

TEL (925) 244-6600 • FAX (925) 244-6601

January 11, 2002

JAN 1 5 2002

Mr. Barney M. Chan Alameda County Department of Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject:

StID#3337

Site Address: /3609 International Blvd., Oakland, California

Dear Mr. Chan;

A copy of SOMA's "Fourth Quarter 2001 Groundwater Monitoring and Remediation System Operation Report" for the subject property is enclosed.

Thank you for your time in reviewing our report. If you have any questions or comments, please call me at (925) 244-6600.

Sincerely,

Mansour Serehr, Ph.D., P.E. Principal Hydrogeologist

Enclosure

cc: Mr. Abolghassem Razi w/enclosure Tony's Express Auto Service

No. CO42928

· VET Systemshut doundere to low remand · Parible new relaxe - spelori MTBE

Certification

This report has been prepared by SOMA Environmental Engineering, Inc. on behalf of Mr. Abolghassem Razi, the property owner at 3609 International Boulevard, Oakland, California, to comply with Alameda County Department of Environmental Health Service's requirements for the Fourth Quarter 2001 groundwater monitoring event.

Mansour Sepehr, Ph.D., P.E.

Principal Hydrogeologist

Table of Contents

CEF	RTIFICATION	
	BLE OF CONTENTS	
	Γ OF TABLES	
	COF FIGURES	
	OF APPENDICES	
1.0	INTRODUCTION	
1.1	Background	
1.2	Site Hydrogeology	:
2.0	FIELD ACTIVITIES	. 4
2.1	Laboratory Analysis	, . 8
3.0	RESULTS	. 8
4.0	GROUNDWATER TREATMENT SYSTEM OPERATION	12
5.0	VAPOR EXTRACTION SYSTEM OPERATION	13
6.0	CONCLUSIONS AND RECOMMENDATIONS	14
7.0	REPORT LIMITATIONS	i 7
B.0	REFERENCES	ı A

List of Tables

Table 1: Groundwater Elevation Data, November 19, 2001

Table 2: Historical Groundwater Elevation Data

Table 3: Field Measurements of Physical and Chemical Properties at Time Of Sampling, November 19, 2001

Table 4: Groundwater Biodegradation Parameters

Table 5: Groundwater Analytical Data, November 19, 2001

Table 6: Historical Groundwater Analytical Data

Table 7: Total Volume of Water Treated and GAC-1 and Effluent Chemistry

Table 8: Total Mass of Petroleum Hydrocarbons Removed by Vapor Extraction System

List of Figures

Figure 1: Site Location Map

Figure 2: Location of Groundwater Monitoring Wells

Figure 3: Groundwater Elevation Contour Map, November 19, 2001

Figure 4: Dissolved Oxygen Concentration in Groundwater, November 19, 2001

Figure 5: Nitrate Concentration Contour Map in Groundwater, November 19, 2001

Figure 6: Sulfate Concentration Contour Map in Groundwater, November 19, 2001

Figure 7: Ferrous Iron Concentration Contour Map in Groundwater, November 19, 2001

Figure 8: TPH-g Concentration Contour Map in Groundwater, November 19, 2001

Figure 9: Benzene Concentration Contour Map in Groundwater, November 19, 2001

Figure 10: MtBE Concentration Contour Map in Groundwater, November 19, 2001

Figure 11: Cumulative Weight of TPH-g and MtBE Extracted from Groundwater Since Installation of the Treatment System

List of Appendices

Appendix A: Field Notes, Chain of Custody Forms, Laboratory Reports

Appendix B: Laboratory Reports and Chain of Custody Forms for Treatment System

1.0 Introduction

This report has been prepared by SOMA Environmental Engineering, Inc. (SOMA) on behalf of Mr. Abolghassem Razi, the owner of the property. The site, Tony's Express Auto Service, is located at 3609 International Boulevard at the intersection of 36th Avenue in Oakland, California (the "Site"), as shown in Figure 1. The Site is located in an area consisting primarily of commercial and residential uses.

This report summarizes the results of the Fourth Quarter 2001 groundwater monitoring event conducted on November 19, 2001 at the Site, including the results of the laboratory analysis on groundwater samples, which were analyzed for:

- Total petroleum hydrocarbons as gasoline (TPH-g)
- Benzene, toluene, ethylbenzene, total xylenes (collectively referred to as BTEX)
- Methyl tertiary Butyl Ether (MtBE)

These activities were performed in accordance with the general guidelines of the Regional Water Quality Control Board (RWQCB) and the Alameda County Environmental Health Services (ACEHS).

This report also describes the operation of the groundwater and vapor extraction and treatment system installed by SOMA in December 1999 and July 2000, respectively.

1.1 Background

Currently, the Site is used as a gasoline service station. The environmental investigation at the subject property started in 1992, when Mr. Razi, the property

owner, retained Soil Tech Engineering, Inc. (STE) of San Jose to conduct a limited subsurface investigation. The purpose of STE's investigation was to determine whether or not the soil near the product lines and underground storage tanks (USTs) had been impacted with petroleum hydrocarbons.

In July 1993, STE removed one single-walled 10,000-gallon gasoline tank and one single-walled 6,000-gallon gasoline tank along with a 550-gallon waste oil tank from the Site. Three double-walled USTs replaced these tanks. Currently, there is one 10,000-gallon double-walled gasoline tank and two 6,000-gallon double-walled gasoline tanks beneath the Site (the locations are shown in Figure 2).

In December 1997, Mr. Razi retained Western Geo-Engineers (WEGE) to conduct additional investigations and perform groundwater monitoring on a quarterly basis. The results of the WEGE groundwater monitoring events indicated elevated levels of petroleum hydrocarbons and MtBE in the groundwater. The historical groundwater elevation data, for TPH-g, BTEX and MtBE concentrations reported by STE and WEGE are included in Tables 2 and 5 of this report.

In April 1999, Mr. Razi retained SOMA to conduct groundwater monitoring, risk based corrective action (RBCA), a corrective action plan (CAP) and soil and groundwater remediation at the Site. The results of the RBCA study indicated that the Site is a high-risk groundwater site, therefore, the soil and groundwater in on-and off-site areas needed to be remediated. The results of the CAP study indicated that the installation of a French drain combined with a vapor extraction system would be a cost effective alternative for site remediation.

In late August 1999, SOMA installed a French drain and groundwater treatment system to prevent further migration of the chemically impacted groundwater. This treatment system has been in operation since early December 1999.

In July 2000, SOMA installed a vapor extraction system based on the recommendation of the CAP document dated July 1, 1999 prepared by SOMA, followed by the approval from the Alameda County Department of Environmental Health.

The Site is located at the intersection of 36th Avenue and International Boulevard (formerly known as East 14th Street), Oakland, California. It currently houses a gasoline service station and mechanic shop. The Site is relatively flat, and the surrounding properties are primarily commercial businesses and residential housing. Figure 2 shows the location of the main building, fuel tank areas, and the on-site and off-site groundwater monitoring wells. The groundwater monitoring wells are currently monitored on a quarterly basis. Past groundwater monitoring events have indicated elevated levels of petroleum hydrocarbons in the groundwater beneath the Site. The source of the petroleum hydrocarbons in the groundwater is believed to be the former USTs, which were used to store gasoline at the Site. This report includes the results of the historical groundwater monitoring events, as well as the results of the Fourth Quarter 2001 groundwater monitoring event.

1.2 Site Hydrogeology

Previous investigations have shown that groundwater is encountered at depths of approximately 10 to 11 feet beneath the Site. Figure 2 shows the location of the on-site and off-site groundwater monitoring wells. Prior to the operation of the French drain, the groundwater was found to flow from the north to the south with an average gradient of 0.014 ft/ft. When the groundwater extraction system is in operation, the groundwater flows from all directions toward the French drain. The capture zone of the drain has extended down gradient past well MW-10.

Based on the results of a pumping test conducted by SOMA, the hydraulic

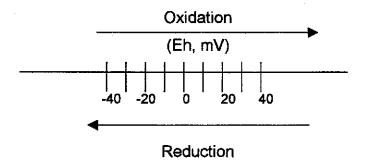
conductivity of the saturated sediments ranges from 1.5 to 18.3 feet per day. Assuming that the effective porosity of the saturated sediments is 0.35, the groundwater velocity ranges from 22 to 267 feet per year.

2.0 Field Activities

Field activities were performed in accordance with the procedures and guidelines of the California Regional Water Quality Control Board, San Francisco Bay Region.

On November 19, 2001, SOMA's field crew measured the depths to groundwater in the monitoring wells from the top of casings to the nearest 0.01 feet using an electrical sounder. The depth to groundwater and top of casing elevation data at each groundwater monitoring well were used to calculate the groundwater elevation. A total of 10 groundwater monitoring wells (on-site wells and off-site wells MW-10, MW-11, and MW-12) and three risers of the French drain were monitored during this event. Table 1 presents the groundwater elevations for the fourth quarter monitoring event. Table 2 shows the historical groundwater elevation data. Appendix A presents a detailed summary of the field notes for each groundwater monitoring well.

Prior to collecting the groundwater samples, each well was purged of at least three casing volumes of water, and field measurements of pH, temperature, and electrical conductivity (EC) were recorded. Table 3 depicts the field measurements of physical and chemical properties at the time of sampling. A 2-inch diameter submersible pump (model ES-60 DC) was used to purge each well. Groundwater samples were then collected using disposable bailers. Each groundwater sample was transferred into four 40-mL VOA vials and sealed properly to prevent the development of any air bubbles within the headspace area. The vials were placed in an ice chest and delivered on the next day to


Curtis and Tompkins Laboratories, Ltd of Berkeley, California for analysis. For field measurements, samples were transferred into 500-mL polyethylene containers.

The groundwater samples that were kept in polyethylene bottles were immediately used for on-site biodegradation parameter measurements of nitrate-N (NO_3 -N), sulfate (SO_4 -2), and ferrous iron (Fe^{+2}). Table 4 shows the onsite measurements for these biodegradation parameters.

In order to obtain accurate measurements of other groundwater parameters and especially to avoid the intrusion of oxygen from ambient air to groundwater samples, these measurements were conducted in Situ (i.e., down-hole inside each monitoring well). The dissolved oxygen (DO) and temperature were measured with a dissolved oxygen meter, YSI Model 50B (YSI Incorporated, Yellow Springs, Ohio 45387 USA); see the field notes in Appendix A for the details of the field measurements. The instrument was calibrated at the Site according to a procedure provided by the manufacturer and prescribed by Taras et.al. (1975). Details of the calibration and measurement procedures can be found in the instrument's handbook. Other groundwater parameters such as pH, turbidity, EC, and Oxidation Reduction Potential were measured in Situ using Horiba, Model U-22 multi-parameter instrument. The equipment was calibrated at the Site using standard solutions and procedures provided by the manufacturer.

The Horiba U-22 portable microprocessor-based turbidity probe provides labgrade accuracy, even in the field. The unit of measure adopted by the ISO Standard is the FTU (Formazine Turbidity Unit), which is identical to the NTU (Nephelometric Turbidity Unit). The instrument was calibrated at two points, 0 FTU and 10 FTU, using the two calibration solutions of primary standard AMCO-AEPA-1 at 0 FTU and 10 FTU that were supplied with the meter. Suspended materials cause the cloudy appearance of water or turbidity. Turbidity is one of the most important parameters used to determine the quality of drinking water. It has been found that there is a strong correlation between the turbidity level and the Biological Oxygen Demand of the natural water bodies. Turbidity is an indicator and, as such, does not reveal the presence or quantity of specific pollutants in groundwater. It does, however, provide general information on the extent of the suspended solids in groundwater.

The Horiba U-22 ORP electrode was used to measure the Oxidation-Reduction Potential of the groundwater samples. Oxidation is a process in which a molecule or ion loses one or several electrons. Reduction is a process by which a molecule or ion gains one or several electrons. The Oxidation Reduction Potential, or Eh, is a measure of the potential for these processes to occur. The unit of Eh, which is commonly referred to as the redox potential, is the Volt or m-Volt. The most important redox reaction in petroleum contaminated groundwater is the oxidation of petroleum hydrocarbons in the presence of bacteria and free molecular oxygen. Because the solubility of O2 in water is low (9 mg/L at 25 °C and 11 mg/L at 5 °C), and because the rate of O2 replenishment in subsurface environments is limited, oxidation of only a small amount of petroleum hydrocarbons can result in the consumption of all the dissolved oxygen. When all the dissolved O₂ in groundwater is consumed, oxidation of petroleum hydrocarbons can still occur, but the oxidizing agents (i.e., the constituents that undergo reduction) are NO-3, MnO2, Fe(OH)3, SO42- and others (Freeze and Cherry, 1979). As these oxidizing agents are consumed, the groundwater environment becomes more and more reduced. If the process proceeds far enough, the environment may become very strongly reduced, and the petroleum hydrocarbons may undergo anaerobic degradation, possibly resulting in the production of methane gas and carbon dioxide. The concept of oxidation and reduction in terms of changes in oxidation states is illustrated below:

Fe⁺², NO₃-N and SO₄-² were measured colorimetrically using the Hach Model DR/850 colorimeter (Hach Company World Headquarters, P.O. Box 389, Loveland, Colorado 80539-0389). The Hach DR/800 Series Colorimeter is a microprocessor-controlled photometer suitable for colorimetric testing in the laboratory or the field. The required reagents for each specific test are provided in AccuVac ampuls.

Fe⁺² was measured colorimetrically using Method 8146 (1,10-phenanthroline Method). The 1,10-phenathroline indicator in Ferrous Iron Reagent reacts with Fe⁺² in the sample to form an orange color. The intensity of orange color is proportional to the iron concentration.

SO₄-2 was measured colorimetrically using Method 8051 of Sulfa Ver 4 Method. Sulfate ions in the sample react with Sulfa Ver 4 Sulfate Reagent to form insoluble barium sulfate. The amount of turbidity formed is proportional to the sulfate concentration. The Sulfa Ver 4 also contains a stabilizing agent to hold the barium sulfate in suspension.

NO₃-N was measured colorimetrically using Method 8039: the Cadmium Reduction Method. Cadmium metal in the Nitra Ver 5 Nitrate Reagent reduces nitrates present in the sample to nitrite; the nitrite ion reacts in an acidic medium with sulfanilic acid to form an intermediate diazonium salt, which couples with getistic acid to form an amber-colored product. The intensity of the color is proportional to nitrate-N concentration in the sample.

2.1 Laboratory Analysis

Curtis and Tompkins Laboratories of Berkeley analyzed the groundwater samples. The measured constituents included TPH-g, BTEX and MtBE.

TPH-g was measured using EPA Method 5030B/8015B(M). EPA Method 8260B was used to measure BTEX and MtBE levels in the groundwater. The results of the laboratory analysis are presented in Table 5 and discussed below.

3.0 Results

Table 1 presents the measured groundwater elevations at different groundwater monitoring wells and the risers of the French drain. At each location, depth to watertable and the elevation of the top of casing were used to calculate the watertable elevation relative to the assumed datum. Depths to the watertable in the monitoring wells and the risers of the French drain ranged from 12.06 feet below ground surface (bgs) in MW-10 to 17.82 feet bgs measured at the center of the French drain. The corresponding watertable elevations ranged from 79.28 feet at the center of the French drain to 85.32 feet at MW-5. Monitoring well MW-6 was not measured. The well was not accessible. Table 1 also shows that free product was detected in monitoring wells MW-1, MW-3 and MW-8.

During the recent monitoring event, the groundwater flow was found to be in the direction towards the center of the French drain, from the north towards the south on-site, and off-site the flow was northerly. The on-site flow was consistent with the findings of the previous monitoring events that were conducted prior to the installation of the French drain. The groundwater gradient towards the French drain was 0.028 ft/ft. The groundwater elevation contour map is shown in Figure 3.

Table 2 displays the historical static water level elevations measured at the monitoring wells and the risers of the French drain. During the recent monitoring event, in comparison with the previous monitoring event, the groundwater elevation decreased by 4.52 feet in the French drain and 0.52 feet at MW-12, and increased at MW-7 by 0.19 feet. The water level elevations increased in wells MW-2, MW-4, MW-5, and MW-7. This fluctuation in water levels is attributed to the operation of the treatment system and on-set of the rainy season.

The field measurements of some physical and chemical parameters of the groundwater samples at the time of sampling are presented in detail in the field notes in Appendix A, and are summarized in Table 3. Water temperatures ranged from 17.6°C in MW-4 to 19.7°C in both MW-1 and MW-2. The variation in temperature may reflect the changes in air temperature during sampling, see the field notes in Appendix A. The pH measurements ranged from 6.55 in MW-1 to 7.36 in MW-7. EC ranged from 445 μ S/cm in MW-7 to 724 μ S/cm in MW-1. Monitoring wells MW-3 and MW-6 were not measured during this monitoring event. Free product was detected in MW-3, and MW-6 was inaccessible.

The groundwater biodegradation parameters for this monitoring event, as well as, previous monitoring events, are shown in Table 4. The DO concentrations in the groundwater samples ranged from 0.36 mg/L in well MW-1 to 1.1 mg/L in well MW-5. The low oxygen content may suggest the presence of anaerobic biodegradation processes in this groundwater system. All DO measurements were below the previous monitoring event, with the exception of MW-11 which was not monitored in the previous monitoring event. Figure 4 shows the concentration contour map of DO concentrations in the groundwater. The DO has been largely consumed in the vicinity of the most polluted wells, with the lowest measurement at MW-1, which is in the vicinity of the USTs. Monitoring

wells MW-3 and MW-6 were not measured for biodegradation parameters.

The turbidity of the groundwater samples ranged from 3 NTU in MW-10 to 105 NTU in MW-2. Turbidity for all of the measured wells was below the previous monitoring event with the exception of MW-2. However, turbidity in MW-2 was below the historical peak.

The Redox potential in the groundwater samples ranged from –142 mV in well MW-8 to +45 mV in well MW-10. Monitoring wells MW-1, MW-4, MW-5, MW-7, MW-8, MW-11, and MW-12 showed strongly reduced conditions, while monitoring wells MW-2 and MW-10 showed strongly oxidized conditions. The low oxygen levels in wells MW-2 and MW-10, in combination with the positive redox potentials, suggest the presence of weak aerobic oxidation of the petroleum hydrocarbons in these wells. However, the other monitoring wells impacted by petroleum show strongly reduced conditions. In these oxygen-depleted environments, anaerobic processes utilizing alternate electron acceptors for oxidation of petroleum hydrocarbons may be responsible for the reduced conditions. Possible alternate electron acceptors include nitrate, iron (III) and sulfate (Lovley et. al., 1994). Under strongly reduced conditions and a lack of other terminal electron acceptors, the occurrence of methanogenesis and production of methane gas is highly possible.

During this monitoring event, nitrate was detected in wells MW-1, MW-5, MW-10, and MW-11. As discussed earlier, the concentrations of DO in all wells were quite low, and because the replenishment of oxygen in subsurface environments is limited, oxidation of only a small amount of petroleum hydrocarbons depletes the oxygen. Under this condition, oxidation of petroleum hydrocarbons can still occur, but the oxidizing agents (i.e., constituents that undergo reduction) are NO-3, MnO₂, Fe(OH)₃, SO₄²⁻ and others (Lovley *et. al.*, 1994). The disappearance of nitrate in many of the wells may suggest that, under the observed anaerobic

conditions, nitrate may have been consumed as a source of terminal electron acceptors by microorganisms (Lovley et. al., 1994). Figure 5 shows the contour map of nitrate concentrations in the groundwater.

Sulfate concentrations were detected in all wells monitored, ranging from 1 mg/L in well MW-8 to 41 mg/L in well MW-1. Sulfate-depleted subsurface contaminated environments may reveal a strong demand by microorganisms for a source of terminal electron acceptor for oxidizing contaminant hydrocarbons (Lovley et. al., 1994). Figure 6 shows the groundwater sulfate concentration contour map, as measured on November 19, 2001.

Ferrous iron concentrations were detected in all the wells monitored. The concentrations ranged from 0.99 mg/L in MW-10 to >3.3 mg/L in well MW-8. High concentrations of ferrous iron in the groundwater is a good indication of biological activities. Figure 7 shows the groundwater ferrous iron concentration contour map, as measured on November 19, 2001. The presence of high ferrous iron concentrations in combination with low concentrations of electron receptors, such as nitrogen, sulfate and DO, is indicative of anaerobic biodegradation beneath the Site. Due to the presence of low levels of DO, as well as nutrients such as nitrates and sulfate, the generation of methane gas from the biodegradation of petroleum hydrocarbons seems likely.

Table 5 displays the results of the laboratory analyses of the groundwater samples. TPH-g was detected in every sample, with concentrations ranging from 300 μg/L in monitoring well MW-11 to 41.000 μg/L in monitoring well MW-15 Figure 8 displays the contour map of TPH-g in the groundwater.

Benzene concentrations ranged from 7.9 μg/L in monitoring well MW-11 μg/L in MW-1. Figure 9 displays the contour map of Benzene in the groundwater.

MtBE concentrations ranged from non-detectable levels in monitoring wells MW-4 and MW-11 to 74,000 μ g/L in well MW-1. Presence of high levels of MtBE in MW-1 was unprecedented, since the previous maximum reported MtBE concentration at this well was about 2,000 μ g/L, which was reported during the previous sampling event. High levels of MtBE in MW-1, located in close proximity of the current USTs, could be attributed to a new fuel release. Figure 10 displays the contour map of MtBE in the groundwater.

Table 6 presents the historical data of groundwater contamination. Nearly all contaminant concentrations have increased since last quarter. During this event, compared with the previous event, benzene concentrations increased in all wells sampled, with the exception of MW-11 which was not sampled in the previous event. MtBE concentrations increased in all wells, with the exception of MW-4 and MW-11 which were non-detectable and MW-12 which decreased from 142 μg/L in the previous event to 120 μg/L. MtBE in MW-1 reached a historical peak during this sampling event. TPH-g concentrations increased in all of the wells this quarter. MW-1 showed the greatest increase in TPH-g concentration since the previous sampling event.

4.0 Groundwater Treatment System Operation

The treatment system began operation on December 9, 1999. Since that time, 1,311,349 gallons of groundwater have been treated and discharged to the East Bay Municipal Utility District (EBMUD) under the existing discharge permit (as of December 12, 2001).

As required by the discharge permit and the ACEHS, sampling of the groundwater treatment system has been performed on a routine basis. The effluent sampling and maintenance of the system was performed on a weekly basis from the start of the system's operation to the end of July 2000. From August 2000 onward, maintenance of the system continued weekly, but sampling

was performed on a monthly basis. The result of the first effluent testing was used to acquire a discharge permit from EBMUD.

Table 7 presents the total volume and chemical composition of the Granulated Active Carbon (GAC)-1 and effluent treated at the Site. Table 7 shows that all of the effluent samples have maintained compliance with the permit, having concentrations below the laboratory detection limits from the effluent. The laboratory's reports are included in Appendix A of this report. A total of 68,240 gallons of chemically impacted groundwater was treated since the last reporting date of August 22, 2001. As discussed in the previous monitoring reports, the effluent passing both GAC units is regularly being collected for chemical analysis. The schedule for re-furbishing the GAC units is based on the analytical results of the effluent samples. The first GAC unit was re-furbished as soon as traces of chemicals broke through the unit. A carbon change-out was performed on the first GAC unit on November 26, 2001 (2,000 pounds of carbon were replaced). The second GAC unit is serving as a polishing unit and is always kept highly active. This procedure ensures that the effluent discharging to EBMUD has non-detectable levels of contaminants.

Figure 11 displays the cumulative weight of TPH-g and MtBE extracted from the subsurface by the groundwater treatment system. As Figure 11 shows, a total of approximately 112.63 pounds of TPH-g and 21.94 pounds of MtBE have been removed during the operation of the treatment system, over its entire life to date. The total mass of MtBE removed increased greatly during this monitoring event.

5.0 Vapor Extraction System Operation

The Vapor Extraction System (VES) consists of 6 vapor extraction wells, a demoisturizing unit, a blower and four drums of GAC filters. The VES began operation on July 24, 2000. Since then, more than 3,000,000 liters/day of soil gas has been extracted from the vadose zone and treated with the GAC filters before

being discharged into the atmosphere. When the system first began to operate, the influent had a concentration of 394 ppmv petroleum hydrocarbons, but this gradually dropped, and after 31 days of operation decreased to 68 ppmv. On January 4, 2001, due to an entire month of extremely low influent concentrations (i.e., less than 10 ppm of hydrocarbons), the soil vapor extraction (SVE) system was turned off.

On October 23, 2001, the system was checked using Photo Ionization Detector (PID) equipment, the effluent concentration was detected above the permissible concentration of 10 ppm, the system was turned off and on October 25, 2001, one of the four GACs was replaced with a new one, and on October 29, 2001 three of the remaining GAC units were replaced. The system was under continuous operation and extracted 87 cubic feet per minute (CFM) of contaminated air from the vadose zone until the system was turned off on November 21, 2001. Based on the statistics that are presented in Table 8, the VES has removed 381.13 pounds of petroleum hydrocarbons from the vadose zone beneath the Site since it was installed.

6.0 Conclusions and Recommendations

The findings of the Fourth Quarter 2001 groundwater monitoring event can be summarized as follows:

- Groundwater flow direction was found to be in the direction towards the French Drain, at a gradient of 0.028 ft/ft.
- 2. In comparison with the previous monitoring event, the water level elevations decreased in all wells, with the exception of MW-2, MW-4, MW-5, and MW-7, which showed slight increases in elevations. This result is attributable to the on-set of the rainy season and the operation of the

treatment system.

- 3. Benzene was detected in all wells with a peak concentration of 2,700 μ g/L in MW-1.
- 4. MtBE concentrations were below the detection limit of 2.0 μg/L in MW-4 and MW-11, and peaked at 74,000 μg/L in well MW-1. Subsequent sampling results indicated significant concentrations of petroleum hydrocarbons and constituents at this well. MtBE reached a historical peak during this monitoring event. This could be the result of a new fuel release in the vicinity of MW-1.
- 5. TPH-g was detected in every monitoring well, with concentrations ranging up to 41,000 μg/L in monitoring well MW-1. TPH-g concentrations increased in all wells since the previous monitoring event.
- 6. Under the observed low levels of DO and nutrients such as nitrates and sulfate, in some of the wells, generation of methane gas from the biodegradation of petroleum hydrocarbon in on-site areas seems likely to occur. However, sulfate concentrations increased in MW-1, MW-4, MW-7, MW-10, MW-11, and MW-12 from the previous monitoring event. Nitrate concentrations increased in MW-1, MW-5, MW-10, and MW-11.
- 7. So far, more than 1,311,340 gallons of groundwater have been treated and discharged to the East Bay Municipal Utility District (EBMUD) under the existing discharge permit (as of December 12, 2001).
- 8. All effluent samples have maintained compliance with the permit, with all contaminant concentrations remaining below the laboratory detection limit.

- 9. An estimated total of 112.63 pounds of TPH-g and 21.94 pounds of MtBE have been removed since the installation of the groundwater treatment system. Between the sampling periods of November 2 and December 12, 2001, 15.51 pounds of MtBE were treated. This could be attributed to a new fuel release.
- 10. The Vapor Extraction System has removed over 381.13 pounds of petroleum hydrocarbons from the vadose zone beneath the Site since it was installed, as of November 21, 2001. The system was shut-down on November 21, 2001

7.0 Report Limitations

This report is the summary of work done by SOMA including observations and descriptions of the Site conditions. It includes the analytical results produced by Curtis and Tompkins Laboratories as well as summaries of data produced by previous environmental consultants. The number and location of the wells were selected to provide the required information, but may not be completely representative of the entire Site conditions. ΑII conclusions and recommendations are based on the results of the laboratory analysis. Conclusions beyond those specifically stated in this document should not be inferred from this report.

SOMA warrants that the services provided were done in accordance with the generally accepted practices in the environmental engineering and consulting field at the time of this sampling.

8.0 References

Freeze R.A. and Cherry J.A. 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, N.J. PP.114-127.

Lovley, D.R.; Chapell, F.H.; Woodward, J.C. 1994. Use of dissolved H₂ concentration to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environmental Science & Technology. Vol,28, No. 7:1205-1210.

Soil Tech Engineering, Quarterly Groundwater Monitoring Reports, from 1995, until July 1997

SOMA Environmental Engineering, Inc., June 9, 2000, "Semi-Annual Technical Report:: Treatment System Discharge to EBMUD Sewer from November 15, 1999 to May 14, 2000".

SOMA Environmental Engineering, Inc., December 4, 2000, "Semi-Annual Technical Report:: Treatment System Discharge to EBMUD Sewer from May 15, 2000 to November 14, 2000".

SOMA Environmental Engineering, Inc., March 7, 2001, "Semi-Annual Technical Report:: Treatment System Discharge to EBMUD Sewer from November 15, 2000 to February 14, 2001".

SOMA Environmental Engineering, Inc., June 30, 1999, "Second Quarter 1999 Groundwater Monitoring Report Tony's Express Auto service Oakland, California".

SOMA Environmental Engineering, Inc., September 14, 1999, "Third Quarter 1999 Groundwater Monitoring Report Tony's Express Auto service Oakland,

California".

SOMA Environmental Engineering, Inc., November 30, 1999, "Fourth Quarter 1999 Groundwater Monitoring Report Tony's Express Auto service Oakland, California".

SOMA Environmental Engineering, Inc., March 10, 2000, "First Quarter 2000 Groundwater Monitoring Report Tony's Express Auto service Oakland, California".

SOMA Environmental Engineering, Inc., July 26, 2000, "Second Quarter 2000 Groundwater Monitoring Report Tony's Express Auto service Oakland, California".

SOMA Environmental Engineering, Inc., August 24, 2000, "Installation of Soil Vapor Extraction and Air Sparging System and Initial results Tony's Express Auto service Oakland, California".

SOMA Environmental Engineering, Inc., August 29, 2000, "Third Quarter 2000 Groundwater Monitoring Report Tony's Express Auto service Oakland, California".

SOMA Environmental Engineering, Inc., December 4, 2000, "Fourth Quarter 2000 Groundwater Monitoring Report Tony's Express Auto service Oakland, California".

SOMA Environmental Engineering, Inc., April 23, 2001, "First Quarter 2001 Groundwater Monitoring Report Tony's Express Auto service Oakland, California".

SOMA Environmental Engineering, Inc., July 17, 2001, "Second Quarter 2001 Groundwater Monitoring Report Tony's Express Auto service Oakland, California".

Taras, M.J.; Greenberg, A.E.; Hoak, R.D.; and Rand, A.E. 1975. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, D.C.

Western Geo-Engineers, Quarterly Groundwater Monitoring and Sampling Reports from Fourth Quarter 1997 until First Quarter of 1999.

SOMA Environmental Engineering, Inc., September 20, 2001, "Third Quarter 2001 Groundwater Monitoring Report Tony's Express Auto service Oakland, California".

TABLES

Table 1
Groundwater Elevation Data, November 19, 2001
3609 International Boulevard, Oakland, California

Monitoring	Depth to	Top of Casing	Groundwater	Free Product
Well	Water (ft.)	Elevation (ft.)	Elevation (ft.)	
MW-1	14.01	97.99	83.98	D
MW-2	13.43	98.58	85.15	ND
MW-3	14.32	97.78	83.46	D
MW-4	13.68	97.85	84.17	ND
MW-5	13.72	99.04	85.32	ND
MW-6	NA	98.77	-	ND
MW-7	12.83	97.83	85.00	ND
MW-8	13.19	97.25	84.06	D
MW-10	12.06	94.54	82.48	ND
MW-11	13.48	95.94	82.46	ND
MW-12	12.76	94.84	82.08	ND
F.D. Center	17.82	97.10	79.28	ND
F.D. East	13.92	97.90	83.98	ND 1
F.D. West	14.31	96.90	82.59	ND

note:

ND (not detected in monitoring well)

D (detected in monitoring well)

Table 2
Historical Groundwater Elevation Data
3609 International Boulevard, Oakland, California

Date	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-10	MW-11	MW-12	French Drain
Nov-01	83.98	85.15	83.46	84.17	85.32	-	85.00	84.06	82.48	82.46	82.08	79.28
Aug-01	84.48	85.05	83.68	84.05	85.25	-	84.81	84.28	82.90	82.90	82.60	83.80
May-01	86.49	87.58	85.97	86.35	87.92	86.95	87.23	86.10	84.74	84.79	84.32	81.25
Mar-01	89.03	90.03	88.35	88.61	90.37	89.28	89.79	88.50	86.47	86.33	85.80	87.71
Nov-00	84.79	85.98	84.38	84.80	85.49	85.37	85.88	84.70	83.19	83.39	82.79	80.25
Aug-00	84.63	85.55	84.05	84.5	85.82	84.99	85.2	84.38	83.02	81.07	82.77	81.4
May-00	86.50	87.70	86.10	86.39	88.01	87.07	87.31	86.10	85.09	82.14	84.36	81.50
Feb-00	86.79	88.73	86.83	86.60	89.19	87.82	88.33	86.40	85.29	82.34	84.64	81.70
Nov-99	83.54	84.48	83.08	83.75	84.74	84.02	84.58	83.60	82.04	82.09	81.64	-
Aug.99	84.64	85.08	83.93	84.65	85.49	84.87	85.03	84.50	82.94	83.19	-	-
Jun.99	86.89	87.34	85.98	86.55	87.54	86.87	87.13	86.45	84.59	84.44	-	-
Mar.99	88.08	90.98	89.34	89.39	91.31	90.37	90.83	89.67	87.24	87.13	-	-
Dec.98	86.89	87.64	86.23	86.72	87.84	87.17	87.31	86.50	84.35	84.36	-	-
Sep.98	84.41	85.00	83.10	84.21	85.22	84.67	84.74	84.23	82.61	82.70	-	-
Dec.97	88.69	89.54	-	88.42	89.89	89.47	89.18	88.30	85.76	85.54	-	-
Apr.97	86.85	87.18	86.05	86.62	87.69	87.01	84.88	84.30	84.47	84.47	-	-
Dec.96	86.32	86.91	85.76	86.27	87.56	86.73	86.86	86.12	84.10	83.95	-	-
Apr.96	89.70	90.45	89.02	89.50	90.80	90.01	90.08	89.27	-	-	-	-
Jan.96	87.92	88.65	87.23	87.74	89.01	88.22	88.26	87.46	<u>-</u>	-	-	-
Oct.95	84.70	85.16	84.87	-	85.47	84.83	84.88	84.39	-	-	-	-
Jun.95	88.46	88.99	87.53	_	-	-	-	-	-	-	-	-
Mar.95	89.92	90.90	89.09	-	-	-	-	-	-	-	-	-
Dec.94	88.67	89.98	87.99	-	-	-	-	-	-	-	_	-
Oct.94	82.60	83.22	81.99	-	-					_	-	-

Table 3
Field Measurements of Physical and Chemical Properties at Time of Sampling, November 19, 2001
3609 International Bivd., Oakland, CA

Monitoring Well	рН	Temp (°C)	E.C. (uS/cm)
MW-1	6.55	19.7	724
MW-2	7.27	19.7	487
MVV-3*	NA	NA	NA
MW-4	6.92	17.6	529
MW-5	7.23	18.9	524
MW-6**	NA	NA	NA
MW-7	7.36	18.8	445
MW-8	6.95	18.5	569
MW -10	7.2	19.5	599
MW-11	7.12	18	530
MW-12	7.24	18.2	606

notes:

^{*} MW-3 was not sampled due to presence of free product

^{**} MW-6 was not sampled due to inaccessibility, station obstacles

Table 4
Groundwater Biodegradation Parameters
3609 International Boulevard, Oakland, California

		Nitrate	Sulfate	Ferrous	Dissolved	Redox Potential	Turbidity
	l			iron	Oxygen		-
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mV)	(NTU)
MW-1	11/19/01	0.6	41	1.89	0.36	-54	17
	8/8/01	0.0	23	2.18	1.71	-35	200
	5/22/01	0.0	21	0.34	1.36	32.5	40.9
	3/13/01	4.4	80	0.50	0.53	-4.70	66
	11/2/00	0.0	33	1.14	0.56	-39.40	18
	8/9/00	0.0	0	1.70	0.32	-40	219
	5/31/00	2.8	0	0.57	0.30	-37	30
	2/7/00	0.0	1	3.30	0.77	-74	-
	11/9/99	0.0	26	5.10	0.20	-	-
	8/23/99	0.0	8	2.67	1.40	-	-
	6/10/99	0	1	3.17	0.14	-	-
	12/30/97	<0.1	<1	3.04	0.50	-	_
MW-2	11/19/01	0.0	33	1.18	0.78	13	105
	8/8/01	7.4	51	0.09	2.03	160	0
	5/22/01	0.0	25	0.71	0.80	274	160
	3/13/01	6.8	80	0.10	0.89	117.9	24,15
	11/2/00	0.0	7.9	0.69	1.35	111	ND
	8/9/00	5.4	0	0.72	0.76	-74	1000
	5/31/00	2.5	54	0.18	0.80	-55	30.9
	2/7/00	6.2	55	0.15	1.12	-20	-
	11/9/99	0.9	55	1.00	0.80	-	-
	8/23/99	1.0	60	0.62	0.70	-	-
	6/10/99	0.7	40	0.55	0.44	-	-
1	6/30/98	<0.1	14	0.50	3.20	-	-
ł	12/30/97	<0.1	<1	3.35	<0.1		-
L							
MW-3	11/19/2001*	NA	ΝA	NA	NA	NA	NA
]	8/8/01	0.7	11	7.00	1.17	-54	28
	5/22/01	0.2	16	6.72	80.0	-32	98
	3/13/01	0	0	2.66	0.62	-60	26.91
	11/2/00	o	28	4.10	0.83	-94	4,816
<u> </u>	8/9/00	0	0	6.10	0.40	-72	123
	5/31/00	0	4	7.80	0.45	-117	188
	2/7/00	0	140	3.60	0.70	-82	-
	11/9/99	0	0	3.50	0.61	-	-
1	8/23/99	0	0	3.90	0.80	-	-
1	6/10/99	0	0	3.10	0.42	-	-
1	6/30/98	0.10	77	0.37	2.00		

Table 4
Groundwater Biodegradation Parameters
3609 International Boulevard, Oakland, California

		Nitrate	Sulfate	Ferrous Iron	Dissolved Oxygen	Redox Potential	Turbidity
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mV)	(NTU)
<u> </u>		(3)	(3. –/	<u> </u>	(g/	()	(1.1.2)
MW-4	11/19/01	0.00	37	3.20	0.56	-108	58.7
	8/8/01	6.00	30	0.09	1.54	320	320
	5/22/01	0.10	31	0.47	1.27	193.9	50
	3/13/01	3.20	48	0.51	0.72	9.4	190
	11/2/00	4.50	45	0.00	0.60	-39	ND
	8/9/00	1.00	14	0.32	0.46	-50	83
	5/31/00	0.50	40	0.25	0.50	-40	26.8
	2/7/00	0.00	1	1.56	1.30	-31	-
	11/9/99	0.50	23	0.99	0.12	-	-
	8/23/99	0.50	28	0.67	0.15	-	-
	6/10/99	0.40	10	0.81	0.15	-	_
	6/30/98	0.90	7	0.93	1.30	-	-
	12/30/97	4.50	42	0.39	<0.1	-	
MW-5	11/19/01	3.50	27	1.05	1.10	-33	8.5
	8/8/01	0.20	37	0.73	1.35	103	300
	5/22/01	14.80	13	1.10	1.20	167	593
i	3/13/01	1.00	45	0.33	1.01	34.2	35.36
	11/2/00	6.50	31	1.02	0,56	49	ND
	8/9/00	0.00	26	0.00	1.97	80	490
	5/31/00	0.00	50	0.35	0.48	-25	27.2
	2/7/00	0.00	47	0.64	0.90	18	-
	11/9/99	2.00	32	0.72	0.27	-	-
	8/23/99	2.40	45	1.19	0.75	-	-
	6/10/99	2.50	33	0.34	0.25	-	-
	6/30/98	1.60	6	0.50	0.60	-	-
	12/30/97	0.30	18	0.94	<0.1	-	=
MW-6	11/19/2001**	NA	NA	NA	NA	NA	NA
l	8/8/01	NA	NA	NA	NA	NA	NA
	5/22/01	0.00	17	1.30	0.12	-9.5	413
İ	3/13/01	1.30	7 9	2.63	0.75	-42.1	83
	11/2/00	0.00	16	2.65	0.80	-34.0	618
	8/9/00	2.50	0	4.10	0.65	-33.0	1000
	5/31/00	0.00	0	3.27	0.72	-62.0	111
	2/7/00	0.00	0	3.02	1.25	-51.0	-
	11/9/99	0.00	0	7.00	0.22	-	-
}	8/23/99	0.00	9	3.30	0.55	-	-
	6/10/99	0.00	23	2.52	0.61	-	-
	6/30/98	0.70	4	0.40	2.50	-	-
	12/30/97	<0.1	5	0.30	<0.1	-	-

Table 4
Groundwater Biodegradation Parameters
3609 International Boulevard, Oakland, California

Well	Date	Nitrate (mg/L)	Sulfate (mg/L)	Ferrous Iron (mg/L)	Dissolved Oxygen (mg/L)	Redox Potential (mV)	Turbidity (NTU)
MW-7	11/19/01	0.00	21	1.14	0.98	-14.0	8.9
	8/8/01	0.00	13	0.51	1.62	-18.0	140
	5/22/01	0.00	12	0.79	1,71	56.0	49.8
	3/13/01	0.00	40	3.30	0.79	-10.4	110
	11/2/00	3.50	30	0.27	0.58	-11.6	ND
	8/9/00	0.00	17	0.95	0.26	-33.0	131
1	5/31/00	0.00	28	0.72	0.30	-52.0	34.9
	2/7/00	0.00	41	0.53	0.91	-19.0	-
	11/9/99	0.00	25	0.99	0.14	-	-
Ì	8/23/99	0.00	20	1.40	0.65	-	-
	6/10/99	0.00	22	0.19	0.15	-	-
	6/30/98	0.50	4	0.78	1.00	-	-
	12/30/97	0.20	32	0.23	1.20	-	-
Innat n	44440104	0.00	1	>3.3	0.46	-142	53.5
8-WM	11/19/01	0.00	-		1.24	-62	990
İ	8/8/01	0.80	25	1.50		-02 -8.8	179
	5/22/01	0.00	5	3.30	1.16	-0.6 -76	110
i	3/13/01	2.10	12	3.30	0.48		350
	11/2/00	-	16	7.33	-	-104.9 -91	94
1	8/9/00	0.00	7	3.30	0.50	-91 -95	13
	5/31/00	0.00	0	3.30	0.45	-95 -90	13
	2/7/00	0.00	0	3.46	0.65		-
1	11/9/99	0.00	0	8.90	0.38	-	-
1	8/23/99	0.00	13	8.20	0.20	_	-
i	6/10/99	0.00	0	4.70	0.10	-	-
ļ	6/30/98	<0.1	3	2.82	1.30	-	-
	12/30/97	0.10	<1	3.35	2.50	-	<u> </u>
MW-10	11/19/01	2.7	12	0.99	0.89	45	3
14104-10	8/8/01	0.0	11	0.00	1.56	52	19.6
		1.7	13	0.10	1.76	105	19.56
1	5/22/01		0	0.10	0.65	28	32.11
	3/13/01	0.0 1.3	13	0.23 0.42	0.53	26.7	ND
	11/2/00 8/9/00	0.0	0	0.42	0.33 0.45	19	116
	5/31/00	0.0	0	0.29	0.40	17	22.4
1	2/7/00	0.0	0	0.29	0.40	55	_
	2///00 11/9/99	0.0	12	0.37	0.44	-	_
		0.0	9	0.57	0.50	_	-
	8/23/99		0	0.52	0.30	_	_
	6/10/99 6/30/98	0.0 <0.1	<1	0.25 0.38	0.20	-	-
	6/30/98 12/30/97	0.3	<1	2.21	<0.1	_	_

Table 4
Groundwater Biodegradation Parameters
3609 International Boulevard, Oakland, California

Well	Date	Nitrate (mg/L)	Sulfate (mg/L)	Ferrous Iron (mg/L)	Dissolved Oxygen (mg/L)	Redox Potential (mV)	Turbidity (NTU)
MW-11	11/19/01	1.0	30	2.30	0.72	-18	8.4
(4)44-11	8/8/01	NA	NA	NA	NA.	NA	NA
	5/22/01	0.0	20	0.53	2.13	40.5	32.3
						114.7	111
	3/13/01	0.0	78	0.34	0.79		
	11/2/00	1.5	21	0.44	0.60	17	ND
	8/9/00	1.5	0	0.80	0.48	10	42
l	5/31/00	5.2	10	0.69	0.50	-15	12
	2/7/00	0.0	24	0.75	1.10	-14	-
	11/9/99	0.0	21	0.06	0.22	-	-
ŀ	8/23/99	0.0	52	0.92	0.60	-	-
	6/10/99	0.0	0	0.28	0.19	-	-
	6/30/98	1.2	6	0.15	2.20	-	-
	12/30/97	3.5	35	0.32	<0.1		-
MW-12	11/19/01	0.0	2	2.29	0.92	-72	20
	8/8/01	0.0	0	2.46	1.66	3	72
1	5/22/01	1.9	Ō	2.38	1.76	-18.9	6.28
	3/13/01	0.0	0	1.44	0.64	-5.6	8.42
	11/2/00	0.0	6	1.93	0.60	12	19
	8/9/00	0.0	ŏ	2.84	0.31	-48	56
	5/31/00	0.0	Ŏ	2.11	0.29	-54	7.7
<u> </u>	2/7/00	0.0	0	1.53	0.62	-42	-
1					0.02	-42	-
	11/9/99	3.1	9	2.21	U.34		

notes:

^{(*):} MW-3 not analyzed on November 19, due to free product

^{(**):} MW-6 not analyzed on November 19, 2001, well was inaccessible due to property obstacles

Table 5
Groundwater Analytical Data, November 19, 2001
3609 International Boulevard, Oakland, California

Monitoring Well	Benzene (μg/L)	Toluene (μg/L)	Ethyl-Benzene (μg/L)	Total Xylenes (μg/L)	MtBE* (μg/L)	TPH-g (μg/L)
MW-1 (1,3)	2,700	5,100	1,000	4,570	74,000	41,000
MW-2	13	64	22	83	14	470
MW-3	NS	NS	NS	NS	NS	NS
MW-4	180	5.3	. 17	53.2	ND	670
MW-5	17	160	26	135	40	920
MW-6	NS	NS	NS	NS	NS	NS
MW-7 ⁴	24	220	41	205	69	1,700
MW-8 (^{2,5)}	600	270	750	1,200	400	13,000
MW-10 ⁵	900	260	310	258	410	3,500
MW-11	7.9	26	5.1	28.9	ND	300
MW-12	81	69	13	73	120	3,000
DL	0.5	0.5	0.5	0.5	2.0	50

- NS Not Sampled
- DL Minimum laboratory detection limit
- ND Not Detected (i.e., below DL)
- MTBE analyzed with EPA Method 8260
- 1: dilution factor for TPH-g for MW-1 was 40, which increased detection limit to 2,000
- 2: dilution factor for TPH-g for MW-8 was 5, which increased detection limit to 250
- 3: dilution factor for BTEX, MtBE for MW-1 was 625, which increased detection limit to 310
- 4: dilution factor for BTEX, MtBE for MW-7 was 2, which increased detection limit to 1
- 5: dilution factor for BTEX, MtBE for MW-8 and MW-10 was 6.250, which increased detection limit to 3.1

Table 6
Historical Groundwater Analytical Data
3609 International Boulevard, Oakland, California

Well	Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl-Benzene (μg/L)	Xylenes (μg/L)	MtBE (μg/L)	TPH-g (μg/L)
14147 4	4444						
MW-1	11/19/01	2,700	5,100	1,000	4,570	74,000	41,000
	8/8/01	852	342	568	1,606	2,000	14,820
	5/22/01	310	81	82	388	150	4,900
	3/13/01	1,005	440	108	2,030	16	14,570
	11/2/00	435	52	ND	689	10	7,050
	8/9/00	638	<5	<5	<5	17.1	11,000
	5/31/00	610	350	310	1,400	<5	15,610
	2/7/00	2,280	1,380	8	6,130	47	40,000
	11/9/99	693	15	<5	3,471	50	10,000
	8/23/99	678	463	893	2,938	38	19,750
	6/10/99	1,110	1,460	1,330	5,265	77	25,000
	3/16/99	480	860	850	3,000	190	17,000
	12/16/98	2,500	2,400	2,300	9,500	160	65,000
	12/30/97	2,300	2,100	1,400	5,100	NA	27,000
	4/10/97	NA	ŃΑ	NA	NA	NA	ŃΑ
	12/9/96	NA	NA	NA	NA	NA	NA
	4/3/96	98	120	63	170	NA	31,000
	1/3/96	71	73	50	120	NA	30,000
	10/2/95	140	130	140	390	NA	59,000
	6/5/95	950	650	570	150	NA	21,000
	3/6/95	190	160	150	490	NA	32,000
	12/2/94	3,800	6,600	2,300	11,000	NA	80,000
	10/5/94	24,000	21,000	2,600	15,000	NA	320,000

Table 6
Historical Groundwater Analytical Data
3609 International Boulevard, Oakland, California

Well	Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl-Benzene (μg/L)	Xylenes (μg/L)	MtBE (μg/L)	TPH-g (μg/L)
	fs.						
MW-2	11/19/01	13	64	22	83	14	470
	8/8/01	4	4	3	11	ND	125
l	5/22/01	37	75	55	179	2.7	870
	3/13/01	18	34	1.3	225	ND	932
ŀ	11/2/00	ND	ND	ND	ND	ND	ND
İ	8/9/00	<5	<5	<5	<5	<5	<50
ŀ	5/31/00	130	330	130	570	<5	2,930
l	2/7/00	372	639	46	134	8	6,400
	11/9/99	<5	<5	<5	<5	<5	<50
	8/23/99	6	9	4	11	ND	60
	6/10/99	290	428	211	744	ND	3,500
	3/16/99	730	830	610	1,900	55	7,600
	12/16/98	1,400	1,600	880	9,500	<5	26,000
	9/29/98	290	180	160	360	<0.5	29,000
	6/30/98	2,000	2,000	1,300	4,300	NA	25,000
	12/30/97	4,900	4,900	1,600	7,000	NA	35,000
	4/10/97	150	110	37	0	ND	53,000
	12/9/96	11	7	2	14	ND	6,200
	4/3/96	0	92	44	13	NA	27,000
	1/3/96	160	130	93	240	, NA	46,000
	10/2/95	160	130	93	240	NA	46,000
•	6/5/95	220		350	660	NA	8,000
		3	330 3	330	1	NA NA	490
1	3/6/95			1,200	3,600	NA NA	42,000
	12/2/94	1,700	2,200	1,200	3,800	IVA	42,000
MW-3	11/19/01	NA	NA	NA	NA	NA	NA
11114-5	8/8/01	3,485	2,670	1,255	5,420	52	41,750
1		-			5,420 6,400	200	44,000
	5/22/01	5,400	3,100	1,400			
	3/13/01	2,250	140	ND	1,284	110	14,754
	11/2/00	6,789	4,816	676	7,2 58	83 476	48,000 76,000
	8/9/00	8,900	5,636	883	7,356	176	76,000
	5/31/00	15,000	8,900	1,500	7,400	<5 276	68,000
	2/7/00	6,090	3,360	< 5	5,780	276	44,000
	11/9/99	3,218	1,319	<5	6,697	126	26,000
	8/23/99	7,484	8,052	1,744	9,749	141	64,000
	6/10/99	8,245	6,425	1,015	7,173	274	46,000
	3/16/99	4,100	6,400	1,000	6,100	470	45,000
	12/16/98	5,700	3,900	1,200	6,300	410	51,000
	1/3/96	510	410	210	650	NA	150,000
	10/2/95	510	410	210	65	NA	150,000
	6/5/95	20,000	42,000	5,800	36,000	NA	350,000
	3/6/95	20,000	42,000	5,800	36,000	NA	350,000
	12/2/94	19,000	22,000	4,400	28,000	NA	250,000
	10/5/94	190,000	740,000	310,000	130,000	NA	3,000,000

Table 6
Historical Groundwater Analytical Data
3609 International Boulevard, Oakland, California

ND 670 ND 133 ND 80 ND 62 ND ND ND <5 370 <5 552 <5 7,800
ND 133 ND 80 ND 62 ND ND <5 370 <5 552
ND 80 ND 62 ND ND <5 370 <5 552
ND 62 ND ND <5 370 <5 552
ND ND <5 370 <5 552
<5 370 <5 552
<5 552
<u><5</u> 7 800
<5 <50
6 660
13 1,000
11 600
24 1,400
18 6,200
NA 1,700
NA 2,300
ND ND
ND 4,000
NA 1,900
NA 9,300
NA 9,300
40 920
1.4 258
4.4 180
ND 382
ND ND
<5 <50
<5 70
<5 <50
ND 120
ND 270
10 650
ND 1,400
<.5 270
NA 790
NA NA
NA NA
NIA 700
NA 780 NA 1,500

Table 6
Historical Groundwater Analytical Data
3609 International Boulevard, Oakland, California

Well	Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl-Benzene (μg/L)	Xylenes (μg/L)	MtBE (μg/L)	TPH-g (μg/L)
MW-6	11/19/01	NA	NA	NA	NA	NA	NA
Ì	8/8/01	NS	NS	NS	NS	NS	NS
]	5/22/01	760	450	1,600	4,270	ND	27,000
1	3/13/01	713	459	238	2,363	ND	15,637
	11/2/00	1,387	618	ND	5,250	ND	19,000
	8/9/00	1,306	870	<5	5,162	<5	24,000
	5/31/00	1,700	1,200	17	3,600	<5	21,700
	2/7/00	1,360	521	<5	4,150	6	17,000
	11/9/99	1,084	130	<5	10,940	<5	40,000
	8/23/99	3,806	3,649	1,554	7,996	10	42,000
ŀ	6/10/99	2,060	1,650	735	3,170	ND	18,500
	3/16/99	3,900	4,300	1,600	7,000	180	37,000
1	1/3/96	350	310	200	610	NA	120,000
l	10/2/95	350	310	200	610	NA	120,000
MW-7	11/19/01	24	220	41	205	69	1,700
	8/8/01	3.7	3	6.2	18.9	10	610
	5/22/01	ND	9.1	1.3	2.3	28	370
	3/13/01	0.97	ND	0.76	ND	78	82
	11/2/00	ND	ND	ND	ND	9.1	50
	8/9/00	<5	<5	· <5	<5	11.7	80
l	5/31/00	4.9	22	4.2	21.9	29	494.9
1	2/7/00	<5	<5	<5	<5	23	80
	11/9/99	<5	9	<5	<5	12	290
Į.	8/23/99	5	10	ND	ND	ND	570
1	6/10/99	3	7	4	3	26	320
1	3/16/99	3	1	1	1	62	300
	12/16/98	5	10	5	20	160	990
	9/29/98	1	1	1	2	68	1,800
	6/30/98	4	<5	9	<10	NA	620
	12/30/97	130	98	75	200	NA	1,400
	4/10/97	NA	NA	NA	NA	NA	NA
	12/9/96	NA	NA	NA	NA	NA	NA
	4/3/96	2	3	5	7	NA	1,900
	1/3/96	9	12	17	45	NA	3,300
	10/2/95	10	12	17	NA	3,300	NA

Table 6
Historical Groundwater Analytical Data
3609 International Boulevard, Oakland, California

Well	Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl-Benzene (μg/L)	Xylenes (μg/L)	MtBE (μg/L)	TPH-g (μg/L)
			4.				
MW-8	11/19/01	600	270	750	1,200	400	13,000
	8/8/01	153	46	373	345	174	5,620
	5/22/01	110	28	140	194	410	3,100
	3/13/01	81	16	71	270	221	2,360
	11/2/00	278	350	209	980	21	3,000
l	8/9/00	632	5.38	<5	2,686	37.3	22,000
	5/31/00	940	130	1,600	3,960	75	25,940
	2/7/00	1,080	617	<5	4,160	240	44,200
	11/9/99	92	<5	<5	3,414	769	10,500
	8/23/99	5,379	2,438	3,001	6,960	639	58,000
l	6/10/99	3,610	1,635	2,175	5,913	988	39,500
	3/16/99	1,800	470	2,000	2,000	820	22,000
ļ	12/16/98	6,300	1,700	2,200	4,400	1,300	61,000
ŀ	6/30/98	4,600	2,800	3,500	7,300	NA	54,000
	12/30/97	6,000	1,600	2,100	4,700	NA	28,000
	4/10/97	86	55	50	100	ND	24,000
	12/9/96	88	43	44	80	ND	27,000
	4/3/96	250	170	140	330	NA	58,000
	1/3/96	310	250	180	480	NA	94,000
	10/2/95	310	250	180	480	NA	94,000
						440	2.500
MW-10	11/19/01	900	260	310	258	410	3,500
l .	8/8/01	35	1	11	2	64	242
	5/22/01	630	11	200	31	270	2,900
	3/13/01	969	18	41	72	630	4,935
	11/2/00	ND	ND	ND	ND	145	ND
	8/9/00	1,055	26	54	53.8	1,283	6,800
	5/31/00	1,500	25	390	107.1	580	4,400
l	2/7/00	<5	<5	<5	<5	448	<50
	11/9/99	1,134	20	<5	70	652	2,950
	8/23/99	2,135	97	600	248	1,800	3,250
	6/10/99	1,168	34	264	154	1,195	4,200
	3/16/99	15	28	420	250	2,800	4,100
1	12/16/98	3,800	51	790	420	1,800	8,700
	9/29/98	5,400	66	970	620	2,600	9,900
	12/30/97	5,300	76	1,100	780	NA	10,000
	4/10/97	21	9	. 3	3	ND	1,000

Table 6
Historical Groundwater Analytical Data
3609 International Boulevard, Oakland, California

Well	Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl-Benzene (μg/L)	Xylenes (μg/L)	MtBE (μg/L)	TPH-g (μg/L)
MW-11	11/19/01	7.9	26	5.1	28.9	ND ~	300
	8/8/01	NS	NS	NS	NS	NS	NS
	5/22/01	12	8.3	3.3	9.8	12	280
	3/13/01	8.6	2.1	10	14	ND	273
	11/2/00	ND	ND	ND	ND	ND	60
	8/9/00	10.5	5.94	<5	7.75	<5	590
	5/31/00	27	13	, 9.5	29.0	<5	477
	2/7/00	20	15	<5	35	<5	700
	11/9/99	<5	<5	<5	<5	<5	<50
	8/23/99	4	4	ND	6	ND	170
	6/10/99	1,240	35	290	159	1,291	4,600
	3/16/99	30	6	53	84	8	710
	12/16/98	27	4	25	33	>0.5	650
	9/29/98	7	1	4	9	22	170
	6/30/98	45	24	71	100	NA	1,100
	12/30/97	66	97	59	190	NA	710
	4/10/97	ND	ND	ND	ND	ND	ND
MW-12	11/19/01	81	69	13	73	120	3,000
	8/8/01	71	1.8	3	4	142	2,090
	5/22/01	1,200	ND	95	1 65	1,900	31,000_
•	3/13/01	13	5.6	5.5	11	214	1,517
	11/2/00	9.3	19.0	ND	7.40	215	1,010
	8/9/00	15.4	12.4	<5	<5	185	1,730
	5/31/00	230	10	34	12	200	3,930
	2/7/00	351	37	<5	24	513	4,000
	11/9/99	<5	<5	<5	<5	229	80

Table 7
Total Volume of Water Treated and GAC-1 and Effluent Chemistry
3609 International Boulevard, Oakland, California

		Meter Reading			sults For GA			
Month	Date	(gallons)	MtBE	TPH-g	Benzene	Toluene	Ethyl benzene	Total Xylenes
December	12/12/01	1,311,340	ND	ND	ND	ND	ND	ND
			<u>ND</u>	ND	ND	ND	<u>ND</u>	ND
November	11/2/01	1,272,660	ND	ND	ND	ND	ND	NO
			<u>0.6</u>	ND	ND	ND	<u>ND</u>	ND
September	9/28/01	NA	ND	ND	ND	ND	NO	ND
			<u>ND</u>	ND	ND	ND	<u>ND</u>	ND ND
<u>August</u>	8/22/01	1,243,100	<u>ND</u>	NE	ND	<u>G</u> <u>N</u>	ND	ND
			ND	<u>ND</u>	ND	ND	<u>ND</u>	ND
<u>July</u>	7/26/01	1,227,270	ND	ואַטַ	ND	<u>ND</u>	ND	ND
	1		<u>ND</u>	ND	ND	ND	<u>ND</u>	<u>ND</u>
	7/11/01	1,226,730	ŊΑ	NA	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
			NA	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
<u>June</u>	6/29/01	1,224,600	<u>NA</u>	<u>NA</u>	NA	NA	<u>NA</u>	NA NA
		1,224,600	<u>ND</u>	ND	ND	ND	ND NA	ND ND
	6/16/01	1,216,580	<u>NA</u>	NA NA	NA NA	<u>NA</u> NA	<u>NA</u> <u>NA</u>	NA NA
	6/7/01	1,216,580 1,216, 5 80	<u>NA</u>	NA NA	NA NA	NA NA	NA NA	NA NA
	0///01	1,216,580	NA NA	NA NA	NA NA	<u>NA</u>	NA NA	NA
May	5/30/01	1,205,198	<u>NA</u>	NA.	NA.	<u>NA</u>	<u>NA</u>	<u>NA</u>
		1,205,198	NΑ	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u>
	5/23/01	1,194,390	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u>
		1,194,390	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
	5/17/01	1,182,360	<u>ND</u>	<u>ND</u>	<u>ND</u>	<u>ND</u>	ND	ND
		1,182,360	ND	ND	ND ND	<u>ND</u>	ND	ND
	5/10/01	1,166,850	<u>NA</u>	NA	<u>NA</u>	NA NA	NA NA	NA NA
	5,5,5	1,166,850	<u>NA</u>	<u>NA</u>	NA NA	NA NA	<u>NA</u> NA	NA NA
	5/5/01	1,151,600 1,151,600	<u>NA</u> <u>NA</u>	NA NA	NA NA	NA NA	NA NA	NA NA
April	4/28/01	1,135,690	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u>	NA
		1,135,690	<u>NA</u>	NA	NA	NA	NA.	<u>NA</u>
	4/21/01	1,113,570	NΑ	<u>NA</u>	NA	NA	<u>NA</u>	<u>NA</u>
		1,113,570	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	NA
	4/11/01	1,082,700	<u>NA</u>	N <u>D</u>	70	NQ	ND	<u>ND</u>
		1,082,700	ND	ND	ND	<u>ND</u>	ND	<u>ND</u>
	4/6/01	1,065,540	NA.	<u>NA</u>	NA	NA NA	NA NA	NA NA
	1	1,065,540	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>

Table 7

Total Volume of Water Treated and GAC-1 and Effluent Chemistry

3609 International Boulevard, Oakland, California

		Meter			sults For G/			
	1	Reading		<u>(</u>	concentration	ons in μg/L) Ethyl	Total
Month	Date	(gallons)	MtBE	TPH-g	Benzene	Toluene	benzene	Xylenes
<u>March</u>	3/29/01	1,036,330	<u>NA</u>	NΔ	NΑ	<u>NA</u>	<u>NA</u>	<u>NA</u>
			<u>NA</u>	NA	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
	3/21/01	1,036,070	<u>717</u>	NA	<u>NA</u>	<u>NA</u>	<u>NA</u>	NA NA
		1,036,070	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
	3/17/01	1,035,100	NA	NA	<u>tia</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
		1,035,100	<u>NA</u>	NA NA	NA ND	NA NE	<u>NA</u> ND	<u>NA</u> ND
	3/13/01	1,032,500	ND	ND	ND NA	N <u>O</u> NA	<u>ND</u> NA	NA NA
	3/2/01	1,032,500 996,520	<u>NA</u>	NA NA	<u>NA</u> NA	NA NA	NA NA	NA NA
	3/2/01	996,520	<u>NA</u> NA	NA NA	NA NA	NA NA	NA NA	NA
		330,320						†
<u>February</u>	2/10/01	975,490	S	ystem shut	down for ma	aintenance : 	and cleaning 	
January	1/29/01	957,880	NQ	NO	ND	ND	<u>ND</u>	<u>NU</u>
	1/29/01	957,880	ND	ND	ND	ND	ND	<u>ND</u>
								,
<u>December</u>	12/5/00	883,000	<u>ND</u>	ND	<u>ND</u>	NΩ	NΩ	ND
	12/5/00	883,000	ND	ND	ND	ND	ND	ND
November	11/24/00		ND	<u>N⊇</u>	ND	ND	ND	ND
MOACHIDEL	11/24/00		ND	ND	ND	ND	ND	ND
	11/1/00	842,000	NQ	NO	<u>ND</u>	NQ	<u>MD</u>	<u>ND</u>
	11/1/00	842,000	ND	ND	ND	ND	ND	ND
				1.000	8 1/75	A IT S	kira.	NIF'S
<u>October</u>	10/1/00	809,000	ND ND	ND ND	NO ND	ND ND	ND ND	ND ND
	10/1/00	809,000	ND	IND	IND	I ND		
August	8/24/00	778,000	ND	<u>N</u> D	<u>ND</u>	<u>ND</u>	<u>ND</u>	<u>ND</u>
July	7/26/00	726,000	<u>ND</u>	NU	פע	NΩ	<u>ND</u>	<u>ND</u>
<u> </u>	7/19/00	718,000	NO	ND	ND	ND	ND	NO
	7/13/00	712,000	100	ND	<u>ND</u>	N₽	ND	ND
	7/7/00	706,000	NΩ	NO	NΩ	ИD	ND	<u>ND</u>
<u>June</u>	06/29/00	700,000	ND	<u> 40</u>	ND	ND	<u>NO</u>	ND
Antie	06/29/00	682,220	ND	ND	NO	ND	ND	ND
	06/16/00	669,720	ND	ND	MD	ND	* <u>ND</u>	ND
	06/10/00	651,200	ND	ND	ND	ND	ND	ND
<u>May</u>	05/31/00	629,000	<u>1v0</u>	NΩ	ND	<u>ND</u>	NΩ	<u>NÖ</u>
	05/23/00	603,700	ND	ND	ND	ND	ND	ND
	05/18/00	570,000	ND	ND	ND	ND	ND	ND
	05/10/00	530,400	ND	ND	ND	ND	ND	ND
Aneil	04/30/00	488,300	ND	ND	ND	ND	ND	ND
<u>April</u>	04/30/00	485,300	ND	ND	ND	ND	ND	0.51
	04/10/00	440,200	ND	ND	ND	ND	ND	ND
	04/04/00	390,100	ND	<u>ND</u>	ND	<u>NO</u>	ND	ND

Table 7

Total Volume of Water Treated and GAC-1 and Effluent Chemistry

3609 International Boulevard, Oakland, California

		Meter Reading			sults For GA concentration			
Month	Date	(gallons)	MtBE	TPH-g	Benzene	Toluene	Ethyl benzene	Total Xylenes
March	03/24/00	388,000	ND	ND	ND	ND	ND	ND
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	03/17/00	357,100	ND	ND	ND	ND	ND	ND
	03/10/00	329,000	<u> 70</u>	ND	NO	ND	МΘ	<u>ND</u>
	03/03/00	300,000						
Cabrioni	02/25/00	274,000	<u>ND</u>	NO	NO	ND	NO	<u>ND</u>
<u>February</u>	02/18/00	233.000	<u>ND</u>	ND	ND	ND	NQ	<u>ND</u>
	02/10/00	190,000	NO	NO	ЙĎ	ND	ND	NO
	02/11/00	160,800	NQ.	ND	ND	ND	<u>ND</u>	ND
	02/04/00	100,000	73.27	1,37%	مشيدن.			
January	01/28/00	130,600	MD	NQ	ND	ND	ЙÖ	МD
yanaar y	01/21/00	103,435	ND	ND	ND	CN	MD	ND
	01/14/00	83,500	185	ND	ND	ND	ND	ND
				h.0	ND	ND	ND	ND ND
<u>December</u>	12/23/99	51,680	1486	NA		1	ND	NΩ
	12/23/99	51,680	ND	NA NA	ND	ND ND	ND ND	ND
	12/16/99	30,450	963	NA	ND	1	i	ND
	12/16/99	30,450	ND	NA	<u>N0</u>	ND	ND ND	ND
	12/09/99	9,000	230 ling began c	ND	ND	ND	ND	IND

^{*} Effluent is equivalent to GAC-2

Table 8

Total Mass of Petroleum Hydrocarbons Removed by Vapor Extraction System
3609 International Boulevard, Oakland, California

		PID (r	pmv)	Flow Rate	Time Elapsed	Air Flow	Mass Removed 1
Date	Time	Influent	Effluent	(cfm)	(Hours)	(Liters)	(pounds)
7/24/00	5:00	394	0	85	0	0	0.00
7/25/00	5:15	38	2	95	24	3,914,096	1.01
7/26/00	5:05	207	1 1	80	48	3,228,121	4.52
7/27/00	9:00	160	5	92	64	2,500,944	2.71
7/28/00	4:30	141	7	87	96	4,656,139	4.44
7/29/00	1:30	225	8	85	117	3,032,734	4.62
7/30/00	9:00	226	12	85	136	2,816,110	4.31
7/31/00	3:00	141	5	85	166	4,332,478	4.13
8/1/00	5:00	135	4	80	192	3,533,942	3.23
8/2/00	4:00	80	4	80	215	3,126,180	1.69
8/3/00	5:00	60	5	85	240	3,610,398	1.47
8/4/00	3:00	57	4	85	262	3,177,150	1.23
8/5/00	2:00	97	8	87	285	3,399,721	2.23
8/6/00	12:00	114	8	80	307	2,990,259	2.31
8/7/00	12:00	93	9	85	331	3,465,982	2.18
8/8/00	4:30	152	10	85	360	4,115,854	4.23
8/10/00	10:00	173	1	85	377	2,527,279	2.96
8/11/00	7:00	78	4	70	410	3,924,715	2.07
8/12/00	9:00	100	6	70	424	1,665,031	1.13
8/13/00	5:00	107	9	70	456	3,805,784	2.75
8/14/00	12:30	122	5	70	476	2,319,150	1.91
8/15/00	6:00	103	12	70	505	3,508,457	2.44
8/16/00	12:30	112	0	70	524	2,200,219	1.67
8/18/00	9:00	90	0	75	568	5,670,449	3.45
8/21/00	12:00	74	5	80	643	10,194,065	5.10
8/24/00	12:00	68	13	80	712	9,378,540	4.31
8/27/00	12:30	68.5	2	80	785	9,854,263	4.57
8/31/00	1:30	52	6	80	882	13,184,324	4.64
9/4/00	12:30	54	5	80	977	12,912,482	4.72
9/7/00	12:00	55	3	80	1,048	9,718,342	3.62
9/11/00	4:30 ²	141	0	80	1,149	13,660,047	13.03
9/14/00	9:30	56	5	80	1,214	8,834,856	3,35
9/18/00	2:00	46	9.5	80	1,314	13,660,047	4.25
	4:30 ³	34	0	80	1,317	339,802	0.08
9/18/00	T.	43	1	80	1,389	9,786,302	2.85
9/21/00	4:30	E .	ļ.	80	1,486	13,184,324	4.91
9/25/00	5:30	55	6 7.5	80	1,550	8,766,896	2.82
9/28/00	9:00	47.5	6	80	1,626	10,329,986	2.69
10/1/00	1:00	38.5		l l		13,320,245	2.57
10/5/00	3:00 ⁴	28.5	3	80	1,724	271,842	0.07
10/5/00	5:00	36	0	80	1,726	9,514,460	1.83
10/8/00	3:00	28.5	3	80	1,796		3.24
10/14/00	3:00	24.5	2.5	80	1,940	19,572,604	2.38
10/17/00	2:00	36.5	3.5	80	2,011	9,650,381	1.13
10/20/00	8:30	18.5	3.5	80	2,078	9,038,737	1.13

Table 8

Total Mass of Petroleum Hydrocarbons Removed by Vapor Extraction System
3609 International Boulevard, Oakland, California

		PID (r	opmv)	Flow Rate	Time Elapsed	Air Flow	Mass Removed
Date	Time	Influent	Effluent	(cfm)	(Hours)	(Liters)	(pounds)
10/25/00	2:00	38	3.7	80	2,203	17,058,068	4.39
10/29/00	10:00	35	4	80	2,295	12,504,719	2.96
11/2/00	4:00	30.5	4	80	2,397	13,863,928	2.86
11/7/00	4:00	30	6	80	2,517	16,310,504	3.31
11/19/00	12:00	92.7	5,5	80	2,801	38,601,525	24.20
11/24/00	13:30	25	6.5	80	2,923	16,514,385	2.79
11/29/00	15:00	14.5	3.5	80	3,044	16,514,385	1.62
12/4/00	16:30	10.7	1	80	3,190	19,776,486	1.43
12/13/00	15:30	24	3	80	3,405	29,222,986	4.74
12/13/00	14:30	10	6	85	3,764	51,845,314	3.51
1/4/2001 ⁵	14:00	8.7	3.7	85	3,907	20,723,684	1.22
8/8/01	15:00	217	0	85	3,907	0	0
9/6/01	12:00	85	ő	85	4,048	20,362,644	11.71
9/13/01	16:00	186	8	85	4,220	24,839,538	31.26
9/13/01	15:00	184	9	85	4,344	17,907,574	22.29
9/21/2001 6	13.00	107			4,344	0	0
10/12/01 ⁷					4,344	0	0
10/12/01	17:00	114	58	87	4,344	0	0
10/25/01 4	15:00	133	0	85	4,390	6,643,132	5.98
		569	o o	85	4,485	13,647,304	52.53
10/29/2001 8	15:30	177	ŏ	87	4,679	28,675,904	34.34
11/7/01	15:30	117	1 0	87	4,894	31,853,904	25.21
11/16/01 11/21/2001 ⁹	1	85	72	87	5,011	17,294,231	9.94
1 112 112001	,		1	1	<u> </u>	hans Bamarad	= 381.13
			7	otal Mass of Pel	roleum Hydrocar ly Removal Rate	pons kemoved /pounds / day):	=

¹ The representative molecular weight of hydrocarbons was assumed to be 78 gram/mole and used the measured temperature of Vapor (36 °C) in converting ppm-v to ppm on mass basis.

² System accidentally shut down from main box, readings taken 30 minutes after startup.

³ GAC Replaced

⁴ GAC-1 removed, new GAC installed at effluent end

⁵ SVE System turned off for rainy season due to low influent concentrations

⁶ system down, hoses disconnected and GAC moved for replacement

⁷ system down for electrical repair

⁸ Carbon change-out of three drums, moved new effluent drum on 10/25/01 to GAC-1

⁹ system shut-down due to high effluent value

FIGURES

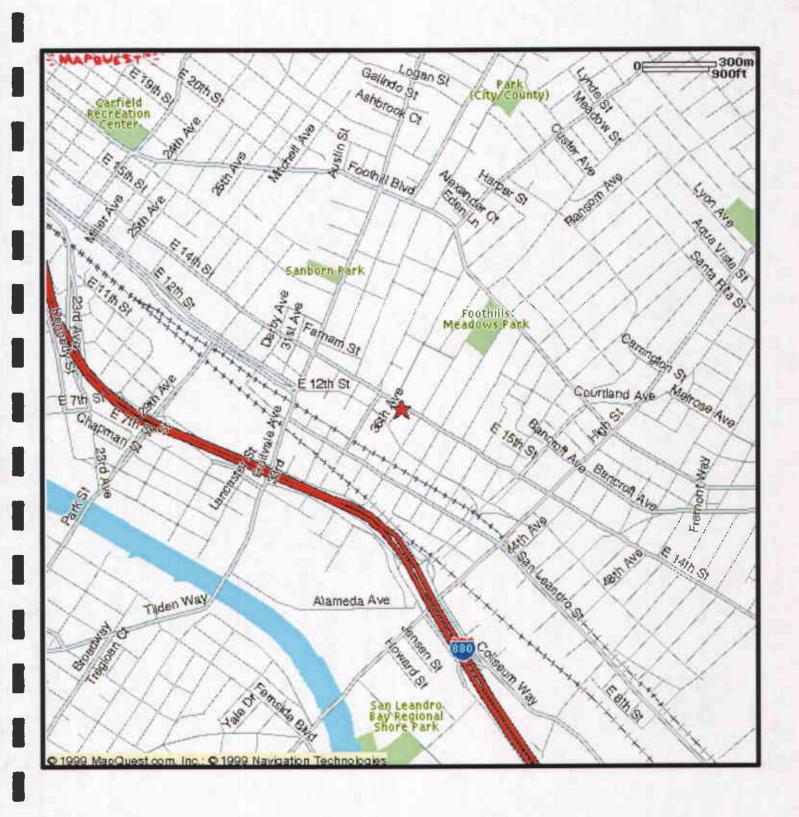


Figure 1: Site Location Map

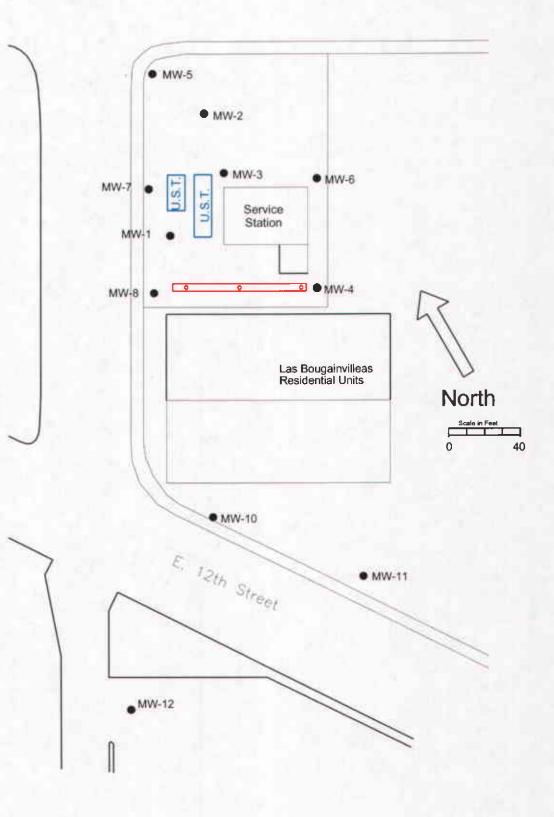


Figure 2: Location of Groundwater Monitoring Wells

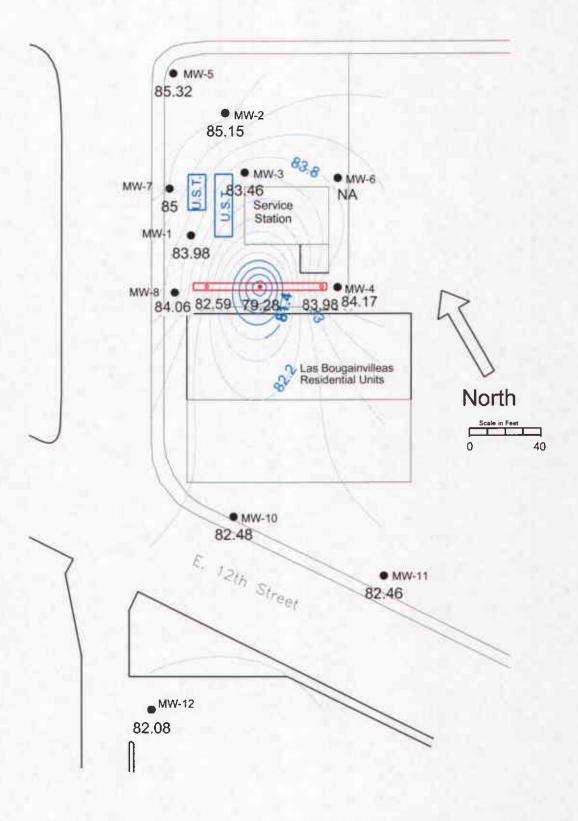


Figure 3: Groundwater Elevation Contour Map, November 19, 2001

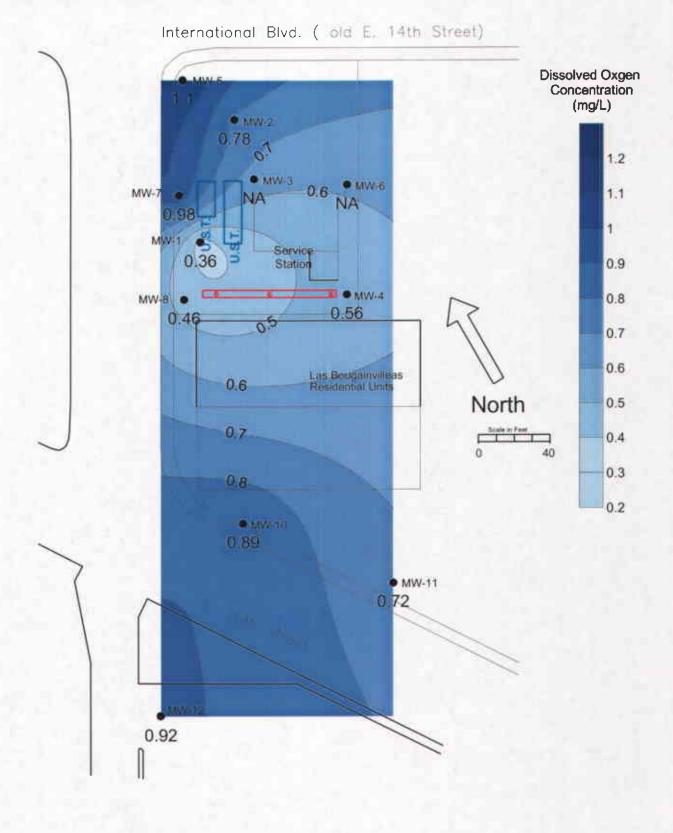


Figure 4: Dissolved Oxygen Concentration in Groundwater, November 19, 2001

International Blvd.

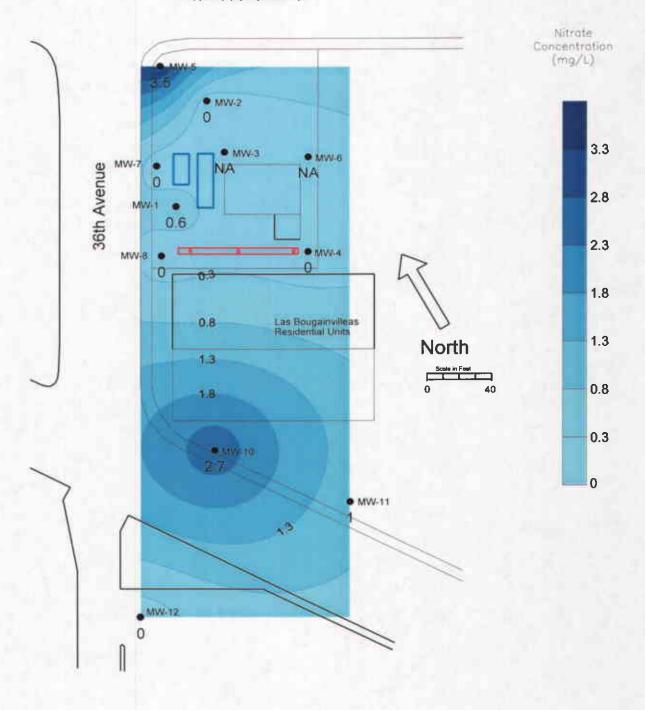


Figure 5: Nitrate Concentration Contour Map in Groundwater, November 19, 2001

International Blvd.

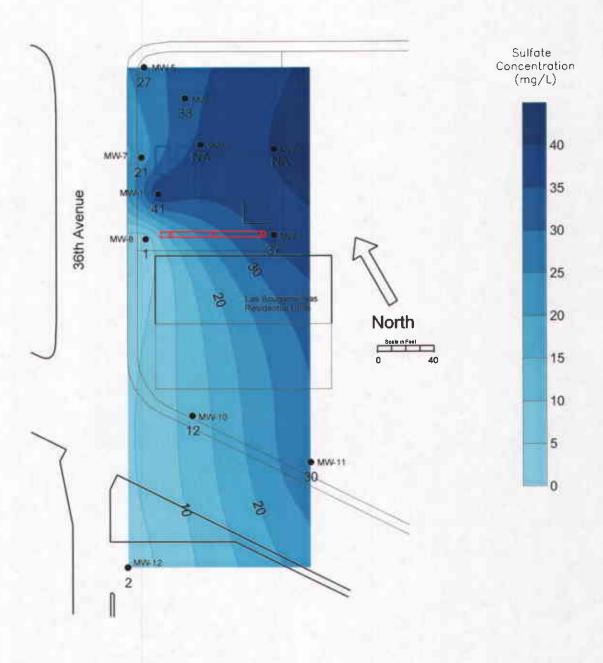
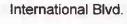



Figure 6: Sulfate Concentration Contour Map in Groundwater, November 19, 2001

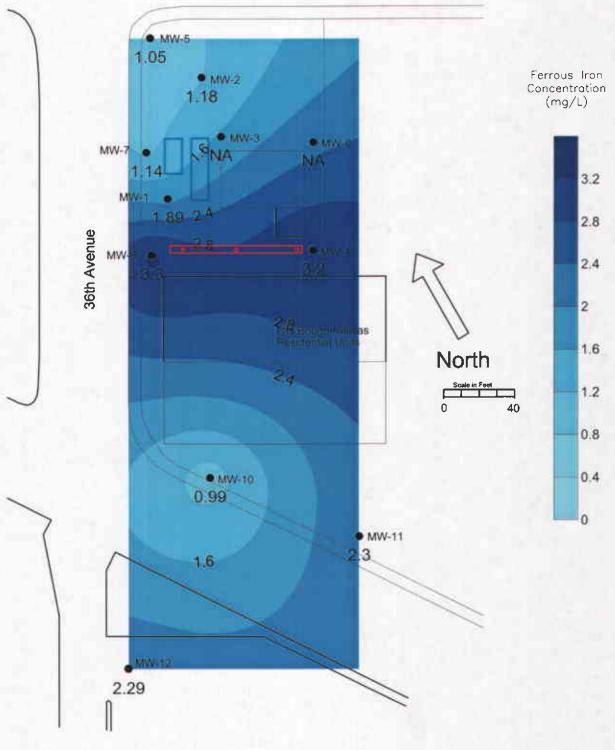


Figure 7: Ferrous Iron Concentration Contour Map in Groundwater, November 19, 2001

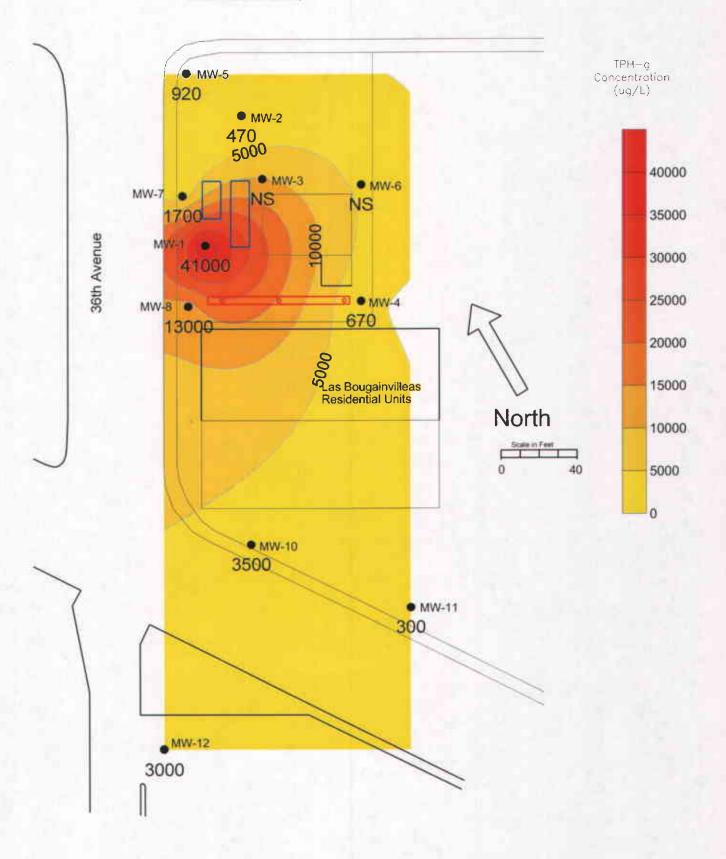


Figure 8: TPH-g Concentration Contour Map in Groundwater, November 19, 2001

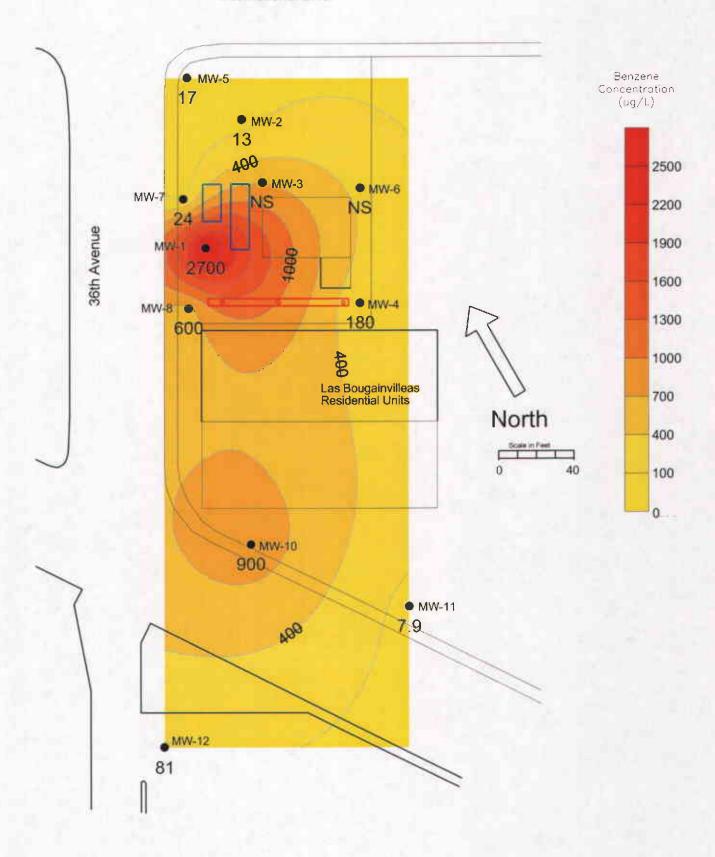


Figure 9: Benzene Concentration Contour Map in Groundwater, November 19, 2001

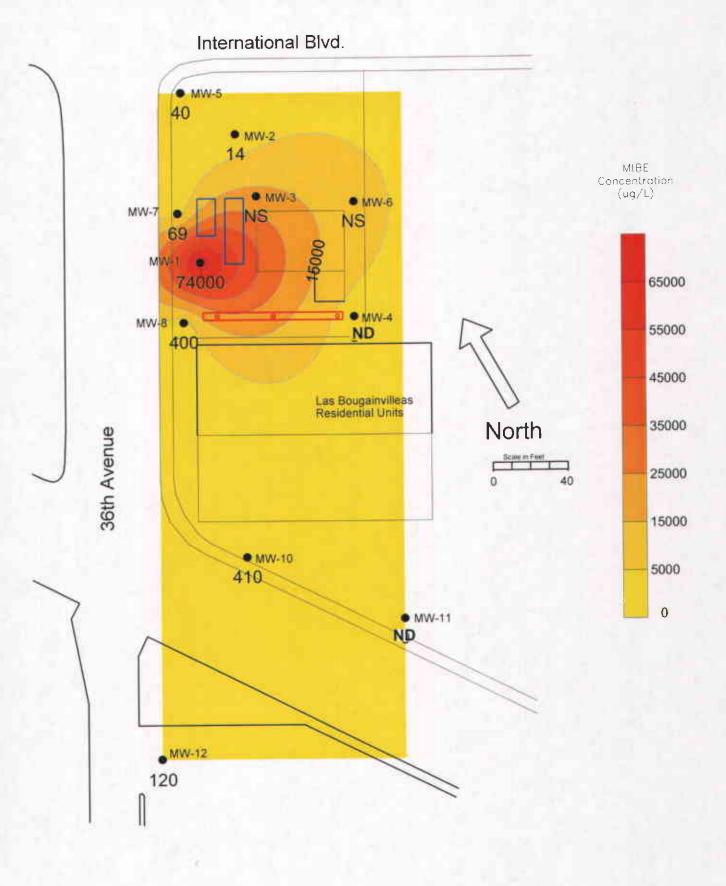


Figure 10: MtBE Concentration Contour Map in Groundwater, November 19, 2001

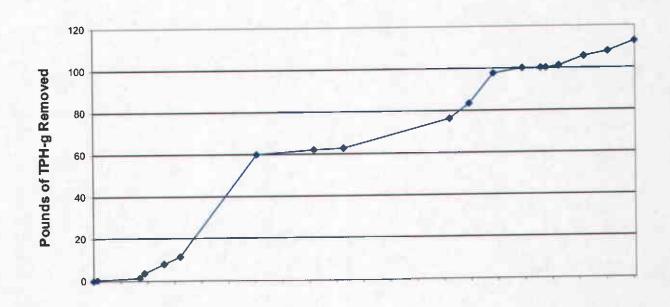
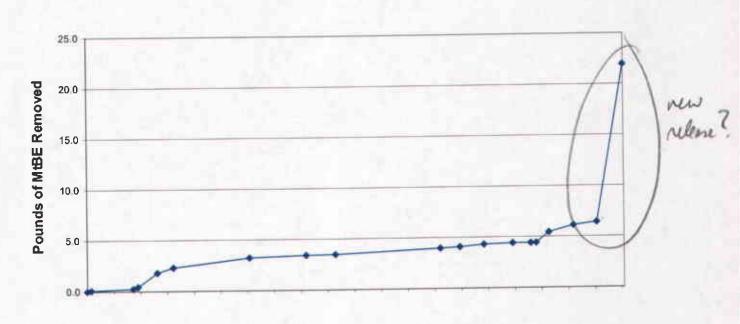


Figure 11


Cumulative Weight of TPH-g and MtBE Extracted from Groundwater

Since Installation of the Treatment System

3609 International Boulevard, Oakland, California

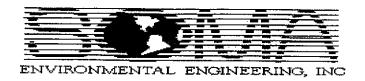

Sampling Date

Sampling Date

APPENDIX A

FIELD NOTES, CHAIN OF CUSTODY FORMS, LABORATORY REPORTS

Casing Diameter:	2, inc	ches	Address	S:	3609 International Blvd.			
Depth of Well:	21.7 fe	et			Oakland, CA			
Elevation of the Casing:	<i>97.99</i> fe	et						
Depth to Water Table:	14.01 fe	et	Date:		November 19,2001			
Elevation of Water Table:	83.98 fee	et	Sample	r:	Naser Pakrou			
Height of Water:	15.69 fe	et			Tony Perini			
Purged Volume:	<u> 7.0</u> ga	illons		,				
						•		
Purging Method:	Bailer 🗆		Pump	122				
Sampling Method:	Bailer 🗹	parties :	Pump					
Color:	Yes □ No) (Z	Y.	Describe				
Sheen:	Yes ₽ No	o 🗆	Ì	Describe	Rawbow Shee	1	·	
Odor:	Yes ⊠ No	o 🗆	i	Describe	etronel latio	101	o.(


Project No.:

2331

Field Measurements

Well No.:

Time	DO	рΗ	EC	Turbidity	ORP	Fe ⁺²	NO ₃ -1	SO ₄ +2	Temp
	(mg/L)		(μS/cm	(∤ †TU)	(mV)	(mg/L)	(mg/L)	(mg/L)	(°C)
10:00	0-36	6-55	724	17.2	-54	1-89	9.6	पा	19.7

NW-2

4 inches

30 feet

98.58 feet

13.43 feet

Height of Water:	16.57 feet		Tony Perini
Purged Volume:	19.0 gallons	3	
		A.	
Purging Method:	Bailer 🛘	Pump	
One of the state of	/	_	
Sampling Method:	Bailer 🗹	Pump	
Color:	Yes □ No 〔	D.	Describe
Sheen:	Yes □ No Ⅱ	Z	Describe
		Market .	A
Odor:	Yes □ No [☑	Describe

Project No.:

Address:

Date:

Sampler:

2331

Oakland, CA

Naser Pakrou

November 19,2001

3609 International Blvd.

Field Measurements

Well No.:

Casing Diameter:

Elevation of the Casing:

Elevation of Water Table: 85./5 feet

Depth to Water Table:


Depth of Well:

Time	DO (mg/L)	рН	EC (μS/cm	Turbidity (F TU)	ORP (mV)	Fe ⁺² (mg/L)	NO ₃ -1 (mg/L)	SO ₄ ⁺² (mg/L)	Temp (°C)
XXXO	0.78	6183	3 % 3	XXI 9	-39	1.18	Q - Q	33	183

12055

7.27 487 105 +13

19.7

Well No.:	MW-3	Project	No.:	2331
Casing Diameter:	inches	Addres	s:	3609 International Blvd.
Depth of Well:	<i>29.75</i> feet			Oakland, CA
Elevation of the Casing:	97.78 feet			
Depth to Water Table:	<u>1432</u> feet	Date:		November 19,2001
Elevation of Water Table:	<i>83.4</i> 6 feet	Sample	r:	Naser Pakrou
Height of Water:	<i>15.4</i> 3 feet			Tony Perini
Purged Volume:	18.5 gallons			
				no sampting, no purging
Purging Method:	Bailer □	Pump		
Sampling Method:	Bailer 🗹	Pump		
Color:	Yes □ No Ø		Describe	
Sheen:	Yes ⊠ No □		Describe	Rain how shoes
Odor:	Yes ≌″No □		Describe	Strong reviolehm fodor

Field Measurements

Time	DO (mg/L)	рН	EC (μS/cm	Turbidity (/ TU)	ORP (mV)	Fe ⁺² (mg/L)	NO ₃ -1 (mg/L)	SO ₄ ⁺² (mg/L)	Temp (°C)
diocado									

Mw-t

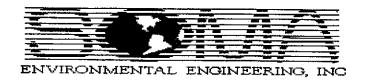
<u> </u>inches

Depth of Well:	26.5 feet		Oakland, CA
Elevation of the Casing:	97.85 feet		
Depth to Water Table:	13.68 feet	Date:	November 19,2001
Elevation of Water Table:	84.17 feet	Sample	r: Naser Pakrou
Height of Water:	/ <u>2.82</u> feet	Y	Tony Perini
Purged Volume:	8.0 gallo	ns ,	
Purging Method:	Bailer 🗆	Pump	
Sampling Method:	Bailer 🗹	« Pump	
Color;	Yes □ No	d .	Describe
Sheen:	Yes □ No		Describe
Odor:	Yes 🖭 No	Ο.	Describe gligher Retroleum oder

Project No.:

Address:

2331


3609 International Blvd.

Field Measurements

Well No.:

Casing Diameter:

Time	DO (mg/L)	рН	EC (μS/cm	Turbidity (≱ TU)	ORP (mV)	Fe ⁺² (mg/L)	NO ₃ -1 (mg/L)	SO ₄ +2 (mg/L)	Temp (°C)
11:00	0.56	6.92	52 <i>9</i>	58-7	-108	3.2	0.0	37.0	17.6

Depth of Well:	<i>26.40</i> feet			Oakland, CA	
Elevation of the Casing:	99. 04 feet				
Depth to Water Table:	/3,72 feet	Date:		November 19,2001	
Elevation of Water Table:	85.32 feet	Sample	r:	Naser Pakrou	
Height of Water:	/2.68 feet			Tony Perini	-
Purged Volume:	7.5 gallo	ns			
Purging Method:	Bailer □	Pump			
Sampling Method:	Bailer □	Pump			
Color:	Yes □ No	TO .	Describe		
Sheen:	Yes □ No	L	Describe		
Odor:	Yes □ No	d	Describe		****

Project No.:

Address:

inches

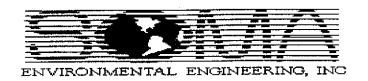
2331

3609 International Blvd.

Field Measurements

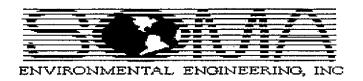
Well No.:

Casing Diameter:


Time	DO (mg/L)	рН	EC (μS/cm	Turbidity (NTU)	ORP (mV)	Fe ⁺² (mg/L)	NO ₃ -i (mg/L)	SO ₄ ⁺² (mg/L)	Temp (°C)
1540	1.10	7.23	524	8.5	-33	1.05	3-5	27	18.9

Well No.:	Mur-7	Project i	No.:	2331		
Casing Diameter:	inches	Address	s:	3609 International Blvd.		
Depth of Well:	24.60 feet			Oakland, CA		
Elevation of the Casing:	97.83 feet					
Depth to Water Table:	/2-83 feet	Date:		November 19,2001	-	
Elevation of Water Table:	<u>85</u> feet	Sampler	r:	Naser Pakrou		
Height of Water:	//. 77 feet			Tony Perini	:	
Purged Volume:	7.00 gallons			•		
					•	
Purging Method:	Bailer 🗆	Pump				•
Sampling Method:	Bailer 🗆	Pump	□ .			
Color:	Yes □ No Œ	ſ.,	Describe			
Sheen:	Yes □ No □	1	Describe			
Odor:	Yes □ No ⋤		Describe	· 		

Field Measurements


Time	DO (mg/L)	рH	EC (μS/cm	Turbidity (が TU)	ORP (mV)	Fe ⁺² (mg/L)	NO ₃ -1 (mg/L)	SO ₄ ⁺² (mg/L)	Temp (°C)
1:15	o. 98	7.36	445	9.9	-14	1.14	0.0	21	18.8

Well No.:	MW-8	Project	No.: 2331
Casing Diameter:	2 inches	Address	s: 3609 International Blvd.
Depth of Well:	26.34 feet		Oakland, CA
Elevation of the Casing:	97. 25 feet		
Depth to Water Table:	/3,/9 feet	Date:	November 19,2001
Elevation of Water Table:	84.06 feet	Sample	er: Naser Pakrou
Height of Water:	/3./5 feet		Tony Perini
Purged Volume:	_6_ & gallons		
	- ,		•
•			
Purging Method:	Bailer 🗆	Pump	
Sampling Method:	Bailer □	Pump	
Color:	Yes Mo	٥.	Describe Black
Sheen:	Yes º No □	כ	Describe Rainhow 8 heen
Odor	Yes ☑ No [٦	Describe ATTONY RETTOLOGIM OF DOX

Field Measurements

Time	DO (mg/L)	рH	EC (μS/cm	Turbidity (≓ TU)	ORP (mV)	Fe ⁺² (mg/L)	NO ₃ -1 (mg/L)	SO ₄ ⁺² (mg/L)	Temp (°C)
11:47 AM	0.46	6.95	569	535	-42	73.3	0.0	1.0	18.5

MW-10

2 inches

Elevation of the Casing:	94.54 feet			
Depth to Water Table:	12.06 feet	Date:		November 19,2001
Elevation of Water Table:	<i>82.48</i> feet	Sampler	·:	Naser Pakrou
Height of Water:	<i>11.44</i> feet			Tony Perini
Purged Volume:	7.5 gallor	ns		•
•				
Purging Method:	Bailer □	Pump		•
Sampling Method:	Bailer □	Pump		
Color:	Yes □ No		Describe	
Sheen:	Yes □ No		Describe	
Odor:	Yes □ No	Ø	Describe	

Project No.:

Address:

2331

Oakland, CA

3609 International Blvd.


Field Measurements

Well No.:

Casing Diameter:

Depth of Well:

Time	DO (mg/L)	рН	EC (μS/cm	Turbidity (対 TU)	ORP (mV)	Fe ⁺² (mg/L)	NO ₃ -1 (mg/L)	SO ₄ ⁺² (mg/L)	Temp (°C)
2:40	0.89	7.20	599	3.0	45	0-99	2.7	12.0	19.5

Well No.:	MW-11	Project I	No.:	2331		
Casing Diameter:	inches	Address	: :	3609 International Blvd.		
Depth of Well:	<u>25,52</u> feet			Oakland, CA		
Elevation of the Casing:	95.94 feet					
Depth to Water Table:	<i>[3,48</i>] feet	Date:		November 19,2001		
Elevation of Water Table:	<i>82.46</i> feet	Sampler	:	Naser Pakrou		
Height of Water:	1 <u>2.04</u> feet			Tony Perini		
Purged Volume:	7.5 gallons		:			
	, -		a ^{rt}			
				•		
Purging Method:	Bailer 🗇	Pump .				•
Sampling Method:	Bailer □	Pump				
Color:	Yes □ No 🖽	<u>/</u>	Describe		·	
Sheen:	Yes □ No ☑	/	Describe	:	<u> </u>	······································
Odor:	Yes □ No ᡚ		Describe			

Field Measurements

Time	DO (mg/L)	рH	EC (μS/cm	Turbidity (NTU)	ORP (mV)	Fe ⁺² (mg/L)	NO ₃ -1 (mg/L)	SO ₄ ⁺² (mg/L)	Temp (°C)
4:00		7.12	530	8.4	-18	2.3	1. O	30	18-0

MW-12

4 inches

29.92 feet

94.84 feet

12.76 feet

Elevation of Water Table:	<u>82,08</u> feet	Sample	r:	Naser Pakrou
Height of Water:	17.16 feet			Tony Perini
Purged Volume:	21.0 gallons			·
·				
Purging Method:	Bailer □	Pump		
;		-		
Sampling Method:	Bailer 🗆	Pump		
Color:	Yes □ No □	1	Describe	
		•	Docombo	,
Sheen:	Yes □ No □	1	Describe	
Odor:	Voc CINe C	1	D!k-	
Oddi.	Yes □ No □	I	Describe	

Project No.:

Address:

Date:

2331

Oakland, CA

November 19,2001

3609 International Blvd.

Field Measurements

Well No.:

Casing Diameter:

Elevation of the Casing:

Depth to Water Table:

Depth of Well:

Time	DO (mg/L)	рН	EC (μS/cm	Turbidity	ORP (mV)	Fe ⁺² (mg/L)	NO ₃ -1 (mg/L)	SO ₄ ⁺² (mg/L)	Temp (°C)
4130	0.92	7.24	606		-72	229	0.0	2.0	18.2

CHAIN OF CUSTODY FORM

Page ____of __

Curtis & Tompkins, Ltd.

	Analyses
N#155563	

•	al Laborator 2323 Fifth S Berkeley, C (510)486-09 (510)486-05	A 94710 000 Phone		Sampler	C&T LOGIN# 55563 Naser Pakrou											
Project No: 2331				Report T	o: v	<u>ع</u> وما	· Pe		8260							
Project Name: Tony's Auto express					III											
Project P.O.:			Telephor		<u> </u>	12										
Turnaround	Time: 名て	andord		Fax: 92	Fax: 925 244 660											
	,		Matrix		F	reser	vative		5	53						
Laboratory Number	Sample ID.	Sampling Date	Soll Water Waste	# of Containe	ers Z	H ₂ SO	ICE	Field Notes	Hat	315						
	MW-1	11/19 10:00	, 11	4	- V	1		Please run 8260	V	1						
	MW-2	12:55	14	1	~			and MTBE	/	1						
>	MW-4		4		-	1		and MTBE	0						_	
L	MW-5	1240	4		V	1										
0	MW-7	1:15	14		<u> </u>	1	<u> </u>			V-V/	++	4	\dashv			
- + O	MW-8	11147	V		- "	1—	\bot		- 1	\///	++	++	\dashv		_	
OBO	MW-10		1				 			1./	++	┼┼	+		-	
F.	MW-11	4100	1.7		_	} 	+			1./	+	++	1			
0	MW-12	4:30		+V	$-\mid^{\nu}$	1			+		++	+++			_	
a D			++-			+-+						11	\dashv			
<u>,,</u>						 										
—			,													
Notes: Received On Ice/			1	RELINQUISHED BY:							BECEIVED BY:					
EZ Cold □ Ambient □ Intact					_	laser	Par	COU - 1/20 10:	ME	THE TANDATE/TIME						
•		Preservation	Correct?					DATE/T	IME	7	/ (\supseteq	DA ⁻	TE/TIME		
	Preservation Correct? 2 Yes 1 No 1 N/A			/A	DATE/TIME					IE DATE/TIME						

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

SOMA Environmental Engineering Inc. 2680 Bishop Dr. Suite 203 San Ramon, CA 94583

Date: 18-DEC-01 Lab Job Number: 155563

Project ID: 2331

Location: Tony's, Oakland

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Project Manager

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of <u>39</u>

Laboratory Number:

155563

Client:

Soma Environmental Engineering, Inc.

Project Name:

Tony's Auto Express

Project No.

2331

Receipt Date: 11/20/01

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for nine water samples received from the above referenced project on November 20th, 2001. The samples were received cold and intact.

Total Volatile Hydrocarbons (EPA 8015M):

The recovery for the trifluorotoluene surrogate was over the acceptable QC limits for client ID MW-12 (C&T ID 155563-009) due to coelution of sample hydrocarbons with this surrogate. No other analytical problems were encountered. No other analytical problems were encountered.

Purgeable Aromatics (EPA 8260B):

No analytical problems were encountered.

Gasoline by GC/FID CA LUFT

Tony's, Oakland EPA 5030B Lab #: 155563 Location:

Client: SOMA Environmental Engineering Inc. Prep: Project# <u> Analysis:</u>

8015B(M) 11/19/01 11/20/01 Sampled: Matrix: Water Units: uq/L Received:

40.00 ield ID: MW-1 Diln Fac: SAMPLE 68323 Batch#:

Type: Lab ID: 155563-001 Analyzed: 11/29/01

Analyte Result RL Gasoline C7-C12 2,000 41,000

FEE Surrogate Limits Frifluorotoluene (FID) 115 59-135 95 <u> Bromofluorobenzene (FID)</u> 60-140

1.000 eld ID: Diln Fac: 68186 SAMPLE Batch#: pe: 11/21/01 Lāb ID: 155563-002 Analyzed:

Analyte Result Gasoline C7-C12 50 470

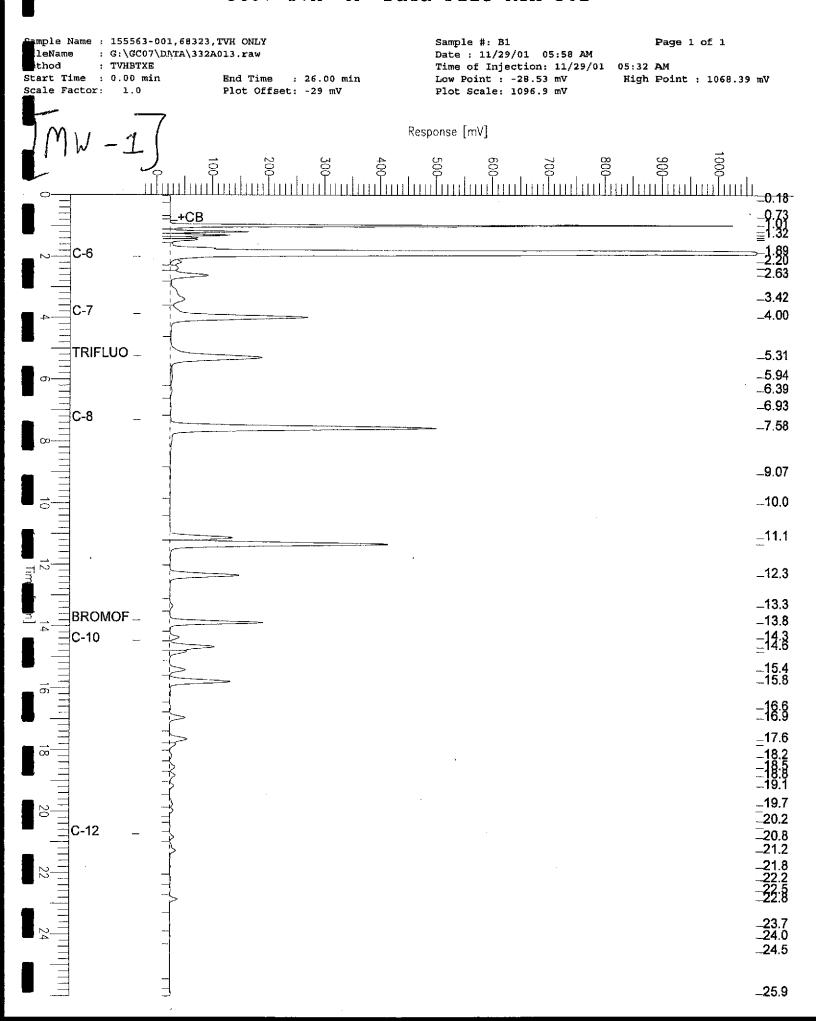
Surrocate Billia es *REC Trifluorotoluene (FID) 108 59-135 <u> Bromofluorobenzene (FID)</u> 112 60-140

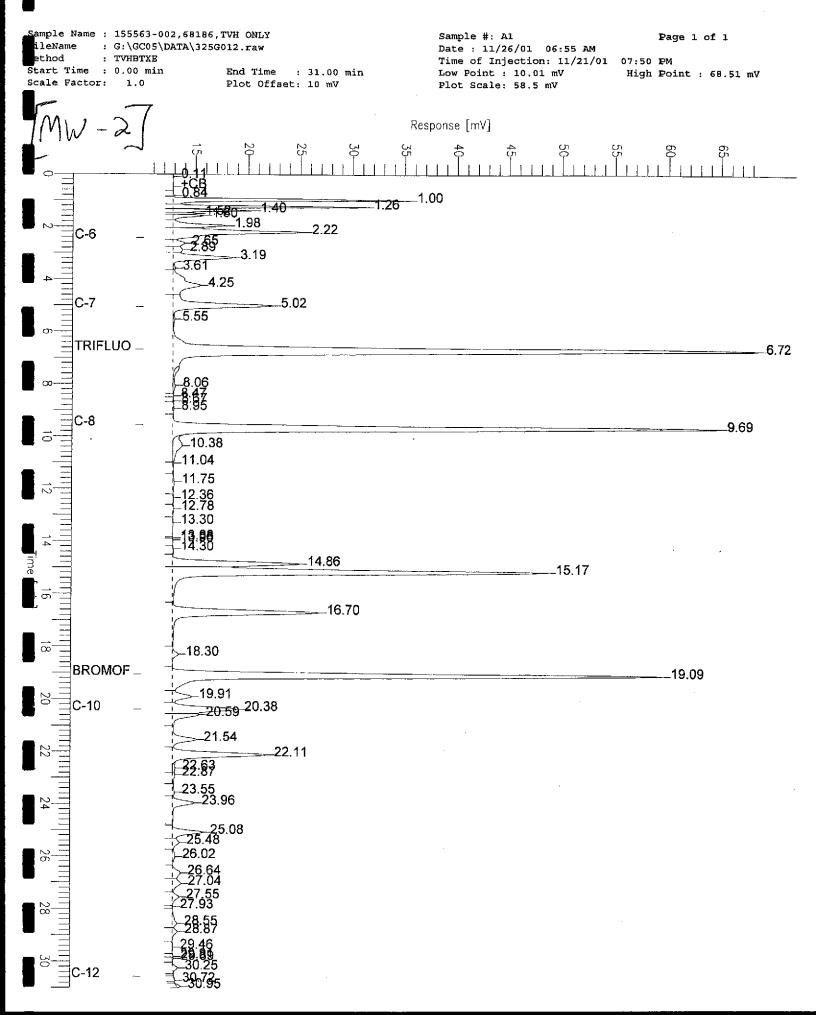
1.000 Diln Fac: MW-4 ield ID: SAMPLE Batch#: 68186

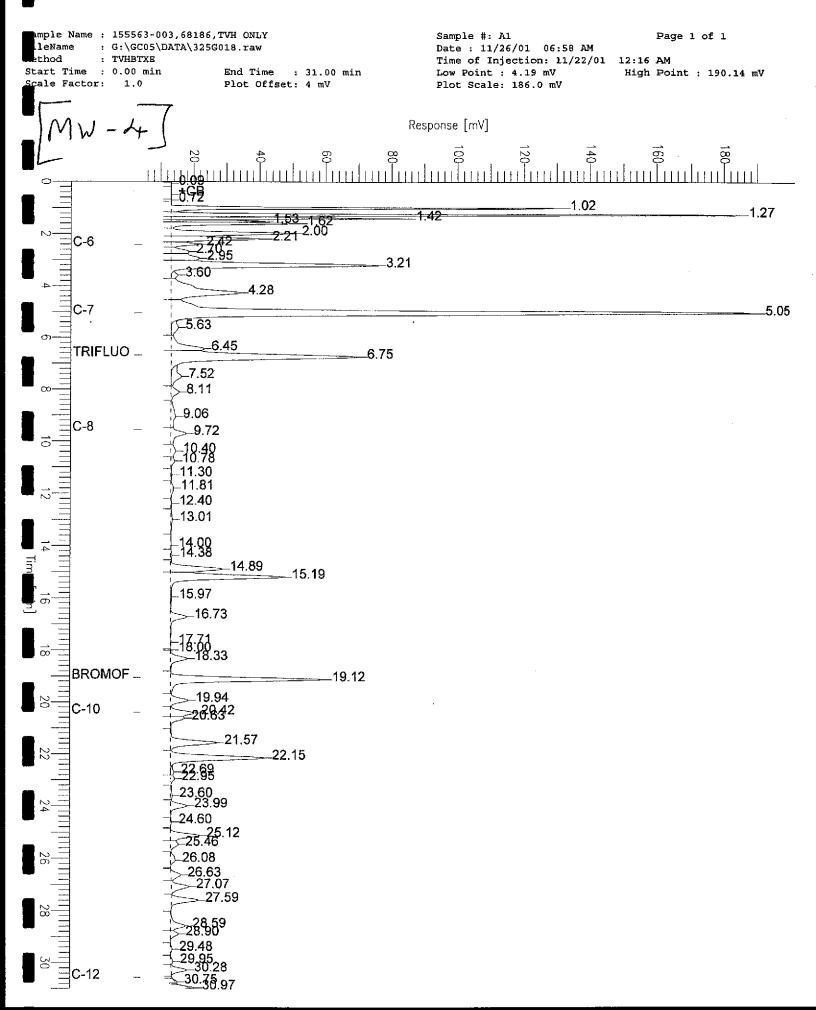
ype: Lab ID: 11/22/01 155563-003 Analyzed:

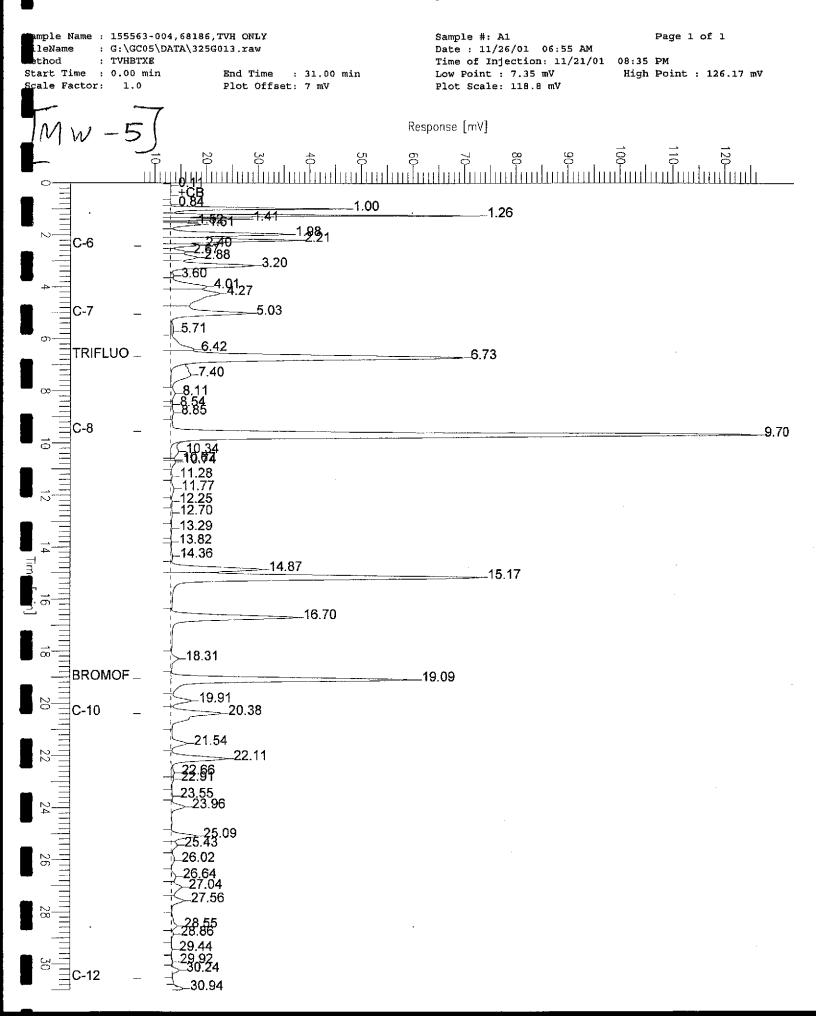
Result Analyte Gasoline C7-C12 670 Surrogate *REC Limits

Trifluorotoluene (FID) 115 59-135 <u>Bromofluorobenzene (FID)</u> 110 60-140


1.000 ield ID: MW-5 Diln Fac: Batch#: 68186 SAMPLE 11/21/01 155563-004 Analyzed:


Result 920 50 Gasoline C7-C12


Surrocate %REC Limits 59-135 Trifluorotoluene (FID) 109 <u>Bromofluorobenzene (FID)</u> 60-140


Value outside of QC limits; see narrative

D= Not Detected L= Reporting Limit Page 1 of 3

Gasoline by GC/FID CA LUFT

Tony's, Oakland EPA 5030B Lab #: 155563 Location:

Client: SOMA Environmental Engineering Inc. Prep: Project#: Matrix: 8015B(M) Analysis:

11/19/01 11/20/01 Sampled: Water Units: uq/LReceived:

ield ID:

MW-7 SAMPLE

155563-005

Diln Fac: Batch#:

1.000 68186

Type: Lab ID: 11/21/01 Analyzed:

Analyte Result Gasoline C7-C12 50 1,700

Surrogate Linits Frifluorotoluene (FID) 117 59-135 120 Bromofluorobenzene (FID) 60-140

ield ID:

8-WM

SAMPLE pe: Lāb ID: 155563-006 Diln Fac:

Batch#:

Analyzed:

5.000

68186 11/22/01

RL Analyte Result Gasoline C7-C12 13,000

Suprogate. SREC Benedati Frifluorotoluene (FID) 12459-135 Bromofluorobenzene (FID) 114 60-140

ield ID:

MW-10

SAMPLE

Diln Fac:

1.000

Batch#:

68186

Lab ID: 11/21/01 155563-007 Analyzed:

P 1000 Analyte Result 50 Gasoline C7-C12 3,500 Surrogate Trifluorotoluene (FID) Dimits_ *REC

59-135 118 60-140 <u> Bromofluorobenzene (FID)</u>

ield ID:

MW-11

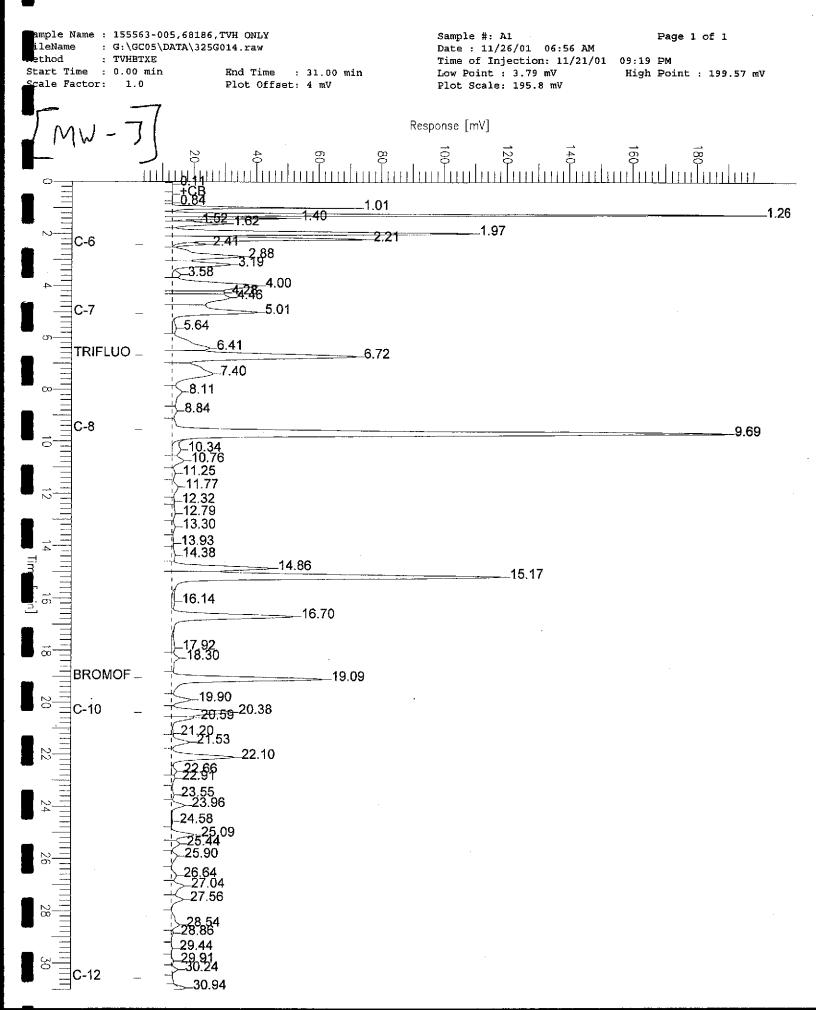
SAMPLE

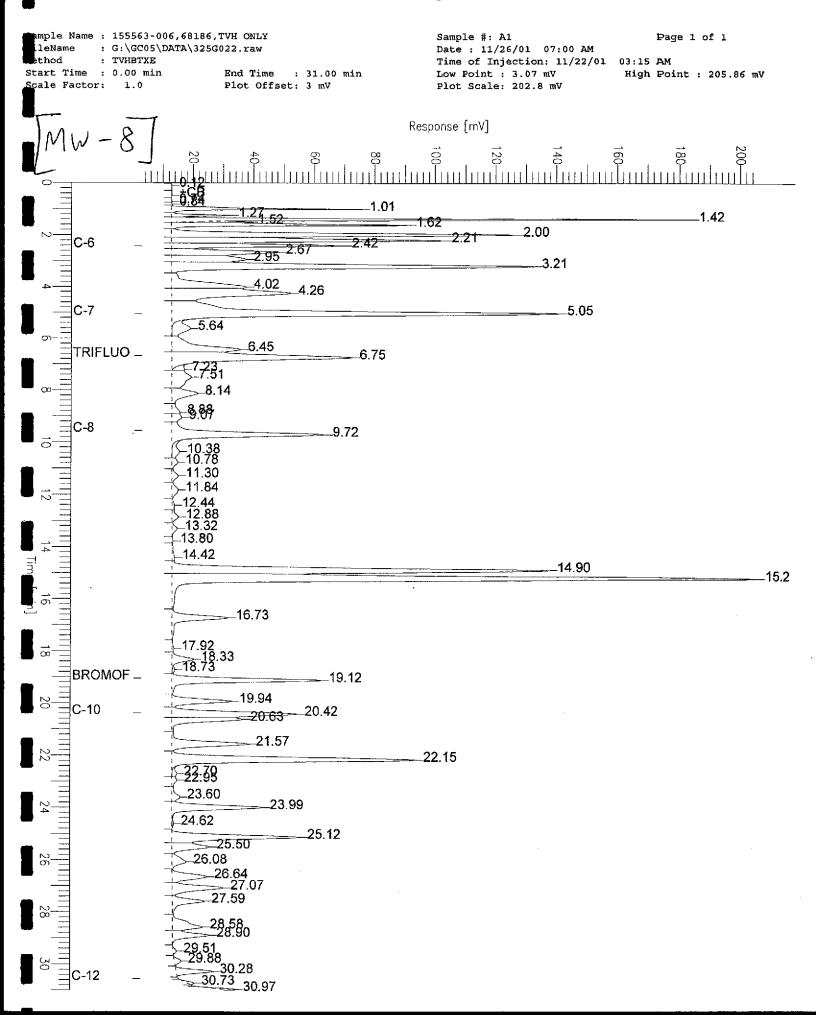
1.000

Diln Fac: Batch#:

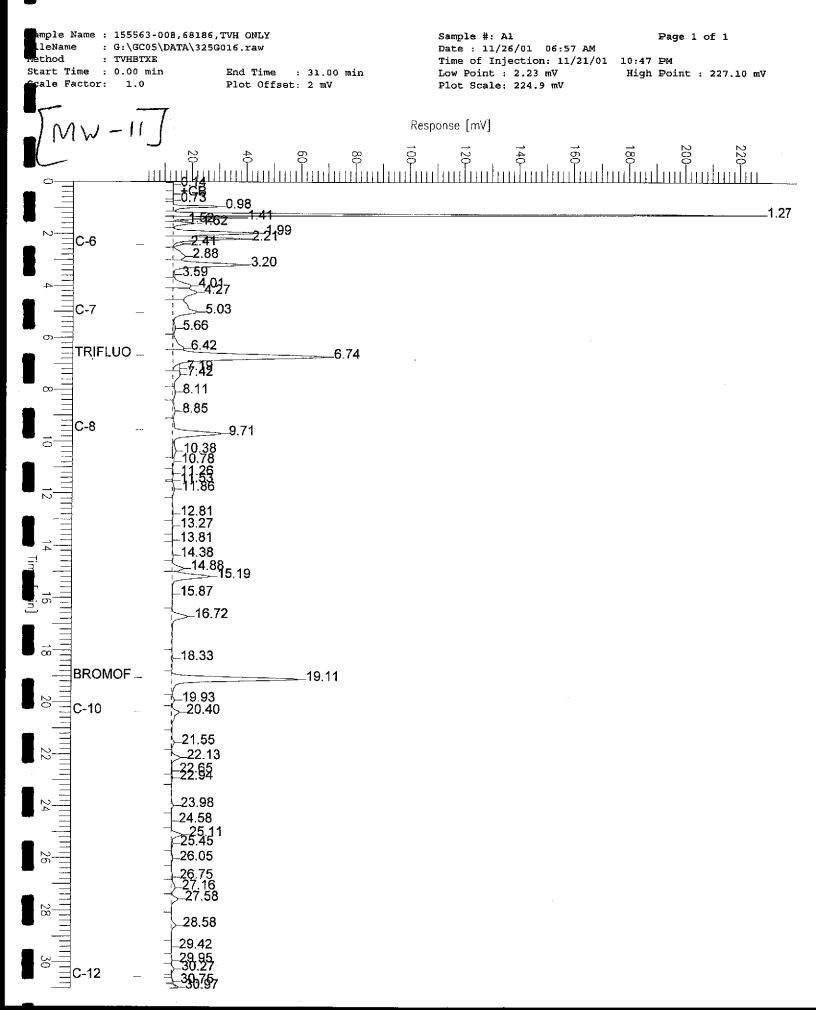
68186 11/21/01

ype: ab ID: 155563-008 Analyzed:


Analyte Result Gasoline C7-C12 300


Surrogate *REC bimits Trifluorotoluene (FID) 110 59-135 Bromofluorobenzene (FID) 60-140

= Value outside of QC limits; see narrative


D= Not Detected

L= Reporting Limit Page 2 of 3

Gasoline by GC/FID CA LUFT Tony's, Oakland EPA 5030B 8015B(M) Lab #: 155563 Location: SOMA Environmental Engineering Inc. Prep: Analysis: Client: Project#: 2331 Sampled: 11/19/01 Matrix: Water Units: uq/L Received: 11/20/01

ield ID:

MW-12

уре: Lab ID: SAMPLE 155563-009 Diln Fac:

Batch#:

Analyzed:

68186 11/21/01

1.000

251174-02-7 Result Gasoline C7-C12 3,000 50

S111444010(6845) e me te Trifluorotoluene (FID) 161 59-135 Bromofluorobenzene (FID) 122 60-<u>140</u>

ype: ab ID:

iln Fac:

BLANK

QC162997 1.000

Batch#:

68186

Analyzed:

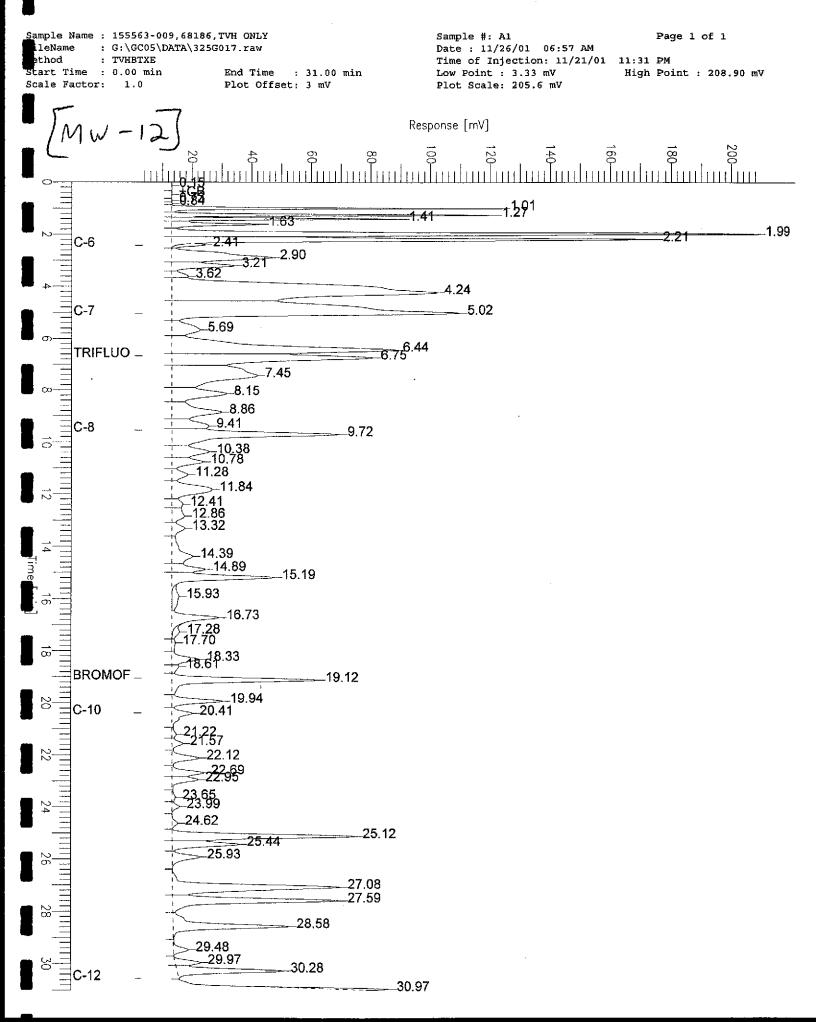
11/21/01

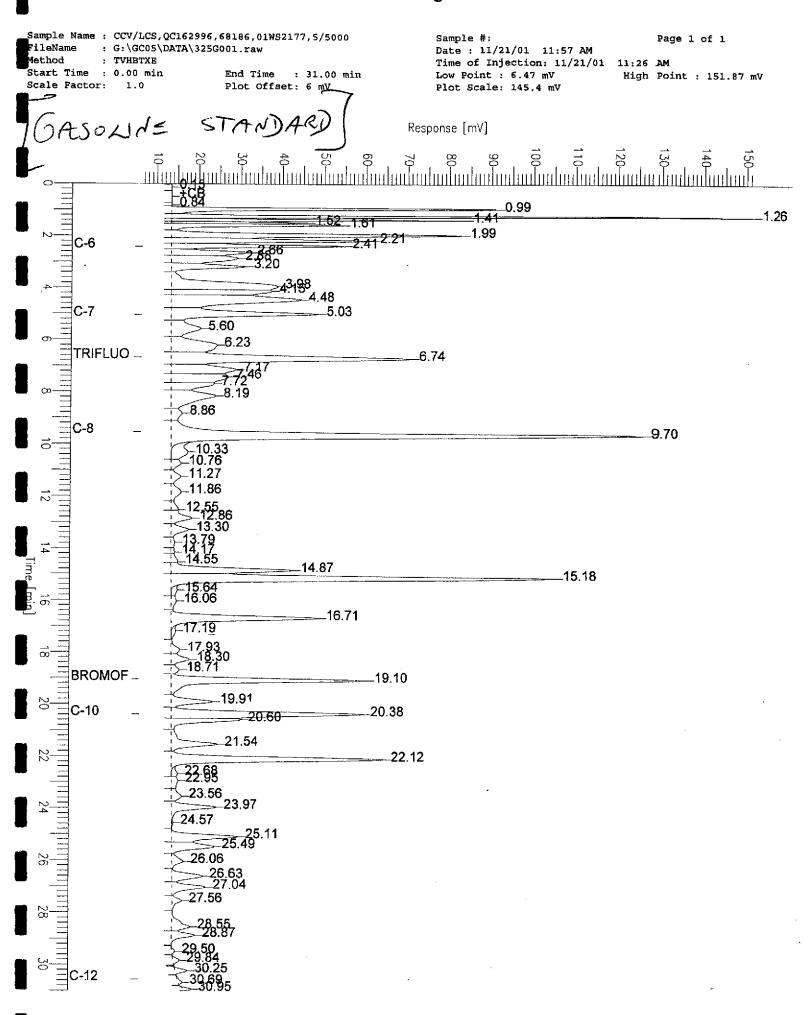
Analyte		Result	RL
Gasoline C7-C12	ND		50
***************************************	(ANDALIANA ***************		
	*REC	Limits	
Trifluorotoluene (FID)	100	59-135	
Bromofluorobenzene (FID)	101	60-140	

pe: āb ID: iln Fac: BLANK

QC163524

 $\hat{1}.000$


Batch#: Analyzed:


68323 11/29/01

Analyte Result RL Gasoline C7-C12 *RFC Limits 91 59-135 79 60-140 Surrogate Trifluorotoluene (FID) Bromofluorobenzene (FID)

^{*=} Value outside of QC limits; see narrative D= Not Detected

L= Reporting Limit age 3 of 3

Gasoline by GC/FID CA LUFT

_Lab #: 155563

SOMA Environmental Engineering Inc.

Project#:

Type:

Client:

Lab ID:

Matrix: Water Units:

QC162996

ug/L

LCS

Location: Prep:

Tony's, Oakland

EPA 5030B

Analysis: 8015B(M)

Diln Fac: Batch#:

Analyzed:

1.000 68186

11/21/01

Analyte	Spiked		\$REC	Limits
Gasoline C7-C12	2,000	2,082	1.04	73-121

Bromofluorobenzene	(FID) 1	16 6	60-140
Trifluorotoluene (F	ID) 1		59-135
Surrogate		%rec 1	Limits

Gasoline by GC/FID CA LUFT

Lab #: 155563 Location: Tony's, Oakland

Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B
Project#: 2331 Analysis: 8015B(M)

Type: LCS Diln Fac: 1.000
Lab ID: QC163522 Batch#: 68323

Matrix: Water Analyzed: 11/28/01 Units: ug/L

 Analyte
 Spiked
 Result
 %REC Limits

 Gasoline C7-C12
 2,000
 1,837
 92
 73-121

	%REC	Limite
Trifluorotoluene (FID)	120	59-135
Bromofluorobenzene (FID)	87	60-140

			Gasoline	ı by	GC/FID CA L	UPT
Lab #:	15556	53			Location:	Tony's, Oakland
		Environmental	Engineering	Inc.	Prep:	EPA 5030B
Project#:	2331				Analysis:	8015B(M)
Field ID:		ZZZZZZZZZZ			Batch#:	68186
MSS Lab II) :	155544-008			Sampled:	11/19/01
Matrix:		Water			Received:	11/19/01
Units:		ug/L			Analyzed:	11/22/01
Diln Fac:		1.000			4	, , , , , ,

ype:

MS

Lab ID:

QC162998

Analyte	MSS R	esult	Spiked	Result	%RE	Limits
Gasoline C7-C12		45.52	2,000	2,004	98	65-131
Surrogate	%REC	Limits				
Trifluorotoluene (FID)	115	59-135				
Bromofluorobenzene (FID)	117	60-140				

ype:

MSD

Analyte

Lab ID:

QC162999

Result

%REC Limits RPD

Gasoline C7-C12		2,000	1,989	97	65-131	1	20
Surrogate	& D.W.C						
Frifluorotoluene (FID)	116	59-135					
Bromofluorobenzene (FID)	118	60-140					

Spiked

		Gasoline by	GC/FID CA L	UPT
Lab #:	155563		Location:	Tony's, Oakland
	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:			Analysis:	8015B(M)
Field ID:	ZZZZZZZZZZ		Batch#:	68186
MSS Lab II	D: 155567-001		Sampled:	11/20/01
Matrix:	Water	•	Received:	11/20/01
Units:	ug/L		Analyzed:	11/22/01
Diln Fac:	1.000			

уре:

MS

Lab ID:

QC163000

Analyte	MSS R	esult	Spiked	Result	%RE	C Limits
Gasoline C7-C12	<:	27.00	2,000	1,954	98	65-131
Surrogate						
Surrogate Trifluorotoluene (FID)	*KEC	59-135				
Bromofluorobenzene (FID)	117	60-140				

уре:

MSD

Lab ID:

QC163001

Result %REC Limits RPD Lim

Gasoline C7-C12	2,000	1,972	99	65-131	1	20
Surrogate	%REC Limits					
·						

Surrogate	%RE	C Limits
Trifluorotoluene (FID)	115	59-135
Bromofluorobenzene (FID)	119	60-140

			Gasoline b	y GC/FID CA L	JUFT
	15556	53		Location:	Tony's, Oakland
Client:	SOMA	Environmental	Engineering In	c. Prep:	EPA 5030B
Project#:	2331	· ·····		Analysis:	8015B(M)
Field ID:		ZZZZZZZZZ		Batch#:	68323
MSS Lab II):	155619-017		Sampled:	11/26/01
Matrix:		Water		Received:	11/26/01
Units:		ug/L		Analyzed:	11/29/01
Diln Fac:		1.000		· · · · · · · · · · · · · · · · · · ·	

ype:

MS

Lab ID:

QC163525

serie Tânc	MOD K	esurt	spiked	Kesott	******	. Bimics
Gasoline C7-C12	<	20.00	2,000	1,831	92	65-131
Surrogate	\$REC	Limits				
Trifluorotoluene (FID)	126	59-135	•			<u> </u>
Bromofluorobenzene (FID)	110	60-140				

ype:

MSD

Analyte Spiked

Lab ID:

QC163526

Result %REC Limits RPD Lin

Gaboline C7-C12		2,000	1,660	0.3	02-131	TO	20
Surrogate	%REC	Limita					
Trifluorotoluene (FID)	125	59-135		*******************		***************************************	
	104						
Bromofluorobenzene (FID)	104	60-140					

		Purgeable Aro	matics by G	C/MS
Lab #:	155563		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2331		Analysis:	EPA 8260B
Field ID:	MW - 1.		Batch#:	68410
Lab ID:	155563-001		Sampled:	11/19/01
Matrix:	Water		Received:	11/20/01
Units:	ug/L		Analyzed:	12/01/01
Diln Fac:	625.0		-	

Analyte	Result	RL	
MTBE	74,000	310	
Benzene	2,700	310	
Toluene	5,100	310	
Chlorobenzene	ND	310	
Ethylbenzene	1,000	310	
m,p-Xylenes	3,600	310	
o-Xylene	970	310	
1,3-Dichlorobenzene	ND	310	
1,4-Dichlorobenzene	ND	310	
1,2-Dichlorobenzene	ND	310	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	103	78-123
Toluene-d8	89	80-110
Bromofluorobenzene	95	80-115

		Purgeable Aro	matics by GC	P/MB
Lab #:	155563		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2331		Analysis:	EPA 8260B
Field ID:	MW-2		Batch#:	68365
Lab ID:	155563-002		Sampled:	11/19/01
Matrix:	Water		Received:	11/20/01
Units:	${\tt ug/L}$		Analyzed:	11/30/01
Diln Fac:	1.000			

Analyte	Result	RL	
MTBE	14	0.5	
Benzene	13	0.5	i
Toluene _.	64 .	0.5	
Chlorobenzene	ND	0.5	
Ethylbenzene	22	0.5	
m,p-Xylenes o-Xylene	61	0.5	
o-Xylene	22	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	100	78-123	}
Toluene-d8	94	80-110	
Bromofluorobenzene	93	80-115	

		Purgeable Aro	matics by	GC/MS
Lab #:	155563		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2331		Analysis:	EPA 8260B
Field ID:	MW-4		Batch#:	68426
Lab ID:	155563-003		Sampled:	11/19/01
Matrix:	Water		Received:	11/20/01
Units:	ug/L		Analyzed:	12/03/01
Diln Fac:	1.000			

MTBE	ND	0.5
Benzene	180	0.5
Toluene	5.3	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	17	0.5
m,p-Xylenes o-Xylene	47	0.5
o-Xylene	6.2	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	107	78-123
Toluene-d8	93	80-110
Bromofluorobenzene	90	80-115

		Purgeable Aro	matics by GC/	am'
Lab #:	155563		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2331		Analysis:	EPA 8260B
Field ID:	MW-5		Batch#:	68365
Lab ID:	155563-004		Sampled:	11/19/01
Matrix:	Water		Received:	11/20/01
Units:	ug/L		Analyzed:	11/30/01
Diln Fac:	1.000		-	

Analyte	Result	RL	
MTBE	40	0.5	
Benzene	17	0.5	
Toluene	160	0.5	
Chlorobenzene	ND	0.5	
Ethylbenzene	26	0.5	
m,p-Xylenes o-Xylene	96	0.5	
o-Xylene	39	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	100	78-123
Toluene-d8	93	80-110
Bromofluorobenzene	93	80-115
	•	

		Durgeshle Arc	matics by GC/M	o c
		ruryeapre Aro	macres by Ge, M	
Lab #:	155563		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2331		Analysis:	EPA 8260B
Field ID:	MW-7		Batch#:	68365
Lab ID:	155563-005		Sampled:	11/19/01
Matrix:	Water		Received:	11/20/01
Units:	ug/L		Analyzed:	11/30/01
Diln Fac:	2.000		_	

Analyte	Result	RI
MTBE	69	1.0
Benzene	24	1.0
Toluene	220	1.0
Chlorobenzene	ND	1.0
Ethylbenzene	41	1.0
m,p-Xylenes o-Xylene	150	1.0
	55	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
1,2-Dichlorobenzene	ND	1.0

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	102	78-123
Toluene-d8	94	80-110
Bromofluorobenzene	93	80-115

		Purgeable Aro	matics by GO	?/MS
Lab #:	155563		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:			Analysis:	EPA 8260B
Field ID:	MW - 8		Batch#:	68365
Lab ID:	155563-006		Sampled:	11/19/01
Matrix:	Water		Received:	11/20/01
Units:	\mathtt{ug}/\mathtt{L}		Analyzed:	11/30/01
Diln Fac:	6.250		_	

	Out of the control o	
Analyte	Result	RL
MTBE	400	3.1
Benzene	600	3.1
Toluene	270	3.1
Chlorobenzene	ND	3.1
Ethylbenzene	750	3.1
m,p-Xylenes o-Xylene	1,100	3.1
	110	3.1
1,3-Dichlorobenzene	ND	3.1
1,4-Dichlorobenzene	ND	3.1
1,2-Dichlorobenzene	ND	3.1

Bromofluorobenzene	92	80-115
Toluene-d8	93	80-110
1,2-Dichloroethane-d4	102	78-123
Surrogate	%REC	Limits

		Purgeable Aro	matics by G	C/MS
		-	-	
Lab #:	155563		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2331		Analysis:	EPA 8260B
Field ID:	MW-10		Batch#:	68365
Lab ID:	155563-007		Sampled:	11/19/01
Matrix:	Water		Received:	11/20/01
Units:	ug/L		Analyzed:	11/30/01
Diln Fac:	6.250			

Analyte	Result	RL	
MTBE	410	3.1	·
Benzene	900	3.1	
Toluene	260	3.1	
Chlorobenzene	ND	3.1	
Ethylbenzene	310	3.1	
m,p-Xylenes o-Xylene	190	3.1	
o-Xylene	68	3.1	
1,3-Dichlorobenzene	ND	3.1	
1,4-Dichlorobenzene	ND	3.1	
1,2-Dichlorobenzene	ND	3.1	

1,2-Dichloroethane-d4 102	70 103
102 al., 2-Dichloroethane-d4	78-123
Toluene-d8 93	80-110
Bromofluorobenzene 93	80-115

		Purgeable Aro	matics by	GC/MS
Lab #:	155563		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2331		Analysis:	EPA 8260B
Field ID:	MW-11		Batch#:	68365
Lab ID:	155563-008		Sampled:	11/19/01
Matrix:	Water		Received:	11/20/01
Units:	ug/L		Analyzed:	11/30/01
Diln Fac:	1.000		_	

	Result	RL.
MTBE	ND	0.5
Benzene	7.9	0.5
Toluene	26	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	5.1	0.5
m,p-Xylenes o-Xylene	21	0.5
o-Xylene	7.9	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	C Limits
1,2-Dichloroethane-d4	98	78-123
Toluene-d8	96	80-110
Bromofluorobenzene	92	80-115
	·	

		Purgeable Aro	matics by	GC/ME
Lab #:	155563		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2331		Analysis:	EPA 8260B
Field ID:	MW-12		Batch#:	68338
Lab ID:	155563-009		Sampled:	11/19/01
Matrix:	Water		Received:	11/20/01
Units:	ug/L		Analyzed:	11/30/01
Diln Fac:	1.000		_	

Analyte	Result	RL	
MTBE	120	0.5	
Benzene	81	0.5	
Toluene	69	0.5	
Chlorobenzene	ND	0.5	
Ethylbenzene	13	0.5	
m,p-Xylenes	51	0.5	
o-Xylene	22	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%REC	2 Limits
1,2-Dichloroethane-d4	90	78-123
Toluene-d8	94	80-110
Bromofluorobenzene	96	80-115
· · · · · · · · · · · · · · · · · · ·		

		Purgeable Aro	matics by	GC/MS
Lab #:	155563		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2331		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC163593		Batch#:	68338
Matrix:	Water		Analyzed:	11/29/01
Units:	ug/L			

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Chlorobenzene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	101	78-123	
Foluene-d8	96	80-110	
Bromofluorobenzene	97	80~115	•

		Purgeable Aro	matics by 0	3C/MB
Lab #:	155563		Location:	Tony's, Oakland
	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2331		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC163703		Batch#:	68365
Matrix:	Water		Analyzed:	11/30/01
Units:	ug/L		-	. ,

Analyte	Result	RL
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	C Limits
1,2-Dichloroethane-d4	98	78-123
Foluene-d8	95	80-110
Bromofluorobenzene	94	80-115

		Purgeable Aron	matics by GC/MS	3
Lab #:	155563		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2331		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC163704		Batch#:	68365
Matrix:	Water		Analyzed:	11/30/01
Units:	ug/L		-	, ,

Analyte	Result	RL
MTBE	ЙD	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND .	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	103	78-123
Toluene-d8	94	80-110
Bromofluorobenzene	94	80-115

	Purgeable A	romatics by GC	?/MS
Lab #:	155563	Location:	Tony's, Oakland
	SOMA Environmental Engineering Inc	. Prep:	EPA 5030B
Project#:	2331	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC163869	Batch#:	68410
Matrix:	Water	Analyzed:	12/01/01
Units: .	ug/L		

MTBE	ND	RL 0.5	200000000
Benzene	ND	0.5	
Toluene	ND	0.5	
Chlorobenzene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes o-Xylene 1,3-Dichlorobenzene	ND	0.5	
o-Xylene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%REC	C Limits	
1,2-Dichloroethane-d4	107	78-123	**********
Toluene-d8	89	80-110	1
Bromofluorobenzene	92	80-115	l
		· · · · · · · · · · · · · · · · · · ·	

		Purgeable Aro	matics by GC/M	is:
Lab #:	155563		Location:	Tony's, Oakland
	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2331		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC163938		Batch#:	68426
Matrix: Units:	Water		Analyzed:	12/03/01
Units:	ug/L		-	

Analyte	Result	RL
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes o-Xylene	ND	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	: Limits
1,2-Dichloroethane-d4	102	78-123
Toluene-d8	87	80-110
Bromofluorobenzene	91	80-115

Purgeable Aromatics by GC/MS

Lab #:

155563

Location: Prep:

Tony's, Oakland

Client: Project#: 2331

SOMA Environmental Engineering Inc.

Analysis:

EPA 5030B

Matrix:

Water

1.000

EPA 8260B 68338

Units: ug/L Diln Fac:

Batch#: Analyzed:

11/29/01

BS

Lab ID:

QC163590

Analyte	Spiked	Result	%REC	Limits
Benzene	50.00	47.93	96	80-116
Toluene	50.00	47.46	95	80-120
Chlorobenzene	50.00	50.05	100	80-117

Surrogate	%REC	: Limits	
1,2-Dichloroethane-d4	98	78-123	
Toluene-d8	93	80-110	
Bromofluorobenzene	92	80-115	

Type:

BSD

Lab ID:

QC163591.

Analyte	Spiked	Result	%REC	Limits	RPD	Liam
Benzene	50.00	46.59	93	80-116	3	20
Toluene	50.00	47.01	94	80-120	1	20
Chlorobenzene	50.00	49.84	100	80-117	0	20

Surrogate	%RE(C Limits
1,2-Dichloroethane-d4	96	78-123
Toluene-d8	93	80-110
Bromofluorobenzene	92	80-115
······································		

Purgeable Aromatics by GC/MS Lab #: 155563 Location: Tony's, Oakland Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B Project#: Analysis: EPA 8260B Matrix: Water Batch#: 68365 Units: ug/L Analyzed: 11/30/01 Diln Fac: 1.000

Type:

BS

Lab ID:

QC163701

Analyte	Spiked	Result	%REC	Limits
Benzene	50.00	49.34	99	80-116
Toluene	50.00	47.98	96	80-120
Chlorobenzene	50.00	49.77	100	80-117

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	94	78-123	
Toluene-d8	95	80-110	
Bromofluorobenzene	94	80-115	

Type:

BSD

Lab ID:

QC163702.

			~		,,	
Analyte	Spiked	Result	*REC	Limits	RPI) Lim
Benzene	50.00	47.74	95	80-116	3	20
Toluene	50.00	48.01	96	80-120	0	20
Chlorobenzene	50.00	50.53	101	80-117	2	20

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	95	78-123	
Foluene-d8	96	80-110	
Bromofluorobenzene	92	80-115	

Purgeable Aromatics by GC/MS Lab #: 155563 Location: Tony's, Oakland Client: SOMA Environmental Engineering Inc. EPA 5030B Prep: Project#: Analysis: EPA 8260B Matrix: Water 68410 Batch#: Units: ug/L Analyzed: 12/01/01 Diln Fac: 1.000

туре:

BŞ

Lab ID:

QC163867

Analyte	Spiked	Result	%REC	Limita
Benzene	50.00	48.63	97	80-116
Toluene	50.00	46.23	92	80-120
Chlorobenzene	50.00	49.59	99	80-117

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	105	78-123
Toluene-d8	.91	80-110
Bromofluorobenzene	93	80-115

Type:

BSD

Lab ID:

QC163868

				~2022	26665000000000	900-000-000-000-000-000-000-000-000-000
whethce	Spiked	Result	*RE	2 Limits	(4:51 p	Lim
Benzene	50.00	47.46	95	80~116	2	20
Toluene	50.00	45.13	90	80-120	2	20
Chlorobenzene	50.00	48.03	96	80-117	3	20

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	105	78-123	-
Toluene-d8	92	80-110	
Bromofluorobenzene	91	80-115	

Purgeable Aromatics by GC/MS

Lab #: 155563

Client: SOMA Environmental Engineering Inc.

Project#: 2331

Matrix: Water Units: 1.000

Diln Fac:

ug/L

Location:

Tony's, Oakland

EPA 5030B Prep: EPA 8260B

Analysis:

Batch#: Analyzed: 68426

12/03/01

Type:

BS

Lab ID:

QC163936

Analyte	Spiked	Result	%REC	: Limits
Benzene	50.00	47.10	94	80-116
Toluene	50.00	46.00	92	80-120
Chlorobenzene	50.00	49.32	99	80-117

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	109	78-123	
Toluene-d8	91	80-110	·
Bromofluorobenzene	90	80-115	

Type:

BSD

Lab ID:

QC163937

	Spiked	Result	*REC	2 Limits	RPI) Lim
Benzene	50.00	45.37	91	80-116	4	20
Toluene	50.00	44.21	88	80-120	4	20
Chlorobenzene	50.00	48.80	98	80-117	1	20

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	106	78-123
Toluene-d8	92	80-110
Bromofluorobenzene	91	80-115

Appendix B

Laboratory Reports and Chain of Custody Forms for Treatment System

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

SOMA Environmental Engineering Inc. 2680 Bishop Dr. Suite 203 San Ramon, CA 94583

Date: 15-NOV-01 Lab Job Number: 155202

Project ID: 2333

Location: Tony's, Oakland

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Operation Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of <u>12</u>

Gasoline by GC/FID CA LUFT

Lab #: 155202 Tony's, Oakland EPA 5030B 8015B(M) Location: Client:

SOMA Environmental Engineering Inc. Prep: Project# 2333 Analysis: Matrix: Water Sampled: 11/02/01

|Units: ug/L 67725 Received: 11/02/01 Batch#:

∤ield ID:

INFLUENT уре: SAMPLE

ab ID: 155202-001 Diln Fac: Analyzed:

10.00 11/08/01

Analyte Result P.L Gasoline C7-C12 25,000 50Ö

103

Surrocave %REC Limits Trifluorotoluene (FID) 127 59-135

Bromofluorobenzene (FID) 104 60-<u>140</u>

rield ID:

GAC-1 ype: SAMPLE ab ID:

Bromofluorobenzene (FID)

Diln Fac:

1.000

155202-002

11/08/01 Analyzed:

Analyte Result Gasoline C7-C12 50 Surrogate *REC Limits 101 59-135 Trifluorotoluene (FID) 101

60-140

ield ID: āb ID:

PSP#1

SAMPLE

155202-003

Diln Fac:

1.000

Analyzed: 11/08/01

Analyte Result RL Gasoline C7-C12 Surrogate Frifluorotoluene (FID) *REC Dimits 101 59-135

101 Bromofluorobenzene (FID) 103 60-140

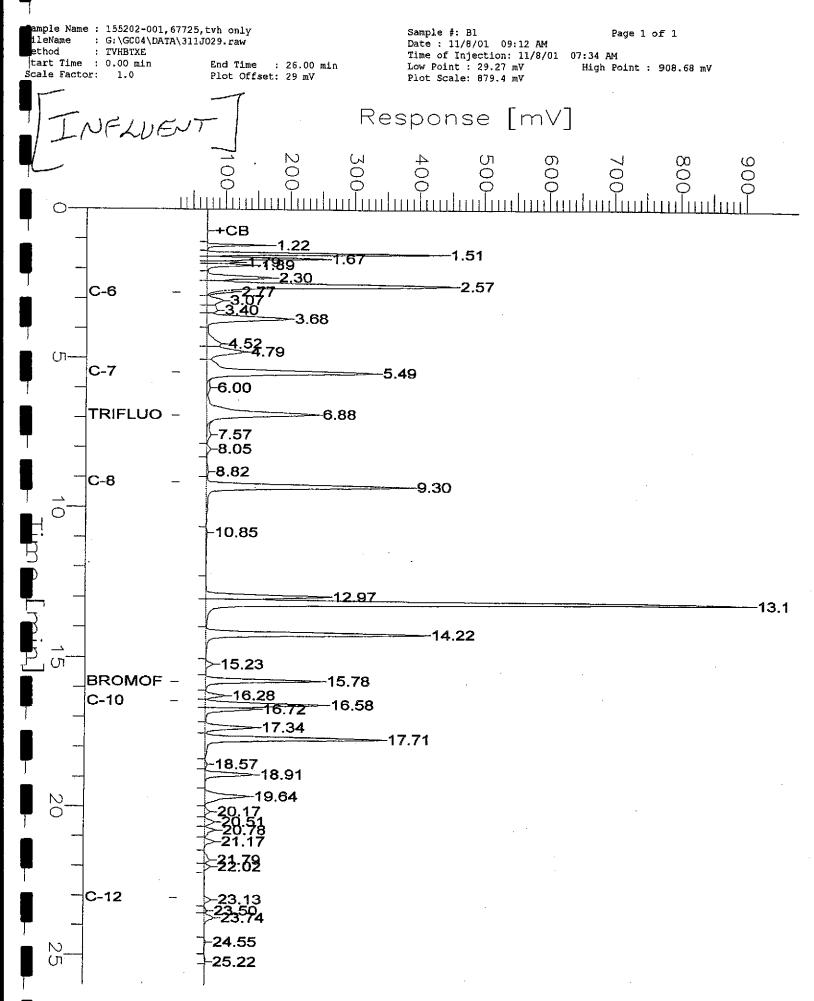
Type: Jab ID:

BLANK

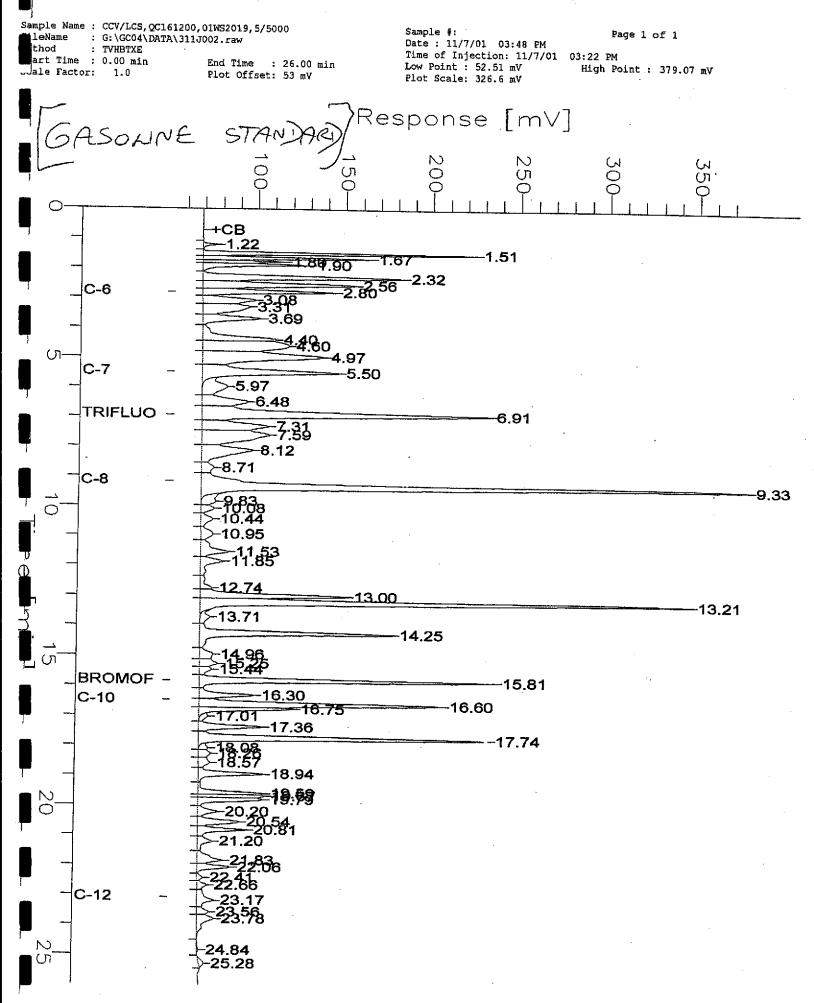
QC161199

Diln Fac:

Analyzed:


1.000 11/07/01

Result asoline C7-C12 ND 50


Surrogate Limits 59-135 Trifluorotoluene (FID) 98 Bromofluorobenzene (FID) 96 60-140

= Not Detected L= Reporting Limit Page 1 of 1

GC04 TVH 'J' Data File FID

GC04 TVH 'J' Data File FID

73-121

Gasoline by GC/FID CA LUFT

Lab #:

SOMA Environmental Engineering Inc.

Client: Project#: 2333

Gasoline C7-C12

Type:

Lab ID:

Matrix: Units:

LCS QC161200 Water

ug/L

Location:

Tony's, Oakland EPA 5030B

1,928

Prep:

Analysis: Diln Fac:

8015B(M) 1.000 67725

Batch#: Analyzed:

11/07/01

			-	
90.000		***************************************	TOTAL CONTRACTOR OF THE CONTRA	000000000000000000000000000000000000000
	. Kes			its

96

Surrogate	%RE	C Limits	
Trifluorotoluene (FID)	112	59-135	
Bromofluorobenzene (FID)	101	60-140	

Spiked

2,000

		Gasoline by	GC/FID CA LUFT	
¡Lab #:	155202		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
'Project#:	2333		Analysis:	8015B(M)
Field ID:	ZZZZZZZZZ		Batch#:	67725
MSS Lab II	D: 155189-025		Sampled:	11/02/01
Matrix:	Water		Received:	11/02/01
Units:	ug/L		Analyzed:	11/07/01
Diln Fac:	1.000	<u> </u>		

ype:

MS

Lab ID:

QC161201

Analyte	MS MS	S Resu	lt.	Spiked	Resu	Lt S	REC Lim	its
Gasoline C7-C12		<33.	00	2,000	1,744	l 8'	7 65-1	131
Surroga	ite %	REC L	imits					
Trifluorotoluene	(FID) 11	.3 5	9-135					

60-140

107

Spiked

lype:

MSD

Bromofluorobenzene (FID)

Analyte

Lab ID:

QC161202

Result %REC Limits RPD Lim

Gasoline C7-C12		2,000	1,813	9 T	65-T3T	4 20
Surrogate	%REC	Limits				
Trifluorotoluene (FID)	114	59-135				
Bromofluorobenzene (FID)	108	60-140				

		Purgeable Aro	matics by (ec/ms
lab #:	155202		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B ·
Project#:	2333		Analysis:	EPA 8260B
Field ID:	INFLUENT		Batch#:	67868
hab ID:	155202-001		Sampled:	11/02/01
Matrix:	Water		Received:	11/02/01
Units:	ug/L		Analyzed:	11/10/01
oiln Fac:	25.00			

Analyte	Result	RL	
TEE	3,700	13	
Benzene	1,100	13	
Toluene	1,300	13	
Chlorobenzene	ND	13	
Ethylbenzene	600	13	
m,p-Xylenes	3,700	13	
o-Xylene	1,500	13	
.,3-Dichlorobenzene	ND	13	
1,4-Dichlorobenzene	ND	13	
1,2-Dichlorobenzene	ND	13 .	

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	106	78-123	
■oluene-d8	98	80-110	
romofluorobenzene	103	80-115	

		Purgeable Aro	matics by G	C/MS
Lab #:	155202		Location:	Tony's, Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2333		Analysis:	EPA 8260B
Field ID:	GAC-1		Batch#:	67868
Lab ID:	155202-002		Sampled:	11/02/01
Matrix:	Water		Received:	11/02/01
Units:	ug/L		Analyzed:	11/10/01
Diln Fac:	1.000			

MTBE	0.6	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Chlorobenzene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	•
1,2-Dichlorobenzene	ND	0.5	

Surrogata	%REC	Limits
11,2-Dichloroethane-d4	105	78-123
Toluene-d8	99	80-110
3romofluorobenzene	107	80-115
	-	

		Purgeable Aro	matics by GC/MM	S .
Lab #:	155202		Location:	Tony's, Oakland
	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2333		Analysis:	EPA 8260B
Field ID:	PSP#1		Batch#:	67868
Lab ID:	155202-003		Sampled:	11/02/01
Matrix:	Water		Received:	11/02/01
Units:	ug/L		Analyzed:	11/10/01
Diln Fac:	1.000	-	2	,,

Analyte	Result	RL
MTBE	ND	0.5
Benzene	ND	0.5
¹ Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
_o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND .	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	109	78-123	
Toluene-d8	101	80-110	
Bromofluorobenzene	109	80-115	

Lab #: 155202 Location: Tony's, Oakland Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B

Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B Project#: 2333 Analysis: EPA 8260B

Type: BLANK Diln Fac: 1.000
Lab ID: QC161769 Batch#: 67868
Matrix: Water Analyzed: 11/09/01

Units: ug/L

Analyte	Result	RL
<u>l</u> MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	105	78-123	
Toluene-d8	99	80-110	
Bromofluorobenzene	109	80-115	

Lab #: 155202

SOMA Environmental Engineering Inc.

Project#:

Client:

Matrix: Water Units: ug/L

Diln Fac:

1.000

Location:

Tony's, Oakland

EPA 5030B

Prep: EPA 8260B

Analysis:

Batch#: 67868

Analyzed:

11/09/01

ype:

BŞ

Lab ID:

QC161763

\$59500000000000000000000000000000000000	000-000-00-00-00-00-00-00-00-00-00-00-0				
Analyte	Spiked		9.PEC	liimita	
Benzene	50.00	52.01	104	80-116	
Toluene	50.00	53.89			
Chlorobenzene			108	80-120	
	50.00	51.91	104	80-117	

Bromofluorobenzene	97	80-115
Toluene-d8	102	80-110
1,2-Dichloroethane-d4	101	78-123
Surrogațe	%RBC	7 Limits

pe:

BSD

Lab ID:

QC161764

Analyte	Spiked	Result	%REC	Limits	PDI	
Benzene	50.00	50.24	100	80-116	3	20
Toluene	50.00	50.51	101	80-120	6	20
Chlorobenzene	50.00	49.89	100	80-117	4	20

1,2-Dichloroethane-d4	Surrogate	FREC	C Limits
Dwome film make the many that the state of t		98	
Bromofluorobenzene 96 80-115	1 '	100	80-110
	Bromofluorobenzene	96	80-115

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

SOMA Environmental Engineering Inc. 2680 Bishop Dr. Suite 203 San Ramon, CA 94583

Date: 12-OCT-01 Lab Job Number: 154468 Project ID: 2333

Location: Tony's Auto Express-Oak

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459

Tony's Auto Express-Oak

Gasoline by GC/FID CA LUFT

Lab #: 154468

Client: SOMA Environmental Engineering Inc.

Project#: 2333

Matrix: Water Units: ug/L

Location:

Prep:

EPA 5030B

<u> Analysis:</u> 8015B(M)

Sampled:

09/28/01

Received: 09/28/01

ield ID:

INFLUENT

туре: ab ID: SAMPLE

154468-001

Diln Fac:

Batch#:

50,00 66866

Analyzed:

10/04/01

Analyte	Result	RL
Gasoline C7-C12	28,000	2,500

, Burrogat	ie.	SREC	Limits
Trifluorotoluene	(FID)	104	59-135
Bromofluorobenzene	e (FID)	92	60-140

ield ID:

GAC-1

Type: Lab ID: SAMPLE

154468-002

Diln Fac:

1..000

Batch#:

66866

Analyzed:

10/04/01

	Analy	te Result	RL	
ı	Gasoline C7-C12	ND	50	٦
•				_

	%	REC Limits	
Trifluorotoluene (FI	ID) 94	59-135	
_Bromofluorobenzene ((FID) 88	60-140	

ield ID:

PSP#9

ype: Lab ID: SAMPLE

154468-003

Diln Fac:

1.000

Batch#:

66803

Analyzed:

10/03/01

			Result		
		CHARLES TO VICES	Result	KL	
77,	Cagoline C7	7-C12	\$ TT.	EΛ	
1 '	Addorring Ci	, -C12	ND	50	

Surrogate	%RE	C Limits
Trifluorotoluene (FID)	101	59-135
Bromofluorobenzene (FID)	117	60-140

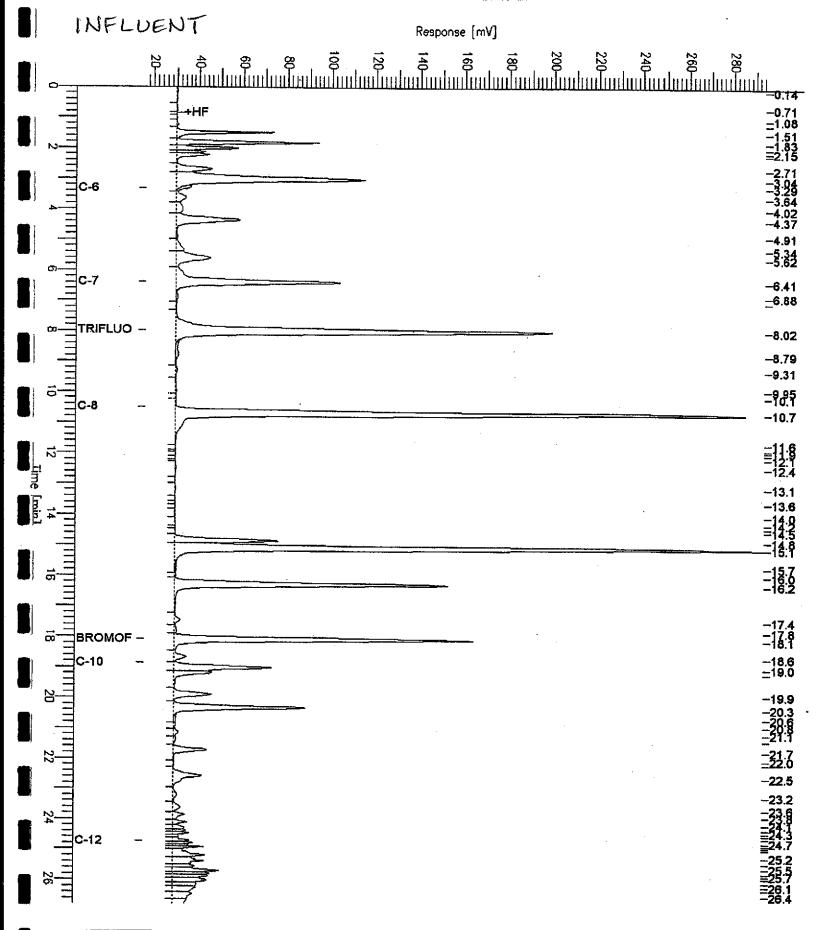
D= Not Detected KL= Reporting Limit Page 1 of 2

GC19 TVH 'X' Data File (FID)

Sample Name : 154468-001,66866,tvh only ileName : G:\GC19\DATA\277X008.raw

ethod : TVHBTXE tart Time : 0.00 min

Scale Factor: 1.0


End Time : 26.80 min Plot Offset: 16 mV

Sample #: A1 Date: 10/5/01 12:44 PM

Time of Injection: 10/4/01 08:47 PM

Low Point: 16.19 mV Plot Scale: 277.9 mV High Point : 294.10 mV

Page 1 of 1

Tony's Auto Express-Oak

Gasoline by GC/FID CA LUFT

Lab #: 154468

Client: SOMA Environmental Engineering Inc.

Project#:

Matrix:

Water Units: ug/L

Location:

Prep:

Sampled:

Received:

Analysis:

EPA 5030B

8015B(M)

09/28/01

09/28/01

ype:

BLANK

Lab ID:

QC157576

Batch#: Analyzed: 66803

10/02/01

Piln Fac:

1.000

Analyte

Surrogate

Result

77

74

Gasoline C7-C12

%REC Limits

б0-140

Trifluorotoluene (FID) Bromofluorobenzene (FID) 59-135

ype:

BLANK

ab ID:

QC157855

Batch#:

66866

Analyzed:

10/04/01

Diln Fac:

1.000

Analyte Result RL

Gasoline C7-C12

Surrogate Trifluorotoluene (FID)

%REC Limits 59-135

Bromofluorobenzene (FID)

98 87 60-140

= Not Detected = Reporting Limit Page 2 of 2

Gasoline by GC/FID CA LUFT

Lab #: 154468 Location: Tony's Auto Express-Oak

Client: SOMA Environmental Engineering Inc. Prep: . EPA 5030B

 Project#: 2333
 Analysis: 8015B(M)

Type: LCS Diln Fac: 1.000 Lab ID: QC157577 Batch#: 66803

Matrix: Water Analyzed: 10/02/01 Units: ug/L

Analyte Spiked Result %REC Limits
| Gasoline C7-C12 2,000 2,062 103 73-121

Surrogate	RREC	Limits
Trifluorotoluene (FID)	108	59-135
Bromofluorobenzene (FID)	99	60-140

Gasoline by GC/FID CA LUFT

Lab #: 154468

Client: SOMA Environmental Engineering Inc.

Project#: 2333

Type:

Lab ID: Matrix: Units:

LCS QC157856

Water

ug/L

Location: Prep:

Tony's Auto Express-Oak

EPA 5030B 8015B(M)

Analysis:

Diln Fac: Batch#:

1.000 66866

Analyzed: 10/04/01

Analyte	Shired	Result	%REC	Limits	
Gasoline C7-C12	2,000	1,735	87	73-121	

Surrogate	%RE(C Limits
Trifluorotoluene (FID)	108	59-135
Bromofluorobenzene (FID)	91	60-140

			Gasoline	e by (GC/FID CA LUFT	
¡Lab #:	15446	8			Location:	Tony's Auto Express-Oak
Client:	SOMA	Environmental	Engineering	Inc.	Prep:	EPA 5030B .
Project#:	2333				Analysis:	8015B(M)
Field ID:		ZZZZZZZZZ			Batch#:	66803
MSS Lab ID	14	154470-001			Sampled:	09/28/01
Matrix:		Water			Received:	09/28/01
Units:		ug/L			Analyzed:	10/03/01
Diln Fac:		1.000			•	

Type:

MS

Lab ID:

QC157580

Gasoline C7-C1	<i>4</i> <20.	.00 2,0	2,02	28 101 65-131
Anal		ult Sp	lked Resu	LLC *REC Limits

	Surrogate	*REC	Limits
T:	rifluorotoluene (FID)	120	59-135
Вт	comofluorobenzene (FID)	116	60-140

Type:

MSD

Lab ID:

QC157581

Analyte	Spiked	Result	%REC	Timike	₩ PPM	000000000000000000000000000000000000000
Gasoline C7-C12	2,000	1,986	99	65-131	2	20

Trifluorotoluene (FID) 118 59-135 Bromofluorobenzene (FID) 110 60-140	Surrogate	%RE	C Limits
	Trifluorotoluene (FID)	118	
		110	60-140

Gasoline by GC/FID CA LUFT 154468 Tony's Auto Express-Oak Lab #: Location: Client: SOMA Environmental Engineering Inc. EPA 5030B Prep: 8015B(M) Project#: 2333 Analysis: Field ID: ZZZZZZZZZZBatch#: 66803 MSS Lab ID: 154495-001 Sampled: 10/01/01 Matrix: 10/01/01 Water Received: Units: ug/L Analyzed: 10/03/01 Diln Fac: 1.000

уре:

MS

Lab ID:

QC157582

Analyte	MSS Res	sult 5	niked	Result		imits
Gasoline C7-C12	<20	0.00 2	,000	2,017	101 6	5-131

Surrogate	%REC	7 Limits
Trifluorotoluene (FID)	119	59-135
Bromofluorobenzene (FID)	110	60-140

уре:

MSD

Lab ID:

QC157583

Analyte	Spiked	Result	\$riec	Limits	1999	6.00
Gasoline C7-C12	2,000	2,032	102	65-131	1	20
Surrogate	%REC Limits					

Surrogate	%REC	Limits
Trifluorotoluene (FID)	119	59-135
Bromofluorobenzene (FID)	111	60-140

			Gasoline	e by	GC/FID CA LUFT	
Lab #:	15446	58			Location:	Tony's Auto Express-Oak
Client:	SOMA	Environmental	Engineering	Inc.	Prep:	EPA 5030B
Project#:	2333				Analysis:	8015B(M)
Field ID:		ZZZZZZZZZ			Batch#:	66866
MSS Lab ID):	154559-001			Sampled:	10/03/01
Matrix:		Water			Received:	10/03/01
Units:		ug/L			Analyzed:	10/05/01
Diln Fac:		1.000			-	
			·			······································

MS

Lab ID: QC157857

Analyte	MSS R	(esult	Spiked	Result	%REC	: Limits
Gasoline C7-C12	<	33.00	2,000	1,770	88	65-131
Surrogate	%REC	: Limits				
Trifluorotoluene (FID)	110	59-135				
Bromofluorobenzene (FID)	93	60-140				İ

MSD

Analyte

Anely Gasoline C7-C12

Lab ID:

QC157858

1,753

Result %REC Limits RPD Lim

	· · · · · · · · · · · · · · · · · · ·		
	Surrogate	%REC	Limits
I	Trifluorotoluene (FID)	109	59-135
	Bromofluorobenzene (FID)	93	60-140

Spiked

2,000

Gasoline by GC/FID CA LUFT Lab #: 154468 Location: Tony's Auto Express-Oak SOMA Environmental Engineering Inc. Client: Prep: EPA 5030B . Project#: 2333 Analysis: 8015B(M) Field ID: ZZZZZZZZZZZBatch#: 66866 MSS Lab ID: 154534-001 Sampled: 10/02/01 Matrix: Water Received: 10/02/01 Units: ug/L Analyzed: 10/05/01 Diln Fac: 1.000

Type:

MS

Lab ID:

QC157859

Analyte	MSS Result	OPTVEN.	Result	%R	
Gasoline C7-C12	<33.00	2,000	1,754	88	65-131

Surrogate	%REC	Limits
Trifluorotoluene (FID)	110	59-135
Bromofluorobenzene (FID)	94	60-140

Type:

MSD

Lab ID:

QC157860

Analyte	Spiked		%REC	Dimits	RPD	Lim
Gasoline C7-C12	2,000	1,748	87	65-131	0	20

Surrogate	%REC	Limits
Trifluorotoluene (FID)	110	59-135
Bromofluorobenzene (FID)	94	60-140

Š.	ů.	×.		0	8		8.	10	2		0.0		2	12				-2	٠.	-3		30	×.	80	2.	ð.			8		-2	S.	A.		Э.	Ċ.			S.	٠x					800	4
8	8	œ	н	7	4:	٠,	٠,	w	2	3	Δ	- 1	٠,		×	_	63	о,	٠		φ,		×	ń.	٠.	10	÷	9.	æ	۳.	æ	1	т	×	т,	××	81	м	17	71	×	/ 1	X٨	×	Š	×
	×	٠.	٠.																																											

,Lab #:	154468	Location:	Tony's Auto Express-Oak
Client:	SOMA Environmental Engine	ering Inc. Prep:	EPA 5030B
Project#:	2333	Analysis:	EPA 8260B
Field ID:	INFLUENT	Batch#:	66813
Lab ID:	154468-001	Sampled:	09/28/01
Matrix:	Water	Received:	09/28/01
Units:	ug/L	Analyzed:	10/02/01
Diln Fac:	25.00	4	• •

Analyte	Result	RL	
MTBE	4,100	13	
Benzene	1,100	13	
Toluene	3,700	13	
Chlorobenzene	ND	13	
Ethylbenzene	620	13	
m,p-Xylenes	3,500	13	<u>.</u>
o-Xylene	1,700	13	
1,3-Dichlorobenzene	ND	13	
1,4-Dichlorobenzene	ND	13	
1,2-Dichlorobenzene	ND	13	

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	93	78-123	
Toluene-d8	97	80-110	
Bromofluorobenzene	102	80-115	

	Purgeable Ar	omatics by G(I/Ms
Lab #: Client: Project#:	154468 SOMA Environmental Engineering Inc 2333	Location: . Prep: Analysis:	Tony's Auto Express-Oak EPA 5030B
Field ID: Lab ID: Matrix: Units: Diln Fac:	GAC-1 154468-002 Water ug/L 1.000	Batch#: Sampled: Received: Analyzed:	EPA 8260B 66776 09/28/01 09/28/01 10/01/01

	Result	RL
MTBE	ND	0.5
Benzene	ND	0.5
†Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

·			
Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	107	78-123	
Toluene-d8	100	80-110	
Bromofluorobenzene	97	80-115	

		Purgeable Arc	matics by G	C/MS
Lab #:	154468		Location:	Tony's Auto Express-Oak
Client: .	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2333		Analysis:	EPA 8260B
Field ID:	PSP#9		Batch#:	66776
Lab ID:	154468-003		Sampled:	09/28/01
Matrix:	Water		Received:	09/28/01
Units:	ug/L		Analyzed:	10/01/01
Diln Fac:	1.000			20,02,02

MTBE	ND	RL) 0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Chlorobenzene	ND	0.5	
Ethylbenzene	ӥ́D	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	101	78-123
Toluene-d8	103	80-110
Bromofluorobenzene	106	80-115

P = Not Detected
= Reporting Limit
Page 1 of 1

Lab #: 154468 Client: SOMA Environmental Engineering Inc.

Project#: 2333

BLANK

Type:

Lab ID: QC157470 Matrix: Water

Units: ug/L

Location:

Analyzed:

Prep: Analysis: Tony's Auto Express-Oak

EPA 5030B EPA 8260B

Diln Fac: 1.000 Batch#: 66776

10/01/01

Analyte	Result	RL
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	115	78-123	
Toluene-d8	102	80-110	
Bromofluorobenzene	96	80-115	·

154468 Client: SOMA Environmental Engineering Inc.

Prep:

Tony's Auto Express-Oak

EPA 5030B

Project#: 2333

Analysis:

Location:

EPA 8260B

Type: Lab ID:

BLANK

Diln Fac:

1.000

Matrix:

QC157620

Batch#:

66813

Lab #:

Water

Analyzed:

10/02/01

Units:

ug/L

000000000000000000000000000000000000000			
Analyte	Result	RL	
MTBE	ND	0.5	*********
Benzene	ND	0.5	
Toluene	ND	0.5	
Chlorobenzene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes o-Xylene	ND	0.5	
Jo-Xylene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	93	78-123
Toluene-d8	97	80-110
Bromofluorobenzene	101	80-115

Lab #: Client:

Prep:

Tony's Auto Express-Oak

SOMA Environmental Engineering Inc.

Analysis:

Location:

EPA 5030B EPA 8260B

Project#: 2333 Matrix:

Water

Batch#:

66776

Units:

ug/L

Diln Fac:

1.000

Analyzed:

10/01/01

уре:

BS

Lab ID:

QC157467

Analyte	Spiked	Result	SPEC	1.imire
Benzene	50.00	50.58	101	80-116
Toluene	50.00	48.09	96	80-120
Chlorobenzene	50.00	45.37	91	80-117

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	107	78-123	
Toluene-d8	100	80-110	
'Bromofluorobenzene	105	80-115	

BSD

Lab ID:

QC157468

Analyte	Spiked	Pagn 1+	2-50/			
Benzene	50.00	47.41	95	80-116	6	20
Toluene	50.00	47.81	96	80-120	1	20
Chlorobenzene	50.00	45.05	90	80-117	1	20

Surrogate	*REC	Limits
1,2-Dichloroethane-d4	112	78-123
Toluene-d8	107	80~110
Bromofluorobenzene	98	80-115

Lab #: 154468 Location: Client:

Tony's Auto Express-Oak SOMA Environmental Engineering Inc. Prep: EPA 5030B

Project#: 2333

Analysis: EPA 8260B

Matrix: Water Batch#: 66813 |Units: ug/L Analyzed: 10/02/01

Diln Fac: 1.000

ype:

BS

Lab ID:

QC157617

Analyte					
Analyte	Spiked	Result	SREC	Limits	***
Benzene	50.00	45.11	90	80-116	200000
Toluene	50.00	45.28	01	80-120	
Chlorobenzene	50.00	46.01	27	80-117	
	30.00	40.01	74	90-TT/	

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	93	78-123	323
Toluene-d8	99	80-110	
Bromofluorobenzene	101	80-115	

ype:

BSD

Lab ID:

QC157618

Analyte	Spiked	Result	%RE(Limits	RPD	E-10m
L Benzene	50.00	46.74	93	80-116	4	20
Toluene	50.00	46.78	94	80-120	3	20
Chlorobenzene	50.00	46.77	94	80-117	2	20

Surrogate	*REC	C Limits
1,2-Dichloroethane-d4	93	78-123
Toluene-d8	98	.80-110
Bromofluorobenzene	100	80-115

Delta Environmental Laboratories, LLC Chain of Custody (COC) Form 685 Stone Road #11 & 12 Results to:Naser Pakrou Benicia, Ca. 94510 SOMA Environmental Engineering (707(747-6081, 800-7476082 FAX (707) 747-6082 2680 Bishop Dr., #203 Project Name: 2332 San Ramon, CA 94503 Analysis Requested Telephone 1-925-244-6600 260B) **/**925-244-6601 Sampler's Signature Na Sei LAB ID Turnaround Time Siand Ref # Temperature Others Special Instructions:: Sample ID Date Time Matrix Comments Influent HZD 13 Grab Sample CAC-750 PSP#1 8:00 11 11 11. Pakter Relinquished by: Nose! Date Laboratory Comments: Sample received on ice and in Melen Received By: 8/73/01 Date Relinquished by: Date COndition Received By: Date or Lab Use Only:

SOMA

2680 Bishop Drive #203

San Ramon, CA 94503

Client Project ID:

2333

Tony's Auto express

QC Batch: 8283001

Int Blv, Oakland

Ref.

R6243_100

Method: Sampled: EPA 8260B 08/22/01

Received:

08/23/01

Matrix

Water

Prepared

08/28/01

Analyzed: Reported:

8/28-30/01 08/31/01

Analyst:

DS

Unit

ug/L 8283001

QC batch COC no.

6243

Work Order:

2333

Attention: Naser Pakrou

Laboratory Results of Analysis for BTEX & MTBE

· · · · · · · · · · · · · · · · · · ·	CAS#	Detection		Results		
Analyte		Limit		Sample ID		
		ug/L 	Influent	GAC-1	PSP#1	
BTEX				-		
Benzene	71-43-2	0.5	880	ND	ND	
Toluene	108-88-3	0.5	758	ND	ND ND	
Ethylbenzene	100-41-4	0.5	131	ND	ND	
m-p-Xylenes	1330-20-7	0.5	684	ND	ND	
o-xylene	95-47-6	0.5	350	ND	ND	
МТВЕ	01634-04-4	0.5	11,570	ND	ND	
Surrogate	e Con	e en en de indue e		Entert & Recovery (1821)	Principal Constitution and the	
Bromofluorobenzene:	新国的国际第20	The state of the s	98			

ND:Not Detected

Delta Environmental Laboratories,

Hossein Khosh Khoo, Ph.D. **Laboratory Director/ President**

SOMA

2680 Bishop Drive #203

San Ramon, CA 94503

Client Project ID:

2333

Tony's Auto express

QC Batch: 8283001

Int Blv, Oakland

Ref.

R6243_B100

Method: Sampled: EPA 8260B 08/22/01

Received:

08/23/01

Matrix

Water

Prepared

08/28/01

Analyzed: Reported: 8/28-30/01 08/31/01

Analyst:

DS

Unit

ug/L 8283001

QC batch COC no.

6243

Work Order;

2333

Attention: Naser Pakrou

Laboratory Results of Analysis for BTEX & MTBE

	CAS#	Detection	Results
Analyte		Limit	Sample ID
		ug/L	
			Blank
BTEX			
Benzene	71-43-2	0.5	ND
Toluene	108-88-3	0.5	ND
Ethylbenzene	100-41-4	0.5	ND
m-p-Xylenes	1330-20-7	0.5	ND ND
o-xylene	95-47-6	0.5	ND ND
MTBE	01634-04-4	0.5	ND
Surrogate	Gon	o.	Q. Heaver
Bromofluorobenzene			% Recovery:

ND:Not Detected

Delta Environmental Laboratories,

Hossein Khosh Khoo, Ph.D. Laboratory Director/ President

SOMA

2680 Bishop Drive #203 San Ramon, CA 94503

Client Project ID:

2333

Tony's Auto express Int Blv, Oakland

QC Batch: 82801

Ref.

R6243_400

Method: Sampled: EPA 5030/8015M

Received:

08/22/01 08/23/01

Matrix

Water

Prepared

08/28/01

Analyzed: Reported: 08/28/01 08/31/01

Analyst:

DS

Unit

ug/L

QC batch

82801

COC no. Work Order: 6243 2333

Attention: Naser Pakrou

Laboratory Results of Analysis for TPH-G

	Detection		Results		
Analγte	Limit		Sample ID		
	ug/L	influent	GAC-1	PSP#1	
TPH-G	50	10,190	ND	ND	

ND:Not Detected

Delta Environmental Laboratories,

Hossein Khosh Khoo, Ph.D. **Laboratory Director/ President**

685 Stone Road #11 & 12 • Benicia, CA 94510 • {707} 747-6081 • (800) 747-6082 • Fax (707) 747-6082

SOMA 2680 Bishop Drive #203 San Ramon, CA 94503

Client Project ID:

2333

Tony's Auto express Int Blv, Oakland

QC Batch: 82801

Ref. Method: R6243_B400

Sampled:

EPA 5030/8015M 08/22/01

Received:

08/23/01

Matrix

Water

Prepared

08/28/01

Analyzed: Reported:

08/28/01 08/31/01

Analyst:

DS

Unit

ug/L

82801

QC batch COC no.

6243

Work Order:

2333

Attention: Naser Pakrou

Laboratory Results of Analysis for TPH-G

	Detection	Results
Analyte	Limit ug/L	Sample ID
	ug/L	Blank
TPH-G	50	ND
		% Recovery
Bramoflyerobenz	ene vojas pija sije iz voja din	% Recovery 101

ND:Not Detected

Delta Environmental Laboratories,

Hossein Khosh Khoo, Ph.D. Laboratory Director/ President

Quality Control Report

ENVIRONMENTAL LABORATORIES, Ltd

Client:

SOMA

2680 Bishop Drive, #203

San Ramon, CA 94503

Client Project ID:

2333

Tony's Auto express

Int Biv, Oakland

QC Batch: 82801

Ref.:

Q6243_400 EPA 5030/8015M

Method Sampled:

8/22/2001

Received:

8/23/2001

Matrix:

Analyzed:

Water 8/28/2001

Analyst

DS 8/31/2001

Reported: Units: Sample ID

ug/L Blank

Quality Control Report for TPH-G Analysis

Analyte	Detection Limit ug/L	Sample Result ug/L	Spike Added ug/L	% MS Recovery	% MSD Recovery	Relative % Difference RPD	Method
TPH-G	50	ND	400	94	91	3.2	5030/8015M
Surrogata Bromofluorobenz	Coi	11. 1000 1000 1000 1000 1000 1000 1000			% Recovery		

Delta Environmental Laboratories

H.Khosh Khou, PhD., V / Laboratory Director/President

Quality Control Report

ENVIRONMENTAL LABORATORIES, Ltd

Client:

SOMA

2680 Bishop Drive, #203

San Ramon, CA 94503

Client Project ID:

2333

Tony's Auto express

Int Blv, Oakland

Ref.:

Q6243_100 Method **EPA 8260B**

Sampled:

8/22/2001

Received:

8/23/2001

Matrix: Analyzed: Water 8/28-30/01

Analyst

DS

Reported: Units: Sample ID

ug/Ļ

8/31/2001

QC Batch: 8283001

Blank

Quality Control Report for MTBE & BTEX Analysis

Analyte	Detection Limit ug/L	Sample Result ug/L	Spike Added ug/L	% MS Recovery	% MSD Recovery	Relative % Difference RPD	Method
Benzene	0.5	ND	20	94	96	2.1	8260B
Toulene	0.5	ND	20	95	94	1.1	8260B
Ethylbenzene	0.5	ND	20	95	93	2.1	8260B
Total-Xylene	1.0	ND	40	96	92	4.3	8260B
MTBE	0.5	ND	20	100	108	7.7	8260B
Surrogate			% Recovery				
Bromofluorobenzene	2	0			109	The Control of the State of the	en er sampten er gil. Samen ing period in gillere

Delta Environmental Laboratories

H.Khosh Khoo, PhD., Laboratory Director/President

CHAIN OF CUSTODY FORM

Analyses

DATE/TIME

DATE/TIME

				_		
Curtis	-	_				
(-111M-1V	· •		-		^	1 4/4
	\sim					
~~ IIV	•			. 1.5.1. 1	.	

Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax

Project N	o: Proj	2-333

Project P.O.:

Turnaround Time: Standard

C&T	155707
LOGIN#	155202

DATE/TIME

DATE/TIME

DATE/TIME

Report To:

Sampler:

Fax:

Project Name: OAKLAND- JONY'S Company: SOMA ENURONMENTAL

Telephone: 925-244-6600

	•			Ma	trix		F	res	sen	atir	ve			1	ŀ	Ιİ				- 1	ł	
Laboratory Number	Sample ID	Sampling Date Time	Soll	Water	Waste	# of Containers	HCL	H ₂ SO	HNO3	JOE		Field Notes	Hole									
	DIFFERENT	11/2/01 144	r	1		3	~	1		V	丨	GRAB SAMPLE GRAB SAMPLE GRAB SAMPLE	1,/	1								
	6AC-1	1/2/01 14/10	Γ	1	T	3		·		-	1	GRAB SAMPLE		1				\Box				
ý	PSP#1	11/2/01 143	_			3				-	1	GRAB SAMPLE										L
1			Г	П	Т						Г								П	$\prod_{i=1}^{n}$		
0			Γ	П		·												\Box				
r + e			Γ	П	\neg		Π											П	T	\top		Γ
ဝဗေ	٤		Π		\top			1					1					П	П			Γ
ш <u>~ —</u>			Г														-	\exists	\Box	\Box		Π
0							П	Т										\Box	\Box	\top		Γ
Q.	9-1	Received Cold (J. Am)	L	ŢŪ	n içe			П				Programmelia de							丁	T		Π
a	-	COIG CAM	118	nt	7	intact					E	Preservation Correct?						\neg	T	丁	丁	T
									L			Yes O No O N/A						4	丰	丰	1	L
Notes:		<u> </u>	L	Ш		<u></u>		<u>L. </u>	<u>l</u> "	<u> </u>	L RI	 ELINOUISHED BY:				BF	CE!	VEI	 D R'	 V:		上

Signature

CHAIN OF CUSTODY FORM

Page __/_of __/

Curtis & Tompkins, Ltd.

Analytical Laboratory Since 1878 2323 Fifth Street

C&T LOGIN # 154464

Analyses

	Berkeley, (510)486-09 (510)486-09		Sampler: TONY PERIM/ Nasur Pakrou										<u> </u>										
Project No:	2333				Report To:		24.0																
Project Nar	ne: TONY	¿ Anto &	Expr	<u>es</u> s	Company:		50	2,2	e A	,				0	6								
Project P.O			OHE	TANI	D Telephone:		B																
Turnaround	Time: 5	tandar t	>		Fax:		M73				ľ												
				trix		P	res	er\	/ati	ve					Į į								
Laboratory Number	Sample ID.	Sampling Date Time	Soil	Waste	# of Containers	되	H ₂ SO	EONH H	EGE	-		Field Notes	HULL	BTEX									
	Influent	9/28/91	V		4	V					Gral	Sumples	V				一					\neg	
	GAC-1	9/28/01 134			4	4			<u> </u>	L	Grab	Samples	1	V									
ý	P5P#1	9/28/01 138	1/	Щ	7	V	ļ		ļ	_	Grah	Samples	ν	1/	1				_ _				•
			 -	Ц-			_			\vdash			┷	<u> </u>		\Box	_	_				_	
<u> </u>			- -		 		<i>:</i>	-	-	-			+-		_		_		_ _			_	
- + o							-	\vdash	├-	├-				-				_				4	
0 8 0		Preservation	Corre	47		_		-	-	-		100	 	┢			-				_	_	
<u>u</u>		□ Yes □ N	0 8	. MA	<u> </u>			-	1		Deceive	Ambient W Intact	╂	+	H		-	\dashv		$\left \cdot \cdot \right $		_	
							\vdash	-	1	\vdash	en Cold	Ambient 4	╃	+			_	\dashv	+	-			
<u>a</u>				╫				-	1				+	 	Н	-	+	\dashv	\dashv		-1-	\dashv	
			 						┞*				1				\dashv	\dashv	-			-	
		-	H^-													\neg			<u> </u>		\Box	┪	
Notes:		RELINQUISHED BY:									RECEIVED BY:												
						Naser Pak (OU) 9/286/230 DATE/TIME								E DATE ZIME 25								30 pm	
	÷											DATE/TIM							J _A	TE/T	IME		
					Signature		==					DATE/TIMI	€			·			DA [*]	TE/T	ME		
					Signature																		