONDUCT		101		detection limits possible for 8260 Compounds	
THIS IS A LEGAL DOG CORRE	CTLY AND	<u>LL</u> FIELDS MU: COMPLETE	ST BE FIL 'LY.	LED OUT	2425 New Holland Pike, Lancaster, PA 17601 Phone No: (717)656-2300	47 A 122 Y 124 A 1	1400	0.2	EPA 8260B/GC/MS	B GR	в втех 🗆	EPA 6010 Ca, Fe, K,	EPA6010//000 III LE ZZ MEI ALS LI	SM2510B SPECIFIC CONDUCTIVITY	EPA 418.1 TRPH	ETHANOL	THE		
	SAMPL	E ID							8260	8015	EPA 8021B	9010	50.1	310B	418.	1260	EPA 8015		
Field Point Name	Matrix	Top Depth		Date mmdd)	Sample Time	# of Containers	Conta	iner Type	EPA	EPA 8015B	EPA	EPA	EPA FA	SM2	EPA	EPA 8260	EPA	Notes/Comment s	
0.4	+		100	225	[000]	2	V0	A	X	X			•						
C-2_	W]	1350	6	<u>'</u>		X	X]
				J	1300	6			X	X									\perp
C-4					1245	6			X	X									
C - 5					1115	6			X	×									
C-6					1200	6			X	X									
A					1325	6			X	X							<u> </u>		
	4		4		1255	6	V		X	X				_	ļ		·	-	_
														_					
	<u> </u>			:															
Relinquished By	Z 0°	TS 2.		1425		Company LLI		5/10/	1425	 :	Stan Hou	dard§ s□	Otl	24 Ho ner□	ours		48 hou		
Relinquished By	Com	pany I	Date/Tin	ne	Relin ce ished To	Company	Date/T	ime			Sam	ole In	egrity:	(Che	ck by	lab (on arriva	al)	
Relinquished By	Com	pany - I	Date/Tin	18	Relinquished To	Company -	Date/Ŧ	ime			Intac	<u>t</u>	<u>Or</u>	Ice:			mp: #		
		r y																	

WELLHEAD INSPECTION CHECKLIST

Page ____ of ___

Client	+ EV 12 ~						Date	2-2	5 - 16	
Site Address	340	H16	HLA~ D	AVI	5 -	PIED	MONT			
Job Number						Techi	nician _.	万		
Well ID	Well Inspected - No Corrective Action Required	WELL IS SECURABLE BY DESIGN (12"or less)	WELL IS CLEARLY MARKED WITH THE WORDS "MONITORING WELL" (12"or less)	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
C-2		CAR 1STY	WATER							
C-3	V									
c - 4		1								
C-5		/								
C - 6	/	V		1						
A				٠						
В										
NOTES:	WELL	- ~A	· 3/3	Boz	TS (~183 L	٧٤ ,	(- 4	TASS	TRIVED
						. 8	,			<u>.</u>
				···········			······································			

SOURCE RECORD BILL OF LADING
FOR NON-HAZARDOUS PURGEWATER RECOVERED
FROM GROUNDWATER WELLS AT CHEVRON
FACILITIES IN THE STATE OF CALIFORNIA. THE NONHAZARDOUS PURGE- WATER WHICH HAS BEEN
RECOVERED FROM GROUND- WATER WELLS IS
COLLECTED BY THE CONTRACTOR, MADE UP INTO
LOADS OF APPROPRIATE SIZE AND HAULED BY IWM
TO THEIR FACILITY IN SAN JOSE, CALIFORNIA.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Ave. San Jose CA (408)573-0555). Blaine Tech Services, Inc. is authorized by CHEVRON PRODUCTS COMPANY (CHEVRON) to recover, collect, apportion into loads, and haul the Non-Hazardous Well Purgewater that is drawn from wells at the CHEVRON facility indicated below and to deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one Chevron facility to BTS; from one Chevron facility to BTS via another Chevron facility; or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of CHEVRON.

This **Source Record BILL OF LADING** was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

9-	0329		AARON	COSTA				
CHEVRON # Chevron Engineer								
340	H'GH LAND	AVE	PIEDMONT	CA				
street	number	street name	city	state				

WELL I.D. GALS.	WELL I.D. GALS.
A33.3	
B / 27	/
C-Z , 5.4	
C-3 / 6.6	
C-4 / 4.2	
C-5 / 7.2	/
C-6 , 8.1	
/	/
added equip. rinse water/	any other adjustments <u>/</u>
TOTAL GALS. 102.8	loaded onto BTS vehicle #
BTS event # ti / 0 0 2 2 5 - FS 2	me date 2 / 25 / /8
signature	7_
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
REC'D AT	time date 1745 2 / 25 / / o
unloaded by	1.,, 2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
signature	

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	NE CHOVINA	370 HIGH P18D	Man.	PROJECT NUMBER 100225-FSZ					
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	USED)	EQUIPME READING		CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
MYRON ULTRA METER	6226032	2-25-10	PH of	-0/7.0/10.0 3900 ps	3751		705	61.5	FS

					,				
				711.4	,, <u>,</u>				

ATTACHMENT B

LANCASTER LABORATORIES' MARCH 10, 2010 ANALYTICAL REPORT

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

March 10, 2010

Project: 90329

Samples arrived at the laboratory on Friday, February 26, 2010. The PO# for this group is 0015052483 and the release number is COSTA. The group number for this submittal is 1183950.

Client Sample Description	<u>Lancaster Labs (LLI) #</u>
QA-T-100225 NA Water	5915497
C-2-W-100225 NA Water	5915498
C-3-W-100225 NA Water	5915499
C-4-W-100225 NA Water	5915500
C-5-W-100225 NA Water	5915501
C-6-W-100225 NA Water	5915502
A-W-100225 NA Water	5915503
B-W-100225 NA Water	5915504

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC	Chevron c/o CRA	Attn: Report Contact
COPY TO		

ELECTRONIC CRA Attn: Charlotte Evans

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300

Respectfully Submitted,

Christine Dulaney Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: QA-T-100225 NA Water

Facility #90329 BTST

340 Highland-Piedmont T0600101885 QA

LLI Sample # WW 5915497 LLI Group # 1183950

CA

Project Name: 90329

Collected: 02/25/2010 10:00 Account Number: 10991

Submitted: 02/26/2010 11:30 Chevron

Reported: 03/10/2010 at 08:30 6001 Bollinger Canyon Rd L4310

Discard: 04/10/2010 San Ramon CA 94583

0329Q

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	ug/l	
06054	Benzene	71-43-2	N.D.	0.5	1	1
06054	Ethylbenzene	100-41-4	N.D.	0.5	1	1
06054	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	1
06054	Toluene	108-88-3	N.D.	0.5	1	1
06054	Xylene (Total)	1330-20-7	N.D.	0.5	1	1
GC Vol	latiles SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	F100623AA	03/03/2010 22:59	Sara E Johnson	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F100623AA	03/03/2010 22:59	Sara E Johnson	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10061A07A	03/03/2010 11:43	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10061A07A	03/03/2010 11:43	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: C-2-W-100225 NA Water

Facility #90329 BTST

340 Highland-Piedmont T0600101885 C-2

LLI Sample # WW 5915498

LLI Group # 1183950

CA

Project Name: 90329

Collected: 02/25/2010 13:50 by FS Account Number: 10991

Submitted: 02/26/2010 11:30 Chevron

Reported: 03/10/2010 at 08:30 6001 Bollinger Canyon Rd L4310

Discard: 04/10/2010 San Ramon CA 94583

03292

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles S	W-846	8260B	ug/l	ug/l	ug/l	
06054	Benzene		71-43-2	79	0.5	1	1
06054	Ethylbenzene		100-41-4	15	0.5	1	1
06054	Methyl Tertiary Butyl	Ether	1634-04-4	150	0.5	1	1
06054	Toluene		108-88-3	3	0.5	1	1
06054	Xylene (Total)		1330-20-7	17	0.5	1	1
GC Vol	atiles S	W-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water Co	6-C12	n.a.	5,600	250	500	5

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	F100623AA	03/03/2010 23:21	Sara E Johnson	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F100623AA	03/03/2010 23:21	Sara E Johnson	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	2	10061A07A	03/03/2010 20:11	Marie D John	5
01146	GC VOA Water Prep	SW-846 5030B	1	10061A07A	03/03/2010 20:11	Marie D John	5

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: C-3-W-100225 NA Water

Facility #90329 BTST

340 Highland-Piedmont T0600101885 C-3

LLI Sample # WW 5915499

LLI Group # 1183950

Project Name: 90329

Discard: 04/10/2010

Collected: 02/25/2010 13:00 by FS Account Number: 10991

Submitted: 02/26/2010 11:30 Chevron

Reported: 03/10/2010 at 08:30 6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

03293

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06054	Benzene		71-43-2	N.D.	0.5	1	1
06054	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06054	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1	1
06054	Toluene		108-88-3	N.D.	0.5	1	1
06054	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	F100623AA	03/04/2010 00:05	Sara E Johnson	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F100623AA	03/04/2010 00:05	Sara E Johnson	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10061A07A	03/03/2010 17:31	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10061A07A	03/03/2010 17:31	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: C-4-W-100225 NA Water

Facility #90329 BTST

340 Highland-Piedmont T0600101885 C-4

....

LLI Sample # WW 5915500 LLI Group # 1183950

CA

Project Name: 90329

Collected: 02/25/2010 12:45 by FS Account Number: 10991

Submitted: 02/26/2010 11:30

Reported: 03/10/2010 at 08:30 6001 Bollinger Canyon Rd L4310

Discard: 04/10/2010 San Ramon CA 94583

03294

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06054	Benzene		71-43-2	N.D.	0.5	1	1
06054	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06054	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1	1
06054	Toluene		108-88-3	N.D.	0.5	1	1
06054	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	100	1

Chevron

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	F100624AA	03/03/2010 18:07	Sara E Johnson	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F100624AA	03/03/2010 18:07	Sara E Johnson	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10061A07A	03/03/2010 17:58	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10061A07A	03/03/2010 17:58	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: C-5-W-100225 NA Water

Facility #90329 BTST

340 Highland-Piedmont T0600101885 C-5

LLI Sample # WW 5915501 LLI Group # 1183950

CA

Project Name: 90329

Collected: 02/25/2010 11:15 by FS Account Number: 10991

Submitted: 02/26/2010 11:30

Reported: 03/10/2010 at 08:30 6001 Bollinger Canyon Rd L4310

Discard: 04/10/2010 San Ramon CA 94583

03295

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06054	Benzene		71-43-2	N.D.	0.5	1	1
06054	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06054	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1	1
06054	Toluene		108-88-3	N.D.	0.5	1	1
06054	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	100	1

Chevron

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	F100624AA	03/03/2010 18:	29 Sara E Johnson	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F100624AA	03/03/2010 18:	29 Sara E Johnson	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 08:	30 Elizabeth J Marin	. 1
01146	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 08:	30 Elizabeth J Marin	. 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: C-6-W-100225 NA Water

Facility #90329 BTST

340 Highland-Piedmont T0600101885 C-6

LLI Sample # WW 5915502 LLI Group # 1183950

CA

Project Name: 90329

Collected: 02/25/2010 12:00 by FS Account Number: 10991

Submitted: 02/26/2010 11:30 Chevron

Reported: 03/10/2010 at 08:30 6001 Bollinger Canyon Rd L4310

Discard: 04/10/2010 San Ramon CA 94583

03296

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06054	Benzene		71-43-2	N.D.	0.5	1	1
06054	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06054	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1	1
06054	Toluene		108-88-3	N.D.	0.5	1	1
06054	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	F100624AA	03/03/2010 19	:34 Sara E Johnson	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F100624AA	03/03/2010 19	:34 Sara E Johnson	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 08	:55 Elizabeth J Marin	. 1
01146	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 08	:55 Elizabeth J Marin	. 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: A-W-100225 NA Water

Facility #90329 BTST

340 Highland-Piedmont T0600101885 A

LLI Sample # WW 5915503 LLI Group # 1183950

CA

Project Name: 90329

Collected: 02/25/2010 13:25 by FS Account Number: 10991

Submitted: 02/26/2010 11:30 Chevron

Reported: 03/10/2010 at 08:30 6001 Bollinger Canyon Rd L4310

Discard: 04/10/2010 San Ramon CA 94583

0329A

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06054	Benzene		71-43-2	N.D.	0.5	1	1
06054	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06054	Methyl Tertiary But	yl Ether	1634-04-4	8	0.5	1	1
06054	Toluene		108-88-3	N.D.	0.5	1	1
06054	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	F100624AA	03/03/2010 19	:56 Sara E Johnson	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F100624AA	03/03/2010 19	:56 Sara E Johnson	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 09	:20 Elizabeth J Marin	1 1
01146	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 09	:20 Elizabeth J Marin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: B-W-100225 NA Water

Facility #90329 BTST

340 Highland-Piedmont T0600101885 B

LLI Sample # WW 5915504 LLI Group # 1183950

CA

Project Name: 90329

Collected: 02/25/2010 12:55 by FS Account Number: 10991

Submitted: 02/26/2010 11:30 Chevron

Reported: 03/10/2010 at 08:30 6001 Bollinger Canyon Rd L4310

Discard: 04/10/2010 San Ramon CA 94583

0329B

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW	V-846	8260B	ug/l	ug/l	ug/l	
06054	Benzene		71-43-2	N.D.	0.5	1	1
06054	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06054	Methyl Tertiary Butyl I	Ether	1634-04-4	3	0.5	1	1
06054	Toluene		108-88-3	N.D.	0.5	1	1
06054	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	latiles SW	V-84 6	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6	-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	F100624AA	03/03/2010 20:	18 Sara E Johnson	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F100624AA	03/03/2010 20:	L8 Sara E Johnson	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 09:	14 Elizabeth J Marin	. 1
01146	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 09:	14 Elizabeth J Marin	. 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1183950

Reported: 03/10/10 at 08:30 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank <u>LOQ</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: F100623AA	Sample numl	ber(s): 59	15497-591	5499					
Benzene	N.D.	0.5	1	ug/l	91	92	79-120	1	30
Ethylbenzene	N.D.	0.5	1	uq/l	93	94	79-120	1	30
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	82	83	76-120	1	30
Toluene	N.D.	0.5	1	ug/l	96	95	79-120	1	30
Xylene (Total)	N.D.	0.5	1	ug/l	93	93	80-120	0	30
Batch number: F100624AA	Sample numl	ber(s): 59	15500-591	5504					
Benzene	N.D.	0.5	1	uq/l	89		79-120		
Ethylbenzene	N.D.	0.5	1	ug/l	93		79-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	82		76-120		
Toluene	N.D.	0.5	1	ug/l	94		79-120		
Xylene (Total)	N.D.	0.5	1	ug/l	92		80-120		
Batch number: 10060B53A	Sample numl	ber(s): 59	15501-591	5504					
TPH-GRO N. CA water C6-C12	N.D.	50.	100	ug/l	127	118	75-135	7	30
Batch number: 10061A07A	Sample numl	ber(s): 59	15497-591	5500					
TPH-GRO N. CA water C6-C12	N.D.	50.	100	ug/l	100	100	75-135	0	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: F100623AA Benzene Ethylbenzene Methyl Tertiary Butyl Ether Toluene Xylene (Total)	Sample 98 99 85 100 98	number(s)	: 5915497 80-126 71-134 72-126 80-125 79-125	'-59154	99 UNSP	K: P915007			
Batch number: F100624AA	Sample	number(s)	: 5915500	-59155	04 UNSP	K: 5915501			
Benzene	91	92	80-126	1	30				
Ethylbenzene	94	95	71-134	1	30				
Methyl Tertiary Butyl Ether	81	80	72-126	1	30				
Toluene	95	97	80-125	2	30				
Xylene (Total)	92	94	79-125	2	30				
Batch number: 10060B53A TPH-GRO N. CA water C6-C12	Sample	number(s)	: 5915501 63-154	-59155	04 UNSP	K: P916237			

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1183950

Reported: 03/10/10 at 08:30 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

MS MS/MSD BKG DUP DUP Dup RPD Analysis Name %REC %REC <u>Limits</u> RPD MAX Conc Conc RPD Max

Batch number: 10061A07A Sample number(s): 5915497-5915500 UNSPK: P914723

TPH-GRO N. CA water C6-C12 118 63-154

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX+MTBE by 8260B

Batch number: F100623AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5915497	90	96	104	96
5915498	87	90	109	102
5915499	88	94	101	90
Blank	92	97	105	92
LCS	94	98	103	98
LCSD	93	98	102	96
MS	94	99	103	98
Limits:	80-116	77-113	80-113	78-113

Analysis Name: BTEX+MTBE by 8260B

Batch number: F100624AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5915500	93	100	106	94
5915501	89	96	102	91
5915502	90	96	104	92
5915503	91	98	105	93
5915504	91	99	104	93
Blank	90	98	103	93
LCS	95	102	104	99
MS	91	93	100	94
MSD	93	99	104	98
Limits:	80-116	77-113	80-113	78-113

Analysis Name: TPH-GRO N. CA water C6-C12

Batch number: 10060B53A

Trifluorotoluene-F

5915501	80
5915502	79
5915503	81
5915504	83
Blank	79
LCS	89
LCSD	91

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1183950

Reported: 03/10/10 at 08:30 AM

Surrogate Quality Control

MS 85

Limits: 63-135

Analysis Name: TPH-GRO N. CA water C6-C12

Batch number: 10061A07A

Trifluorotoluene-F

5915497	102
5915498	141
5915499	101
5915500	100
Blank	104
LCS	113
LCSD	114
MS	114

Limits: 63-135

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

A10991 / 1183950 (022510 -06) 5915497 - CHAIN OF CUSTODY FORM Chevron Environmental Management Company = 6111 Bollinger Canyon Rd. = San Ramon, CA 94583 COC (of)																				
Chevron Site Number:	90329		illelitai Malla	Chevron Consulta	nt CDA	iiiger (Carryon	Ru.	Jai	I Ko	IIIIO	11, C	ANAL	940 YSF	S RE	:OUI		<u>.</u>	<u>, oi (</u>	-
Chevron Site Global ID	D: T060010	1885					H	14										Preservation	Codes	
Chevron Site Address:				Address: _5900 Hotlis St. Suite A				-											H =HCL T= Thiosulfate	
Piedmont, CA				Consultant Phone	No. 510-420-335	ı		O S	EEN				<u> </u>		GREASE		İ		N=HNO ₃ B	= NaOH
Chevron PM: AARON 0	COSTA						£5.7		SCI HVOC				ALIN		& GR				S = H ₂ SO ₄ O) =
Chevron PM Phone No		3-2961		Consultant Project No. 100225-752 Sampling Company: Blaine Tech Services			FST	운				ALKALINITY		OIL				Other		
⊠ Retail and Terminal			lab	Sampled By (Print): F. Stwood Tool			A				STLC	310.1		413.1						
☑ Construction/Retail		Unit (K16U)	300	Sampler Signature:			OXYGENATESIT	ORO			ттс 🗆	EPA 3		EPA 4						
Charge Code: NWRTB 0 NWRTB 0 (WBS ELEMENTS: SITE ASSESSMENT: A1L SITE MONITORING: OML	IOSITE NU REMEDIATION	MBER-0- WI	BS ION: R5L	Lancaster Laboratories Lancaster, PA Lab Contact: Jill Parker	Other Lab	Temp. Bit Time		MTBFX	DRO 🗆	MTBE 🗆	Mg, Mn, Na	EPA6010/7000 TITLE 22 METALS 🛚 T		NDUCTIVITY					Specia Instruction Must meet lowed detection limits for 8260 Compo	ons est possible
THIS IS A LEGAL DOCU CORREC		<u>L</u> FIELDS MUS C OMPLETE		2425 New Holland Pike, Lancaster, PA 17601 Phone No: (717)656-2300			0.2	EPA 8260B/GC/MS TPH-G IT RTEX EX	B GROK	в втех 🗆	Ca, Fe, K,	7000 TITLE	EPA150.1 PH □	SM2510B SPECIFIC CONDUCTIVITY	EPA 418.1 TRPH	ETHANOL	-			
	SAMPL	E ID				7 82 5	801.5 15	3021	9	910	50.1	9	118.1	260	3015					
Field Point Name	Matrix	Top Depth	Date (yymmdd)	Sample Time	# of Containers	Conta	iner Type	EPA &	EPA 8015B	EPA 8021B	EPA 6010	EPA6	EPA1	SM25	EPA 4	EPA 8260	EPA 8015		Notes/Con	nment
Q.A.	+		100225	1000 Z		VOA		X	X											
C-2	3		١	1350	6	1		X	X			\neg								
C-3	1			1300	6			X	X			\neg								
C-4				1245	6	1	<u> </u>	1×	X									\neg		
C - 5				1115	6			×	×											
C-6	İ			1200	6			マ	X			_					$\neg \dagger$	1		
A	<u> </u>			1325	6			X	X				T					\dashv		
B	\forall		V	1255	(-			X	X			\dashv				\vdash	-+	\neg		
<u> </u>				1233		¥¥		+ *									+	\dashv		
																		_		
Relinquished By Relinquished By	TOTS 2.25-10/45 Hours Other Other																			
Sl LLI 2/25/10 Fedt Intact: V On Ice: V Temp: O.S-2.4.						-2.0 1	ے													
Relinquished By	Comp		Date/Time	Relinquished To	Company	Date/T		30		ınta	ul. <u>/</u>		On R	.e	-	COC	mp: <u>C</u> #	<u> </u>	417	

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	Ī	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J N P	Estimated value Presumptive evidence of a compound (TICs only) Concentration difference between primary and confirmation columns >25% Compound was not detected	U W * +	Compound was not detected Post digestion spike out of control limits Duplicate analysis not within control limits Correlation coefficient for MSA <0.995
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.