led By B. Clan

RESULTS
QUARTERLY MONITORING
DECEMBER 30, 1997
TONY'S EXPRESS AUTO SERVICE
3609 EAST 14TH STREET
OAKLAND, CALIFORNIA

FOR

Mr. ABOLGHASSEM RAZI TONY'S EXPRESS AUTO SERVICE 3609 EAST 14TH STREET OAKLAND, CA 94601

BY

WESTERN GEO-ENGINEERS 1386 EAST BEAMER STREET WOODLAND, CA 95776 (530) 668-5300

Table of Contents

1	I	NTRODUCTION	······································
1	e	TITE HISTORY	
2			_
3	G	GROUNDWATER MONITOR ROUND	
	3.1	SLUG TEST	
	3.2	BIOREMEDATION SAMPLING	· - 3
4	R	ESULTS	4
	4.1	DEPTH TO WATER, GROUNDWATER GRADIENT	
	4.2	WATER SAMPLES	
		2.1 TPHg/BTEX2.2 BIOREMEDIATION SAMPLES	
	4.3	HYDRAULIC CONDUCTIVITY (K)	5
5	D	ISCUSSION	5
	5.1	HYDROCARBONS	5
	<i>5.2</i>	BIOREMEDIATION	5
	5.3	CALCULATED VELOCITIES OF CONTAMINANTS IN GROUNDWATER	6
	5.4	TIER TWO RISK ASSESSMENT	
		4.1 Vapor Inhalation	
		EPA METHOD 8260 RESULTS	
6	C	ONCLUSIONS	10
7	C	oncerned Parties	10
8	LI	IMITATIONS	10
			
		Table of Tables	
Ta	able 1	l, Groundwater Elevations	12
Γε	able 2	2, ug/l Gasoline Range Hydrocarbons in Groundwater	13-14
Га	able 3	3, Bioremediation Sampling	15
Га	ible 4	4, Hydraulic Conductivity	16-17

List of Figures

Figure 1, Location Map	18
Figure 2, Topographic Map	19
Figure 3, Site Base Map	20
Figure 4, Groundwater Gradient 12/30/97	21
Figure 5, Benzene in Groundwater	22
Figure 6, TPHg in Groundwater	23
Figure 7, Graph historic TPHg Concentrations	24
Figure 8, Electron Acceptors	25

List of Appendices

Appendix A, QA/Qc, Methods and Procedures

Appendix B, Laboratory Results

Appendix C, RBCA Spreadsheet Tables

Appendix D, Slug Test Calculations

Appendix E, Field Sample Data

Appendix F, Results 8260 Analysis

1 INTRODUCTION

The following Report documents the performance of a groundwater monitoring round and slug test at Tony's Express Auto Services, 3609 East 14th Street, Oakland, California. The property is primarily used as a service station.

During the groundwater monitoring round the following information and samples were gathered:

- 1. Depth to water
- 2. Groundwater samples for TPHg and BTEX, certified analysis.
- 3. Field analysis for the following electron acceptors:
 - Dissolved Oxygen, O₂
 - Nitrate, NO₃
 - Sulfate, SO₄⁻⁻
 - Ferrous iron, Fe⁺⁺. The actual electron acceptor is Ferric iron Fe⁺⁺⁺ but it is insoluble, so the reaction product Fe⁺⁺ was measured.
- 4. Redox potential.
- 5. Bail/slug test well recovery data.
- 6. Groundwater samples from MW01, MW02, MW05, MW07 and MW08 for:
 - Ammonia Nitrogen.
 - Carbon Dioxide.
 - Methane.
 - Orthophosphate

This report includes the following:

- 1. Depth to water measurements and the resulting groundwater elevations and gradient.
- 2. The results of sampling the wells for TPHg and BTEX.
- 3. Results bioremediation sampling, see sampling items 3 and 6 above.

- 4. Calculated results of the bail/slug test.
- 5. Results of Tier 2 Risk Based Corrective Action (RBCA) screening calculations.

2 SITE HISTORY

In July 1993, Alpha Geo Services removed three fuel tanks and a waste oil tank from the site. During the tank pull, Soil Tech Engineering Inc. (STE) collected soil samples from the tank excavation area and the old piping associated with the tanks. Soil samples from the tank area were taken at approximately 12 feet below the surface and range in TPHg concentration from 2.1 to 640 mg/kg. The soil samples from the beneath the old piping, 2 to 5 feet below grade, range in concentration from 75 to 4,100 mg/kg TPHg. No gasoline range hydrocarbons were found in the sample from the waste oil tank excavation.

Since the initial tank pull, STE has installed a total of 11 groundwater monitor wells including MW09, which has been destroyed (see figure 3 for location of wells). MW09 was destroyed to allow for construction.

In addition to the borings completed as monitor wells, a number of other soil borings have been performed in order to determine the extent of contaminated soil at the site.

3 GROUNDWATER MONITOR ROUND

A groundwater monitoring round was preformed on December 30, 1997, see Appendix A for methods and procedures. During the monitoring round the following were performed:

Depth to water, in all groundwater monitoring wells.

A slug test on all groundwater wells, except MW03, which contained a floating product sheen.

All of the wells except MW03 were purged and water samples for TPHg/BTEX and bioremediation (election acceptors and byproducts) were collected, see appendix A for methods.

3.1 SLUG TEST

During the monitoring round, we performed a slug tests on each of the wells, except MW03, in order to determine Hydraulic Conductivity (K).

To perform the slug test, a pressure transducer was placed in the well to measure the groundwater depth, over time. A bailer of water was extracted from the water column and periodic measurements of depth to water were recorded along with elapsed time since extraction, until the water level had returned to its initial elevation. These measurements were recorded automatically by the pressure transducer and data logger.

3.2 BIOREMEDATION SAMPLING

Bacteria native to the soil at hydrocarbon contamination sites normally degrade hydrocarbons. The most effective hydrocarbon degraders (eaters) are the aerobic (oxygen using) bacteria. The amount of available dissolved oxygen is usually the factor controlling the rate that these bacteria degrade the gasoline.

A much slower degradation process starts when the dissolved oxygen is used. The plume begins to become anaerobic and the bacterium commences to reduce nitrate, ferric iron, and sulfate to further degrade the hydrocarbons. Eventually, as these compounds and the oxygen are used, the bacteria begin methogenesis, in which the hydrocarbons are converted to methane.

In order to determine this site's potential for natural Bioremedation, the wells were sampled for the following electron acceptors or reaction byproducts:

- Dissolved Oxygen, O₂
- Nitrate, NO₃
- Sulfate, SO₄⁻⁻
- Ferrous iron, Fe⁺⁺. The actual electron acceptor is Ferric iron Fe⁺⁺⁺ but it is insoluble, so the reaction product Fe⁺⁺ was measured.

To further define the bio-activity or the potential for bio-activity of the site, the following samples were taken from five of the on-site wells, MW01, MW02, MW05, MW07, and MW08. These sample results provide the natural base line concentrations of the compounds of interest.

- Methane, end product of methogenesis.
- Carbon Dioxide, end product for all biodegradation of hydrocarbons.
- Hydrocarbon degraders, the bacteria that consume gasoline.
- Ammonia nitrogen, a nutrient used by bacteria.
- Orthophosphate, another nutrient used by bacteria.

4 RESULTS

4.1 DEPTH TO WATER, GROUNDWATER GRADIENT.

The groundwater at this site is shallow and unconfined. During the initial construction of monitor wells MW01, MW02 and MW03, groundwater was encountered at 15 feet below the surface. The current depth to groundwater in the wells is between 8.65 and 10.2 feet below the surface and the groundwater gradient is to the south, see Figure 4. The groundwater is above the slots in MW01, MW02 and MW03, the original groundwater monitor wells, probably due to recovery recharge of the aquifer after the drought. The hydraulic gradient for the site has a slope of 0.019 ft/ft.

4.2 WATER SAMPLES

4.2.1 TPHg/BTEX

The water samples from all of the wells contained significant levels of TPHg and BTEX, see Table 2.

4.2.2 BIOREMEDIATION SAMPLES

The concentrations of bio-indicators are as follows:

- Dissolved Oxygen, O₂. The oxygen concentration in the wells ranged from <0.1 mg/l, the
 majority of the wells to a maximum of 2.5 ppm, see table 3. A saturated concentration would be
 8 mg/l.
- Nitrate, NO₃. The concentration of NO₃ ranged from <0.1 mg/l in the wells with the highest TPHg values to 4.5 mg/l in MW04, see table 3.
- Sulfate, SO₄. The sulfate concentration ranged from <1 mg/l in four of the wells to 42 mg/l in MW04, see table 3.
- Ferrous iron, Fe⁺⁺. The concentration of ferrous iron ranged from 0.23 to greater than 3.30 mg/l, see table 3.

The following analyte concentrations were measured in samples from five of the on-site wells, MW01, MW02, MW05, MW07, and MW08.

- Methane, the end product of methogenesis, ranged from 0.0113 to 3.5 mg/l.
- Carbon Dioxide, end product for all biodegradation of hydrocarbons, ranged from 64.2 to 117 mg/l.

- Hydrocarbon degraders, the bacteria that consume gasoline, the population counts ranged from 60 to 300 cfu/ml.
- Ammonia nitrogen, a nutrient for bacteria, ranged from 0.2 to 1.3 mg/l.
- Orthophosphate, another bacteria nutrient, ranged from 0.1 to 0.3 mg/l.

These results are consistent with the bioremediation models for dissolved gasoline sites, i.e. depressed levels of Dissolved Oxygen, Nitrate and Sulfate and elevated levels of Ferrous iron in the presence of dissolved TPHg.

4.3 HYDRAULIC CONDUCTIVITY (K)

The hydraulic conductivity (K) for the wells ranged from 0.4 feet per day to 10.42 feet per day, with an average K of 3.6 feet per day. This is consistent with the results expected for the silt and silty clay aquifers encountered while drilling the monitor wells, see table 4.

5 DISCUSSION

5.1 HYDROCARBONS

Significant levels of TPHg and BTEX continue to exist at this site. MW03 contained a thin film of floating product. The benzene and TPHg plumes continue offsite, see Figures 5 and 6.

5.2 BIOREMEDIATION

The results of the bioremediation sampling indicate that natural attenuation/bioremediation is active at this site.

All of the wells show the impact of active biodegradation. It is not therefore possible to develop a background level of the compounds. The closest approximation for background levels at this site is the highest concentrations of electron acceptors and the lowest levels of byproducts.

Compound	Function	Concentration	Well
Dissolved Oxygen (O2)	Electron Acceptor	2.5 mg/l	MW08
Nitrate	Electron Acceptor	4.5 mg/l	MW04
Sulfate	Electron Acceptor	42 mg/l	MW04
Ferrous Iron	Byproduct	0.23 mg/l	MW07
Methane	Byproduct	0.0113 mg/l	MW05
Carbon Dioxide	Byproduct	62.7 mg/l	MW05

All of the tested wells have reduced levels of dissolved oxygen. Six of the nine wells have less than 0.1 mg/l of dissolve oxygen.

Both Nitrate and Sulfate have been reduced from the levels found in MW04, with Nitrate being reduced to non-detectable levels in three wells and Sulfate in four wells, see table 3.

The presence of Ferrous iron in the wells indicates that biodegradation has progressed to the point that the system is oxygen deficient and the bacteria have started to reduce the iron to provide oxygen for the degradation.

Biodegradation in MW02, which is in the heart of the plume, has consumed all of the available electron acceptors.

The carbon dioxide (CO₂) levels in the groundwater indicate that a portion of the hydrocarbons have been degraded. CO₂ and water are the final byproducts of biodegradation of hydrocarbons. The carbon in CO₂ results from the oxidation of the hydrocarbon radical CH₂ and as such 1 mg of $CO_2 = 0.41$ mg of CH_2 (CH₂ (12+1+1'= 14) / (CO₂ (12+16+16=34). The amount of CO₂ in MW08, 153 mg/l, indicates that at least 62.73 mg/l of hydrocarbons have been oxidized.

This descents background Or water.

The presence of methane (CH₄) indicates that a number of the wells have progressed into methogenesis.

The levels of electron acceptors present and the presence of the reaction products, carbon dioxide, methane and ferrous iron indicate that the bacteria in the soil and the compounds in the groundwater have the capability to consume a significant amount of hydrocarbons.

Introducing ambient air (O₂) into the system during vapor vacuum extraction and/or sparging will increase this bioactivity.

Comparison of the hydrocarbon degrader counts (amount of bacteria) to the TPHg concentration, electron acceptors, byproducts, and nutrients, indicate that the orthophosphate concentration and ammonia concentration can have a significant effect on the bio-activity. As shown in table 3, just a small change in the orthophosphate level from 0.1 mg/l in MW01 to 0.4 mg/l in MW02 increased the hydrocarbon degraders count from 60 to 220 cfu/ml. This indicates that the addition of a small amount of phosphate to the system should increase the biodegradation rate.

A RBCA Tier Two risk assessment was run on the site in order to develop a further understanding of the risk to be expected from this site. The biodegradation capacity of the groundwater was also determined as part of the risk assessment. The water was found to have the capacity to consume 15.53 mg/l of hydrocarbons. Four of the wells contain greater than 20 mg/l of TPHg. This indicates that it would be beneficial to increase the biodegradation capacity of the aquifer. The most cost beneficial way to do this is by adding dissolved oxygen.

5.3 CALCULATED VELOCITIES OF CONTAMINANTS IN GROUNDWATER

The hydraulic conductivity (K) of the aquifer in the vicinity of the monitor wells was calculated from the data derived from the slug tests performed at the monitor wells on October 13 1997 using

the Bouwer and Rice Slug Test Model (Appendix D). Calculated K values ranged from a maximum of 10.42 feet/day at MW06 to 0.4 feet/day at MW01. Calculated K values averaged 3.6 feet/day over the site (Table 4).

Expected groundwater velocities were calculated from the K values and average groundwater elevation gradient over the site of 0.019ft/ft. Groundwater velocities ranged from 361.3feet/year in the vicinity of MW06 to 13.9 feet/year in the vicinity of MW01. The groundwater velocity calculated from the average K is 124.8 feet/year (Table 4).

The expected velocities of petroleum hydrocarbon constituents in groundwater at the site were calculated from calculated groundwater velocities and the concentrations of organic carbon in the aquifer materials (Appendix D). N-octane, representing total gasoline, showed velocities ranging from 2.3 feet/year at MW06 to 0.1 feet/year at MW01. The calculated velocity of n-octane migration through the aquifer averaged 0.8 feet/year over the site (Table 4). The velocity of Benzene in groundwater ranged from 113.5 feet/year at MW06 to 4.4 feet/year at MW01. The velocity of Benzene migration through the aquifer calculated from the average K was 39.2feet/year. The velocities of diesel and oil and grèase range hydrocarbons through the aquifer, though not calculated, can be assumed to be slower than the average velocity of n-octane at 0.8 feet/year.

5.4 TIER TWO RISK ASSESSMENT

In order to help determine the risks associated with this site a Tier Two Risk calculation was performed.

During the Tier Two Assessment, Risk Based Screening Levels SSTL were calculated for the following compounds:

- Benzene using the current EPA Cancer Slope Factors (SF) for Benzene.
- Toluene
- Ethylbenzene
- Xylenes

Two potential pathways were considered during the Tier Two investigation of this site: Vapor Inhalation and Groundwater Ingestion. The third major pathway, soil ingestion, was not considered because there is no documented contamination in the upper three feet of soil and the site is paved, limiting the probability of the ingestion of contaminated soil.

Vapor Inhalation was divided into three categories:

- 1. Volatilization to on-site inside air.
- 2. Volatilization to on-site outside air.
- 3. Volatilization to off-site outside air.

Groundwater ingestion was divided into two categories:

- 1. On-site groundwater ingestion, commercial.
- 2. Off-site groundwater ingestion, residential.

The off-site groundwater ingestion was calculated using the screening distance of 700 ft.

The values used to perform the Tier Two study were the worst case values from the soil sampling and the last groundwater sampling.

5.4.1 Vapor Inhalation

The following compounds exceeded the SSTL for Volatilization to inside air.

- Benzene in Subsurface soil.
- Benzene in groundwater.

The result probably overstates the hazard, due to the nature of the air diffusion model.

The following compounds exceeded the SSTL for Volatilization to outside air.

- Benzene in Subsurface soil.
- Benzene in groundwater.

The following compounds exceeded the SSTL for Volatilization to off-site air.

• Benzene in Subsurface soil.

5.4.2 Ground Water Ingestion

The following compounds exceeded the SSTL levels for on-site groundwater ingestion (see Worksheets 9.1 and 9.2, appendix C).

- Benzene in Subsurface soils.
- Benzene in Groundwater.
- Toluene in subsurface soil
- Toluene in Groundwater
- Ethylbenzene in Groundwater.

The possibility of completion of this path is very low because it would require that someone drills a well on the site and complete it in the shallow surface aquifer and proceeded to drink the water therefrom.

The following compounds exceeded the SSTL levels for off-site groundwater ingestion (see Worksheets 9.2 and 9.3, appendix C).

- Benzene in Subsurface soils.
- Benzene in groundwater.

Please see Appendix C, RBCA results for tables and concentrations.

Additionally a Tier Two risk was calculated for the results of the EPA Method 8260 analysis run on the May 21, 1997 sampling. As in the gasoline range hydrocarbon Ter Two risk the primary driver of risk at this site is Benzene in the subsurface soil and in the groundwater.

5.5 EPA METHOD 8260 RESULTS

EPA Method 8260 was run on the samples taken on May 21, 1997. A number of compounds were detected in this analysis see appendix F 8260 Analysis. Many of the compounds detected are a natural component of Gasoline or have been used as additives of gasoline in the past. Other compounds are the intermediate byproducts of biodegradation.

Compound	TYPE	Maximum	MCL
		Concentration mg/l	
Acetone	byproduct	11	Not listed
Benzene	component 、	9.2	0.001
chloroform		0.0075	0.1
1,2 dichloroethane	additive	0.0066	0.0005
2,2 dichloropropane	additive	0.0061	No MCL listed for 2,2
			MCL for $1,2 = 0.005$
Trans 1,3	additive	0.084	0.0005
dichloropropene			
Ethlybenzene	component	2.1	0.700
2-Hexanone M. 8 ketma	additive	0.053	Not listed
Isopropylbenzene	component	0.038	Not listed
Methyl Chloride,	Byproduct degradation	0.078	Not listed
Chrotomethane	chlorinated		
	hydrocarbons		
4-methyl-2-pentanone,		0.0095	Not listed
Methyl isobutyl Ketone			
	,		
N-butylbenzene	component	0.031	Not listed
N-propylbenzene	component	0.049	Not listed
Naphtalene	component	0.63	Not listed
p-isopropyltoluene	component	0.0068	Not listed
Tert-Butylbenzene	component	0.23	Not listed
Toluene	component	14.0	1
1,2,4-trimethylbenzene	component	0.86	Not listed
1,3,5-trimethylbenzene	component	0.55	Not listed
Xylenes	component	10	1.750

MCL are from CRWQCBCVR, Water quality Goals, February 1991.

6 CONCLUSIONS

1. Continue site monitoring for one year to evaluate this site for low risk closure, plume stability.

7 Concerned Parties

Mr. Abolghassem Razi Tony's Express Auto Services 3609 E. 14th Street Oakland, CA 94601

Mr. Barney Chan Environmental Health Services Environmental Protection (LOP) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 Fax (510) 337-9335

8 LIMITATIONS

This report is based upon the following:

- The observations of field personnel.
- The results of laboratory analyses performed by a state certified laboratory.
- Referenced documents.
- Our understanding of the regulations of the State of California and Alameda County, Hazardous Materials Section and/or City of Oakland, California.

Changes in groundwater conditions can occur due to variations in rainfall, temperature, local and regional water usage and local construction practices. In addition, variations in the soil and groundwater conditions could exist beyond the points explored in this investigation.

State certified analytical results are included in this report. This laboratory follows EPA and State of California approved procedures; however, WEGE is not responsible for errors in these laboratory results.

The services performed by Western Geo-Engineers, a corporation, under California Registered Geologist #3037 and/or Contractors License #513857, have been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the State of California and the Woodland area. Our work and/or supervision of remediation and/or abatement operations, active or preliminary, at this site is in no way meant to imply that we are owners or operators of this site. Please note that known

contamination of soil and/or groundwater must be reported to the appropriate agencies in a timely manner. No other warranty, expressed or implied, is made.

If you have any questions concerning this report or if we can be of further assistance, please don't hesitate to contact us at (530) 668-5300.

Respectfully,

Røy Butler

Project Geologist

Jack E. Napper

Registered Geologist #3037

No. 3037

Table 1, To	ony's Express, G	roundwater Ele	evations			
	DEPTH TO	DEPTH TO	,			
	TOP SLOTS	WATER				
DATE		12/30/97				
MW01	10	9.3		l	<u> </u>	
MW02	10	9.05				
MW03		9.74				
MW04	10 7	9.74	<u> </u>		<u> </u>	
MW05	I	9.43 9.15		<u> </u>		
	6					
MW06	6	9.3				
MW07	6	8.65				
MW08	7	8.95				
MW09	8	DESTROYED				
MW10	8	8.78				
MW11	8	10.2		<u></u>		
1		GROUND-				
j	CASING	WATER				
	ELEVATION	ELEVATION				
MW01	97.99	88.69				
MW02	98.58	89.53				
MVV03	97.78	88.04				
MVV04	97.85	88.42	•			
MW05	99.04	89.89				
MW06	98.77	89.47				
MW07	97.83	89.18				
MW08	97.25	88.3				
MW09	95.94					
MW10	94.54	85.76				
MW11	95.94	85.74				

Table 2, ug/l, Gasoline	ı ı	I						
Range Hydrocarbons in								
Groundwater	!							
DATE	10/5/94	12/2/94	3/6/95	6/5/95	10/2/95	1/3/96	4/3/96	9/12/96
MW01, TPHg	320000	80000	32000	21000	5900	30000	31000	3/12/30
MW01, Benzene	24000	3800	190	950	140	71	98	
MW01, Toluene	21000	6600	150	650	130	73	120	
MW01, Toldene MW01, Ethylbenzene	2600	2300	150	570	140	50	63	
MW01, Zylene	15000	11000	490	1500	390	120	170	
MW02, TPHg	260000	42000	490	8000	46000	3400	27000	19000
MW02, Tring	17000	1700	3.2	220	160	7.6	100	210
MW02, Toluene	19000	2200	2.6	330	130	13	92	220
MW02, Ethylbenzene	570	1200	1.6	350	93	7.4	44	110
MW02, Xylene	15000	3600	5.9	660	240	26	130	400
MW03, TPHg	3000000	250000	21000	350000	15000	19000	70000	66000
MW03, Benzene	190000	19000	80	20000	510	290	310	430
MW03, Toluene	740000	22000	73	42000	410	270	260	420
MW03, Ethylbenzene	310000	4400	35	5800	210	97	89	210
MW03, Xylene	13000	28000	130	36000	650	890	280	510
MW04, TPHg	10000	20000	100	00000	9300	1100	1900	2100
MW04, Benzene	 -				23	4	12	46
MW04, Toluene					11	1.3	7.5	24
MW04, Ethylbenzene		+			9.9	0.9	5.2	31
MW04, Xylene					29	3.3	14	73
MW05, TPHg					1500	830	780	
MW05, Benzene					1.1	<0.5	1.3	
MW05, Toluene					1.3	<0.5	1	
MW05, Ethylbenzene					3.9	1.3	4.8	
MW05, Xylene				i	5.3	2.2	3.8	
MW06, TPHg		- 	1		12000	68000	48000	23000
MW06, Benzene					350	60	140	150
MW06, Toluene					310	61	110	160
MW06, Ethylbenzene			′		200	27	62	110
MW06, Xylene					610	180	170	310
MW07, TPHg					3300	1500	1900	
MW07, Benzene					8.9	1.5	2.1	
MW07, Toluene					12	0.9	2.6	
MW07, Ethylbenzene					17	3	5.1	
MW07, Xylene					45	4.1	6.9	
MW08, TPHg					94000	23000	58000	46000
MW08, Benzene					310	19	250	210
MW08, Toluene					250	12	170	150
MW08, Ethylbenzene					180	8.8	140	160
MW08, Xylene					480	47	330	360
MW10, TPHg								26000
MW10, Benzene								400
MW10, Toluene								37
MW10, Ethylbenzene								63
MW10, Xylene								99
MW11, TPHg								2300
MW11, Benzene							<u> </u>	7
MW11, Toluene								7.2
MW11, Ethylbenzene								12 31
MW11, Xylene		l.						31

Table 0			
Table 2, ug/l, Gasoline			
Range Hydrocarbons in			
Groundwater			
DATE	12/9/96	4/10/97	
MW01, TPHg			27000
MW01, Benzene			2300
MW01, Toluene			2100
MW01, Ethylbenzene			1400
MW01, Xylene			5100
MW02, TPHg	6200	53000	35000
MW02, Benzene	110	150	4900
MW02, Toluene	6.6	110	4900
MW02, Ethylbenzene	2.1	37	1600
MW02, Xylene	14	1120	7000
MW03, TPHg	54000	54000	
MW03, Benzene	320	130	~~~
MW03, Toluene	280	120	c) per
MW03, Ethylbenzene	90	38	7
MW03, Xylene	250	120	
MW04, TPHg	4000	<50	2300
MW04, TENG	14	<0.5	410
	6.3	<0.5	270
MW04, Toluene	4.2		100
MW04, Ethylbenzene	12	<0.5	
MW04, Xylene	14	<0.5	1500
MW05, TPHg			790
MW05, Benzene			82
MW05, Toluene			66
MW05, Ethylbenzene			59
MW05, Xylene			160
MW06, TPHg	57000	29000	36000
MW06, Benzene	480	60	660
MW06, Toluene	450	70	7600
MW06, Ethylbenzene	160	24	1500
MW06, Xylene	460	71	7700
MW07, TPHg			1400
MW07, Benzene			130
MW07, Toluene			98
MW07, Ethylbenzene			75
MW07, Xylene		1	200
MW08, TPHg	27000	24000	28000
MW08, Benzene	88	86	€000
MW08, Toluene	43	55	1600
MW08, Ethylbenzene	44	50	2100
MW08, Xylene	80	100	4700
MW10, TPHg	3000	1000	10000
MW10, Teng	8.1	21	5300
MW10, Toluene	2.2	9.3	76
MW10, Folderie	1.5	3.3	1100
	5.1	33	780
MW10, Xylene MW11, TPHg		<50	710
MM/41 Parrana	650		
MW11, Benzene MW11, Toluene	1.8	<0.5	66
IVIVVTT, Totuene	0.5	<0.5	97
MW11, Ethylbenzene	0.8	<0.5	59
MW11, Xylene	0.42	<0.5	190

Table 3. Bioremediation Sampling

		, ,								Hydro-		
		Dissolved	Nitrate as	Ferrous			Carbon	Ammonia	Ortho-	carbon	j	
WELL	TPHg	Oxygen	Nitrogen	lron	Sulfate	Methane	Dioxide	Nitrogen	Phosphate	degraders	ORP	K
UNITS	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	cfu/ml		feet/day
MW01	27	0.5	<0.1	3.04	<1	3.2	99.1	1.3	0.1	60	-110	0.4
MW02	35	<0.1	<0.1	>3.30	<1	1.24	117	1.3	0.4	220	-81	0.47
MW03	FLOATING	PRODUCT	NOT SAMPI	_ED								
MW04	2.3	<0.1	4.5	0.39	42						72	2.01
MW05	0.79	<0.1	. 0.3	0.94	18	0.0113	62.7	0.8	0.4	160	46	2.01
MW06	36	<0.1	<0.1	0.30	5						14	10.42
MW07	1.4	1.2		0.23	32	0.449	64.2	0.2	0.2	60	-82	3.86
MW08	28		0.1	>3.30	0	3.54	153	8.0	0.3	300	1	1.16
MW09	WELL DES	TROYED										
MW10	10	<0.1	9 .3	2.21	<1						4	9.66
MW11	0.71	<0.1	3.5	0.32	35						66	2.54

TABLE 4
HYDRAULIC CONDUCTIVITY, GROUNDWATER VELOCITY, COMPOUND VELOCITY
TONY'S SERVICE STATION, OCKLAND, CALIFORNIA

GROUNDWAT	ER ELEVATI	ON GRADIENT (I) =	0.019						
WELL	K	COMPOUND	Хос	OC.	Kd	Pb	ne	n	v	vo
									feet/year	feet/year
MW1	0.4	MTBE	12.02	0.005	0.0601	1.8	0.2	0.4	13.9	10.9
MW2	0.47	MTBE	12.02	0.005	0.0601	1.8	0.2	0.4	16.3	12.8
MW4	2.01	MTBE	12.02	0.005	0.0601	1.8	0.2	0.4		54.9
MW5	2.01	MTBE	12.02	0.005	0.0601	1.8	0.2	0.4		54.9
MM6	10.42	MTBE	12.02	0.005	0.0601	1.8	0.2	0.4	361.3	284.4
MW7	3.86	MTBE	12.02	0.005	0.0601	1.8	0.2	0.4		105.4
MW8	1.16	MTBE	12.02	0.005	0.0601	1.8	0.2	0.4	40.2	31.7
MW10	9.66	MTBE	12.02	0.005	0.0601	1.8	0.2	0.4		
MW11	2.54	MTBE	12.02	0.005	0.0601	1.8	0.2	0.4	88.1	69.3
MW1	0.4	BENZENE	97	0.005	0.485	1.8	0.2	0.4	13.9	4.4
MW2	0.47	BENZENE	97	0.005	0.485	1.8	0.2	0.4	16.3	5.1
MW4	2.01	BENZENE	97	0.005	0.485	1.8	0.2	0.4	69.7	21.9
MW5	2.01	BENZENE	97	0.005	0.485	1.8	0.2	0.4	69.7	21.9
MW6	10.42	BENZENE	97	0.005	0.485	1.8	0.2	0.4	361.3	113.5
MW7	3.86	BENZENE	97	0.005	0.485	1.8	0.2	0.4	 	42.1
MW8	1.16	BENZENE	97	0.005	0.485	1.8	0.2	0.4	40.2	12.6
MW10	9.66	BENZENE	97	0.005	0.485	1.8	0.2	0.4	335.0	105.3
MW11	2.54	BENZENE	97	0.005	0.485	1.8	0.2	0.4	88.1	27.7
MW1	0.4	TOLUENE	242	0.005	1.21	1.8	0.2	0.4	13.9	2.2
MW2	0.47	TOLUENE	242	0.005	1.21	1.8	0.2	0.4	16.3	2.5
MW4	2.01	TOLUENE	242	0.005	1.21	1.8	0.2	0.4	69.7	10.8
MW5	2.01	TOLUENE	242	0.005	1.21	1.8	0.2	0.4	69.7	10.8
MW6	10.42	TOLUENE	242	0.005	1.21	1.8	0.2	0.4	361.3	56.1
MW7	3.86	TOLUENE	242	0.005	1.21	1.8	0.2	0.4		20.8
MW8	1.16	TOLUENE	242	0.005	1.21	1.8	0.2	0.4	40.2	6.2
MW10	9.66	TOLUENE	242	0.005	1.21	1.8	0.2	0.4	335.0	52.0
MW11	2.54	TOLUENE	242	0.005	1.21	1.8	0.2	0.4	88.1	13.7
MW1	0.4	XYLENE	552	0.005	2.76	1.8	0.2	0.4	13.9	1.0
MW2	0.47	XYLENE	552	0.005	2.76	1.8	0.2	0.4	16.3	1.2
MW4	2.01	XYLENE	552	0.005	2.76	1.8	0.2	0.4	69.7	5.2
MW5	2.01	XYLENE	552	0.005	2.76	1.8	0.2	0.4	69.7	5.2
MW6	10.42	XYLENE	552	0.005	2.76	1.8	0.2	0.4	361.3	26.9
MW7	3.86	XYLENE	552	0.005	2.76	1.8	0.2	0.4	133.8	10.0
MW8	1.16	XYLENE	552	0.005	2,76	1.8	0.2	0.4	40.2	3.0
MW10	9.66	XYLENE	552	0.005	2.76	1.8	0.2	0.4	335.0	25.0
MW11	2.54	XYLENE	552	0.005	2.76	1.8	0.2	0.4	88.1	6.6
									70.0	
MW1	0.4	ETHYLBENZNE	622	0.005	3.11	1.8	0.2	0.4		
MW2	0.47	ETHYLBENZNE	622	0.005	3.11	1.8	0.2	0.4	16.3 69.7	1.1
MW4 MW5	2.01	ETHYLBENZNE	622	0.005	3.11	1.8	0.2	0.4		4.6
MW6	2.01	ETHYLBENZNE	622 622	0.005	3.11	1.8	0.2	0.4		24.1
MW7	10.42 3.86	ETHYLBENZNE ETHYLBENZNE	622	0.005	3.11	1.8	0.2	0.4		8.9
MW8	1.16	ETHYLBENZNE	622	0.005	3.11	1.8	0.2	0.4	40.2	2.7
MW10	9.66	ETHYLBENZNE	622	0.005	3.11	1.8	0.2	0.4		
MW11	2.54	ETHYLBENZNE	622	0.005	3.11	1.8	0.2	0.4		5.9
MW1	0.4	N-OCTANE	6800	0.005	34	1.8	0.2	0.4	13.9	0.1
MW2	0.47	N-OCTANE	6800	0.005	34	1.8	0.2	0.4	16.3	0.1
MW4	2.01	N-OCTANE	6800	0.005	34	1.8	0.2	0.4	69.7	0.5

TABLE 4		
HYDRAULIC CONDUCTIVITY,	GROUNDWATER VELOCITY,	COMPOUND VELOCITY
TONY'S SERVICE STATION.	OCKLAND, CALIFORNIA	

GROUNDWAT	ER ELEVATI	ON GRADIENT (I} =	0.019						
WELL	K	COMPOUND	Koc	0c	Kđ	Pb	ne	n	v	vc
									feet/year	feet/year
MW5	2.01	N-OCTANE	6800	0.005	34	1.8	0.2	0.4	69.7	0.5
MW6	10.42	N-OCTANE	6800	0.005	34	1.8	0.2	0.4	361.3	2.3
MW7	3.86	N-OCTANE	6800	0.005	34	1.8	0.2	0.4	133.8	0.9
MM8	1.16	N-OCTANE	6800	0.005	34	1.8	0.2	0.4	40.2	0.3
MW10	9.66	N-OCTANE	6800	0.005	34	1.8	0.2	0.4	335.0	2.2
MW11	2.54	N-OCTANE	6800	0.005	34	1.8	0.2	0.4	88.1	0.6
Average	3.6	MTBE	12	0.005	0.06	1.8	0.2	0.4	125.3	98.7
Average	3.6	benzene	97	0.005	0.485	1.8	0.2	0.4	124.8	39.2
Average	3.6	toluene	242	0.005	1.21	1.8	0.2	0.4	124.8	19.4
Average	3.6	xylene	552	0.005	2.76	1.8	0.2	0.4	124.8	9.3
Average	3.6	ethylbenzene	622.	0.005	3.11	1.8	0.2	0.4	124.8	8.3
Average	3.6	n-octane	6800	0.005	34	1.8	0.2	0.4	124.8	0.8

K = Hydraulic Conductivity in feet/day

Koc = organic carbon-water partition coefficient

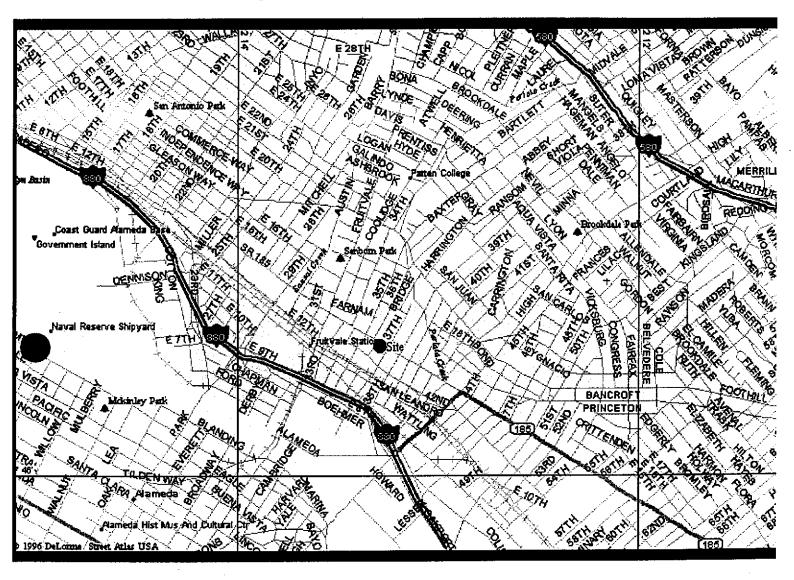
Oc = organic carbon

Kd = retardation factor

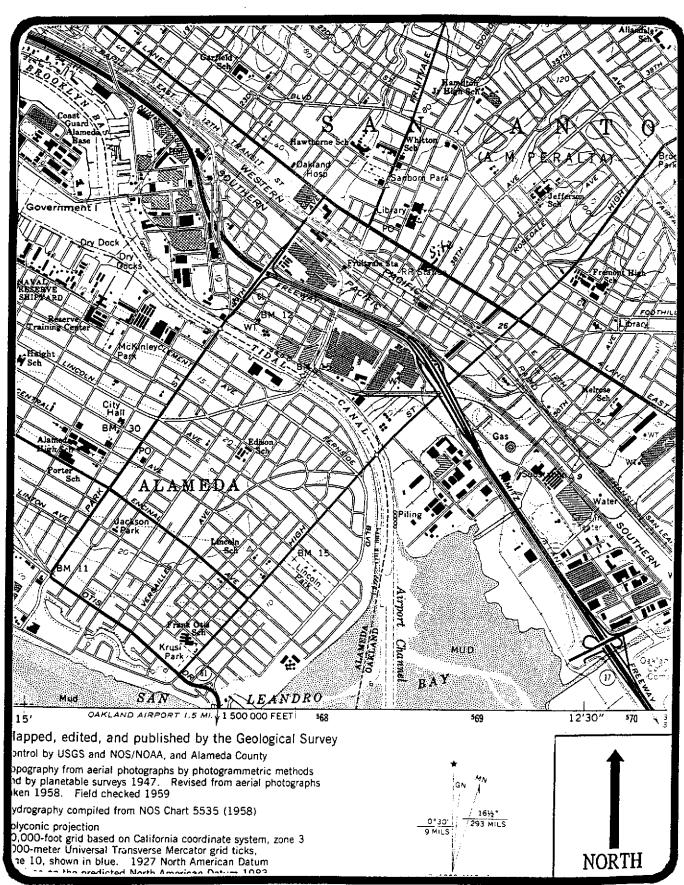
vc = retarded velocity of compound =v/[1+(Pb/n)Kd]

Pb = dry bulk density in gm/ml

ne = effective porosity


n = volumetric moisture content

I = groundwater elevation gradient


v = groundwater velocity = KI/ne

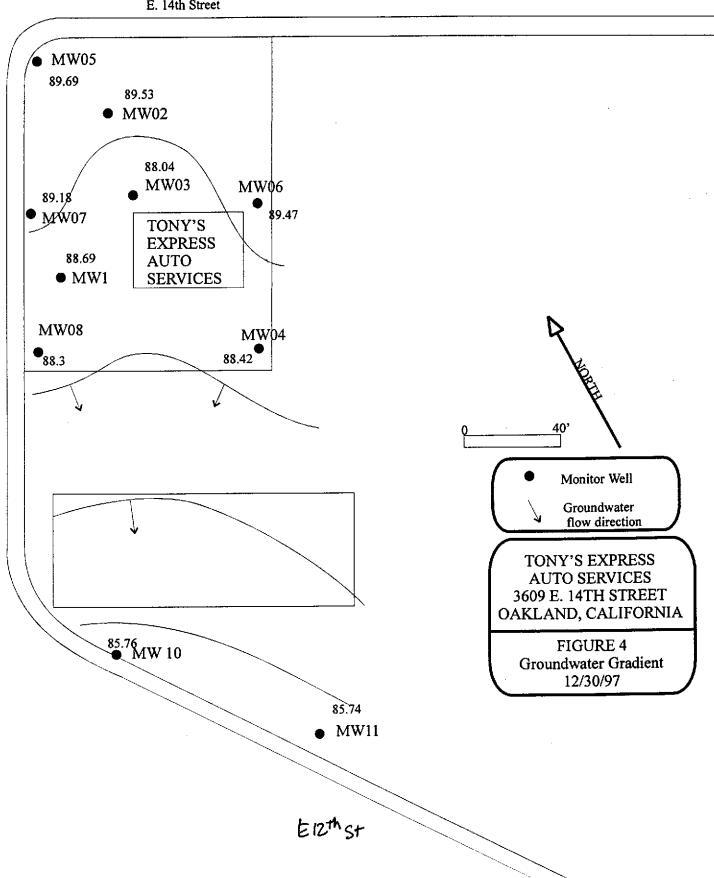
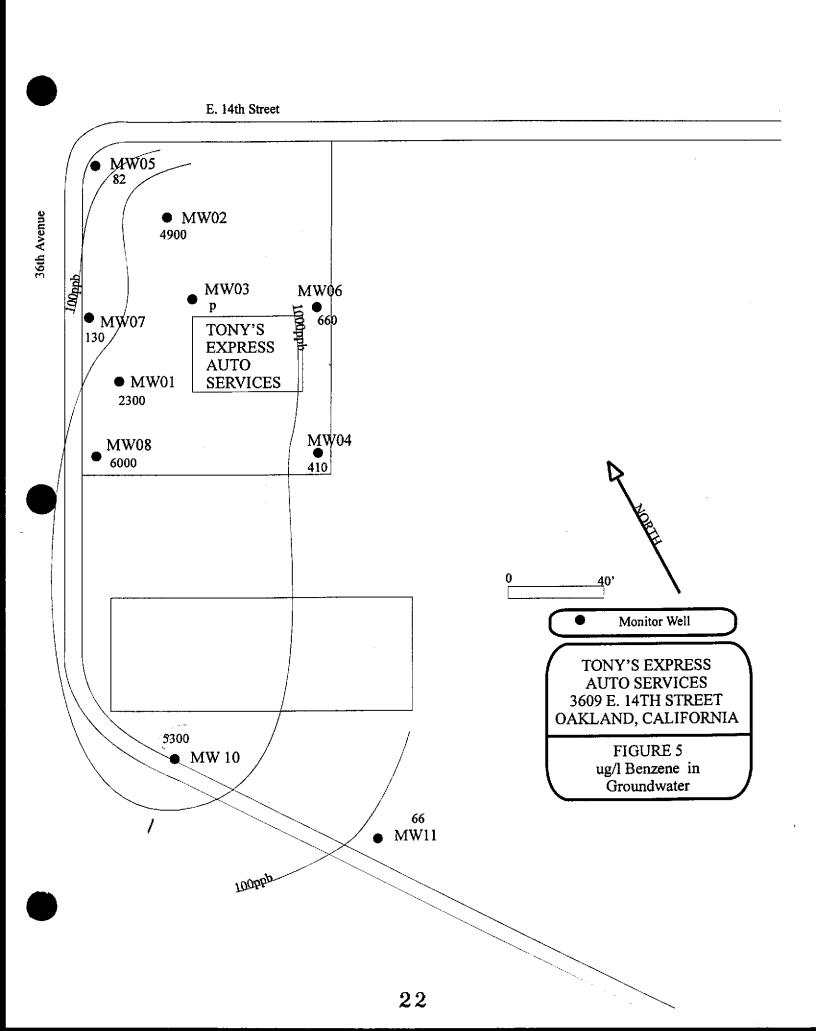
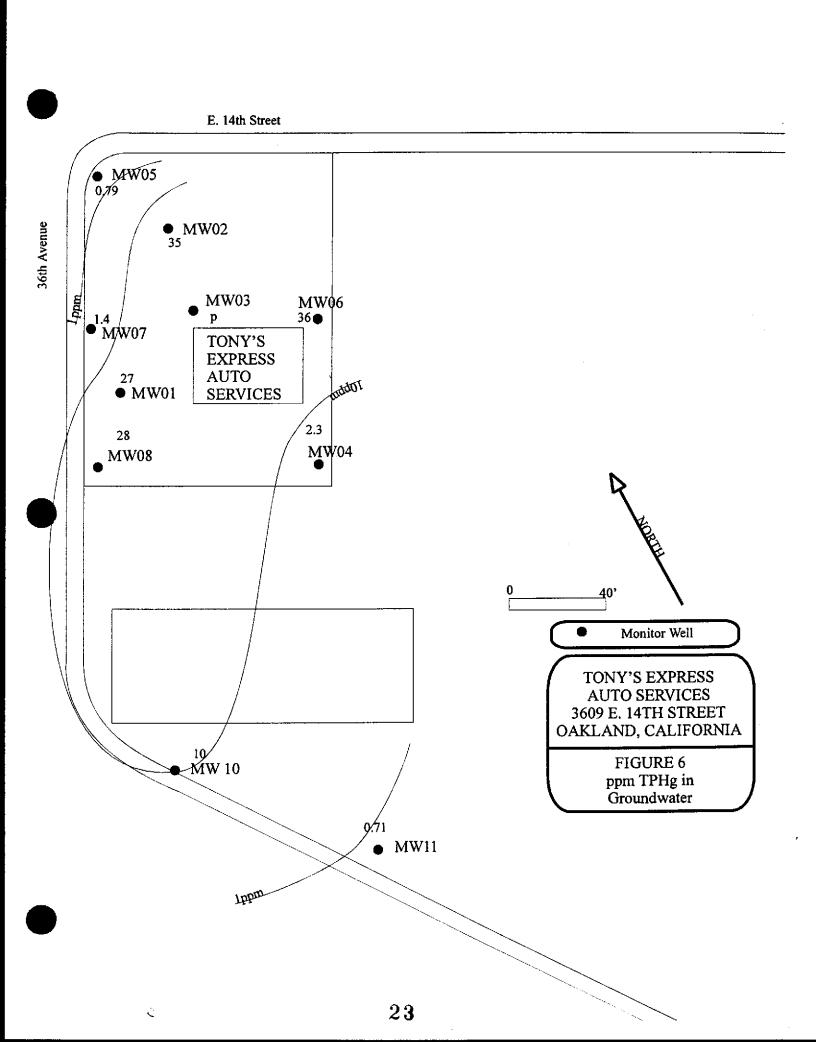
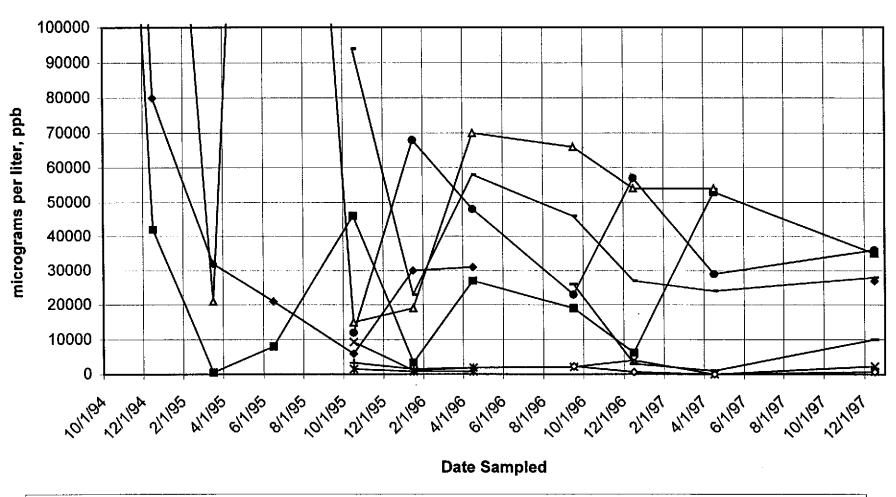

they bulk dending the state of the state of

Figure 1, Location Map







21

Tony's Express Auto Services, Micrograms per liter TPHg Figure 7

APPENDIX A QA/QC METHODS AND PROCEDURES

APPENDIX A.

METHODS AND PROCEDURES, QA/QC

This Appendix documents the specific methods, procedures, and materials used to collect and analyze ground water samples and monitoring the vapor recovery system.

Gauging and Measuring Monitor Wells.

obtain WEGE personnel to sampling a well, the depth to ground water (DTW) and the product Prior water-product using a battery powered depth to measurements: interface probe and or by using a specially designed bailer. And the vacuum influence at the well head, using a water manometer that is attached to a sample port in the well head. The DTW probe is lowered into the well casing until the instrument The distance signals that the top of water has been reached. from the top of water to the top of casing is read from the tape that is attached to the probe. The tape is calibrated in 0.01 foot intervals for accuracy to 0.01 foot. The measured distance is subtracted from the established elevation at the top of casing to determine the elevation of ground water with respect to mean The probe is washed with TSP (Tri Sodium Phosphate) and rinsed in distilled water before each measurement. designed and built bailers that will collect a sample of the contents of a well to show the exact thickness of any floating product. Some of the abbreviations used in water sampling and or measuring or monitoring are: DTW, Depth to Water (from surface reference ie usually TOC); TOC, Top of Casing; MSL, Mean Sea Level; AMSL and BMSL, Above and Below MSL; BS, Below Surface; TOW, Top of Water; TSP, Tri Sodium Phosphate.

Purging Standing Water from Monitor Wells

If no product is present, WEGE personnel purge the well. This is accomplished by removing ground water from the well until the water quality parameters (temperature, pH, and conductivity) stabilize, or until the well is emptied of water. Periodic and conductivity measurements of ground water temperature, pH, were taken with a Hydac Monitor or other meter and recorded along with the volume of ground water removed from the well. done by one or more methods singularly or in combination. Bailers, pneumatic or electric sample pumps, or vacuum pump tanks The usual amount of water removed is three well volumes. The water collected during purging is either safely stored onsite for later disposition, transported to an approved onsite or offiste sewer discharge system, or an approved onsite or offsite treatment system.

Collection of Water Sample for Analysis

The well is allowed to recover after purging and a ground water sample is collected. A fresh bailer is used to collect enough water for the requirements of the laboratory for the analyses needed or required. The water samples are decanted from the bailer into the appropriate number and size containers. These containers are furnished pre-cleaned to exact EPA protocols, with and without preservatives added, by the analytical laboratory or a chemical supply company. The bottles are filled, with no headspace, and then capped with plastic caps with teflon liners.

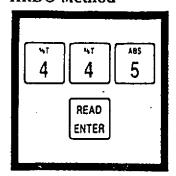
The vials or bottles containing the ground water samples are labeled with site name, station, date, time, sampler, and analyses to be performed, and documented on a chain of custody form. They were placed in ziplock bags and stored in a chest cooled to 4°C with ice. The preserved samples are chain of custody delivered to the chosen laboratory.

Analytical Results

TPH is the abbreviations used for Total Petroleum Hydrocarbons used by the laboratories for water and soil analyses. The letter following TPH indicates a particular distinction or grouping for the results. The letters "g", "d", "k", or "o" indicate gasoline, diesel, kerosene, or oil, respectively, ie TPH-d for diesel range TPH.

MBTEX acronym or abbreviation used for Methyl Tertiary Butyl Ether (MTBE), Benzene, Toluene, Ethylbenzene and all of the Xylenes.

The less than symbol, <, used with a "parts per value" indicates the lower detection limit for a given analytical result and the level, if present, of that particular analyte is below or less than that lower detection limit.


Other abbreviations commonly used are ppm, ppb, mg/Kg, ug/Kg, ml/l and ul/l are parts per million, parts per billion, milligrams per kilogram, micrograms per kilogram, milliliters per liter, microliters per liter, respectivily.

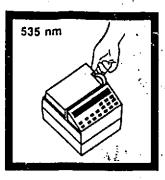
Chain of Custody Documentation

All water samples that are collected by WEGE and transported to a certified analytical laboratory are accompanied by chain-of-custody (COC) documentation. This documentation is used to record the movement and custody of a sample from collection in the field to final analysis and storage. Samples to be analyzed at the certified laboratory were logged on the COC sheet provided by the laboratory. The same information provided on the sample labels (site name, sample location, date, time, and analysis to be performed) are also noted on the COC form. Each person relinquishing custody of the sample set signs the COC form indicating the date and time of the transfer to the recipient. A copy of the COC follows the samples or their extracts throughout the laboratory to aid the analyst in identifying the samples and to assure analysis within holding times.

Copies of the COC documentation are included with the laboratory results in Appendix B of this report.

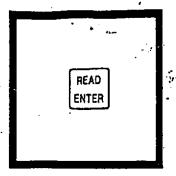
HRDO Method

1. Enter the stored program number for dissolved oxygen.


Press: 4 4 5 READ/ENTER

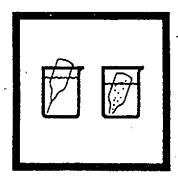
The display will show: DIAL nm TO 535

Note: Or, use the up and down arrows to scroll the display to:

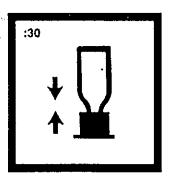

115 mg/l O 11RDO and press: READ/ENTER

Note: Samples must be analyzed on site and cannot be stored; see Sampling and Storage below.

2. Rotate the wavelength dial until the small display shows:

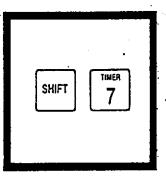

535 nm

3. Press: READ/ENTER
The display will show:
mg/l O₂ HRDO



4. Fill a zeroing vial (the blank) with at least 10 mL of sample. Fill a blue ampul cap with sample.

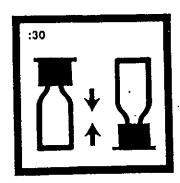
5. Fill a High Range Dissolved Oxygen AccuVac Ampul with sample.


 Note: Keep the tip immersed while the ampul fills completely.

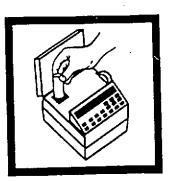
6. Without inverting the ampul, immediately place the ampul cap that has been filled with sample securely over the tip of the ampul. Shake the ampul for approximately 30 seconds.

Note: A small amount of the undissolved HRDO Reagent does not affect results.

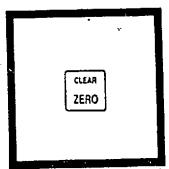
Note: The cap prevents contamination with atmospheric oxygen.



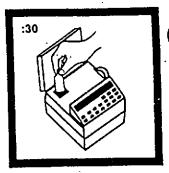
7. Press: SHIFT TIMER
A two-minute reaction
period enables oxygen,
which was degassed
during aspiration, to
redissolve and react.



8. Place the AccuVac Vial Adapter into the cell holder.


Note: Place the grip tab at the rear of the cell holder.

9. When the timer beeps, the display will show:
mg/l O₂ HRDO
Shake the ampul for 30 seconds.


10. Place the blank imports cell holder. Close the light shield.

11. Press: ZERO
The display will show:
WAIT

0.0 mg/l O₂ HRDO

12. Place the AccuVac ampul into the cell holder. Close the light shield. Wait approximately 30 seconds for the air bubbles to disperse from the light path.

Press: READ/ENTER

The display will show: WAIT

then the result in mg/L dissolved oxygen will be displayed.

Note: In the constant-on mode, pressing READ/ENTER is not required. WAIT will not appear. When the display stabilizes, read the result.

SAMPLING AND STORAGE

The foremost consideration in sampling with the High Range Dissolved Oxygen AccuVac Ampul is to prevent the sample from becoming contaminated with atmospheric oxygen. This is accomplished by capping the ampul with an ampul cap in the interval between breaking open the ampul and reading the absorbance. If the ampul is securely capped, the ampul should be safe from contamination for several hours. The absorbance will decrease by approximately 3% during the first hour and will not change significantly afterwards.

Sampling and sample handling are important considerations in obtaining meaningful results. The dissolved oxygen content of the water being tested can be expected to change with depth, turbulence, temperature, sludge deposits, light, microbial action, mixing, travel time and other factors. A single dissolved oxygen test rarely reflects the accurate over-all condition of a body of water. Several samples taken at different times, locations and depths are recommended for most reliable results. Samples must be tested immediately upon collection although only a small error results if the absorbance reading is taken several hours later.

ACCURACY CHECK

The results of this procedure may be compared with the results of a titrimetric procedure or dissolved oxygen meter.

PRECISION

In a single laboratory, using a standard solution of 7.22 mg/L O_2 determined by the Winkler method and two representative lots of reagent with the DR/2000, a single operator obtained a standard deviation of \pm 0.20 mg/L O_2 .

INTERFERENCES

The following do not interfere at a level of 10 mg/L which is in excess of naturally occurring levels of Cr³⁺, Mn²⁺, Fe²⁺, Ni²⁺, Cu²⁺ and NO₂⁻

APPENDIX B LABORATORY RESULTS

Northstate Environmental

Subcontracted Microbiology Assays performed by

CytoCulture Environmental Biotechnology

CHAIN OF CUSTODY FORM

Project Name:	Project No.	Northstate LOG IN #: 97-127-2	
Northstate Client Organization:		Northstate Project Manager:	
Address to Send Results: P.o. Box S			
Client Fax for Sending Data: 4/5-588-1950		Client Contact / Project Manager:	
Client Tel for Follow-up: 4ち-266・1583		Client Sampler / Recorder:	

Sample 1.D.	Sampling		Matrix		Analysis								
Indicate target Hydrocarbon range (rappline	Date	Time	Soil	Water	CFU Hydrocarboa Degraders	CFU Total Heterotrophic	рН	DO	NH4	PO,	NO ₃	SO ₄	Other Tests or Comments
MW-2	12/3/17	14:25	<u> </u>	Water	X		X		メ	X	1		,
MW-I		11202			×		X		×	X			
MW-5		12.42			\		X		X	×			
MW-7		11:50			X		1		×	X			
MM-8		18:00			×		X		×	X			
		1		<u> </u>								<u> </u>	

Chain of Custody Record	Signature of this form constitutes	a firm Purchase Order for services	requested above.
Relinquished by	Date/I-r:	Received by:	Date/Hr:
1 ALKAT	12/30/97 S:15PM		
Received for CytoCulture Lab by:		CytoCulture Tel: 510-233-0102	Please fax Chain of Custody form
< voussesses	12 30 97 520 pm	Lab Services Fax: 510-233-3777	to CytoCulture prior to delivery.

January 7, 1998

Client: Northstate Environmental

Contact: John Stetz

Client Code: Lab Northst

Fax: (415)-588-1950 Tel: (415)266-4563

Project Log In# 97-1272

SAMPLES: Five water samples were received on 12/30/97. The samples

were stored at 4°C until assayed the next morning.

Hydrocarbon-Degrading Bacteria Enumeration Assay

ANALYSIS REQUEST:

Bacterial enumeration for total petroleum hydrocarbon-degraders (target

hydrocarbon: gasoline, possibly waste oil).

CARBON SOURCE:

Petroleum hydrocarbons were added as the sole carbon and energy sources for the growth of hydrocarbon-degrading aerobic bacteria on agar plates. Gasoline (Chevron Reg.) was added to the lids to provide petroleum hydrocarbon vapors. Diesel (Chevron #2) and motor oil were blended in a 50:50 ratio and dissolved into the agar to provide additional aliphatic hydrocarbons in the growth matrix.

PROTOCOL:

Sterile agar plates (100 x 15 mm) were prepared with minimal salts medium at plf 6.8 with 1.5% nuble agar, without any other carbon sources or nutrients added. A 200 ml aliquot of pasteurized gasoline was added to absorbent paper in the plate lids to provide the vapor source of light fraction hydrocarbons. Plates were inoculated with 1.0 ml of sample or a log dilution of each water sample. Triplicate plates were inoculated at sample dilutions of 10^h, 10^{-t}, and 10⁻². The hydrocarbon plates were poured on 12/31/97 and counted after 7 days on 1/7/98. The plate count data are reported as colony forming units (efu) per milliliter (mi) for the water samples. Each bacteria population value represents a statistical average of the plate count data obtained with inoculations for two of the three log dilutions tested.

Hydrocarbon-Degrading Bacteria Enumeration Results

CLIENT SAMPLE NUMBER	SAMPLE DATE	IIYDROCARBON DEGRADERS (cfu/ml or cfu/g)
MW-2	12/30/97	2.2×10^2
MW-1	12/30/97	6 x 10 1
MW-5	12/30/97	1.6×10^2
MW-7	12/30/97	6×10^1
MW-8	12/30/97	3 x 10 ²

1 x 101 cfu/ml is the lowest reporting level for this assay.

NUTRIENT ASSAYS

ANALYSIS REQUEST:

Nutrient assays for nitrogen as ammonia and phosphorus as ortho-

phosphate.

PROTOCOL:

Spectrophotometric assays were performed to determine the concentrations of ammonia nitrogen and ortho-phosphate using precalibrated reagents and a Gilford 240 spectrophotometer. Assays

conform to California CLP and Standard Water & Wastewater methods.

Client Sample	Sample Date	N-Ammonia (mg/L or mg/kg)	Ortho- phosphate (mg/L or mg/kg)	N-Nitrate (mg/L or mg/kg)	Sulfate (mg/L or mg/kg)
MW-2	12/30/97	1.3	0.4	NT	NT
MW-1	12/30/97	1.3	0.1	NT	NT
MW-5	12/30/97	0.8	0.4	NT	NT
MW-7	12/30/97	0.2	0.2	NT	NT
MW-8	12/30/97	0.8	0.3	NT	NT

0.1 mg/L represents the lowest reporting level for these assays. NT = not tested

Dissolved Oxygen and pH

ANALYSIS REQUEST:

Analysis for dissolved oxygen and pH for water and soil samples.

PROTOCOL:

The pH levels of the water or extracted soil samples were measured with a Corning digital pH meter and reported as the mean of triplicate values. The dissolved oxygen levels of the water samples were measured with a YSI analog DO meter and reported as the mean of duplicate values. All assays conform to California CLP and Standard Water & Wastewater analytical specifications. The pH and DO were measured on 12/31/97.

Client Sample	Sample Date	DO (mg/L)	Нq
MW-2	12/30/97	NT	6.55
MW-1	12/30/97	NT	6.50
MW-5	12/30/97	NT	6.63
MW-7	12/30/97	NT	6.61
MW-8	12/30/97	NT	6.56

Moderate to low levels of discernable colonies of hydrocarbon-degrading acrobic bacteria were enumerated in all 5 samples. In spite of obvious dissolved phase hydrocarbons (strong odor) in several samples, population densities were not greater than 300 cfu/ml suggesting other environmental factors were inhibiting the growth of the bacteria. Nutrient levels proved to be low, near or below the level of detection for the ammonia and o-phosphate levels. The pH levels were near optimal for typical soil bacteria monitored in contaminated ground water.

CytoCulture can provide, on a consulting basis, assistance with interpreting these data in the context of other field data and assist in the development of bioremediation strategies for this site. Please contact us if we can be of any further help.

Bacteria plate enumerations, nutrient assays, pH and DO measurements were performed by Dr. James McFldoon. Laboratory Services, and reported by Randall von Wedel.

James P. McEldoon, Ph.D.

Laboratory Services

Randali von Wedel, Ph.D.

Principal, Director of Research

c:\Cytolab\Lub Report\lish\Norths\sacta1.4

-			8 haarba		Sile						
 Ph			ADSORDA	nce vs. Con	Centra	non lem	ipiate				
Project: N	offistate	•		-				Date: 1/7/9)8		
	Ammonia	Nitrogen A	SEIV		•	· •	ortho-Pho	sphate Ass	Kew		
x	•		٧			X			, V		
ppm NH4	Abs 1	Abs 2	Abs Avg		•	ppm PO4	Abs 1	Abs 2	Abs Avg		
0.0				-	-	0.0		-	- · · · · - 		
0.5	0.108	0.105				1.0		–			
1.0	0.172	0.173		•	-	2.0					
2.0	0.358	0.356				4.0					
	_		•		•						
lope	0.1752		•		•	slope	0 158443		,		
nt	0.0057			•		int	-0.0109				
or	0.995875		•	• .	· · · · -	cor	0.998643			-	-
_								,			
	Abs		%Catc/Std	,		- •	PPM	%Calc/Std			
STDs	0.1065			ST	Ds.	0.136	0.93	92.7		•	
	0.1725		95.2			0.302	1.97	98.6	-		
. — -	0.324	1.82	90.8			0.628	4.03	100.9			
							•				
					•						
	0.400					0.700					
	0.300	ļ	· /			0.600 0.500			•		
<u>-</u>	20 0.200			■ Series1	•		[:·	1	Seri	# 1	
-	0.200			Linear (S	eries1)	on 0.400 on ≼ 0.300			Line	ar (Series1)	
—	0 100	1				0.200					
	0.000 1					0.100 0.000					
		1.0 1.1	0 2.0				0.0 2	.0 4.			
	·	PPM				,			U		
—		FFAR	MI N				i-PIN	PO4			
		· -	<u> </u>								
											
iample		DF sample	OF		<u> </u>	-i				NH4	
Maπple WW-2		⊔r sample	UF SOIL /	Abs 1 Abs		Blk 1	Blk 2	Avg-Bik		PPM	
иvv•2 ЙVV•1	10 10		1	0.229	0.253		0.000			1.3	
vivv-1 √IW-5	10°		1	0.225	0 255		0.000			1.3	
vivv-3 VIW-7	.0		1.	0.111	0.171		0.000			0.8	
A144. (1	1	0.027	0.047		0.000	0.037	0.18	0.2	

Page 1

•	
Sh	eet1

					Sne	<u> </u>					
MW-B	. '0	. 1	1	0.115	0 165	0.000	0.000	0.140	0.77	0.8	
X	10	. 1]	1	0.000	0 000	0.000	0.000	ି ଦେବ ବ	-0.03	0.0	
×	10	1	1	0.000	0.000	0.000	0.000	000	-0.03	0.0	
••	•									PO4	
sample	m sample	OF sample DF	soil A	lbs 1	Abs 2	Blk 1	Blk 2	Avg-Blk	PPM	PPM	
MW-2	10	- 1		0.05	0 C52		0.000	0.051	0.39	0.4	
MW-1	10	1	1	0.001	0.001	•	0 000	0.001	0.08	·	
MW-5	10	1	1	0.047	0.C49	•	0.000	0.048	-	0.4	
MW-7	10	· i	1	0.013	0.017	• •	0.000			0.2	
MW-8	10	1	1	0.04	0.049		0.000				
MW-	10	4	1	0	0		0,000			0.1	•
MW.	10	1	1		0	• •	0.000		_	0.1	<u> </u>
MW.	10	1	Î	0	0		0.000			0.1	

FAX	Date	12/28
	Number of pa	iges including cover sheet-
TO: George	FROM:	John Stetz North State Environmental P.O. Box 5624 South San Francisco, CA 94083
Phone Fax Phone 916-442-0273	Phone Fax Phone	415.266.4583 415.588.1950
REMARKS: Urgent For your r	review 🔲 Reply Al	SAP Please Comment
_ MW-6, MW-10 from	. Tonys	

FAX	Date 1	48
	Number of pag	ges including cover sheet- 13
TO: GEORGE CONVERSE	FROM:	John Stetz North State Environmental P.O. Box 5624 South San Francisco, CA 94083
Phone Fax Phone 916 - 662 - 0273	Phone Fax Phone	415.266,4583 415.588.1950
REMARKS: Urgent For your review	Reply AS	AP Please Comment

Lab Number:

97-1272

Client:

Western Geo-Engineers

Project:

Tony's

Date Reported: 01/09/98

Analyte 1	Method	Result	<u>Unit</u>	Date Sampled	Date Analyzed
ple: 9 -12	72-01 Cli	ent ID: MW-	2	12/30/97	WATER
Gasoline	8015M	35000	ug/L		01/08/98
Benzene	8020	4900	ug/L		
Ethylbenzene	3020	1600	ug/L		
Toluene	2013	4900	ug/I		
Xylenes	80	7000	ug/L		
Sample: 97-12	72-02 Cli	ent ID: MW-	1	12/30/97	WATER
Gasoline	8015M	27000	ug/L		01/08/98
Benzene	8020	2900	ug/L		
Ethylbenzene	8020	1400	ug/L		
Toluene	8020	2100	ug/1.		
Xylenes	8020	5100	ug/L		
Sample: 97-12	72-03 Cli	ent ID: MW-	- 4	12/30/97	WATER
Gasoline	8015M	2300	ug/L		01/08/98
Benzene	8020	410	ug/L		
Ethylbenzene	8020	100	ug/L		
Toluene	8020	270	ug/L		
Xylenes	8020	1500	ug/L		

Lab Number:

97-1272

Client:

Western Geo-Engineers

Project:

Tony's

Date Reported: 01/09/98

Analyte	Method	Result	Unit	Date Sampled	Date Analyzed
ple: 97-12	72-04 Cli	ent ID: MW-	-5	12/30/97	WATER
Gasoline	8015M	790	ug/L		01/08/98
Benz ene	8020	82 .	ug/li		
Ethylbenzene	8020	59	ug/L		
Toluene	8020	66	ug/L		•
Xylenes	8020	160	ug/I.		
Sample: 97-12	272-05 Cli	ent ID: MW-	-1	12/30/97	WATER
Gasoline	8015M	1400	ug/L		01/08/98
Benzene	8020	130	nd\I:		
Ethylbenzene	8020	75	ug/L		
Toluene	8020	98	ug/L		
Xylenes	8020	200	ug/h		
Sample: 97-12	272-06 Cli	ent ID: MW	-8	12/30/97	WATER
Gasoline	801.5M	28000	ug/L		01/08/98
Benzene	8020	6000	ug/L		
Ethylbenzene	8020	2100	ug/L		
Toluene	8020	1600	ug/L		
Xylenes	8020	4700	ug/L		

	North State Envir Phone: (415) 588-9652	ronmental Analytical Fax: (415) 588-1950	Laborator
•	1 1101101 (110) ===================================	, ,	

J	1+-12
Chain of Custody / Red	quest for Analysis

Client: (Me)	(7		Report	to: Rug /	'Hā		Phone: 5%	668 570		Turnaround Time
Mailing Address:	A-11/4 ****		Billing	to: Reg 1.	Beemen,	_	Fax:			permit
				ican lkin		ì	PO# / Billing	Reference:	<u> </u>	12-30-47
					95776				Samp	ler: C. Consums &
Project / Site Address:	· Tany's			Ai Reques		/	///	/ / /		
Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time					$_{-}$	/ Comments/Hazard
mwe	water	2/1CA5	Hel	147/17/17				<u> </u>		
muju		1	_}_	1 / 162	١ '				_	
	•									
				i -						
			 							
	_	. İ							or.	ř
Relinquished by:	20/	mul		Date:/2/3//87 Ti	me: /2:25 R	ecei	ved by:	LAA,	165 -165	Lab Comments
Relinquished by:			1	Date: Ti			ved by: [•		_
Relinquished by:			1	Date: Ti	me: A	ecei	ved by:	,		

Lab Number:

97-1281

Client:

Western Geo-Engineers

Project:

Tony's

Date Reported: 01/07/97

	Method	Result	Unit	Date Sampled 12/30/97	Date Analyzed WATER
ple: 97-12		ent ID: MW-		12/30/5:	01/05/98
Gasoline	8015M	36000	\mathtt{ug}/L		01/03/30
Benzene	8020	6600	ug/L		
Ethylbenzene	8020	1500	ug/I		
Toluene	8020	7600	ug/L		
Xylenes	8020	7700	ug/L		
Sample: 97-12	181-02 Cli	ent ID: MW	-10	12/30/97	WATER
Gasoline	8015M	10000	ug/L	v → F =	01/05/98
Benzene	8020	5300	ug/L		
Et.hylbenzene	8020	1100	ug/L		
Toluene	8020	76	ug/≀		
Xylenes	8020	780	ug/L		

Lab Number:

97-1272

Client:

Western Geo-Engineers

Project:

Tony's

Date Reported: 01/09/98

Λnalyte	Method	Result	Unit	Date Sampled	Date Analyzed
Sple: 97-1:	272-07 Cli	ent ID: MW-	11	12/30/97	WATER
cosoline	8015M	710	ug/L		01/08/98
Renzene	8020	66	ug/L	•	
Ethylbenzene	8020	59	ug/l,		
Toluene	8020	97	ug/L		
Xylenes	8020	190	ug/L		

Quality Control/Quality Assurance

Lab Number:

97-1272

Client:

Western Goo-Engineers

Project:

Tony's

Date Reported:01/09/98

Gasoline and BTEX by Methods 8015M and 8020

		Reporting			MS/MSD	
alyto	Method	Limit	Unit	Blank	Recovery	RPD
Gasoline	B015M	50	ug/L	ND	88	2
Benzene	8020	0.5	ug/L	ND	99	6
Ethylbenzene	8020	0.5	ug/L	ND	112	5
Toluene	8020	0.5	ug/L	ND.	108	5
Xylenes	8020	1.0	ug/L	ND	110	3

ELAP Certificate NO:1753

Reviewed and Approved

John A.Murphy, Laboratory Director

Page 4 of 4

Quality Control/Quality Assurance

Lab Number:

97-1281

Client:

Western Ceo-Engineers

Project:

Tony's

Date Reported:01/07/97

Gasoline and BTEX by Methods 8015M and 8020

		Reporting			MS/MSD	
Arrlyte	Method	Limit	Unit	Blank	Recovery	RPD
asoline	8015M	50	ug/L	ND	91	36
Benzene	8020	0.5	ug/L	ND	110	15
thylbenzene	8020	0.5	ug/1	ND	108	17
oluene	8020	0.5	ug/L	ND	109	16
(ylenes	8020	1.0	ug/L	ND	107	12

ELAP Certificate NO:1753

Reviewed and Approved

John A.Murphy, Laboratory Director

Page 2 of 2

(3)	

North State Environmental Analytical Laboratory

Chain of Custody / Request for Analysis Lab Job No.: _ Page ___ of ___ Phone: (415) 588-9652 Fax: (415) 588-1950

KPT-

Client: NSF	į.		Report to:	n Stett		Phone: 415-	206-4583	Turnaround Time
Mailing Address:	(C) 1)J		Billing to:			Fax: 415-5	88-1950	Normal
7 · U. 15·	or seri					PO# / Billing R	elerence:	Oate:
ייופני מיין נ	A 94083					97-12	72	Sampler:
Project / Site Address		1	F	Analysis A		*///	77	7/
Sample tD	Sample Type	Container No./Type		npling /5 c	SA SA		/ /	/ Comments/Hazards
MW-2	Water	3 VUKS	12/31/9	3 14:05 X	14167			
mw - [1	3		11:02. 1	14168			
MW-5		ን		12:42 X	14169	1	J	
MU-7		3		1150 ×	14170			
mw-8	1	2		1020 X	14171	V		
KNOOFKST-		İ					:	
					-			
		•			<u>. İ</u>		İ	
1	- 							
				!			- 	:
Relinquished by: 4	LM St	 7	Date: M	97 Time: 9:054		ved by	4. Stew	u~ Lab Comments
Relinquished by:	~······		Date:	Time:		ved by:		
Relinquished by:		~	Date:	Time:	Recei	ved by:		

K PRIME, INC.

ANALYTICAL LABORATORY

4197 Lakeside Drive, Suite170 Richmond, CA 94806 Phone: 510.222.4815

Santa Rosa CA 95403 Phone: Fax:

3821 Westwind

707.527.7574 707.527.7879

Fax: 510.222.4817

TRANSMITTAL

DATE:

01/16/98

TO:

Mr. JOHN STETZ

Acct:

100-9486

NORTH STATE ENVIRONMENTAL.

Project:

97-1272

PO BOX 5624

SOUTH SAN FRANCISCO CA 94083

Phone.

415,266,4583

FAX:

415.588.1950

FROM:

Richard A Kagel, Ph D. AH 1/16/98

Laboratory Director

SUBJECT:

YOUR PROJECT "97-1272" LABORATORY RESULTS

Enclosed please find K Prime's laboratory reports for the following samples

SAMPLE ID	SAMPLE TYPE	DATE	KPI LAB#
	WATER	12/30/97	14167
MW-2	WATER	12/30/97	14168
MW-1	WATER	12/30/97	14169
MW-5	WATER	12/30/97	14170
MW-7 MW-8	WATER	12/30/97	14171
M W - 8	At (J) I froz	* : -	

These samples were received in our laboratory on 12/31/97 and tested in our laboratory as requested on the chain of custody document.

Please call me if you have any questions or need further information. Thank you for this opportunity to be of service.

SAMPLE ID:

MW-2

P. 03

K PRIME, INC. 14167 LAB NO: LABORATORY REPORT WATER SAMPLE TYPE: DATE SAMPLED: 12/30/97 **OUR PROJECT: 9486** 14:05 TIME SAMPLED: YOUR PROJECT: 97-1272 1/6/98 DATE ANALYZED: METHOD: METHANE IN WATER UG/L UNITS: REFERENCE: EPA 18 (GC/FID) SAMPLE REPORTING CAS NO. COMPOUND NAME CONC LIMIT 1,240 0.789

74-82-8

NOTES:

METHANE

ND - NOT DETECTED AT STATED REPORTING LIMIT

NA - NOT APPLICABLE OR AVAILABLE

PREPARED BY: DATE:	MA.	9-98	. 051411

P.04

K PRIME, INC.

LABORATORY REPORT

SAMPLE ID: MW-1

14168

SAMPLE TYPE: WATER

DATE SAMPLED: 12/30/97

OUR PROJECT: 9486
YOUR PROJECT: 97-1272
TIME SAMPLED: 11:02

METHOD: METHANE IN WATER DATE ANALYZED: 1/6/98
DESERVENCE: ERA 18 (GC/FID) UNITS: UG/L

REFERENCE: EPA 18 (GC/FID) UNITS: UG/L

 COMPOUND NAME
 CAS NO.
 REPORTING
 SAMPLE

 LIMIT
 CONC

 METHANE
 74-82-8
 0.789
 3,200

NOTES:

ND - NOT DETECTED AT STATED REPORTING UMIT

NA - NOT APPLICABLE OR AVAILABLE

PREPARED BY:

DATE

1-9-98

APPROVED BY:

MAC

DATE:

1/13/18

P.05

MW-5 SAMPLE ID: K PRIME, INC. 14169 LAB NO: LABORATORY REPORT WATER SAMPLE TYPE: 12/30/97 DATE SAMPLED: OUR PROJECT: 9486 12:42 TIME SAMPLED: YOUR PROJECT: 97-1272 1/6/98 DATE ANALYZED: **METHOD: METHANE IN WATER** UG/L UNITS: REFERENCE: EPA 18 (GC/FID) SAMPLE CAS NO. REPORTING **COMPOUND NAME** CONC LIMIT 11.3 0.789 74-82-8 METHANE

NOTES:

ND - NOT DETECTED AT STATED REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE

PREPARED BY:

DATE:

1-9-98

APPROVED BY:

BAK

DATE

in-16-98 01:51P Jan-16-98 12:11 Ginger Brinlee

> SAMPLE ID: 14170 LAB NO: WATER SAMPLE TYPE: K PRIME, INC. 12/30/97 LABORATORY REPORT DATE SAMPLED: 11:50 TIME SAMPLED: OUR PROJECT: 9486 YOUR PROJECT: 97-1272 1/6/98 DATE ANALYZED: UG/L UNITS: METHOD: METHANE IN WATER REFERENCE: EPA 18 (GC/FID) SAMPLE REPORTING CONC CAS NO. LIMIT COMPOUND NAME 449 0.789 74.82.8 METHANE

ND - NOT DETECTED AT STATED REPORTING LIMIT NOTES:

NA - NOT APPLICABLE OR AVAILABLE

MW-7

APPROVED BY:____ DATE:

MW-8 SAMPLE ID: K PRIME, INC. 14171 LAB NO: LABORATORY REPORT WATER SAMPLE TYPE: 12/30/97 DATE SAMPLED: **OUR PROJECT: 9486** TIME SAMPLED: 10:00 YOUR PROJECT: 97-1272 1/6/98 DATE ANALYZED: METHOD: METHANE IN WATER UNITS: UG/L REFERENCE: EPA 18 (GC/FID) SAMPLE REPORTING CAS NO. COMPOUND NAME CONC UMIT 3,540 0.789 74-82-8 METHANE

NOTES:

ND - NOT DETECTED AT STATED REPORTING LIMIT

NA - NOT APPLICABLE OR AVAILABLE

PREPARED BY:

DATE:

<u>1-9-</u>96

APPROVED BY:

12/11

DATE

1/12/1/

80.4 80.4

MW-1 SAMPLE ID: K PRIME, INC. 14168 LAB NO: LABORATORY REPORT WATER SAMPLE TYPE: DATE SAMPLED: 12/30/97 **OUR PROJECT: 9486** 11:02 TIME SAMPLED: YOUR PROJECT: 97-1272 1/6/98 DATE ANALYZED: **METHOD: CARBON DIOXIDE** UG/L UNITS: REFERENCE: ASTM D1946(GC/TCD) SAMPLE REPORTING CAS NO. COMPOUND NAME CONC LIMIT 99,100 165 124-38-9

NOTES:

CARBON DIOXIDE

ND - NOT DETECTED AT STATED REPORTING LIMIT

NA - NOT APPLICABLE OR AVAILABLE

APPROVED BY:____

Jan-16-98 01:52P Jan-16-98 12:11 Ginger Brinlee

(707) 527-7879

P.08 P.07

SAMPLE ID:

....

LABORATORY REPORT

K PRIME, INC.

LAB NO:

14167

MW-2

OUR PROJECT: 9486

SAMPLE TYPE: DATE SAMPLED: WATER 12/30/97

YOUR PROJECT: 97-1272

TIME SAMPLED:

14:05

METHOD: CARBON DIOXIDE

DATE ANALYZED:

1/6/98

REFERENCE: ASTM D1946(GC/TCD)

UNITS:

UG/L

COMPOUND NAME

CAS NO.

REPORTING

SAMPLE

LIMIT

CONC

CARBON DIOXIDE

124-38-9 165

117,000

NOTES:

ND - NOT DETECTED AT STATED REPORTING LIMIT

NA - NOT APPLICABLE OR AVAILABLE

PREPARED BY:

DATE:

-9-96

APPROVED BY:

··-----

DATE:

1/13/196

165

MW-5 SAMPLE ID: K PRIME, INC. 14169 LAB NO: LABORATORY REPORT WATER SAMPLE TYPE: 12/30/97 DATE SAMPLED: **OUR PROJECT: 9486** 12:42 TIME SAMPLED: YOUR PROJECT: 97-1272 1/6/98 DATE ANALYZED: METHOD: CARBON DIOXIDE UG/L UNITS: REFERENCE: ASTM D1946(GC/TCD) SAMPLE REPORTING CAS NO. COMPOUND NAME CONC LIMIT 62,700

124-38-9

NOTES:

CARBON DIOXIDE

ND - NOT DETECTED AT STATED REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE

APPROVED BY:

DATE:

165

MW-7 SAMPLE ID: K PRIME, INC. 14170 LAB NO: LABORATORY REPORT SAMPLE TYPE: WATER 12/30/97 DATE SAMPLED: **OUR PROJECT: 9486** 11:50 TIME SAMPLED: YOUR PROJECT: 97-1272 1/6/98 DATE ANALYZED: METHOD: CARBON DIOXIDE UNITS: UG/L REFERENCE: ASTM D1946(GC/TCD) SAMPLE REPORTING CAS NO. COMPOUND NAME CONC LIMIT 64,200

124-38-9

NOTES:

CARBON DIOXIDE

ND - NOT DETECTED AT STATED REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE

PREPARED BY:

APPROVED BY:

P.12

MW-8 SAMPLE ID: K PRIME, INC. 14171 LAB NO: LABORATORY REPORT WATER SAMPLE TYPE: 12/30/97 DATE SAMPLED: **OUR PROJECT: 9486** 10:00 TIME SAMPLED: YOUR PROJECT: 97-1272 1/6/98 DATE ANALYZED:

METHOD: CARBON DIOXIDE UG/L UNITS: REFERENCE: ASTM 01946(GC/TCD) SAMPLE REPORTING CAS NO. COMPOUND NAME CONC LIMIT 153,000

124-38-9

NOTES:

CARBON DIOXIDE

ND - NOT DETECTED AT STATED REPORTING UMIT

NA - NOT APPLICABLE OR AVAILABLE

PREPARED BY:

165

APPROVED BY:

APPENDIX C RBCA RISK BASED CORRECTIVE ACTION TABLES

Output Table 1

RBCA TIER 1/TIER 2 EVALUATION

Site Name: Tony's Express Service Statiodob Identification: Tonys Site Location: 3609 East 14th Street Date Completed: 1/21/98

Completed By: Roy Butler

Software: GSt RBCA Spreadsheet

Version: 1.0.1

NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined.

xposure			Residential		Commercia	Irindustrial	Surface				
arameter	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn	Parameters .	Definition (Units)	Residential	Constrctn	
C	Averaging time for carcinogens (yr)	70					A	Contaminated soil area (cm^2)	<u>1.5E+06</u>	1.0E+06	
'n	Averaging time for non-carcinogens (yr)	30	6	16	25	1	W	Length of affect, soil parallel to wind (cm)	<u>1.2E+03</u>	1.0E+03	
		70	15	35	70		W.gw	Length of affect, soil parallel to groundwater (cm	1.2E+03		
1	Body Weight (kg)	30	6	16	25	1	Uair	Ambient air velocity in mixing zone (cm/s)	2.3E+02		
}	Exposure Duration (yr)	30	J		25	1	delta	Air mixing zone height (cm)	2.0E+02		
	Averaging time for vapor flux (yr)				250	180	Lss	Thickness of affected surface soils (cm)	9.1E+01		
;	Exposure Frequency (days/yr)	350			250	.00	Pe	Particulate areal emission rate (g/cm^2/s)	6.9E-14		
.Dem	Exposure Frequency for dermal exposure	350					, 6	Tarroduce discast entresistant (8-111 - 27			
gw	Ingestion Rate of Water (Liday)	2			1	400					
5	Ingestion Rate of Soil (mg/day)	100	200		50	100		D.E.M Make	Value		
adi	Adjusted soil ing. rate (mg-yr/kg-d)	1.1E+02			9.4E+01			Definition (Units)	2.0E+02		
a.in	Inhalation rate indoor (m^3/day)	15			20		delta.gw	Groundwater mixing zone depth (cm)			
a.out	Inhalation rate outdoor (m^3/day)	20			20	10		Groundwater infiltration rate (cm/yr)	3.0E+01		
4.00i	Skin surface area (dermal) (cm^2)	5.8E+03		2.0E+03	5,8E+03	5.8E+03	Ugw	Groundwater Darcy velocity (cm/yr)	7.6E+Q2		
\adi	Adjusted dermal area (cm^2-yr/kg)	2.1E+03			1.7E+03		Ugw.tr	Groundwater seepage velocity (cm/yr)	3.8E+03		
•	Soil to Skin adherence factor	1					Ks	Saturated hydraulic conductivity(cm/s)	1.3E-03		
a F.a		FALSE			FALSE		grad	Groundwater gradient (cm/cm)	1.9E-02		
AFs.	Age adjustment on soil ingestion	FALSE			FALSE		Šw	Width of groundwater source zone (cm)	6.1E+03		
AFd .	Age adjustment on skin surface area	TRUE					Sd	Depth of groundwater source zone (cm)	7.6E+02		
x	Use EPA tox data for air (or PEL based)?	FALSE					phi.eff	Effective porosity in water-bearing unit	2.0E-01		
vMCL?	Use MCL as exposure limit in groundwater?	FALSE					foc.sat	Fraction organic carbon in water-bearing unit	1.0E-03		
							BIO?	Is bigattenuation considered?	TRUE		
							BC	Biodegradation Capacity (mg/L)	1.6E+01		
					0	al/Industrial	ьс	pibaagiaaalion oopaan (iiig-z)			
atrix of Exp	osed Persons to	Residential			Chronic	Constrctn	Solt	Definition (Units)	Value		
omplete Ex	posure Pathways				Caronic	Consucui	hc	Capillary zone thickness (cm)	5.1E+QQ	•	
utdoor Air					F110F	FALSE	hv	Vadose zone thickness (cm)	2.7E+02		
S.v	Volatiles and Particulates from Surface Solls	FALSE			FALSE	PALSE	rho	Soit density (g/cm^3)	1.7		
.v	Volatilization from Subsurface Soils	TRUE			TRUE		foc	Frection of organic carbon in vadose zone	0.01		
W.v	Volatilization from Groundwater	FALSE			TRUE				0.38		
idoor Air Pa	athways:						phi	Soil perceity in vadose zone	2.8E+02		
i.b	Vapors from Subsurface Soils	FALSE			TRUE		Lgw	Depth to groundwater (cm)	9.1E+01		
W.b	Vepors from Groundwater	FALSE			TRUE		Ls	Depth to top of affected subsurface soil (cm)			
ioli Pathway	•						Lsubs	Thickness of affected subsurface soils (cm)	8.2E+02		
S.d	Direct Ingestion and Dermal Contact	FALSE			FALSE	FALSE	ρΉ	Soil/groundwater pH	6.5		
	r Pathways:								capillary	vadose	foundat
syv.i	Groundwater Ingestion	TRUE			TRUE		phi.w	Volumetric water content	0.342-	0.12	0.12
544.1 5.1	Leaching to Groundwater from all Soils	TRUE			TRUE		phi.a	Volumetric air content	0.038	0.26	0.26
».1	rescribed to disconductor from an ocus	*****									
							Building	Definition (Units)	Residential	Commercial	
							Lb	Building volume/area ratio (cm)	2.0E+02	3.0E+02	
		Decid	fential		Commerc	ial/Industrial	ER	Building air exchange rate (s^-1)	1.4E-04	2.3E-04	
	ceptor Distance	Distance	On-Site		Distance	On-Site	Lork	Foundation crack thickness (cm)	1.5E+01		
	n On- or Off-Site		FALSE		Distance	TRUE	eta	Foundation crack fraction	0.01		
3W	Groundwater receptor (cm)	2.1E+04				TRUE	0.0				
3	Inhalation receptor (cm)	2.4E+03	FALSE			INOL					
							Transport	4			
							Transport	m. stateta a di latent	Residential	Commercial	
Aatrix of								Definition (Units)	(/estraingi	Communicida	
Target Risk		Individual	Cumulative				Groundwate		A 45.00		
Rab	Target Risk (class A&B carcinogens)	1.0E-06			•		ax	Longitudinal dispersivity (cm)	6.4E+02		
TRC	Target Risk (class C carcinogens)	1.0E-05					ay	Transverse dispersivity (cm)	6.4E+01		
	Target Hazard Quotient	1.0E+00					az	Vertical dispersivity (cm)	6.4E+00		
HQ		2					Vapor				
Opt Fier	Calculation Option (1, 2, or 3)	2					dcy	Transverse dispersion coefficient (cm)	2.8E+02		
	RBCA Tier	∡ .					,	Vertical dispersion coefficient (cm)	1.9E+02		

RBCA CHEMICAL DATABASE

Physical Property Data

			Moleci				ısion icients in wat	er	log (Kod log(Ko (@ 20 - 2	d)		_aw Consta !0 - 25 C)	nt	Vapor Pressur (@ 20 - 25		Solubility (@ 20 - 25			
CAS			(g/mo	le)	(cm2/s)	(cm2/s	s)	log(l/k	g)	(atm-m3)			(mm Hg)	(mg/L)	acid	base	•
Number	Constituent	type	MW	ref	Dair	ref	Dwat	ref		ref	mol	(unitless)	ref		геf		ref pKa	pKb	re
71-43-2	Benzene	Ā	78.1	5	9.30E-02	Α	1.10E-05	Α	1.58	Α	5.29E-03	2.20E-01	A	9.52E+01	4	1.75E+03	Α		
100-41-4	Ethylbenzene	Α	106.2	5	7.60E-02	Α	8.50E-06	Α	1.98	Α	7.69E-03	3.20E-01	Α	1.00E+01	4	1.52E+02	5		
108-88-3	Toluene	Α	92.4	5	8.50E-02	Α	9.40E-06	Α	2.13	Α	6,25E-03	2.60E-01	Α	3.00E+01	4	5.15E+02	29		
1330-20-7	Xylene (mixed isomers)	Α	106.2	5	7.20E-02	Α	8.50E-06	Α	2.38	Α	6.97E-03	2.90E-01	Α	7.00E+00	4	1.98E+02	5		

Site Name: Tony's Express Service Station Site Location: 3609 East 14th Street Completed By: Roy Butler

Date Completed: 1/21/1998

Software version: 1.0.1

RI	BCA :	CHEMI	CAL	DATA	BASE
----	-------	-------	-----	------	------

Toxicity Data

		eferen Dose g/kg/d				Slope Factor ng/kg/	s		EPA Weight	ls
CAS Number Constituent	Oral RfD oral		inhalation RfD_inhal	ref	Oral SF_oral	ref	Inhalation SF_inhal	ref	of Evidence	Constituent Carcinogenic ?
71-43-2 Benzene	-		1.70E-03	R	2.90E-02	Α	2.90E-02	Α	A	ŤRŪE
100-41-4 Ethylbenzene	1.00E-01	Α	2.86E-01	Α	-		-		D	FALSE
108-88-3 Toluene	2.00E-01	A,R	1.14E-01	A,R	-		•		D	FÄLSE
1330-20-7 Xylene (mixed isomers)	2.00E+00	A,R	2.00E+00	A	-		-		D	FALSE

Site Name: Tony's Express Service Stat Site Location: 3609 East 14th Street Completed By: Roy Butler

Date Completed: 1/21/1998

Software version: 1.0.1

RBCA CHEMICAL DATABASE

Miscellaneous Chemical Data

		Maximum		Exposure Abs		Relative Detection Absorption Groundwater		Soil		Half Life (First-Order Decay)				
CAS		Contaminant Level		Limit PEL/TLV Factors		(mg/L)		(mg/kg)		(days)				
Number	Constituent	MCL (mg/L)	reference	(mg/m3)	ref	Oral	Dermal		ref		ref	Saturated	Unsaturated	ref
71-43-2	Benzene	5.00E-03	52 FR 25690	3.20E+00	OSHA	1	0.5	0.002	C	0.005	S	720	720	Н
100-41-4	Ethylbenzene	7.00E-01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.002	С	0.005	S	228	228	Н
	Toluene	1.00E+00	56 FR 3526 (30 Jan 91)	1.47E+02	ACGIH	1	0.5	0.002	С	0.005	S	28	28	Н
1330-20-7	Xylene (mixed isomers)	1.00E+01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.005	С	0.005	S	360	360	Н

Site Name: Tony's Express Service Stat Site Location: 3609 East 14th Street

Completed By: Roy Butler

Date Completed: 1/21/1998

Software version: 1.0.1

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

	Representative COC Concentration								
CONSTITUENT	in Grounds	in Surface	Soil	In Subsurface Soil					
	value (mg/L)	note	value (mg/kg)	note	value (mg/kg)	note			
Benzene	6.0E+0		5.0E-2		1.1E+1				
Ethylbenzene	2.1E+0		5.0E-2		1.5E+1				
Toluene	7.6E+0		5.0E-2		3.6E+1				
Xylene (mixed isomers)	7.7E+0		5.0F-2		7.3E+1				

Site Name: Tony's Express Service Station Site Location: 3609 East 14th Street Completed By: Roy Butler Date Completed: 1/21/1998

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT

Input Screen 6.3

CONSTITUENT MOLE FRACTIONS

(Complete the following table)

CONSTITUENT	Mole Fraction of Constituent in Source Material
Benzene	
Ethylbenzene	
Toluene	
Xvlene (mixed isomers)	

Site Name: Tony's Express Service Stat Completed By: Roy Butler Site Location: 3609 East 14th Street Date Completed: 1/21/1998

GROUNDWATER DAF VALUES

(Enter DAF values in the grey area of the following table)
Dilution Attenuation Factor
(DAF) in Groundwater

	12:11 / 11: 0:00:1011010:						
CONSTITUENT	Residential	Comm./Ind.					
	Receptor	Receptor					
Benzene	6.0E+0	1.0E+0					
Ethylbenzene	6.0E+0	1.0E+0					
Toluene	6.0E+0	1.0E+0					
Xylene (mixed isomers)	6.0E+0	1.0E+0					

Site Name: Tony's Express Service Station Completed By: Roy Butler Site Location: 3609 East 14th Street Date Completed: 1/21/1998

RBCA SITE ASSESSMENT

Input Screen 9.1

CONSTITUENT HALF-LIFE VALUES

(Complete the following table)

CONSTITUENT	Half-Life of Constituent (day)				
Benzene	720				
Ethylbenzene	228				
Toluene	28				
Xylene (mixed isomers)	360				

Site Name: Tony's Express Service Stati Completed By: Roy Butler Site Location: 3609 East 14th Street Date Completed: 1/21/1998

RBCA SITE ASSESSMENT

EXPOSURE LIMITS IN GROUNDWATER AND AIR

Site Name: Tony's Express Service Station Completed By: Roy Butler Site Location: 3609 East 14th Street Date Completed: 1/21/1998

	RBCA SIT	TE ASSESSMENT		Tier 2 Wo	rksheet 8.1
Site Name: Tony's Express Se	ervice Station	Site Location: 3609 East 14th S	Street Completed By: Re	oy Butler Date Completed	: 1/21/1998 1 OF
		TIER 2 EXPOSURE CONC	ENTRATION AND INTAKE CALCUL	ATION	
OUTDOOR AIR EXPOSURE PATH	ways the same	and this production and the same of C	(CHECKED IF PATHWAY IS ACTIVE)		邓 斯·西拉斯·斯斯·斯斯·斯斯·斯斯·斯斯·斯斯·斯斯·斯斯·斯斯·斯斯·斯斯·斯斯·斯
SURFACE SOILS: VAPOR AND	Exposure Concentration				
DUST INHALATION	1) Source Medium	2) NAF Value (m^3/kg) Receptor	3) Exposure Medium Outdoor Air: POE Conc. (mg/m²3) {1}/(2)	4) Exposure Multiplier (IRxEFxED)(BWxAT) (m^3/kg-day)	5) Average Daily Intake Rate (mg/kg-day) (3) X (4)
	Surface Soil Conc.			(<u>.</u>	(
Constituents of Concern	(mg/kg)				
la .	7.45	i i			
Benzene	5.0E-2	1	i i		1
Ethylbenzene	5.0E-2 5.0E-2				

NOTE:	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)

Serial: G-443-CSX-444

	RBCA SI	TE ASSESSMEN	NT				Tier 2 Wo	orksheet 8.1	
Site Name: Tony's Express S	ervice Station	Site Location: 3609 East 14th Street Completed By: F			Roy Butler Date Completed: 1/21/19			98 2 OF 9	
		TIER 2 EXPO	OSURE CONCE	NTRATION AND	INTAKE CALCU	JLATION			
OUTDOOR AIR EXPOSURE PATE	IWAYS No.	San taken a same a same a same a same a same a same a same a same a same a same a same a same a same a same a	的建筑和 多种级。	(CHECKED IF PAT	HWAY IS ACTIVE)	Harrison Co. St. L.	an gray this	ica Tremalations	A chied bedelinkes be
SUBSURFACE SOILS: VAPOR	Exposure Concentration						•		
INHALATION	1) Source Medium	2) <u>NAF Value (m^3/kg)</u> Receptor		3) Exposure Medium Outdoor Air: POE Conc. (mg/m²3) (1) / (2)		4) Exposure Multiplier (IRxEfxEDY(BWxAT) (m*3/kg-day)		5) Average Daily Intake Rate (mg/kg-day) (3) X (4)	
		7140			are (such man so fich stre)	I INCOMPANDATE			
Constituents of Concern	Subsurface Soil Conc. (mg/kg)	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residentiat
	(mg/kg)	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential
Benzene	(mg/kg) 1.1E+1	On-Site Commercial 2.1E+4	Off-Site Residential	On-Site Commercial 5.3E-4	Off-Site Residential	On-Site Commercial 7.0E-2	Off-Site Residential	On-Site Commercial 3.7E-5	Off-Site Residential 4.2E-5

NOTE:	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) fR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposue area (cm^2/day)

Serial: G-443-CSX-444

		RBCA SITE ASSESSME	ENT		Tier 2 V	r 2 Worksheet 8.1	
Site Name: Tony's Express Service Station		Site Location: 3609 East 1	4th Street Completed 8	y: Roy Butler	Date Completed: 1/21/1998	3 OF	
**************************************		TIER 2 EXPO	SURE CONCENTRATION AN	INTAKE CALCULATION			
OUTDOOR AIR EXPOSURE PATH	WAYS at the said the said about		CHECKED IF PATHWAY IS AC	TIVE) (1.12) (1.12)	A positive for the same of the control of		Gasara (a)
GROUNDWATER; VAPOR	Exposure Concentration				-	TOTAL PATHWAY	NTAKE (mg/kg-day)
INHALATION	1) Source Medium	2) <u>NAF Value (m^3/L)</u> Receptor	3) Exposure Medium Outdoor Air. POE Conc. (mg/m²3) (1)/	4) Exposure Multiplier 2) (IRxEFxED)/(BWxAT) (m^3/kg-day)	5) <u>Average Daily Intake Rate</u> (mg/kg-day) (3) X (4)	(Sum intake values from surface, subsurface & groundwater routes.)	
Constituents of Concern	Groundwater Conc. (mg/L)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	Off-Site Residential
Benzene	6.0E+0	5.3E+4	1.1E-4	7.0E-2	7.9E-6	4.5E-5	4.2E-5
Ethylbenzene	2,1E+0	5.2E+4	4.0E-5	2.0E-1	7.9E-6	1.5E-4	1.3E-4
ELITYTOCITECTIC						1	
Toluene	7.6E+0	5.4E+4	1.4E-4	2.0E-1	2.8E-5	3.7E-4	3.2E-4

BW = Body weight (kg)
CF = Units conversion factor
ED = Exposure duration (yrs)

NOTE: ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2)

AT = Averaging time (days)

Software: GSI RBCA Spreadsheet

Serial: G-443-CSX-444

POE = Point of exposure SA = Skin exposure area (cm^2/day)

© Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Version: 1.0.1

EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)

				TIED A DAT	MALEN CHOIC						
· · · · · · · · · · · · · · · · · · ·		 		HER Z PAT	HWAT KISK	CALCULATION	<u> </u>				
OUTDOOR'AIR EXPOSURE PATHWAYS	9446	tour make in the	ท่างสารและเกิดเกิด		er er en en en e	(CHECKED IF PA	THWAYS ARE AC	TIVE)	TELLIGIA	istinate a militar	or and females to
·			CA	ARCINOGENIC R	SK				TOXIC EFFECTS		
	(1) EPA		arcinogenic (mg/kg/day)	(3) Inhalation Slope Factor	(4) Individ Risk (2	dual COC 2) x (3)	, , , , , , , , , , , , , , , , , , , ,	Toxicant (mg/kg/day)	(6) Inhalation Reference Dose		tual COC tient (5) / (6)
	Carcinogenic Classification	On-Site Commercial	Off-Site Residential	(mg/kg-day)^-1	On-Site Commerciat	Off-Site Residential	On-Site Commercial	Off-Site Residential	(mg/kg-day)	On-Site Commercial	Off-Site Residential
Benzene	Α	4.5E-5	4.2E-5	2.9E-2	1.3E-6	1.2E-6	1.3E-4	9,9E-5	1.7E-3	7.4E-2	5.8E-2
Ethylbenzene	D						1.5E-4	1.3E-4	2.9E-1	5.2E-4	4.7E-4
Toluene	D						3.7E-4	3.2E-4	1.1E-1	3.2E-3	2.8E-3
Xylene (mixed isomers)	D						7.1E-4	6.5E-4	2.0E+0	3.6E-4	3,3E-4
		Total Path	way Carcinog	enic Risk = [1.3E-6	1.2E-6	70	tal Pathway F	lazard Index = [7.8E-2	6.2E-2
			-	-			•	•	-		

Serial: G-443-CSX-444

	RBCA SIT	E ASSESSMENT		Tier 2 Worl	ksheet 8.1
Site Name: Tony's Express Se	vice Station S	Site Location: 3609 East 14th Str	eet Completed By: Ro	oy Butler Date Completed:	1/21/1998 4 OF
		TIER 2 EXPOSURE CONCEN	ITRATION AND INTAKE CALCUL	ATION	
			(CHECKED IF PATHWAY IS ACTIVE)		
SUBSURFACE SOLS:	Exposure Concentration	COME IN STREET OF THE PROPERTY	(CHECKED II FAITHMAN AC HAE)		THE RESIDENCE OF THE PROPERTY
VAPOR INTRUSION TO BUILDINGS	1) Source Medium	2) <u>NAF Value (m^3/kg)</u> Receptor	3) Exposure Medium Indoor Air: POE Conc. (mg/m²3) (1) / (2)	4) Exposure Multiplier (IRXEFXED)(BWXAT) (m^3/kg-day)	5) Average Daily Intake Rate (mg/kg-dey) (3) X (4)
Constituents of Concern	Subsurface Soil Conc.			, , , , , , , , , , , , , , , , , , , ,	
Benzene	(mg/kg) 1.1E+1	On-Site Commercial 3.9E+1	On-Site Commercial 2.8E-1	On-Site Commercial 7.0E-2	On-Site Commercial 2.0E-2
	1.5E+1	6.2E+1	2.4E-1	2.0E-1	4.7E-2
I – Ihvihenzena					
Ethylbenzene Toluene	3.6E+1	9.3E+1	3.9E-1	2.0E-1	7.6E-2

NÔTE:	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rata (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)

Serial: G-443-CSX-444

		RBCA SITE ASSESSMENT		<u> </u>	Tier 2 W	orksheet 8.1		
Site Name: Tony's Express Ser	vice Station	Site Location: 3609 East 14th	Street Completed By:	Roy Butler	Date Completed: 1/21/1998	5 OF		
		TIER 2 EXPOSU	RE CONCENTRATION AND					
INDOOR AIR EXPOSURE PATHWA	ys		CHECKED IF PATHWAY IS ACTIV	/E/EXEMBLE TO THE LEG				
INDOOR AIR EXPOSURE PATHWAYS GROUNDWATER: Exposure Concentration								
VAPOR INTRUSION TO BUILDINGS	Source Medium Groundwater Conc.	2) <u>NAF Value (m^3/L)</u> Receptor	3) Exposure Medium Indeor Air: POE Conc. (mg/m*3) (1) / (2)			TOTAL PATHWAY INTAKE (mg/kg-day) @ (Sum intake values from subsurface & groundwater routes.)		
Constituents of Concern	(mg/L)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial		
Benzene	6.0E+0	1.6E+2	3.6E-2	7.0E-2	2.5E-3	2.2E-2		
Ethylbenzene	2.1E+0	1.5E+2	1.4E-2	2.0E-1	2.7E-3	5.0E-2		
Toluene	7.6E+0	1.6E+2	4.7E-2	2.0E-1	9.2E-3	8.5E-2		

NOTE:	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
		··· · · · · · · · · · · · · · · · · ·		······································

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

		RBCA SITE ASSESSI	MENT			Tier 2 Worl	ksheet 8.2
Site Name: Tony's Express	Service Station Si	ite Location: 3609 East 14th	Street	Completed By: R	Roy Butler	Date Completed:	1/21/1998 2 OF
		•	TIER 2 PATH	WAY RISK CALCULATION			
NDOOR AIR EXPOSURE PATH	WAYS		Though 1 A 2002	CHECKED IF PAT	HWAYS ARE ACTIVE)		三型 编集的联系 的第三人称形式设定
		CA	RCINOGENIC RISK			TOXIC EFFECTS	
Constituents of Concern	(1) EPA Carcinogenic.	(2) Total Carcinogenic Intake Rate (mg/kg/day) On-Site	(3) Inhalation Stope Factor	(4) Individual COC Risk (2) x (3) On-Site	(5) Total Toxicant Intake Rate (mg/kg/day) On-Site	(6) Inhalation Reference Dose	(7) Individual COC Hazard Quotient (5) / (6) On-Site
Benzene	Classification A	Commercial 2.2E-2	(mg/kg-day)^-1 2.9E-2	Commercial 6.5E-4	Commercial	(mg/kg-day)	Commercial
Ethylbenzene	1 6 1	2.2L-2	2.9L-2	6.5 <u>C</u> -4	6.2E-2 5.0E-2	1.7E-3 2.9E-1	3.7E+1 1.7E-1
oluene	D		†		8.5E-2	1.1E-1	7.4E-1
(ylene (mixed isomers)	D				9.3E-2	2.0E+0	4.7E-2
		Total Pathway Carcinog	enic Risk =	0.0E+0 6.5E-4	Total Pathway i	lazard index =	0.0E+0 3.8E+1
				***			(

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-C5X-444

	RBCA SITE ASSES	SMENT		Tier 2 Wo	orksheet 8.1
Site Name: Tony's Express Se	rvi Site Location: 3609 East 14th 5	Street	Completed By: Roy Butler	Date Completed: 1/21/199	8 6 OF
	TIER 2 EXPO	SURE CONCENTRATIO	N AND INTAKE CALCULAT	TION	
SOIL EXPOSURE PATHWAYS	o la la la la la la la la la la la la la	CHECKED IF PATHWAY IS A	ICTIVE)	Maria Parka Garaga Labara (1994)	da <mark>Mariamana kara</mark> tan di keberana
SURFACE SOILS OR SEDIMENTS:	Exposure Concentration				
DERMAL CONTACT	1) <u>Source Medium</u>		<u>re Multiplier</u> ED)(BWAAT) (kg/kg-day)	, -	aily Intake Rate v) (1) × (2)
Constituents of Concern	Surface Soil Conc. (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial
Benzene	5.0E-2				
Ethylbenzene	5.0E-2				
Toluene	5.0E-2	· · ·			
Xylene (mixed isomers)	5.0E-2				

1	NOTE:	ABS = Dermal absorption factor (dirr) BW = Body weight (kg)	EF = Exposure frequencey (days/	POE = Point of exposure
ı		AF = Adherance factor (mg/cm*2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm^2/day)
-1		AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Intake rate (mg/day)	
1			<u> </u>		

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet. Version; 1.0,1

Serial: G-443-CSX-444

	RBCA SITE ASSESSMENT			L	Tier 2 Wo	rksheet 8.1			
Site Name: Tony's Express Ser	rvice Site Location: 3609 East 1	4th Street	Completed By: F	Roy Butler	Date Completed:	1/21/1998	7 OF		
	TIER 2 EXPOSL	IRE CONCENTR	ATION AND INT	AKE CALCULA	TION				
SOIL EXPOSURE PATHWAYS		(CHECKED IF PAT	HWAY IS ACTIVE)	. Jakan ahar	THE WINDS	San Arabak	(A) Colora a sice (A)		
SURFACE SOILS OR SEDIMENTS:	Exposure Concentration					TOTAL PATHWAY	INTAKE (mg/kg-day)		
INGESTION	1) Source Medium		re Multiplier WxAT) (kg/kg-day)	3) <u>Average Daily Intake Rate</u> (mg/kg-day) (1) x (2)		(Sum intake values from dermal & Ingestion routes.)			
Constituents of Concern	Surface Soil Conc. (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial		
Benzene	5.0E-2			·					
Ethylbenzene	5.0E-2								
Toluene	5.0E-2								
Xylene (mixed isomers)	5.0E-2								

	NOTE:	ABS = Dermal absorption factor (dim) BW = Body weight (kg)	EF = Exposure frequencey (days/yr)	POE ≈ Point of exposure
i		AF = Adherance factor (mg/cm^2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm^2/day)
		AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Intake rate (mg/day)	
	·				

Serial: G-443-CSX-444

		RBCA	SITE ASSESS	MENT					Tier 2 Wo	ksheet 8.2	
Site Name: Tony's Express S	Service Station	Site Location: 3	3609 East 14th	Street		Completed By:	Roy Butler		Date Completed	: 1/21/1998	3 OF
				TIER 2 PAT	HWAY RISK	CALCULATION	4				
SOIL EXPOSURE PATHWAYS	(Marie Constitution)	erá akalegyete	7年4年6月1日	wasin taga	i in a single 🗖	(CHECKED IF PA	THWAYS ARE AC	TIVE)	2. 100 数据	Lary Market 1949	
				ARCINOGENIC RI					TOXIC EFFECTS		
2	(1) EPA Carcinogenic	Intake Rate On-Site	arcinogenic (mg/kg/day) On-Site	(3) Oral Slope Factor	Risk (On-Site	dual COC 2) x (3) On-Site	Intake Rate On-Site	l Toxicant (mg/kg/day) On-Site	(6) Oral Reference Dose	Hazard Que On-Site	idual COC otient (5) / (6) On-Site
Constituents of Concern Benzene	Classification A	Residential	Commercial I	(mg/kg-day)^-1 2.9E-2	Residential	Commercial	Residential	Commercial	(mg/kg-day)	Residential	Commercial
Ethylbenzene	- 1		 	2.9E-2					1.0E-1		
Toluene	D			1				 	2.0E-1		
(ylene (mixed isomers)	D								2.0E+0		<u> </u>
		Total Pati	way Carcinog	genic Risk = [0.0E+0	0.0E+0] 70	otal Pathway F	iazard index = [0.0E+0	0.0E+0
									_		
				·					·		
											
			3 400E 4007 AU				Software:	GSI RBCA Sprea	dsheet	Serial	G-443-C5X-444

Version: 1.0,1

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.1

Site Name: Tony's Express Serv	Ce Site Location: 3605	Last 14th Street		Completed By: F	coy Butler	Date Completed	: 1/21/1998		8 O.
	····	TIER 2 EXP	SURE CONCE	NTRATION AND	INTAKE CALCU	JLATION			
GROUNDWATER EXPOSURE PATHI	VAYS E RECALERY OF	Constitution	3.清海香及園園■	(CHECKED IF PAT	HWAY IS ACTIVE)	r mail falls in the	aran e a seria	. And essays that for	Talk (Saldes) . Jack
SOIL: LEACHING TO GROUNDWATER/	Exposure Concentration								
GROUNDWATER INGESTION	1) Source Medium	alue (L/kg)	3) Expasu	re Medium	4) Exposur	e Multiplier	5) <u>Average Da</u>	ily Intake Rate	
		Rec	eptor	Groundwater: PDE	Conc. (mg/L) (1)/(2)	(IRxEFxED)/(BW	kAT) (L/kg-day)	(mg/kg-day) (3) x (4)	
	Soil Concentration	ł							
Constituents of Concern	(mg/kg)	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Resident
Benzene	1.1E+1	2.5E+0	1.5E+1	4.4E+0	7.4E-1	3.5E-3	1.2E-2	1.5E-2	8.7E-3
Ethylbenzene	1.5E+1	5,6E+0	3.3E+1	2.7E+0	4.5E-1	9.8E-3	2.7E-2	2.6E-2	1.2E-2
Toluene	3.6E+1	7.5E+0	4.5E+1	4.8E+0	8.0E-1	9.8E-3	2.7E-2	4.7E-2	2.2E-2
Xylene (mixed isomers)	7.3E+1	1.3E+1	7.7E+1	5.6E+0	9.4E-1	9.8E-3	2.7E-2	5.5E-2	2.6E-2

NOTE:	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body Weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Intake rate (L/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

		RBCA SITE	ASSESSMEN'	T					Tier 2 W	orksheet 8.1		
Site Name: Tony's Express S	ervice Site Location: 3609	East 14th Stre	et		Completed By	: Roy Butler		Date Complete	ed: 1/21/1998		9 OF	
		TIE	ER 2 EXPOSI	JRE CONCENT	RATION AND	INTAKE CALC	CULATION					
GROUNDWATER EXPOSURE PA	THWAYS		ra de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	(CHECKED IF PA	ATHWAY IS ACT	IVE)		To the state of th	Mariata da distribi			
GROUNDWATER: INGESTION	Exposure Concentration									MAX. PATHWAY INTAKE (mg/kg-day)		
	1) Source Medium	,	<u>alue (dim)</u> eptor		re Medium Conc. (mg/L) (1)(2)	1	4) Exposure Multiplier (IRxEFxED)(BWxAT) (Ukg-day)		aity Intake Rate		of active pethweys oursewater routes.)	
	Groundwater Conc.		•					"""	,,, (-, - (),			
Constituents of Concern	(mg/L)	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	
Benzene	6.0E+0	1.0E+0	6.0E+0	6.0E+0	1.0E+0	3.5E-3	1.2E-2	2.1E-2	1.2E-2	2.1E-2	1.2E-2	
Ethylbenzene	2.1E+0	1.0E+0	6.0E+0	2.1E+0	3.5E-1	9.8E-3	2.7E-2	2.1E-2	9.7E-3	2.6E-2	1.2E-2	
Toluene	7.6E+0	1.0E+0	6.0E+0	7.6E+0	1.3E+0	9.8E-3	2.7E-2	7.4E-2	3.5E-2	7.4E-2	3.5E-2	
liologie												

CF = Units conversion factor ET = Exposure time (hrs/day) SA = Skin exposure area (cm^2/day) ED = Exposure duration (yrs) IR = Intake rate (L/day)
ED = Exposure duration (yrs) IR = Intake rate (L/day)

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-C\$X-444

CHECKED IF PATHWAYS ARE ACTIVE CARCINOGENIC RISK TOXIC EFFECTS					TIER 2 PA1	THWAY RISK	CALCULATION	<u> </u>					
CARCINOGENIC RISK CARC	GROUNDWATER EXPOSURE PA	THWAYS SPECE	The state of the state of		A Deliver	ر 🖪 درجازی رامی در 🗷	(CHECKED IF PA	THWAYS ARE AC	TIVE)		ing Palma in Jakis at		
Constituents of Concern Classification Commercial Commerci													
Constituents of Concern Classification Classification Classification Classification Classification Commercial		1 1 1				(4) Individ	dual COC	(5) Total	Toxicant				
Constituents of Concern Classification Commercial Residential (mg/kg-day)^-1 Commercial Residential Commercial Residential (mg/kg-day) Commercial Residential Benzene A 2.1E-2 1.2E-2 2.9E-2 6.1E-4 3.4E-4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Stope Factor	Risk (2	2) x (3)	Intake Rate	(mg/kg/day)	Reference Dose	Hazard Quo	tient (5) / (6)		
Benzene A 2.1E-2 1.2E-2 2.9E-2 6.1E-4 3.4E-4 3.4E-4 5.4E-2 1.2E-1	Constituents of Concern				(mg/kg-day)^-1					(mo/ka-day)	• · · • · · · ·		
Ethylbenzene D 2.6E-2 1.2E-2 1.0E-1 2.6E-1 1.2E-1 Toluene D 7.4E-2 3.5E-2 2.0E-1 3.7E-1 1.7E-1								Commorator	110013011101	Ungrig Guy	Commercial	T C SIGN (NIZI	
	Ethylbenzene	D						2.6E-2	1.2E-2	1.0E-1	2.6E-1	1.2E-1	
(ylene (mixed isomers) D 7.5E-2 3.5E-2 2.0E+0 3.8E-2 1.8E-2	Toluene	D						7.4E-2	3.5E-2	2.0E-1	3.7E-1		
	Xylene (mixed isomers)	D						7.5E-2	3.5E-2	2.0E+0	3.8E-2	1.8E-2	
			rotai Patr	iway Carcinog	lenic Kisk = {	6, TE 4		, ,	otal Pathway H	lazard Index = [6.7E-1	3.2E-1	

© Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.3

Site Name: Tony's Express Service Station Site Location: 3609 East 14th Street Completed By: Roy Butler Date Completed: 1/21/1998

1 of 1

			TIER :		IE RISK SU	MMARY TA	BLE	100		
		BASELIN	E CARCINOGI	ENIC RISK			BASEL	INE TOXIC EI	FFECTS	
	Individual COC Risk		Cumulativ	e COC Risk	Risk Limit(s) Exceeded?	Hazard	Quotient	Morar	d Index	Toxicity Limit(s)
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk		Maximum Value	Applicable Limit	Total Value	Applicable Limit	Exceeded
OUTDOOR AIR E	XPOSURE PAT	HWAYS #								
Complete:	1.3E-6	1.0E-6	1.3E-6	N/A	=	7.4E-2	1.0E+0	7.8E-2	N/A	
INDOOR AIR EXI	POSURE PATH	NAYS III				A Salaran Salaran Salaran Salaran Salaran Salaran Salaran Salaran Salaran Salaran Salaran Salaran Salaran Sala		ESTATE OF THE STATE		
Complete:	6.5E-4	1.0E-6	6.5E-4	N/A 🕺	-	3.7E+1	1.0E+0	3.8E+1	N/A	
SOILLEXPOSURE	PATHWAYS									
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A	
GROUNDWATE	EXPOSURE P	THWAYS	g to the second of the second			* Decide the second representation				
Complete:	6.1E-4	1.0E-6	6.1E-4	N/A		3.7E-1	1.0E+0	6.7E-1	N/A	П
								<u>-</u>	' , ,	··
CRITICAL EXPO	SUREPATHWA	Y (Select Max	imum Values F	rom Complete	Patriways)					
	6.5E-4	1.0E-6	6.5E-4	N/A	=	3.7E+1	1.0E+0	3.8E+1	N/A	

Software: GSI RBCA Spreadsheet

Version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Serial: G-443-CSX-444

		RBC	SITE ASS	ESSMENT							Tier 2 Wo	rksheet 9.3		
Site Name: To	ny's Express Service Station		Completed B	y: Roy Butler										
Site Location:	3609 East 14th Street		Date Comple	ted: 1/21/199	8								1 OF 1	
			Target Risi	k (Class A & B)) 1.0E-6	☐ MCL expo	osure limit?	Calculation Option: 2						
G	ROUNDWATER SSTL V	ALUES	1	Risk (Class C) azard Quotieni		☐ PEL expo	sure limit?			Groundwa	ler DAF Option		otor Super. lional vert. dispersion	
				SSTI	Results For Com	plete Exposure	Pathways ("x" if	Comp	olete)					
CONSTITUENTS OF CONCERN		Representative Concentration	x	Groundwater	Ingestion	Groundwater Volatilization X to Indoor Air		x,		er Volatilization Itdoor Air	Applicable SSTL	SSTL Exceeded ?	Required CRF	
CAS No.	Name	(mg/L)	Residential; 700 feet	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)		esidential on-site)	Commercial: (on-site)	(mg/L	"# If yes	Only if "yes" left	
71-43-2	Benzene	6.0E+0	4.0E+0	9.9E-3	NA	NA	8.1E-2		NA	2.6E+1	9.9E-3		6.1E+02	
100-41-4	Ethylbenzene	2.1E+0	8.7E+0	1.0E+1	NA	NA	>Sol		NA	>Sol	8.7E+0		<1	
108-88-3	Toluene	7.6E+0	2.0E+1	2.0E+1	NA	NA	9.4E+1		NA	>Sol	2.0E+1		<1	
1330-20-7	Xylene (mixed isomers)	7.7E+0	1.5E+2	>Sol	NA	NA	>Sol		NA	>Sol	1.5E+2		<1	

>Sol indicates risk-based target concentration greater than constituent solubility

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

		RBCA SITE	ASSESSN	MENT							1	ler 2 Worksh	et 9.2	
Site Name: To	ny's Express Service Station		Completed B	y: Roy Butler			·							
Site Location:	3609 East 14th Street		Date Comple	ted: 1/21/199	8									1 OF 1
			Target Ris	k (Class A & B)	1.0E-6		MCL expo	sure limit?			Cal	culation Option:	2	
SU	BSURFACE SOIL SSTL ' (> 3 FT BGS)	VALUES		: Risk (Class C) lazard Quotient	•		PEL expo	sure limit?			Groundwa	ter DAF Option		tor Super. onal vert. dispersio
				SSTLI	Results For Compl	ete E	xposure P	athways ("x" if	Comp	lete)	-			
CONSTITUEN	TS OF CONCERN	Representative Concentration	X So	il Leaching to	Groundwater	x		latilization to	x		latilization to	Applicable SSTL	SSTL Exceeded	Required CRF
CAS No.	Name	(mg/kg)	Residential: 700 feet	Commerciat: (on-site)	Regulatory(MCL): (on-site)		sidential: on-site)	Commercial: (on-site)		idential: O feet	Commercial: (on-site)	(mg/kg)	"III" If yes	Only if "yes" left
71-43-2	Benzene	1.1E+1	1.0E+1	2.5E-2	NA		NA	1.9E-2	9.	0E+0	1.0E+1	1.9E-2		5.7E+02
100-41-4	Ethylbenzene	1.5E+1	4.8E+1	5.7E+1	NA		NA	9.1E+1	<u> </u>	Res	>Res	4.8E+1		<1
108-88-3	Toluene	3.6E+1	1.5E+2	1.5E+2	NA		NA	5.4E+1		Res	>Res	5.4E+1		<1
1330-20-7	Xylene (mixed isomers)	7.3E+1	>Res	>Res	NA.		NA	>Res	>	Res	>Res	>Res		<1
														-

>Res indicates risk-based target concentration greater than constituent residual saturation value

Software: GSI RBCA Spreadsheet

Serial: G-443-CSX-444

© Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Version: 1.0.1

RBCA TIER 1/TIER 2 EVALUATION

Site Name: Tony's Express Service Stationab Identification: Tonys

Output Table 1

Site Location: 3609 East 14th Street Date Completed: 1/21/98 Version: 1.0.1 Completed By: Roy Butler NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined. Exposure Residential Commercial/Industrial Surface Parameter Definition (Units) Adult (1-6yrs) (1-16 yrs) Chronic Constrctn Parameters Definition (Units) Residential Constrctn ATC Averaging time for carcinogens (yr) 70 Contaminated soil area (cm^2) 1.5E+06 1.0E+06 ATn Averaging time for non-carcinogens (yr) 30 6 16 25 W Length of affect, soil parallel to wind (cm) 1.2E+03 1.0E+03 BW Body Weight (kg) 70 15 35 70 1.2E+03 W.gw Length of affect, soil parallel to groundwater (cm. lED Exposure Duration (yr) 30 16 25 Ambient air velocity in mixing zone (cm/s) 6 Uair 2.3E+02 Averaging time for vapor flux (yr) 30 25 delta Air mixing zone height (cm) 2.0E+02 EF Exposure Frequency (days/yr) 350 250 180 Lss Thickness of affected surface soils (cm) 9.1E+01 EF.Derm Exposure Frequency for dermal exposure 350 250 Pa Particulate areal emission rate (g/cm^2/s) 6.9E-14 **IRgw** Ingestion Rate of Water (L/day) 2 1 IRs Ingestion Rate of Soil (mg/day) 100 200 50 100 iRadj Adjusted soil ing. rate (mg-yr/kg-d) 1.1E+02 9.4E+01 Groundwater Definition (Units) Value IRa in Inhalation rate indoor (m^3/day) 15 20 delta.gw Groundwater mixing zone depth (cm) 2.0€+02 1Ra.out Inhalation rate outdoor (m^3/day) 20 20 Groundwater infiltration rate (cm/yr) 10 3.0E+01 lsΔ Skin surface area (dermal) (cm^2) 5.8E+03 2.0E+03 5.8E+03 5.8E+03 Uaw Groundwater Darcy velocity (cm/yr) 7.6E+02 Adjusted dermal area (cm^2-yr/kg) SAadi 2.1E+03 1.7E+03 Ugw.tr Groundwater seepage velocity (cm/yr) 3.8E+03 Soil to Skin adherence factor Saturated hydraulic conductivity(cm/s) Κs 1.3E-03 AAFs Age adjustment on soil ingestion FALSE FALSE Groundwater gradient (cm/cm) grad 1.9E-02 AAFd Age adjustment on skin surface area. FALSE FALSE Width of groundwater source zone (cm) Sw 6.1E+03 Use EPA tox data for air (or PEL based)? TRUE Sal Depth of groundwater source zone (cm) 7.6E+02 gwMCL? Use MCL as exposure limit in groundwater? FALSE phi.eff Effective porosity in water-bearing unit 2.0E-01 foc.sat Fraction organic carbon in water-bearing unit 1.0E-03 BIO? Is bioattenuation considered? TRUE BC Biodegradation Capacity (mg/L) 1.6E+01 Matrix of Exposed Persons to Residential Commercial/Industrial Complete Exposure Pathways Chronic Constrctn Soll Definition (Units) Value Outdoor Air Pathways: hc Capillary zone thickness (cm) 8.1E+00 55.v Volatiles and Particulates from Surface Soils FALSE FALSE FALSE hν Vadose zone thickness (cm) 2.7E+02 Volatilization from Subsurface Soils TRUE 5.v TRUE rho Soil density (q/cm^3) 1.7 GW.v Volatilization from Groundwater FALSE TRUE foc Fraction of organic carbon in vadose zone 0.01 Indoor Air Pathways: Soil porosity in vadose zone phi 0.38 S.b Vapors from Subsurface Soils FALSE TRUE Law Depth to groundwater (cm) 2.8E+02 GW.b Vapors from Groundwater FALSE TRUE Ls Depth to top of affected subsurface soil (cm) 9.1E+01 Soil Pathways: Leubs Thickness of affected subsurface soils (cm) 8.2E+02 SS.d **Direct Ingestion and Dermal Contact** FALSE FALSE FALSE Soil/groundwater pH рΗ 6.5 Groundwater Pathways: capillary vadose foundation lgw.i Groundwater Ingestion TRUE TRUE nhi w Volumetric water content 0,342 0.12 0.12 ls.i Leaching to Groundwater from all Soils TRUE TRUE phi.a Volumetric air content 0.038 0.26 0.26 Building Definition (Units) Residential Commercial ĽЬ Building volume/area ratio (cm) 2.0E+02 3.0E+02 Matrix of Receptor Distance Residential Commercial/industrial ER Building air exchange rate (s^-1) 1.4E-04 2.3E-04 and Location On- or Off-Site Distance On-Site Distance Foundation crack thickness (cm) On-Site Lcrk 1.5E+01 GW Groundwater receptor (cm) 2.1E+04 FALSE TRUE eta Foundation crack fraction 0.01 Inhalation receptor (cm) FALSE 2.4E+03 TRUE Transport Matrix of Parameters Definition (Units) Residential Commercial Target Risks Individual Cumulative Groundwater TRab Target Risk (class A&B carcinogens) 1.0E-06 Я¥ Longitudinal dispersivity (cm) 6.4E+02 1.0E-05 TRc Target Risk (class C carcinogens) ay Transverse dispersivity (cm) 6.4E+01 THO **Target Hazard Quotient** 1.0E+00 az Vertical dispersivity (cm) 6.4E+00 Opt Calculation Option (1, 2, or 3) 2 Vapor Tier **RBCA Tier** 2 dev Transverse dispersion coefficient (cm) 2.8E+02 Vertical dispersion coefficient (cm) 1.9E+02

Software: GSI RBCA Spreadsheet

RBCA CHEMICAL DATABASE

Site Name: Tony's Express Service Station Site Location: 3609 East 14th Street Completed By: Roy Butler

Physical Property Data

Date Completed: 1/21/1998

CAS			Moleci Weig (g/mo	ht		oefi	usion icients in wate (cm2/s		log (Kod log(Kod (@ 20 - 2 log(l/k	d) 25 C)	-	Law Constar 20 - 25 C)	nt	Vapor Pressur (@ 20 - 25 (mm Hg	C)	Solubility (@ 20 - 25 (mg/L)	,	acid	base	
Number	Constituent	type	MW	ref	Dair	ref	Dwat	ref		ref	mol	(unitless) r	ef		гef	, , ,	ref	рKа	pKb	ref
	Acetone	0	58.08	4	1.24E-01	4	1.14E-05	4	-0.24	4	2.50E-05	1.04E-03	4	2.66E+02	4	1.00E+06	10			
71-43-2	Benzene	Α	78.1	5	9.30E-02	Α	1.10E-05	Α	1.58	Α	5.29E-03	2.20E-01	Α	9.52E+01	4	1.75E+03	A			
67-66-3	Chloroform	C	119.4	4	1.04E-01	4	1.00E-05	4	1.93	4	3.39E-03	1.41E-01	4	2.08E+02	4	9.64E+03	4			
74-87-3	Chloromethane	С	51	5	1.28E-01	4	1.68E-04	7	7.02	11	8.82E-03	3.67E-01	29	3.80E+03	5	4.00E-03	5			
107-06-2	Dichloroethane, 1,2-	С	99	4	1.04E-01	4	9.90E-06	4	1.76	4	1.20E-03	4.99E-02	4	8.00E+01	4	8.69E+03	5			
100-41-4	Ethylbenzene	Α	106.2	5	7.60E-02	Α	8.50E-06	Α	1.98	À	7.69E-03		À	1.00E+01	4	1.52E+02	5			
91-20-3	Naphthalene	PAH	128.2	4	7.20E-02	Α	9.40E-06	Α	3.11	A	1.18E-03		A	2.30E-01	4	3.29E+01	4			
108-88-3	Toluene	Α	92.4	5	8.50E-02	Α	9.40E-06	Α	2.13	Α	6.25E-03		A	3.00E+01	4	5.15E+02	. 29			
1330-20-7	Xylene (mixed isomers)	Α	106.2	5	7.20E-02	Α	8.50E-06	Α	2.38	Α	6.97E-03	2.00=	A	7.00E+00	4	1.98E+02	5			

Software version: 1.0.1

RBCA CHEMICAL DA	

Toxicity Data

	Reference Dose (mg/kg/day)					Slope Factor ng/kg/e	S	EPA Weight	ls	
CAS lumber Constituent	Oral RfD_oral		Inhalation RfD_inhal	ref	Oral SF_oral	ref	Inhalation SF_inhal	ref	of Evidence	Constituent Carcinogenic?
67-64-1 Acetone	1.00E-01	R	-		-		-		D	FALSE
71-43-2 Benzene	-		1.70E-03	R	2.90E-02	Α	2.90E-02	Α	Α	TRUE
67-66-3 Chloroform	1.00E-02	R	-		6.10E-03	R	8.05E-02	R	B2	TRUE
74-87-3 Chloromethane	-		-		1.30E-02	R	6.30E-03	R	C	TRUE
107-06-2 Dichloroethane, 1,2-	-		2.86E-03	R	9.10E-02	R	9.10E-02	R	B2	TRUE
100-41-4 Ethylbenzene	1.00E-01	Α	2.86E-01	Α	-		-		D	FALSE
91-20-3 Naphthalene	4.00E-03	Α	-		-		_		D	FALSE
108-88-3 Toluene	2.00E-01	AR	1.14E-01	A,R	-		-		, a	FALSE
1330-20-7 Xylene (mixed isomers)	2.00E+00	A,R	2.00E+00	A	-		-		D	FALSE

Site Name: Tony's Express Service StatSite Location: 3609 East 14th Street Completed By: Roy Butler

Date Completed: 1/21/1998

Software version: 1.0.1

RBCA CHEMICAL DATABASE

Miscellaneous Chemical Data

			Permiss	sible	Re	lative	Dete	ction	Limits		Ha	lf Life	
		Maximum	Expos	ure	Abs	orption	Groundy	ater	Soi	ı	(First-Or	der Decay)	
CAS	Con	taminant Level	Limit PE	L/TLV	Fa	ictors	(mg/L	.)	(mg/k	g)	(d	lays)	
Number Constituent	MCL (mg/L)	reference	(mg/m3)	ref	Oral	Dermal		гef		ref	Saturated	Unsaturated	ref
67-64-1 Acetone		7 7 200	1.78E+03	ACGIH	1	0.5	0.1	С	0.1	S	14	14	Н
71-43-2 Benzene	5.00E-03	52 FR 25690	3.20E+00	OSHA	1	0.5	0.002	C	0.005	S	720	720	н
67-66-3 Chloroform	1.00E-01	56 FR 30266 (01 Jul 91	4.90E+01	ACGIH	1	0.5	0.0005	С	0.005	S	1800	1800	H
74-87-3 Chloromethane			1.03E+02	ACGIH	1	0.5	0.001	Ç	0.01	S			
107-06-2 Dichloroethane, 1,2-	5.00E-03	52 FR 25690 (08 Jul 87	4.00E+00	NIOSH	1	0.5	0.0005	С	0.005	S	360	360	н
100-41-4 Ethylbenzene	7.00E-01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.002	C	0.005	S	228	228	н
91-20-3 Naphthalene	1		5.00E+01	OSHA	1	0.05	0.01	С	0.01	S	258	258	н
108-88-3 Toluene	1.00E+00	56 FR 3526 (30 Jan 91)	1.47E+02	ACGIH	1	0.5	0.002	С	0.005	S	28	28	H
1330-20-7 Xylene (mixed isomers)	1.00E+01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.005	С	0.005	S	360	360	н
	1												

Site Name: Tony's Express Service Stat Site Location: 3609 East 14th Street

Completed By: Roy Butler

Date Completed: 1/21/1998

Software version: 1.0.1

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

		Repre	sentative COC	Conce	ntration	
CONSTITUENT	in Ground	water	in Surface	Soil	in Subsurfac	e Soil
	value (mg/L)	note	value (mg/kg)	note	value (mg/kg)	note
Acetone	1.1E+1	6(597)				
Benzene	6.0E+0	į	5.0E-2		1.1E+1	
Chloroform	7.5E-3	1				
Chloromethane	7.8E-2					-
Dichloroethane, 1,2-	6.6E-3					
Ethylbenzene	2.1E+0		5.0E-2		1.5E+1	
Naphthalene	6.3E-1	:				
Toluene	7.6E+0		5.0E-2		3.6E+1	
Xvlene (mixed isomers)	7.7E+0	1	5.0E-2		7.3E+1	

Site Name: Tony's Express Service Station Site Location: 3609 East 14th Street Completed By: Roy Butler Date Completed: 1/21/1998

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT

Input Screen 9.4

GROUNDWATER DAF VALUES

(Enter DAF values in the grey area of the following table)
Dilution Attenuation Factor
(DAF) in Groundwater

	(DAF) in G	rounowater
CONSTITUENT	Residential	Comm./Ind.
	Receptor	Receptor
Acetone	3.6E+0	1.0E+0
Benzene	3.6E+0	1.0E+0
Chloroform	3.6E+0	1.0E+0
Chloromethane	3.6E+0	1.0E+0
Dichloroethane, 1,2-	3.6E+0	1.0E+0
Ethylbenzene	3.6E+0	1.0E+0
Naphthalene	3.6E+0	1.0E+0
Toluene	3.6E+0	1.0E+0
Xylene (mixed isomers)	3.6E+0	1.0E+0

Site Name: Tony's Express Service Station Site Location: 3609 East 14th Street Completed By: Roy Butler Date Completed: 1/21/1998

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Input Screen 9.1

CONSTITUENT HALF-LIFE VALUES

(Complete the following table)

CONSTITUENT	Half-Life of Constituent (day)
Acetone	
Benzene	720
Chloroform	
Chloromethane	
Dichloroethane, 1,2-	
Ethylbenzene	228
Naphthalene	
Toluene	28
Xvlene (mixed isomers)	360

Site Name: Tony's Express Service Stati Completed By: Roy Butler Site Location: 3609 East 14th Street Date Completed: 1/21/1998

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.1

Site Name: Tony's Express Service Site Location: 3609 East 14th Street

Completed By: Roy Butler

Date Completed: 1/21/1998

9 OF 9

TIER 2 EXPOSURE CONCENTRATION AND INTAKE	CALCULATION
--	-------------

GROUNDWATER: INGESTION	Exposure Concentration	Exposure Concentration												
	1) Source Medium	2) NAF V	alue (dim)		3) Exposure Medium		4) Exposure Multiplier		ily Intake Rate	(Maximum intake				
	1	Receptor		Groundwater: POE Conc. (mg/L) (1)/(2)		(IRxEFxED)/(BWhAT) (L/kg-day)		(mg/kg-day) (3) x (4)		soli leaching & groundwater route				
Canadibusada at Canasa	Groundwater Conc.			l										
Constituents of Concern	(mg/L)	On-Site Commercial		On-Site Commercial		On-Site Commercial				On-Site Commercial	Off-Site Residentia			
Acetone	1.1E+1	1.0E+0	3.6E+0	1.1E+1	3.1E+0	9.8E-3	2.7E-2	1.1E-1	8.4E-2	1.1E-1	8.4E-2			
Benzene	6.0E+0	1.0E+0	3.6E+0	6.0E+0	1.7E+0	3.5E-3	1.2E-2	2.1E-2	2.0E-2	2.1E-2	2.0E-2			
Chloroform	7.5E-3	1.0E+0	3.6E+0	7.5E-3	2.1E-3	3.5E-3	1.2E-2	2.6E-5	2.5E-5	2.6E-5	2.5È-5			
Chloromethane	7.8E-2	1.0E+0	3,6E+0	7.8E-2	2.2E-2	3.5E-3	1.2E-2	2.7E-4	2.6E-4	2.7E-4	2.6E-4			
Dichloroethane, 1,2-	6.6E-3	1.0E+0	3,6E+0	6.6E-3	1.8E-3	3.5E-3	1.2E-2	2.3E-5	2.2E-5	2.3E-5	2.2E-5			
Ethylbenzene	2.1E+0	1.0E+0	3.6E+0	2.1E+0	5.8E-1	9.8E-3	2.7E-2	2.1E-2	1.6E-2	2.6E-2	2.1E-2			
Naphthalene	6.3E-1	1.0E+0	3.6E+0	6.3E-1	1.8E-1	9.8E-3	2,7E-2	6.2E-3	4.8E-3	6.2E-3	4.8E-3			
Toluene	7.6E+0	1.0E+0	3.6E+0	7.6E+0	2.1E+0	9.8E-3	2.7E-2	7.4E-2	5.8E-2	7.4E-2	5.8E-2			
Xvlene (mixed isomers)	7.7E+0	1.0E+0	3.6E+0	7.7E+0	2.1E+0	9.8E-3	2.7E-2	7.5E-2	5.9E-2	7.5E-2	5.9E-2			

NOTE: ABS = Dermal absorption factor (dim)

BW = Body weight (kg)

EF = Exposure frequencey (days/yr)

AF = Adherance factor (mg/cm^2)

CF = Units conversion factor

ET = Exposure time (hrs/day)

SA = Skin exposure area (cm^2/day)

AT = Averaging time (days)

ED = Exposure duration (yrs)

IR = Intake rate (L/day)

Software: GSI RBCA Spreadsheel

Serial: G-443-CSX-444

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Version: 1.0.1

			TIER 2 DAT	TOTAL DION		, <u>.</u>						
		····	IICN 2 FAT	HWAY RISK	CALCULATION	1		· · · · · · · · · · · · · · · · · · ·				
AS 编译 计编译	Ba ar en an	of the Establish			(CHECKED IF PA	THWAYS ARE AC	IIVE) Migrationia			Santa Callery		
								TOXIC EFFECTS				
	(2) Total Carcinogenic		(3) Oral (4) Individual COC		Carcinogenic (3) Oral		lual COC	(5) Total	Toxicant	(6) Oral	(7) Individ	tual COC
(1) EPA Carcinogenic Classification	tntake Rate On-Site Commercial	(mg/kg/day) Off-Site Residential	Slope Factor	On-Site) x (3) Off-Site Residential	On-Site	Off-Site	Reference Dose	On-Site	tient (5) / (6) Off-Site Residential		
, D		•				1.1E-1	8.4E-2	1.0E-1	1.1E+0	8.4E-1		
A	2.1E-2	2.0E-2	2.9E-2	6.1E-4	5.7E-4							
B2	2.6E-5	2,5E-5	6.1E-3	1.6E-7	1.5E-7	7.3E-5	5.7E-5	1.0E-2	7.3E-3	5.7E-3		
С	2.7E-4	2.6E-4	1.3E-2	3.5E-6	3.3E-6							
B2	2.3E-5	2.2E-5	9.1E-2	2.1E-6	2.0E-6							
D						2.6E-2	2.1E-2	1.0E-1	2.6E-1	2.1E-1		
D						6.2E-3	4.8E-3	4.0E-3	1.5E+0	1.2E+0		
D						7.4E-2	5.8E-2	2.0E-1	3.7E-1	2.9E-1		
D						7.5E-2	5.9E-2	2.0E+0	3.8E-2	2.9E-2		
	arcinogenic lassification D A B2 C B2 D D	(1) EPA arcinogenic lassification D A 2.1E-2 B2 2.6E-5 C 2.7E-4 B2 2.3E-5 D D D	(1) EPA (2) Total Carcinogenic Intake Rate (mg/kg/day) On-Site Off-Site Residential D (2) Test (2) Tes	(1) EPA Intake Rate (mg/kg/day) Slope Factor On-Site Off-Site Commercial Residential (mg/kg-day)*-1 A 2.1E-2 2.0E-2 (2.9E-2) B2 2.6E-5 2.5E-5 6.1E-3 C 2.7E-4 2.6E-4 1.3E-2 B2 2.3E-5 2.2E-5 D D D	(1) EPA Intake Rate (mg/kg/day) Slope Factor On-Site On-Site Commercial Residential (mg/kg-day)^1 Commercial Commercial Residential (mg/kg-day)^1 Commercial Commerci	(1) EPA Intake Rate (mg/kg/day) Slope Factor Risk (2) x (3) On-Site Off-Site Commercial Residential (mg/kg-day)*-1 Commercial Residential (mg/kg-day)*-1 Commercial Residential OD	(1) EPA Intake Rate (mg/kg/day) On-Site Off-Site Commercial Residential On-Site Commercial Residential (mg/kg-day)^-1 Commercial Residential On-Site Commercial Residential (mg/kg-day)^-1 Commercial Residential On-Site Commercial N.1E-1 A 2.1E-2 2.0E-2 2.9E-2 6.1E-4 5.7E-4 B2 2.6E-5 2.5E-5 6.1E-3 1.6E-7 1.5E-7 7.3E-5 C 2.7E-4 2.6E-4 1.3E-2 3.5E-6 3.3E-6 B2 2.3E-5 2.2E-5 9.1E-2 2.1E-6 2.0E-6 D 2.6E-2 D 3.6E-2 D 3.74E-2	(1) EPA (1) EPA arcinogenic (1) EPA arcinogenic (2) Total Carcinogenic (1) EPA arcinogenic lassification (2) Consiste (2) (3) Consiste (3) Consiste (3) Consiste (4) Individual COC (5) Total Toxicant (1) Intake Rate (mg/kg/day) (2) Consiste (3) Consiste (2) (3) Consiste (3) Consiste (4) Intake Rate (mg/kg/day) (2) Consiste (3) Consiste (4) Intake Rate (mg/kg/day) (2) Consiste (2) (3) Consiste (2) (4) Intake Rate (mg/kg/day) (2) Consiste (2) (4) Intake Rate (mg/kg/day) (2) Consiste (2) (4) Intake Rate (mg/kg/day) (2) Consiste (2) Consiste (2) Consiste (2) (3) Consiste (2) (4) Intake Rate (mg/kg/day) (2) Consiste ((2) Total Carcinogenic (3) Oral (4) Individual COC (5) Total Toxicant (6) Oral Intake Rate (mg/kg/day) On-Site Off-Site Commercial Residential (mg/kg-day)*-1 Commercial Residential (mg/kg-day)*-1 Commercial Residential (mg/kg-day)*-1 (mg/kg-day)*	(1) EPA arcinogenic (1) EPA arcinogenic (2) Total Carcinogenic (3) Oral (4) Individual COC (5) Total Toxicant (6) Oral (7) Individual COC (5) Total Toxicant (6) Oral (7) Individual COC (7) Individual CoC		

Serial: G-443-CSX-444

		RBCA SITE ASSESSME	NT		Tier 2 V	Vorksheet 8.1		
Site Name: Tony's Express Se	ervice Station	Site Location: 3609 East 1	4th Street Completed By	: Roy Butler	Date Completed: 1/21/1998		3 OF	
		TIER 2 EXPO	SURE CONCENTRATION AND	INTAKE CALCULATION				
OUTDOOR AIR EXPOSURE PATH	WAYS ME PLANE		CHECKED IF PATHWAY IS ACT	VE) STANSANDERS		解 的影響和 1.75万万	CVI A Same and the	
GROUNDWATER: VAPOR	Exposure Concentration						INTAKE (mg/kg-day)	
INHALATION	1) Source Medium	2) NAF Value (m^3/L) Receptor Outdoor Air: POE Conc. (mg/m²3) (1)		4) Exposure Multiplier (IRxEFxED)(BWxAT) {m^3/kg-day}	5) Average Daily Intake Rate (mg/kg-day) (3) X (4)	(Sum intake values from surface, subsurface & groundwater routes.)		
	Groundwater Conc.				ļ.		100000	
Constituents of Concern	(mg/L)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	Off-Site Residential	
Acetone	1.1E+1	1.1E+6	1.0E-5	2.0E-1	2.0E-6	2.0E-6	0.0E+0	
Benzene	6.0E+0	5.3E+4	1.1E-4	7.0E-2	7.9E-6	4.5E-5	4.2E-5	
Chloroform	7.5E-3	6.7E+4	1.1E-7	7.0E-2	7.8E-9	7.8E-9	0.0E+0	
Chloromethane	7.8E-2	8.6E+3	9.1E-6	7.0E-2	6.3E-7	6.3E-7	0.0E+0	
Dichloroethane, 1,2-	6.6E-3	1.1E+5	5.9E-8	7.0E-2	4.1E-9	4.1E-9	0.0E+0	
Ethylbenzene	2.1E+0	5.2E+4	4.0E-5	2.0E-1	7.9E-6	1.5E-4	1.3E-4	
Naphthalene	6.3E-1	1,4E+5	4.7E-6	2.0E-1	9.1E-7	9.1E-7	0.0E+0	
Toluene	7.6E+0	5.4E+4	1.4E-4	2.0E-1	2.8E-5	3.7E-4	3.2E-4	
Xylene (mixed isomers)	7.7E+0	5.8E+4	1,3E-4	2.0E-1	2.6E-5	7.1E-4	5,2E-4 6,5E-4	

NOTE: ABS = Dermal absorption factor (dim) BW = Body weight (kg) EF = Exposure frequencey (days/yr) POE = Point of exposure

AF = Adherance factor (mg/cm^2) CF = Units conversion factor ET = Exposure time (hrs/day) SA = Skin exposure area (cm^2/day)

AT = Averaging time (days) ED = Exposure duration (yrs) IR = Inhalation rate (m^3/day)

© Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-443-CSX-444

Site Name: Tony's Express S	ervice Station	Site Location: 3	OUS CASE 14th	Su ce t		Completed By:	Roy Butler		Date Completed	: 1/21/1998	10
				TIER 2 PAT	HWAY RISK	CALCULATION	1				
OUTDOOR AIR EXPOSURE PAT	WAYS PAP	o deposit a	andri territari.			(CHECKED IF PA	THWAYS ARE AC	TIVE) (2000)	0.24.040.65		Periodica
				ARCINOGENIC RI					TOXIC EFFECTS		
	(1) EPA Carcinogenic	Intake Rate On-Site	arcinogenic (mg/kg/day) Off-Site	(3) Inhalation Slope Factor	(4) Individ Risk (2 On-Site	dual COC !) x (3) Off-Site		Toxicant (mg/kg/day) Off-Site	(6) Inhalation Reference Dose	(7) Individual Hazard Quo On-Site	lual COC tient (5) / (6) Off-Site
Constituents of Concern	Classification	Commercial	Residential	(mg/kg-day)^-1	Commercial	Residential	Commercial	Residential	(mg/kg-day)	Commercial	Residential
Acetone	D	<u>.</u>									
Benzene	A	4.5E-5	4.2E-5	2.9E-2	1.3E-6	1.2E-6	1.3E-4	9.9E-5	1.7E-3	7.4E-2	5.8E-2
Chloroform	B2	7.8E-9	0.0E+0	8.1E-2	6.3E-10	0.0E+0					
Chloromethane	C	6.3E-7	0.0E+0	6.3E-3	4.0E-9	0.0E+0			1		
Dichloroethane, 1,2-	B2	4.1E-9	0.0E+0	9.1E-2	3.8E-10	0.0E+0	1.2E-8	0.0E+0	2.9E-3	4.0E-6	0.0E+0
Ethylbenzene	D						1.5E-4	1.3E-4	2.9E-1	5.2E-4	4.7E-4
Naphthalene	D								1 2.02	0.22.7	7.7 -
Toluene	D			T			3.7E-4	3,2E-4	1.1E-1	3.2E-3	2.8E-3
Xylene (mixed isomers)	D			1			7.1E-4	6.5 E -4	2.0E+0	3.6E-4	3.3E-4
		Total Path	way Carcinog	enic Risk = [1.3E-6	1.2E-6			lazard Index =	7.8E-2	6.2E-2

Serial: G-443-CSX-444

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.1

Site Name: Tony's Express Service Station		ite Location: 3609 East 14th	Street Completed By:	Roy Butler	Date Completed: 1/21/1998	5 OF	
		TIER 2 EXPOSU	RE CONCENTRATION AND	NTAKE CALCULATION			
INDOOR AIR EXPOSURE PATHWA	YS TO THE STATE OF		CHECKED IE PATHWAY IS ACTIV		地名的第三人称单数		
GROUNDWATER:	Exposure Concentration	No. 100 m		- TECHNOLOGIA MARKACINE AND SELECTION OF	Proposition of the Section of the Se	TOTAL PATHWAY INTAKE (mg/kg-day)	
VAPOR INTRUSION TO BUILDINGS	1) <u>Source Medium</u>	2) NAF Value (m^3/L) Receptor	3) Exposure Medium Indoor Air: POE Cons. (mg/m²3) (1) / (2)			(Sum inteks values from subsurface & groundwater routes.)	
	Groundwater Conc.	·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(<u>-</u> _,,	(T T T T T T T T T T T T T T T T T T T	
Constituents of Concern	(mg/L)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercia	
Acetone	1.1E+1	1.2E+4	9.0E-4	2.0E-1	1.8E-4	1.8E-4	
Benzene	6.0E+0	1.6E+2	3.6E-2	7.0E-2	2.5E-3	2.2E-2	
Chloroform	7.5E-3	2.2E+2	3.5E-5	7.0E-2	2.4E-6	2.4E-6	
Chloromethane	7.8E-2	4.4E+1	1.8E-3	7.0E-2	1.2E-4	1.2E-4	
Dichtoroethane, 1,2-	6.6E-3	4.6E+2	1.4E-5	7.0E-2	9.9E-7	9.9E-7	
Ethylbenzene	2.1E+0	1.5E+2	1.4E-2	2.0E-1	2.7E-3	5.0E-2	
Naphthalene	6.3E-1	6.3E+2	1.0E-3	2.0E-1	2.0E-4	2.0E-4	
Toluene	7.6E+0	1.6E+2	4.7E-2	2.0E-1	9.2E-3	8.5E-2	
Xylene (mixed isomers)	7.7E+0	1.7E+2	4.5E-2	2.0E-1	8.8E-3	9.3E-2	

NOTE: ABS = Dermal absorption factor (dim) BW = Body weight (kg) EF = Exposure frequencey (days/yr)

AF = Adherance factor (mg/cm^2) CF = Units conversion factor ET = Exposure time (hrs/day)

AT = Averaging time (days) ED = Exposure duration (yrs) IR = Inhalation rate (m^3/day)

POE = Point of exposure SA = Skin exposure area (cm^2/day)

Software: GSI RBCA Spreadsheet

Serial: G-443-CSX-444

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Sonware: GSI RBCA Spre Version: 1.0.1

	SITE ASS	ESSMENT						Tier 2 Wor	ksheet 9.3				
Site Name: Tor	ny's Express Service Station		Completed B	y: Roy Butler									
Site Location: 3609 East 14th Street			Date Comple	ate Completed; 1/21/1998 1 C						1 OF 1			
		Target Risk (Class A & B) 1.0E-6		☐ MCL exposure limit?			Calculation Option: 2						
GROUNDWATER SSTL VALUES		Target Risk (Class C) 1.0E-5		☐ PEL exposure limit?			Groundwater DAF Option: Elec. Acceptor Super,						
			Target H	azard Quotient	1.0E+0					(Two-directional vert. dispersion olatifization Applicable SSTL Exceeded Required CRF ommercial: (on-site) (mg/L "■" If yes Only if "yes" left NA 1.0E+1 ■ 1.0E+00			
				SSTL	. Results For Com	piete Exposure	Pathways ("x" If	Complete)					
		Representative		·		Crounding	ter Volatilization	Groundwal	or Volatifization	A malia abda			
CONSTITUEN	TS OF CONCERN	Concentration	l _x l	Groundwater	Ingestion		ndoor Air		er vistatitization itdoor Alr		1	Required CRF	
	l .		Residential:	Commercial:	Regulatory(MCL):	Residential:	Commercial:	Residential	Commercial:				
CAS No.	Name	(mg/L)	700 feet	(on-site)	(on-site)	(on-site)	(on-site)	(on-site)	(on-site)	(mg/L	"" If yes	Only if "yes" left	
67-64-1	Acetone	1.1E+1	1.2E+1	1.0E+1	NA NA	NA	NA	NA	NA	1.0E+1		1.0E+00	
71-43-2	Benzene	6.0E+0	2.7E+0	9.9E-3	NA	NA	8.1E-2	NA	2.6E+1	9.9E-3		6.1E+02	
67-66-3	Chloroform	7.5E-3	3.1E-2	4.7E-2	NA	NA	3.8E-2	NA	1.2E+1	3.1E-2		<1	
74-87-3	Chloromethane	7.8E-2	#VALUE!	#VALUE!	NA	NA	>Sol	NA	>Sol	#VALUE!		<1	
107-06-2	Dichloroethane, 1,2-	6.6E-3	4.8E-3	3.1E-3	NA	NA	7.3E-2	NA	1.8E+1	3.1E-3		2.0E+00	
100-41-4	Ethylbenzene	2.1E+0	8.2E+0	1.0E+1	NA	NA	>Sol	NA	>Sol	8.2E+0		<1	
91-20-3	Naphthalene	6.3E-1	5.7E-1	4.1E-1	NA	NA	NA 1	NA	NA	4.1E-1		2.0E+00	
108-88-3	Toluene	7.6E+0	1.8E+1	2.0E+1	NA	NA	9.4E+1	NA	>Sol	1.8E+1		<1	
1330-20-7	Xylene (mixed isomers)	7.7E+0	1.5E+2	>Sol	NA	NA	>Sol	NA	>Sol	1.5E+2		<1	

>Sol Indicates risk-based target concentration greater than constituent solubility

Software: GSI RBCA Spreadsheet

Serial: G-443-CSX-444

O Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Version: 1.0.1

APPENDIX D SLUG TEST TABLES AND GRAPHS

SLUG TEST, MW1	FULLY PEN	ETRATING V	VELL	
	WELL DATA			
RADIUS WELL	0.0833333	1	<u> </u>	
RADIUS BORING	0.3333333			
Ne GRAVEL PACK	0.3	 		
CORRECTED rc	0.08			· · · · · · · · · · · · · · · · · · ·
PROBABLE Ne AQUIFER	0.2	5		
GRADIENT	0.019			
LENGTH SCREEN	20			
DEPTH TOP OF SCREEN	10			
DEPTH TO WATER	9.3			
LENGTH SCREEN BELOW WATER	20			
LENTH CASING BELOW WATER	20.7			
Le/rw	60			
C from graph	3.3			
ln(Re/rw)	3.1111484			
	SLUG TEST			
calculated k feet/day	0.3954346			
Calculated Ground Water Vel.	0.0375663			
	HEAD FEET	drawdown	time sec	ln dd
START READING FEET	8.796			·
INITAL DRAWDOWN	7.782	1.014		0.0139029
	8.3479			-0.802739
	8.39			-0.901402
	8.432	0.364		-1.010601
	8.4746			-1.135069
	8.517			-1.276543
	8.5591		<u> </u>	-1.440117
	8.6014			-1.636809
	8.6436	0.1524		-1.881247
	8.6859			-2.206366
	8.7281	0.0679	314	-2.689719

SLUG TEST, MW2	FULLY PEN	ETRATING W	ELL	
	WELL DATA	<u> </u>		
RADIUS WELL	0.1666667			
RADIUS BORING	0.4166667			
Ne GRAVEL PACK	0.3			
CORRECTED rc	0.08			
PROBABLE Ne AQUIFER	0.2			
GRADIENT	0.019			
LENGTH SCREEN	20			
DEPTH TOP OF SCREEN	-10			
DEPTH TO WATER	9.05			
LENGTH SCREEN BELOW WATER	20			
LENTH CASING BELOW WATER	20.95			
Le/rw	48			
C from graph	3			
ln(Re/rw)	2.9130431			
	SLUG TEST			
calculated k feet/day	0.4685005			
Calculated Ground Water Vel.	0.0445075			
	HEAD FEET	drawdown	time sec	ln dd
START READING FEET	16.493	0		
INITAL DRAWDOWN	16.155	0.338		-1.084709
	16.197	0.296	8	-1.217396
	16.239	0.254	20	-1.370421
	16.281	0.212		-1.551169
	16.324	0.169	L	-1.777857
	16.366	0.127	106	-2.063568
	16.408	0.085	264	-2.465104
		l		

SLUG TEST, MW4	FULLY PEN	ETRATING V	VELL	
		ļ		
	WELL DATA	d		
RADIUS WELL	0.0833333			
RADIUS BORING	0.3333333			
Ne GRAVEL PACK	0.3			
CORRECTED rc	0.20			
PROBABLE Ne AQUIFER	0.2			
GRADIENT	0.019			
LENGTH SCREEN	20			
DEPTH TOP OF SCREEN	6			
DEPTH TO WATER	9.43			
LENGTH SCREEN BELOW WATER	16.57			
LENTH CASING BELOW WATER	16.57			
Le/rw	49.71			
C from graph	3.1			
ln(Re/rw)	2.9072737			
		····		
	SLUG TEST			
calculated k feet/day	2.0116523			
Calculated Ground Water Vel.	0.191107			
	HEAD FEET	drawdown	time sec	ln dd
START READING FEET	3.743	0		
INITAL DRAWDOWN	3.1684	0.5746	0	-0.554081
	3.329	0.414	2	-0.881889
, , , , , , , , , , , , , , , , , , ,	3.4388			-1.19007
	3.4811			-1.339793
	3.5233	0.2197		-1.515492
	3.5656			-1.729348
	3.6078		L.	-2.001
	3.6501			-2.376232
	3.6323			-2.200931
	1			
····	1			
- · · · · · · · · · · · · · · · · · · ·				

SLUG TEST, MW5	FULLY PEN	ETRATING W	VELL	
	WELL DATA	<u> </u>		
RADIUS WELL	0.0833333	·		
RADIUS BORING	0.3333333	·		
Ne GRAVEL PACK	0.333333			
CORRECTED rc	0.20			
PROBABLE Ne AQUIFER	0.20			
GRADIENT	0.019			
LENGTH SCREEN	20			-
DEPTH TOP OF SCREEN	6			
DEPTH TO WATER	9.15			
LENGTH SCREEN BELOW WATER	16.85			
LENTH CASING BELOW WATER	16.85			
Le/rw	50.55			
C from graph	3.1			
ln (Re/rw)	2.9263235			
III(Re/IW)	2.9263235		ļ	
	·			
	-		<u> </u>	
	SLUG TEST			<u> </u>
calculated k feet/day	2.0146411			
Calculated Ground Water Vel.	0.1913909			
	HEAD FEET	drawdown	time sec	ln dd
START READING FEET	6.6158	0		
INITAL DRAWDOWN	6.1257	0.4901	0	-0.713146
	6.244	0.3718	4	-0.989399
	6.3032	0.3126	8	-1.162831
	6.3538	0.262	12	-1.339411
	6.3961	0.2197	18	-1.515492
	6.4383	0.1775	28	-1.728785
	6.4806	0.1352	50	-2.001
	6.522	0.0938	102	-2.36659
	6.5651	0.0507		-2.981829
			-	

SLUG TEST, MW6	FULLY PENE	TRATING WE	EL L	
	WELL DATA			
RADIUS WELL	0.0833333			
RADIUS BORING	0.3333333			
Ne GRAVEL PACK	0.3			
CORRECTED rc	0.20			
PROBABLE Ne AQUIFER	0.2			
GRADIENT	0.019			
LENGTH SCREEN	20			
DEPTH TOP OF SCREEN	6			
DEPTH TO WATER	9.3			
LENGTH SCREEN BELOW WATER	16.7			
LENTH CASING BELOW WATER	16.7			
Le/rw	50.1			
C from graph	3.1			
ln (Re/rw)	2.9161563			
	SLUG TEST			
calculated k feet/day	10.415752			
Calculated Ground Water Vel.	0.9894965			
	HEAD FEET	drawdown	time sec	ln dd
START READING FEET	3.08	0		
INITAL DRAWDOWN	2.8305	0.2495		-1.388296
	2.8981	0.1819		-1.704298
	2.9403	0.1397		-1.968258
	2.9826	0.0974		-2.328929
	3.0248	0.0552		-2.896792
	3.067	0.013	62	-4.342806
				<u> </u>
				
				1

FULLY PEN	ETRATING W	ELL	
WELL DATA			
	<u> </u>		
	 		
		Ĭ	
			
2.3487732			
SLUG TEST			
3.856836			
		time sec	ln dd
		0	0.0032946
		2	-0.557917
		4	-0.887217
+		6	-1.142878
		8	-1.348228
8.8379	0.2091	12	-1.564943
8.8802	0.1668	18	-1.79096
8.9224	0.1246	30	-2.082647
1		60	-2.497384
9.0069	0.0401	133	-3.216379
<u> </u>			
	WELL DATA 0.0833333 0.33333333 0.30.20 0.20 0.019 20 68.56 17.44 17.44 52.32 3.2 2.9487752 SLUG TEST 3.856836 0.3663994 HEAD FEET 9.047 8.0437 8.4746 8.6352 8.7281 8.7873 8.8879 8.8802 8.9224 8.9647	WELL DATA 0.0833333 0.3333333 0.20 0.20 0.2 0.019 20 6 8.56 17.44 17.44 17.44 52.32 3.2 2.9487752 SLUG TEST 3.856836 0.3663994 HEAD FEET drawdown 9.047 0.8.0437 1.0033 8.4746 0.5724 8.6352 0.4118 8.7281 0.3189 8.7873 0.2597 8.8379 0.2091 8.8802 0.1668 8.9224 0.1246 8.9647 0.0823	0.0833333 0.3333333 0.20 0.20 0.019 20 6 8.56 17.44 17.44 52.32 3.2 2.9487752 SLUG TEST 3.856836 0.3663994 HEAD FEET drawdown time sec 9.047 0 8.0437 1.0033 0 8.4746 0.5724 2 8.6352 0.4118 4 8.7281 0.3189 6 8.7873 0.2597 8 8.8379 0.2091 12 8.8802 0.1668 18 8.9224 0.1246 30 8.9647 0.0823 60

SLUG TEST, MW8	FULLY PENE	TRATING WI	ELL	
	WELL DATA			
RADIUS WELL	0.0833333			
RADIUS BORING	0.3333333			
Ne GRAVEL PACK	0.3			
CORRECTED rc	0.20			
PROBABLE Ne AQUIFER	0.2			
GRADIENT	0.019			
LENGTH SCREEN	20			
DEPTH TOP OF SCREEN	6			
DEPTH TO WATER	8.95			
LENGTH SCREEN BELOW WATER	17.05			
LENTH CASING BELOW WATER	17.05			
Le/rw	51.15			
C from graph	3.2			
ln(Re/rw)	2.9229464			:
	SLUG TEST			
calculated k feet/day	1.1646694			
Calculated Ground Water Vel.	0.1106436			
	HEAD FEET	drawdown	time sec	ln dd
START READING FEET	11.584			
INITAL DRAWDOWN	10.967			-0.482886
	11.034	0.55		-0.597837
	11.085	0.499		-0.695149
	11.127	0.457		-0.783072
	11.17	0.414		-0.881889
	11.212	0.372	114	-0.988861
'				
		 		
	 	 		

,

SLUG TEST, MW10	FULLY PENETRATING WELL			
	WELL DATA	· l		
RADIUS WELL	0.0833333			
RADIUS BORING	0.3333333			
Ne GRAVEL PACK	0.3			
CORRECTED rc	0.20			
PROBABLE Ne AQUIFER	0.2			į
GRADIENT	0.019			
LENGTH SCREEN	20			
DEPTH TOP OF SCREEN	6			
DEPTH TO WATER	8.78	1		
LENGTH SCREEN BELOW WATER	17.22			
LENTH CASING BELOW WATER	17.22			
Le/rw	51.66			
C from graph	3.2			
ln(Re/rw)	2.9342741			1
	`			, , , , , , , , , , , , , , , , , , ,
		,		*
	SLUG TEST			
calculated k feet/day	9.6559604			
Calculated Ground Water Vel.	0.9173162			
	HEAD FEET	drawdown	time sec	ln dd
START READING FEET	6.6327	0		i
INITAL DRAWDOWN	6.1764	0.4563	0	-0.784605
	6.3032	0.3295	2	-1.110179
	6.4721	0.1606	4	-1.828838
	6.5313	0.1014	8	-2.288682
	6.582	0.0507	14	-2.981829
	6.6242	0.0085	66	-4.767689

`

SLUG TEST, MW11	FULLY PEN	TRATING W	ELL	
	WELL DATA			
RADIUS WELL	0.0833333			
RADIUS BORING	0.3333333			
Ne GRAVEL PACK	0.3			
CORRECTED rc	0.20			
PROBABLE Ne AQUIFER	0.2			
GRADIENT	0.019			
LENGTH SCREEN	20			
DEPTH TOP OF SCREEN	6			
DEPTH TO WATER	8.78			
LENGTH SCREEN BELOW WATER	17.22			
LENTH CASING BELOW WATER	17.22			
Le/rw	51.66			
C from graph	3.2			
ln(Re/rw)	2.9342741			
	SLUG TEST			
calculated k feet/day	2.5450925			
Calculated Ground Water Vel.	0.2417838			
	HEAD FEET	drawdown	time sec	ln dd
START READING FEET	8.99			
INITAL DRAWDOWN	8.5676			-0.861803
	8.6959			-1.223835
	8.7535			-1.441807
	8.7957	·		-1.638352
	8.8379			-1.883217
	8.8802			-2.209095
	8.9224	0.0676	114	-2.694147

APPENDIX E FIELD SAMPLE DATA

SITE Tings DATE 12/2/97 TIME K45- WELL Must SAMPLED BY.	
WELL ELEVATION	
PRODUCT THICKNESS	n
DEPTH TO WATER 2" 9.7"/2" = 20.7 x.06 2000, 44 (9.78) 7.1.	24
FLUID ELEVATION	
BAILER TYPE	
PUMP grafos Koli- Acu	

WELL PURGING RECORD				
TIME	VOLUME REMOVED	TEMP.	pН	COND.
10:55	8415	66.0	7.66	3.48
10:55	12/15	69.8	7.06	3.52
				,

FINAL VOLUME PURGED 12915
TIME SAMPLED 11:02
SAMPLE ID. Mai
SAMPLE CONTAINERS 3 Nonpartich 2 pear log 1 l
ANALYSIS TO BE RUN THE BIEF CO2/nother / B10
LABORATORY NSE
NOTES: 1/ als notes clear
$0_{1} = 0.5$ ORP - 010
$NO_3 = 0.0$
50u = 0.0
Fett = 3.04

SITE Unys		12-30-47	1	13:35
WELL mar	SAMPI	LED BY. C. (mag	
WELL ELEVAT				
PRODUCT THIC			····	
DEPTH TO WAT	CER 4" 4	17/30 : 20.26	4.08(.76)	= 3996 = 17.5"
FLUID ELEVAT	ION	1.05		
BAILER TYPE				
PUMP				

WELL PURGING RECORD				
TIME	VOLUME REMOVED	TEMP.	pН	COND.
13:47	10 callen	70.0	PHI	238
17:52.	204/5	69.5	malticultur	243
13:55	25 9/5	70.0	1	2.5-1
13:58	284	70.1	OF	2.50
14:00	30465	70.1	/ Re	2.49
		·		

FINAL VOLUME PURGED 40 9/5
TIME SAMPLED 14:05
SAMPLE ID. mwz
SAMPLE CONTAINERS 3- Of well 2 Hel Was 19
ANALYSIS TO BE RUN TALY-BITET C/2 petine / Biz
LABORATORY AVSE
NOTES: wate gray Bir clan
0 = 0.0 ORP = -81
$No_{\gamma} = 0.0$
SC4 = 0.0
Fo +7 > 3,30

SITE Tony's	DATE 12-30-97	TIME 14:40
WELLMuy	SAMPLED BY.	
WELL ELEVA		
PRODUCT TH	CKNESS	
DEPTH TO WA		
FLUID ELEVA	TION 9.43/ 15.1 2"	X.06 =2/2 45
BAILER TYPE	,	
PUMP		

	WELL PU	RGING R	ECORD	
TIME	VOLUME REMOVED	TEMP.		COND.
1445	395 1	67.	•	2.68
1450 .	895	68		7.30
		-		
		*.		
			,	

FINAL VOLUME PURGED 896
TIME SAMPLED 1450
SAMPLE ID. mu4
SAMPLE CONTAINERS 2- HC/ UGAS
ANALYSIS TO BE RUN THE -BIEX
LABORATORY NSE
NOTES: unte clas pro odor
$O_2 = 0.0$ $ORI' = 72$
NO3 = 4.5
504 = 42
Fett = 0.39

SITE Ing's		12-30-97	TIME	12:15
WELL mus	SAMPI	LED BY.	C. Converse	
,				
WELL ELEVATI			÷ ·	
PRODUCT THIC				
DEPTH TO WAT		9.15 /252	15.85 x,06 . 0.	951 z 7.19/5
FLUID ELEVAT	ION	<u> </u>		
BAILER TYPE			*.	
PUMP		-	· · · ·	

WELL PURGING RECORD				
TIME	VOLUME REMOVED	TEMP.	pН	COND.
12:30	7915	70.03	7.78	3.30
12:32	996	71-2	7.30	3.65
		•		
-				

FINAL VOLUME PURGED 996
TIME SAMPLED 12:44
SAMPLE ID. Mur
SAMPLE CONTAINERS 3 pm costs 2 Hellings 12
ANALYSIS TO BE RUN THY -BTET, Ca/methe / Be
LABORATORY NE
NOTES: cents slittle tentral - no alex
(), = 0.0 OR1 = 46
1/0 = 0.3
Sou = 18
Fext = 0.94

SITE tough	DATE 12-30-87	TIME 1640
WELL mu6	SAMPLED BY. Co	aceu
WELL ELEVAT		
PRODUCT THIC		
DEPTH TO WAT	- 	7= 74/5
FLUID ELEVAT	'ION ·	
BAILER TYPE		
PUMP		

	WELL PU	RGING R	ECORD	
TIME	VOLUME REMOVED	TEMP.	pН	COND.
1700	596	65.8		2.4
17:01.	794	67.5		2.45
17:03	94/5	68.5		2.48
17:06	1295	68.5		2-48
	,			•
, . <u>.</u>				

FINAL VOLUME PURGED 1295
TIME SAMPLED 17:00
SAMPLE ID. mu6
SAMPLE CONTAINERS 2- HCl UGAI
ANALYSIS TO BE RUN TPG-BJEY
LABORATORY NIE
NOTES: ugh cler sleht who
$O_2 = O_2O \qquad O_1 = I_1 + I_2$
$VU_3 = 0.0$
504=9
Fet = 0.30
,

SITE Tang's	DATE	12-30-87	TIME	11:25
WELL mu 7	SAMPI	EDBY. 6	- Comer	
*				
WELL ELEVAT				
PRODUCT THIC				
DEPTH TO WAT	ER 2" 8.6	55/19-b.35	Y.05 = 7 =	5.25
FLUID ELEVAT	ION	· · · · · · · · · · · · · · · · · · ·		
BAILER TYPE				
PUMP		·		

WELL PURGING RECORD				
TIME	VOLUME REMOVED	TEMP.	pН	COND.
11:42	595	65.5	7.7	2.82
11:42	7915	68.8	7.27	2.86
				·
· .				

FINAL VOLUME PURGED & 895
TIME SAMPLED 11:50
SAMPLE ID. nw7
SAMPLE CONTAINERS & Longon. WA'S 2 pts. WAS IR
ANALYSIS TO BE RUN T/4 DIE CE/ worker / Bio
LABORATORY NOTE
NOTES: make gl trabbel - To ale
$O_2 = h_2 \qquad ORP = -82.$
NO: 202
504=32
Fo ++:0:23

SITE Tomas	DATE		, , , , , , , , , , , , , , , , , , , ,	ME	
WELL STAW-8	SAMP	LED B	Y.		4
±					-
WELL ELEVAT		. —			
PRODUCT THIC	KNES	S	•		
DEPTH TO WAT		,45	1240=	4.06x3=3q4	
FLUID ELEVAT	ION		i		
BAILER TYPE					
PUMP		, <u> </u>			

WELL PURGING RECORD				
TIME	VOLUME REMOVED	TEMP.	pН	COND.
	A gallan	67.7	•	314
	- to ovallim	CSS	7.30	76
		·		

FINAL VOLUME PURGED
TIME SAMPLED WAM
SAMPLE ID.
SAMPLE CONTAINERS
ANALYSIS TO BE RUN TALL -BTEY Rice / Confretue
LABORATORY
NOTES: 2" well, death 24+ feet,
$O_{\gamma} = 2.5$ Mr. $O_{R}P = OCI$
$NV_{ij} = 0.1$
504 = 020
Fext > 3.3U

SITE Tony 1	DATE 12-30-9		:10
WELL mulo	SAMPLED B	Y. Convene	
WELL ELEVAT			
PRODUCT THIC			
DEPTH TO WAT	TER 2" 8.78/23.	5 =14.72 x.06 x7.48=	6.69/5
FLUID ELEVAT	ION /		
BAILER TYPE			
PUMP			

WELL PURGING RECORD				
TIME	VOLUME REMOVED	TEMP.	pН	COND.
6618	496	66.9 <i>6</i> 9.0		2.47
16:18 16:19 -	796	69.C		2.47
16:22	10965	688		2.47
	,			
				,

FINAL VOLUME PURGED /Caps
TIME SAMPLED 16:22
SAMPLE ID. Mu 10
SAMPLE CONTAINERS 2- LOAT 4/1/5/
ANALYSIS TO BE RUN TOUS - 175x
LABORATORY ME
NOTES: center classe no also
0==00 089=4
NO = 013
$SO_{ij} = O_{ij}Q_{ij}$
$F_{i} = 2.21$

SITE Ungli		12-20-97	TIME 15:30	
WELL Mee-11	SAMPL	EDBY. C	nvere	
WELL ELEVAT			· ·	
PRODUCT THIC	'KNESS			
DEPTH TO WAT				
FLUID ELEVAT	ION 2"10	2.4/24.7214.57	1.6 = 6.5 ds 3 vol	
BAILER TYPE				
PUMP				

	WELL PU			
TIME	VOLUME	TEMP.	pН	COND.
	REMOVED			,
15:38	5 7/5	67.9	•	2.60
15:38 15:39 .	7918	689		2,21
W:42	10 9/5	690		2.17

FINAL VOLUME PURGED 695
TIME SAMPLED 15:42
SAMPLE ID. mail
SAMPLE CONTAINERS 2- HCI LOAG
ANALYSIS TO BE RUN THE -BTEY
LABORATORY NSE
NOTES: une for chear no color
$O_0 = 0.0$ ORP = 66
NO3 = 3.4
564 = 39
Fe*+ = 0.3]

APPENDIX F RESULTS 8260 ANALYSIS

TABLE 1 WATER SAMPLES ANALYTICAL RESULTS ANALYZED FOR VOLATILE ORGANICS (8260) IN MILLIGRAM PER LITER (mg/L)

Date	Sample Number	Parameter	Detection Limit
5/21/97	STMW-1	Acetone	0.16
JIZIIJI	01111	Benzene	0.087
		Chloroform	0.0021
 		2-hexanone	0.21
		Isopropylbenzene	0.034
		Methyl Chloride	0.0018
		Naphthalene	0.21
		p-isopropyltoluene	0.017
		sec-butylbenzene	0.03
		Toluene	0.027
		1,2,4-trimethylbenzene	1.4
		1,3,5-trimethylbenzene	0.31
 -		Xylenes	1.2
5/21/97	STMW-2	Acetone	6.1
3/21/9/	5111112	Benzene	3.3
		Chloroform	0.0038
		1,2-dichloroethane	0.0036
		2,2-dichloropropane	0.0061
		trans-1,3-dichloropropene	0.024
		Ethylbenzene	1.1
		2-hexanone	0.053
		Isopropylbenzene	0.012
		Methyl Chloride	0.0067
		N-butylbenzene	0.0056
		N-propylbenzene	0.014
· · · · · · · ·		Naphthalene	0.034

TABLE 1 CONT'D WATER SAMPLES ANALYTICAL RESULTS ANALYZED FOR VOLATILE ORGANICS (8260) IN MILLIGRAM PER LITER (mg/L)

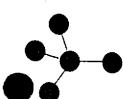

Date	Sample Number	Parameter	Detection Limit
5/21/97	STMW-2	p-isopropyltoluene	0.0022
		sec-butylbenzene	0.2
		Toluene	4.2
		1,2,4-trimethylbenzene	1.1
		1,3,5-trimethylbenzene	0.28
		Xylenes	5.7
5/21/97	STMW-3	Acetone	10.0
		Benzene	9.2
		1,2-dichloroethane	0.0066
		trans-1,3-dichlorpropene	0.084
		Ethylbenzene	2.1
		2-hexanone	0.014
		Isopropylbenzene	0.038
		Methyl Chloride	0.078
	jujsk	4-methyl-2-pentanone	0.0095
	(4,332.2	N-butylbenzene	0.031
· · · · · · · · · · · · · · · · · · ·		N-propylbenzene	0.049
		Naphthalene	0.63
		p-isopropyltoluene	0.0068
		Tert-butylbenzene	0.23
		Toluene	14.0
		1,2,4-trimethylbenzene	0.86
		1,3,5-trimethylbenzene	0.55
·		Xylenes	10.0
5/21/97	STMW-4	Benzene	• 0.37

TABLE 1 CONT'D WATER SAMPLES ANALYTICAL RESULTS ANALYZED FOR VOLATILE ORGANICS (8260) IN MILLIGRAM PER LITER (mg/L)

Date	Sample Number	Parameter	Detection Limit
5/21/97	STMW-4	Toluene	0.028
·		Xylenes	0.061
5/21/97	STMW-5	None Detected	
5/21/97	STMW-6	Acetone	11.0
·		Benzene	3.6
		Chloroform	0.0075
		1,2-dichloroethane	0.0061
<u> </u>		Ethylbenzene	1.3
		2-hexanone	0.086
		Methyl Chloride	0.01
		Naphthalene	0.45
		p-isopropyltoluene	0.011
		sec-butylbenzene	0.3
, ,		Toluene	. 5.8
		1,2,4-trimethylbenzene	1.6
		1,3,5-trimethylbenzene	0.42
		Xylenes	6.3
5/21/97	STMW-7	None Detected	
5/21/97	STMW-8	Acetone	7.3
		Benzene	2.3
		Chloroform	0.0064
		1,2-dichloroethane	0.0052
	• \	2-hexanone	3.6
		Isopropylbenzene	0.012
		Methyl Chloride	0.0054

TABLE 1 CONT'D WATER SAMPLES ANALYTICAL RESULTS ANALYZED FOR VOLATILE ORGANICS (8260) IN MILLIGRAM PER LITER (mg/L)

Date	Sample Number	Parameter	Detection Limit
5/21/97	STMW-8	Naphthalene	0.52
		· p-isopropyltoluene	0.0095
		sec-butylbenzene	0.4
		Toluene	0.58
		1,2,4-trimethylbenzene	1.5
······································		1,3,5-trimethylbenzene	0.31
		Xylenes	2.8
5/21/97	STMW-10	Acetone	0.082
		Benzene .	0.19
		Chloroform	0.0012
		Ethylbenzene	0.043
		Isopropylbenzene	0.0032
		Naphthalene	0.052
		Toluene	0.0037
		1,2,4-trimethylbenzene	0.04
		1,3,5-trimethylbenzene	0.011
		Xylenes	0.059
5/21/97	STMW-11	None Detected	

Argon Mobile Labs

3008 McKittrick Ct., Suite N • Ceres, CA 95307 • (209) 537-7836

SOIL TECH ENGINEERING, INC.

298 Brokaw Rd.

Santa Clara, CA 95050

Date Sampled: 07/13/93

Date Received: 07/14/93 Date Reported: 08/09/93

Project ID: 7-92-514-SA

Matrix: Soil

Organic Lead DOHS LUFT Analysis Report

Sample Number	Sample Description	Detection Limit	Results
		mqq	ppm
T307091	ST(1,2,3,4)	1.0	<1.0

QA/QC: 22% Matrix Spike Recovery (*) 21% Duplicate Spike Recovery (*)

ppm = mg/Kg
(*) = Matrix interference.

ARGON MOBILE LABS

Vinan Cuito

Hiram Cueto Lab Director

NAME PROJ. NO. 3609 E. 14 th. st. CALLAND 7-72-514-5A SAMPLERS: (Signature) N. Avend REMARKS CON-WATER REKIAT 5016. TIME LOCATION DATE NO. 51-1 K1993 16 # Per Frank's 51-2 2. [. 1/1/25 (AN)? request on 16 **ST-3** 1/13/93 8-02-93 16 57-4 11/93 15 57-5 11795 1143 57-6 عهمري 51-7 1/3/23 17 15 1/3/91 57-8 1/0/93 57-9 13010000 D_{i} STLIG । प्रस् 11 -TZ ST-12 12 7/17/5 3 Receive by: (Signifum) Date / Time Relinquished by: [Signature] Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: Isignature! Relinquished by: (Signature) Date / Time Réceived by: (Signature) Relinquished by: (Signature) Remarks Date / Time Received for Laboratory by: Date / Time Relinquished by: Isignature! 15-gnatures

SOIL TECH ENGINEERING .

Soil Foundation and Geological Engineers

298 BROKAW ROAD, SANTA CLARA, CA 95050 ■ (408) 496-0265 OR (408) 496-0266

M