

Denis L. Brown

May 5, 2006

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 Shell Oil Products US HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.1.brown@shell.com

RECEIVED By lopprojectop at 9:23 am, May 08, 2006

Re: First Quarter 2006 Monitoring Report Former Shell Service Station 500 40th Street Oakland, California SAP Code 129452 Incident No. 97093400

Dear Mr. Wickham:

Attached for your review and comment is a copy of the *First Quarter 2006 Monitoring Report* for the above referenced site. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown Sr. Environmental Engineer

CAMBRIA

May 5, 2006

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 **RECEIVED** By lopprojectop at 9:23 am, May 08, 2006

Re: First Quarter 2006 Groundwater Monitoring Report

Former Shell Service Station 500 40th Street Oakland, California SAP Code 129452 Incident #97093400 Cambria Project #248-1513-002 RO0000264

Dear Mr. Wickham:

On behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell), Cambria Environmental Technology, Inc. (Cambria) is submitting this groundwater monitoring report in accordance with the reporting requirements of 23 CCR 2652d.

FIRST QUARTER 2006 ACTIVITIES

Groundwater Monitoring: Prior to their consideration of site closure as Cambria requested in the November 21, 2005 *Site Conceptual Model*, Alameda County Health Care Services Agency (ACHCSA), in a December 9, 2005 letter to Shell, requested one additional groundwater monitoring event during first quarter 2006. Blaine Tech Services, Inc. (Blaine) of San Jose, California gauged and sampled all wells, calculated groundwater elevations, and compiled the analytical data. Well OMW-13 was inaccessible on March 16 and 17, 2006 because cars were parked over it. Blaine sampled the well on March 27, 2006. Cambria prepared a site vicinity map which includes previously submitted well survey information (Figure 1) and a groundwater elevation contour map (Figure 2). Blaine's report, presenting the laboratory report and supporting field documents, is included as Attachment A.

Cambria Environmental Technology, Inc.

5900 Hollis Street Suite A Emeryville, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170 *Additional Analysis:* At Shell's request, in addition to methyl tertiary-butyl ether (MTBE), all samples were also analyzed for the oxygenate compounds di-isopropyl ether, ethyl tertiary-butyl ether, tertiary-amyl methyl ether, and tertiary-butanol. No fuel oxygenates other than MTBE were detected in the groundwater samples.

50 O

CAMBRIA

As requested by ACHCSA, all samples were also analyzed for lead scavengers 1,2-dichloroethane (1,2-DCA) and ethylene dibromide (EDB) and halogenated volatile organic compounds (HVOCs). No 1,2-DCA or EDB was detected in the groundwater samples. No HVOC was detected at a concentration in excess of its San Francisco RWQCB Environmental Screening Level (ESL) for sites at which groundwater is not a current source of drinking water. Historical HVOC analytical data is presented in Table 1.

ANTICIPATED FUTURE ACTIVITIES

Groundwater Monitoring: In its December 9, 2005 letter to Shell, ACHCSA stated that additional groundwater monitoring is not required pending consideration of case closure and further direction.

Site Conceptual Model (SCM) Addendum: Cambria submitted an SCM to ACHCSA on November 21, 2005 and requested that the site be considered for closure. ACHCSA requested additional information on previous site activities and additional groundwater analysis prior to considering the closure request. An addendum to the November 21, 2005 SCM is included with this submittal under separate cover.

CAMBRIA

Jerry Wickham May 5, 2006

CLOSING

We appreciate the opportunity to work with you on this project. Please call David Gibbs at (510) 420-3363 if you have any questions or comments.

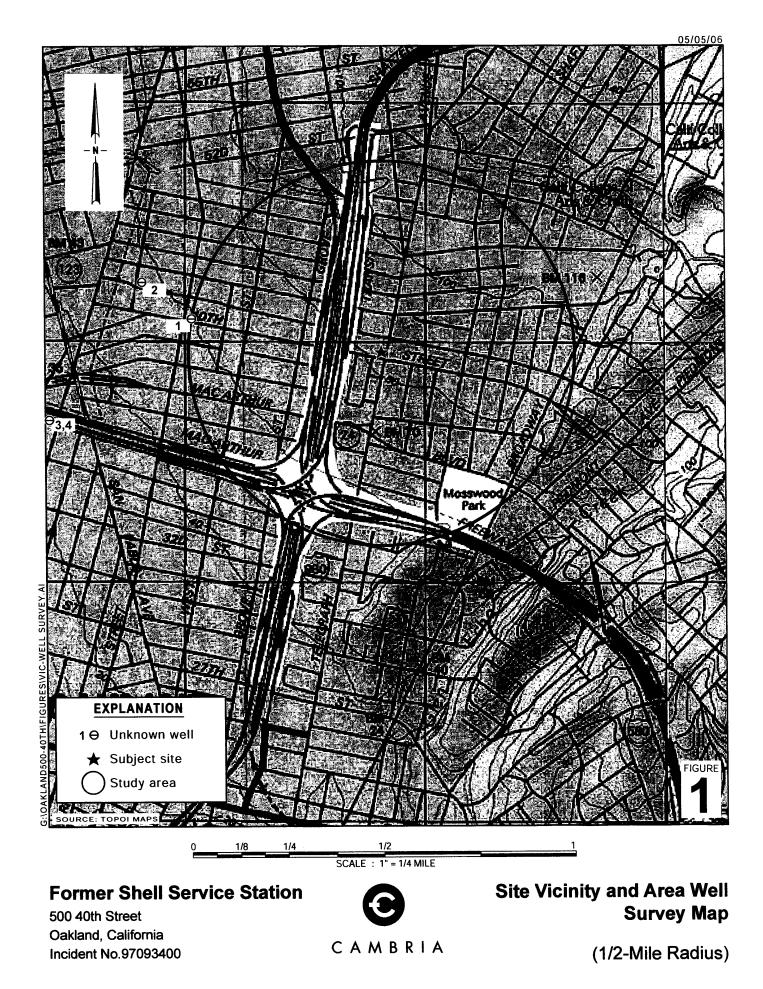
No. 7659

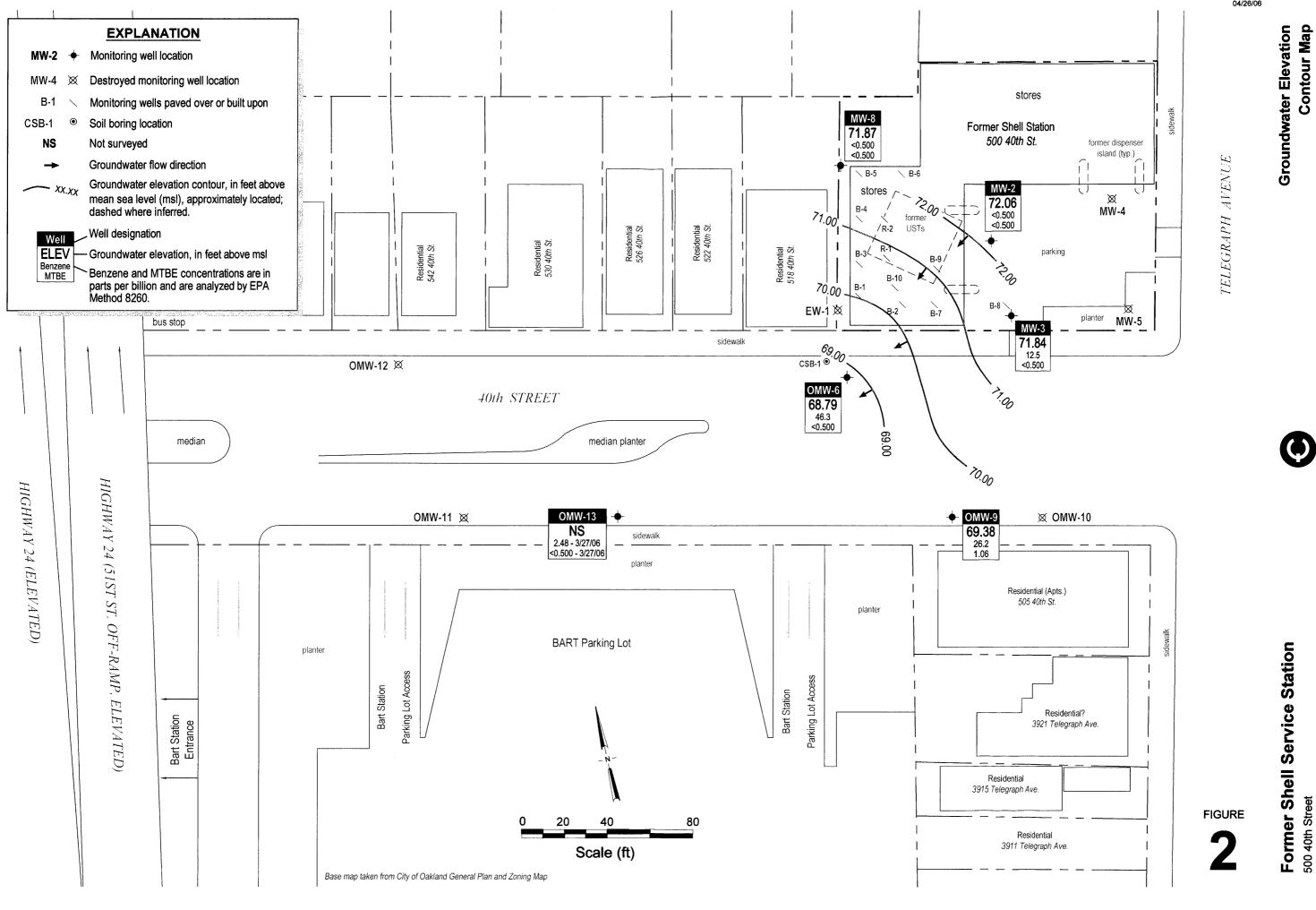
OF CALIF

Sincerely, Cambria Environmental Technology, Inc.

David M. Gibbs, P.G. Project Geologist

rey K Cool


Aubrey K. Cool, P.G. Senior Project Geologist


Figures:	1 - Vicinity and Area Well Survey Map
	2 - Groundwater Elevation Contour Map

- Table:1 Historical Groundwater Monitoring Data Halogenated Volatile Organic
Compounds
- Attachment: A Blaine Groundwater Monitoring Report and Field Notes
- cc: Denis Brown, Shell Oil Products US, 20945 S. Wilmington Ave., Carson, CA 90810 Joseph H Chan & Ivy T Wong, 21213-B Hawthorne Blvd. #5146, Torrance, CA 94609

G:\Oakland 500 40th\Qm\1q06\1q06qm.doc

AMBRIA

υ

Oakland, California Incident No.97093400

Contour Map

March 16, 2006

04/26/06

Sample ID	Sample Date	1,1- Dichloroethane	cis-1,2- Dichloroethene		Trichloroethene parts per billion —	Chloroform	Tetrachloroethene	Bromomethane →
EW-1	11/17/93	0.69	6.8	2.4	5.5	<0.50	<0.50	<0.50
MW-4	11/17/93	<0.5	3.5	<0.5	2.5	1.3	36	<0.50
MW-5	11/17/93	<0.5	1.2	<0.5	2.0	1.0	34	<0.50
MW-8	11/17/93 3/16/06	<1.0 <0.500	1.1 <0.500	<1.0 <0.500	1.8 <0.500	1.1 3.23	50 17.1	<1.0 <0.500
OMW-10	11/17/93	<0.5	3.9	<0.50	1.7	<0.5	1.9	<0.50
OMW-12	11/17/93	<10	11	<10	13	<10	400	<10
OMW-9	11/18/93 3/16/06	<0.5 <0.500	0.68 <0.500	<0.50 <0.500	<0.50 <0.500	<0.5 <0.500	<0.5 <0.500	<0.50 0.570
OMW-11	11/18/93	<10	42	<10	40	<0.5	380	<10
OMW-13	11/18/93 3/27/06	<10 <0.500	<10 <0.500	<10 <0.500	<10 <0.500	<10 <0.500	<10 <0.500	<10 <0.500
MW-2	3/16/06	<0.500	<0.500	<0.500	<0.500	<0.500	1.24	<0.500
MW-3	3/16/06	<0.500	1.57	<0.500	1.31	<0.500	7.59	<0.500
OMW-6	3/16/06	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
ES	L^1	47	590	200	360	330	120	160

Table 1. Historical Groundwater Analytical Data - Halogenated Volatile Organic Compounds Former Shell Service Station Invident No. 07003400, 500,401 Station 1, 0, 11, -1, 0, 11

Shell Service Station, Incident No.97093400, 500 40th Street, Oakland, California

Abbreviations and Notes:

1993 - Halogenated volatile organic compounds analyzed by EPA Method 8010; all detected constituents tabulated.

2006 - Halogenated volatile organic compounds analyzed by EPA Method 8260B; all detected constituents tabulated.

¹RWQCB Environmental Screening Level for sites at which groundwater is not a drinking water source

< x = Not detected at reporting limit x.

ATTACHMENT A

Blaine Groundwater Monitoring Report and Field Notes

GROUNDWATER SAMPLING SPECIALISTS SINCE 1985

April 24, 2006

Denis Brown Shell Oil Products US 20945 South Wilmington Avenue Carson, CA 90810

> First Quarter 2006 Groundwater Monitoring at Former Shell-branded Service Station 500 40th Street/Telegraph Avenue Oakland, CA

Monitoring performed on March 16, 17, and 27, 2006

Groundwater Monitoring Report 060316-DA-2

This report covers the routine monitoring of groundwater wells at this former Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Martinez Refining Company.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a fortyhour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses. Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata Project Coordinator

MN/ks

attachments: Cumulative Table of WELL CONCENTRATIONS Certified Analytical Report Field Data Sheets

cc: Anni Kreml Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608

<u> </u>	<u> </u>							MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	тррн	ТЕРН	в	т	Е	x	8020	8260	DIPE	ETBE	TAME	тва	DCA	EDB	тос	Water	Elevation	Thickness	Reading
	2410	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)													
EW-1	08/06/1991	180	<50	5.4	<0.5	0.9	0.7	NA	78.26	NA	NA	NA	NA							
EW-1	10/30/1991	70	<50	2.6	<0.5	<0.5	<0.5	NA	78.26	12.72	65.54	NA	NA							
EW-1	02/15/1992	<50	NA	2.1	<0.5	<0.5	<0.5	NA	78.26	NA	NA	NA	NA							
EW-1	03/18/1992	NA	78.26	11.71	66.55	NA	NA													
EW-1	05/22/1992	99	NA	4.1	<0.5	<0.5	<0.5	NA	78.26	12.84	65.42	NA	NA							
EW-1	08/19/1992	140	NA	6.6	<0.5	<0.5	<0.5	NA	78.26	13.04	65.22	NA	NA							
EW-1	11/18/1992	56	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	_NA	NA	NA	78.26	12.90	65.36	NA	NA
EW-1	02/11/1993	63	NA	<0.5	<0.5	<0.5	0.9	NA	78.26	11.28	66.98	NA	NA							
EW-1 (D)	02/11/1993	63	NA	<0.5	<0.5	<0.5	0.8	NA	NA	NA	NA	NA	NA	_NA	NA	78.26	NA	NA	NA	NA
EW-1	05/19/1993	60a	NA	<0.5	<0.5	<0.5	<0.5	NA	78.26	12.52	65.74	NA	NA							
EW-1	08/18/1993	NA	78.26	12.48	65.78	NA	NA													
EW-1	11/17/1993	170	NA _	17	<0.5	<0.5	<0.5	NA	78.26	12.63	65.63	NA	NA							
EW-1 (D)	11/17/1993	190	NA	17	<0.5	<0.5	<0.5	NA	78.26	NA	NA	NA	NA							
EW-1	02/18/1994	NA	NA_	NA	78.26	11.38	66.88	NA	NA											
EW-1	05/26/1994	<50	NA	3.5	<0.5	<0.5	0.51	NA	78.26	12.02	66.24	NA	NA							
EW-1	08/29/1994	NA	78.26	12.76	65.50	NA	NA													
EW-1	11/11/1994	200	NA	13	0.88	<0.5	<0.5	NA	78.26	11.08	67.18	NA	NA							
EW-1	02/03/1995	NA	78.26	10.88	67.38	NA	NA													
EW-1	05/07/1995	90	NA	8.6	<0.5	<0.5	<0.5	NA	NA	NA	NA _	NA	NA	NA	NA	78.26	11.32	66.94	NA	NA
EW-1	08/02/1995	NA	78.26	11.76	66.50	NA	NĄ													
EW-1	11/02/1995	240	ŇΑ	12	1.5	0.6	1.9	NA	78.26	12.80	65.46	NA	NA							
EW-1	02/24/1996	NA	78.26	10.15	68.11	NA	NA													
EW-1	05/04/1996	<50	NA	1.4	<0.50	<0.50	<0.50	4.1	NA	78.26	12.26	66.00	NA NA	NA						
EW-1	09/07/1996	NA	NA _	78.26	13.43	64.83	NA	NA												
EW-1	11/24/1996	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	78.26	12.24	66.02	NA	NA						
EW-1	02/23/1997	NA	78.26	12.20	66.06	NA	NA													
EW-1	05/01/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	78.26	12.97	65.29	NA	NA						
EW-1	07/22/1997	NA	NA .	78.26	13.43	64.83	NA	NA												
EW-1	11/04/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<5.0	NA	78.26	13.20	65.06	NA	NA						
EW-1	01/21/1998	NA	78.26	10.52	67.74	NA	NA													
EW-1	05/11/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	78.26	12.35	65.91	NA	NA						
EW-1	08/11/1998	NA	78.26	12.90	65.36	NA	NA													
EW-1	10/20/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	78.26	13.34	64.92	NA	NA						

<u> </u>			1	l				MTBE	MTBE		-	<u></u>		1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	в	т	Е	x	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water		Thickness	K
AAGU ID	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
	!		(49/1/		(ug/L)	(ug/r)	(ug/L)	(49,2)		<u>\~9' -/</u>	(49,4)	<u>(49'5/</u>	(39)=/	(49, -)	(09-2)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>		<u>\'''/</u>	19911/
EW-1	02/08/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.26	9.28	68.98	NA	NA
EW-1	04/12/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	NA	NA	NA	NA	NA	NA	78.26	10.28	67.98	NA	NA
EW-1	07/27/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.26	13.04	65.22	NA	NA
EW-1	10/25/1999	<50.0	NA	0.885	<0.500	<0.500	<0.500	<5.00	NA	NA	NA	NA	NA	NA	NA	78.26	13.12	65.14	NA	NA
EW-1	01/24/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.26	10.50	67.76	NA	2.0
EW-1	04/24/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	78.26	12.05	66.21	NA	1.8
EW-1	07/24/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.26	13.00	65.26	NA	NĄ
EW-1	11/01/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	78.26	12.15	66.11	NA	2.4
EW-1	01/19/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.26	12.24	66.02	NA	4.4
EW-1	04/13/2001	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	78.26	12.56	65.70	NA	5.8
EW-1	07/09/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŇA	NA	NA	78.26	12.97	65.29	NA	4.2
EW-1	10/18/2001	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	78.26	13.69	64.57	NA	0.3
EW-1	01/24/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.26	11.98	66.28	NA	С
EW-1	05/10/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	78.26	12.68	65.58	NA	2.3
EW-1	07/18/2002	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.26	NA	NA	NA	NA
EW-1	10/31/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	81.11	13.38	67.73	NA	NA
EW-1	01/30/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	81.11	11.43	69.68	NA	NA .
EW-1	04/17/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<5.0	NA	NA	NA	NA	NA	NA	81.11	11.55	69.56	NA	NA
EW-1	07/17/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.11	12.84	68.27	NA	NA
EW-1	10/16/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	81.11	13.00	68.11	NA	NA
EW-1	01/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.11	11.15	69.96	NA	NA
EW-1	04/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.11	12.41	68.70	NA	NA
EW-1	10/29/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.11	12.08	69.03	NA	NA
EW-1	04/14/2005	Well dest	royed	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.11	NA	NA	NA	NA
		1000					- •										10.15			
MW-2	08/06/1991	1200	230	59	1.1	38	56	NA	NA	NA	NA	NA	NA	NA	NA	80.80	12.12	68.68	NA	NA
MW-2	10/30/1991	520	300	56	<0.5	56	100	NA	NA	NA	NA	NA	NA	NA	NA	80.80	11.70	69.10	NA	NA
MW-2	02/15/1992	2300	2200a	87	<2.5	88	150	NA	NA	NA	NA	NA	NA	NA	NA	80.80	NA	NA 00.70	NA	NA
MW-2	03/18/1992	NA 700	NA	NA	NA	NA	NA 40	NA	NA	NA	NA	NA	NA	NA	NA	80.80	11.10	69.70	NA	NA
MW-2	05/22/1992	700	NA	24	1.0	34	48	NA	NA	NA	NA	NA	NA	NA	NA	80.80	12.12	68.68	NA	NA
MW-2	08/19/1992	740	NA	21	<2.5	24	26	NA	NA	NA	NA	NA	NA	NA	NA	80.80	12.18	68.62	NA	NA
MW-2 (D)	08/19/1992	840	NA	31	<2.5	36	43	NA	NA	NA	NA	NA	NA	NA	NA	80.80	NA	NA	NA	NA
MW-2	11/18/1992	920	NA	19	<2.5	30	51	NA	NA	NA	NA_	NA_	NA	NA	NA	80.80	12.03	68.77	NA	NA
MW-2 (D)	11/18/1992	870	NA	25	<2.5	34	52	NA	NA	NA	NA	NA	NA	NA	NA	80.80	NA	NA	NA	NA

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	т	Е	X	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-2	02/11/1993	1000	NA	25	6.0	43	73	NA	80.80	11.15	69.65	NA	NA							
MW-2	05/19/1993	570	NA	19	<0.5	37	42	NA	80.80	11.80	69.00	NA	NA							
MW-2	08/18/1993	Well inac	cessible	NA	80.80	NA	NA	NA	NA											
MW-2	11/17/1993	250	NA	10	<1.0	26	20	NA	80.80	12.00	68.80	NA	NA							
MW-2	02/18/1994	Well inac	cessible	NA	80.80	NA	NA	NA	NA											
MW-2	05/26/1994	620	NA	17	1.4	25	31	NA	80.80	11.61	69.19	NA	NA							
MW-2 (D)	05/26/1994	600	NA	16	1.2	24	29	NA	80.80	NA	NA	NA	NA							
MW-2	08/29/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	11.96	68.84	NA	NA
MW-2	11/11/1994	1100	NA	28	3.1	39	65	NA	80.80	10.74	70.06	NA	NA							
MW-2	02/03/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	11.58	69.22	NA	NA
MW-2	05/07/1995	700	NA	15	<0.5	35	39	NA	80.80	10.98	69.82	NA	NA							
MW-2	08/02/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	11.90	68.90	NA	NA
MW-2	11/02/1995	140	NA	2.3	<0.5	4.4	3.7	NA	80.80	12.12	68.68	NA	NA							
MW-2	02/24/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	10.25	70.55	NA	NA
MW-2	05/04/1996	140	NA	2.1	<0.50	4.6	4.9	6.2	NA	80.80	11.30	69.50	NA	NA						
MW-2	09/07/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	15.10	65.70	NA	NA
MW-2	11/24/1996	620	NA	9.7	<0.50	2.0	46	<2.5	NA	80.80	12.13	68.67	NA	NA						
MW-2	02/23/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	12.01	68.79	NA	NA
MW-2	05/01/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	ŅA	80.80	12.94	67.86	NA	NA
MW-2	07/22/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	13.22	67.58	NA	NA
MW-2	11/04/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<5.0	NA	80.80	13.00	67.80	NA	NA						
MW-2	01/21/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	10.47	70.33	NA	NA
MW-2	05/11/1998	59	NA	0.56	<0.50	<0.50	<0.50	<2.5	NA	80.80	12.49	68.31	NA	NA						
MW-2	08/11/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	12.82	67.98	NA	NA
MW-2	10/20/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	80.80	13.13	67.67	NA	NA						
MW-2	02/08/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	9.10	71.70	NA	NA
MW-2	04/12/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	80.80	10.06	70.74	NA	NA						
MW-2	07/27/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	12.81	67.99	NA	NA
MW-2	10/25/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	80.80	12.89	67.91	NA	NA						
MW-2	01/24/2000	Well inac	cessible	NA	80.80	NA	NA	NA	NA											
MW-2	04/24/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	80.80	19.35	61.45	NA	1.8						
MW-2	07/24/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	12.83	67.97	NA	NA
MW-2	11/01/2000	53.2	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	80.80	11.75	69.05	NA	2.4						
MW-2	01/19/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	12.22	68.58	NA	5.8

	<u> </u>							MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	тррн	TEPH	в	т	Е	x	8020	8260	DIPE	ETBE	TAME	тва	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
	<u></u>				_ <u>`_¥</u> t		<u></u>													
MW-2	04/13/2001	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	80.80	12.40	68.40	NA	3.0
MW-2	07/09/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	12.98	67.82	NA	3.4
MW-2	10/18/2001	71	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	80.80	12.87	67.93	NA	0.7
MW-2	01/24/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	12.13	68.67	NA	1.4
MW-2	05/10/2002	74	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	80.80	12.69	68,11	NA	1.4
MW-2	07/18/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.80	12.84	67.96	NA	1.2
MW-2	10/31/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	83.66	13.15	70.51	NA	NA
MW-2	01/30/2003 d	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	83.78	11.97	71.81	NA	NA
MW-2	04/17/2003	85	NA	<0.50	<0.50	<0.50	<1.0	NA	<5.0	NA	NA	NA	NA	NA	NA	83.78	12.19	71.59	NA	NA
MW-2	07/17/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	83.78	12.57	71.21	NA	NA
MW-2	10/16/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	83.78	13.13	70.65	NA	NA
MW-2	01/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	83.78	11.58	72.20	NA	NA
	04/14/2004	73	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	83.78	12.65	71.13	NA	NA
MW-2	10/29/2004	180	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	83.78	12.39	71.39	NA	NA
MW-2	04/14/2005	150	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	83.78	12.14	71.64	NA	NA
MW-2	10/26/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	83.78	12.98	70.80	NA	NA
MW-2	03/16/2006	<50.0	64.3	<0.500	<0.500	<0.500	<0.500	NA	<0.500	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	83.78	11.72	72.06	NA	NA
					_												-			
MW-3	08/06/1991	1900	470	220	57	57	260	NA	NA	NA	NA	NA	NA	NA	NA	79.60	11.12	68.48	NA	NA
MW-3	10/30/1991	1900	480	160	28	63	180	NA	NA_	NA	NA	NA	NA	NA	NA	79.60	10.93	68.67	NA	NA
MW-3	02/15/1992	2300	780a	170	31	59	180	NA	NA	NA	NA	NA	NA	NA	NA	79.60	NA	NA	NA	NA
MW-3	03/18/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	10.54	69.06	NA	NA
MW-3	05/22/1992	1500	NA	160	20	44	140	NA	NA	NA	NA	NA	NA	NA	NA	79.60	10.79	68.81	NA	NA
MW-3	08/19/1992	4500	NA	210	64	89	310	NA	NA	NA	NA	NA	NA	NA	NA	79.60	11.23	68.37	NA	NA
MW-3	11/18/1992	2400	NA	81	14	39	140	NA	NA	NA	NA	NA	NA	NA	NA	79.60	11.20	68.40	NA	NA
MW-3	02/11/1993	3000	NA	200	47	90	260	NA	NA	NA	NA	NA	NA .	NA	NA	79.60	11.00	68.60	NA	NA
MW-3	05/19/1993	2100	NA	240	44	100	330	NA	NA	NA	NA	NA	NA	NA	NA	79.60	11.16	68.44	NA	NA
MW-3	08/18/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	11.35	68.25	NA	NA
MW-3	11/17/1993	1000	NA	110	13	60	150	NA	NA	NA	NA	NA	NA	NA	NA	79.60	11.10	68.50	NA	NA
MW-3	02/18/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.6 0	10.76	68.84	NA	NA
MW-3	05/26/1994	1100	NA	200	17	29	58	NA	NA	NA	NA	NA	NA	NA	NA	79.60	11.85	67.75	NA	NA
MW-3	08/29/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<u>NA</u>	NA	NA	NA	79.60	10.40	69.20	NA	NA
MW-3	11/11/1994	870	NA	130	10	38	87	NA	NA	NA	NA	NA	NA	NA	NA	79.60	10.04	69.56	NA	NA
MW-3 (D)	11/11/1994	1000	NA	120	10	42	92	NA	NA	NA	NA	NA	NA	NA	NA	79.60	NA	NA	NA	NA

					-			MTBE	MTBE					1,2-			Depth to	GW	SPH	
Well ID	Date	тррн	ТЕРН	в	т	Е	x	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
	· · · ·																			
MW-3	02/03/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	10.06	69.54	NA	NA
MW-3	05/07/1995	1300	NA	180	7.5	54	110	NA	79.60	10.11	69.49	NA	NA							
MW-3	08/02/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	11.02	68.58	NA	NA
MW-3	11/02/1995	370	NA	36	1.8	16	21	NA	79.60	10.97	68.63	NA	NA							
MW-3	02/24/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	9.61	69.99	NA	NA
MW-3	05/04/1996	460	NA	54	1.9	18	28	20	NA	79.60	10.40	69.20	NA	NA						
MW-3	09/07/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	13.55	66.05	NA	NA
MW-3	11/24/1996	2800	NA	290	<10	29	39	<50	NA	79.60	11.83	67.77	NA	NA						
MW-3	02/23/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	11.81	67.79	NA	NA
MW-3	05/01/1997	2000	NA	120	<5.0	53	14	60	NA	79 <u>.60</u>	12.34	67.26	NA	NA						
MW-3	07/22/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	12.86	66.74	NA	NA
MW-3	11/04/1997	470	NA	120	<2.5	<2.5	7.3	<25	NA	79.60	12.62	66.98	NA	NA						
MW-3	01/21/1998	NA	NA	NA	NA	NA_	NA	79.60	10.78	68.82	NA	NA								
MW-3	05/11/1998	4400	NA	260	<10	220	36	170	NA	79.60	11.98	67.62	NA	NA						
MW-3	08/11/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	12.38	67.22	NA	NA
MW-3	10/20/1998	1700	NA	120	<2.0	18	7.1	19	NA	79.60	12.55	67.05	NA	NA						
MW-3 (D)	10/20/1998	1400	NA	120	<5.0	18	<5.0	80	NA	NA	NA	NA	NA_	NA	NA	79.60	NA	NA	<u>NA</u>	NA
MW-3	02/08/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	8.53	71.07	NA	NA
MW-3	04/12/1999	8040	NA	554	30	436	624	160	NA	79.60	10.19	69.41	NA	NA						
MW-3	07/27/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	12.21	67.39	NA	NA
MW-3	10/25/1999	827	NA	31	2.23	14.5	6.71	<10.0	NA	79.60	12.35	67.25	NA	NA						
MW-3	01/24/2000	Well inac	cessible	NA	79.60	NA	NA	NA	NA											
MW-3	04/24/2000	1470	NA	121	<5.00	63.8	14.1	<25.0	NA	79.60	11.75	67.85	NA	1.0						
MW-3	07/24/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	12.56	67.04	NA	NA
MW-3	11/01/2000	1550	NA	143	<1.25	36.4	35.3	24.4	NA	79.60	11.48	68.12	NA	2.2						
MW-3	01/19/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	11.83	67.77	NA	6.6
MW-3	04/13/2001	2560	NA	250	<10.0	108	<10.0	92.1	NA	79.60	12.08	67.52	NA	3.6						
MW-3	07/09/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	12.68	66.92	NA NA	2.8
MW-3	10/18/2001	2300	NA	150	0.90	42	11	NA	<5.0	NA	NA	NA	NA	NA	NA	79.60	13.21	66.39	NA	0.1
MW-3	01/24/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	11.83	67.77	NA	2.3
MW-3	05/10/2002	3300	NA	77	0.60	94	3.1	NA	<5.0	NA	NA	NA	NA	NA	NA	79.60	12.24	67.36	NA	1.5
MW-3	07/18/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.60	12.43	67.17	NA	2.1
MW-3	10/31/2002	2100	NA	89	0.57	26	5.7	NA	<5.0	NA	NA	NA	NA	NA	NA	82.46	12.60	69.86	NA	2.0
MW-3	01/30/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	82.46	11.76	70.70	NA NA	4.6

			1		i			MTBE	MTBE	;				1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	ТЕРН	в	Т	Е	х	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-3	04/17/2003	2100	NA	55	0.79	100	110	NA	<5.0	NA	NA	NA	NA	NA	NA	82.46	11.80	70.66	NA	1.8
MW-3	07/17/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	82.46	12.28	70.18	NA	4.0
MW-3	10/16/2003	120 e	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	82.46	12.35	70.11	NA	2.0
MW-3	01/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	82.46	11.35	71.11	NA	2.9
MW-3	04/14/2004	130	NA	1.6	<0.50	1.5	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	82.46	12.12	70.34	NA	3.4
MW-3	10/29/2004	490	NA	11	<0.50	19	18	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	82.46	11.67	70.79	NA	1.2
MW-3	04/14/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	82.46	11.65	70.81	NA	0.1
MW-3	10/26/2005	230	NA	2.8	<0.50	0.52	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	82.46	12.43	70.03	NA	0.2
MW-3	03/16/2006	107	191	12.5	<0.500	1.27	0.960	NA	<0.500	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	82.46	10.62	71.84	NA	NA
MW-4	08/06/1991	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	81.00	12.36	68.64	NA	NA							
MW-4	10/30/1991	50	<50	<0.5	<0.5	<0.5	<0.5	NA	81.00	12.02	68.98	NA	NA							
MW-4	02/15/1992	90	NA	0.9	<0.5	<0.5	<0.5	NA	81.00	NA	NA	NA	NA							
MW-4	03/18/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	81.00	11.34	69.66	NA	NA
MW-4	05/22/1992	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.00	12.35	68.65	NA	NA							
MW-4	08/19/1992	82a	NA	<0.5	<0.5	<0.5	<0.5	NA	81.00	12.41	68.59	NA	NA							
MW-4	11/18/1992	85a	NA	<0.5	<0.5	<0.5	<0.5	NA	81.00	12.28	68.72	NA	NA							
MW-4	02/11/1993	62a	NA	<0.5	<0.5	<0.5	<0.5	NA	81.00	11.65	69.35	NA	NA							
MW-4	05/19/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.00	11.92	69.08	NA	NA							
MW-4	08/18/1993	Well inac	cessible	NA	81.00	NA	NA	NA	NA											
MW-4	11/17/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.00	12.24	68.76	NA	NA							
MW-4	02/18/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	11.69	69.31	NA	NA
MW-4	05/26/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.00	12.00	69.00	NA	NA							
MW-4	11/11/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.00	11.30	69.70	NA	NA							
MW-4	02/03/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	10.99	70.01	NA	NA
MW-4	05/07/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.00	11.69	69.31	NA	NA							
MW-4	08/02/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	11.72	69.28	NA	NA
MW-4	11/02/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.00	12.23	68.77	NA	NA							
MW-4	02/24/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	11.13	69.87	NA	NA
MW-4	05/04/1996	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	81.00	11.80	69.20	NA	NA						
MW-4	09/07/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	13.27	67.73	NA	NA
MW-4	11/24/1996	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	81.00	12.42	68.58	NA	NA						
MW-4	02/23/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	12.38	68.62	NA	NA
MW-4	05/01/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	81.00	13.08	67.92	NA	NA						

				<u> </u>				MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	ТЕРН	в	т	Е	х	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	ED8	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-4	07/22/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	13.73	67.27	NA	NA
MW-4	11/04/1997	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	NA	NA	NA	NA
MW-4	01/21/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	11.41	69.59	NA	NA
MW-4	05/11/1998	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	81.00	NA	NA	NA	NA
MW-4	08/11/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	13.05	67.95	NA	NA
MW-4	10/20/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	81.00	13.30	67.70	NA	NA						
MW-4	02/08/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	9.19	71.81	NA	NA
MW-4	04/12/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	81.00	9.26	71.74	NA	NA						
MW-4	07/27/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	12.57	68.43	NA	NA
MW-4	10/25/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	81.00	13.15	67.85	NA	NA						
MW-4	01/24/2000	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	NA	NA	NA	NA
MW-4	04/24/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	14.5	NA	NA	NA	NA	NA	NA_	NA	81.00	12.55	68.45	NA	2.5
MW-4	07/24/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	13.31	67.69	NA	NA
MW-4	11/01/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	81.00	12.09	68.91	NA	2.8						
MW-4	01/19/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	12.58	68.42	NA	8.4
MW-4	04/13/2001	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	81.00	12.75	68.25	NA	2.6						
MW-4	07/09/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	13.30	67.70	NA	4.2
MW-4	10/18/2001	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	81.00	13.45	67.55	NA	1.4
MW-4	01/24/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	12.55	68.45	NA	С
MW-4	05/10/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	81.00	12.93	68.07	NA	1.5
MW-4	07/18/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.00	13.13	67.87	NA	1.4
MW-4	10/31/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	83.92	13.40	70.52	NA	NA
MW-4	01/30/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	83.92	12.44	71.48	NA	NA
MW-4	04/17/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<5.0	NA	NA	NA	NA	NA	NA	83.92	12.24	71.68	NA	NA
MW-4	07/17/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	83.92	13.02	70.90	NA	NA
MW-4	10/16/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	83.92	13.15	70.77	NA	NA
MW-4	01/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	83.92	12.20	71.72	NA	NA
MW-4	04/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	83.92	12.80	71,12	NA	NA
MW-4	10/29/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	83.92	12.41	71.51	NA	NA
MW-4	04/14/2005	Well dest	royed	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	83.92	NA	NA	NA	NA
MW-5	08/06/1991	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	81.50	13.02	68.48	NA	NA							
MW-5	10/30/1991	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	81.50	12.73	68.77	NA	NA							
MW-5	02/15/1992	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.50	NA	NA	NA	NA							

. .

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DÖ
Well ID	Date	ТРРН	ТЕРН	в	т	E	x	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)													
								k												
MW-5	03/18/1992	NA	81.50	12.52	68.98	NA	NA													
MW-5	05/22/1992	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.50	13.05	68.45	NA	NA							
MW-5	08/19/1992	55a	NA	<0.5	<0.5	<0.5	<0.5	NA	81.50	13.04	68.46	NA	NA							
MW-5	11/18/1992	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NĂ	NA	81.50	12.91	68.59	NA	NA
MW-5	02/11/1993	59a	NA	<0.5	<0.5	<0.5	<0.5	NA	81.50	12.44	69.06	NA	NA							
MW-5	05/19/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.50	12.84	68.66	NA	NA							
MW-5 (D)	05/19/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.50	NA	NA	NA	NA							
MW-5	11/17/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.50	12.89	68.61	NA	NA							
MW-5	02/18/1994	NA	81.50	12.30	69.20	NA	NA													
MW-5	05/26/1994	<50	NA	1.8	2.4	1.3	4.9	NA	81.50	12.73	68.77	NA	NA							
MW-5	08/29/1994	NA	81.50	12.88	68.62	NA	NA													
MW-5	11/11/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.50	12.20	69.30	NA	NA							
MW-5	02/03/1995	NA	81.50	11.78	69.72	NA	NA													
MW-5	05/07/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	81.50	12.47	69.03	NA	NA							
MW-5	08/02/1995	NA	81.50	12.83	68.67	NA	NĄ													
MW-5	11/02/1995	<50	NA	<0.5	<0.5	<0,5	<0.5	NA	81.50	13.02	68.48	NA	NA							
MW-5	02/24/1996	NA	81.50	12.11	69.39	NA	NA													
MW-5	05/04/1996	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	81.50	13.20	68.30	NA	NA						
MW-5	09/07/1996	NA	81.50	14.24	67.26	NA	NA													
MW-5	11/24/1996	<50	NA	<0.50	<0.5	<0.50	<0.50	<2.5	NA	81.50	13.58	67.92	NA	NA						
MW-5	02/23/1997	NA	81.50	13.54	67.96	NA	NA													
MW-5	05/01/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2,5	NA	81.50	14.17	67.33	NA	NA						
MW-5	07/22/1997	NA	81.50	14.35	67.15	NA	NA													
MW-5	11/04/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	81.50	14.30	67.20	NA	NA						
MW-5 (D)	11/04/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	81.50	NA	NA	NA	NA						
MW-5	01/21/1998	NA	81.50	12.86	_ 68.64	NA	NA													
MW-5	05/11/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	81.50	1 3.89	67.61	NA	NA						
MW-5	08/11/1998	NA	81.50	14.20	67,30	NA	NA													
MW-5	10/20/1998	<50	. NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	81.50	14.41	67.09	NA	NA						
MW-5	02/08/1999	NA	81.50	10.31	71.19	NA	NA													
MW-5	04/12/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	81.50	11.30	70.20	NA	NA						
MW-5	07/27/1999	NA	81.50	12.63	68.87	NA	NA													
MW-5	10/25/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	81.50	14.15	67.35	NA	NA						
MW-5	01/24/2000	NA	81.50	11.65	69.85	NA	1.8													

	T							MTBE	MTBE					1,2-		÷	Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	в	Т	Е	x	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-5	04/24/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	81.50	13.71	67.79	NA	2.1						
MW-5	07/24/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.50	14.48	67.02	NA	NA
MW-5	11/01/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	81.50	13.26	68.24	NA	3.2						
MW-5	01/19/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.50	13.68	67.82	NA	7.8
MW-5	04/13/2001	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	81.50	13.90	67.60	NA	3.2						
MW-5	07/09/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.50	14.72	66.78	NA	4.8
MW-5	10/18/2001	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	81.50	14.41	67.09	NA	1.1
MW-5	01/24/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.50	13.69	67.81	NA	1.4
MW-5	05/10/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	81.50	14.05	67.45	NA	2.2
MW-5	07/18/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.50	14.23	67.27	NA	1.2
MW-5	10/31/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	84.36	14.36	70.00	NA	2.8
MW-5	01/30/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	84.36	13.70	70.66	NA	2.4
MW-5	04/17/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<5.0	NA	NA_	NA	NA	NA	NA	84.36	13.52	70.84	NA	2.6
MW-5	07/17/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	84.36	14.13	70.23	NA	1.6
MW-5	10/16/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	84.36	14.21	70.15	NA	2.1
MW-5	01/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	84.36	14.15	70.21	NA	3.1
MW-5	04/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	84.36	13.95	70.41	NA	2.5
MW-5	10/29/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	84.36	13.63	70.73	NA	0.8
MW-5	04/14/2005	Well dest	royed	NA	84.36	NA	NA	NA	0.8											
				-																
OMW-6	08/06/1991	26000	3600	910	420	560	1900	NA	77.90	10.71	67.19	NA	NA							
OMW-6	10/30/1991	20000	4600	710	240	410	1700	NA	77.90	10.50	67.40	NA	NA							
OMW-6	02/15/1992	35000	27000	690	420	650	3000	NA	77.90	NA	NA	NA	NA							
OMW-6	03/18/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	9.24	68.66	NA	NA_
OMW-6	05/22/1992	15000	NA	460	110	300	1600	NA	77.90	10.13	67.77	NA	NA							
OMW-6	08/19/1992	24000	NA	600	300	460	2000	NA	77.90	10.16	67.74	NA	NA							
OMW-6	11/18/1992	29000	NA	480	250	450	2300	NA	77.90	9.94	67.96	NA	NA							
OMW-6	02/11/1993	24000	NA	1300	250	630	2400	NA	77.90	9.20	68.70	NA	NA							
OMW-6	05/19/1993	18000	NA	750	180	520	2500	NA	77.90	10.64	67.86	NA	NA							
OMW-6	08/18/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	10.04	67.86	NA	NA
OMW-6	11/17/1993	14000	NA	260	64	430	_1900	NA	77.90	10.12	67.78	NA	NA							
OMW-6	02/18/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	9.65	68.25	NA	NA
OMW-6	05/26/1994	Well inac		NA	77.90	NA	NA	NA	NA											
OMW-6	08/29/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	NA	NA	NA	NA

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	; (ft.)	(ppm)
											3		-				<u> </u>			
OMW-6	11/11/1994	Well inac	cessible	NA	NA_	NA	NA	NA	77.90	NA	NA	NA	NA							
OMW-6	02/03/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	8.96	68.94	NA	NA
OMW-6	05/07/1995	11000	NA	460	82	280	540	NA	77.90	8.64	69.26	NA	NA							
OMW-6 (D)	05/07/1995	14000	NA	480	61	230	370	NA	77.90	NA .	NA	NA	NA							
OMW-6	08/02/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	12.09	65.81	NA	NA
OMW-6	02/24/1996	Well inac	cessible	NA	77.90	NA	NA	NA	NA											
OMW-6	05/04/1996	Well inac	cessible	NA	77.90	NA	NA	NA	NA											
OMW-6	09/07/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	14.45	63.45	NA _	NA
OMW-6	11/24/1996	Well inac	cessible	NA	77.90	NA	NA	NA NA	NA											
OMW-6	02/23/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	13.12	64.78	NA	NA
OMW-6	05/01/1997	17000	NA	630	52	610	1300	380	NA	77.90	13.19	64.71	NA	NA						
OMW-6 (D)	05/01/1997	20000	NA	630	54	630	1300	500	<20	NA	NA	NA	NA	NA	NA	77.90	NA	NA	NA	NA
OMW-6	07/22/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	13.52	64.38	NA	NA
OMW-6	11/04/1997	10000	NA	610	23	410	820	<100	NA	77.90	13.12	64.78	NA	NA						
OMW-6	01/21/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NĂ	NA	NA	NA	77.90	12.19	65.71	NA	NA
OMW-6	05/11/1998	14000	NA	500	32	900	1000	110	NA	77.90	12.71	65.19	NA	NA						
OMW-6 (D)	05/11/1998	14000	NA	490	<25	900	980	370	NA	77.90	NA	NA	NA	NA						
OMW-6	08/11/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	13.18	64.72	NA	NA
OMW-6	10/20/1998	7500	NA	220	<20	290	130	120	NA	77.90	13.11	64.79	NA	NA						
OMW-6	02/08/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	9.07	68.83	NA	NA
OMW-6	04/12/1999	11300	NA	818	67.2	600	690	342	NA	77.90	10.10	67.80	NA	NA						
OMW-6	07/27/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	12.18	65.72	NA	NA
OMW-6	10/25/1999	11100	NA	559	21.1	329	75.7	<100	NA	77.90	12.58	65.32	NA	NA						
OMW-6	01/24/2000	Well inac	cessible	NA	77.90	NA	NA	NA	NA											
OMW-6	04/24/2000	12700	NA	576	<10.0	452	141	556	NA	77.90	12.35	65.55	NA	1.1						
OMW-6	07/24/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	13.08	64.82	NA	NA
OMW-6	11/01/2000	10700	NA	179	27.5	532	416	304	14.6	NA	NA	NA	NA	NA	NA	77.90	11.91	65.99	NA	0.6
OMW-6	01/19/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	12.08	65.82	NA	6.0
OMW-6	04/13/2001	8650	NA	103	25.6	318	207	258	<1.00	NA	NA	NA	NA	NA	NA	77.90	12.00	65.90	NA	4.2
OMW-6	07/09/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	11.86	66.04	NA	5.2
OMW-6	10/18/2001	Well inac	cessible	NA	77.90	NA	NA	NA	NA											
OMW-6	11/01/2001	6600	NA	85	<2.0	160	53	NA	<20	NA	NA	NA	NA	NA	NA	77.90	13.23	64.67	NA	3.4
OMW-6	01/24/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.90	12.63	65.27	NA	4.2
OMW-6	05/10/2002	7600	NA	230	2.9	370	25	NA	<20	NA	NA	NA	NA	NA	NA	77.90	13.07	64.83	NA	1.2

.

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	в	т	Е	х	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water		Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
OMW-6	07/18/2002	Well inac	cessible	NA	77.90	NA	NA	NA	NA											
OMW-6	10/31/2002	Well inac	cessible	NA	NS	NA	NA	NA	NA											
OMW-6	11/11/2002	6600	NA	37	<5.0	42	<5.0	NA	<50	NA	NA	NA	NA	NA	NA	NS	12.82	NA	NA	1.0
OMW-6	01/30/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	12.78	NA	NA	2.8
OMW-6	04/17/2003	5500	NA	89	1.4	61	20	NA	<5.0	NA	NA	NA	NA	NA	NA	NS	13.02	NA	NA	1.6
OMW-6	07/17/2003	NA	NA	NA	NA	NA	ŇΑ	NA	NS	13.08	NA	NA	2.0							
OMW-6	10/16/2003	Well inac	cessible	NA	NS	NA	NA	NA	NA											
OMW-6	01/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	12.69	NA	NA	8.9
OMW-6	04/14/2004	Well inac	cessible	NA	NS	NA	NA	NA	NA											
OMW-6	10/29/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	12.21	NA	NA	0.1
OMW-6	04/14/2005	3600	NA	18	<0.50	160	13	NA	<0.50	NA	NA	NA	NA	NA	NA	NS	12.88	NA	NA	0.7
OMW-6	10/26/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.77	13.11	67.66	NA	0.2
OMW-6	03/16/2006	22700	3710	46.3	0.930	515	37.2	NA	<0.500	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	80.77	11.98	68.79	NA	NA
MW-8	08/06/1991	90	<50	<0.5	<0.5	<0.5	<0.5	NA	79.91	13.08	66.83	NA	NA							
MW-8	10/30/1991	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	79.91	12.87	67.04	NA	NA							
MW-8	02/15/1992	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	79.91	NA	NA	NA	NA							
MW-8	03/18/1992	NA	NA	NA	NA	_NA	NA	79.91	11.54	68.37	NA	NA								
MW-8	05/22/1992	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	79.91	12.32	67.59	NA	NA							
MW-8	08/19/1992	60	NA	<0.5	<0.5	<0.5	<0.5	NA	79.91	12.58	67.33	NA	NA							
MW-8	11/18/1992	<50	NA	<0.5	<0.5	<0.5	<0.5	_NA	NA	79.91	12.47	67.44	NA	NA						
MW-8	02/11/1993	76a	NA	<0.5	<0.5	<0.5	<0.5	NA	79.91	11.02	68.89	NA	NA							
MW-8	05/19/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	79.91	11.78	68.13	NA	NA							
MW-8	08/18/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	12.22	67.69	NA	NA -
MW-8	11/17/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	79.91	12.25	67.66	NA	NA							
MW-8	02/18/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	10.56	69.35	NA	NA
MW-8	05/26/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	79.91	11.30	68.61	NA	NA							
MW-8	08/29/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	11.90	68.01	NA	NA
MW-8	11/11/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	79.91	10.12	69.79	NA	NA							
MW-8	02/03/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	11.64	68.27	NA	NA
MW-8	05/07/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	79.91	10.77	69.14	NA	NA							
MW-8	08/02/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	10.92	68.99	NA	NA
MW-8	11/02/1995	<50	NA	<0.5	<0.5	<0.5	_<0.5	NA	79.91	11.93	67.98	NA	NA							
MW-8	02/24/1996	Well inacc	cessible	NA	79.91	NA	NA	NA	NA											

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water		Thickness	Reading
[]		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
									-											
MW-8	05/04/1996	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	79.91	11.66	68.25	NA	NA						
MW-8	09/07/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	9.84	70.07	NA	NA
MW-8	11/24/1996	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	79.91	11.53	68.38	NA	NA						
MW-8	02/23/1997	NA	NA	NA_	NA	79.91	11.54	68.37	NA	NA										
MW-8	05/01/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	79.91	12.37	67.54	NA	NA						
MW-8	07/22/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	12.73	67.18	NA	NA
MW-8	11/04/1997	50	NA	<0.50	<0.50	<0.50	<0.50	<5.0	NA	79.91	12.60	67.31	NA	NA						
MW-8	01/21/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	9.73	70.18	NA	NA
MW-8	05/11/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	79.91	11.93	67.98	NA	NA						
MW-8	08/11/1998	NA	NA	NA	NA	NA	NA_	ŅA	NA	79.91	12.35	67.56	NA	NA						
MW-8	10/20/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	79.91	12.88	67.03	NA	NA						
MW-8	02/08/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	8.79	71.12	NA	NA
MW-8	04/12/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	79.91	9.86	70.05	NA	NA						
MW-8	07/27/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	12.35	67.56	NA	NA
MW-8	10/25/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	79.91	12.53	67.38	NA	NA						
MW-8	01/24/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	8.42	71.49	NA	1.3
MW-8	04/24/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	79.91	11.49	68.42	NA	2.0						
MW-8	07/24/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	12.87	67.04	NA	NA
MW-8	11/01/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	79.91	11.19	68.72	NA	4.0						
MW-8	01/19/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	11.62	68.29	NA	7.0
MW-8	04/13/2001	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	79.91	11. 8 6	68.05	NA	4.6						
MW-8	07/09/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	12.42	67.49	NA	6.4
MW-8	10/18/2001	81	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	79.91	13.24	66.67	NA	2.3
MW-8	01/24/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	11.39	68.52	NA	3.1
MW-8	05/10/2002	95	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	79.91	12.25	67.66	NA	2.5
MW-8	07/18/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.91	12.45	67.46	NA	2.8
MW-8	10/31/2002	Well inac	cessible	NA	82.34	NA	NA	NA	NA											
MW-8	11/11/2002	110	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	82.34	12.03	70.31	NA	NA
MW-8	01/30/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	82.34	11.85	70.49	NA	NA
MW-8	04/17/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<5.0	NA	NA	NA	NA	NA	NA	82.34	11.30	71.04	NA	NA
MW-8	07/17/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	82.34	12.40	69.94	NA	NA
MW-8	10/16/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	82.34	12.62	69.72	NA	NA
MW-8	01/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	82.34	11.85	70.49	NA	NA
MW-8	04/16/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	82.34	12.00	70.34	NA	NA

,

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	в	т	E	x	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-8	10/29/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	82.34	11.66	70.68	NA	NA
MW-8	04/14/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	82.34	10.81	71.53	NA	NA
MW-8	10/26/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	82.34	12.23	70.11	NA	NA
MW-8	03/16/2006	<50.0	52.8	<0.500	<0.500	<0.500	<0.500	NA	<0.500	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	82.34	10.47	71.87	NA	NA
OMW-9	08/06/1991	3900	190	58	8.8	80	220	NA	77.71	10.38	67.33	NA	NA							
OMW-9	10/30/1991	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	03/18/1992	1800a	210	84	11	49	60	NA	77.71	8.76	68.95	NA	NA							
OMW-9	05/20/1992	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	08/19/1992	4600	22a	63	<25	48	70	NA	77.71	9.98	67.73	NA	NA							
OMW-9	11/18/1992	1800	130a	30	9.2	46	61	NA	77.71	9.81	67.90	NA	NA							
OMW-9	02/11/1993	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	05/19/1993	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	08/18/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.71	9.75	67.96	NA	NA
OMW-9	11/17/1993	5900	2400a	86	14	150	46	NA	77.71	9.92	67.79	NA	NA							
OMW-9	02/18/1994	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	05/26/1994	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	08/29/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.71	NA	NA	NA	NA
OMW-9	11/11/1994	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	02/03/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.71	NA	NA	NA	NA
OMW-9	05/07/1995	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	08/02/1995	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	02/24/1996	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	05/04/1996	Well inac	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	09/07/1996	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	11/24/1996	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	02/23/1997	Well inacc	cessible	NA	77.71	NA NA	NA	NA	NA											
OMW-9	05/01/1997	4700	1100	150	14	97	52	330	NA	77.71	12.10	65.61	NA	NA						
OMW-9	07/22/1997	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	11/04/1997	Well inacc	cessible	NA	77.71	NA	NA	NA	NA											
OMW-9	01/21/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.71	11.32	66.39	NA	NA
OMW-9	05/11/1998	5500.0	1500	220	10	160	91	110	NA	77.71	11.95	65.76	NA	NA						
OMW-9	08/11/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.71	12.08	65.63	NA	NA
OMW-9	10/20/1998	1200	780	18	<5.0	14	6.0	48	NA	77.71	12.03	65.68	NA	NA						

.

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	т	Е	х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
.																		· · · · ·		
OMW-9*	11/23/1998	1700	890	88	9.0	42	22	170	NA	77.71	11.85	65.86	NA	NA						
OMW-9	02/08/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.71	8.01	69.70	NA	NA
OMW-9	04/12/1999	2670	1870	97	<5.00	111	54	401	NA	77.71	9.55	68.16	NA	NA						
OMW-9	07/27/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.71	11.87	65.84	NA	NA
OMW-9	10/25/1999	2670	606	31.3	<2.50	8.32	<2.50	107	NA	77.71	11.93	65.78	NA	NA						
OMW-9	01/24/2000	1400	1250	44.5	<1.00	12.6	8.66	69.8	23.5	NA	NA	NA	NA	NA	NA	77.71	10.32	67.39	NA	1.2
OMW-9	04/24/2000	1440	644	53.3	0.605	4.63	10.2	80.7	NA	77.71	11.33	66.38	NA	1.8						
OMW-9	07/24/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	_ NA	77.71	11.82	65.89	NA	NA
OMW-9	11/01/2000	2160	685	92.6	7.96	4.69	4.02	88.8	NA	77.71	11.45	66.26	NA	2.0						
OMW-9	01/19/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.71	11.83	65.88	NA	4.2
OMW-9	04/13/2001	3620	923	167	3.16	60.2	_ 14.5	231	NA	77.71	12.19	65.52	NA	3.8						
OMW-9	07/09/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.71	12.04	65.67	NA	3.8
OMW-9	10/18/2001	1400	<500	23	0.77	1.8	1.4	NA	10	NA	NA	NA	NA	NA	NA	77.71	12.90	64.81	NA	0.4
OMW-9	01/24/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	_ NA	NA	NA	NA	77.71	11.97	65.74	NA	4.0
OMW-9	05/10/2002	3900	380	84	2.9	120	23	NA	11	NA	NA	NA	NA	NA	NA	77.71	12.27	65.44	NA	1.1
OMW-9	07/18/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.71	12.42	65.29	NA	4.2
OMW-9	10/31/2002	4700	<1500	40	1.1	14	14	NA	<5.0	NA	NA	NA	NA	NA	NA	NS	12.60	NA	NA	2.4
OMW-9	01/30/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	12.15	NA	NA	4.8
OMW-9	04/17/2003	<50	120	<0.50	<0.50	<0.50	<1.0	NA	<5.0	NA	NA	NA	NA	NA	NA	NS	11.61	NA	NA	1.8
OMW-9	07/17/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	12.22	NA	NA	4.2
OMW-9	10/16/2003	Well inac	cessible	NA	NS	NA	NA	NA	NA											
OMW-9	01/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	11.87	NA	NA	9.1
OMW-9	04/14/2004	460	470 e	6.1	<0.50	21	1.2	NA	1.2	NA	NA	NA	NA	NA	NA	NS	12.44	NA	NA	1.0
OMW-9	10/29/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	11.95	NA	NA	11.4
OMW-9	04/14/2005	<50	210 e	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	NS	11.82	NA	NA	1.9
OMW-9	10/26/2005	NA	NA	NA	NA	NA	NA	NĂ	NA	80.55	12.52	68.03	NA	0.2						
OMW-9	03/16/2006	10500	1600	26.2	0.670	105	4.38	NA	1.06	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	80.55	11.17	69.38	NA	NA
OMW-10	08/07/1991	460	<50	73	1.0	18	8.4	NA	77.91	10.00	67.91	NA	NA							
OMW-10	10/31/1991	630	150	100	<0.5	33	26	NA	NA	NA	NA	NA	NA_	NA	NA	77.91	10.10	67.81	NA	NA
OMW-10	02/15/1992	810	570a	85	2.5	44	38	NA	77.91	NA	NA	NA	NA							
OMW-10	03/18/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77. 9 1	9.55	68.36	NA	NA
OMW-10	05/21/1992	280	NA	47	0.7	4.0	3.1	NA	77.91	10.41	67.50	NA	NA							
OMW-10	08/19/1992	330	NA	35	<1	6.0	4.1	NA	77.91	10.46	67.45	NA	NA							

				- .				MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	тррн	TEPH	В	T	Е	X	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water		Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
																	-			
OMW-10	11/18/1993	300	NA	30	0.8	7.1	6.3	NA	77.91	10.31	67.60	NA	NA							
OMW-10	02/11/1993	510a	NA	49	3.8	18	18	NA	77.91	9.68	68.23	NA	NA							
OMW-10	05/19/1993	<50	NA	96	<0.5	3.4	1.5	NA	77.91	10.19	67.72	NA	NA							
OMW-10	08/18/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	10.29	67.62	NA	NA
OMW-10	11/17/1993	400	NA	24	<1.0	2.8	1.9	NA	77.91	10.32	67.59	NA	NA							
OMW-10	02/18/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	9.30	68.61	NA	NA
OMW-10	05/26/1994	330	NA	32	13	7.5	26	NA	77.91	10.14	67.77	NA	NA							
OMW-10	08/09/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	10.38	67.53	NA	NA
OMW-10	11/11/1994	110	NA	7.8	<0.5	2.3	1.5	NA	77.91	9.34	68.57	NA	NA							
OMW-10	02/03/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	10.17	67.74	NA	NA
OMW-10	05/07/1995	1600	NA	110	3.1	17	12	NA	77.91	9.63	68.28	NA	NA							
OMW-10	08/02/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	10.07	67.84	NA	NA
OMW-10	11/02/1995	1200	NA	47	0.8	1.4	2.4	NA	77.91	9.74	68.17	NA	NA							
OMW-10 (D)	11/02/1995	1300	NA	50	0.8	1.5	2.5	NA	77.91	NA	NA	NA	NA							
OMW-10	02/24/1996	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	NA	NA	NA	NA
OMW-10	05/04/1996	1100	NA	76	16	7.4	32	57	NA	77.91	9.97	67.94	NA	NA						
OMW-10 (D)	05/04/1996	700	NA	63	13	6.4	25	21	NA	77.91	NA	NA	NA	NA						
OMW-10	09/07/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	13.00	64.91	NA	NA
OMW-10	11/24/1996	540	NA	13	2.7	1.3	1.7	16	NA	77.91	12.56	65.35	NA	NA						
OMW-10 (D)	11/24/1996	490	NA	25	<2.0	<2.0	<2.0	66	NA	77.91	NA	NA	NA	NA						
OMW-10	02/23/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	12.52	65.39	NA	NA
OMW-10	05/01/1997	910	NA	1.3	10	4.1	5.9	4.1	NA	77.91	13.13	64.78	NA	NA						
OMW-10	07/22/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	13.46	64.45	NA	NA
OMW-10	11/04/1997	460	NA	5.0	<0.50	1.3	2.2	<5.0	NA	77.91	12.08	65.83	NA	NA						
OMW-10	01/21/1998	NA	NA	NA	NA	NA	_NA	NA	77.91	11.77	66.14	NA	NA							
OMW-10	05/11/1998	370	NA	4.1	0.7	<0.50	0.88	5.2	NA	77.91	12.86	65.05	NA	NA						
OMW-10	08/11/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	13.20	64.71	NA	NA
OMW-10	10/20/1998	490	NA	<0.50	<0.50	1.6	2,3	5.9	NA	77.91	13.20	64.71	NA	NA						
OMW-10**	11/23/1998	150	790	3.2	0.72	<0.50	1.5	5	NA	77.91	12.85	65.06	NA	NA						
OMW-10	02/08/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	9.18	68.73	NA	NA
OMW-10	04/12/1999	1910	NA	59.8	65.80	67	41.6	<100	NA	77.91	10.25	67.66	NA	NA						
OMW-10	07/27/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	12.85	65.06	NA	NA
OMW-10	10/25/1999	130	NA	1.08	<0.500	0.522	<0.500	<5.00	NA	77.91	12.99	64.92	NA	NA						
OMW-10	01/24/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	10.61	67.30	NA	0.6

					1			MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	ТЕРН	в	Т	Е	х	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
-																				
OMW-10	04/24/2000	60.7	NA	1.73	<0.500	<0.500	<0.500	<2.50	NA	77.91	12.35	65.56	NA	1.1						
OMW-10	07/24/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	12.76	65.15	NA	NA
OMW-10	11/01/2000	<50.0	NA	0.664	<0.500	<0.500	<0.500	<2.50	NA	77.91	11.96	65.95	NA	2.2						
OMW-10	01/19/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	12.51	65.40	NA	3.4
OMW-10	04/13/2001	91.0	NA	1.75	0.720	<0.500	0.718	6.11	NA	77.91	12.95	64.96	NA	6.2						
OMW-10	07/09/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	13.11	64.80	NA	3.4
OMW-10	10/18/2001	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	77.91	19.69	58.22	NA	0.2
OMW-10	01/24/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	12.83	65.08	NA	2.5
OMW-10	05/10/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	77.91	13.20	64.71	NA	1.1
OMW-10	07/18/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.91	13.22	64.69	NA	2.3
OMW-10	10/31/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	81.14	13.55	67.59	NA	NA
OMW-10	01/30/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.14	12.67	68.47	NA	NA
OMW-10	04/17/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	6.6	NA	NA	NA	NA	NA	NA	81.14	12.14	69.00	NA	NA
OMW-10	07/17/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.14	13.08	68.06	NA	NA
OMW-10	10/16/2003	120 e	NA	0.68	<0.50	<0.50	<1.0	NA	0.99	NA	NA	NA	NA	ŇA	NA	81.14	13.27	67.87	NA	NA
OMW-10	01/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.14	12.55	68.59	NA	NA
OMW-10	04/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.14	13.04	68.10	NA	NA
OMW-10	10/29/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.14	12.61	68.53	NA	NA
OMW-10	04/14/2005	Well dest	royed	NA	81.14	NA	NA	NA	NA											
					-															
OMW-11	11/22/1991	450	240	1.1	<0.5	<0.5	<0.5	NA	75.76	11.90	63.86	NA	NA							
OMW-11	02/15/1992	Well inacc	cessible	NA	75.76	NA	NA	NA	NA											
OMW-11	03/18/1992	Well inac	cessible	NA	NA	NA_	NA	75.76	NA	NA	NA	NA								
OMW-11	05/20/1992	Well inacc	cessible	NA	ŇA	NA	NA	75.76	NA	NA	NA	NA								
OMW-11	08/19/1992	_270a	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NĂ	NA	75.76	12.06	63.70	NA	NA
OMW-11	11/18/1992	400a	100	<0.5	<0.5	<0.5	<0.5	NA	NA	_NA	NA	NA	NA	NA	NA	75.76	12.01	63.75	NA	NA
OMW-11	02/11/1993	Well inac	cessible	NA	75.76	NA	NA	NA	NA											
OMW-11	05/20/1993	200a	<0.5	<0.5	<0.5	<0.5	<0.5	NA	75.76	11.90	63.86	NA	NA							
OMW-11	08/18/1993	180a	<50	<0.5	<0.5	<0.5	<0.5	NA	75.76	11.90	63.86	NA	NA							
OMW-11	11/17/1993	150a	<50a	<0.5	3.6	<0.5	<0.5	NA	75.76	11.94	63.82	NA	NA							
OMW-11	02/18/1994	Well inac	cessible	NA	75.76	NA	NA	NA	NA											
OMW-11	05/26/1994	Well inacc	cessible	NA	75.76	NA	NA	NA	NA											
OMW-11	08/29/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	11.98	63.78	NA	NA
OMW-11	11/11/1994	160	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NĂ	NA	NA	NA	NA	75.76	10.88	64.88	NA	NA

						• • • • •		MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	в	Т	Е	x	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
OMW-11	02/03/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	10.62	65.14	NA	NA
OMW-11	03/05/1995	220	100	0.7	<0.5	<0.5	<0.5	NA	75.76	NA	NA	NA	NA							
OMW-11	05/07/1995	160	<50	<0.5	<0.5	<0.5	<0.5	NĀ	NA	75.76	11.49	64.27	NA	NA						
OMW-11	08/02/1995	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	02/24/1996	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	05/04/1996	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	09/07/1996	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NÁ	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	11/24/1996	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	02/23/1997	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	05/01/1997	130	71	<0.50	<0.50	<0.50	0.61	<2.5	NA	75.76	13.76	62.00	NA	NA						
OMW-11	07/22/1997	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	11/04/1997	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	01/21/1998	Well inacc	cessible	NA	NA	NA	NA	NA .	NA	75.76	NA	NA	NA	NA						
OMW-11	05/11/1998	100	85	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.76	13.18	62.58	NA	NA						
OMW-11	08/11/1998	110	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.76	13.50	62.26	NA	NA						
OMW-11	10/20/1998	Well inac	cessible	NA	NA	NA	NA	NA	NA	ŇA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	04/12/1999	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	07/27/1999	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NĂ	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	10/25/1999	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	01/24/2000	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	04/24/2000	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	05/11/2000	<50.0	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50	NA	75.76	12.21	63.55	NA	NA						
OMW-11	07/24/2000	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	07/29/2000	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	10/26/2000	<50.0	b	<0.500	<0.500	<0.500	<0.500	<2.50	NA	75.76	12.47	63.29	NA	1.5						
OMW-11	11/01/2000	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	01/19/2001	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	12.29	63.47	NA	NA
OMW-11	04/13/2001	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	04/26/2001	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75,76	NA	NA	NA	NA
OMW-11	04/27/2001	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75.76	NA	NA	NA	NA
OMW-11	07/09/2001	130	<50	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	75.76	13.00	62.76	NA	3.6
OMW-11	10/18/2001	200	<50	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	75.76	13.35	62.41	NA	0.6
OMW-11	01/24/2002	<50	170	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	75.76	12.18	63.58	NA	1.7
OMW-11	05/10/2002	180	<50	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	75.76	12.44	63.32	NA	1.3

				<u> </u>				MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	ТЕРН	в	т	E	x	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
OMW-11	07/18/2002	230	68	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	75.76	12.32	63.44	NA	1.9
OMW-11	10/31/2002	210	<50	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	78.67	12.70	65.97	NA	NA
OMW-11	01/30/2003	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.67	NA	NA	NA	NA
OMW-11	04/17/2003	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.67	NA	NA	NA	NA
OMW-11	07/17/2003	120 e	<50	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	78.67	12.56	66.11	NA	NA
OMW-11	10/16/2003	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.67	NA	NA	NA	NA
OMW-11	01/14/2004	97 e	<50	<0.50	0.67	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	78.67	12.17	66.50	NA	1.6
OMW-11	04/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.67	12.41	66.26	NA	NA
OMW-11	10/29/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.67	12.31	66.36	NA	NA
OMW-11	04/14/2005	Well dest	royed	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.67	NA	NA	NA	NA
																		-		
OMW-12	12/02/1991	<1000	<50	<0.5	<0.5	<0.5	<0.5	NA	75.65	10.31	65.34	NA	NA							
OMW-12	03/18/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	75.65	8.93	66.72	NA	NA							
OMW-12	05/20/1992	180a	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	10.26	65.39	NA NA	NA							
OMW-12	08/19/1992	230a	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	10.53	65.12	NA_	NA							
OMW-12	11/18/1992	220a	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	10.45	65.20	NA	NA							
OMW-12	02/11/1993	240	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	8.90	66.75	NA	NA							
OMW-12	05/19/1993	110a	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	10.60	65.05	NA	NA							
OMW-12	08/18/1993	140a	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	10.28	65.37	NA	NA							
OMW-12	11/17/1993	120a	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	10.24	65.41	NA	NA							
OMW-12	02/18/1994	180a	NA	1.7	2.1	0.9	4.8	NA	75.65	8.97	66.68	NA	NA							
OMW-12	05/26/1994	150	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	9.62	66.03	NA	NA							
OMW-12	08/29/1994	110	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	10.20	65.45	NA	NA							
OMW-12	11/11/1994	90	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	8.54	67.11	NA	NA							
OMW-12	02/03/1995	80	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	8.28	67.37	NA	NA							
OMW-12 (D)	02/03/1995	100	NA	0.6	<0.5	0.7	1.1	NA	75.65	NA	NA	NA	NA							
OMW-12	05/07/1995	110	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	9.17	66.48	NA	NA							
OMW-12	08/02/1995	90	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	10.06	65.59	NA	NA							
OMW-12 (D)	08/02/1995	120	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	NA	NA	NA	NA							
OMW-12	11/02/1995	130	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	10.09	65.56	NA	NA							
OMW-12	02/24/1996	80	NA	<0.5	<0.5	<0.5	<0.5	NA	75.65	7.81	67.84	NA	NA							
OMW-12	05/04/1996	61	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.65	11.72	63.93	NA	NA						
OMW-12	09/07/1996	66	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.65	12.65	63.00	NA	NA						
OMW-12	11/24/1996	70	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.65	11.54	64.11	NA	NA						

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	в	Т	Е	х	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
																	_			
OMW-12	02/23/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.65	11.53	64.12	NA	NA						
OMW-12	05/01/1997	79	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.65	12.17	63.48	NA	NA						
OMW-12	07/22/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.65	12.48	63.17	NA	NA						
OMW-12 (D)	07/22/1997	51	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.65	NA	NA	NA	NA						
OMW-12	11/04/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<5.0	NA	75.65	12.54	63.11	NA	NA						
OMW-12	01/21/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.65	9.82	65.83	NA	NA						
OMW-12	05/11/1998	53	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.65	11.63	64.02	NA	NA						
OMW-12	08/11/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.65	12.05	63.60	NA	NA						
OMW-12	10/20/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.65	12.31	63.34	NA	NA						
OMW-12	02/08/1999	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	75.65	8.25	67.40	NA	NA						
OMW-12	04/12/1999	Well Inac	cessible	NA	75.65	NA	NA	NA	NA											
OMW-12	07/27/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	75.65	10.88	64.77	NA	NA						
OMW-12	10/25/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	75.65	11.00	64.65	NA	NA						
OMW-12	01/24/2000	Well Inac	cessible	NA	75.65	NA	NA	NA	NA											
OMW-12	04/24/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	75.65	10.53	65.12	NA	2.0						
OMW-12	07/24/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	75.65	11.55	64.10	NA	NA						
OMW-12	11/01/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	75.65	10.34	65.31	NA	2.6						
OMW-12	01/19/2001	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	75.65	10.60	65.05	NA	7.6						
OMW-12	04/13/2001	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	75.65	10.75	64.90	NA	2.8						
OMW-12	07/09/2001	69	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	75.65	11.64	64.01	NA	4.8
OMW-12	10/18/2001	81	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	75.65	11.95	63.70	NA	1.3
OMW-12	01/24/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	75.65	10.27	65.38	NA	3.4
OMW-12	05/10/2002	73	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	75.65	10.86	64.79	NA	1.6
OMW-12	07/18/2002	71	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	75.65	10.66	64.99	NA	1.7
OMW-12	10/31/2002	76	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	78,58	11.20	67.38	NA	NA
OMW-12	01/30/2003	58	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	78.58	10.30	68.28	NA	NA
OMW-12	04/17/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<5.0	NA	NA	NA	NA	NA	NA	78.58	10.17	68.41	NA	NA
OMW-12	07/17/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	78.58	11.05	67.53	NA	NA
OMW-12	10/16/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	78.58	11.33	67.25	NA	NA
OMW-12	01/14/2004	67 e	NA	<0.50	0.87	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA.	NA	78.58	10.50	68.08	NA	2.8
OMW-12	04/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.58	10.85	67.73	NA	NA
OMW-12	10/29/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	78.58	10.72	67.86	NA	NA
OMW-12	04/14/2005	Well desti	royed	NA	78.58	NA	NA	NA	NA											

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	Т	Е	x	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
																				_
OMW-13	11/22/1991	900	1000	37	9.5	74	130	NA	76.36	11.96	64.40	NA	NA							
OMW-13	03/18/1992	900a	590a	24	28	320	320	NA	NĂ	76.36	10.84	65.52	NA	NA						
OMW-13	05/20/1992	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	08/19/1992	7000	470a	180	36	150	150	NA	76.36	12.12	64.24	NA	NA							
OMW-13	11/18/1992	Well inacc	cessible	NA	NA	NA	NA	NA	ŅA	NA	NA	NA	NA	NA	NA	76.36	12.00	64.36	NA	NA
OMW-13	02/11/1993	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	05/20/1993	9200	NA	320	83	490	950	NA	76.36	12.26	64.10	NA	NA							
OMW-13	08/18/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	76.36	11.75	64.61	NA	NA
OMW-13	11/17/1993	38000	3800	210	<130	1000	2500	NA	76.36	11.78	64.58	NA	NA							
OMW-13	02/18/1994	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	05/26/1994	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	08/29/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	76.36	NA	NA	NA	NA
OMW-13	11/11/1994	Well inacc	cessible	NA	76.36	10.28	66.08	NA	NA											
OMW-13	02/03/1995	1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	76.36	10.01	66.35	NA	NA
OMW-13	03/05/1995	9100	3900	200	9.7	200	130	NA	76.36	NA	NA	NA	NA							
OMW-13	05/07/1995	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	08/02/1995	8000	2900	180	6.6	190	55	NA	76.36	11.80	64.56	NA	NA							
OMW-13	02/24/1996	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	05/04/1996	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	09/07/1996	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	11/24/1996	15000	7700	50	<20	74	60	<100	NA	76.36	12.35	64.01	NA	NA						
OMW-13	02/23/1997	Well inacc	cessible	NĂ	NA	76.36	NA	NA	NA	NA										
OMW-13	05/01/1997	2600	290	33	10	30	14	88	NA	76.36	13.83	62.53	NA	NA						
OMW-13	07/22/1997	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	11/04/1997	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	01/21/1998	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	05/11/1998	10000	1400	60	17	120	23	<50	NA	76.36	13.21	63.15	NA	NA						
OMW-13	08/11/1998	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	10/20/1998	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	02/08/1999	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	04/12/1999	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	07/27/1999	6270	2230	32.0	26.0	53.0	<5.00	33.0	NA	76.36	11.87	64.49	NA	NA						
OMW-13	10/25/1999	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											
OMW-13	01/24/2000	Well inacc	cessible	NA	76.36	NA	NA	NA	NA											

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water		Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	[_(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)									
OMW-13	04/24/2000	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	76.36	NA	NA	NA	NA
OMW-13	05/11/2000	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	76.36	NA	NA	NA	NA
OMW-13	07/24/2000	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	76.36	NA	NA	NA	NA
OMW-13	07/29/2000	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	76.36	NA	NA	NA	NA
OMW-13	11/01/2000	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	76.36	NA	NA	NA	NA
OMW-13	11/15/2000	2990	1200	34.8	37.3	<10.0	<10.0	<50.0	NA	76.36	12.35	64.01	NA	1.4						
OMW-13	01/19/2001	4830	2390	34.8	<5.00	93.1	<5.00	<25.0	NA	76.36	12.17	64.19	NA	7.0						
OMW-13	04/13/2001	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	76.36	NA	NA	NA	NA
OMW-13	04/26/2001	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	76.36	NA	NA	NA	NA
OMW-13	04/27/2001	Well inact	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	_NA	NA	76.36	NA	NA	NA	NA
OMW-13	07/09/2001	1300	<600	0.74	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	76.36	13.20	63.16	NA	6.4
OMW-13	10/18/2001	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	76.36	NA	NA	NA	NA
OMW-13	11/01/2001	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	76.36	NA	NA	NA	NA
OMW-13	11/09/2001	910	<300	<0.50	<0.50	1.1	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	76.36	13.53	62.83	NA	5.8
OMW-13	01/24/2002	6300	<1500	6.6	1.0	28	2.1	NA	<10	NA	NA	NA	NA	NA	NA	76.36	12.23	64.13	NA	2.9
OMW-13	05/10/2002	2800	<400	3.5	<0.50	15	1.2	NA	<5.0	NA	NA	NA	NA	NA	NA	76.36	12.59	63.77	NA	1.0
OMW-13	07/18/2002	3300	<1000	4.3	0.70	29	1.8	NA	<5.0	NA	NA	NA	NA	NA	NA	76.36	12.44	63.92	NA	2.1
OMW-13	10/31/2002	1900	<1000	0.96	<0.50	7.5	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	NS	12.86	NA	NA	NA
OMW-13	01/30/2003	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	12.86	NA	NA	NA
OMW-13	04/17/2003	5800	1800	11	1.3	34	2.9	NA	<10	NA	NA	NA	NA	NA	NA	NS	11.87	NA	NA	NA
OMW-13	07/17/2003	5100 e	930 e	3.1	<2.5	10	<5.0	NA	<2.5	NA	NA	NA	NA	NA	NA	NS	12.70	NA	NA	NA
OMW-13	10/16/2003	3100 e	740 e	<2.5	<2.5	<2.5	<5.0	NA	<2.5	NA	NA	NA	NA	NA	NA	NS	12.93	NA	NA	NA
OMW-13	01/14/2004	7800	2100 e	6.3	<2.5	11	9.8	NA	<2.5	NA	NA	NA	NA	NA	NA	NS	12.57	NA	NA	1.2
OMW-13	04/14/2004	4400	1100 e	3.3	<2.5	7.6	<5.0	NA	<2.5	NA	NA	NA	NA	NA	NA	NS	12.50	NA	NA	NA
OMW-13	10/29/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	12.35	NA	NA	NA
OMW-13	04/14/2005	4900	2000 f	5.0	<2.5	6.7	<5.0	NA	<2.5	NA	NA	NA	NA	NA	NA	NS	12.01	NA	NA	NA
OMW-13	10/26/2005	Well inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	NA	NA	NA	NA
OMW-13	03/16/2006	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	NA	NA	NA	NA
OMW-13	03/17/2006	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	NA	NA	NA	NA
OMW-13	03/27/2006	15500	1860	2.48	0.720	4.02	1.74	NA	<0.500	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	NS	11.23	NA	NA	NA

ľ									MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
	Well ID	Date	TPPH	TEPH	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
			(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)													

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to July 9, 2001 analyzed by EPA Method 8015.

TEPH = Total petroleum hydrocarbons as diesel by modified EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior July 9, 2001 analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260B

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260B

1.2-DCA = 1.2-Dichloroethane, analyzed by EPA Method 8260B

EDB = 1,2-Dibromoethane or Ethylene Dibromide, analyzed by EPA Method 8260B

TOC = Top of Casing Elevation

SPH = Separate-Phase Hydrocarbons

GW = Groundwater

DO = Dissolved Oxygen

ug/L = Parts per billion

ppm = Parts per million

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

(D) = Duplicate sample

NA = Not applicable

NS = Not surveyed

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)													

Notes:

a = Chromatogram indicated an unidentified hydrocarbon.

b = The TEPH analysis was not performed because the sample containers were broken in the laboratory.

c = Well was inaccessible, able to gauge but not able to take DO reading.

d = Top of casing elevation altered during wellhead maintenance.

e = Hydrocarbon does not match pattern of laboratory's standard.

f = Hydrocarbon reported is in the early Diesel range, and does not match our Diesel standard.

* Field technician mistakenly sampled this well instead of OMW -11.

** Field technician mistakenly sampled this well instead of OMW-13.

DO readings are taken post-purge when wells are sampled and pre-purge in wells not sampled.

All wells except OMW-6, OMW-9, and OMW-13 surveyed March 18, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

Wells OMW-6 and OMW-9 surveyed October 25, 2005 by Virgil Chavez Land Surveying of Vallejo, CA.

May 01, 2006

Client:	Cambria Env. Tech. (Emeryville) / SHELL (1367	(5) Work Order:	NPC3771
	5900 Hollis Street, Suite A	Project Name:	500 40th Street, Oakland, CA
	Emeryville, CA 94608	Project Nbr:	SAP 129452
Attn:	Anni Kreml	P/O Nbr:	97093400
		Date Received:	03/30/06
	SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
ОМ	W-13	NPC3771-01	03/27/06 08:15

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accredidation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Additional Laboratory Comments: Revised Report 05-01-06jh Revised the target list to include BTEX, Oxygenates and halogenated VOCs only as requested on the original Chain of Custody. California Certification Number: 01168CA

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory. Report Approved By:

fun

Jim Hatfield Project Management

Test America

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:	NPC3771
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/30/06 07:55

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC3771-01RE1 (C	MW-13 - Water)	Sampled	: 03/27/06 08:15					
Volatile Organic Compounds by EP	A Method 8260B							
Tert-Amyl Methyl Ether	ND		ug/L	0.500	I	04/01/06 17:25	SW846 8260B	6035712
1,2-Dibromoethane (EDB)	ND		ug/L	0.500	1	04/01/06 17:25	SW846 8260B	6035712
Benzene	2.48		ug/L	0.500	1	04/01/06 23:53	SW846 8260B	6040322
1,2-Dichloroethane	ND		ug/L	0.500	1	04/01/06 17:25	SW846 8260B	6035712
Bromobenzene	ND		ug/L	0.500	I	03/31/06 18:18	SW846 8260B	6036040
Bromochloromethane	ND		ug/L	0.500	I	03/31/06 18:18	SW846 8260B	6036040
Bromodichloromethane	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
Ethyl tert-Butyl Ether	ND		ug/L	0.500	1	04/01/06 17:25	SW846 8260B	6035712
Diisopropyl Ether	ND		ug/L	0.500	1	04/01/06 17:25	SW846 8260B	6035712
Bromoform	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
Methyl tert-Butyl Ether	ND		ug/L	0.500	1	04/01/06 17:25	SW846 8260B	6035712
Bromomethane	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
Tertiary Butyl Alcohol	ND		ug/L	10.0	1	04/01/06 17:25	SW846 8260B	6035712
Carbon disulfide	ND		ug/L	0.500	I	03/31/06 18:18	SW846 8260B	6036040
Carbon Tetrachloride	ND		ug/L	0.500	L	03/31/06 18:18	SW846 8260B	6036040
Chlorobenzene	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
Chlorodibromomethane	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
Chloroethane	ND		ug/L	0.500	I	03/31/06 18:18	SW846 8260B	6036040
Chloroform	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
Chloromethane	ND		ug/L	1.00	1	03/31/06 18:18	SW846 8260B	6036040
4-Chlorotoluene	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
2-Chlorotoluene	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
1,2-Dibromo-3-chloropropane	ND		ug/L	1.00	1	03/31/06 18:18	SW846 8260B	6036040
1,2-Dibromoethane (EDB)	ND		ug/L	0.500	I	03/31/06 18:18	SW846 8260B	6036040
Dibromomethane	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
I,4-Dichlorobenzene	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
1,3-Dichlorobenzene	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
1,2-Dichlorobenzene	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
Dichlorodifluoromethane	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
I,2-Dichloroethane	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
I, I-Dichloroethane	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
cis-1,2-Dichlorocthene	ND		ug/L	0.500	I	03/31/06 18:18	SW846 8260B	6036040
i,I-Dichloroethene	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
rans-1,2-Dichloroethene	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
2,2-Dichloropropane	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
1,3-Dichloropropane	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
1,2-Dichloropropanc	ND		ug/L	0.500	I	03/31/06 18:18	SW846 8260B	6036040
trans-1,3-Dichloropropene	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
cis-1,3-Dichloropropene	ND		ug/L	0.500	I	03/31/06 18:18	SW846 8260B	6036040
I, I - Dichloropropene	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
Ethylbenzene	4.02		ug/L	0.500	1	04/01/06 23:53	SW846 8260B	6040322
Hexachlorobutadiene	ND		ug/L	1.00	1	03/31/06 18:18	SW846 8260B	6036040
Methylene Chloride	ND		ug/L	5.00	1	03/31/06 18:18	SW846 8260B	6036040

÷

Test America

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Euv. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:	NPC3771
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/30/06 07:55

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC3771-01 (OMW-13	3 - Water) - co	ont. Sampl	ed: 03/27/06 08:15					
Volatile Organic Compounds by EPA M								
Styrene	ND		ug/L	1.00	1	03/31/06 18:18	SW846 8260B	6036040
I, I, 2-Tetrachloroethane	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
1,1,2,2-Tetrachloroethane	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
Tetrachloroethene	ND		ug/L	0.500	T	03/31/06 18:18	SW846 8260B	6036040
Toluene	0.720		ug/L	0.500	1	04/01/06 23:53	SW846 8260B	6040322
1,2,4-Trichlorobenzene	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
1,2,3-Trichlorobenzene	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
1,1,2-Trichloroethane	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
1,1,1-Trichloroethane	ND		ug/L	0.500	I	03/31/06 18:18	SW846 8260B	6036040
Trichloroethene	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
Trichlorofluoromethane	ND		ug/L	0.500	L	03/31/06 18:18	SW846 8260B	6036040
1,2,3-Trichloropropane	ND		ug/L	0.500	I	03/31/06 18:18	SW846 8260B	6036040
Vinyl chloride	ND		ug/L	0.500	1	03/31/06 18:18	SW846 8260B	6036040
Xylenes, total	1.74		ug/L	0.500	1	04/01/06 23:53	SW846 8260B	6040322
Surr: 1,2-Dichloroethane-d4 (70-130%)	79 %		Ū			03/31/06 18:18	SW846 8260B	6036040
Surr: 1,2-Dichloroethane-d4 (70-130%)	103 %					04/01/06 23:53	SW846 8260B	6040322
Surr: Dibromofluoromethane (79-122%)	102 %					03/31/06 18:18	SW846 8260B	6036040
Surr: Dibromofluoromethane (79-122%)	107 %					04/01/06 23:53	SW846 8260B	6040322
Surr: Toluene-d8 (78-121%)	96 %					03/31/06 18:18	SW846 8260B	6036040
Surr: Toluene-d8 (78-121%)	106 %					04/01/06 23:53	SW846 8260B	6040322
Surr: 4-Bromofluorobenzene (78-126%)	103 %					03/31/06 18:18	SW846 8260B	6036040
Surr: 4-Bromofluorobenzene (78-126%)	109 %					04/01/06 23:53	SW846 8260B	6040322
Purgeable Petroleum Hydrocarbons								
Gasoline Range Organics	15500		ug/L	500	10	04/01/06 11:43	CA LUFT GC/MS	6036034
Surr: 1,2-Dichloroethane-d4 (0-200%)	103 %					04/01/06 11:43	CA LUFT GC/M	6036034
Surr: Dibromofluoromethane (0-200%)	102 %					04/01/06 11:43		
Surr: Toluene-d8 (0-200%)	93 %					04/01/06 11:43	CA LUFT GC/MS	6036034
Surr: 4-Bromofluorobenzene (0-200%)	104 %					04/01/06 1:43	CA LUFT GC/MS	6036034
Extractable Petroleum Hydrocarbons with	ith Silica Gel Tr	reatment						
Diesel	1860		ug/L	93.9	2	04/04/06 13:49	SW846 8015B	6036198
Surr: o-Terphenyl (55-150%)	97 %					04/04/06 13:49	SW846 8015B	6036198

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracted	Extracted Vol	Date	Analyst	Extraction Method
Extractable Petroleum Hydrocarbons with	Silica Gel Treat	ment					
SW846 8015B	6036198	NPC3771-01	1065.00	1.00	04/01/06 11:05	KLG	EPA 3510C
SW846 8015B	6036198	NPC3771-01RE1	1065.00	1.00	04/01/06 11:05	KLG	EPA 3510C

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Cambria Env. Tech. (Emeryville) / SHELL (13675) Client 5900 Hollis Street, Suite A Emeryville, CA 94608 Anni Kreml Attn

Work Order: NPC3771 Project Name: 500 40th Street, Oakland, CA SAP 129452

Project Number: Received: 03/30/06 07:55

PROJECT QUALITY CONTROL DATA Blank

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by H	EPA Method 8260B					
6035712-BLK1						
Tert-Amyl Methyl Ether	<0.200		ug/L	6035712	6035712-BLK1	04/01/06 16:29
1,2-Dibromoethane (EDB)	<0.250		ug/L	6035712	6035712-BLK1	04/01/06 16:29
1,2-Dichloroethane	<0.390		ug/L	6035712	6035712-BLK1	04/01/06 16:29
Ethyl tert-Butyl Ether	<0.200		ug/L	6035712	6035712-BLK1	04/01/06 16:29
Diisopropyl Ether	<0.200		ug/L	6035712	6035712-BLK1	04/01/06 16:29
Methyl tert-Butyl Ether	<0.200		ug/L	6035712	6035712-BLK1	04/01/06 16:29
Tertiary Butyl Alcohol	<5.06		ug/L	6035712	6035712-BLK1	04/01/06 16:29
Surrogate: 1,2-Dichloroethane-d4	111%			6035712	6035712-BLK1	04/01/06 16:29
Surrogate: Dibromofluoromethane	108%			6035712	6035712-BLK1	04/01/06 16:29
Surrogate: Toluene-d8	91%			6035712	6035712-BLK1	04/01/06 16:29
Surrogate: 4-Bromofluorobenzene	102%			6035712	6035712-BLK1	04/01/06 16:29
6036034-BLK1						
Tert-Amyl Methyl Ether	<0.200		ug/L	6036034	6036034-BLK1	04/01/06 02:58
1,2-Dibromoethane (EDB)	<0.250		ug/L	6036034	6036034-BLK1	04/01/06 02:58
1,2-Dichloroethane	<0.390		_ ug/L	6036034	6036034-BLK1	04/01/06 02:58
Ethyl tert-Butyl Ether	<0,200		ug/L	6036034	6036034-BLK1	04/01/06 02:58
Diisopropyl Ether	<0.200		ug/L	6036034	6036034-BLK1	04/01/06 02:58
Methyl tert-Butyl Ether	<0.200		ug/L	6036034	6036034-BLK1	04/01/06 02:58
Tertiary Butyl Alcohol	<5.06		ug/L	6036034	6036034-BLK1	04/01/06 02:58
Surrogate: 1,2-Dichloroethane-d4	107%			6036034	6036034-BLK1	04/01/06 02:58
Surrogate: Dibromofluoromethane	106%			6036034	6036034-BLK1	04/01/06 02:58
Surrogate: Toluene-d8	92%			6036034	6036034-BLK1	04/01/06 02:58
Surrogate: 4-Bromofluorobenzene	102%			6036034	6036034-BLK1	04/01/06 02:58
6036040-BLK1						
Acetone	<1.28		ug/L	6036040	6036040-BLK1	03/31/06 13:53
Benzene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53
Bromobenzene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53
Bromochioromethane	<0.310		ug/L	6036040	6036040-BLK1	03/31/06 13:53
Bromodichloromethane	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53
Bromoform	<0.290		ug/1.	6036040	6036040-BLK1	03/31/06 13:53
Bromomethane	<0.310		ug/L	6036040	6036040-BLK1	03/31/06 13:53
2-Butanone	<3.17		ug/L	6036040	6036040-BLK1	03/31/06 13:53
sec-Butylbenzene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53
n-Butylbenzene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53
tert-Butylbenzene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53
Carbon disulfide	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53
Carbon Tetrachloride	<0.220		ug/L	6036040	6036040-BLK1	03/31/06 13:53
Chlorobenzene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53
Chlorodibromomethane	<0.290		ug/L	6036040	6036040-BLK1	03/31/06 13:53
Chloroethane	<0.250		ug/L	6036040	6036040-BLK1	03/31/06 13:53

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Cambria Env. Tech. (Emeryville) / SHELL (13675) Client 5900 Hollis Street, Suite A Emeryville, CA 94608 Anni Kreml Attn

NPC3771 Work Order: Project Name: SAP 129452 Project Number: 03/30/06 07:55 Received:

500 40th Street, Oakland, CA

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Volatile Organic Compounds b	y EPA Method 8260B						
6036040-BLK1							
Chloroform	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
Chloromethane	<0.220		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
4-Chlorotoluene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
2-Chlorotoluene	<0.190		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,2-Dibromo-3-chloropropane	<0.730		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,2-Dibromoethane (EDB)	<0.250		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
Dibromomethane	<0.380		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,4-Dichlorobenzene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,3-Dichlorobenzene	<0,200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,2-Dichlorobenzene	<0.200		ug/L	6036040	6036040-BLKI	03/31/06 13:53	
Dichlorodifluoromethane	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,2-Dichloroethane	<0.390		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
l,l-Dichloroethane	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
cis-1,2-Dichloroethene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,1-Dichloroethene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
trans-1,2-Dichloroethene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
2,2-Dichloropropane	<0.230		ug/L	6036040	6036040-BLKI	03/31/06 13:53	
1,3-Dichloropropane	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,2-Dichloropropane	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
trans-1,3-Dichloropropene	<0.230		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
cis-1,3-Dichloropropene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,1-Dichloropropene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
Ethylbenzene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
Hexachlorobutadiene	<0.400		ug/L	6036040	6036040-BLKI	03/31/06 13:53	
2-Hexanone	<1.81		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
lsopropylbenzene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
Diisopropyl Ether	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
Methylene Chloride	<0.440		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
4-Methyl-2-pentanone	<1.12		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
Styrene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,1,1,2-Tetrachloroethane	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,1,2,2-Tetrachloroethane	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
Tetrachloroethene	<0.250		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
Toluene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1.2,4-Trichlorobenzene	< 0.320		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,2,3-Trichlorobenzene	<0.290		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,1,2-Trichloroethane	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,1,1-Trichloroethane	<0.220		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
Trichloroethene	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
Trichlorofluoromethane	<0.200		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1,2,3-Trichloropropane	<0.310		ug/L	6036040	6036040-BLK1	03/31/06 13:53	
1.3,5-Trimelhylbenzene	<0.220		-#- ug/L	6036040	6036040-BLK1	03/31/06 13:53	
			0 –				

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

Analyte	Blank Value Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by I	EPA Method 8260B				
6036040-BLK1					
Vinyl chloride	<0.200	ug/L	6036040	6036040-BLK1	03/31/06 13:53
Xylenes, total	<0.350	ug/L	6036040	6036040-BLK1	03/31/06 13:53
1,2,4-Trimethylbenzene	<0,200	ug/L	6036040	6036040-BLKI	03/31/06 13:53
Naphthalene	<0.500	ug/L	6036040	6036040-BLK1	03/31/06 13:53
p-Isopropyltoluene	<0.200	ug/L	6036040	6036040-BLK1	03/31/06 13:53
n-Propylbenzene	<0.200	ug/L	6036040	6036040-BLK1	03/31/06 13:53
urrogate: 1,2-Dichloroethane-d4	94%		6036040	6036040-BLKI	03/31/06 13:53
urrogate: Dibromofluoromethane	106%		6036040	6036040-BLK1	03/31/06 13:53
urrogate: Toluene-d8	104%		6036040	6036040-BLKI	03/31/06 13:53
urrogate: 4-Bromofluorobenzene	108%		6036040	6036040-BLK1	03/31/06 13:53
040322-BLK1					
Acetone	<1.28	ug/L	6040322	6040322-BLK1	04/01/06 23:29
Benzene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29
Bromobenzene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29
Bromochloromethane	<0.310	ug/L	6040322	6040322-BLK1	04/01/06 23:29
Bromodichloromethane	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29
tromoform	<0.290	ug/L	6040322	6040322-BLK1	04/01/06 23:29
fromomethane	<0.310	ug/L	6040322	6040322-BLK1	04/01/06 23:29
-Butanone	<3.17	ug/L	6040322	6040322-BLK1	04/01/06 23:29
cc-Butylbenzene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29
-Butylbenzene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29
ert-Butylbenzene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29
Carbon Tetrachloride	<0.220	ug/L	6040322	6040322-BLK1	04/01/06 23:29
Chlorobenzene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29
Chlorodibromomethane	<0.290	ug/L	6040322	6040322-BLK1	04/01/06 23:29
Chloroethane	<0.250	ug/L	6040322	6040322-BLK1	04/01/06 23:29
Chloroform	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29
Chloromethane	<0.220	ug/L	6040322	6040322-BLK1	04/01/06 23:29
-Chlorotoluene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29
-Chlorotoluene	<0.190	ug/L	6040322	6040322-BLK1	04/01/06 23:29
,2-Dibromo-3-chloropropane	<0.730	ug/L	6040322	6040322-BLK1	04/01/06 23:29
.2-Dibromoethane (EDB)	<0.250	-y- ug/L	6040322	6040322-BLK1	04/01/06 23:29
Dibromomethane	<0.380	-g∼ ug/L	6040322	6040322-BLK1	04/01/06 23:29
,4-Dichlorobenzene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29
,3-Dichlorobenzene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29
,2-Dichlorobenzene	<0.200	-s - ug/L	6040322	6040322-BLK1	04/01/06 23:29
Dichlorodifluoromethane	<0.200	-g ug/L,	6040322	6040322-BLK1	04/01/06 23:29
,2-Dichloroethane	<0.390	ч ₂ ,∼ ug/L	6040322	6040322-BLKI	04/01/06 23:29
,l-Dichloroethane	<0.200	-g-3 ug/L	6040322	6040322-BLK1	04/01/06 23:29
sis-1,2-Dichloroethene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29
, l-Dichloroethene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

				_	— -	
Analyte	Blank Value Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Volatile Organic Compounds by				• • • • • • • • • • • • • • • • • • • •		··· · ···· <i>·</i>
6040322-BLK1						
trans-1,2-Dichloroethene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
2,2-Dichloropropane	<0.230	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
1,3-Dichloropropane	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
1,2-Dichloropropane	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
trans-1,3-Dichloropropene	<0.230	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
cis-1,3-Dichloropropene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
l, t · Dichloropropene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
Ethylbenzene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
Hexachlorobutadiene	<0.400	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
2-Hexanone	<1.81	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
Isopropylbenzene	<0.200	ug/L	6 0 40322	6040322-BLK1	04/01/06 23:29	
Diisopropyl Ether	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
Methylene Chloride	0.900	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
4-Methyl-2-pentanone	<1.12	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
Styrene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
1,1,1,2-Tetrachloroethane	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
1,1,2,2-Tetrachloroethane	<0,200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
Tetrachloroethene	<0.250	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
Toluene	<0,200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
1,2,4-Trichlorobenzene	<0.320	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
1,2,3-Trichlorobenzene	<0.290	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
1,1,2-Trichloroethane	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
1,1,1-Trichloroethane	<0.220	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
Trichloroethene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
Trichlorofluoromethane	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
1,2,3-Trichloropropane	<0.310	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
1,3,5-Trimethylbenzene	<0.220	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
Vinyl chloride	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
Xylenes, total	<0.350	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
1,2,4-Trimethylbenzene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
Naphthalene	<0.500	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
p-Isopropyltoluene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
n-Propylbenzene	<0.200	ug/L	6040322	6040322-BLK1	04/01/06 23:29	
Surrogate: 1,2-Dichloroethane-d4	104%		6040322	6040322-BLK1	04/01/06 23:29	
Surrogate: Dibromofluoromethane	108%		6040322	6040322-BLK1	04/01/06 23:29	
Surrogate: Toluene-d8	107%		6040322	6040322-BLK1	04/01/06 23:29	
Surrogate: 4-Bromofluorobenzene	110%		6040322	6040322-BLK1	04/01/06 23:29	
Purgeable Petroleum Hydrocarb	ons					
6036034-BLK1						
Gasoline Range Organics	<50.0	ug/L	6036034	6036034-BLK1	04/01/06 02:58	

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Purgeable Petroleum Hydrocarbo	ns					• • • • • • • • • • • • • • • • • • • •
6036034-BLK1						
Surrogate: 1,2-Dichloroethane-d4	107%			6036034	6036034-BLK1	04/01/06 02:58
Surrogate: Dibromofluoromethane	106%			6036034	6036034-BLK1	04/01/06 02:58
Surrogate: Toluene-d8	92%			6036034	6036034-BLK1	04/01/06 02:58
Surrogate: 4-Bromofluorobenzene	102%			6036034	6036034-BLK1	04/01/06 02:58
Extractable Petroleum Hydrocarb	oons with Silica Gel T	reatment				
6036198-BLK1						
Diesel	35.7		ug/L	6036198	6036198-BLK1	04/04/06 10:33
Surrogate: o-Terphenyl	117%			6036198	6036198-BLK1	04/04/06 10:33

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

PROJECT QUALITY CONTROL DATA

LCS

Analyte	Known Val.	Analyzed Val	Q Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by El	PA Method 8260B						
6035712-BS1							
Tert-Amyl Methyl Ether	50.0	58.6	ug/L	117%	56 - 145	6035712	04/01/06 15:34
1,2-Dibromoethane (EDB)	50.0	49.9	ug/L	100%	75 - 128	6035712	04/01/06 15:34
1,2-Dichloroethane	50.0	54.1	ug/L	108%	74 - 131	6035712	04/01/06 15:34
Ethyl tert-Butyl Ether	50.0	52.7	ug/L	105%	64 - 141	6035712	04/01/06 15:34
Diisopropyl Ether	50.0	47.8	ug/L	96%	73 - 135	6035712	04/01/06 15:34
Methyl tert-Butyl Ether	50.0	53.8	ug/L	108%	66 - 142	6035712	04/01/06 15:34
Tertiary Butyl Alcohol	500	524	ug/L	105%	42 - 154	6035712	04/01/06 15:34
Surrogate: 1,2-Dichloroethane-d4	50.0	53.1	0	106%	70 - 130	6035712	04/01/06 15:34
Surrogate: Dibromofluoromethane	50.0	52.3		105%	79 - 122	6035712	04/01/06 15:34
Surrogate: Toluene-d8	50.0	47.6		95%	78 - 121	6035712	04/01/06 15:34
Surrogate: 4-Bromofluorobenzene	50.0	48.2		96%	78 - 126	6035712	04/01/06 15:34
6036034-BS1							
Tert-Amyl Methyl Ether	50.0	61.6	ug/L	123%	56 - 145	6036034	04/01/06 02:02
1,2-Dibromoethane (EDB)	50.0	52.0	ug/L	104%	75 - 128	6036034	04/01/06 02:02
1,2-Dichloroethane	50.0	54.8	ug/L	110%	74 - 131	6036034	04/01/06 02:02
Ethyl tert-Butyl Ether	50.0	55.0	ug/L	110%	64 - 141	6036034	04/01/06 02:02
Diisopropyl Ether	50.0	50.3	ug/L	101%	73 - 135	6036034	04/01/06 02:02
Methyl tert-Bulyl Ether	50.0	55.4	ug/L	111%	66 - 142	6036034	04/01/06 02:02
Tertiary Butyl Alcohol	500	562	ug/L	112%	42 - 154	6036034	04/01/06 02:02
Surrogate: 1,2-Dichloroethane-d4	50.0	50.8		102%	70 - 130	6036034	04/01/06 02:02
Surrogate: Dibromofluoromethane	50.0	51.0		102%	79 - 122	6036034	04/01/06 02:02
Surrogate: Toluene-d8	50.0	47.2		94%	78 - 121	6036034	04/01/06 02:02
Surrogate: 4-Bromofluorobenzene	50.0	48.2		96%	78 - 126	6036034	04/01/06 02:02
6036040-BS1							
Acetone	250	306	ug/L	122%	41 - 152	6036040	03/31/06 12:39
Benzene	50.0	52.8	ug/L	106%	79 - 123	6036040	03/31/06 12:39
Bromobenzene	50.0	53.4	ug/L	107%	74 - 124	6036040	03/31/06 12:39
Bromochloromethane	50,0	60.6	ug/L	121%	70 - 134	6036040	03/31/06 12:39
Broinodichloromethane	50.0	56.6	ug/L	113%	76 - 135	6036040	03/31/06 12:39
Bromoform	50.0	52.5	ug/L	105%	47 - 135	6036040	03/31/06 12:39
Bromomethane	50.0	40.9	ug/L	82%	53 - 162	6036040	03/31/06 12:39
2-Butanone	250	299	ug/L	120%	68 - 136	6036040	03/31/06 12:39
sec-Butylbenzene	50.0	53.0	ug/L	106%	76 - 128	6036040	03/31/06 12:39
n-Butylbenzene	50.0	52.0	ug/L	104%	70 - 134	6036040	03/31/06 12:39
tert-Butylbenzene	50.0	53.4	ug/L	107%	73 - 127	6036040	03/31/06 12:39
Carbon disulfide	50.0	50.1	ug/L	100%	71 - 138	6036040	03/31/06 12:39
Carbon Tetrachloride	50.0	52.6	ug/L	105%	71 - 136	6036040	03/31/06 12:39
Chlorobenzene	50.0	53.9	ug/L	108%	80 - 120	6036040	03/31/06 12:39
Chlorodibromomethane	50.0	52.1	ug/L	104%	68 - 126	6036040	03/31/06 12:39
Chloroethane	50.0	37.7	ug/L	75%	55 - 149	6036040	03/31/06 12:39

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

PROJECT QUALITY CONTROL DATA LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by I	EPA Method 8260B							· · · <i>,</i> · · · · · · · · · ·
6036040-BS1								
Chloroform	50.0	49.7		ug/L	99%	77 - 126	6036040	03/31/06 12:39
Chloromethane	50.0	32.8		ug/L	66%	39 - 151	6036040	03/31/06 12:39
4-Chlorotolucne	50.0	51.5		ug/L	103%	76 - 128	6036040	03/31/06 12:39
2-Chlorotolucne	50.0	55.1		ug/L	110%	73 - 130	6036040	03/31/06 12:39
1,2-Dibromo-3-chloropropane	50.0	56.6		ug/L	113%	56 - 130	6036040	03/31/06 12:39
1,2-Dibromoethane (EDB)	50.0	57.8		ug/L	116%	75 - 128	6036040	03/31/06 12:39
Dibromomethane	50.0	56.2		ug/L	112%	76 - 129	6036040	03/31/06 12:39
1,4-Dichlorobenzene	50.0	54.6		ug/L	109%	78 - 122	6036040	03/31/06 12:39
1,3-Dichlorobenzene	50,0	59.2		ug/L	118%	80 - 124	6036040	03/31/06 12:39
1,2-Dichlorobenzene	50.0	57.7		ug/L	115%	82 - 123	6036040	03/31/06 12:39
Dichlorodifluoromethane	50.0	28.5		ug/L	57%	28 - 161	6036040	03/31/06 12:39
1,2-Dichloroethane	50.0	49.4		ug/L	99%	74 - 131	6036040	03/31/06 12:39
l,l-Dichloroethane	50.0	48.7		ug/L	97%	72 - 131	6036040	03/31/06 12:39
cis-1,2-Dichloroethene	50.0	49.0		ug/L	98%	72 - 128	6036040	03/31/06 12:39
1,1-Dichloroethene	50.0	54.3		ug/L	109%	68 - 136	6036040	03/31/06 12:39
trans-1,2-Dichloroethene	50.0	49.9		սը/Լ	100%	73 - 131	6036040	03/31/06 12:39
2.2-Dichloropropane	50.0	51.9		ug/L	104%	43 - 147	6036040	03/31/06 12:39
1,3-Dichloropropane	50.0	54.7		ug/L	109%	80 - 121	6036040	03/31/06 12:39
1,2-Dichloropropane	50.0	50.3		ug/L	101%	76 - 128	6036040	03/31/06 12:39
trans-1,3-Dichloropropene	50.0	50.4		ug/L	101%	57 - 127	6036040	03/31/06 12:39
cis-1,3-Dichloropropene	50.0	52.9		ug/L	106%	61 - 134	6036040	03/31/06 12:39
I, I-Dichloropropene	50.0	57.4		ug/L	115%	75 - 129	6036040	03/31/06 12:39
Ethylbenzene	50.0	52.4		ug/L	105%	79 - 125	6036040	03/31/06 12:39
Hexachlorobutadiene	50.0	61.4		- ug/L	123%	64 - 133	6036040	03/31/06 12:39
2-Hexanone	250	254		ug/L	102%	67 - 133	6036040	03/31/06 12:39
Isopropylbenzene	50.0	48.9		ug/L	98%	75 - 132	6036040	03/31/06 12:39
Diisopropyl Ether	50.0	45.2		ug/L	90%	73 - 135	6036040	03/31/06 12:39
Methylene Chloride	50.0	54.2		ug/L	108%	74 - 137	6036040	03/31/06 12:39
4-Methyl-2-pentanone	250	256		ug/L	102%	73 - 133	6036040	03/31/06 12:39
Styrene	50.0	52.0		ug/L	104%	74 - 133	6036040	03/31/06 12:39
1,1,1,2-Tetrachloroethane	50.0	54.1		ug/L	108%	76 - 130	6036040	03/31/06 12:39
1,1,2,2-Tetrachloroethane	50 .0	54.9		ug/L	110%	68 - 128	6036040	03/31/06 12:39
Tetrachloroethene	50.0	57.2		ug/L,	114%	74 - 125	6036040	03/31/06 12:39
Toluene	50.0	53.6		ug/L	107%	78 - 122	6036040	03/31/06 12:39
1,2,4-Trichlorobenzene	50.0	58.4		ug/L	117%	65 - 135	6036040	03/31/06 [2:39
1,2,3-Trichlorobenzene	50.0	59.6		ug/L	119%	67 - 139	6036040	03/31/06 12:39
1,1,2-Trichloroethane	50.0	53.1		ug/L	106%	84 - 20	6036040	03/31/06 12:39
1,1,1-Trichloroethane	50.0	54.8		ug/L	110%	74 - 134	6036040	03/31/06 12:39
Trichloroethene	50.0	56.2		ug/L	112%	73 - 136	6036040	03/31/06 12:39
Trichlorofluoromethane	50,0	46.3		ug/L	93%	60 - 138	6036040	03/31/06 12:39
1,2,3-Trichloropropane	50.0	41.7		- <i>y</i> - ug/L	83%	66 - 131	6036040	03/31/06 12:39

ANALYTICAL TESTING CORPORATION

2960 Fosler Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Anni Kreml Attn

NPC3771 Work Order: Project Name: SAP 129452 Project Number: Received:

500 40th Street, Oakland, CA 03/30/06 07:55

PROJECT QUALITY CONTROL DATA LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by EP	A Method 8260B						· · · · · · · · · · · · · · · · · · ·
6036040-BS1							
1,3,5-Trimethylbenzene	50.0	52.0	ug/L	104%	77 - 128	6036040	03/31/06 12:39
Vinyl chloride	50.0	44.0	ug/L	88%	56 - 137	6036040	03/31/06 12:39
Xylenes, total	150	155	ug/L	103%	79 - 130	6036040	03/31/06 12:39
1,2,4-Trimethylbenzene	50.0	53.0	ug/L	106%	77 - 128	6036040	03/31/06 12:39
Naphthalene	50.0	59.2	ug/L	118%	66 - 142	6036040	03/31/06 12:39
p-lsopropyltoluene	50.0	50.4	ug/L	101%	76 - 130	6036040	03/31/06 12:39
n-Propylbenzene	50.0	53.4	ug/L	107%	75 - 129	6036040	03/31/06 12:39
Surrogate: 1,2-Dichloroethane-d4	50.0	45.4	-	91%	70 - 130	6036040	03/31/06 12:39
Surrogate: Dibromofluoromethane	50.0	51.2		102%	79 - 122	6036040	03/31/06 12:39
Surrogate: Toluene-d8	50.0	48.2		96%	78 - 121	6036040	03/31/06 12:39
Surrogate: 4-Bromofluorobenzene	50.0	50.0		100%	78 - 126	6036040	03/31/06 12:39
6040322-BS1							
Acetone	250	279	ug/L	112%	41 - 152	6040322	04/01/06 22:15
Вепzепе	50.0	55.3	-g - ug/L	111%	79 - 123	6040322	04/01/06 22:15
Bromobenzene	50.0	51.7	ug/L,	103%	74 - 124	6040322	04/01/06 22:15
Bromochloromethane	50.0	52.2	-g∼ ug/L	104%	70 - 134	6040322	04/01/06 22:15
Bromodichloromethane	50.0	55.0	սք 2 ug/L	110%	76 - 135	6040322	04/01/06 22:15
Bromoform	50.0	39.6	ug/L	79%	47 - 135	6040322	04/01/06 22:15
Bromomethane	50.0	41.1	-g∼ ug/L	82%	53 - 162	6040322	04/01/06 22:15
2-Butanone	250	313	ug/L	125%	68 - 136	6040322	04/01/06 22:15
sec-Butylbenzene	50.0	50.4	ւթշ սց/L	101%	76 - 128	6040322	04/01/06 22:15
n-Butylbenzene	50.0	50.9	սց/L	102%	70 - 134	6040322	04/01/06 22:15
tert-Butylbenzene	50.0	49.7	ug/L	99%	73 - 127	6040322	04/01/06 22:15
Carbon disulfide	50.0	53.9	ug/L	108%	71 - 138	6040322	04/01/06 22:15
Carbon Tetrachloride	50.0	38.5	ug/L	77%	71 - 136	6040322	04/01/06 22:15
Chlorobenzene	50.0	54.3	ug/L	109%	80 - 120	6040322	04/01/06 22:15
Chlorodibromomethane	50.0	54.4	ug/L	109%	68 - 126	6040322	
Chloroethane	50.0	53.2	ug/L	105%	55 - 149	6040322	04/01/06 22:15
Chloroform	50.0	53.6	ug/L ug/L	107%	77 - 126	6040322	04/01/06 22:15
Chloromethane	50.0	66.7	սը/Լ	133%	39 - 151	6040322	04/01/06 22:15
4-Chlorotoluene	50.0	56.0	սց/Ը	133%	76 - 128	6040322	04/01/06 22:15
2-Chlorotoluene	50.0	55.4	սց/Լ	112%	73 - 128 73 - 130	6040322	
1,2-Dibromo-3-chloropropane	50.0	49.6					04/01/06 22:15
1,2-Dibromoethane (EDB)	50.0	56.3	ug/L	99%	56 - 130 75 - 128	6040322	04/01/06 22:15
Dibromoniethane	50.0	58.2	ug/L	113%	75 - 128 76 - 129	6040322 6040322	04/01/06 22:15
I,4-Dichlorobenzene	50.0	50.1	ug/L.	116%	76 - 129 78 - 122	6040322 6040322	04/01/06 22:15
1,3-Dichlorobenzene	50.0	53.8	ug/L	100%	78 - 122	6040322	04/01/06 22:15
1,2-Dichlorobenzene	50.0	55.2	ug/L	108%	80 - 124	6040322	04/01/06 22:15
Dichlorodifluoromethane	50.0		ug/L	110%	82 - 123	6040322	04/01/06 22:15
1,2-Dichloroethane	50.0	31.8	ug/L	64%	28 - 161	6040322	04/01/06 22:15
I,I-Dichloroethane	50.0	53.8 55.6	ug/L	108% 111%	74 - 131	6040322 6040322	04/01/06 22:15

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Target Analyte Known Val. Analyzed Val Q Units % Rec. Range Batch	Analyzed Date/Time
Volatile Organic Compounds by EPA Method 8260B	
6040322-BS1	
cis-1,2-Dichloroethene 50.0 56.5 ug/L 113% 72 - 128 6040322	04/01/06 22:15
l, l-Dichloroethene 50.0 56.3 ug/L 113% 68 - 136 6040322	04/01/06 22:15
trans-1,2-Dichloroethene 50.0 55.9 ug/L 112% 73 - 131 6040322	04/01/06 22:15
2,2-Dichloropropane 50.0 50.7 ug/L 101% 43 - 147 6040322	04/01/06 22:15
1,3-Dichloropropane 50.0 55.5 ug/L 111% 80-121 6040322	04/01/06 22:15
1,2-Dichloropropane 50.0 54.3 ug/L 109% 76 - 128 6040322	04/01/06 22:15
Irans-1,3-Dichloropropene 50.0 55.2 ug/L 110% 57 - 127 6040322	04/01/06 22:15
cis-1,3-Dichloropropene 50.0 56.4 ug/L 113% 61 - 134 6040322	04/01/06 22:15
I,1-Dichloropropene 50.0 59.4 ug/L 119% 75 - 129 6040322	04/01/06 22:15
Ethylbenzene 50.0 53.8 ug/L 108% 79 - 125 6040322	04/01/06 22:15
Hexachlorobutadiene 50.0 48.9 ug/L 98% 64 - 133 6040322	04/01/06 22:15
2-Hexanone 250 303 ug/L 121% 67 - 133 6040322	04/01/06 22:15
Isopropylbenzene 50.0 50.2 ug/L 100% 75 - 132 6040322	04/01/06 22:15
Diisopropyl Ether 50.0 56.6 ug/L 113% 73 - 135 6040322	04/01/06 22:15
Methylene Chloride 50.0 58.0 ug/L 116% 74 - 137 6040322	04/01/06 22:15
4-Methyl-2-pentanone 250 299 ug/L 120% 73 - 133 6040322	04/01/06 22:15
Styrene 50.0 58.0 ug/L 116% 74 - 133 6040322	04/01/06 22:15
1,1,1,2-Tetrachloroethane 50.0 53.6 ug/L 107% 76-130 6040322	04/01/06 22:15
1,1,2,2-Tetrachloroethane 50.0 53.5 ug/L 107% 68-128 6040322	04/01/06 22:15
Tetrachloroethene 50.0 52.1 ug/L 104% 74 - 125 6040322	04/01/06 22:15
Toluene 50.0 54.4 ug/L 109% 78 - 122 6040322	04/01/06 22:15
1,2,4-Trichlorobenzene 50.0 56.1 ug/L 112% 65-135 6040322	04/01/06 22:15
1,2,3-Trichlorobenzene 50.0 54.5 ug/L 109% 67 - 139 6040322	04/01/06 22:15
1,1,2-Trichloroethane 50.0 53.9 ug/L 108% 84-120 6040322	04/01/06 22:15
1,1,1-Trichloroethane 50.0 53.6 ug/L 107% 74-134 6040322	04/01/06 22:15
Trichloroethene 50.0 56.5 ug/L 113% 73 - 136 6040322	04/01/06 22:15
Trichlorofluoromethane 50.0 47.8 ug/L 96% 60 - 138 6040322	04/01/06 22:15
1.2.3-Trichloropropane 50.0 52.7 ug/L 105% 66 - 131 6040322	04/01/06 22:15
1,3,5-Trimethylbenzene 50.0 54.0 ug/L 108% 77 - 128 6040322	04/01/06 22:15
Vinyl chloride 50.0 46.2 ug/L 92% 56 - 137 6040322	04/01/06 22:15
Xylenes, total 150 168 ug/L 112% 79 - 130 6040322	04/01/06 22:15
1,2,4-Trimethylbenzene 50.0 57.8 ug/L 116% 77 - 128 6040322	04/01/06 22:15
Naphthalene 50.0 54.6 ug/L 109% 66 - 142 6040322	04/01/06 22:15
p-Isopropyltoluene 50.0 48.6 ug/L 97% 76 - 130 6040322	04/01/06 22:15
n-Propylbenzene 50.0 54.8 ug/L 110% 75 - 129 6040322	04/01/06 22:15
Surrogate: 1,2-Dichloroethane-d4 50.0 51.0 102% 70 - 130 6040322	04/01/06 22:15
Surrogate: Dibromofluoromethane 50.0 53.3 107% 79 - 122 6040322	04/01/06 22:15
Surrogate: Toluene-d8 50.0 53.2 106% 78 - 121 6040322	04/01/06 22:15
Surrogate: 4-Bromofluorobenzene 50.0 52.6 105% 78 - 126 6040322	04/01/06 22:15

Purgeable Petroleum Hydrocarbons 6036034-BS1

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

PROJECT QUALITY CONTROL DATA LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Purgeable Petroleum Hydrocarbon	S							
Gasoline Range Organics	3050	3410		ug/L	112%	67 - 130	6036034	04/01/06 02:02
Surrogate: 1,2-Dichloroethane-d4	50.0	50.8			102%	70 - 130	6036034	04/01/06 02:02
Surrogate: Dibromofluoromethane	50,0	51.0			102%	70 - 130	6036034	04/01/06 02:02
Surrogate: Toluene-d8	50.0	47.2			94%	70 - 130	6036034	04/01/06 02:02
Surrogate: 4-Bromofluorobenzene	50.0	48.2			96%	70 - 130	6036034	04/01/06 02:02
Extractable Petroleum Hydrocarbo	ons with Silica Gel Trea	tment						
6036198-BS1								
Diesel	1000	823		ug/L	82%	49 - 118	6036198	04/04/06 10:50
Surrogate: o-Terphenyl	20.0	24.8			124%	55 - 150	6036198	04/04/06 10:50

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:	NPC3771
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/30/06 07:55

PROJECT QUALITY CONTROL DATA Matrix Spike

Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by E	PA Method 826	0 B						•••••••••••		
6036034-MS1										
Tert-Amyl Methyl Ether	ND	61.2		ug/L	50.0	122%	45 - 155	6036034	NPC3953-03	04/01/06 12:38
1,2-Dibromoethane (EDB)	ND	52.6		ug/L	50.0	105%	71 - 138	6036034	NPC3953-03	04/01/06 12:38
I,2-Dichloroethane	ND	57.5		ug/L	50.0	115%	70 - 140	6036034	NPC3953-03	04/01/06 12:38
Ethyl tert-Butyl Ether	ND	55.5		ug/L	50.0	111%	57 - 148	6036034	NPC3953-03	04/01/06 12:38
Diisopropyl Ether	ND	51.6		ug/L	50, 0	103%	67 - 143	6036034	NPC3953-03	04/01/06 12:38
Methyl tert-Butyl Ether	ND	56.1		ug/L	50.0	112%	55 - 152	6036034	NPC3953-03	04/01/06 12:38
Tertiary Butyl Alcohol	ND	700		ug/L	500	140%	19 - 183	6036034	NPC3953-03	04/01/06 12:38
Surrogate: 1,2-Dichloroethane-d4		51.3		ug/L	50.0	103%	70 - 130	6036034	NPC3953-03	04/01/06 12:38
Surrogate: Dibromofluoromethane		50. 9		ug/L	50.0	102%	79 - 122	6036034	NPC3953-03	04/01/06 12:38
Surrogate: Toluene-d8		47.3		ug/L	50.0	95%	78 - 121	6036034	NPC3953-03	04/01/06 12:38
Surrogate: 4-Bromofluorobenzene		49.3		ug/L	50.0	99%	78 - 126	6036034	NPC3953-03	04/01/06 12:38
6036040-MS1										
Acetone	ND	214		ug/L	250	86%	32 - 152	6036040	NPC3675-28	03/31/06 22:50
Benzene	1.00E9	1440	MHA	ug/L	50.0	20000000000%	71 - 137	6036040	NPC3675-28	03/31/06 22:50
Bromobenzene	ND	53.8		ug/L	50.0	108%	69 - 133	6036040	NPC3675-28	03/31/06 22:50
Bromochloromethane	ND	60.6		ug/L	50.0	121%	69 - 139	6036040	NPC3675-28	03/31/06 22:50
Bromodichloromethane	ND	69.4		ug/L	50.0	139%	70 - 143	6036040	NPC3675-28	03/31/06 22:50
Bromoform	ND	47.8		ug/L	50.0	96%	35 - 142	6036040	NPC3675-28	03/31/06 22:50
Bromomethane	ND	27.6		ug/L	50.0	55%	28 - 179	6036040	NPC3675-28	03/31/06 22:50
2-Butanone	ND	272		ug/L	250	109%	59 - 139	6036040	NPC3675-28	03/31/06 22:50
sec-Butylbenzene	ND	57.0		ug/L	50.0	114%	66 - 144	6036040	NPC3675-28	03/31/06 22:50
n-Butylbenzene	7.06	59.2		ug/L	50.0	104%	57 - 148	6036040	NPC3675-28	03/31/06 22:50
tert-Butylbenzene	ND	56.7		ug/L	50.0	113%	67 - 140	6036040	NPC3675-28	03/31/06 22:50
Carbon disulfide	ND	37.6		ug/L	50.0	75%	53 - 154	6036040	NPC3675-28	03/31/06 22:50
Carbon Tetrachloride	ND	51.2		ug/L	50.0	102%	63 - 146	6036040	NPC3675-28	03/31/06 22:50
Chlorobenzene	ND	55.5		ug/1,	50. 0	111%	76 - 129	6036040	NPC3675-28	03/31/06 22:50
Chlorodibromomethane	ND	50.7		ug/L	50.0	101%	64 - 127	6036040	NPC3675-28	03/31/06 22:50
Chloroethane	ND	34.2		ug/L	50.0	68%	46 - 170	6036040	NPC3675-28	03/31/06 22:50
Chloroform	ND	49.2		ug/L	50.0	98%	74 - 135	6036040	NPC3675-28	03/31/06 22:50
Chloromethane	ND	21.9		ug/L	50.0	44%	24 - 163	6036040	NPC3675-28	03/31/06 22:50
4-Chlorotoluene	ND	52.3		ug/L	50.0	105%	71 - 138	6036040	NPC3675-28	03/31/06 22:50
2-Chlorotoluene	ND	57.1		ug/L	50.0	14%	69 - 139	6036040	NPC3675-28	03/31/06 22:50
l,2-Dibromo-3-chloropropane	ND	60.3		ug/L	50.0	121%	48 - 137	6036040	NPC3675-28	03/31/06 22:50
1,2-Dibromoethane (EDB)	ND	60.4		ug/L	50.0	121%	71 - 138	6036040	NPC3675-28	03/31/06 22:50
Dibromomethane	ND	56.1		ug/L	50.0	112%	71 - 139	6036040	NPC3675-28	03/31/06 22:50
1,4-Dichlorobenzene	ND	56.5		ug/L	50.0	113%	72 - 130	6036040	NPC3675-28	03/31/06 22:50
1,3-Dichlorobenzene	ND	61.1		ug/L	50.0	122%	74 - 133	6036040	NPC3675-28	03/31/06 22:50

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:	NPC3771
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/30/06 07:55

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

Analyte	Orig, Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8260)B								
6036040-MS1										
1,2-Dichlorobenzene	ND	57.9		ug/L	50.0	116%	76 - 133	6036040	NPC3675-28	03/31/06 22:50
Dichlorodifluoromethane	ND	14.3		ug/L	50.0	29%	14 - 173	6036040	NPC3675-28	03/31/06 22:50
1,2-Dichloroethane	ND	89.9	M7	ug/L	50.0	180%	70 - 140	6036040	NPC3675-28	03/31/06 22:50
1,1-Dichloroethane	סא	46.3		ug/L	50 .0	93%	66 - 144	6036040	NPC3675-28	03/31/06 22:50
cis-1,2-Dichloroethene	ND	45.2		ug/L	50.0	90%	67 - 139	6036040	NPC3675-28	03/31/06 22:50
1, l-Dichloroethene	ND	51.2		ug/L	50.0	102%	65 - 146	603604 0	NPC3675-28	03/31/06 22:50
trans-1,2-Dichloroethene	ND	46.4		ug/L	50.0	93%	64 • 146	6036040	NPC3675-28	03/31/06 22:50
2,2-Dichloropropane	ND	46.3		ug/L	50.0	93%	19 - 166	6036040	NPC3675-28	03/31/06 22:50
1,3-Dichloropropane	ND	52.4		ug/L	50.0	105%	75 - 130	6036040	NPC3675-28	03/31/06 22:50
l,2-Dichloropropane	ND	48.0		ug/L	50.0	96%	73 - 136	6036040	NPC3675-28	03/31/06 22:50
trans-1,3-Dichloropropene	ND	35.2		ug/L	50.0	70%	49 - 130	6036040	NPC3675-28	03/31/06 22:50
cis-1,3-Dichloropropene	ND	38.8		ug/L	50.0	78%	52 - 140	6036040	NPC3675-28	03/31/06 22:50
1,1-Dichloropropene	ND	58.0		ug/L	50.0	116%	72 - 139	6036040	NPC3675-28	03/31/06 22:50
Ethylbenzene	1.00E9	432	MHA	ug/L	50.0	2000000000%	72 - 139	6036040	NPC3675-28	03/31/06 22:50
Hexachlorobutadiene	ND	61.7		ug/L	50.0	123%	50 - 143	6036040	NPC3675-28	03/31/06 22:50
2-Hexanone	ND	250		ug/L	250	100%	62 - 136	6036040	NPC3675-28	03/31/06 22:50
Isopropylbenzene	30.0	79.3		ug/L	50.0	99%	67 - 147	6036040	NPC3675-28	03/31/06 22:50
Diisopropyl Ether	ND	39.8		ug/L	50.0	80%	67 - 143	6036040	NPC3675-28	03/31/06 22:50
Methylenc Chloride	ND	49.0		ug/L	50.0	98%	68 - 146	6036040	NPC3675-28	03/31/06 22:50
4-Methyl-2-pentanone	ND	254		ug/L	250	102%	65 - 142	6036040	NPC3675-28	03/31/06 22:50
Styrene	ND	47.0		ug/L	50.0	94%	57 - 149	6036040	NPC3675-28	03/31/06 22:50
1,1,1,2-Tetrachloroethane	ND	55.1		ug/L	50.0	110%	70 - 139	6036040	NPC3675-28	03/31/06 22:50
1,1,2,2-Tetrachloroethane	ND	53.8		ug/L	50.0	108%	64 - 137	6036040	NPC3675-28	03/31/06 22:50
Tetrachloroethene	ND	62.7		ug/L	50.0	125%	70 - 135	6036040	NPC3675-28	03/31/06 22:50
Toluene	18.9	73.6		ug/L	50.0	109%	73 - 133	6036040	NPC3675-28	03/31/06 22:50
1,2,4-Trichlorobenzene	ND	57.9		ug/L	50.0	116%	55 - 141	6036040	NPC3675-28	03/31/06 22:50
1,2,3-Trichlorobenzene	ND	60.2		ug/L	50.0	120%	56 - 145	6036040	NPC3675-28	03/31/06 22:50
1,1,2-Trichloroethane	ND	51.3		ug/L	50.0	103%	77 - 130	603 60 40	NPC3675-28	03/31/06 22:50
l,l,l-Trichloroethane	ND	55.4		ug/L	50.0	111%	70 - 144	6036040	NPC3675-28	03/31/06 22:50
Trichloroethene	ND	63.2		ug/L	50.0	126%	72 - 141	6036040	NPC3675-28	03/31/06 22:50
Trichlorofluoromethane	ND	40.9		ug/L	50.0	82%	54 - 152	6036040	NPC3675-28	03/31/06 22:50
1,2,3-Trichloropropane	ND	44.3		ug/L	50.0	89%	57 - 142	6036040	NPC3675-28	03/31/06 22:50
1,3,5-Trimethylbenzene	ND	53.7		ug/L	50.0	107%	68 - 141	6036040	NPC3675-28	03/31/06 22:50
Vinyl chloride	ND	34.2		ug/L	50.0	68%	49 - 149	6036040	NPC3675-28	03/31/06 22:50
Xylenes, total	15.9	177		ug/L	150	107%	70 - 143	6036040	NPC3675-28	03/31/06 22:50
1,2,4-Trimethylbenzene	1.02	57.0		ug/L	50.0	112%	67 - 143	6036040	NPC3675-28	03/31/06 22:50
Naphthalene	16.5	70.6		ug/L	50.0	108%	46 - 157	6036040	NPC3675-28	03/31/06 22:50

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:	NPC3771
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/30/06 07:55

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by E	PA Method 826	0 B						· · · · · <i>,</i>		
6036040-MS1										
p-Isopropyltoluene	ND	51.9		ug/L	50.0	104%	67 - 142	6036040	NPC3675-28	03/31/06 22:50
n-Propylbenzene	49.7	102		ug/L	50.0	105%	69 - 141	6036040	NPC3675-28	03/31/06 22:50
Surrogate: 1,2-Dichloroethane-d4		40.0		ug/L	50,0	80%	70 - 130	6036040	NPC3675-28	03/31/06 22:50
Surrogate: Dibromofluoromethane		49.1		ug/L	50.0	98%	79 - 122	6036040	NPC3675-28	03/31/06 22:50
Surrogate: Toluene-d8		47,4		ug/L	50.0	95%	78 - 121	6036040	NPC3675-28	03/31/06 22:50
Surrogate: 4-Bromofluorobenzene		50.8		ug/L	50.0	102%	78 - 126	6036040	NPC3675-28	03/31/06 22:50
Purgeable Petroleum Hydrocarbor	ns									
6036034-MS1										
Gasoline Range Organics	ND	3540		ug/L	3050	116%	60 - 140	6036034	NPC3953-03	04/01/06 12:38
Surrogate: 1,2-Dichloroethane-d4		51.3		ug/L	50.0	103%	0 - 200	6036034	NPC3953-03	04/01/06 12:38
Surrogate: Dibromofluoromethane		50.9		ug/L	50.0	102%	0 - 200	6036034	NPC3953-03	04/01/06 12:38
Surrogate: Toluene-d8		47.3		ug/L	50.0	95%	0 - 200	6036034	NPC3953-03	04/01/06 12:38
Surrogate: 4-Bromofluorobenzene		49.3		ug/L	50.0	99%	0 - 200	6036034	NPC3953-03	04/01/06 12:38

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

PROJECT QUALITY CONTROL DATA Matrix Spike Dup

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by		260B					• • • • • •					
6036034-MSD1												
Tert-Amyl Methyl Ether	ND	61.3		ug/L	50.0	123%	45 - 155	0.2	24	6036034	NPC3953-03	04/01/06 13:06
1,2-Dibromoethane (EDB)	ND	53.2		- սք/Լ	50.0	106%	71 - 138	1	27	6036034	NPC3953-03	04/01/06 13:06
1,2-Dichloroethane	ND	57.4		ug/L	50.0	115%	70 - 140	0.2	21	6036034	NPC3953-03	04/01/06 13:06
Ethyl tert-Butyl Ether	ND	55.9		ug/L	50.0	112%	57 - 148	0.7	22	6036034	NPC3953-03	04/01/06 13:06
Diisopropyl Ether	ND	51.5		ug/L	50.0	103%	67 - 143	0.2	22	6036034	NPC3953-03	04/01/06 13:06
Methyl tert-Butyl Ether	ND	56.3		ug/L	50.0	113%	55 - 152	0.4	27	6036034	NPC3953-03	04/01/06 13:06
Tertiary Butyl Alcohol	ND	724		ug/L	500	145%	19 - 183	3	39	6036034	NPC3953-03	04/01/06 13:06
Surrogate: 1,2-Dichloroethane-d4		51.1		ug/L	50.0	102%	70 - 130			6036034	NPC3953-03	04/01/06 13:06
Surrogate: Dibromofluoromethane		50.6		ug/L	50.0	101%	79 - 122			6036034	NPC3953-03	04/01/06 13:06
Surrogate: Toluene-d8		47.2		~ ug/L	50.0	94%	78 - 121			6036034	NPC3953-03	04/01/06 13:06
Surrogate: 4-Bromofluorobenzene		48.9		ug/L	50.0	98%	78 - 126			6036034	NPC3953-03	04/01/06 13:06
6036040-MSD1		12.0		/7	250	(1)		1.76		(03(040		02/21/07 22:15
Acetone	ND	13.9	M8, R2	ug/L	250	6%	32 - 152	176	30	6036040	NPC3675-28	03/31/06 23:15
Benzene	1.00E9	1470	MHA	ug/L	\$0.0		71 - 137	2	23	6036040	NPC3675-28	03/31/06 23:15
Bromobenzene	ND	54.1		ug/L	50.0	108%	69 - 133	0.6	21	6036040	NPC3675-28	03/31/06 23:15
Bromochloromethane	ND	61.0		ug/L	50.0	122%	69 - 139	0.7	24	6036040	NPC3675-28	03/31/06 23:15
Bromodichloromethane	ND	69.1		ug/L	50.0	138%	70 - 143	0.4	21	6036040	NPC3675-28	03/31/06 23:15
Bromoform	ND	49.2		ug/L	\$0.0	98%	35 - 142	3	25	6036040	NPC3675-28	03/31/06 23:15
Bromomelhane	ND	31.9		ug/L	50.0	64%	28 - 179	14	37	6036040	NPC3675-28	03/31/06 23:15
2-Butanone	ND	283		ug/L	250	113%	59 - 139	4	28	6036040	NPC3675-28	03/31/06 23:15
sec-Butylbenzene	ND	56.2		ug/L	50.0	112%	66 - 144	I	24	6036040	NPC3675-28	03/31/06 23:15
n-Butylbenzene	7.06	58.4		ug/L	50.0	103%	57 - 148	L	24	6036040	NPC3675-28	03/31/06 23:15
tert-Butylbenzene	ND	56.2		ug/L	50.0	112%	67 - 140	0.9	27	6036040	NPC3675-28	03/31/06 23:15
Carbon disulfide	ND	38.7		ug/L	50.0	77%	53 - 154	3	25	6036040	NPC3675-28	03/31/06 23:15
Carbon Tetrachloride	ND	52.0		ug/L	50.0	104%	63 - 146	2	25	6036040	NPC3675-28	03/31/06 23:15
Chlorobenzene	ND	55.0		ug/L	50.0	110%	76 - 129	0.9	20	6036040	NPC3675-28	03/31/06 23:15
Chlorodibromomethane	ND	51.7		ug/L	50.0	103%	64 - 127	2	21	6036040	NPC3675-28	03/31/06 23:15
Chloroethane	ND	36.6		ug/L	\$0.0	73%	46 - 170	7	26	6036040	NPC3675-28	03/31/06 23:15
Chloroform	ND	49.2		ug/L	50.0	98%	74 - 135	0	21	6036040	NPC3675-28	03/31/06 23:15
Chloromethane	ND	22.7		ug/L	50.0	45%	24 - 163	4	40	6036040	NPC3675-28	03/31/06 23:15
4-Chlorotoluene	ND	51.7		ug/L	50.0	103%	71 - 138	1	22	6036040	NPC3675-28	03/31/06 23:15
2-Chlorotoluene	ND	56.6		ug/L	50.0	113%	69 - 139	0.9	23	6036040	NPC3675-28	03/31/06 23:15
1,2-Dibromo-3-chloropropane	ND	63.2		ug/L	50.0	126%	48 - 137	5	31	6036040	NPC3675-28	03/31/06 23:15
1.2-Dibromoethane (EDB)	ND	60.4		ug/L	50.0	121%	71 - 138	0	27	6036040	NPC3675-28	03/31/06 23:15
Dibromomethane	ND	56.7		ug/L	50.0	113%	71 - 139	1	25	6036040	NPC3675-28	03/31/06 23:15
1,4-Dichlorobenzene	ND	55.9		ug/L	50.0	112%	72 - 130	1	21	6036040	NPC3675-28	03/31/06 23:15
1,3-Dichlorobenzene	ND	60.9		ug/L,	50.0	122%	74 - 133	0.3	22	6036040	NPC3675-28	03/31/06 23:15
1,2-Dichlorobenzene	ND	58.5		ug/L	\$0,0	117%	76 - 133	1	21	6036040	NPC3675-28	03/31/06 23:15
Dichlorodifluoromethane	ND	14.1		ug/L	50.0	28%	14 - 173	1	32	6036040	NPC3675-28	03/31/06 23:15
1,2-Dichloroelhane	ND	91.1	M7	ug/L	50.0	182%	70 - 140	1	21	6036040	NPC3675-28	03/31/06 23:15

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8	3260B				•••••						
6036040-MSD1												
1,1-Dichloroethane	סא	46.0		ug/L	50.0	92%	66 - 144	0.7	21	6036040	NPC3675-28	03/31/06 23:1:
cis-1,2-Dichloroethene	ND	45.6		ug/L	50.0	91%	67 - 139	0.9	22	6036040	NPC3675-28	03/31/06 23:1:
1,1-Dichloroethene	ND	52.0		ug/L	50.0	104%	65 - 146	2	23	6036040	NPC3675-28	03/31/06 23:1:
trans-1,2-Dichloroethene	ND	46.6		ug/L	50.0	93%	64 - 146	0.4	22	6036040	NPC3675-28	03/31/06 23:1
2,2-Dichloropropane	ND	46.8		ug/L	50.0	94%	19 - 166	1	29	6036040	NPC3675-28	03/31/06 23:1:
1,3-Dichloropropane	ND	52.9		ug/L	50.0	106%	75 - 130	0.9	20	6036040	NPC3675-28	03/31/06 23:1:
1,2-Dichloropropane	ND	47.9		ug/L	50.0	96%	73 - 136	0.2	21	6036040	NPC3675-28	03/31/06 23:1:
trans-1,3-Dichloropropene	ND	35.3		ug/L	50.0	71%	49 - 130	0.3	23	6036040	NPC3675-28	03/31/06 23:1:
cis-1,3-Dichloropropene	ND	39.8		ug/L	50,0	80%	52 · 140	3	23	6036040	NPC3675-28	03/31/06 23:1:
1,1-Dichloropropene	ND	58.4		ug/L	50.0	117%	72 - 139	0.7	24	6036040	NPC3675-28	03/31/06 23:1:
Ethylbenzene	1.00E9	438	мна	ug/L	50.0	0000000	72 - 139	Т	23	6036040	NPC3675-28	03/31/06 23:1:
Hexachlorobutadiene	ND	62.9		ug/L	50.0	126%	50 - 143	2	29	6036040	NPC3675-28	03/31/06 23:1:
2-Hexanone	סא	262		ug/L	250	105%	62 - 136	5	25	6036040	NPC3675-28	03/31/06 23:1:
lsopropylbenzene	30.0	78.6		ug/L	50.0	97%	67 - 147	0.9	23	6036040	NPC3675-28	03/31/06 23:1
Diisopropyl Ether	ND	40.4		ug/L	50.0	81%	67 - 143	L	22	6036040	NPC3675-28	03/31/06 23:1
Methylene Chloride	סא	49.0		ug/L	50.0	98%	68 - 146	0	22	6036040	NPC3675-28	03/31/06 23:1
4-Methyl-2-pentanone	DN	264		ug/L	250	106%	65 - 142	4	24	6036040	NPC3675-28	03/31/06 23:1
Styrene	ND	47.2		ug/L	50.0	94%	57 - 149	0.4	28	6036040	NPC3675-28	03/31/06 23:1
1,1,1,2-Tetrachloroethane	ND	55.2		սք/Ն	50.0	110%	70 - 139	0.2	20	6036040	NPC3675-28	03/31/06 23:1
1,1,2,2-Tetrachloroethane	ND	55.6		ug/L	50.0	111%	64 - 137	3	25	6036040	NPC3675-28	03/31/06 23:1
Tetrachloroethene	ND	63.1		ug/L	50.0	126%	70 - 135	0.6	21	6036040	NPC3675-28	03/31/06 23:1
Toluene	18.9	74.4		ug/L	50.0	111%	73 - 133	1	25	6036040	NPC3675-28	03/31/06 23:1
1,2,4-Trichlorobenzene	ND	58.8		սց/Լ	50.0	118%	55 - 141	2	26	6036040	NPC3675-28	03/31/06 23:1
1,2,3-Trichlorobenzene	ND	62.0		ug/L	50.0	124%	56 - 145	3	34	6036040	NPC3675-28	03/31/06 23:1
1,1,2-Trichloroethane	ND	51.1		ug/L	50.0	102%	77 - 130	0.4	20	6036040	NPC3675-28	03/31/06 23:1
1,1,1-Trichloroethane	ND	55.4		ug/L	50.0	111%	70 - 144	0	23	6036040	NPC3675-28	03/31/06 23:1
Trichloroethene	ND	62.8		ug/L	50.0	126%	72 - 141	0.6	25	6036040	NPC3675-28	03/31/06 23:1
Trichlorofluoromethane	ND	41.1		ug/L	50.0	82%	54 - 152	0.5	23	6036040	NPC3675-28	03/31/06 23:1
1,2,3-Trichloropropane	ND	45.9		ug/L	50.0	92%	57 - 142	4	24	6036040	NPC3675-28	03/31/06 23:1
1,3,5-Trimethylbenzene	ND	53.4		ug/L	\$0.0	107%	68 - 141	0.6	26	6036040	NPC3675-28	03/31/06 23:1
Vinyl chloride	ND	34.0		ug/L	50.0	68%	49 - 149	0.6	24	6036040	NPC3675-28	03/31/06 23:1
Xylenes, total	15.9	177		ug/L	150	107%	70 - 143	0	27	6036040	NPC3675-28	03/31/06 23:1
1,2,4-Trimethylbenzene	1.02	56.2		ug/L	50.0	110%	67 - 143	1	23	6036040	NPC3675-28	03/31/06 23:1
Naphthalene	16.5	74.9		ug/L	50.0	117%	46 - 157	6	43	6036040	NPC3675-28	03/31/06 23:1
p-Isopropyltoluene	ND	50,2		ug/L	50.0	100%	67 - 142	3	24	6036040	NPC3675-28	03/31/06 23:1
n-Propylbenzene	49.7	102		- <i>5</i> - vg/L	\$0.0	105%	69 - 141	0	25	6036040	NPC3675-28	03/31/06 23:1
Surrogate: 1,2-Dichloroethane-d4		39.7		ug/L	50.0	79%	70 - 130	-		6036040	NPC3675-28	03/31/06 23:1
Surrogate: Dibromofluoromethane		49.4		սց։ Սց/L	50.0	99%	79 - 122			6036040	NPC3675-28	03/31/06 23:1
Surrogate: Toluene-d8		47.8		ug/L	50.0	96%	78 - 121			6036040	NPC3675-28	03/31/06 23:1
Surrogate: 4-Bromofluorobenzene		51,6		ug/L	50.0		78 - 126			6036040	NPC3675-28	03/31/06 23:1

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD Limit	Batch	Sample Duplicated	Analyzed Date/Time
Purgeable Petroleum Hydrocarbon 6036034-MSD1	IS										
Gasoline Range Organics	ND	3560		ug/L	3050	117%	60 - 140	0.6 40	6036034	NPC3953-03	04/01/06 13:06
Surrogate: 1,2-Dichloroethane-d4		51.1		ug/L	50.0	102%	0 - 200		6036034	NPC3953-03	04/01/06 13:06
Surrogate: Dibromofluoromethane		50.6		ug/L	50.0	101%	0 - 200		6036034	NPC3953-03	04/01/06 13:06
Surrogate: Toluene-d8		47.2		ug/L	50.0	94%	0 - 200		6036034	NPC3953-03	04/01/06 13:06
Surrogate: 4-Bromofluorobenzene		48.9		ug/L	50.0	98%	0 - 200		6036034	NPC3953-03	04/01/06 13:06

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

CERTIFICATION SUMMARY

TestAmerica Analytical - Nashville

Method	Matrix	AIHA	Nelac	California	
CA LUFT GC/MS	Water	· · · · · · · · · · · · · · · · · · ·		x	
NA	Water				
SW846 8015B	Water				
SW846 8260B	Water	N/A	х	х	

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

NELAC CERTIFICATION SUMMARY

TestAmerica Analytical - Nashville does not hold NELAC certifications for the following analytes included in this report

<u>Method</u> CA LUFT GC/MS	<u>Matrix</u> Water	<u>Analyte</u> Gasoline Range Organics
SW846 8015B	Water	Diesel
SW846 8260B	Water	Diisopropyl Ether

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC3771Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/30/06 07:55

DATA QUALIFIERS AND DEFINITIONS

- M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
- M8 The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).
- MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
- R2 The RPD exceeded the acceptance limit.

METHOD MODIFICATION NOTES

Tes	st∆m	eric	a						
Nas	analytical tes		NON						
	OLER RECI		RM		BC#		(##)))#? #(#	INT TO BE THE ISSUE IN THE TABLE TO BE THE TABLE	181
		-			DCn			NPC3771	
Cool 1. Indi	er Received/Op	ened On	_3/30/06 er (last 4 d	7:55 igits for Fed	lex only) a	nd Name of	Courties below.	3611	
	Fed-Ex UI		Velocity	DB		Route	Off-stre	et Misc.	
2. Ten (indic	aperature of repres	entative sam #)	ple or temp	erature bla	nk when a	opened:	<u>0-6 d</u>	egrees Celsius	
NA	A00466	A0075()	A01124		100190	$\overline{\Box}$		
3. We	re custody seals on	outside of co	oler?				10128		
		/ many and w			Fra	ΛL		(YES)NON	A
4. Wei	re the seals intact, s				<u></u>				
	e custody papers in							\checkmark	
	that I opened the							· YES NONA	L
	e custody seals on (NB		and Intact		—
	were these signe		correctiv?.					YES NO WA	
7. Wh	at kind of packin		-					YESNO.SNA	
				Bubblewr	-	Peanuts	Vermiculite	e Foam Inser	t
		tic bag	Рарег	Other	•		N	Non e	
	oling process:	lee	-			t contact)	-	Other Non	lê
	II containers arrive							VESNONA	
	e all container lab							OPSNONA	
11. Did	all container labels	and tags agr	ee with cus	tody papers	s?			ESNONA	
	Were VOA vials rea							ESNONA	
	Was there any obse							YESXONA	
	hat I unloaded the							L	-
								el? YESNO NA	,
b. D	id the bottle labels							XESNONA	
	If preservation in-								
	residual chlorine p							YESNO	
<u>I certify t</u>	nat I checked for cl	hlorine and p	<u>H as per S(</u>	OP and answ	wered que	<u>stions 13-14 (</u>	(intial)	JR	-
15. Wer	e custody papers p	roperly filled	out (ink, si	gned, etc)?.	•••••			VES NONA	
16. Did :	you sign the custod	y papers in ti	е арргоргі	iate place?	•••••		*****	ESNONA	
17. Were	correct containers	used for the	analysis re	quested?				ESNONA	
	ufficient amount o	f sample sent	F					ESNONA	
I certify th			-					وميسم	
	at I entered this pr	oject into LI	<u>MS and an</u>	swered gues	stions 15-1	<u>8 (intial)</u>	<u></u>	<u> </u>	
	<u>at I entered this pr</u> at I attached a labe							-54 	

-

.

4

	est America STL: Uther () - "	- e una 1244-	مري د	, <i>.</i>				S	HË	ĒLI	<u> </u>	ĥa	ain	Ü	f C	us	sto	dy	Re	ĊO	ŕd				• • •	
	cation (if necessary):										_		_		_		INC		TNU	IBEI	₹ (ES	S ON	<u>.</u> Y)			
	ine, California	Shell P	roject l	Manage	r to be	invo	pice	1:								F	<u> </u>		-1-3	T		1				3/12/10
	rgan Hill, California	1 Taliconal	ANNACHTER	L SERVICES	<u> </u>	Den	is E	Irou	'n								9	7	0 9		3	4 0	0	<u>י</u> ן י	DATE:	
-	shville, Tennesee				·	Den										÷,	SAP	or CR	MT N	IMB	ER (TS/C	RMT)			
1) รณ			NICAL SER	VICES												41		. ar. 15.	<u> </u>	Т	<u> </u>	<u>, e se se</u>	<u> </u>	<u>···</u>	PAGE:	
D Other (location)	C CRMT	HOUSTON			FOR E	NV. RE	MEDIA	TION -	- NO EI	ПМ - S	SEND	PAPER	INVO	ICE	1				Ì						
		LOG CODE:				SITE	DDRE	S: Stre	et and	City						s	Na 10		1	DBAL IC						
SAMPLING CO	MPANY:	1				500					and	l I					CA				<u>010</u>	126	55			CONTRACTOR
	ech Services	BTSS				EOF DE	IVERA	LE TO (lespons	uble Parts	y or Desi	ignee):			HONEN	ю.:			E-M	34L:						1 m217-MM
ADDRESS:	gers Avenue, San Jose, CA 95112																		ен	ماا مر		F	ambr	ia-en	<u>v.com</u>	BIS
	DNTACT (Hardcopy or PDF Report to):					Anni	Кгет	ni, Ca	mbri	ia, En	nery\	ville		E	510-4	20-3	335_		<u>[Si</u>]				1	ABU	SEONLY	
	Ninokata					SAMP	LERINAL	AE(S) (Pr	mi):		,														에 접 주요 1월 11일	
TELEPHONE		E-MAL:					2	١.	1	1	11												- 1: .	 		
408-573	-0555 408-573-7771	mninokat				LL4	12	hac	<u>//</u>	1	<u>и</u>								_	_						
TURNAR	OUND TIME (STANDARD IS 10 CALENDAR DAY	S):		SULTS NEE												RE	QUE	STE	D AN/	LYS	SIS					
STD.	5 DAY 3 DAY 2 DAY	24 HOURS	0	N WEEKEN	ID											T				-	1					
├ ───										[ł													
1						4	Ê		1							Ì	ļ				ł		1			FIELD NOTES:
GC/MS N	ATBE CONFIRMATION: HIGHEST HI	GHEST per B	ORING	ALI		ត	(8016m)		님																	Container/Preservative
	L INSTRUCTIONS OR NOTES: CHE	CK BOX IF E	DD IS NO	NEEDED		Purgeable (8260B)	8		ETBE			1						ł		1						or PID Readings
SPECIA	E INSTRUCTIONS OR HOTEO					l B	្តែ		- 14												1	Ì				or Laboratory Notes
	NPC	3771				T a	act		TAN TAN		ļ							s	į	ŝ	1					
1						88	Extractable		<mark>В</mark> В	_					8		8	19		1		ļ				
	04/09/0	6 17:00				2		B B	, Dil	B B	â	8	88	88	828	E E	8	8								
					-n 🔽	Gas,	TPH - Diesel,	BTEX (8260B)	6 Oxygenates (8260B) (MTBE, TBA, DIPE, TAMI	MTBE (8280B)	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	1,2 DCA (8280B)	EDB (8260B)	Ethanol (8280B)	Methanol (8016M)		Halogenated VOC				ļ	TEN	IPERATURE ON RECEIPT C*
	RE			REQUEST	NO. OF		12	1	NX B	Han I	A (8	_ سُ	쀻	E E	۱ă.		1	Ę	- I.	alog						ALCONTONE ON NEOCHT O
USE	Field Sample Identification	DATE	TIME	MATRIX	CONT.	TH	4		9 E	Ē	Ē		₽	Б	+-		d	Ž			_	_+	_ +			
ONLY		-		24	0		- · ·	V							V	X	11			V.	٨ık	201	オ	774		
	DWNW-13	\$12.20	10K	W/	0	14	X	ᡰӁ	X	┢╌┥	 	┣	┼	┝┈	┢┻	<u>م</u>	┝╶┤	- +		4	~4		-1	- 4		
					1		ł	1			1			1	1	1										
			├ ────		╂───		+	+-	<u> </u>	+-	†	1	†	1	1						[
				1	1		i							<u> </u>	∔	<u> </u>		-+	-+	+	-+	_ +		-+		
		_				1-	Τ	T	Γ	T	1	i i		1		1			j.			1				
			L		L	_	┣	+	┨───	┼—-		–	+	┨─	+	┼─						_				
			Į						1		1		1													
				<u> </u>	+	+	+ -		+-	+ -				1 -	1	Τ			Ì		1					
~ 3												- 		+-	╄-		╅━─		- +	-+					-+-	
					T				1		1															
			ļ		- 	+		+	┼━╌	+				1-	-	+	+			_						
			1		1		1		1	1	1														┝{	
		_ <u> </u>		+		-1-	-†	1-	1-	1	1															
		1	1						┨				-		+	+	+		┞╌╀						┝┈┯╋╼	
										1			ļ					1								
	<u></u>		1	Reminde	6 Binnatu	 	<u> </u>		<u> </u>										Dale:			Τ			Tirmê:	2.2
Relinqui	shed by (Signature)					~		Gan GTT	L	E.	اير	die)						2/	Ŋ	ĮUĻ	•		11	10
1 7	erall				byr (Signah		Ļ	Ynn	40		- 11	0 (14		·	_			-	Date:	à	1	7	_		Time:	1.37
Relinqui	shed (orgnature)	non .	/		Se (Sili mit	,	T	2-	R1	ch-	-	ΘL	70	1					1	0	128	Ţ [d	16			/k 27
	The mark	~80M	and the second s		by: (Signah					-									Daba;	/		/			Тіте:	-7.
Relinqui	ished by: (Signature)			Heceived	oy. (Signat				Ľ	1	, 								13	5.3	0-0	26			1	7-55
	PATTUR OLI	4.		1			Ľ	w		<u> </u>				. 10/10	XEC 84		C.L.M.	_	<u> </u>				1.40			
	and the second company has been			بالمتجيم المراجع المراجع		/							r.di			10 10				-						

. .

May 01, 2006

Client:	Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608	Work Order: Project Name: Project Nbr:	NPC2456 500 40th Street, Oakland, CA SAP 129452
Attn:	Anni Kreml	P/O Nbr: Date Received:	97093400 03/18/06
	SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
MW	-2	NPC2456-01	03/16/06 12:00
MW	-3	NPC2456-02	03/16/06 12:10
٥M١	W-6	NPC2456-03	03/16/06 12:55
MW	-8	NPC2456-04	03/16/06 12:43
OM	W-9	NPC2456-05	03/16/06 13:12

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Additional Laboratory Comments: Revised Report 04-26-06jh The sample description was corrected Sample NPC2456-04. Revised Report 05-01-06jh The target list was revised to include BTEX, oxygenates, and halogenated VOCs only as originally requested on the COC. California Certification Number: 01168CA

The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

Report Approved By:

fun

Jim Hatfield Project Management

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:	NPC2456
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/18/06 08:00

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC2456-01 (MW-	-2 - Water) Sample	ed: 03/16/0	6 12:00					
Volatile Organic Compounds by El	PA Method 8260B							
Tert-Amyl Methyl Ether	ND		ug/L	0.500	1	03/21/06 06:53	SW846 8260B	6034365
1,2-Dibromoethane (EDB)	ND		ug/L	0.500	L	03/21/06 06:53	SW846 8260B	6034365
Benzene	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
1,2-Dichloroethane	ND		ug/L	0.500	1	03/21/06 06:53	SW846 8260B	6034365
Bromobenzene	ND		ug/L	0.500	L	03/23/06 23:16	SW846 8260B	6034629
Bromochloromethane	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Bromodichloromethane	ND		ug/L	0.500	L	03/23/06 23:16	SW846 8260B	6034629
Ethyl tort-Butyl Ether	ND		ug/L	0.500	1	03/21/06 06:53	SW846 8260B	6034365
Bromoform	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Bromomethane	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Tertiary Butyl Alcohol	ND		ug/L	10.0	1	03/21/06 06:53	SW846 8260B	6034365
Carbon disulfide	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Carbon Tetrachloride	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Chlorobenzene	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Chlorodibromomethane	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Chloroethane	ND		ug/L	0.500	I	03/23/06 23:16	SW846 8260B	6034629
Chloroform	ND		ug/L	0.500	I	03/23/06 23:16	SW846 8260B	6034629
Chloromethane	ND		ug/L	1.00	1	03/23/06 23:16	SW846 8260B	6034629
4-Chlorotoluene	ND		ug/L	0.500	l	03/23/06 23:16	SW846 8260B	6034629
2-Chlorotoluene	ND		ug/L	0.500	I	03/23/06 23:16	SW846 8260B	6034629
1,2-Dibromo-3-chloropropane	ND		ug/L	1.00	l	03/23/06 23:16	SW846 8260B	6034629
I,2-Dibromocthanc (EDB)	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Dibromomethane	ND		ug/L	0.500	i	03/23/06 23:16	SW846 8260B	6034629
I,4-Dichlorobenzene	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
1,3-Dichlorobenzene	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
1,2-Dichlorobenzene	ND		ug/L	0.500	I	03/23/06 23:16	SW846 8260B	6034629
Dichlorodifluoromethane	ND		ug/L	0.500	I	03/23/06 23:16	SW846 8260B	6034629
1,2-Dichloroethane	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
1,1-Dichloroethane	ND		ug/L	0.500	ł	03/23/06 23:16	SW846 8260B	6034629
cis-1,2-Dichloroethene	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
1,1-Dichloroethene	ND		ug/L	0.500	ł	03/23/06 23:16	SW846 8260B	6034629
trans-1,2-Dichloroethene	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
2,2-Dichloropropane	ND		ug/L	0.500	I	03/23/06 23:16	SW846 8260B	6034629
1,3-Dichloropropane	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
1,2-Dichloropropane	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
trans-1,3-Dichloropropene	ND		ug/L	0.500	I	03/23/06 23:16	SW846 8260B	6034629
cis-1,3-Dichloropropene	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
1,1-Dichloropropene	ND		ug/L	0.500	I	03/23/06 23:16	SW846 8260B	6034629
Ethylbenzene	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Hexachlorobutadiene	ND		ug/L	1.00	I	03/23/06 23:16	SW846 8260B	6034629
Diisopropyl Ether	ND		ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Methyl tert-Butyl Ether	ND		ug/L	0.500	L	03/23/06 23:16	SW846 8260B	6034629
Methylene Chloride	ND		ug/L	5.00	ł	03/23/06 23:16	SW846 8260B	6034629

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

Analyte	Result Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC2456-01 (MW-2 - V	Water) - cont. Sampled:	03/16/06 12:00					
Volatile Organic Compounds by EPA M	1ethod 8260B - cont.						
Styrene	ND	ug/L	1.00	1	03/23/06 23:16	SW846 8260B	6034629
1,1,1,2-Tetrachloroethane	ND	ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
1,1,2,2-Tetrachloroethane	ND	ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Tetrachloroethene	1.24	ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Toluene	ND	ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
1,2,4-Trichlorobenzene	ND	ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
1,2,3-Trichlorobenzene	ND	ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
1,1,2-Trichloroethane	ND	ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
1,1,1-Trichlorocthanc	ND	ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Trichloroethene	ND	ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Trichlorofluoromethane	ND	ug/L	0.500	i	03/23/06 23:16	SW846 8260B	6034629
1,2,3-Trichloropropane	ND	ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Vinyl chloride	ND	ug/L	0.500	L	03/23/06 23:16	SW846 8260B	6034629
Xylenes, total	ND	ug/L	0.500	1	03/23/06 23:16	SW846 8260B	6034629
Surr: 1,2-Dichloroethane-d4 (70-130%)	110 %	-			03/23/06 23:16	SW846 8260B	6034629
Surr: Dibromofluoromethane (79-122%)	106 %				03/23/06 23:16	SW846 8260B	6034629
Surr: Toluene-d8 (78-121%)	103 %				03/23/06 23:16	SW846 8260B	6034629
Surr: 4-Bromofluorobenzene (78-126%)	108 %				03/23/06 23:16	SW846 8260B	6034629
Purgeable Petroleum Hydrocarbons							
Gasoline Range Organics	ND	ug/L	50.0	I.	03/21/06 06:53	CA LUFT GC/MS	6034365
Surr: 1,2-Dichloroethane-d4 (0-200%)	118 %				03/21/06 06:53	CA LUFT GC/M	6034365
Surr: Dibromofluoromethane (0-200%)	120 %				03/21/06 06:53	CA LUFT GC/MS	6034365
Surr: Toluene-d8 (0-200%)	101 %				03/21/06 06:53		
Surr: 4-Bromofluorobenzene (0-200%)	110 %				03/21/06 06:53	CA LUFT GC/MS	6034365
Extractable Petroleum Hydrocarbons w	ith Silica Gel Treatment						
Diesel	64.3	ug/L	50.0	1	03/25/06 12:54	SW846 8015B	6033658
Surr: o-Terphenyl (55-150%)	120 %				03/25/06 12:54	SW846 8015B	6033658
Sample ID: NPC2456-02 (MW-3 - V	Water) Sampled: 03/16/	06 12:10					
Volatile Organic Compounds by EPA N	1ethod 8260B						
Tert-Amyl Methyl Ether	ND	ug/L	0.500	1	03/21/06 07:15	SW846 8260B	6034365
1,2-Dibromoethane (EDB)	ND	ug/L	0.500	ł	03/21/06 07:15	SW846 8260B	6034365
Benzene	12.5	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
1,2-Dichloroethane	ND	ug/L	0.500	ì	03/21/06 07:15	SW846 8260B	6034365
Bromobenzene	ND	ug/L	0.500	l	03/23/06 22:27	SW846 8260B	6034629
Bromochloromethane	ND	ug/L	0.500	L	03/23/06 22:27	SW846 8260B	6034629
Bromodichloromethane	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
Ethyl tert-Butyl Ether	ND	ug/L	0.500	1	03/21/06 07:15	SW846 8260B	6034365
Bromoform	ND	ug/L	0.500	I	03/23/06 22:27	SW846 8260B	6034629
Bromomethane	ND	ug/L	0.500	I.	03/23/06 22:27	SW846 8260B	6034629
Tertiary Butyl Alcohol	ND	ug/L	10.0	I	03/21/06 07:15	SW846 8260B	6034365
Carbon disulfide	ND	ug/L	0.500	I	03/23/06 22:27	SW846 8260B	6034629
Carbon Tetrachloride	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:	NPC2456
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/18/06 08:00

Analyte	Result	Flag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC2456-02 (MW-3	- Water) - cont.	Sampled: 03/16/06 12:10					
Volatile Organic Compounds by EP.	A Method 8260B -	cont.					
Chlorobenzene	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
Chlorodibromomethane	ND	ug/L	0,500	1	03/23/06 22:27	SW846 8260B	6034629
Chloroethane	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
Chloroform	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
Chloromethane	ND	ug/L	1.00	1	03/23/06 22:27	SW846 8260B	6034629
4-Chlorotolucne	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
2-Chlorotolucne	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
1,2-Dibromo-3-chloropropane	ND	ug/L	1.00	1	03/23/06 22:27	SW846 8260B	6034629
1,2-Dibromoethane (EDB)	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
Dibromomethane	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
1,4-Dichlorobenzene	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
1,3-Dichlorobenzene	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
1,2-Dichlorobenzene	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
Dichlorodifluoromethane	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
1,2-Dichlorocthanc	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
1,1-Dichloroethane	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
cis-1,2-Dichlorocthene	1.57	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
1,1-Dichloroethene	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
trans-1,2-Dichloroethene	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
2,2-Dichloropropane	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
1,3-Dichloropropane	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
1,2-Dichloropropane	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
trans-1,3-Dichloropropene	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
cis-1,3-Dichloropropene	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
I,1-Dichloropropene	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
Ethylbenzene	1.27	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
Hexachlorobutadiene	ND	ug/L	1.00	1	03/23/06 22:27	SW846 8260B	6034629
Diisopropyl Ether	ND	ug/L	0.500	L	03/23/06 22:27	SW846 8260B	6034629
Methyl tert-Butyl Ether	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
Methylene Chloride	ND	ug/L	5.00	1	03/23/06 22:27	SW846 8260B	6034629
Styrene	ND	ug/L	1.00	1	03/23/06 22:27	SW846 8260B	6034629
I,I,1,2-Tetrachloroethane	ND	ug/L	0.500	I	03/23/06 22:27	SW846 8260B	6034629
1,1,2,2-Tetrachloroethane	ND	ug/L	0.500	i	03/23/06 22:27	SW846 8260B	6034629
Tetrachloroethene	7.59	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
Toluene	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
1,2,4-Trichlorobenzene	NĎ	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
1,2,3-Trichlorobenzene	ND	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
1,1,2-Trichloroethane	ND	ug/L	0.500	I	03/23/06 22:27	SW846 8260B	6034629
1,1,1-Trichloroethane	ND	ug/L	0.500	I	03/23/06 22:27	SW846 8260B	6034629
Trichloroethene	1.31	ug/L	0.500	l	03/23/06 22:27	SW846 8260B	6034629
Trichlorofluoromethane	ND	ug/L	0.500	I	03/23/06 22:27	SW846 8260B	6034629
1,2,3-Trichloropropane	ND	ug/L	0.500	L	03/23/06 22:27	SW846 8260B	6034629
• •	ND	-	0.500			SW846 8260B	

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

	ANALYTICAL REPORT						
Analyte	Result Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC2456-02 (MW-3 - V	Water) - cont. Sampled	: 03/16/06 12:10					
Volatile Organic Compounds by EPA M	iethod 8260B - cont.						
Xylenes, total	0.960	ug/L	0.500	1	03/23/06 22:27	SW846 8260B	6034629
Surr: 1,2-Dichloroethane-d4 (70-130%)	110 %				03/23/06 22:27	SW846 8260B	6034629
Surr: Dibromofluoromethane (79-122%)	104 %				03/23/06 22:27	SW846 8260B	6034629
Surr: Toluene-d8 (78-121%)	102 %				03/23/06 22:27	SW846 8260B	6034629
Surr: 4-Bromofluorobenzene (78-126%)	107 %				03/23/06 22:27	SW846 8260B	6034629
Purgeable Petroleum Hydrocarbons							
Gasoline Range Organics	107	ug/L	50.0	1	03/21/06 07:15	CA LUFT GC/MS	
Surr: 1,2-Dichloroethane-d4 (0-200%)	120 %					CA LUFT GC/MS	
Surr: Dibromofluoromethane (0-200%)	110 %					CA LUFT GC/M	
Surr: Toluene-d8 (0-200%)	107 %					CA LUFT GC/MS	
Surr: 4-Bromofluorobenzene (0-200%)	111 %				03/21/06 07:15	CA LUFT GC/M	0034303
Extractable Petroleum Hydrocarbons with	th Silica Gel Treatment						
Diesel	191	ug/L	50.0	ŀ	03/25/06 13:11	SW846 8015B	6033658
Surr: o-Terphenyl (55-150%)	125 %				03/25/06 13:11	SW846 8015B	6033658
Sample ID: NPC2456-03 (OMW-6 -	- Water) Sampled: 03/	16/06 12:55					
Volatile Organic Compounds by EPA M							
Tert-Amyl Methyl Ether	ND	ug/L	0.500	1	03/21/06 07:38	SW846 8260B	6034365
1,2-Dibromoethane (EDB)	ND	ug/L	0.500	1	03/21/06 07:38	SW846 8260B	6034365
Benzene	46.3	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
1,2-Dichloroethane	ND	ug/L	0.500	1	03/21/06 07:38	SW846 8260B	6034365
Bromobenzene	ND	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
Bromochloromethane	ND	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
Bromodichloromethane	ND	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
Ethyl tert-Butyl Ether	ND	ug/L	0.500	1	03/21/06 07:38	SW846 8260B	6034365
Bromoform	ND	ug/L	0.500	I	03/24/06 01:19	SW846 8260B	6034629
Bromomethane	ND	ug/L	0.500	I	03/24/06 01:19	SW846 8260B	6034629
Tertiary Butyl Alcohol	ND	ug/L	10.0	1	03/21/06 07:38	SW846 8260B	6034365
Carbon disulfide	ND	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
Carbon Tetrachloride	ND	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
Chlorobenzene	ND	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
Chlorodibromomethane	ND	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
Chloroethane	ND	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
Chloroform	ND	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
Chloromethane	ND	ug/L	1.00	1	03/24/06 01:19	SW846 8260B	6034629
4-Chlorotolucne	ND	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
2-Chlorotoluene	ND	ug/L	0.500	t	03/24/06 01:19	SW846 8260B	6034629
1,2-Dibromo-3-chloropropane	ND	ug/L	1.00	I	03/24/06 01:19	SW846 8260B	6034629
1,2-Dibromoethane (EDB)	ND	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
Dibromomethane	ND	ug/L	0.500	L	03/24/06 01:19	SW846 8260B	6034629
I,4-Dichlorobenzene	ND	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
I,3-Dichlorobenzene	ND	ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:	NPC2456
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/18/06 08:00

	ANALYTICAL REPORT							
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC2456-03 (OMW-6	- Water) - co	nt. Sample	l: 03/16/06 12:55					
Volatile Organic Compounds by EPA N	1ethod 8260B -	cont.						
Dichlorodifluoromethane	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
1,2-Dichloroethane	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
1,1-Dichloroethane	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
cis-1,2-Dichloroethene	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
1,1-Dichloroethene	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
trans-1,2-Dichloroethene	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
2,2-Dichloropropane	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
1,3-Dichloropropane	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
I,2-Dichloropropane	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
trans-1,3-Dichloropropene	ND		-g = ug/L,	0.500	1	03/24/06 01:19	SW846 8260B	6034629
cis-1,3-Dichloropropene	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
1,1-Dichloropropene	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
Ethylbenzene	515		ug/L	5.00	- 10	03/24/06 01:44	SW846 8260B	6034629
Hexachlorobutadiene	ND		ug/L	1.00	I	03/24/06 01:19	SW846 8260B	6034629
Diisopropyl Ether	ND		ug/L	0.500		03/24/06 01:19	SW846 8260B	6034629
Methyl tert-Butyl Ether	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
Methylene Chloride	ND		ug/L	5.00	1	03/24/06 01:19	SW846 8260B	6034629
Styrene	ND		ug/L	1.00	1	03/24/06 01:19	SW846 8260B	6034629
I, I, J, 2-Tetrachloroethane	ND		ug/L ug/L	0.500	, I	03/24/06 01:19	SW846 8260B	6034629
1,1,2,2-Tetrachloroethane	ND		ug/L	0.500	ı I	03/24/06 01:19	SW846 8260B	6034629
Tetrachloroethene	ND		ug/L ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
Toluene	0.930		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
1,2,4-Trichlorobenzene	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
1,2,3-Trichlorobenzene	ND			0.500	1	03/24/06 01:19	SW846 8260B	6034629
1,1,2-Trichloroethane	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
I,I,I-Trichloroethane Trichloroethene	ND		ug/L	0.500	1	03/25/06 21:27	SW846 8260B	6035070
Trichlorofluoromethane	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B	6034629
			ug/L	0.500		03/24/06 01:19	SW846 8260B	6034629
1,2,3-Trichloropropane	ND		ug/L		1	03/24/06 01:19		6034629
Vinyl chloride	ND		ug/L	0.500	1	03/24/06 01:19	SW846 8260B SW846 8260B	6034629
Xylenes, total	37.2		ug/L	0.500	1			
Surr: 1,2-Dichloroethane-d4 (70-130%)	103 % 104 %					03/24/06 01:19 03/25/06 21:27	SW846 8260B SW846 8260B	6034629 6035070
Surr: 1,2-Dichloroethane-d4 (70-130%) Surr: Dibromofluoromethane (79-122%)	104 %					03/23/06 01:19	SW846 8260B	6034629
Surr: Dibromofluoromethane (79-122%)	102 %					03/25/06 21:27	SW846 8260B	6035070
Surr: Toluene-d8 (78-121%)	98 %					03/24/06 01:19	SW846 8260B	6034629
Surr: Toluene-d8 (78-121%)	99 %					03/25/06 21:27	SW846 8260B	6035070
Surr: 4-Bromofluorobenzene (78-126%)	96 %					03/24/06 01:19	SW846 8260B	6034629
Surr: 4-Bromofluorobenzene (78-126%)	103 %					03/25/06 21:27	SW846 8260B	6035070
Purgeable Petroleum Hydrocarbons								
Gasoline Range Organics	22700		ug/L	500	10	03/22/06 20:01	CA LUFT GC/M	
Surr: 1,2-Dichloroethane-d4 (0-200%)	103 %					03/22/06 20:01	CA LUFT GC/M	
Surr: Dibromofluoromethane (0-200%)	112 %					03/22/06 20:01		
Surr: Toluene-d8 (0-200%)	105 %					03/22/06 20:01	CA LUFT GC/M	6033731

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

	ANALYTICAL REPORT							
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
· · · · · · · · · · · · · · · ·	<i>, ,</i>							·····
Sample ID: NPC2456-03RE1 (OM		- cont. San	npled: 03/16/06	12:55				
Purgeable Petroleum Hydrocarbons - co								
Surr: 4-Broinofluorobenzene (0-200%)	110 %					03/22/06 20:01	CA LUFT GC/MS	6033731
Extractable Petroleum Hydrocarbons w	ith Silica Gel Ti	reatment						
Diesel	3710		ug/L	250	5	03/25/06 13:27	SW846 8015B	6033658
Surr: o-Terphenyl (55-150%)	132 %					03/25/06 13:27	SW846 8015B	6033658
Sample ID: NPC2456-04 (MW-8 -	Water) Sampl	led: 03/16/	06 12:43					
Volatile Organic Compounds by EPA N								
Tert-Amyl Methyl Ether	ND		ug/L	0.500	1	03/21/06 08:00	SW846 8260B	6034365
1,2-Dibromoethane (EDB)	ND		ug/L	0.500	1	03/21/06 08:00	SW846 8260B	6034365
Benzene	ND		ug/L	0.500	I	03/23/06 23:41	SW846 8260B	6034629
1,2-Dichloroethane	ND		ug/L	0.500	1	03/21/06 08:00	SW846 8260B	6034365
Bromobenzene	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
Bromochloromethane	ND		ug/L	0.500	L	03/23/06 23:41	SW846 8260B	6034629
Bromodichloromethane	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
Ethyl tert-Butyl Ether	ND		ug/L	0.500	L	03/21/06 08:00	SW846 8260B	6034365
Bromoform	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
Bromomethane	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
Tertiary Butyl Alcohol	ND		ug/L	10.0	1	03/21/06 08:00	SW846 8260B	6034365
Carbon disulfide	ND		ug/L	0.500	I	03/23/06 23:41	SW846 8260B	6034629
Carbon Tetrachloride	ND		ug/L	0.500	I	03/23/06 23:41	SW846 8260B	6034629
Chlorobenzene	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
Chlorodibromomethane	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
Chloroethane	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
Chloroform	3.23		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
Chloromethane	ND		ug/L	. 1.00	1	03/23/06 23:41	SW846 8260B	6034629
4-Chlorotolucne	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
2-Chlorotoluene	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
I,2-Dibromo-3-chloropropane	ND		ug/L	1.00	1	03/23/06 23:41	SW846 8260B	6034629
I,2-Dibromoethane (EDB)	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
Dibromomethane	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
1,4-Dichlorobenzene	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
1,3-Dichlorobenzene	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
1,2-Dichlorobenzene	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
Dichlorodifluoromethane	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
1,2-Dichloroethane	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
1,1-Dichloroethane	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
cis-1,2-Dichloroethene	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
1,1-Dichloroethene	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
trans-1,2-Dichloroethene	ND		ug/L	0.500	Ι	03/23/06 23:41	SW846 8260B	6034629
2,2-Dichloropropane	ND		ug/L	0.500	l i	03/23/06 23:41	SW846 8260B	6034629
I,3-Dichloropropane	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
1,2-Dichloropropane	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
trans-1,3-Dichloropropene	ND		ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:	NPC2456
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/18/06 08:00

Surr: 4-Bromofluorobenzene (78-126%) 107 % 03/23/06 23:41 SW846 8260B 6034629 Purgeable Petroleum Hydrocarbons		ANALYTICAL REPORT						
Sample ID: NPC2456-04 (MW-8 - Water) - cont. Sampled: 03/16/06 12:43 Volatile Organic Compounds by EPA Method 8260B - cont. cisi.1.3-Dichloropropene ND ug/L 0.500 1 03/23/06 23:41 SW486 8200B 6034629 Li Dichloropropene ND ug/L 0.500 1 03/23/06 23:41 SW486 8200B 6034629 Ethylbenzene ND ug/L 1.00 100/23/06 23:41 SW486 8200B 6034629 Ethylbenzene ND ug/L 0.500 1 03/23/06 23:41 SW486 8200B 6034629 Disopropyl Ether ND ug/L 0.500 1 03/23/06 23:41 SW486 8200B 6034629 Styrene ND ug/L 0.500 1 03/23/06 23:41 SW486 8200B 6034629 Styrene ND ug/L 0.500 1 03/23/06 23:41 SW486 8200B 6034629 Styrene ND ug/L 0.500 1 03/23/06 23:41 SW486 8200B 6034629 Li,1,2-Tertachlorocthane ND ug/L 0.	Analyte	Result	Flag Units	MRL		•	Method	Batch
Volatile Organic Compounds by EPA Method 8260B - cont. ND ug/L 0.500 1 0.372306 23:41 SW46 8260B 6034629 Li, Dichloropropene ND ug/L 0.500 1 0.372306 23:41 SW46 8260B 6034629 Ethylhozzane ND ug/L 0.500 1 0.372306 23:41 SW46 8260B 6034629 Disopropy Ether ND ug/L 0.500 1 0.322306 23:41 SW46 8260B 6034629 Disopropy Ether ND ug/L 0.500 1 0.322306 23:41 SW46 8260B 6034629 Methylene Chloride ND ug/L 0.500 1 0.322306 23:41 SW46 8260B 6034629 Syrene ND ug/L 1.00 1 0.322306 23:41 SW46 8260B 6034629 Lj, 2.7 Ertachloroethane ND ug/L 0.500 1 0.322306 23:41 SW46 8260B 6034629 Lj, 2.7 Ertachloroethane ND ug/L 0.500 1 0.322306 23:41 SW46 8260B 6034629 Lj, 2.7 Ertachloroethane ND ug/L 0.500 1 0.3	Somela ID: NDC1456 04 (M337 9 1	•••••••				· · · · · · ·	, , , . ,	
cis-1,3-Dichloropropene ND ug/L 0.500 1 03/23/06 23:41 SW46 8260B 6034629 1,1-Dichloropropene ND ug/L 0.500 1 03/23/06 23:41 SW46 8260B 6034629 Hexachlorobutadiene ND ug/L 0.500 1 03/23/06 23:41 SW46 8260B 6034629 Hexachlorobutadiene ND ug/L 0.500 1 03/23/06 23:41 SW46 8260B 6034629 Michy Ierre ND ug/L 0.500 1 03/23/06 23:41 SW46 8260B 6034629 Methy Ierre ND ug/L 0.500 1 03/23/06 23:41 SW46 8260B 6034629 Styrene ND ug/L 0.500 1 03/23/06 23:41 SW46 8260B 6034629 1,1,2Tertachloroethane ND ug/L 0.500 1 03/23/06 23:41 SW46 8260B 6034629 1,2.4-Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW46 8260B 6034629 1,2.4-Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW46 826	-							
ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Eitylbanzane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Eitylbanzane ND ug/L 1.00 1 03/23/06 23:41 SW846 8260B 6034629 Diisopropyl Eiter ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Methyltene Chloride ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Styrene ND ug/L 1.00 1 03/23/06 23:41 SW846 8260B 6034629 Styrene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,2,2-Tetrachtorochane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,4-Trichtorochane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,4-Trichtorochane ND ug/L				0.000		00/00/06 00 41	000046 00600	(024/20
Ethylbenzene ND ug/L 0.500 I 0.972/06 23:41 SW846 8260B 6034629 Hexachlorobutadiene ND ug/L 0.500 I 0.972/06 23:41 SW846 8260B 6034629 Dissporyp IEher ND ug/L 0.500 I 0.972/06 23:41 SW846 8260B 6034629 Methyl ter-Butyl Ether ND ug/L 0.500 I 0.972/06 23:41 SW846 8260B 6034629 Methyl ter-Butyl Ether ND ug/L 0.500 I 0.972/06 23:41 SW846 8260B 6034629 Syryene ND ug/L 1.00 I 0.972/06 23:41 SW846 8260B 6034629 J,1,2.7-Teitachloroethane ND ug/L 0.500 I 0.972/06 23:41 SW846 8260B 6034629 J,1,2.7-Teitachloroethane ND ug/L 0.500 I 0.972/06 23:41 SW846 8260B 6034629 J,2.4-Trichloroethane ND ug/L 0.500 I 0.972/06 23:41 SW846 8260B 6034629 J,2.4-Trichloroethane ND ug/L 0.500 I 0.972/06 23:41 </td <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>			-	-	-			
ND ug/L 1.00 1 03/23/06 23:41 SW846 8260B 6034629 Diisoproyl Ehter ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Methyl tenr-Buyl Ehter ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Methyl tenr-Buyl Ehter ND ug/L 5.00 1 03/23/06 23:41 SW846 8260B 6034629 Styrene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 J.1, 2Tertachloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 J.1, 2Tertachloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 J.2, 4-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 J.2, 4-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 J.2, 4-Trichloroe					-			
Disopropyl Ether ND ug/L 0.500 1 03/23/06 23:41 SW846 82:08 603/4629 Methyl ter, Buyl Ether ND ug/L 5.00 1 03/23/06 23:41 SW846 82:08 603/4629 Methylenc Chloride ND ug/L 1.00 1 03/23/06 23:41 SW846 82:08 603/4629 Styrenn ND ug/L 0.500 1 03/23/06 23:41 SW846 82:08 603/4629 J,1,2,2-Tetrachloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 82:08 603/4629 Totachoroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 82:08 603/4629 Totachoroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 82:08 603/4629 1,2,4-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 82:08 603/4629 1,2,3-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 82:08 603/4629	•		-		-			
Methyl terr ND ug/L 0.500 I 03/23/06 23:41 SW846 82:08 603/4629 Methyl ter Chloride ND ug/L 5.00 I 03/23/06 23:41 SW846 82:08 603/4629 Styrene ND ug/L 0.300 I 03/23/06 23:41 SW846 82:08 603/4629 J.1, 2.7-tertachloroethane ND ug/L 0.500 I 03/23/06 23:41 SW846 82:08 603/4629 J.1, 2.7-tertachloroethane ND ug/L 0.500 I 03/23/06 23:41 SW846 82:08 603/4629 J.1, 2.7-tertachloroethane ND ug/L 0.500 I 03/23/06 23:41 SW846 82:08 603/4629 J.2, 3-Trichlorobenzene ND ug/L 0.500 I 03/23/06 23:41 SW846 82:08 603/4629 J.1, 2.7-trichlorobenzene ND ug/L 0.500 I 03/23/06 23:41 SW846 82:08 603/4629 J.1, 2.7-trichlorobenzene ND ug/L 0.500 I 03/23/06 23:41 SW846 82:08 603/4629<			-		-			
Methylene Chloride ND ug/L 5.00 1 03/23/06 23:41 SW846 8260B 6034629 Styrenn ND ug/L 1.00 1 03/23/06 23:41 SW846 8260B 6034629 Styrenn ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,2,-Tetrachloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Totkene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Totkene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,4-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,2-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,2-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,2,Trichloroethane								
Styrene ND ug/L 1.00 I 03/23/06 23:41 SW846 8260B 6034629 1,1,1,2-Tetrachloroothane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,2,2-Tetrachloroothane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Totuene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Totuene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichloroothanzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,1-Trichloroothanzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,2-Trichloroothanze ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,2-Trichloroothanze ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>					-			
ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Tatzahloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Tatzahloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Toluene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,1-Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,1-Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichloroethane	Methylene Chloride		ug/L		-		SW846 8260B	
1,1,2,2-Tetrachloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Totuene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Totuene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,4-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,4-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,1-Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Trichlorofluoromethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichloropenane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichloroethane-dd (70-130%) ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-dd (70-130%) I09 % 1 03/23/06 23:41	Styrene	ND	-	1.00	I	03/23/06 23:41	SW846 8260B	6034629
Durant D U 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 Toluene ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 1,2,4-Trichlorobenzene ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 1,2,1-Trichlorobenzene ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 1,1,1-Trichloroethane ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 Trichloroethane ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 Trichloroethane ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 Vinyl chloride ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 Vinyl chloride ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroe	1,1,1,2-Tetrachloroethane	ND	ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
Tokene ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 1,2,4-Trichlorobenzene ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichlorobenzene ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 1,1,2-Trichloroethane ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 1,1,1-Trichloroethane ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 Trichloroethane ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 Trichloroptopan ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 Vinyl chloride ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629 Syrlenes, total ND ug/L 0.500 I 0.3/23/06 23:41 SW846 8260B 6034629	1,1,2,2-Tetrachloroethane	ND	ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
1,2,4-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,1-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,1-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,1-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichloropropane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichloropropane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (70-130%) 109 % 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (70-130%) 109 % 0.323/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (70-130%) 109 % 03/23/06 23:41 SW846 8260B 6034629 </td <td>Tetrachloroethene</td> <td>17.1</td> <td>ug/L</td> <td>0.500</td> <td>1</td> <td>03/23/06 23:41</td> <td>SW846 8260B</td> <td>6034629</td>	Tetrachloroethene	17.1	ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
L2,3-Trichlorobenzene ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,2-Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,1-Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Trichloromethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichloropropane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Vinyl chloride ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (70-130%) 109 %	Toluene	ND	ug/L	0.500	I	03/23/06 23:41	SW846 8260B	6034629
1,1,2-Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,1,1-Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichloropropane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Vinyl chloride ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Syress, total ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (70-130%) 109 %	1,2,4-Trichlorobenzene	ND	ug/L	. 0.500	1	03/23/06 23:41	SW846 8260B	6034629
1,1,1-Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Trichloroethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichloropropane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Vinyl chloride ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (70-130%) ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (70-130%) 109 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane (78-12%) 105 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane (78-12%) 107 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (0-200%) 110 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (0-200%) 110 %	1,2,3-Trichlorobenzene	ND	ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Trichlorofluoromethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichloropropane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Vinyl chloride ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Xylenes, total ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Surr: 1, 2-Dichloroethane-d4 (70-130%) 109 % 03/23/06 23:41 SW846 8260B 6034629 Surr: Dibromofluoromethane (79-122%) 105 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 1, 2-Dichloroethane-d4 (72.13%) 107 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 1, 2-Dichloroethane-d7 (78-121%) 107 % 03/23/06 23:41 SW846 8260B 6034629 Purgeable Petroleum Hydrocarbons ug/L 50.0 1 03/21/06 08:00 CA LUFT GC/M 6034365	1,1,2-Trichloroethane	ND	ug/L	0.500	I	03/23/06 23:41	SW846 8260B	6034629
Trichlorofluoromethane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 1,2,3-Trichloropropane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Vinyl chloride ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Xylenes, total ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (70-130%) 109 % 03/23/06 23:41 SW846 8260B 6034629 Surr: Toluene-d8 (78-121%) 103 % 03/23/06 23:41 SW846 8260B 6034629 Surr: A-Bromofluorobenzene (78-126%) 107 % 03/23/06 23:41 SW846 8260B 6034629 Purgeable Petroleum Hydrocarbons 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: 1,2-Dichloroethane-d4 (0-200%) 110 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: Toluene-d8 (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: Toluene-d8 (0-200%) 105 % 03/21/	1,1,1-Trichloroethane	ND	ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
1,2,3-Trichloropropane ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Vinyl chloride ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Xylenes, total ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Surr: 1, 2-Dichloroethane-d4 (70-130%) 109 % 03/23/06 23:41 SW846 8260B 6034629 Surr: Dibromofluoromethane (79-122%) 105 % 03/23/06 23:41 SW846 8260B 6034629 Surr: Toluene-d8 (78-121%) 103 % 03/23/06 23:41 SW846 8260B 6034629 Surr: A-Bromofluorobenzene (78-126%) 107 % 03/23/06 23:41 SW846 8260B 6034629 Purgeable Petroleum Hydrocarbons 107 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (0-200%) 110 % 03/21/06 08:00 CA LUFT GC/M 6034365 Surr: 7 Dibromofluoromethane (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/M 6034365 Surr: 7 Dibromofluorobenzene (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/M 6034365 Surr: 7 Dibromofluorobe	Trichloroethene	ND	ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
Vinyl chloride ND ug/L 0.500 I 03/23/06 23:41 SW846 8260B 6034629 Xylenes, total ND ug/L 0.500 I 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (70-130%) 109 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (70-130%) 109 % 03/23/06 23:41 SW846 8260B 6034629 Surr: Toluene-d8 (78-121%) 103 % 03/23/06 23:41 SW846 8260B 6034629 Surr: Toluene-d8 (78-121%) 103 % 03/23/06 23:41 SW846 8260B 6034629 Purgeable Petroleum Hydrocarbons 03/21/06 08:00 CA LUFT GC/MS 6034629 Surr: 1,2-Dichloroethane-d4 (0-200%) 110 % 03/21/06 08:00 CA LUFT GC/MS 6034655 Surr: 7 bluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/MS 60346365 Surr: 7 bluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/MS 60346365 Surr: 7 bluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/MS 60346365 Surr: 7 bluene-d8 (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/MS	Trichlorofluoromethane	ND	ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
ND ug/L 0.500 I 03/23/06 23:41 SW846 8260B 6034629 Surr: 1, 2-Dichloroethane-d4 (70-130%) 109 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 1, 2-Dichloroethane-d4 (70-122%) 105 % 03/23/06 23:41 SW846 8260B 6034629 Surr: Toluene-d8 (78-121%) 103 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 4-Bromofluorobenzene (78-126%) 107 % 03/23/06 23:41 SW846 8260B 6034629 Purgeable Petroleum Hydrocarbons gasoline Range Organics ND ug/L 50.0 I 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: 1, 2-Dichloroethane-d4 (0-200%) 110 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: Toliuene-d8 (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: Toliuene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: 4-Bromofluorobenzene (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: 4-Bromofluorobenzene (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: 4-Bromofluorobenzene (0-200%)	1,2,3-Trichloropropane	ND	ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
ND ug/L 0.500 1 03/23/06 23:41 SW846 8260B 6034629 Surr: 1, 2-Dichloroethane-d4 (70-130%) 109 % 03/23/06 23:41 SW846 8260B 6034629 Surr: Dibromofluoromethane (79-122%) 105 % 03/23/06 23:41 SW846 8260B 6034629 Surr: Toluene-d8 (78-121%) 103 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 4-Bromofluorobenzene (78-126%) 107 % 03/23/06 23:41 SW846 8260B 6034629 Purgeable Petroleum Hydrocarbons 03/23/06 23:41 SW846 8260B 6034629 Surr: 1,2-Dichloroethane-d4 (0-200%) 110 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: 7 Juene-d8 (0-200%) 110 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: 7 Juene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: 7 Juene-d8 (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: 4-Bromofluorobenzene (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: 4-Bromofluorobenzene (0-200%) 115 % <	Vinyl chloride	ND	ug/L	0.500	1	03/23/06 23:41	SW846 8260B	6034629
Surr: 1,2-Dichloroethane-d4 (70-130%) 109 % 03/23/06 23:41 SW846 8260B 6034629 Surr: Dibromofluoromethane (79-122%) 105 % 03/23/06 23:41 SW846 8260B 6034629 Surr: Toluene-d8 (78-121%) 103 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 4-Bromofluorobenzene (78-126%) 107 % 03/23/06 23:41 SW846 8260B 6034629 Purgeable Petroleum Hydrocarbons ug/L 50.0 1 03/21/06 08:00 CA LUFT GC/MS 6034629 Surr: 1,2-Dichloroethane-d4 (0-200%) 110 % 03/21/06 08:00 CA LUFT GC/MS 60346365 Surr: Toluene-d8 (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/MS 60346365 Surr: Toluene-d8 (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: Toluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: Toluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: Toluene-d8 (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: Toluene-d8 (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/MS 6034365 <	Xvlenes, total	ND	=	0.500	I	03/23/06 23:41	SW846 8260B	6034629
Surr: Dibromofluoromethane (79-122%) 105 % 03/23/06 23:41 SW846 8260B 6034629 Surr: Toluene-d8 (78-121%) 103 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 4-Bromofluorobenzene (78-126%) 107 % 03/23/06 23:41 SW846 8260B 6034629 Purgeable Petroleum Hydrocarbons 03/23/06 23:41 SW846 8260B 6034629 Gasoline Range Organics ND ug/L 50.0 1 03/21/06 08:00 CA LUFT GC/MS 6034655 Surr: 1,2-Dichloroethane-d4 (0-200%) 110 % 03/21/06 08:00 CA LUFT GC/MS 6034655 Surr: Toluene-d8 (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/MS 6034655 Surr: Toluene-d8 (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: Toluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: A-Bromofluorobenzene (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: 4-Bromofluorobenzene (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: 4-Bromofluorobenzene (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/MS 6034365	•	109 %	Ũ			03/23/06 23:41	SW846 8260B	6034629
Surr: Toluene-d8 (78-121%) 103 % 03/23/06 23:41 SW846 8260B 6034629 Surr: 4-Bromofluorobenzene (78-126%) 107 % 03/23/06 23:41 SW846 8260B 6034629 Purgeable Petroleum Hydrocarbons ug/L 50.0 1 03/21/06 08:00 CA LUFT GC/MS 6034655 Surr: 1,2-Dichloroethane-d4 (0-200%) 110 % 03/21/06 08:00 CA LUFT GC/MS 6034655 Surr: Toluene-d8 (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/MS 6034655 Surr: Toluene-d8 (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/MS 6034655 Surr: Toluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/MS 6034655 Surr: Toluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/MS 6034655 Surr: Toluene-d8 (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/MS 6034655 Surr: 4-Bromofluorobenzene (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/MS 6034655 Extractable Petroleum Hydrocarbons with Silica Gel Treatment 03/21/06 08:00 CA LUFT GC/MS 6033658 Diesel 52.8 ug/L 50.0 I 03/25/06 13:43 SW846 8		105 %						
Purgeable Petroleum Hydrocarbons Gasoline Range Organics ND ug/L 50.0 I 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: 1,2-Dichloroethane-d4 (0-200%) 110 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: Dibromofluoromethane (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: Toluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: Toluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: A-Bromofluorobenzene (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Extractable Petroleum Hydrocarbons with Silica Gel Treatment 03/21/06 08:00 CA LUFT GC/M: 6034365 Diesel 52.8 ug/L 50.0 I 03/25/06 13:43 SW846 8015B 6033658	Surr: Toluene-d8 (78-121%)	103 %				03/23/06 23:41	SW846 8260B	6034629
Gasolic Range Organics ND ug/L 50.0 I 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: 1,2-Dichloroethane-d4 (0-200%) 110 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: Dibromofluoromethane (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: Toluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Surr: 4-Bromofluorobenzene (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Extractable Petroleum Hydrocarbons with Silica Gel Treatment 03/21/06 08:00 CA LUFT GC/MS 6033658 Diesel 52.8 ug/L 50.0 I 03/25/06 13:43 SW846 8015B 6033658	Surr: 4-Bromofluorobenzene (78-126%)	107 %				03/23/06 23:41	SW846 8260B	6034629
Surr: 1,2-Dichloroethane-d4 (0-200%) 110 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: Dibromofluoromethane (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: Toluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: 4-Bromofluorobenzene (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Extractable Petroleum Hydrocarbons with Silica Gel Treatment 03/21/06 08:00 CA LUFT GC/M: 6034365 Diesel 52.8 ug/L 50.0 I 03/25/06 13:43 SW846 8015B 6033658	Purgeable Petroleum Hydrocarbons							
Surr: 1,2-Dichloroethane-d4 (0-200%) 110 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: Dibromofluoromethane (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: Toluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Surr: 4-Bromofluorobenzene (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/M: 6034365 Extractable Petroleum Hydrocarbons with Silica Gel Treatment 03/21/06 08:00 CA LUFT GC/M: 6034365 Diesel 52.8 ug/L 50.0 I 03/25/06 13:43 SW846 8015B 6033658	Gasoline Range Organics	ND	ug/L	50.0	I	03/21/06 08:00	CA LUFT GC/MS	6034365
Surr: Dibromofluoromethane (0-200%) 108 % 03/21/06 08:00 CA LUFT GC/ML 6034365 Surr: Toluene-d8 (0-200%) 105 % 03/21/06 08:00 CA LUFT GC/ML 6034365 Surr: 4-Bromofluorobenzene (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/ML 6034365 Extractable Petroleum Hydrocarbons with Silica Gel Treatment 03/21/06 08:00 CA LUFT GC/ML 6034365 Diesel 52.8 ug/L 50.0 I 03/25/06 13:43 SW846 8015B 6033658		110 %	-			03/21/06 08:00	CA LUFT GC/MS	6034365
Surr: 4-Bromofluorobenzene (0-200%) 115 % 03/21/06 08:00 CA LUFT GC/MS 6034365 Extractable Petroleum Hydrocarbons with Silica Gel Treatment Diesel 52.8 ug/L 50.0 1 03/25/06 13:43 SW846 8015B 6033658	Surr: Dibromofluoromethane (0-200%)	108 %				03/21/06 08:00	CA LUFT GC/MS	6034365
Extractable Petroleum Hydrocarbons with Silica Gel Treatment Diesel 52.8 ug/L 50.0 1 03/25/06 13:43 SW846 8015B 6033658	Surr: Toluene-d8 (0-200%)							
Diesel 52.8 ug/L 50.0 l 03/25/06 13:43 SW846 8015B 6033658	Surr: 4-Bromofluorobenzene (0-200%)	115 %				03/21/06 08:00	CA LUFT GC/MS	6034365
	Extractable Petroleum Hydrocarbons w	ith Silica Gel T	reatment					
	Diesel	52.8	ug/L	50.0	1	03/25/06 13:43	SW846 8015B	6033658
	Surr: o-Terphenyl (55-150%)	117 %				03/25/06 13:43	SW846 8015B	6033658

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

Analyte	Result Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC2456-05 (OMV	N-9 - Water) Sampled: 03/	16/06 13:12					
Volatile Organic Compounds by El	PA Method 8260B						
Tert-Amyl Methyl Ether	ND	ug/L	0.500	I	03/21/06 08:22	SW846 8260B	6034365
1,2-Dibromoethane (EDB)	ND	ug/L	0.500	1	03/21/06 08:22	SW846 8260B	6034365
Benzene	26.2	ug/L	0.500	I	03/23/06 22:51	SW846 8260B	6034629
1,2-Dichloroethane	ND	ug/L	0.500	l	03/21/06 08:22	SW846 8260B	6034365
Bromobenzene	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Bromochloromethane	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Bromodichloromethane	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Ethyl tert-Butyl Ether	ND	ug/L	0.500	I	03/21/06 08:22	SW846 8260B	6034365
Bromoform	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Bromomethane	0.570	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Tertiary Butyl Alcohol	ND	ug/L	10.0	1	03/21/06 08:22	SW846 8260B	6034365
Carbon disulfide	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Carbon Tetrachloride	ND	ug/L	0.500	l	03/23/06 22:51	SW846 8260B	6034629
Chlorobenzene	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Chlorodibromomethane	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Chloroethane	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Chloroform	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Chloromethane	ND	ug/L	1.00	1	03/23/06 22:51	SW846 8260B	6034629
4-Chlorotoluene	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
2-Chlorotolucne	ND	ug/L	0.500	I	03/23/06 22:51	SW846 8260B	6034629
1,2-Dibromo-3-chloropropane	ND	ug/L	1.00	I	03/23/06 22:51	SW846 8260B	6034629
1,2-Dibromoethane (EDB)	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Dibromomethane	ND	ug/L	0.500	I	03/23/06 22:51	SW846 8260B	6034629
I,4-Dichlorobenzene	ND	ug/L	0.500	I	03/23/06 22:51	SW846 8260B	6034629
1,3-Dichlorobenzene	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
1,2-Dichlorobenzene	ND	ug/L	0.500	I	03/23/06 22:51	SW846 8260B	6034629
Dichlorodifluoromethane	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
1,2-Dichloroethane	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
1,1-Dichloroethane	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
cis-1,2-Dichloroethene	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
i, i-Dichloroethene	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
trans-1,2-Dichloroethene	ND	ug/L	0.500	I	03/23/06 22:51	SW846 8260B	6034629
2,2-Dichloropropane	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
I,3-Dichloropropane	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
1,2-Dichloropropane	ND	ug/L	0.500	I	03/23/06 22:51	SW846 8260B	6034629
trans-1,3-Dichloropropene	ND	ug/L	0.500	L	03/23/06 22:51	SW846 8260B	6034629
cis-1,3-Dichloropropene	ND	-g~~ ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
1,1-Dichloropropene	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Ethylbenzene	105	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Hexachlorobutadiene	ND	ug/L	1.00	1	03/23/06 22:51	SW846 8260B	6034629
Diisopropyl Ether	ND	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Methyl tert-Butyl Ether	1.06	ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Methylene Chloride	ND	ug/L	5.00	1	03/23/06 22:51	SW846 8260B	6034629
Mentylene Chioride		49.1	5.00	1	00/20/00 22.01	3110-0 02000	000 1027

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:	NPC2456
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/18/06 08:00

ANALYTICAL REPORT								
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPC2456-05 (OMW-9	- Water) - coi	nt. Sample	d: 03/16/06 13:12					
Volatile Organic Compounds by EPA M	1ethod 8260B -	cont.						
Styrene	ND		ug/L	1.00	I	03/23/06 22:51	SW846 8260B	6034629
1,1,2-Tetrachloroethane	ND		ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
I,1,2,2-Tetrachloroethane	ND		ug/L	0.500	I	03/23/06 22:51	SW846 8260B	6034629
Tetrachloroethene	ND		ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Toluene	0.670		ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
1,2,4-Trichlorobenzene	ND		ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
1,2,3-Trichlorobenzene	ND		ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
1,1,2-Trichloroethane	NĎ		ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
I,I,I-Trichloroethane	ND		ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Trichloroethene	ND		ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Trichlorofluoromethane	ND		ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
1,2,3-Trichloropropane	ND		ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Vinyl chloride	ND		ug/L	0.500	1	03/23/06 22:51	SW846 8260B	6034629
Xylenes, total	4.38		ug/L	0.500	I	03/23/06 22:51	SW846 8260B	6034629
Surr: 1,2-Dichloroethane-d4 (70-130%)	107 %		Ū			03/23/06 22:51	SW846 8260B	6034629
Surr: Dibromofluoromethane (79-122%)	105 %					03/23/06 22:51	SW846 8260B	6034629
Surr: Toluene-d8 (78-121%)	9 9 %					03/23/06 22:51	SW846 8260B	6034629
Surr: 4-Bromofluorobenzene (78-126%)	98 %					03/23/06 22:51	SW846 8260B	6034629
Purgeable Petroleum Hydrocarbons								
Gasoline Range Organics	10500		ug/L	50.0	1	03/21/06 08:22	CA LUFT GC/MS	6034365
Surr: 1,2-Dichloroethane-d4 (0-200%)	113 %		Ū			03/21/06 08:22	CA LUFT GC/MS	6034365
Surr: Dibromofluoromethane (0-200%)	113 %					03/21/06 08:22	CA LUFT GC/MS	6034365
Surr: Toluene-d8 (0-200%)	108 %					03/21/06 08:22	CA LUFT GC/MS	6034365
Surr: 4-Bromofluorobenzene (0-200%)	111%					03/21/06 08:22	CA LUFT GC/MS	6034365
Extractable Petroleum Hydrocarbons w	ith Silica Gel T	reatment						
Diesel	1600		ug/L	100	2	03/25/06 14:00	SW846 8015B	6033658
Surr: o-Terphenyl (55-150%)	111%		U			03/25/06 14:00	SW846 8015B	6033658

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Auni Kreml Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracted	Extracted Vol	Date	Analyst	Extraction Method
Extractable Petroleum Hydrocar	bons with Silica Gel Tre	eatment					
SW846 8015B	6033658	NPC2456-01	1000.00	1.00	03/20/06 15:45	DAP	EPA 3510C
SW846 8015B	6033658	NPC2456-02	1000.00	1.00	03/20/06 15:45	DAP	EPA 3510C
SW846 8015B	6033658	NPC2456-03	1000.00	1.00	03/20/06 15:45	DAP	EPA 3510C
SW846 8015B	6033658	NPC2456-04	1000.00	1.00	03/20/06 15:45	DAP	EPA 3510C
SW846 8015B	6033658	NPC2456-05	1000.00	1.00	03/20/06 15:45	DAP	EPA 3510C

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

PROJECT QUALITY CONTROL DATA Blank

Analyte	Blank Value Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8260B				
6034365-BLK1					
Tert-Amyl Methyl Ether	<0.200	ug/L	6034365	6034365-BLK1	03/21/06 04:17
1,2-Dibromoethane (EDB)	<0.250	ug/L	6034365	6034365-BLK I	03/21/06 04:17
1,2-Dichloroethane	<0.390	ug/L	6034365	6034365-BLK1	03/21/06 04:17
Diisopropyl Ether	<0.200	ug/L	6034365	6034365-BLK1	03/21/06 04:17
Methyl tert-Butyl Ether	<0.200	ug/L	6034365	6034365-BLK1	03/21/06 04:17
Tertiary Butyl Alcohol	<5.06	ug/L	6034365	6034365-BLK1	03/21/06 04:17
Surrogate: 1,2-Dichloroethane-d4	111%		6034365	6034365-BLK1	03/21/06 04:17
Surrogate: Dibromofluoromethane	111%		6034365	6034365-BLK1	03/21/06 04:17
Surrogate: Toluene-d8	101%		6034365	6034365-BLK1	03/21/06 04:17
Surrogate: 4-Bromofluorobenzene	114%		6034365	6034365-BLK1	03/21/06 04:17
6034629-BLK1					
Acetone	<1.28	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Benzene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Bromobenzene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Bromochloromethane	<0.310	ug/L	6034629	6034629-BLK I	03/23/06 17:07
Bromodichloromethane	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Bromoform	<0.290	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Bromomethane	<0.310	ug/L	6034629	6034629-BLK1	03/23/06 17:07
2-Butanone	<3.17	ug/L	6034629	6034629-BLK1	03/23/06 17:07
sec-Butylbenzene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
n-Butylbenzene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
tert-Butylbenzene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Carbon disulfide	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Carbon Tetrachloride	<0.220	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Chlorobenzene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Chlorodibromomethane	<0.290	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Chloroethane	<0.250	սց/Լ	6034629	6034629-BLK1	03/23/06 17:07
Chloroform	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Chloromethane	<0.220	ug/L	6034629	6034629-BLK1	03/23/06 17:07
4-Chlorotoluene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
2-Chlorotoluene	<0.190	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,2-Dibromo-3-chloropropane	<0.730	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,2-Dibromoethane (EDB)	<0.250	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Dibromomethane	<0.380	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,4-Dichlorobenzene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,3-Dichlorobenzene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,2-Dichlorobenzene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Dichlorodifluoromethane	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,2-Dichloroethane	<0.390	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,1-Dichloroethane	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
cis-1,2-Dichloroethene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

Analyte	Blank Value Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8260B				
6034629-BLK1					
1,1-Dichloroethene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
trans-1,2-Dichloroethene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
2,2-Dichloropropane	<0.230	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,3-Dichloropropane	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,2-Dichloropropane	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
trans-1,3-Dichloropropene	<0.230	ug/L	6034629	6034629-BLK1	03/23/06 17:07
cis-1,3-Dichloropropene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,1-Dichloropropene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Ethylbenzene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Hexachlorobutadiene	<0.400	ug/L	6034629	6034629-BLK1	03/23/06 17:07
2-Hexanone	<1.81	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Isopropylbenzene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Diisopropyl Ether	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Methyl tert-Butyl Ether	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Methylene Chloride	<0.440	ug/L	6034629	6034629-BLK1	03/23/06 17:07
4-Methyl-2-pentanone	<1.12	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Styrene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
l, l, l, 2-Tetrachloroethane	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,1,2,2-Tetrachloroethane	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Tetrachloroethene	<0.250	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Tolucne	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,2,4-Trichlorobenzene	<0.320	սց/Լ	6034629	6034629-BLK1	03/23/06 17:07
1,2,3-Trichlorobenzene	<0.290	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,1,2-Trichloroethane	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,1,1-Trichloroethane	<0.220	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Trichloroethene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Trichlorofluoromethane	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,2,3-Trichloropropane	<0.310	ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,3,5-Trimethylbenzene	<0.220	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Vinyl chloride	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Xylenes, total	<0.350	-2 - ug/L	6034629	6034629-BLK1	03/23/06 17:07
1,2,4-Trimethylbenzene	<0.200	ug/L	6034629	6034629-BLK1	03/23/06 17:07
Naphthalene	<0.500	-y ug/L	6034629	6034629-BLK1	03/23/06 17:07
p-Isopropyltoluene	<0.200	սց/L	6034629	6034629-BLK1	03/23/06 17:07
n-Propylbenzene	<0.200	ч <i>д –</i> ug/L	6034629	6034629-BLK1	03/23/06 17:07
Surrogate: 1,2-Dichloroethane-d4	110%	-8-	6034629	6034629-BLK1	03/23/06 17:07
Surrogate: Dibromofluoromethane	104%		6034629	6034629-BLK1	03/23/06 17:07
Surrogate: Toluene-d8	114%		6034629	6034629-BLK1	03/23/06 17:07
Surrogate: 1-Bromofluorobenzene	102%		6034629	6034629-BLK1	03/23/06 17:07
Surrogale, 4-bromojniorobenzene	10470		5554627	005 1029-DERT	
6035070-BLK1					
Acetone	<1.28	սg/L	6035070	6035070-BLK1	03/25/06 20:38

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Volatile Organic Compounds b	ov EPA Method 8260B	··· ···· ·		· · · · · · · · · · · · · · · · · · ·			
6035070-BLK1	,						
Benzene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Bromobenzene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Bromochloromethane	<0.310		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Bromodichloromethane	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Bromoform	<0.290		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Bromomethane	<0.310		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
2-Butanone	<3.17		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
sec-Butylbenzene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
n-Bulylbenzene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
tert-Butylbenzene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Carbon disulfide	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Carbon Tetrachloride	<0.220		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Chlorobenzene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Chlorodibromomethane	<0.290		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Chloroethane	<0,250		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Chloroform	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Chloromethane	<0.220		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
4-Chlorotoluene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
2-Chlorotoluene	<0.190		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,2-Dibromo-3-chloropropane	<0.730		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,2-Dibromocthane (EDB)	<0.250		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Dibromomethane	<0.380		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,4-Dichlorobenzene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,3-Dichlorobenzene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,2-Dichlorobenzene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Dichlorodifluoromethane	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,2-Dichloroethane	<0.390		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1.1-Dichloroethane	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
cis-1,2-Dichloroethene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,1-Dichloroethene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
trans-1,2-Dichloroethene	<0.200		ug/L	6035070	6035070-BLKI	03/25/06 20:38	
2,2-Dichloropropane	<0.230		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,3-Dichloropropane	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,2-Dichloropropane	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
trans-1,3-Dichloropropene	<0.230		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
cis-1,3-Dichloropropene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
, -Dichloropropene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Ethylbenzene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Hexachlorobutadiene	<0.400		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
2-Hexanone	<1.81		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Isopropylbenzene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Diisopropyl Ether	<0.200		ug/L	6035070	6035070-BLKI	03/25/06 20:38	
			2				

ANALYTICAL TESTING CORPORATION

Cambria Env. Tech. (Emeryville) / SHELL (13675) Client 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

NPC2456 Work Order: 500 40th Street, Oakland, CA Project Name: SAP 129452 Project Number: 03/18/06 08:00 Received:

PROJECT QUALITY CONTROL DATA Blank - Cont.

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Volatile Organic Compounds by I	EPA Method 8260B						
6035070-BLK1							
Methyl tert-Butyl Ether	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Methylene Chloride	<0.440		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
4-Methyl-2-pentanone	<1.12		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Styrene	<0.200		ug/L,	6035070	6035070-BLK1	03/25/06 20:38	
1,1,1,2-Tetrachloroethane	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,1,2,2-Tetrachloroethane	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Tetrachloroethene	<0.250		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Toluene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1.2.4-Trichlorobenzene	<0.320		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,2,3-Trichlorobenzene	<0.290		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,1,2-Trichloroethane	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,1,1-Trichloroethane	<0.220		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Trichloroethene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Trichlorofluoromethane	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,2,3-Trichloropropane	<0.310		սը/Լ	6035070	6035070-BLK1	03/25/06 20:38	
1,3,5-Trimethylbenzene	<0,220		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Vinyl chloride	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Xylenes, total	<0.350		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
1,2,4-Trimethylbenzene	<0.200		ug/L	603507 0	6035070-BLK1	03/25/06 20:38	
Naphthalene	<0.500		ug/L	603507 0	6035070-BLK1	03/25/06 20:38	
p-Isopropyltoluene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
n-Propylbenzene	<0.200		ug/L	6035070	6035070-BLK1	03/25/06 20:38	
Surrogate: 1,2-Dichloroethane-d4	104%			6035070	6035070-BLK1	03/25/06 20:38	
Surrogate: Dibromofluoromethane	104%			6035070	6035070-BLK1	03/25/06 20:38	
Surrogate: Toluene-d8	105%			6035070	6035070-BLK I	03/25/06 20:38	
Surrogate: 4-Bromofluorobenzene	110%			6035070	6035070-BLK1	03/25/06 20:38	
Purgeable Petroleum Hydrocarbo	о п \$						
6033731-BLK1							
Gasoline Range Organics	<50.0		ug/L	6033731	6033731-BLK1	03/22/06 14:12	
Surrogate: 1,2-Dichloroethane-d4	104%			6033731	6033731-BLK1	03/22/06 14:12	
Surrogate: Dibromofluoromethane	82%			6033731	6033731-BLK1	03/22/06 14:12	
Surrogate: Tolucne-d8	102%			6033731	6033731-BLK1	03/22/06 14:12	
Surrogate: 4-Bromofluorobenzene	113%			6033731	6033731-BLK1	03/22/06 14:12	
6034365-BLK1							
Gasoline Range Organics	<50.0		ug/L	6034365	6034365-BLK1	03/21/06 04:17	
Surrogate: 1,2-Dichloroethane-d4	111%			6034365	6034365-BLK1	03/21/06 04:17	
Surrogate: Dibromofluoromethane	111%			6034365	6034365-BLK1	03/21/06 04:17	
Surrogate: Tolucne-d8	101%			6034365	6034365-BLK1	03/21/06 04:17	
Surrogate: 4-Bromofluorobenzene	114%			6034365	6034365-BLK1	03/21/06 04:17	

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

PROJECT QUALITY CONTROL DATA Blank - Cont.

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Extractable Petroleum Hydro	carbons with Silica Gel T	reatment				
6033658-BLK1						
Diesel	36.6		ug/L	6033658	6033658-BLK1	03/25/06 11:49
Surrogate: o-Terphenyl	122%			6033658	6033658-BLK1	03/25/06 11:49

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kremł Work Order:NPC2456Project Name:500 40th StProject Number:SAP 12945Received:03/18/06 00

NPC2456 500 40th Street, Oakland, CA SAP 129452 03/18/06 08:00

PROJECT QUALITY CONTROL DATA

LCS

Validle Organic Componids by EPA Method B260B 6034365-B51 valid Method S260B 1,2,00000000000000000000000000000000000	Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
66.33.6.95.1 So.0 46.5 upL 974 57.145 603.05 53.106 0.010 1.2.Distinguishing (EBB) 50.0 51.8 upL 974 57.128 601.050 0.010.0011 1.2.Distinguishing (EBB) 50.0 53.6 upL 687.0 0.010.0011 0.010.0011 Distorpoy Eller 50.0 53.5 upL 887.0 7.135 603.005.0011 Anthy Isen Jay (Ebler) 50.0 53.7 upL 1129.4 64.14.0 603.05.0011 Surragiz: Filamedia 50.0 53.3 upL 1194.7 73.126 603.05.0011 Surragiz: Filamedia 50.0 52.2 1044.7 73.126 603.465.0 92.106.0311 Surragiz: Filamedia 50.0 52.2 1044.7 73.126 603.465.0 92.106.0311 Surragiz: Filamedia 50.0 53.7 upL 114.7 603.462.0 92.106.153.1 Banade 50.0 53.9 upL 1204.7 71.13 603.462.0 <td< td=""><td>Volatile Organic Compounds by El</td><td>PA Method 8260B</td><td></td><td></td><td></td><td></td><td>· · · · · · · · ·</td><td></td><td></td></td<>	Volatile Organic Compounds by El	PA Method 8260B					· · · · · · · · ·		
Ten Anyl Methyl Eher 50.0 45.3 ugL 97.8 57.15 693.465 692.06 031.1 1.2. Ordbanneshme (FDB) 50.0 51.8 ugL 104.0 41.11 603.465 692.16 031.1 Entyl ten Buyl Eher 50.0 55.6 ugL 104.4 61.42 603.465 692.16 031.1 String Buyl Achola 50.0 67.7 ugL 124.4 64.142 603.465 692.16 031.1 String Buyl Achola 50.0 67.7 ugL 124.4 64.142 603.455 692.16 031.1 String Buyl Achola 50.0 67.2 1164 78.120 603.455 692.16 031.1 String Buyl Achola 50.0 52.2 1044 78.120 603.465 692.16 031.1 String Buyl Achola 50.0 52.2 1044 78.120 603.462 692.166 692.16 692.16 692.16 692.16 692.16 692.16 692.16 692.16 692.16 692.16 692.16 692.16 692.16 692.16 <	• • •								
1,2-Dichlemenchane (EDB) 90,0 46.2 ng/L 92%,0 7.128 601465 012/106 0111 1,2-Dichlemechane 50,0 53,6 ug/L 101%,0 6414 64365 021/106 021/10 021/106 0		50.0	48.5		ug/L	97%	56 - 145	6034365	03/21/06 03:11
1,2.Dichlosentane 50.0 51.8 ug/L 104% 74.11 601.405 01/100.071.11 Ethy ten-Bury Ether 50.0 50.6 ug/L 104% 64.141 601.465 01/100.071.11 Mally ten-Bury Ether 50.0 55.9 ug/L 112% 64.124 603.465 01/100.071.11 Surrogate: 1,2.Dichloreethane-dr 50.0 57.9 ug/L 121% 64.124 603.465 01/100.071.11 Surrogate: 1,2.Dichloreethane-dr 50.0 53.2 116% 70-122 603.465 01/100.071.11 Surrogate: 1,2.Dichloreethane-dr 50.0 53.2 110% 73-122 603.465 01/100.071.11 Surrogate: 4-Broingfluoradesenee 50.0 53.2 110% 73-122 603.462 01/20.80 53.1 Broindocharee 50.0 60.2 ug/L 120% 74-124 603.462 01/20.80 53.1 Broindocharee 50.0 60.2 ug/L 120% 74-124 603.462 01/20.80 53.1 Broindocharee 50.0 62.3 ug/L 120% 74-124		50.0	46.2			92%	75 - 128	6034365	03/21/06 03:11
Bity text-liayl Eller 50.0 50.6 43.8 upL 101% 64-141 6034655 0321/06 03:11 Dinkery tert-layl Eller 50.0 65.59 upL 112% 66-14.2 603465 0321/06 03:11 Terking Buyl Akchol 50.0 67.7 upL 12% 61.42 603465 0321/06 03:11 Surragen: Ellemenfluoromenhane 50.0 52.2 104% 79.12 603465 6321/06 03:11 Surragen: Fluorende 50.0 52.2 104% 79.12 603465 6321/06 03:11 Surragen: Fluorende 50.0 52.2 104% 79.12 603465 6321/06 03:11 Surragen: Fluorende 50.0 52.2 104% 79.12 6034629 6321/06 03:11 Bonnechinenene 50.0 53.9 L upL 12% 61.4 63429 6321/06 03:11 Bronnechinenenenenenenenenenenenenenenenenenene		50.0	51.8		-	104%	74 - 131	6034365	03/21/06 03:11
Disprop S0.0 43.8 upL 49% 73-135 601465 002106 03:11 Medy Ins Buy Lebrar 50.0 53.9 upL 112% 66-142 603465 032106 03:11 Surragen: 1-2.Dichlorenthame-dr 50.0 57.9 116% 70-130 603455 032106 03:11 Surragen: 1-2.Dichlorenthame-dr 50.0 52.2 104% 78-121 603455 032106 03:11 Surragen: 1-2.Dichlorenthame-dr 50.0 52.2 104% 78-121 603455 032106 03:11 Surragen: 1-2.Dichlorenthame-dr 50.0 52.2 104% 78-121 603459 032106 03:11 Surragen: 1-2.Dichlorenthame 50.0 52.2 104% 74-124 6034629 032106 15:31 Bronnohomenthame 50.0 62.1 upL 107% 71-134 6034629 032306 15:53 Bronnohomenthame 50.0 62.1 upL 127% 76-134 6034629 032306 15:53 Bronnohomenthame 50.0 63.1 upL <td< td=""><td>Ethyl tert-Butyl Ether</td><td>50.0</td><td>50.6</td><td></td><td></td><td>101%</td><td>64 - 141</td><td>6034365</td><td>03/21/06 03:11</td></td<>	Ethyl tert-Butyl Ether	50.0	50.6			101%	64 - 141	6034365	03/21/06 03:11
Methyl Eher 50.0 55.9 ug/L 112% 66 - 12.0 003435 0321/06 03:11 Terriary Buyl Alcohal 500 677 ug/L 111% 42.14 603455 0221/06 03:11 Surrague: I.J.Chronefhuezomandame 500 54.3 109% 79-122 603455 0221/06 03:11 Surrague: I.J.Connefhuezomandame 500 52.2 104% 78-122 603455 0321/06 03:11 Surrague: I.J.Connefhuezomandame 500 52.2 104% 78-122 603455 0321/06 03:11 Surrague: I.J.Connefhuezomandame 500 52.2 104% 78-123 603455 0321/06 15:33 Botacane 500 59.8 ug/L 104% 74-124 6034629 0323/06 15:33 Bromochizonechane 500 62.3 ug/L 105% 74-124 6034629 0323/06 15:33 Bromochizonechane 500 62.3 ug/L 116% 70-134 6034629 0323/06 15:33 Bromochizonechane 500 62.1 ug/L 117% 63-16 0121 116% 63-12 0323/06 15		50.0	43.8		-	88%	73 - 135	6034365	03/21/06 03:11
Terriary Bayl Alcohol 509 607 upl. 121% 42 · 154 603456 032106 03:11 Surragget: Dinomellamened/annomblamene/annomblamene/annomblamene/annomblamene/annomblamene/annomblamene/annomblamene/annomblamene/annomblamene/annomblamene/annomblamene/annomblamene/annomblamene/annombla		50.0	55.9		-	112%	66 - 142	6034365	03/21/06 03:11
Surrogate: 1.1.0% 70-130 6034.65 603.116 Surrogate: Dimonfluencenthane 30.0 54.3 100% 79-122 6034.65 0.021.06 0.031.11 Surrogate: Dimonfluencenthane 30.0 55.2 110% 79-122 6034.65 0.021.06 0.031.11 Surrogate:	Tertiary Butyl Alcohol	500	607			121%	42 - 154	6034365	03/21/06 03:11
Surragent: Tohue-d8 50.0 52.2 1044 78 - 121 6034365 092106 03:11 Surragent: F-Brome/Increbernene 50.0 55.2 1095 78 - 126 6034365 092106 03:11 BO34629-BS1 Xerragent: F-Brome/Increbernene 250 55.9 L ug/L 2164 41 - 152 6034629 092206 155.3 Boronobenzene 50.0 65.0 ug/L 1204 79 - 124 6034629 092206 155.3 Bromobenzene 50.0 67.9 ug/L 1164 70 - 134 6034629 092206 155.3 Bromobenzene 50.0 62.1 ug/L 1254 76 - 135 6034629 092206 155.3 Bromobenzene 50.0 62.1 ug/L 1254 76 - 134 6034629 092206 155.3 Bromobenzene 50.0 63.7 L ug/L 1174 63 4629 092206 155.3 Sechurybenzene 50.0 63.8 L ug/L 1175		50.0	57.9		-	116%	70 - 130	6034365	03/21/06 03:11
Surragent: Tohnen-d8 50.0 52.2 104% 78 - 121 6034365 032106 03:11 Surragent: + Atronog/herodensene 50.0 55.2 110% 78 - 124 603405 032106 03:11 GO34629-BS1 Xettono 250 539 L ug/L 216% 41 - 152 6034629 003206 15:53 Bronochonzene 50.0 60.2 ug/L 126% 74 - 124 6034629 003206 15:53 Bronochioronchane 50.0 67.7 ug/L 116% 70 - 134 6034629 003206 15:53 Bronochioronchane 50.0 62.1 ug/L 116% 70 - 134 6034629 003206 15:53 Bronochioronchane 50.0 62.1 ug/L 174% 68 - 166 0034629 003206 15:53 Ses-Buryhomzne 50.0 63.7 L ug/L 173% 6034629 003206 15:53 Ses-Buryhomzne 50.0 63.8 L ug/L 133% 71 - 134 6034629 003206 15:53 Carbo	0	50.0	54.3			109%	79 - 122	6034365	03/21/06 03:11
Acetone Sola Sola Sola U U/L L U/L <thl< th=""> L U/L</thl<>	Surrogate: Toluene-d8	50.0	52.2			104%	78 - 121	6034365	03/21/06 03:11
Accone 250 359 L ugL 16% 41-152 6034629 002306 15.33 Benzene 50.0 59.8 ugL 120% 79.12 6034629 002306 15.33 Bromochloromethane 50.0 62.3 ug/L 161% 70-134 6034629 002306 15.33 Bromochloromethane 50.0 62.3 ug/L 161% 70-134 6034629 002306 15.33 Bromochloromethane 50.0 62.1 ug/L 176% 63.4629 002306 15.33 Bromochloromethane 50.0 62.1 ug/L 176% 63.4629 002306 15.33 Bromochlance 50.0 61.6 ug/L 176% 63.4629 002306 15.33 Bromochlaufide 50.0 63.8 L ug/L 113% 70-138 6034629 002306 15.33 Cabon Tetrechoride 50.0 63.4 L ug/L 113% 71-138 6034629 002306 15.33 Chlorodenene 50.0 63.4 ug/L	•	50.0	55.2			110%	78 - 126	6034365	03/21/06 03:11
Accone 250 359 L ugL 16% 41-152 6034629 002306 15.33 Benzene 50.0 59.8 ugL 120% 79.12 6034629 002306 15.33 Bromochloromethane 50.0 62.3 ug/L 161% 70-134 6034629 002306 15.33 Bromochloromethane 50.0 62.3 ug/L 161% 70-134 6034629 002306 15.33 Bromochloromethane 50.0 62.1 ug/L 176% 63.4629 002306 15.33 Bromochloromethane 50.0 62.1 ug/L 176% 63.4629 002306 15.33 Bromochlance 50.0 61.6 ug/L 176% 63.4629 002306 15.33 Bromochlaufide 50.0 63.8 L ug/L 113% 70-138 6034629 002306 15.33 Cabon Tetrechoride 50.0 63.4 L ug/L 113% 71-138 6034629 002306 15.33 Chlorodenene 50.0 63.4 ug/L	6034629-BS1								
Bronobenzene 50.0 60.2 ugL 120% 74-124 603429 03/23/06 15.33 Bromochloromethane 50.0 57.9 ug/L 116% 70-134 603429 03/23/06 15.33 Bromochloromethane 50.0 62.1 ug/L 125% 76-135 603429 03/23/06 15.33 Bromochane 50.0 62.1 ug/L 171% 53-16 603429 03/23/06 15.33 Bromochane 50.0 61.6 ug/L 171% 53-16 603429 03/23/06 15.33 Bromochane 50.0 61.6 ug/L 128% 76-128 603429 03/23/06 15.33 Bromochance 50.0 61.6 ug/L 13% 71-138 6034629 03/23/06 15.33 Carbon disulfide 50.0 63.8 L ug/L 13% 71-138 6034629 03/23/06 15.33 Charbon disulfide 50.0 63.6 L ug/L 13% <td></td> <td>250</td> <td>539</td> <td>L</td> <td>ug/L</td> <td>216%</td> <td>41 - 152</td> <td>6034629</td> <td>03/23/06 15:53</td>		250	539	L	ug/L	216%	41 - 152	6034629	03/23/06 15:53
Bronochloromethane 50.0 57.9 ug/L 116% 70 - 134 6034629 03/23/06 15:31 Bromodichloromethane 50.0 62.3 ug/L 124% 76 - 135 6034629 03/23/06 15:33 Bromodichloromethane 50.0 62.1 ug/L 124% 47 - 135 6034629 03/23/06 15:33 Dromomethane 50.0 63.7 L ug/L 174% 53.6 6034629 03/23/06 15:33 2-Butanone 50.0 61.6 ug/L 175% 68 - 136 6034629 03/23/06 15:33 net-Butylbenzene 50.0 67.4 ug/L 115% 70 - 134 6034629 03/23/06 15:33 Carbon disulfide 50.0 66.7 ug/L 133% 71 - 138 6034629 03/23/06 15:33 Chlorodbrenzene 50.0 66.7 ug/L 123% 68.16 6034629 03/23/06 15:33 Chlorodbrenzene 50.0 68.6 ug/L <td>Benzene</td> <td>50.0</td> <td>59.8</td> <td></td> <td>ug/L</td> <td>120%</td> <td>79 - 123</td> <td>6034629</td> <td>03/23/06 15:53</td>	Benzene	50.0	59.8		ug/L	120%	79 - 123	6034629	03/23/06 15:53
Bromodichloromethane 50.0 62.3 ug/L 125% 76 - 135 6034629 03/23/06 15:33 Bromomethane 50.0 62.1 ug/L 124% 47 - 135 6034629 03/23/06 15:33 2-Butnome 50.0 85.7 L ug/L 176% 68 - 136 6034629 03/23/06 15:33 2-Butnome 50.0 61.6 ug/L 123% 70 - 128 6034629 03/23/06 15:33 n-Butylbenzene 50.0 61.6 ug/L 123% 70 - 134 6034629 03/23/06 15:33 carbon fisurfide 50.0 63.8 L ug/L 115% 70 - 134 6034629 03/23/06 15:33 Carbon fisurfide 50.0 63.8 L ug/L 138% 71 - 138 6034629 03/23/06 15:33 Chlorodishomemethane 50.0 61.5 L ug/L 133% 80 - 120 6034629 03/23/06 15:33 Chlorodishomomethane	Bromobenzene	50.0	60.2		ug/L	120%	74 - 124	6034629	03/23/06 15:53
Bromoform 50.0 62.1 u/L 124% 47.13 6034629 03/23/06 15:33 Bromomethane 50.0 85.7 L ug/L 171% 53.162 6034629 03/23/06 15:33 2-Buttonoe 250 441 L ug/L 176% 68-136 6034629 03/23/06 15:33 2-Buttonoe 50.0 61.6 ug/L 128% 76-128 6034629 03/23/06 15:33 ne-Butylbenzene 50.0 63.8 L ug/L 115% 70-134 6034629 03/23/06 15:33 Chaben disulfide 50.0 63.8 L ug/L 119% 71-138 6034629 03/23/06 15:33 Chaben disulfide 50.0 63.3 ug/L 119% 71-136 6034629 03/23/06 15:33 Chlorodhromethane 50.0 61.5 L ug/L 119% 71-136 6034629 03/23/06 15:31 Chlorodhromothane 50.0 <td>Bromochloromethane</td> <td>50.0</td> <td>57.9</td> <td></td> <td>ug/L</td> <td>116%</td> <td>70 - 134</td> <td>6034629</td> <td>03/23/06 15:53</td>	Bromochloromethane	50.0	57.9		ug/L	116%	70 - 134	6034629	03/23/06 15:53
Bromomethane 50.0 85.7 L ug/L 171% 53 - 162 6034629 03/23/6 15:33 2-Butanone 250 441 L ug/L 176% 68 - 136 6034629 03/23/6 15:33 sec-Butylbenzene 50.0 61.6 ug/L 123% 76 - 128 6034629 03/23/6 15:33 n-Butylbenzene 50.0 67.4 ug/L 123% 73 - 13 6034629 03/23/6 15:33 Carbon distlifd 50.0 63.7 ug/L 123% 73 - 13 6034629 03/23/6 15:33 Carbon Tetrachloride 50.0 66.7 ug/L 119% 71 - 136 6034629 03/23/6 15:33 Chlorobenzene 50.0 61.5 L ug/L 119% 71 - 136 6034629 03/23/6 15:33 Chlorodiromomethane 50.0 62.3 ug/L 12% 68 - 126 6034629 03/23/6 15:33 Chlorodihenomethane 50.0 6	Bromodichloromethane	50.0	62.3		ug/L	125%	76 - 135	6034629	03/23/06 15:53
2-Butanone 250 441 L ug/L 176% 68 - 136 6034629 03/23/06 15:33 sec-Butylbenzene 50.0 61.6 ug/L 123% 76 - 128 6034629 03/23/06 15:33 n-Butylbenzene 50.0 67.4 ug/L 115% 70 - 134 6034629 03/23/06 15:33 tert-Butylbenzene 50.0 63.8 L ug/L 128% 73 - 127 6034629 03/23/06 15:33 Carbon fisulfide 50.0 66.7 ug/L 133% 71 - 138 6034629 03/23/06 15:33 Chlorobenzene 50.0 61.5 L ug/L 133% 71 - 136 6034629 03/23/06 15:33 Chlorobenzene 50.0 62.3 ug/L 119% 71 - 136 6034629 03/23/06 15:33 Chlorobenzene 50.0 64.8 ug/L 130% 55 - 149 6034629 03/23/06 15:33 Chlorobenzene 50.0 63.	Bromoform	50.0	62.1		ug/L	124%	47 - 135	6034629	03/23/06 15:53
sec-Butylbenzene 50.0 61.6 u/L 123% 76 · 128 6034629 03/23/06 15:33 n-Butylbenzene 50.0 57.4 ug/L 115% 70 - 134 6034629 03/23/06 15:33 tert-Butylbenzene 50.0 63.8 L ug/L 128% 73 · 127 6034629 03/23/06 15:33 Carbon disulfide 50.0 66.7 ug/L 133% 71 · 138 6034629 03/23/06 15:33 Carbon Tetrachloride 50.0 69.3 ug/L 119% 71 · 138 6034629 03/23/06 15:33 Chlorodbronomethane 50.0 61.5 L ug/L 123% 86 · 126 6034629 03/23/06 15:33 Chlorodbronomethane 50.0 63.8 ug/L 123% 66 · 126 6034629 03/23/06 15:33 Chloroform 50.0 63.6 ug/L 117% 77 · 126 6034629 03/23/06 15:33 Chloroform 50.0 68.7 L ug/L 177 6034629 03/23/06 15:33	Bromomethane	50.0	85.7	L	ug/L	171%	53 - 162	6034629	03/23/06 15:53
n-Burylbenzene50.057.4ug/L115%70 - 134603462903/23/0615:33tert-Burylbenzene50.063.8Lug/L128%73 - 127603462903/23/0615:53Carbon disulfide50.066.7ug/L133%71 - 138603462903/23/0615:53Carbon Tetrachloride50.059.3ug/L119%71 - 136603462903/23/0615:53Chlorobenzene50.061.5Lug/L123%80 - 120603462903/23/0615:53Chlorobethane50.062.3ug/L130%55 - 149603462903/23/0615:53Chlorobethane50.064.8ug/L130%55 - 149603462903/23/0615:53Chlorobethane50.068.7Lug/L177%77 - 126603462903/23/0615:53Chlorobethane50.061.1ug/L179%39 - 151603462903/23/0615:53J-Chlorobluene50.066.7Lug/L123%603462903/23/0615:53J-2-Dibromo-3-chloropropane50.058.3ug/L118%75 - 128603462903/23/0615:53J-2-Dibromo-14ner50.058.3ug/L118%75 - 128603462903/23/0615:53J-2-Dibromo-14ner50.058.3ug/L118%75 - 128603462903/23/0615:53J-2-Dibromo-14ner50.065.4L	2-Butanone	250	441	L	ug/L	176%	68 - 136	6034629	03/23/06 15:53
tert-Butylbenzene50.063.8Lug/L128%73.127603462903/23/06 15:53Carbon disulfide50.066.7ug/L133%71-138603462903/23/06 15:53Carbon Tetrachloride50.059.3ug/L119%71-136603462903/23/06 15:53Chlorobenzene50.061.5Lug/L123%80-120603462903/23/06 15:53Chlorobenzene50.062.3ug/L125%68-126603462903/23/06 15:53Chlorobenzene50.064.8ug/L130%55-149603462903/23/06 15:53Chlorobirorom thane50.064.8ug/L117%77-126603462903/23/06 15:53Chlorobirorom thane50.058.6ug/L117%77-126603462903/23/06 15:534-Chlorobiurne50.066.1ug/L120%76-128603462903/23/06 15:531,2-Dibromo-3-chloropropane50.066.7Lug/L133%56-130603462903/23/06 15:531,2-Dibromo-4-chloropropane50.058.3ug/L133%56-130603462903/23/06 15:531,2-Dibromo-3-chloropropane50.058.3ug/L133%56-130603462903/23/06 15:531,2-Dibromo-1-chlorobenzene50.058.3ug/L133%56-130603462903/23/06 15:531,3-Dichlorobenzene50.058.3ug/L131%75-128603462903/23/06 15:53<	sec-Butylbenzene	50.0	61.6		ug/L	123%	76 - 128	6034629	03/23/06 15:53
Carbon disulfide50.066.7ug/L133%71 - 138603462903/23/0615:53Carbon Tetrachloride50.059.3ug/L119%71 - 136603462903/23/0615:53Chlorobenzene50.061.5Lug/L123%80 - 120603462903/23/0615:53Chlorodibromomethane50.062.3ug/L130%55 - 149603462903/23/0615:53Chlorodibromomethane50.064.8ug/L130%55 - 149603462903/23/0615:53Chloroform50.058.6ug/L117%77 - 126603462903/23/0615:53Chlorodibromothane50.061.1ug/L122%76 - 128603462903/23/0615:532-Chloroduene50.061.1ug/L120%73 - 130603462903/23/0615:532-Chloroduene50.066.7Lug/L133%56 - 130603462903/23/0615:531,2-Dibromo-3-chloropropane50.059.8ug/L118%75 - 128603462903/23/0615:531,2-Dibromo-1-chloropropane50.059.1ug/L118%75 - 128603462903/23/0615:531,3-Dichlorobenzene50.055.4Lug/L118%75 - 128603462903/23/0615:531,3-Dichlorobenzene50.065.4Lug/L118%75 - 128603462903/23/0615:531,3-Dichlorob	n-Butylbenzene	50.0	57.4		ug/L	115%	70 - 134	6034629	03/23/06 15:53
Carbon Tetrachloride50.059.3ug/L119%71 - 136603462903/23/06 15:33Chlorobenzene50.061.5Lug/L123%80 - 120603462903/23/06 15:33Chlorodibromomethane50.062.3ug/L125%68 - 126603462903/23/06 15:33Chlorothane50.064.8ug/L130%55 - 149603462903/23/06 15:33Chloroform50.058.6ug/L117%77 - 126603462903/23/06 15:33Chlorothane50.089.7Lug/L17%39 - 151603462903/23/06 15:334-Chlorotoluene50.061.1ug/L12%76 - 128603462903/23/06 15:331,2-Dibromo-3-chloropropane50.066.7Lug/L13%56 - 130603462903/23/06 15:351,2-Dibromoethane (EDB)50.059.1ug/L11%75 - 128603462903/23/06 15:351,4-Dichlorobenzene50.058.3ug/L11%75 - 128603462903/23/06 15:351,4-Dichlorobenzene50.059.1ug/L11%75 - 128603462903/23/06 15:351,4-Dichlorobenzene50.058.3ug/L11%75 - 128603462903/23/06 15:351,3-Dichlorobenzene50.065.4Lug/L11%75 - 128603462903/23/06 15:351,2-Dichlorobenzene50.065.4Lug/L11%75 - 128603462903/23/06 15:	tert-Butylbenzene	50.0	63.8	L	ug/L	128%	73 - 127	6034629	03/23/06 15:53
Chlorobenzene50.061.5Lug/L123%80 - 120603462903/23/06 15:33Chlorodibromomethane50.062.3ug/L125%68 - 126603462903/23/06 15:33Chlorothane50.064.8ug/L130%55 - 149603462903/23/06 15:53Chloroform50.058.6ug/L117%77 - 126603462903/23/06 15:53Chlorothane50.089.7Lug/L17%39 - 151603462903/23/06 15:534-Chlorotoluene50.061.1ug/L122%76 - 128603462903/23/06 15:531,2-Dibromo-3-chloropropane50.066.7Lug/L133%56 - 130603462903/23/06 15:531,2-Dibromoethane (EDB)50.059.1ug/L118%75 - 128603462903/23/06 15:531,4-Dichlorobenzene50.065.4Lug/L111%76 - 129603462903/23/06 15:531,3-Dichlorobenzene50.065.4Lug/L111%78 - 122603462903/23/06 15:531,3-Dichlorobenzene50.063.0Lug/L131%78 - 122603462903/23/06 15:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/06 15:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/06 15:531,2-Dichlorobenzene50.063.6ug/L127%74 - 131	Carbon disulfide	50.0	66.7		ug/L	133%	71 - 138	6034629	03/23/06 15:53
Chlorodibromomethane50.062.3ug/L125%68 - 126603462903/23/0615:53Chlorodthane50.064.8ug/L130%55 - 149603462903/23/0615:53Chloroform50.058.6ug/L117%77 - 126603462903/23/0615:53Chloromethane50.089.7Lug/L179%39 - 151603462903/23/0615:534-Chlorotoluene50.061.1ug/L122%76 - 128603462903/23/0615:531,2-Dibromo-3-chloropropane50.066.7Lug/L133%56 - 130603462903/23/0615:531,2-Dibromoethane (EDB)50.059.8ug/L118%75 - 128603462903/23/0615:531,4-Dichlorobenzene50.058.3ug/L118%75 - 128603462903/23/0615:531,4-Dichlorobenzene50.058.3ug/L118%75 - 128603462903/23/0615:531,4-Dichlorobenzene50.058.3ug/L118%75 - 128603462903/23/0615:531,3-Dichlorobenzene50.065.4Lug/L131%78 - 122603462903/23/0615:531,3-Dichlorobenzene50.063.0Lug/L131%78 - 122603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/0615:531,2-	Carbon Tetrachloride	50.0	59.3		ug/L	119%	71 - 136	603462 9	03/23/06 15:53
Chlorodibronomethane50.062.3ug/L125%68 - 126603462903/23/0615:33Chlorothane50.064.8ug/L130%55 - 149603462903/23/0615:33Chloroform50.058.6ug/L117%77 - 126603462903/23/0615:33Chlorothane50.089.7Lug/L179%39 - 151603462903/23/0615:334-Chlorotoluene50.061.1ug/L122%76 - 128603462903/23/0615:331,2-Dibromo-3-chloropropane50.066.7Lug/L133%56 - 130603462903/23/0615:331,2-Dibromoethane (EDB)50.059.1ug/L118%75 - 128603462903/23/0615:331,4-Dichlorobenzene50.065.4Lug/L118%78 - 122603462903/23/0615:331,3-Dichlorobenzene50.065.4Lug/L131%78 - 122603462903/23/0615:331,3-Dichlorobenzene50.065.4Lug/L131%78 - 122603462903/23/0615:331,3-Dichlorobenzene50.063.0Lug/L131%78 - 122603462903/23/0615:331,2-Dichlorobenzene50.063.0Lug/L131%78 - 123603462903/23/0615:331,2-Dichlorobenzene50.063.0Lug/L130%82 - 123603462903/23/06	Chlorobenzene	50.0	61.5	L	ug/L	123%	80 - 120	6034629	03/23/06 15:53
Chloroform50.058.6ug/L117%77 - 126603462903/23/0615:33Chloromethane50.089.7Lug/L179%39 - 151603462903/23/0615:534-Chlorotoluene50.061.1ug/L122%76 - 128603462903/23/0615:532-Chlorotoluene50.059.8ug/L120%73 - 130603462903/23/0615:531,2-Dibromo-3-chloropropane50.066.7Lug/L133%56 - 130603462903/23/0615:531,2-Dibromoethane (EDB)50.059.1ug/L118%75 - 128603462903/23/0615:531,4-Dichlorobenzene50.065.4Lug/L117%76 - 129603462903/23/0615:531,3-Dichlorobenzene50.063.0Lug/L131%78 - 122603462903/23/0615:531,2-Dichlorobenzene50.063.0Lug/L131%78 - 122603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/0615:531,2-Dichlorobenzene50.061.6110ug/L127%74 - 131603462903/23/0615:531,2-Dichlorobenzene50.063.6ug/L127%74 - 131603462903/23/06 </td <td>Chlorodibromomethane</td> <td>50.0</td> <td>62.3</td> <td></td> <td>ug/L</td> <td>125%</td> <td>68 - 126</td> <td>6034629</td> <td>03/23/06 15:53</td>	Chlorodibromomethane	50.0	62.3		ug/L	125%	68 - 126	6034629	03/23/06 15:53
Chloromethane50.089.7Lug/L179%39 - 151603462903/23/0615:534-Chlorotoluene50.061.1ug/L122%76 - 128603462903/23/0615:532-Chlorotoluene50.059.8ug/L120%73 - 130603462903/23/0615:531,2-Dibromo-3-chloropropane50.066.7Lug/L133%56 - 130603462903/23/0615:531,2-Dibromoethane (EDB)50.059.1ug/L118%75 - 128603462903/23/0615:531,4-Dichlorobenzene50.058.3ug/L117%76 - 129603462903/23/0615:531,3-Dichlorobenzene50.065.4Lug/L131%78 - 122603462903/23/0615:531,2-Dichlorobenzene50.063.0Lug/L130%82 - 123603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/0615:53Dichlorodifluoromethane50.063.6ug/Lug/L120%28 - 161603462903/23/0615:531,2-Dichlorocethane50.063.6ug/Lug/L127%74 - 131603462903/23/0615:531,2-Dichlorocethane50.063.6ug/Lug/L127%74 - 131	Chloroethane	50,0	64.8		ug/L	130%	55 - 149	6034629	03/23/06 15:53
4-Chlorotoluene50.061.1ug/L122%76 - 128603462903/23/0615:532-Chlorotoluene50.059.8ug/L120%73 - 130603462903/23/0615:531,2-Dibromo-3-chloropropane50.066.7Lug/L133%56 - 130603462903/23/0615:531,2-Dibromoethane (EDB)50.059.1ug/L118%75 - 128603462903/23/0615:53Dibromomethane50.058.3ug/L117%76 - 129603462903/23/0615:531,4-Dichlorobenzene50.065.4Lug/L131%78 - 122603462903/23/0615:531,3-Dichlorobenzene50.063.0Lug/L131%78 - 122603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/0615:531,2-Dichlorobenzene50.063.6110Lug/L120%28 - 161603462903/23/0615:531,2-Dichloroethane50.063.6ug/L127%74 - 131603462903/23/0615:531,2-Dichloroethane50.063.6ug/L127%74 - 131603462903/23/0615:531,2-Dichloroethane50.063.6ug/L127%74 - 131603462903/23/06	Chloroform	50.0	58.6		ug/L	117%	77 - 126	6034629	03/23/06 15:53
2-Chlorotoluene50.059.8ug/L120%73 - 130603462903/23/0615:531,2-Dibromo-3-chloropropane50.066.7Lug/L133%56 - 130603462903/23/0615:531,2-Dibromoethane (EDB)50.059.1ug/L118%75 - 128603462903/23/0615:53Dibromomethane50.058.3ug/L117%76 - 129603462903/23/0615:531,4-Dichlorobenzene50.065.4Lug/L131%78 - 122603462903/23/0615:531,3-Dichlorobenzene50.063.0Lug/L131%78 - 122603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/0615:53Dichlorodifluoromethane50.0110Lug/L130%82 - 123603462903/23/0615:531,2-Dichloroethane50.063.6ug/L130%82 - 123603462903/23/0615:531,2-Dichloroethane50.063.6ug/L127%74 - 131603462903/23/0615:531,2-Dichloroethane50.063.6ug/L127%74 - 131603462903/23/0615:53	Chloromethane	50.0	89.7	L	ug/L	179%	39 - 151	6034629	03/23/06 15:53
1,2-Dibromo-3-chloropropane50.066.7Lug/L133%56 · 130603462903/23/0615:531,2-Dibromoethane (EDB)50.059.1ug/L118%75 · 128603462903/23/0615:53Dibromomethane50.058.3ug/L117%76 · 129603462903/23/0615:531,4-Dichlorobenzene50.065.4Lug/L131%78 · 122603462903/23/0615:531,3-Dichlorobenzene50.063.0Lug/L130%80 · 124603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 · 123603462903/23/0615:53Dichlorodifluoromethane50.0110Lug/L220%28 · 161603462903/23/0615:531,2-Dichloroethane50.063.6ug/L127%74 · 131603462903/23/0615:53	4-Chlorotoluene	50.0	61.1		ug/L	122%	76 - 128	6034629	03/23/06 15:53
1,2-Dibromo-3-chloropropane50.066.7Lug/L133%56 · 130603462903/23/0615:531,2-Dibromoethane (EDB)50.059.1ug/L118%75 · 128603462903/23/0615:53Dibromomethane50.058.3ug/L117%76 · 129603462903/23/0615:531,4-Dichlorobenzene50.065.4Lug/L131%78 · 122603462903/23/0615:531,3-Dichlorobenzene50.063.0Lug/L130%80 · 124603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 · 123603462903/23/0615:53Dichlorodifluoromethane50.0110Lug/L220%28 · 161603462903/23/0615:531,2-Dichloroethane50.063.6ug/L127%74 · 131603462903/23/0615:53	2-Chlorotolucne	50,0	59.8		ug/L	120%	73 - 130	6034629	03/23/06 15:53
1,2-Dibromoethane (EDB)50.059.1ug/L118%75 - 128603462903/23/0615:53Dibromomethane50.058.3ug/L117%76 - 129603462903/23/0615:531,4-Dichlorobenzene50.065.4Lug/L131%78 - 122603462903/23/0615:531,3-Dichlorobenzene50.063.0Lug/L126%80 - 124603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/0615:53Dichlorodifluoromethane50.0110Lug/L220%28 - 161603462903/23/0615:531,2-Dichlorocthane50.063.6ug/L127%74 - 131603462903/23/0615:53	1,2-Dibromo-3-chloropropane	50.0	66.7	L		133%	56 - 130	6034629	03/23/06 15:53
1,4-Dichlorobenzene50.065.4Lug/L131%78 - 122603462903/23/0615:531,3-Dichlorobenzene50.063.0Lug/L126%80 - 124603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/0615:53Dichlorodifluoromethane50.0110Lug/L220%28 - 161603462903/23/0615:531,2-Dichloroethane50.063.6ug/L127%74 - 131603462903/23/0615:53	1,2-Dibromoethane (EDB)	50.0	59.1		ug/L	118%	75 - 128	6034629	03/23/06 15:53
1,3-Dichlorobenzene50.063.0Lug/L126%80 - 124603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/0615:53Dichlorodifluoromethane50.0110Lug/L220%28 - 161603462903/23/0615:531,2-Dichloroethane50.063.6ug/L127%74 - 131603462903/23/0615:53	Dibromomethane	50.0	58.3		ug/L	117%	76 - 129	6034629	03/23/06 15:53
1,3-Dichlorobenzene50.063.0Lug/L126%80 - 124603462903/23/0615:531,2-Dichlorobenzene50.064.8Lug/L130%82 - 123603462903/23/0615:53Dichlorodifluoromethane50.0110Lug/L220%28 - 161603462903/23/0615:531,2-Dichloroethane50.063.6ug/L127%74 - 131603462903/23/0615:53				L	-	131%		6034629	03/23/06 15:53
1.2-Dichlorobenzene 50.0 64.8 L ug/L 130% 82 - 123 6034629 03/23/06 15:53 Dichlorodifluoromethane 50.0 110 L ug/L 220% 28 - 161 6034629 03/23/06 15:53 1,2-Dichloroethane 50.0 63.6 ug/L 127% 74 - 131 6034629 03/23/06 15:53					-	126%		6034629	03/23/06 15:53
Dichlorodifluoromethane 50.0 110 L ug/L 220% 28 - 161 6034629 03/23/06 15:53 1,2-Dichloroethane 50.0 63.6 ug/L 127% 74 - 131 6034629 03/23/06 15:53						130%		6034629	03/23/06 15:53
1,2-Dichloroethane 50.0 63.6 ug/L 127% 74 - 131 6034629 03/23/06 15:53						220%		6034629	03/23/06 15:53
					-			6034629	
	1,1-Dichloroethane	50.0			-	125%	72 - 131	6034629	03/23/06 15:53

ANALYTICAL TESTING CORPORATION

Cambria Env. Tech. (Emeryville) / SHELL (13675) Client 5900 Hollis Street, Suite A Emeryville, CA 94608 Anni Kreml Attn

Work Order: NPC2456 Project Name: SAP 129452 Project Number: Received:

500 40th Street, Oakland, CA 03/18/06 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by E	PA Method 8260B		<i></i> .	••••			•••••	
6034629-BS1								
cis-1,2-Dichloroethene	50.0	63.4		ug/L	127%	72 - 128	6034629	03/23/06 15:53
1,1-Dichloroethene	50.0	58.5		ug/L	117%	68 - 136	6034629	03/23/06 15:53
trans-1,2-Dichloroethene	50.0	61.9		ug/L	124%	73 - 131	6034629	03/23/06 15:53
2,2-Dichloropropane	50.0	61.6		ug/L	123%	43 - 147	6034629	03/23/06 15:53
1,3-Dichloropropane	50.0	61.1	L	ug/L	122%	80 - 121	6034629	03/23/06 15:53
1,2-Dichloropropane	50.0	59.8		ug/L	120%	76 - 128	6034629	03/23/06 15:53
trans-1,3-Dichloropropene	50.0	58.5		ug/L	117%	57 - 127	6034629	03/23/06 15:53
cis-1,3-Dichloropropene	50.0	56.2		ug/L	112%	61 - 134	6034629	03/23/06 15:53
1,1-Dichloropropenc	50.0	59.8		ug/L	120%	75 - 129	6034629	03/23/06 15:53
Ethylbenzene	50.0	59.6		ug/L	119%	79 - 125	6034629	03/23/06 15:53
Hexachlorobutadiene	50.0	61.2		ug/L	122%	64 - 133	6034629	03/23/06 15:53
2-Hexanone	250	392	L	ug/L	157%	67 - 133	6034629	03/23/06 15:53
Isopropylbenzene	50.0	65.9		ug/L	132%	75 - 132	6034629	03/23/06 15:53
Diisopropyl Ether	50.0	69.0	L	ug/L	138%	73 - 135	6034629	03/23/06 15:53
Methyl tert-Butyl Ether	50.0	62.5		ug/L	125%	66 - 142	6034629	03/23/06 15:53
Methylene Chloride	50.0	68.7		ug/L	137%	74 - 137	6034629	03/23/06 15:53
4-Methyl-2-pentanone	250	342	L	ug/L	137%	73 - 133	6034629	03/23/06 15:53
Styrene	50.0	63.6		ug/L	127%	74 - 133	6034629	03/23/06 15:53
1,1,1,2-Tetrachloroethane	50.0	61.5		ug/L	123%	76 - 130	6034629	03/23/06 15:53
1,1,2,2-Tetrachloroethane	50.0	67.4	L	ug/L	135%	68 - 128	6034629	03/23/06 15:53
Tetrachloroethene	50.0	56.6		ug/L	113%	74 - 125	6034629	03/23/06 15:53
Toluene	50.0	\$6.0		ug/L	112%	78 - 122	6034629	03/23/06 15:53
1,2,4-Trichlorobenzene	50.0	58.4		ug/L	117%	65 - 135	6034629	03/23/06 15:53
1,2,3-Trichlorobenzene	50.0	62.5		ug/L	125%	67 - 139	6034629	03/23/06 15:53
1,1,2-Trichloroethane	50.0	62.7	L	ug/L	125%	84 - 120	6034629	03/23/06 15:53
1,1,1-Trichloroethane	50.0	58.7		ug/L	117%	74 - 134	6034629	03/23/06 15:53
Trichloroethene	50.0	56.9		ug/L	114%	73 - 136	6034629	03/23/06 15:53
Trichlorofluoromethane	50.0	66.3		ug/L	133%	60 - 138	6034629	03/23/06 15:53
1,2,3-Trichloropropane	50.0	73.5	L	ug/L	147%	66 - 131	6034629	03/23/06 15:53
1,3,5-Trimethylbenzene	50.0	60.7		ug/L	121%	77 - 128	6034629	03/23/06 15:53
Vinyl chloride	50.0	60.4		ug/L	121%	56 - 137	6034629	03/23/06 15:53
Xylenes, total	150	179		ug/L	119%	79 - 130	6034629	03/23/06 15:53
1,2,4-Trimethylbenzene	50.0	61.6		ug/L	123%	77 - 128	6034629	03/23/06 15:53
Naphthalene	50.0	66.9		ug/L	134%	66 - 142	6034629	03/23/06 15:53
p-lsopropyltoluene	50.0	66.1	L	ug/L	132%	76 - 130	6034629	03/23/06 15:53
n-Propylbenzene	50.0	61.7		ug/L	123%	75 - 129	6034629	03/23/06 15:53
Surrogate: 1,2-Dichloroethane-d4	50.0	53.7			107%	70 - 130	6034629	03/23/06 15:53
Surrogate: Dibromofluoromethane	50.0	51.1			102%	79 - 122	6034629	03/23/06 15:53
Surrogate: Toluene-d8	50.0	49.1			98%	78 - 121	6034629	03/23/06 15:53
Surrogate: 4-Bromofluorobenzene	50.0	47.3			95%	78 - 126	6034629	03/23/06 15:53

6035070-BS1

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Anni Kreml Attn

NPC2456 Work Order: 500 40th Street, Oakland, CA Project Name: SAP 129452 Project Number: 03/18/06 08:00 Received:

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by E	PA Method 8260B							
6035070-BS1								
Acetone	250	400	L	ug/L	160%	41 - 152	6035070	03/25/06 19:24
Benzene	50.0	60.7		ug/L	121%	79 - 123	6035070	03/25/06 19:24
Bromobenzene	50.0	64.2	L	ug/L	128%	74 - 124	6035070	03/25/06 19:24
Bromochloromethane	50.0	63.4		ug/L	127%	70 - 134	6035070	03/25/06 19:24
Bromodichloromethane	50.0	59.8		ug/L	120%	76 - 135	6035070	03/25/06 19:24
Bromoform	50.0	55.3		ug/L	111%	47 - 135	6035070	03/25/06 19:24
Bromomethane	50.0	49.4		ug/L	99%	53 - 162	6035070	03/25/06 19:24
2-Butanone	250	340		ug/L	136%	68 - 136	6035070	03/25/06 19:24
sec-Butylbenzene	50.0	61.9		ug/L	124%	76 - 128	6035070	03/25/06 19:24
n-Butylbenzene	50.0	59.2		ug/L	118%	70 - 134	6035070	03/25/06 19:24
tert-Butylbenzene	50.0	59.8		ug/L	120%	73 - 127	603507 0	03/25/06 19:24
Carbon disulfide	50.0	58.4		ug/L	117%	71 - 138	6035070	03/25/06 19:24
Carbon Tetrachloride	50.0	58.3		ug/L	117%	71 - 136	6035070	03/25/06 19:24
Chlorobenzene	50.0	61.5	L	ug/L	123%	80 - 120	6035070	03/25/06 19:24
Chlorodibromomethane	50.0	59.2		ug/L	118%	68 - 126	6035070	03/25/06 19:24
Chloroethane	50.0	50.6		ug/L	101%	55 - 149	6035070	03/25/06 19:24
Chloroform	50. 0	57.9		ug/L	116%	77 - 126	6035070	03/25/06 19:24
Chloromethane	50.0	41.9		ug/L	84%	39 - 151	6035070	03/25/06 19:24
4-Chlorotoluene	\$0.0	61.6		ug/L	123%	76 - 128	6035070	03/25/06 19:24
2-Chlorotoluene	50.0	65.1		ug/L	130%	73 - 130	6035070	03/25/06 19:24
1,2-Dibromo-3-chloropropane	50.0	58.8		ug/L	118%	56 - 130	6035070	03/25/06 19:24
1,2-Dibromoethane (EDB)	50,0	66.6	L	ug/L	133%	75 - 128	6035070	03/25/06 19:24
Dibromomethane	50.0	63.6		ug/L	127%	76 - 129	6035070	03/25/06 19:24
1,4-Dichlorobenzene	50.0	59.7		ug/L	119%	78 - 122	6035070	03/25/06 19:24
1,3-Dichlorobenzene	50.0	64.9	L	ug/L	130%	80 - 124	6035070	03/25/06 19:24
1,2-Dichlorobenzene	50.0	62.0	L	ug/L	124%	82 - 123	6035070	03/25/06 19:24
Dichlorodifluoromethane	50.0	38.1		ug/L	76%	28 - 161	6035070	03/25/06 19:24
1,2-Dichloroethane	50.0	63.3		ug/L	127%	74 - 131	6035070	03/25/06 19:24
1,1-Dichloroethane	50.0	60.8		ug/L	122%	72 - 131	603507 0	03/25/06 19:24
cis-1,2-Dichloroethene	50.0	61.3		ug/L	123%	72 - 128	6035070	03/25/06 19:24
1,1-Dichloroethene	50.0	62.3		ug/L	125%	68 - 136	6035070	03/25/06 19:24
trans-1,2-Dichloroethene	50.0	63.7		ug/L	127%	73 - 131	6035070	03/25/06 19:24
2,2-Dichloropropane	50.0	57.1		ug/L	114%	43 - 147	6035070	03/25/06 19:24
1,3-Dichloropropane	50.0	66.2	L	ug/L	132%	80 - 121	6035070	03/25/06 19:24
1,2-Dichloropropane	50.0	59.9		ug/L	120%	76 - 128	6035070	03/25/06 19:24
trans-1,3-Dichloropropene	50.0	59.0		ug/L	118%	57 - 127	6035070	03/25/06 19:24
cis-1,3-Dichloropropene	50.0	60.5		ug/L	121%	61 - 134	6035070	03/25/06 19:24
1,1-Dichloropropene	50.0	66.3	L	ug/L	133%	75 - 129	6035070	03/25/06 19:24
Ethylbenzene	50.0	63.0	L	ug/L	126%	79 - 125	6035070	03/25/06 19:24
Hexachlorobutadiene	50.0	56.6	-	սց/Լ	113%	64 - 133	6035070	03/25/06 19:24
2-Hexanone	250	316		ug/L	126%	67 - 133	6035070	03/25/06 19:24
2-Mexanone								

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Anni Kreml Attn

NPC2456 Work Order: Project Name: SAP 129452 Project Number: Received:

500 40th Street, Oakland, CA 03/18/06 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by EP	PA Method 8260B	····· · · ·	• • • • • • • • • • • • • •					
• • •								
6035070-BS1 Isopropylbenzene	50.0	57.2		ug/L	114%	75 - 132	6035070	03/25/06 19:24
Diisopropyl Ether	50.0	62.0		ug/L	124%	73 - 135	6035070	03/25/06 19:24
Methyl tert-Butyl Ether	50.0	62.0		ug/L	124%	66 - 142	6035070	03/25/06 19:24
Methylene Chloride	50.0	61.0		ug/L	122%	74 - 137	6035070	03/25/06 19:24
4-Methyl-2-pentanone	250	316		ug/L	126%	73 - 133	6035070	03/25/06 19:24
Styrene	50.0	61.2		ug/L	122%	74 - 133	6035070	03/25/06 19:24
1,1,1,2-Tetrachloroethane	50.0	60.5		-9 - ug/L	121%	76 - 130	6035070	03/25/06 19:24
1,1,2,2-Tetrachloroethane	50.0	62.4		ւթ⊷ ug/L	125%	68 - 128	6035070	03/25/06 19:24
Tetrachloroethene	50.0	60.6		- <i></i> ug/L	121%	74 - 125	6035070	03/25/06 19:24
Toluene	50.0	62.9	L	-ə ug/L	126%	78 - 122	603507 0	03/25/06 19:24
1,2,4-Trichlorobenzene	50.0	56.8	L	ug/L	114%	65 - 135	6035070	03/25/06 19:24
1,2,3-Trichlorobenzene	50.0	57.5		ug/L	115%	67 - 139	6035070	03/25/06 19:24
1,1,2-Trichloroethane	50.0	63.7	L	ug/L	127%	84 - 120	6035070	03/25/06 19:24
1,1,1-Trichloroethane	50.0	63.7	Ļ	ug/L	127%	74 - 134	6035070	03/25/06 19:24
Trichloroethene	50.0	60.5		ug/L	121%	73 136	6035070	03/25/06 19:24
	50.0	56.7		ug/L	113%	60 - 138	6035070	03/25/06 19:24
	50.0	50.2		սց/Լ սց/Լ	100%	66 - 131	6035070	03/25/06 19:24
1,2,3-Trichloropropane	50.0	60,1		ug/L	120%	77 - 128	6035070	03/25/06 19:24
1,3,5-Trimethylbenzene		53.6		-	120%	56 - 137	6035070	03/25/06 19:24
Vinyl chloride	50.0			ug/L		79 - 1 30	6035070	03/25/06 19:24
Xylenes, total	150	186		ug/L	124%	79 - 130 77 - 128	6035070	03/25/06 19:24
1,2,4-Trimethylbenzene	50.0	61.9		ug/L	124%			03/25/06 19:24
Naphthalene	50.0	62.2		ug/L	124%	66 - 142	6035070	03/25/06 19:24
p-lsopropyltoluene	50.0	55.6		ug/L	111%	76 - 130	6035070	
n-Propylbenzene	50.0	60.7		ug/L	121%	75 - 129	6035070	03/25/06 19:24
Surrogate: 1,2-Dichloroethane-d4	50.0	50.6			101%	70 - 130	6035070	03/25/06 19:24
Surrogate: Dibromofluoromethane	50.0	50.5			101%	79 - 122	6035070	03/25/06 19:24
Surrogate: Toluene-d8	50.0	50.1			100%	78 - 121	6035070	03/25/06 19:24
Surrogate: 4-Bromofluorobenzene	50.0	51.1			102%	78 - 126	6035070	03/25/06 19:24
Purgeable Petroleum Hydrocarbon	s							
6033731-BS1								
Gasoline Range Organics	3050	3190		ug/L	105%	67 - 130	6033731	03/22/06 12:51
Surrogate: 1,2-Dichloroethane-d4	25.0	25.3			101%	70 - 130	6033731	03/22/06 12:51
Surrogate: Dibromofluoromethane	25.0	26.4			106%	70 - 130	6033731	03/22/06 12:51
Surrogate: Toluene-d8	25.0	25.8			103%	70 - 130	6033731	03/22/06 12:51
Surrogate: 4-Bromofluorobenzene	25.0	25.9			104%	70 - 130	6033731	03/22/06 12:51
6034365-BS1								
Gasoline Range Organics	3050	2600		ug/L	85%	67 - 130	6034365	03/21/06 03:11
Surrogate: 1,2-Dichloroethane-d4	50.0	57.9			116%	70 - 130	6034365	03/21/06 03:11
Surrogate: Dibromofluoromethane	50.0	54.3			109%	70 - 130	6034365	03/21/06 03:11
Surrogate: Toluene-d8	50.0	52.2			104%	70 - 130	6034365	03/21/06 03:11

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Purgeable Petroleum Hydrocarbons								
6034365-BS1								
Surrogate: 4-Bromofluorobenzene	50.0	55.2			110%	70 - 130	6034365	03/21/06 03:11
Extractable Petroleum Hydrocarbon	is with Silica Gel Trea	atment						
6033658-BS1								
Diesel	1000	906		ug/L	91%	49 - 118	6033658	03/25/06 12:38
Surrogate: o-Terphenyl	20.0	24.1			120%	55 - 150	6033658	03/25/06 12:38

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

Work Order:	NPC2456
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/18/06 08:00

Analyte	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by I	EPA Method 826	0 B					,		
6034365-MS1									
Tert-Amyl Methyl Ether	ND	57.5	ug/L	50.0	115%	45 - 155	6034365	NPC2456-01	03/21/06 12:04
1,2-Dibromoethane (EDB)	ND	52.8	ug/L	50.0	106%	71 - 138	6034365	NPC2456-01	03/21/06 12:04
1,2-Dichloroethane	ND	65.2	ug/L	50.0	130%	70 - 140	6034365	NPC2456-01	03/21/06 12:04
Ethyl tert-Butyl Ether	ND	58.8	ug/L	50,0	118%	57 - 148	6034365	NPC2456-01	03/21/06 12:04
Diisopropyl Ether	ND	50.1	ug/L	50.0	100%	67 - 143	6034365	NPC2456-01	03/21/06 12:04
Methyl tert-Butyl Ether	ND	62.9	ug/L	50.0	126%	55 - 152	6034365	NPC2456-01	03/21/06 12:04
Tertiary Butyl Alcohol	6.96	718	ug/L	500	142%	19 - 183	6034365	NPC2456-01	03/21/06 12:04
Surrogate: 1,2-Dichloroethane-d4		59.8	ug/L	50.0	120%	70 - 130	6034365	NPC2456-01	03/21/06 12:04
Surrogate: Dibromofluoromethane		60.8	ug/L	50.0	122%	79 - 122	6034365	NPC2456-01	03/21/06 12:04
Surrogate: Toluene-d8		51.7	ug/L	50.0	103%	78 - 121	6034365	NPC2456-01	03/21/06 12:04
Surrogate: 4-Bromofluorobenzene		55.1	ug/L	50.0	110%	78 - 126	6034365	NPC2456-01	03/21/06 12:04
6034629-MS1									
Acetone	ND	376	ug/L	250	150%	32 - 152	6034629	NPC2318-17	03/24/06 02:08
Benzene	ND	51.1	ug/L	50.0	102%	71 - 137	6034629	NPC2318-17	03/24/06 02:08
Bromobenzene	ND	50.8	ug/L	50,0	102%	69 - 133	6034629	NPC2318-17	03/24/06 02:08
Bromochloromethane	ND	47.9	ug/L	50.0	96%	69 - 139	6034629	NPC2318-17	03/24/06 02:08
Bromodichloromethane	ND	49.9	ug/L	50.0	100%	70 - 143	6034629	NPC2318-17	03/24/06 02:08
Bromoform	ND	45.5	ug/L	50.0	91%	35 - 142	6034629	NPC2318-17	03/24/06 02:08
Bromomethane	ND	65.7	ug/L	50.0	131%	28 - 179	6034629	NPC2318-17	03/24/06 02:08
2-Butanone	NĎ	346	ug/L	250	138%	59 - 139	6034629	NPC2318-17	03/24/06 02:08
sec-Butylbenzene	ND	47.1	սց/Լ	5 0 .0	94%	66 - 144	6034629	NPC2318-17	03/24/06 02:08
n-Butylbenzene	ND	53.4	ug/L	50.0	107%	57 - 148	6034629	NPC2318-17	03/24/06 02:08
tert-Butylbenzene	ND	54.0	ug/L	50.0	108%	67 - 140	6034629	NPC2318-17	03/24/06 02:08
Carbon disulfide	ND	41.0	ug/L	50.0	82%	53 - 154	6034629	NPC2318-17	03/24/06 02:08
Carbon Tetrachloride	ND	49.9	ug/L	50.0	100%	63 - 146	6034629	NPC2318-17	03/24/06 02:08
Chlorobenzene	ND	51.8	ug/L	50.0	104%	76 - 129	6034629	NPC2318-17	03/24/06 02:08
Chlorodibromomethane	ND	49.2	ug/L	50.0	98%	64 - 127	6034629	NPC2318-17	03/24/06 02:08
Chloroethane	ND	55.7	ug/L	50.0	111%	46 - 170	6034629	NPC2318-17	03/24/06 02:08
Chloroform	ND	49.6	ug/L	50.0	99%	74 - 135	6034629	NPC2318-17	03/24/06 02:08
Chloromethane	ND	62.2	ug/L	50.0	124%	24 - 163	6034629	NPC2318-17	03/24/06 02:08
4-Chlorotolucne	ND	50.1	ug/L	50.0	100%	71 - 138	6034629	NPC2318-17	03/24/06 02:08
2-Chlorotoluene	ND	51.1	ug/L	50.0	102%	69 - 139	6034629	NPC2318-17	03/24/06 02:08
1.2-Dibromo-3-chloropropane	ND	53.4	ug/L	50.0	107%	48 - 137	6034629	NPC2318-17	03/24/06 02:08
1,2-Dibromoethane (EDB)	ND	49.2	ug/L	50.0	98%	71 - 138	6034629	NPC2318-17	03/24/06 02:08
Dibromomethane	ND	47.8	ug/L	50.0	96%	71 - 139	6034629	NPC2318-17	03/24/06 02:08
1,4-Dichlorobenzene	ND	51.6	ug/L	50.0	103%	72 - 130	6034629	NPC2318-17	03/24/06 02:08
1,3-Dichlorobenzene	ND	51.1	ug/L	50.0	102%	74 - 133	6034629	NPC2318-17	03/24/06 02:08

ANALYTICAL TESTING CORPORATION

Cambria Env. Tech. (Emeryville) / SHELL (13675) Client 5900 Hollis Street, Suite A Emeryville, CA 94608 Anni Kreml Attn

NPC2456 Work Order: Project Name: Project Number: Received:

500 40th Street, Oakland, CA SAP 129452 03/18/06 08:00

Analyte	 Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Targei Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds b	y EPA Method 8260) B								
6034629-MS1	•									
1,2-Dichlorobenzene	ND	51.3		ug/L	50.0	103%	76 - 133	6034629	NPC2318-17	03/24/06 02:08
Dichlorodifluoromethane	ND	55.9		ug/L	50.0	112%	14 - 173	6034629	NPC2318-17	03/24/06 02:08
1,2-Dichloroethane	ND	50.7		ug/L	50.0	101%	70 - 140	6034629	NPC2318-17	03/24/06 02:08
1,1-Dichloroethane	ND	\$3.9		ug/L	50.0	108%	66 - 144	6034629	NPC2318-17	03/24/06 02:08
cis-1,2-Dichloroethene	2.95	55.3		ug/L	50.0	105%	67 - 139	6034629	NPC2318-17	03/24/06 02:08
1,1-Dichloroethene	ND	50.8		ug/L	50.0	102%	65 - 146	6034629	NPC2318-17	03/24/06 02:08
trans-1,2-Dichloroethene	ND	53.1		ug/L	50.0	106%	64 - 146	6034629	NPC2318-17	03/24/06 02:08
2,2-Dichloropropane	ND	50.0		ug/L	50.0	100%	19 - 166	6034629	NPC2318-17	03/24/06 02:08
1,3-Dichloropropane	ND	49.5		ug/L	50.0	99%	75 - 130	6034629	NPC2318-17	03/24/06 02:08
1,2-Dichloropropane	ND	49.7		ug/L	50.0	99%	73 - 136	6034629	NPC2318-17	03/24/06 02:08
trans-1,3-Dichloropropene	ND	47.7		ug/L	50.0	95%	49 - 130	6034629	NPC2318-17	03/24/06 02:08
cis-1,3-Dichloropropene	ND	46.0		ug/L	50.0	92%	52 - 140	6034629	NPC2318-17	03/24/06 02:08
1,1-Dichloropropene	ND	52.7		ug/L	50.0	105%	72 - 139	6034629	NPC2318-17	03/24/06 02:08
Ethylbenzene	ND	51.1		սք/Լ	50.0	102%	72 - 139	6034629	NPC2318-17	03/24/06 02:08
Hexachlorobutadiene	ND	47.3		ug/L	50.0	95%	50 - 143	6034629	NPC2318-17	03/24/06 02:08
2-Hexanone	ND	306		ug/L	250	122%	62 - 136	6034629	NPC2318-17	03/24/06 02:08
lsopropylbenzene	ND	54.6		ug/L	50.0	109%	67 - 147	6034629	NPC2318-17	03/24/06 02:08
Diisopropyl Ether	ND	56.1		ug/L	50.0	i12%	67 - 143	6034629	NPC2318-17	03/24/06 02:08
Methyl tert-Butyl Ether	ND	50.2		ug/L	50.0	100%	55 - 152	6034629	NPC2318-17	03/24/06 02:08
Methylene Chloride	ND	55.0		ug/L	50.0	110%	68 - 146	6034629	NPC2318-17	03/24/06 02:08
4-Methyl-2-pentanone	5.63	271		ug/L	250	106%	65 - 142	6034629	NPC2318-17	03/24/06 02:08
Styrene	ND	46.3		ug/L	50.0	93%	57 - 149	6034629	NPC2318-17	03/24/06 02:08
1,1,1,2-Tetrachloroethane	ND	50.9		ug/L	50.0	102%	70 - 139	6034629	NPC2318-17	03/24/06 02:08
1,1.2,2-Tetrachlorocthane	ND	57.0		ug/L	50.0	114%	64 - 137	6034629	NPC2318-17	03/24/06 02:08
Tetrachloroethene	ND	48.9		սց/Լ	50.0	98%	70 - 135	6034629	NPC2318-17	03/24/06 02:08
Toluene	ND	48.7		ug/L	50.0	97%	73 - 133	6034629	NPC2318-17	03/24/06 02:08
1,2,4-Trichlorobenzene	ND	44.8		ug/L	50.0	90%	55 - 141	6034629	NPC2318-17	03/24/06 02:08
1,2,3-Trichlorobenzene	ND	45.2		ug/L	50.0	90%	56 - 145	6034629	NPC2318-17	03/24/06 02:08
1.1.2-Trichloroethane	ND	50.5		ug/L	50.0	101%	77 - 130	6034629	NPC2318-17	03/24/06 02:08
1,1,1-Trichloroethane	ND	51.0		ug/L	50.0	102%	70 - 144	6034629	NPC2318-17	03/24/06 02:08
Trichloroethene	21.2	61.2		ug/L	50.0	80%	72 - 141	6034629	NPC2318-17	03/24/06 02:08
Trichlorofluoromethane	ND	54.6		ug/L	50.0	109%	54 - 152	6034629	NPC2318-17	03/24/06 02:08
1,2,3-Trichloropropane	50.4	69.9	M7	ug/L	50.0	39%	57 - 142	6034629	NPC2318-17	03/24/06 02:08
1,3,5-Trimethylbenzene	ND	46.2	,	ug/L	50.0	92%	68 - 141	6034629	NPC2318-17	03/24/06 02:08
Vinyl chloride	ND	61.4		- <i>s</i> ug/L	50.0	123%	49 - 149	6034629	NPC2318-17	03/24/06 02:08
Xylenes, total	ND	148		ч <i>д-</i> ug/L	150	99%	70 - 143	6034629	NPC2318-17	03/24/06 02:08
1,2,4-Trimethylbenzene	ND	47.1		ug/L	50.0	94%	67 - 143	6034629	NPC2318-17	03/24/06 02:08
1,2,4-1 Hindiny (00126)16	112			-9-5	2010					

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Atta Anni Kreml

Work Order:	NPC2456
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/18/06 08:00

Analyte	Orig, Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 826()B	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			, ,		
6034629-MS1									
Naphthalene	ND	49.1	ug/L	50.0	98%	46 - 157	6034629	NPC2318-17	03/24/06 02:08
p-Isopropyltoluene	ND	52.8	ug/L	50,0	106%	67 - 142	6034629	NPC2318-17	03/24/06 02:08
n-Propylbenzene	ND	52.1	ug/L	50.0	104%	69 - 141	6034629	NPC2318-17	03/24/06 02:08
Surrogate: 1,2-Dichloroethane-d4		52.8	ug/L	50.0	106%	70 - 130	6034629	NPC2318-17	03/24/06 02:08
Surrogate: Dibromofluoromethane		51.1	ug/L	50.0	102%	79 - 122	6034629	NPC2318-17	03/24/06 02:08
Surrogate: Toluene-d8		50.5	ug/L	50.0	101%	78 - 121	6034629	NPC2318-17	03/24/06 02:08
Surrogate: 4-Bromofluorobenzene		49.3	ug/L	50.0	99%	78 - 126	6034629	NPC2318-17	03/24/06 02:08
6035070-MS1									
Acetone	ND	290	ug/L	250	116%	32 - 152	6035070	NPC2828-02	03/26/06 03:59
Benzene	ND	63.4	ug/L	50.0	127%	71 - 137	6035070	NPC2828-02	03/26/06 03:59
Bromobenzene	ND	65.8	ug/L	50.0	132%	69 - 133	6035070	NPC2828-02	03/26/06 03:59
Bromochloromethane	ND	64.3	սց/Լ	50.0	129%	69 - 139	6035070	NPC2828-02	03/26/06 03:59
Bromodichloromethane	ND	68.6	ug/L	50.0	137%	70 - 143	6035070	NPC2828-02	03/26/06 03:59
Bromoform	ND	46.3	ug/L	50.0	93%	35 - 142	6035070	NPC2828-02	03/26/06 03:59
Bromomethane	ND	50.5	ug/L	50.0	101%	28 - 179	6035070	NPC2828-02	03/26/06 03:59
2-Butanone	ND	308	ug/L	250	123%	59 - 139	6035070	NPC2828-02	03/26/06 03:59
sec-Butylbenzene	ND	52.1	ug/L	50.0	104%	66 - 144	6035070	NPC2828-02	03/26/06 03:59
n-Butylbenzene	ND	61.5	ug/L	50.0	123%	57 - 148	6035070	NPC2828-02	03/26/06 03:59
tert-Butylbenzene	ND	64.0	ug/L	50.0	128%	67 - 140	6035070	NPC2828-02	03/26/06 03:59
Carbon disulfide	ND	49.7	ug/L	50.0	99%	53 - 154	6035070	NPC2828-02	03/26/06 03:59
Carbon Tetrachloride	ND	62.2	ug/L	50.0	124%	63 - 146	6035070	NPC2828-02	03/26/06 03:59
Chlorobenzene	ND	63.2	ug/L	50.0	126%	76 - 129	6035070	NPC2828-02	03/26/06 03:59
Chlorodibromomethane	ND	52.2	ug/L	50.0	104%	64 - 127	6035070	NPC2828-02	03/26/06 03:59
Chloroethane	ND	54.9	ug/L	50.0	110%	46 - 170	6035070	NPC2828-02	03/26/06 03:59
Chloroform	ND	60.7	ug/L	50.0	121%	74 - 135	6035070	NPC2828-02	03/26/06 03:59
Chloromethane	ND	49.7	ug/L	50.0	99%	24 - 163	6035070	NPC2828-02	03/26/06 03:59
4-Chlorotoluene	ND	63.0	սց/Լ	50.0	126%	71 - 138	6035070	NPC2828-02	03/26/06 03:59
2-Chlorotoluene	ND	65.8	ug/L	50.0	132%	69 - 139	6035070	NPC2828-02	03/26/06 03:59
1,2-Dibromo-3-chloropropane	ND	57.4	ug/L.	50.0	115%	48 - 137	6035070	NPC2828-02	03/26/06 03:59
1,2-Dibromoethane (EDB)	ND	64.4	ug/L	50.0	129%	71 - 138	6035070	NPC2828-02	03/26/06 03:59
Dibromomethane	ND	62.1	ug/L	50.0	124%	71 - 139	6035070	NPC2828-02	03/26/06 03:59
1,4-Dichlorobenzene	ND	62.5	ug/L	50.0	125%	72 - 130	6035070	NPC2828-02	03/26/06 03:59
1,3-Dichlorobenzene	ND	66.2	ug/L	50.0	132%	74 - 133	6035070	NPC2828-02	03/26/06 03:59
1,2-Dichlorobenzene	ND	62.0	սը/Լ	50.0	124%	76 - 133	6035070	NPC2828-02	03/26/06 03:59
Dichlorodifluoromethane	ND	50.9	ug/L	50.0	102%	14 - 173	6035070	NPC2828-02	03/26/06 03:59
1,2-Dichloroethane	ND	62.9	ug/L	50.0	126%	70 - 140	6035070	NPC2828-02	03/26/06 03:59
1,1-Dichloroethane	ND	63.1	ug/L	50.0	126%	66 - 144	6035070	NPC2828-02	03/26/06 03:59

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by 1	EPA Method 8260)B								
6035070-MS1										
cis-1,2-Dichloroethene	ND	63.8		ug/L	50.0	128%	67 - 139	6035070	NPC2828-02	03/26/06 03:59
1,1-Dichloroethene	ND	64.1		ug/L	50.0	128%	65 - 146	6035070	NPC2828-02	03/26/06 03:59
trans-1,2-Dichloroethene	ND	70.7		ug/L	50,0	141%	64 - 146	6035070	NPC2828-02	03/26/06 03:59
2,2-Dichloropropane	ND	58.9		ug/L	50.0	118%	19 - 166	6035070	NPC2828-02	03/26/06 03:59
1,3-Dichloropropane	ND	64.8		ug/L	50.0	130%	75 - 130	6035070	NPC2828-02	03/26/06 03:59
1,2-Dichloropropane	ND	62.0		ug/L	50.0	124%	73 - 136	6035070	NPC2828-02	03/26/06 03:59
trans-1,3-Dichloropropene	ND	56.2		ug/L	50.0	112%	49 - 130	6035070	NPC2828-02	03/26/06 03:59
cis-1,3-Dichloropropene	ND	60,0		ug/L	50.0	120%	52 - 140	6035070	NPC2828-02	03/26/06 03:59
1,1-Dichloropropene	ND	67. 6		ug/L	50.0	135%	72 - 139	6035070	NPC2828-02	03/26/06 03:59
Ethylbenzene	ND	64.8		ug/L	50.0	130%	72 - 139	6035070	NPC2828-02	03/26/06 03:59
Hexachlorobutadiene	ND	\$6.5		ug/L	50.0	113%	50 - 143	6035070	NPC2828-02	03/26/06 03:59
2-Hexanone	ND	292		ug/L	250	117%	62 - 136	6035070	NPC2828-02	03/26/06 03:59
lsopropylbenzene	ND	62.0		ug/L	50.0	124%	67 - 147	6035070	NPC2828-02	03/26/06 03:59
Diisopropyl Ether	ND	64.6		ug/L	50.0	129%	67 - 143	6035070	NPC2828-02	03/26/06 03:59
Methyl tert-Butyl Ether	l.00E9	1.00E9	M7	ug/L	50.0	0%	55 - 152	6035070	NPC2828-02	03/26/06 03:59
Methylene Chloride	ND	61.5		ug/L	50.0	123%	68 - 146	6035070	NPC2828-02	03/26/06 03:59
4-Methyl-2-pentanone	ND	299		ug/L	250	120%	65 - 142	6035070	NPC2828-02	03/26/06 03:59
Styrene	ND	41.2		ug/L	50.0	82%	57 - 149	6035070	NPC2828-02	03/26/06 03:59
1,1,1,2-Tetrachloroethane	ND	61.0		ug/L	50.0	122%	70 - 139	6035070	NPC2828-02	03/26/06 03:59
1,1,2,2-Tetrachloroethane	ND	64.1		ug/L	50.0	128%	64 - 137	6035070	NPC2828-02	03/26/06 03:59
Tetrachloroethene	ND	65.1		ug/L	50.0	130%	70 - 135	6035070	NPC2828-02	03/26/06 03:59
Тојџепс	ND	65.0		ug/L	50.0	130%	73 - 133	6035070	NPC2828-02	03/26/06 03:59
1,2,4-Trichlorobenzene	ND	54.7		ug/L	50.0	109%	55 - 141	6035070	NPC2828-02	03/26/06 03:59
1,2,3-Trichlorobenzene	ND	53.7		ug/L	50.0	107%	56 - 145	6035070	NPC2828-02	03/26/06 03:59
1,1,2-Trichloroethane	ND	61.4		ug/L	50.0	123%	77 - 130	6035070	NPC2828-02	03/26/06 03:59
1,1,1-Trichloroethane	ND	67.4		ug/L	50.0	135%	70 - 144	6035070	NPC2828-02	03/26/06 03:59
Trichloroethene	ND	62.5		ug/L	50.0	125%	72 - 141	6035070	NPC2828-02	03/26/06 03:59
Trichlorofluoromethane	ND	64.0		ug/L	50.0	128%	54 - 152	6035070	NPC2828-02	03/26/06 03:59
1,2,3-Trichloropropane	ND	52.8		ug/L	50.0	106%	57 - 142	6035070	NPC2828-02	03/26/06 03:59
1,3,5-Trimethylbenzene	ND	51.5		ug/L	50.0	103%	68 - 141	6035070	NPC2828-02	03/26/06 03:59
Vinyl chloride	ND	62,7		ug/L	50.0	125%	49 - 149	6035070	NPC2828-02	03/26/06 03:59
Xylenes, total	ND	184		ug/L	150	123%	70 - 143	6035070	NPC2828-02	03/26/06 03:59
1,2,4-Trimethylbenzene	ND	52.1		ug/L	50.0	104%	67 - 143	6035070	NPC2828-02	03/26/06 03:59
Naphthalene	2.54	55.8		ug/L	50.0	107%	46 - 157	6035070	NPC2828-02	03/26/06 03:59
p-Isopropyltoluene	ND	59.3		ug/L	50.0	119%	67 - 142	6035070	NPC2828-02	03/26/06 03:59
n-Propylbenzene	ND	67.7		ug/L	50.0	135%	69 - 141	6035070	NPC2828-02	03/26/06 03:59
Surrogate: 1,2-Dichloroethane-d4		51.2		ug/L	50.0	102%	70 - 130	6035070	NPC2828-02	03/26/06 03:59

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:	NPC2456
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/18/06 08:00

Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by I	EPA Method 826	0B								
6035070-MS1 Surrogate: Dibromofluoromethane		50.4		ug/L	50.0	101%	79 - 122	6035070	NPC2828-02	03/26/06 03:59
Surrogate: Toluene-d8		49.2		ug/L	50.0	98%	78 - 121	6035070	NPC2828-02	03/26/06 03:59
Surrogate: 4-Bromofluorobenzene		52.2		ug/L	50.0	104%	78 - 126	6035070	NPC2828-02	03/26/06 03:59
Purgeable Petroleum Hydrocarbo	ons									
6033731-MS1										
Gasoline Range Organics	440	3240		ug/L	3050	92%	60 - 140	6033731	NPC2502-12	03/22/06 22:42
Surrogate: 1,2-Dichloroethane-d4		27.2		ug/L	25.0	109%	0 - 200	6033731	NPC2502-12	03/22/06 22:42
Surrogate: Dibromofluoromethane		24.2		ug/L	25.0	97%	0 - 200	6033731	NPC2502-12	03/22/06 22:42
Surrogate: Toluene-d8		25,7		ug/L	25.0	103%	0 - 200	6033731	NPC2502-12	03/22/06 22:42
Surrogate: 4-Bromofluorobenzene		25.0		ug/L	25.0	100%	0 - 200	6033731	NPC2502-12	03/22/06 22:42
6034365-MS1										
Gasoline Range Organics	ND	2770		ug/L	3050	91%	60 - 140	6034365	NPC2456-01	03/21/06 12:04
Surrogate: 1,2-Dichloroethane-d4		59.8		ug/L	50.0	120%	0 - 200	6034365	NPC2456-01	03/21/06 12:04
Surrogate: Dibromofluoromethane		60.8		ug/L	50.0	122%	0 - 200	6034365	NPC2456-01	03/21/06 12:04
Surrogate: Toluene-d8		51.7		ug/L	50.0	103%	0 - 200	6034365	NPC2456-01	03/21/06 12:04
Surrogate: 4-Bromofluorobenzene		55.l		ug/L	50.0	110%	0 - 200	6034365	NPC2456-01	03/21/06 12:04

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Cambria Env. Tech. (Emeryville) / SHELL (13675) Clicnt 5900 Hollis Street, Suite A Emeryville, CA 94608 Anni Kreml Attn

Work Order:	NPC2456
Project Name:	500 40th Street, Oak
Project Number:	SAP 129452
Received:	03/18/06 08:00

cland, CA

PROJECT QUALITY CONTROL DATA Matrix Spike Dup

1,2-Dibromoethane (EDB) ND 51.2 ug/L 50.0 102% 71 - 138 1,2-Dichloroethane ND 58.9 ug/L 50.0 118% 70 - 140 Ethyl tert-Butyl Ether ND 53.0 ug/L 50.0 106% 57 - 148 Diisopropyl Ether ND 53.0 ug/L 50.0 106% 57 - 143 Methyl tert-Butyl Ether ND 58.2 ug/L 50.0 116% 55 - 152 Tertiary Butyl Alcohol 6.96 711 ug/L 500 141% 19 - 183 Surrogate: 1,2-Dichloroethane-d4 62.6 ug/L 50.0 125% 70 - 130 Surrogate: Dibromofluoromethane 58.6 ug/L 50.0 117% 79 - 122 Surrogate: Toluene-d8 53.2 ug/L 50.0 117% 78 - 126 6034629-MSD1				
6034365-MSD1 Tert-Amyl Methyl Ether ND 51.8 ug/L 50.0 104% 45 - 155 1,2-Dibformoethane (EDB) ND 51.2 ug/L 50.0 102% 71 - 138 1,2-Dichloroethane ND 58.9 ug/L 50.0 106% 57 - 148 Ditsopropyl Ether ND 53.0 ug/L 50.0 106% 57 - 148 Ditsopropyl Ether ND 45.3 ug/L 50.0 116% 55 - 152 Tertiary Butyl Alcohol 6.96 711 ug/L 500 141% 19 - 183 Surrogate: 1,2-Dichloroethane-d4 62.6 ug/L 50.0 125% 70 - 130 Surrogate: 2, Dibromofluoromethane 58.6 ug/L 50.0 117% 79 - 122 Surrogate: Toluene-d8 53.2 ug/L 50.0 117% 78 - 126 Go34629-MSD1 ND 384 M7 ug/L 50.0 111% 78 - 126 Benzene ND 52.1 ug/L 50.0 104% 71 - 137 Bromobenzene ND 50.9 </td <td></td> <td></td> <td></td> <td></td>				
Tert-Amyl Methyl Ether ND 51.8 ug/L 50.0 104% 45 - 155 I,2-Dibromoethane (EDB) ND 51.2 ug/L 50.0 102% 71 - 138 I,2-Dichloroethane ND 58.9 ug/L 50.0 106% 57 - 148 Ethyl tert-Butyl Ether ND 53.0 ug/L 50.0 106% 57 - 148 Diisopropyl Ether ND 45.3 ug/L 50.0 116% 55 - 152 Tertiary Butyl Alcohol 6.96 711 ug/L 50.0 116% 55 - 152 Surrogate: 1.2-Dichloroethane-d4 62.6 ug/L 50.0 125% 70 - 130 Surrogate: Dibromofluoromethane 58.6 ug/L 50.0 117% 79 - 122 Surrogate: A-Bromofluorobenzene 55.6 ug/L 50.0 111% 78 - 126 GO34629-MSD1 ND 384 M7 ug/L 50.0 104% 71 - 137 Benzene ND 384 M7 ug/L 50.0 104% 71 - 137 Bromobenzene ND 50.9 ug/L				
1,2-Dichloroethane ND 58.9 ug/L 50.0 118% 70 - 140 Ethyl tert-Butyl Ether ND 53.0 ug/L 50.0 106% 57 - 148 Diisopropyl Ether ND 45.3 ug/L 50.0 91% 67 - 143 Methyl tert-Butyl Ether ND 58.2 ug/L 50.0 116% 55 - 152 Tertiary Butyl Alcohol 6.96 711 ug/L 500 141% 19 - 183 Surrogate: 1.2-Dichloroethane-d4 62.6 ug/L 50.0 125% 70 - 130 Surrogate: Dibromofluoromethane 58.6 ug/L 50.0 117% 79 - 122 Surrogate: Toluene-d8 53.2 ug/L 50.0 111% 78 - 121 Surrogate: 4-Bromofluorobenzene 55.6 ug/L 50.0 111% 78 - 126 G034629-MSD1	10 24	6034365	NPC2456-01	03/21/06 12:27
1,2-Dichloroethane ND 58.9 ug/L 50.0 118% 70 - 140 Ethyl tert-Butyl Ether ND 53.0 ug/L 50.0 106% 57 - 148 Diisopropyl Ether ND 45.3 ug/L 50.0 91% 67 - 143 Methyl tert-Butyl Ether ND 58.2 ug/L 50.0 116% 55 - 152 Tertiary Butyl Alcohol 6.96 711 ug/L 500 141% 19 - 183 Surrogate: 1,2-Dichloroethane-d4 62.6 ug/L 50.0 125% 70 - 130 Surrogate: Toluene-d8 53.2 ug/L 50.0 117% 79 - 122 Surrogate: 4-Bromofluoromethane 53.2 ug/L 50.0 111% 78 - 126 Surrogate: 4-Bromofluorobenzene 55.6 ug/L 50.0 111% 78 - 126 Benzene ND 384 M7 ug/L 50.0 111% 71 - 137 Bromobenzene ND 50.9 ug/L 50.0 104% 71 - 137 Bromobenzene ND 50.9 ug/L 50.0 97	3 27	6034365	NPC2456-01	03/21/06 12:27
Ethyl tert-Butyl Ether ND 53.0 ug/L 50.0 106% 57 - 148 Diisopropyl Ether ND 45.3 ug/L 50.0 91% 67 - 143 Methyl tert-Butyl Ether ND 58.2 ug/L 50.0 116% 55 - 152 Tertiary Butyl Alcohol 6.96 711 ug/L 500 141% 19 - 183 Surrogate: 1.2-Dichloroethane-d4 62.6 ug/L 50.0 125% 70 - 130 Surrogate: Toluene-d8 53.2 ug/L 50.0 106% 78 - 121 Surrogate: 4-Bromofluorobenzene 55.6 ug/L 50.0 111% 78 - 126 Benzene ND 384 M7 ug/L 50.0 111% 78 - 126 Benzene ND 52.1 ug/L 50.0 104% 71 - 137 Bromobenzene ND 50.9 ug/L 50.0 104% 71 - 137 Bromochloromethane ND 50.9 ug/L 50.0 104% 71 - 137 Bromochloromethane ND 51.5 ug/L 50.0 97	10 21	6034365	NPC2456-01	03/21/06 12:27
Disopropyl Ether ND 45.3 ug/L 50.0 91% 67 - 143 Methyl tert-Butyl Ether ND 58.2 ug/L 50.0 116% 55 - 152 Tertiary Butyl Alcohol 6.96 711 ug/L 500 141% 19 - 183 Surrogate: 1.2-Dichloroethane-d4 62.6 ug/L 50.0 125% 70 - 130 Surrogate: Dibromofluoromethane 58.6 ug/L 50.0 117% 79 - 122 Surrogate: Toluene-d8 53.2 ug/L 50.0 106% 78 - 121 Surrogate: 4-Bromofluorobenzene 55.6 ug/L 50.0 111% 78 - 126 6034629-MSD1 70 - 130 384 M7 ug/L 50.0 106% 71 - 137 Benzene ND 384 M7 ug/L 250 154% 32 - 152 Benzene ND 50.9 ug/L 50.0 104% 71 - 137 Bromobenzene ND 50.9 ug/L 50.0 <	10 22	6034365	NPC2456-01	03/21/06 12:27
Tertiary Butyl Alcohol 6.96 711 ug/L 500 141% 19 - 183 Surrogate: 1,2-Dichloroethane-d4 62.6 ug/L 50.0 125% 70 - 130 Surrogate: Dibromofluoromethane 58.6 ug/L 50.0 117% 79 - 122 Surrogate: Toluene-d8 53.2 ug/L 50.0 106% 78 - 121 Surrogate: 4-Bromofluorobenzene 55.6 ug/L 50.0 111% 78 - 126 6034629-MSD1 Acetone ND 384 M7 ug/L 250 154% 32 - 152 Benzene ND 50.9 ug/L 50.0 106% 71 - 137 Bromobenzene ND 50.9 ug/L 50.0 102% 69 - 133 Bromochloromethane ND 48.3 ug/L 50.0 97% 69 - 139 Bromodichloromethane ND 51.5 ug/L 50.0 103% 70 - 143	10 22	6034365	NPC2456-01	03/21/06 12:27
Surrogate: 1.2-Dichloroethane-d4 62.6 ug/L 50.0 125% 70 - 130 Surrogate: Dibromofluoromethane 58.6 ug/L 50.0 117% 79 - 122 Surrogate: Toluene-d8 53.2 ug/L 50.0 106% 78 - 121 Surrogate: 4-Bromofluorobenzene 55.6 ug/L 50.0 111% 78 - 126 6034629-MSD1	8 27	6034365	NPC2456-01	03/21/06 12:27
Surrogate: Dibromofluoromethane 58.6 ug/L 50.0 117% 79 - 122 Surrogate: Toluene-d8 53.2 ug/L 50.0 106% 78 - 121 Surrogate: 4-Bromofluorobenzene 55.6 ug/L 50.0 111% 78 - 126 6034629-MSD1 Acetone ND 384 M7 ug/L 250 154% 32 - 152 Benzene ND 52.1 ug/L 50.0 104% 71 - 137 Bromobenzene ND 50.9 ug/L 50.0 102% 69 - 133 Bromochloromethane ND 48.3 ug/L 50.0 97% 69 - 139 Bromodichloromethane ND 51.5 ug/L 50.0 103% 70 - 143	1 39	6034365	NPC2456-01	03/21/06 12:27
Surrogate: Toluene-d8 53.2 ug/L 50.0 106% 78 - 121 Surrogate: 4-Bromofluorobenzene 55.6 ug/L 50.0 111% 78 - 126 6034629-MSD1 Acetone ND 384 M7 ug/L 250 154% 32 - 152 Benzene ND 52.1 ug/L 50.0 104% 71 - 137 Bromobenzene ND 50.9 ug/L 50.0 102% 69 - 133 Bromochloromethane ND 48.3 ug/L 50.0 97% 69 - 139		6034365	NPC2456-01	03/21/06 12:27
Surrogate: 4-Bromofluorobenzene 55.6 ug/L 50.0 111% 78 - 126 6034629-MSD1 Acetone ND 384 M7 ug/L 250 154% 32 - 152 Benzene ND 52.1 ug/L 50.0 104% 71 - 137 Bromobenzene ND 50.9 ug/L 50.0 102% 69 - 133 Bromochloromethane ND 48.3 ug/L 50.0 97% 69 - 139 Bromodichloromethane ND 51.5 ug/L 50.0 103% 70 - 143		6034365	NPC2456-01	03/21/06 12:27
6034629-MSD1 Acetone ND 384 M7 ug/L 250 154% 32 - 152 Benzene ND 52.1 ug/L 50.0 104% 71 - 137 Bromobenzene ND 50.9 ug/L 50.0 102% 69 - 133 Bromochloromethane ND 48.3 ug/L 50.0 97% 69 - 139 Bromodichloromethane ND 51.5 ug/L 50.0 103% 70 - 143		6034365	NPC2456-01	03/21/06 12:27
Acetone ND 384 M7 ug/L 250 154% 32 - 152 Benzene ND 52.1 ug/L 50.0 104% 71 - 137 Bromobenzene ND 50.9 ug/L 50.0 102% 69 - 133 Bromochloromethane ND 48.3 ug/L 50.0 97% 69 - 139 Bromodichloromethane ND 51.5 ug/L 50.0 103% 70 - 143		6034365	NPC2456-01	03/21/06 12:27
ND 52.1 ug/L 50.0 104% 71 - 137 Bromobenzene ND 50.9 ug/L 50.0 102% 69 - 133 Bromochloromethane ND 48.3 ug/L 50.0 97% 69 - 139 Bromodichloromethane ND 51.5 ug/L 50.0 103% 70 - 143				
Bromobenzene ND 50.9 ug/L 50.0 102% 69 - 133 Bromochloromethane ND 48.3 ug/L 50.0 97% 69 - 139 Bromodichloromethane ND 51.5 ug/L 50.0 103% 70 - 143	2 30	6034629	NPC2318-17	03/24/06 02:33
Bromochloromethane ND 48.3 ug/L 50.0 97% 69 - 139 Bromodichloromethane ND 51.5 ug/L 50.0 103% 70 - 143	2 23	6034629	NPC2318-17	03/24/06 02:33
Bromodichloromethane ND 51.5 ug/L 50.0 103% 70 - 143	0.2 21	6034629	NPC2318-17	03/24/06 02:33
	0.8 24	6034629	NPC2318-17	03/24/06 02:33
Bromoform ND 46.6 ug/L 50.0 93% 35 - 142	3 21	6034629	NPC2318-17	03/24/06 02:33
	2 25	6034629	NPC2318-17	03/24/06 02:33
Bromomethane ND 68.6 ug/L 50.0 137% 28 - 179	4 37	6034629	NPC2318-17	03/24/06 02:33
2-Butanone ND 341 ug/L 250 136% 59-139	1 28	6034629	NPC2318-17	03/24/06 02:33
sec-Butylbenzene ND 47.9 ug/L 50.0 96% 66 - 144	2 24	6034629	NPC2318-17	03/24/06 02:33
n-Butylbenzene ND 55.2 ug/L 50.0 110% 57 - 148	3 24	6034629	NPC2318-17	03/24/06 02:33
tert-Butylbenzene ND 54.8 ug/L 50.0 0% 67 - 140	l 27	6034629	NPC2318-17	03/24/06 02:33
Carbon disulfide ND 44.0 ug/L 50.0 88% 53 - 154	7 25	6034629	NPC2318-17	03/24/06 02:33
Carbon Tetrachloride ND 50.9 ug/L 50.0 102% 63 - 146	2 25	6034629	NPC2318-17	03/24/06 02:33
Chlorobenzene ND 52.0 ug/L 50.0 104% 76 - 129	0.4 20	6034629	NPC2318-17	03/24/06 02:33
Chlorodibromomethane ND 50.2 ug/L 50.0 100% 64 - 127	2 21	6034629	NPC2318-17	03/24/06 02:33
Chtoroethane ND 54.2 ug/L 50.0 108% 46 - 170	3 26	6034629	NPC2318-17	03/24/06 02:33
Chloroform ND 49.9 ug/L 50.0 100% 74 - 135	0.6 21	6034629	NPC2318-17	03/24/06 02:33
Chloromethane ND 64.7 ug/L 50.0 129% 24 - 163	4 40	6034629	NPC2318-17	03/24/06 02:33
4-Chlorotoluene ND 50.8 ug/L 50.0 102% 71-138	1 22	6034629	NPC2318-17	03/24/06 02:33
2-Chlorotoluene ND 51.4 ug/L 50.0 103% 69-139	0.6 23	6034629	NPC2318-17	03/24/06 02:33
1,2-Dibronto-3-chloropropane ND 53.0 ug/L 50.0 106% 48 - 137	0.8 31	6034629	NPC2318-17	03/24/06 02:33
l,2-Dibromoethane (EDB) ND 47.9 ug/L 50.0 96% 71 - 138	3 27	6034629	NPC2318-17	03/24/06 02:33
Dibromomethane ND 47.9 ug/L 50.0 96% 71 - 139	0.2 25	6034629	NPC2318-17	03/24/06 02:33
l,4-Dichlorobenzene ND 52.6 ug/L 50.0 105% 72 - 130	2 21	6034629	NPC2318-17	03/24/06 02:33
1,3-Dichlorobenzene ND 51.7 ug/L 50.0 103% 74 - 133	1 22	6034629	NPC2318-17	03/24/06 02:33
1,2-Dichlorobenzene ND 52.0 ug/L 50.0 104% 76 - 133	1 21	6034629	NPC2318-17	03/24/06 02:33
Dichlorodifluoromethane ND 56.7 ug/L 50.0 113% 14 - 173	1 22	6034629	NPC2318-17	03/24/06 02:33
1,2-Dichloroethane ND 51.2 ug/L 50.0 102% 70 - 140	1 32			-

ANALYTICAL TESTING CORPORATION

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

Analyte	Orig. Val,	Duplicate	Q	Units	Spike Солс	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8	3260B									· · · · · · · · · · · · · · · · · · ·	
6034629-MSD1												
I,I-Dichloroethane	ND	54.0		ug/L	\$0.0	108%	66 - 144	0.2	21	6034629	NPC2318-17	03/24/06 02:3
cis-1,2-Dichlorocthene	2.95	55.2		ug/L	50.0	104%	67 - 139	0.2	22	6034629	NPC2318-17	03/24/06 02:33
1,1-Dichloroethene	ND	51.1		ug/L	50.0	102%	65 - 146	0.6	23	6034629	NPC2318-17	03/24/06 02:3
trans-1,2-Dichloroethene	ND	53.9		ug/L	50.0	108%	64 - 146	1	22	6034629	NPC2318-17	03/24/06 02:33
2,2-Dichloropropane	ND	50.0		ug/L	50.0	100%	19 - 166	0	29	6034629	NPC2318-17	03/24/06 02:3
1,3-Dichloropropane	ND	49.7		ug/L	50.0	99%	75 - 130	0.4	20	6034629	NPC2318-17	03/24/06 02:3
1,2-Dichloropropane	ND	50.9		ug/L	50.0	102%	73 - 136	2	21	6034629	NPC2318-17	03/24/06 02:3
trans-1,3-Dichloropropene	ND	47.3		ug/L	50.0	95%	49 - 130	0.8	23	6034629	NPC2318-17	03/24/06 02:3
cis-1,3-Dichloropropene	ND	46.8		սց/Լ	50.0	94%	52 - 140	2	23	6034629	NPC2318-17	03/24/06 02:3
1,1-Dichloropropene	ND	53.2		ug/L	50.0	106%	72 - 139	0.9	24	6034629	NPC2318-17	03/24/06 02:3
Ethylbenzene	ND	51.1		ug/L	50.0	102%	72 - 139	0	23	6034629	NPC2318-17	03/24/06 02:3
Hexachlorobutadiene	ND	52.1		սց/Լ.	50.0	104%	50 - 143	10	29	6034629	NPC2318-17	03/24/06 02:3
2-Hexanone	ND	300		ug/L	250	120%	62 - 136	2	25	6034629	NPC2318-17	03/24/06 02:3
lsopropylbenzene	ND	\$5.9		ug/L	50.0	112%	67 - 147	2	23	6034629	NPC2318-17	03/24/06 02:3
Diisopropyl Ether	ND	56.8		ug/L	50.0	114%	67 - 143	l	22	6034629	NPC2318-17	03/24/06 02:3
Methyl tert-Butyl Ether	ND	49.7		ug/L	50.0	99%	55 - 152	ı	27	6034629	NPC2318-17	03/24/06 02:3
Methylene Chloride	ND	55.4		ug/L	50.0	111%	68 - 146	0.7	22	6034629	NPC2318-17	03/24/06 02:3
4-Methyl-2-pentanone	5.63	266		ug/L	250	104%	65 - 142	2	24	6034629	NPC2318-17	03/24/06 02:3
Styrene	ND	47.7		ug/L	50.0	95%	57 - 149	3	28	6034629	NPC2318-17	03/24/06 02:3
1,1,1,2-Tetrachloroethane	ND	51.6		ug/L	50.0	103%	70 - 139	ł	20	6034629	NPC2318-17	03/24/06 02:3
1,1,2,2-Tetrachloroethane	ND	55.7		ug/L	50.0	111%	64 - 137	2	25	6034629	NPC2318-17	03/24/06 02:3
Tetrachloroethene	ND	49.2		սը/Լ	50.0	98%	70 - 135	0.6	21	6034629	NPC2318-17	03/24/06 02:3
Toluene	ND	49.3		ug/L	50.0	99%	73 - 133	1	25	6034629	NPC2318-17	03/24/06 02:3
1,2,4-Trichlorobenzene	ND	46.5		ug/L	50.0	93%	55 - 141	4	26	6034629	NPC2318-17	03/24/06 02:3
1,2,3-Trichlorobenzene	ND	48.7		ug/L	\$0,0	97%	56 - 145	7	34	6034629	NPC2318-17	03/24/06 02:3
1,1,2-Trichloroethane	ND	49.8		ug/L	50.0	100%	77 - 130	1	20	6034629	NPC2318-17	03/24/06 02:3
1,1,1-Trichloroethane	ND	51.3		ug/L	50.0	103%	70 - 144	0.6	23	6034629	NPC2318-17	03/24/06 02:3
Trichloroethene	21.2	60.9		ug/L	50.0	7 9 %	72 - 141	0.5	25	6034629	NPC2318-17	03/24/06 02:3
Trichlorofluoromethane	ND	54.5		ug/L	50.0	109%	54 - 152	0.2	23	6034629	NPC2318-17	03/24/06 02:3
1,2,3-Trichloropropane	50.4	68.2	M7	ug/L	50.0	36%	57 - 142	2	24	6034629	NPC2318-17	03/24/06 02:3
1,3,5-Trimethylbenzene	ND	46.5		ug/L	50.0	93%	68 - 141	0.6	26	6034629	NFC2318-17	03/24/06 02:3
Vinyl chloride	ND	60.3		ug/L,	50.0	121%	49 - 149	2	24	6034629	NPC2318-17	03/24/06 02:3
Xylenes, total	ND	150		ug/L	150	100%	70 - 143	1	27	6034629	NPC2318-17	03/24/06 02:3
1,2,4-Trimethylbenzene	ND	47.9		ug/L	50.0	96%	67 - 143	2	23	6034629	NPC2318-17	03/24/06 02:3
Naphthalene	ND	50.5		սը/Լ	50,0	101%	46 - 157	3	43	6034629	NPC2318-17	03/24/06 02:3
p-Isopropyltoluene	ND	53.7		սց/Լ	50.0	107%	67 - 142	2	24	6034629	NPC2318-17	03/24/06 02:3
n-Propylbenzene	ND	53.0		- ug/L	50.0	106%	69 - 141	2	25	6034629	NPC2318-17	03/24/06 02:3
Surrogate: 1,2-Dichloroethane-d4		52.1		ug/L	\$0.0	104%				6034629	NPC2318-17	03/24/06 02:3
Surrogate: Dibromofluoromethane		50.8		ug/L	50.0	102%	79 - 122			6034629	NPC2318-17	03/24/06 02:3
Surrogate: Toluene-d8		50.0		ug/L	\$0.0	100%	78 - 121			6034629	NPC2318-17	03/24/06 02:3
Surrogate: 4-Bromofluorobenzene		48.4		ug/L	50,0	97%	78 - 126			6034629	NPC2318-17	03/24/06 02:3

ANALYTICAL TESTING CORPORATION

Cambria Env. Tech. (Emeryville) / SHELL (13675) Client 5900 Hollis Street, Suite A Emeryville, CA 94608 Anni Kreml Attn

NPC2456 Work Order: 500 40th Street, Oakland, CA Project Name: SAP 129452 Project Number: 03/18/06 08:00 Received:

Analyle	Orig. Val.	Duplicate	Q	Units	Spike Солс	% Rec.	Target Range	RPD Lin	nit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	y EPA Method 8	3260B				:						
6035070-MSD1	-											
Acetone	ND	237		ug/L	250	95%	32 - 152	20 30	0	6035 0 70	NPC2828-02	03/26/06 04:24
Benzene	ND	54.4		ug/L	50.0	109%	71 - 137	15 23	3	6035070	NPC2828-02	03/26/06 04:24
Bromobenzene	ND	56.6		ug/L	50.0	113%	69 - 133	15 2	1	6035070	NPC2828-02	03/26/06 04:24
Bromochloromethane	ND	54.9		ug/L	50.0	110%	69 - 139	16 24	4	6035070	NPC2828-02	03/26/06 04:24
Bromodichloromethane	ND	60.4		ug/L	50.0	121%	70 - 143	13 2	1	6035070	NPC2828-02	03/26/06 04:24
Bromoform	ND	40.8		ug/L	50,0	82%	35 - 142	13 2:	5	6035070	NPC2828-02	03/26/06 04:24
Bromomethane	ND	48.5		ug/L	50.0	97%	28 - 179	4 3'	7	6035070	NPC2828-02	03/26/06 04:24
2-Butanone	ND	263		սց/Լ	250	105%	59 - 139	16 23	8	6035070	NPC2828-02	03/26/06 04:24
sec-Butylbenzene	ND	46.5		ug/L	50.0	93%	66 - 144	11 24	4	6035070	NPC2828-02	03/26/06 04:24
n-Butylbenzene	ND	54.0		ug/L	50.0	108%	57 - 148	13 24	4	6035070	NPC2828-02	03/26/06 04:24
tert-Butylbenzene	ND	55.4		ug/L	50.0	111%	67 - 140	14 2	7	6035070	NPC2828-02	03/26/06 04:24
Carbon disulfide	ND	46.5		ug/L	50.0	93%	53 - 154	7 2:	5	6035070	NPC2828-02	03/26/06 04:24
Carbon Tetrachloride	ND	53.4		ug/L	50.0	107%	63 - 146	15 2:	5	6035070	NPC2828-02	03/26/06 04:24
Chlorobenzene	ND	53.7		ug/L	\$0.0	107%	76 - 129	16 2	0	6035070	NPC2828-02	03/26/06 04:24
Chlorodibromomethane	ND	45.3		ug/L	50.0	91%	64 - 127	14 2	L	6035070	NPC2828-02	03/26/06 04:24
Chloroethane	ND	49.7		ug/L	50.0	99%	46 - 170	10 2	6	6035070	NPC2828-02	03/26/06 04:24
Chloroform	ND	51.8		ug/L	50.0	104%	74 - 135	16 2	ł.	6035070	NPC2828-02	03/26/06 04:24
Chloromethane	ND	45.0		ug/L	50.0	90%	24 - 163	10 4	0	6035070	NPC2828-02	03/26/06 04:24
4-Chlorotoluene	ND	54.0		ug/L	50.0	108%	71 - 138	15 2	2	6035070	NPC2828-02	03/26/06 04:24
2-Chlorotoluene	ND	57.9		ug/L	50.0	116%	69 - 139	13 2	3	6035070	NPC2828-02	03/26/06 04:24
1,2-Dibromo-3-chloropropane	ND	47.3		ug/L	50.0	95%	48 - 137	19 3	1	6035070	NPC2828-02	03/26/06 04:24
1,2-Dibromoethane (EDB)	ND	54.9		ug/L	50.0	110%	71 - 138	16 2	7	6035070	NPC2828-02	03/26/06 04:24
Dibromomethane	ND	48.0	R2	ug/L	\$0.0	96%	71 - 139	26 2	5	6035070	NPC2828-02	03/26/06 04:24
1,4-Dichlorobenzene	ND	53.4		ug/L,	50.0	107%	72 - 130	16 2	ł	6035070	NPC2828-02	03/26/06 04:24
1,3-Dichlorobenzene	ND	57.5		ug/L	50.0	115%	74 - 133	14 2	2	6035070	NPC2828-02	03/26/06 04:24
1,2-Dichlorobenzene	ND	52.8		ug/L	50.0	106%	76 - 133	16 2	1	6035070	NPC2828-02	03/26/06 04:24
Dichlorodifluoromethane	ND	46.9		ug/L	50.0	94%	14 - 173	8 3	2	6035070	NPC2828-02	03/26/06 04:24
1,2-Dichloroethane	ND	53.0		ug/L	50.0	106%	70 - 140	17 2	1	6035070	NPC2828-02	03/26/06 04:24
1,1-Dichloroethane	ND	55.2		ug/L	50.0	110%	66 - 144	13 2	1	6035070	NPC2828-02	03/26/06 04:24
cis-1,2-Dichloroethene	ND	55.0		ug/L	50.0	110%	67 - 139	15 2	2	6035070	NPC2828-02	03/26/06 04:24
1,1-Dichloroethene	ND	57.8		ug/L	50.0	116%	65 - 146	10 2	3	6035070	NPC2828-02	03/26/06 04:24
trans-1,2-Dichloroethene	ND	61.5		ug/L	50.0	123%	64 - 146	14 2	2	6035070	NPC2828-02	03/26/06 04:24
2,2-Dichloropropane	ND	50.9		սը/Լ	50.0	102%	19 - 166	15 2	9	6035070	NPC2828-02	03/26/06 04:24
1,3-Dichloropropane	ND	54.8		սք/Լ	50.0	110%	75 - 130		0	6035070	NPC2828-02	03/26/06 04:24
1,2-Dichloropropane	ND	52.8		սց/L	50.0	106%	73 - 136	16 2	1	6035070	NPC2828-02	03/26/06 04:24
trans-1,3-Dichloropropene	ND	48.8		-ց_ ug/L	50,0	98%	49 - 130		3	6035070	NPC2828-02	03/26/06 04:24
cis-1,3-Dichloropropene	ND	51.8		-5- ug/L	50.0	104%	52 - 140		3	6035070	NPC2828-02	03/26/06 04:24
1,1-Dichloropropene	ND	59.4		-g− ug/L	50.0	119%	72 - 139		4	6035070	NPC2828-02	03/26/06 04:24
Ethylbenzenc	ND	55.0		-g_ ug/L	50.0	110%	72 - 139		3	6035070	NPC2828-02	03/26/06 04:24
Hexachlorobutadiene	ND	52.2		ug/L	50.0	104%	50 - 143		9	6035070	NPC2828-02	03/26/06 04:24
2-Hexanone	ND	242		ug/L	250	97%	62 - 136		5	6035070	NPC2828-02	03/26/06 04:24

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Cambria Env. Tech. (Emeryville) / SHELL (13675) Client 5900 Hollis Street, Suite A Emeryville, CA 94608 Anni Kreml Attn

6034365-MSD1

Gasoline Range Organics

Surrogate: 1,2-Dichloroethane-d4

Surrogate: Dibromofluoromethane

ND

2480

62.6

58.6

ug/L

ug/L

ug/L

3050

50,0

50.0

81%

125%

117%

60 - 140

0 - 200

0 - 200

П 40

Work Order:	NPC2456
Project Name:	500 40th Street, Oakland, CA
Project Number:	SAP 129452
Received:	03/18/06 08:00

PROTECT OUALITY CONTROL DATA

·						· ·						
Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8	3260B										
6035070-MSD1												
Isopropylbenzene	ND	53.6		ug/L	50.0	107%	67 - 147	15	23	6035070	NPC2828-02	03/26/06 04:24
Diisopropyl Ether	ND	56.6		ug/L	50.0	113%	67 - 143	13	22	6035 0 70	NPC2828-02	03/26/06 04:24
Methyl tert-Butyl Ether	1.00E9	1.00E9	M7	ug/L	50.0	0%	55 - 152	0	27	6035070	NPC2828-02	03/26/06 04:24
Methylene Chloride	ND	52.6		ug/L	50.0	105%	68 - 146	16	22	6035070	NPC2828-02	03/26/06 04:24
4-Methyl-2-pentanone	ND	252		ug/L	250	101%	65 - 142	17	24	6035070	NPC2828-02	03/26/06 04:24
Styrene	ND	37.5		ug/L	50.0	75%	57 - 149	9	28	6035070	NPC2828-02	03/26/06 04:24
1,1,1,2-Tetrachloroethane	ND	51.5		ug/L,	50.0	103%	70 - 139	17	20	6035070	NPC2828-02	03/26/06 04:24
1,1,2,2-Tetrachloroethane	ND	54.8		ug/L	50.0	110%	64 - 137	16	25	6035070	NPC2828-02	03/26/06 04:24
Tetrachloroethene	ND	56.8		ug/L	50.0	114%	70 - 135	۱4	21	6035070	NPC2828-02	03/26/06 04:24
Toluene	ND	55.9		ug/L	50.0	112%	73 - 133	15	25	6035070	NPC2828-02	03/26/06 04:24
1,2,4-Trichlorobenzene	ND	49.5		ug/L	50.0	99%	55 - 141	10	26	6035070	NPC2828-02	03/26/06 04:24
1,2,3-Trichlorobenzene	ND	48.4		ug/L	50.0	97%	56 - 145	10	34	6035070	NPC2828-02	03/26/06 04:24
1,1,2-Trichloroethane	ND	52.5		ug/L	50.0	105%	77 - 130	16	20	6035070	NPC2828-02	03/26/06 04:24
1,1,1-Trichloroethane	ND	58.2		ug/L	50.0	116%	70 - 144	15	23	6035070	NPC2828-02	03/26/06 04:24
Trichloroethene	ND	53.0		ug/L	\$0.0	106%	72 - 141	16	25	6035070	NPC2828-02	03/26/06 04:24
Trichlorofluoromethane	DN	57.0		ug/L	50.0	114%	54 - 152	12	23	6035070	NPC2828-02	03/26/06 04:24
1,2,3-Trichloropropane	ND	44.9		ug/L	50.0	90%	57 - 142	16	24	6035070	NPC2828-02	03/26/06 04:24
1,3,5-Trimethylbenzene	ND	46.2		ug/L	50.0	92%	68 - 141	11	26	6035070	NPC2828-02	03/26/06 04:24
Vinyl chloride	ND	57.1		ug/L	50.0	114%	49 - 149	9	24	6035070	NPC2828-02	03/26/06 04:24
Xylenes, total	ND	158		ug/L	150	105%	70 - 143	15	27	6035070	NPC2828-02	03/26/06 04:24
1,2,4-Trimethylbenzene	ND	46.5		ug/L	50.0	93%	67 - 143	11	23	6035070	NPC2828-02	03/26/06 04:24
Naphthalene	2.54	48.8		սը/Լ	50.0	93%	46 - 157	13	43	6035070	NPC2828-02	03/26/06 04:24
p-Isopropyltoluene	ND	52,1		ug/L	50,0	104%	67 - 142	13	24	6035070	NPC2828-02	03/26/06 04:24
n-Propylbenzene	ND	57.9		ug/L	50.0	116%	69 - 141	16	25	6035070	NPC2828-02	03/26/06 04:24
Surrogate: 1,2-Dichloroethane-d4		51.2		ug/L	50.0	102%	70 - 130			6035070	NPC2828-02	03/26/06 04:24
Surrogate: Dibromofluoromethane		51.2		ug/L	50.0	102%	79 - 122			6035070	NPC2828-02	03/26/06 04:24
Surrogate: Toluene-d8		49.7		ug/L	50.0	99%	78 - 121			6035070	NPC2828-02	03/26/06 04:24
Surrogate: 4-Bromofluorobenzene		\$2.5		սց/Լ	50.0	105%	78 - 126			6035070	NPC2828-02	03/26/06 04:24
Purgeable Petroleum Hydrocarb	ons											
5033731-MSD1												
Gasoline Range Organics	440	2100		ug/L	3050	54%	60 - 140	43	40	6033731	NPC2502-12	03/22/06 23:08
Surrogate: 1,2-Dichloroethaue-d4		27.4		- ug/L	25.0	110%	0 - 200			6033731	NPC2502-12	03/22/06 23:08
Surrogate: Dibromofluoromethane		31.8		ug/L	25.0	127%	0 - 200			6033731	NPC2502-12	03/22/06 23:08
Surrogate: Toluene-d8		25.7		ug/L	25.0	103%	0 - 200			6033731	NPC2502-12	03/22/06 23:08
Surrogate: 4-Bromofluorobenzene		24.5		ug/L	25.0	98%	0 - 200			6033731	NPC2502-12	03/22/06 23:01

03/21/06 12:27

03/21/06 12:27

03/21/06 12:27

6034365

6034365

6034365

NPC2456-01

NPC2456-01

NPC2456-01

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

PROJECT QUALITY CONTROL DATA

Matrix Spike Dup - Cont.

Analyte	Orig, Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD Limit	Batch	Sample Duplicated	Analyzed Date/Time
Purgeable Petroleum Hydrocarbons											
6034365-MSD1						•					
Surrogate: Toluene-d8		53.2		ug/L	50.0	106%	0 - 200		6034365	NPC2456-01	03/21/06 12:27
Surrogate: 4-Bromofluorobenzene		55.6		ug/L	50.0	111%	0 - 200		6034365	NPC2456-01	03/21/06 12:27

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Altın Anni Kreml Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

CERTIFICATION SUMMARY

TestAmerica Analytical - Nashville

Method	Matrix	AIHA	Nclac	California	
CA LUFT GC/MS	Water			x	
NA	Water				
SW846 8015B	Water				
SW846 8260B	Water	N/A	х	х	
511010 02005					

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

NELAC CERTIFICATION SUMMARY

TestAmerica Analytical - Nashville does not hold NELAC certifications for the following analytes included in this report

<u>Method</u> CA LUFT GC/MS	<u>Matrix</u> Water	<u>Analyte</u> Gasoline Range Organics
SW846 8015B	Water	Diesel
SW846 8260B	Water	Diisopropyl Ether

Test Analytical testing corporation

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675) 5900 Hollis Street, Suite A Emeryville, CA 94608 Attn Anni Kreml Work Order:NPC2456Project Name:500 40th Street, Oakland, CAProject Number:SAP 129452Received:03/18/06 08:00

DATA QUALIFIERS AND DEFINITIONS

L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.

M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).

R2 The RPD exceeded the acceptance limit.

METHOD MODIFICATION NOTES

Test Analytical resting corporation

Nashville Division COOLER RECEIPT FORM

. . . NPC2456

.

Coold 1. Indi	er Received/Op cate the Airbill Tr	cened On03/18/	2006 @ 8:00 digits for Fedex only) and Name of Coi	arier below: <u>3</u>	0-18
	Fed-Ex U	PS Velocity	DHL	Route	Off-street	Misc.
2. Ter (india	nperature of repre- cate IR Gun II	esentative sample or tei)#)	nperature blank wh	en opened: <u>}-</u>	D Deg	rees Celsius
NA	A00466	A00750	A01124	100190	101282	Raynger ST
3. We	ere custody seals o	n outside of cooler?			•••••••	YES NO NA
	•	ow many and where:				<u> </u>
4. Wa	erc the scals intact	, signed, and dated cor	rectly?		(YESNONA
5. Wo	ere custody papers	s inside cooler?				YESNA
<u>I certi</u>	fy that I opened th	te cooler and answered	questions 1-5 (intial)		14 <u>8 5101000 1000 100000 100000</u>	PRO
6. W	ere custody seals o	n containers:	YES NO	â	nd Intact	YES NO NA
	were these sig	ned, and dated correct	y?			YESNONA
7. W	hat kind of pacl	king material used?	Bubblewrap	Peanuts	Vermiculite	Foam Insert
	· P]	astic bag Pape	r Other	· · · · · · · · · · · · · · · · · · ·	No	ne
8. C	cooling process:	(jce Ic	e-pack Ice (o	lirect contact)	Dry ice	Other None
9. Di	d all containers ar	rive in good condition (unbroken)?			YESNONA
10. W	ere all container	labels complete (#, date	, signed, pres., etc)?.			TESNONA
11. D	id all container la	bels and tags agree wit	h custody papers?			VESNONA
12. a	. Were VOA vials	s received?				ÆSNONA
b	. Was there any c	bservable head space j	present in any VOA v	'lal?		yes.Cnona
<u>I certi</u>	fy that Lunloaded	the cooler and answer	ed questions 6-12 (int	<u>ial)</u>		3~
13. a.	On preserved bo	ottles did the pH test str	lps suggest that pres	ervation reached t	he correct pH leve	1? YESNO
Ь	. Did the bottle la	bels indicate that the co	orrect preservatives v	vere used		YESNONA
	If preservatio	on in-house was needed	record standard ID	of preservative us	ed here	
14. V	Yas residual chlori	ine present?				yesnoNa
<u>I certi</u>	<u>fy that I checked f</u>	for chlorine and pH as	per SOP and answer	ed questions 13-14	<u>(Intial)</u>	- 3¢
15. V	Were custody pape	ers properly filled out (ink, signed, etc)?		· · · ·	YBSNONA
16. l	Did you sign the cu	istody papers in the ap	propriate place?	•••••	••••	ESNONA
17. V	Vere correct conta	iners used for the analy	sis requested?		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	FIRSNONA
18. V	¥as sufficient amo	unt of sample sent in e	ıch container?			TESNONA
<u>I certi</u>	ify that I entered <u>t</u>	his project into LIMS a	nd answered questio	ns 15-18 (intial)		<u>71</u>
<u>I certi</u>	l <u>fy that I attached</u>	a label with the unique	LIMS number to ea	ch container (Intia	Ŋ,	<u>J</u> L
19. W	ere there Non-Co	nformance issues at log	In YES NO Was	a PIPE generated	YES	NO #

2

1

BC#

Coole 1. Indi	er Received/Open cate the Airbill Track	ed On3/18/0 ing Number (last 4 dij)68:00 gits for Fedex only)	and Name of Co	urier below: <u>6</u>	<u>307</u>
	Fed-Ex UPS	Velocity	DHL	Route	Off-street	Misc.
6 11	nperature of represen	tative comple or temp	erature blank whe	n opened:	. Degi	ees Celsius
(indi	cate IR Gun ID#)	tative sample of temp		.		
NA	A00466	A00750	A01124	100190	101282	Raynger ST
3. W	ere custody seals on o	utside of cooler?				MISNONA
	a. If yes, how i	nany and where:	<u>l </u>	mont		
4. W	ere the seals intact, sig	gned, and dated corre	ctly?			ABSNONA
	ere custody papers in					YESNONA
	ify that I opened the c					_J:R
	/ere custody seals on c		YES (R)O		and Intact	YES NO RA
0. 11		d, and dated correctly	?			YESNO
7. 1	Vhat kind of packin	g material used?	Bubblewrap	Peanuts	Vermiculite	Foam Insert
	Plast	tic bag Paper	Other		No	one
8.	Cooling process:	fre Ice	-pack Ice (direct contact)	Dry ice	Other None
	Did all containers arriv	U	•			XISSNONA
	Were all container lab					KESNONA
	Were all container lat Did all container labe					EsNONA
						TasNONA
12.	a. Were VOA vials r					YES. NONA
	b. Was there any obs					3M
<u>I çe</u> i	tify that I unloaded th	ie cooler and answere	<u>d questions 6-12 (11</u>	<u>1(181)</u>		
13.	a. On preserved bolt					VES., NONA
	b. Did the bottle labe					ES. INOIA
		in-house was needed,				
	Was residual chlorin					yesnona J/-
<u>1 cç</u>	rtify that I checked fo					
15.	Were custody paper	s properly filled out (ink, signed, etc)?	******		₩₽ŚNONA
16.	Did you sign the cus	tody papers in the ap	propriate place?	*******************	*************	ESNONA
17.	Were correct contain	ners used for the analy	ysis requested?	*********		CSNONA
18.	Was sufficient amou	nt of sample sent in c	ach container?			. YESNONA
	ertify that I entered th					<u></u>
	ertify that I attached a					
	. Were there Non-Con		~	as a PIPE gener		NO #
			\sim			

AB.	Fest America STL Other	14 K V	••• •	يس المراد و	, x.	-		•	S	Ĥ	ÉĹĹ	ĊĽ	naii	'nĽ	ĴŤ (Cu	sto	ody	Re	co	rd	×	•	• • • •	
	lification (If necessary):		holl C	Project	Manag	or to b	o inv	nice		_				-			INCIDENT NUMBER (ES ONLY)								
	rvine, California					- 2 7 3 1										ŀ	<u> </u>	<u>n n n</u>	1	T	T				2/1/1~
	4organ Hill, California Nashville, Tennesee	[[C ENVI	IRONMENT	AL SERVIC	ES	Dei	nis I	Згоч	vn							9		7 10 10	1.7	4	1.1.1.1		DATE	<u>3116/ac</u>
⊒isπ.			П тео	INICAL SE	RVICES							SAP or CRMT NUMBER (TS/CRMT)				:lof									
	(location)	1		T HOUSTO	ÎN Î		T FOR :	ENV, RI	EMEDIA		- NO ETI	M - SEN	D PAPE	R INV	DICE				<u> </u>	T				T AOL	
			<u> </u>					ADDRE						-			Starte			XBAL ID	NO.:		l.		
	COMPANY:)akla	nd				- 1	CA		То	600)101	265			
Blaine ADDRESS	Tech Services	ВІ	rss								ibis Party o		9: 		PHONE		<u></u>		E-MA						CONSULTANT PROJECT NO.
	ogers Avenue, San Jose, CA 9511	2																				_			060316-042
PROJECT	CONTACT (Hardcopy or PDF Report to):						Ann	LER NU	ni, Ca	imbr	a, <u>Em</u> e	ryvili	9		510-	420-3	335		She	<u>əll.en</u>	I.EDF	<u>@can</u>		USE ONL	
	Ninokata								_																
ТВ. 57	NE FAX: 3-0555 408-573-7771		мль: ninoka	ta@blain	etech.co	m	1 3	5.	24		All	ont	-												COMPANY AND
	ROUND TIME (STANDARD IS 10 CALENDA				ESULTS NE		┼──		• 0									oter		1 70	10				
	S DAY 3 DAY 2 DAY		OURS		N WEEKE					_							-405	:31EL) ANA		13				
																					1				
							-	Ê														1	i í		FIELD NOTES:
GC/MS	MTBE CONFIRMATION: HIGHEST				AL			(8015m)		ធ		1								1					
SPECI/	L INSTRUCTIONS OR NOTES:	CHECK 8	BOX IF E	DD IS <u>NO</u>	<u>T</u> NEEDËD		20	i) el		ET BE)	ł		ł		ł						ł		ļ ļ		Container/Preservative or PID Readings
							1	da 1		6 V															or Laboratory Notes
	NPC2	456					Purgeable (82608)	Extractable		(8260B) <u>2E, TAM</u> I							<u>_</u>	ŝ	Ö			İ			
	03/28/06	17.00							â	6 Oxygenates (82 (MTBE, TBA, DIPE,	ê	5 @	(B)	8	1,2 DCA (9260B)	â	Ethanol (8260B)	Methanol (8015M)	Halogenated VOC's						
	03/20/00				REQUEST	FD 🗹	Gas,	TPH - Diesel,	BTEX (8260B)	TBA TBA	MTBE (8260B)	DIPE (8260B)	TAME (8250B)	ETBE (8260B)	B) Y:	EDB (8280B)	9 (8)	lo I	enat						
LAB USE			SAMP		MATRIX	NO. OF		÷	ដ	хщ			¥	B	١ a	8	han	etha				1		TE	MPERATURE ON RECEIPT C°
ONLY	Field Sample Identificatio		DATE	TIME	-	CONT.	Ē	₽		ωS	<u> </u>		<u> </u>		<u> </u>	<u> </u>	ធ	Σ		_					
	MW-Z	31	16/06	1200	3	7	×	\neq	*	¥					\star	×			×	<u> v</u>	,pc	20	56	~1	
₹.~	MW-2 MW-3	1	$\left\{ \right\}$	1210			\prec	*	*	\prec					X	<u> <</u>			×					2	
	OMW-6			1255			*	*	*	×					×	×			×					3	
	0MW-6 MW-8 6MW-9			1243			*	*	×	×					*	*			Y					ч	
	<u> </u>			1312			1-4	4	*	×					~	×			7	;		T		5	
(44), 산신 같은 동생						 	┼┶	+					╀	1	+ -					-1		-	1		
				<u> </u>				-				+	+	+	+	<u>-</u>				╈	+-	+-			
							-							+						+					
9															1										
	<u>. </u>						╀	+				-		+	+	 	<u> </u>				_				
Relian	shed by: (Signature)				Received	py: (Signatu	<u>}</u>	$\mathbf{\mathbf{\xi}}$	>				,└──			<u> </u>		L	Dale;				<u> </u>	Time;	1640
					177	5/	(~	L)	1 -	(A							5'	10	06				1649
Reited	and A in AUDIN						0)		$\overline{}$	1	<u> </u>							- 1	Dale: 3-1	1.	. (Time: /	140
V >	XA XA An						NI	_/	\mathbb{Z}	21	ya-	2							3-11	5 U	6				
Reitriqu	styled by: (Signature)				Réceived	by: (Signatu	e) /	19	4		7	Γ.		<i>(</i> , . ^	,				Dale:		1			Time:	13,45
in	ann Man	P					16	1.1			<u> </u>		3-1					. <u> </u>	<u> 3-1</u>	<u> </u>	00				TUNBING Review

WELL GAUGING DATA

Project # 06 03 16 - DA2 Date 3 16 06 Client Shell

Site 500 40th / Telegraph Oakland, CA

T				Thickness	Volume of		· · · · · · · · · · · · · · · · · · ·	·	
ļ l	Well		Depth to	of	Immiscibles			Dun-	
]	Size	Sheen /	-	Immiscible			D	Survey	
Well ID	(in.)	Odor				Depth to water	-		
Well ID	(m.)	Odor	Liquia (II.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	or TOC	
MW-2	4					11.72	19.58	Toc	
MW-3	4					10.62	18.64		
PMW-6	4					11.94	20.08		
MN-8	4					10.47	38.64		
omw-9	4					1117	17.08		
0MW-13	Ч		Parked	Over				\rightarrow	
		:							
		* No	Porkiz	S 5194	Missi	es, Stan	d on gr	ound.	
		Coul	d not a	n force p	o parlei	rs, Stan 15 towa.	Jay,		
							,		
				······································			_		
							<u> </u>		4
						i			
						·			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

WELL GAUGING DATA

Project # <u>Olo 327 107</u> Date <u>3/27/06</u> Client <u>Blu//</u> Site <u>500 foth (Telegraph, Oakbud</u>

[]				Thickness	Volume of		····	<u> </u>	
	Well		Depth to	of	Immiscibles			Survey	
	Size	Sheen /	Immiscible	Immiscible		Depth to water	Depth to well	Point: TOB	
Well ID	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	OT TOC	
1111-13	4					11.23	21.00		
									· · · · · · · · · · · · · · · · · · ·
l									
]	:								
<u> </u>									
<u> </u>							<u> </u>		
		•							
┝───┤									
·		a construction of the second se		, <u></u>		·			
· · · · · · · · · · · · · · · · · · ·]]								
		-	ł						
		<u> </u>		I					
i					·				
		_							
			Ĭ					I	
							i	Ī	
									

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

		JILLE									
втѕ #: <i>ОЬ</i>	13271	MI		Site:	1209	340	2				
Sampler:	NT			Date: 3 27 116							
Well I.D.:	MW-B			Well Diameter: 2 3 (4) 6 8							
Total Well J): 21.	60	Depth to	Depth to Water (DTW): //. 23						
Depth to Fro	ee Product			Thickness of Free Product (feet):							
Referenced	to:	EVC	Grade	D.O. Meter (if req'd): YSI, HACH							
DTW with 8	80% Recha	urge [(H	eight of Water	Column	x 0.20)	+ DTW	7]: <i>N</i>	4			
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	oisplaceme	nt Extrac Other	Waterra Peristaltic tion Pump		Sampling	g Method: Other:	Disposible Bailer Extraction Port Dedicated Tubing)		
				Z	Vell Diamete	r Multiplic		meter Multiplier.	7		
((1 Case Volume	Gals.) X Speci:	fied Volum	= es Calculated Vo	_ Gals. olume	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163			
			Cond.	Turb	idity						
Time	Temp (°F)	pH	(mS or µS)	(NT	Us)	Gals. Ro	emoved	Observations			
1815	(d).3	7.2	1270		!		-				
			· · · · · · · · · · · · · · · · · · ·								
Did well de	water?	Yes	No	Gallons	actuall	y evacua	ated: Æ	}			
Sampling D	ate: 2/22	106	Sampling Tim	.e: 188	5	Depth t	o Water:	N/A			
Sample I.D.	: OMM	13		Laborat	ory:	STL (Other 1	D.			
Analyzed fo	or: TPH-C	TE	мтве грн	Other: $\overline{\mathcal{L}}$	Ars 1	12-1	VA, E	DB, Haloxy	19		
EB I.D. (if	applicable)	:	@ Time	Duplica	te I.D.	(if appli	(cable):		ÜU		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:							
D.O. (if req	'd): Pi	e-purge:		^{mg} /L	P	ost-purge	*	л	^{vg} /L		
O.R.P. (if re	eq'd): Pi	e-purge:		mV	P	ost-purge	*	n	ıV		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

WELL GAUGING DATA

Project # <u>Olab317-477</u> Date <u>3/17/06</u> Client <u>Scall</u> Site <u>SOD Aotta Freiegraph</u>

Well ID	Well Size (in.)	Sheen / Odor	Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)		Depth to well bottom (ft.)	Survey Point: TOB or 200	
ONW-13			Pa	rked	overe				
	-								
							······		-
	1					· · · · · ·		·	
	[
					·				
						•			
·									

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

presented the second state of the second state							
BTS #: DOD317-11TI	Site: 97093400						
Sampler:	Date: 3/17/06						
Well I.D.: DNW-P	Well Diameter: 2 3 4 6 8						
Total Well Depth (TD):	Depth to Water (DTW):						
Depth to Free Product:	Thickness of Free Product (feet):						
Referenced to: Crade	D.O. Meter (if req'd): YSI HACH						
DTW with 80% Recharge [(Height of Wat	ter Column x 0.20) + DTW]:						
Purge Method: Bailer Disposable Bailer Positive Air Displacement Ext Electric Submersible Other	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer traction Pump Extraction Port Other: Other:						
	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65						
(Gals.) X μ = <u>1 Case Volume</u> = <u>Calculated</u>	Gals. 2 ⁿ 0.16 6 ⁿ 1.47						
TimeTemp (°F)pHCond.TimeTemp (°F)pH(mS or μS)	Turbidity (NTUs)Gals. RemovedObservations						
White Christer Stu Ave Pa	wed over well. Appears to have						
peen there over night.							
Povernent dry under car							
Condensation inside on							
On SITE 0620 - 0750							
Did well dewater? Yes No	Gallons actually evacuated:						
Sampling Date: 3 17 06 / Sampling Ti	ime: / Depth to Water:						
Sample I.D.: 01/10-13	Laboratory: STL Other TA)						
Analyzed for: THE BIER HIDE THE	Other: Malogented Ud. Oxys, 12 Day FD						
EB I.D. (if applicable): @	Duplicate I.D. (if applicable):						
Analyzed for: TPH-G BTEX MTBE TPH-D							
D.O. (if req'd): Pre-purge:	^{mg} / _L Post-purge: ^{mg} / _L						
O.R.P. (if read): Pre-purge:	mV Post-purge: _ mV						

N

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

BTS #: <i>06</i>	03 16 - DA	1		Site: 5	<u>00 40</u>	th st	, Oal	i kind, lA			
	DA			Date:	7	3/16/02	,				
Well I.D.:	MW-2			Well Diameter: 2 3 4 6 8							
Total Well I	Depth (TD): 19,5	б	Depth to Water (DTW): 11.72							
Depth to Fre	ee Product	:		Thickness of Free Product (feet):							
Referenced	to:	ED	Grade	D.O. M	leter (if	req'd):		YSI HACH			
DTW with	80% Recha	arge [(H	eight of Water	Column	1 x 0.20)	+ DTW]:				
Purge Method:	Disposable Ba Positive Air D Electric Subm Gals.) X No	Displaceme aersible	Other	_ Gals.	Well Diamete I" 2" 3"	Sampling <u>r Multiplier</u> 0.04 0.16 0.37	Other:	Bailer ★ Disposable Bailer Extraction Port Dedicated Tubing Diameter. Multiplier 0.65 1.47 radius ² * 0.163			
			Cond.	Turt	oidity						
Time	Temp (°F)	pН	(mS or µS)		Us)	'Gals. Re	moved	Observations			
1200	66.0	7.6	517	31				clear			
Did well de		V		Gallon	ootvall	y evacua	todi				
			Samalia a Tim								
Sampling D			Sampling Tim			Depth to					
Sample I.D.	.: MW-	2		Labora	tory:	STL C	ther_7	<u>A</u>			
Analyzed for	or: T <u>PH-G</u>	BTEX	MTBE TPH-D	Other:	ser c	oc					
EB I.D. (if	applicable)):	@	Duplica	ate I.D.	(if applic	able):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:							
D.O. (if req	'd): Pi	e-purge:		^{mg} /L	Р	ost-purge		^{mg} /L			
O.R.P. (if r	eq'd): Pi	re-purge:		mV	Р	ost-purge		mV			

.

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

			,								
BTS #: 060	316-DA2			Site: 500 40th St. Oakland, CA							
Sampler:	04			Date: 3	116/06						
Well I.D.: ۲	W-3			Well Di	ameter:	2 3	Ð	6 8			
Total Well	Depth (TD)): 18,6	,4	Depth to) Water	(DTW):	10.	62			
Depth to Fr	ee Product:	, ,		Thickness of Free Product (feet):							
Referenced	to:	R	Grade	D.O. Meter (if req'd): (YS) HACH							
DTW with	80% Recha	urge [(H	eight of Water	Column	x 0.20)	+DTW]	: ~				
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	Displacemer		Waterra Peristaltic sti on Pump	<u>Vell Diamete</u>	-	Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing iameter Multiplier.			
(1 Case Volume	Gals.) X No Speci	fied Volum	= nes Calculated Vo	_Gals.	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163			
Time	Temp (°F)	pH	Cond. (mS or (IS)	Turb (NT	-	Gals. Rer	noved	Observations			
1210	68.5	6.4	445	2	-1			clear			
	_							. .			
			<u> </u>		. 11						
Did well de	ewater?	Yes (actuan	y evacua		3			
Sampling I	Date: 3 116	06	Sampling Tim	1e: 121	10	Depth to	Water				
Sample I.D).: <u>MW-</u>	· <u> </u>		Laborat	tory:	STL O	ther 77	4			
Analyzed f	for: TPH-G	BTEX	MTBE TPH-D	Other:	see c	or		 			
EB I.D. (if	applicable):	@ 	Duplica	ate I.D.	(if applic	able):				
Analyzed f	for: TPH-G	BTEX	MTBE TPH-D	Other:	·-··						
D.O. (if re	q'd): P	re-purge:	:	^{mg} /L	4	ost-purge.	>	Mater "			
O.R.P. (if	req'd): P	re-purge:	:	mV	F	Post-purge:		n			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

i

BTS #: <i>0</i> 6	0316-042			Site: 5	80 40	mst,	Oakl	and CA			
Sampler:	DA:	·		Date:		16/00		/			
Well I.D.:	OMW-9	OMW	-6	Well Di	ameter:	2 3	Ø	6 8			
Total Well				Depth to	o Water	(DTW):	11.99	3			
Depth to Fr	ee Product			Thickness of Free Product (feet):							
Referenced		FVD	Grade	D.O. Meter (if req'd): MACH							
DTW with	80% Recha	arge [(H	eight of Water	Column	x 0.20)	+ DTW]:				
Purge Method:	Disposable Ba Positive Air E Electric Subm Gals.) X 123	Displaceme ersible	nt <u>Extrac</u> Other	Gals.	<u>Vell Diamete</u> 1" 2" 3"	Sampling <u>Multiplier</u> 0.04 0.16 0.37	Other:	Bailer ➤ Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47 radius ² * 0.163			
Time	Temp (°F)	pН	Cond. (mS or 15)	Turb (NT	-	Gals. Re	moved	Observations			
1255	64.6	6.8	731	9)			clear; odor			
			· · · · · · · · · · · · · · · · · · ·	·							
Did well de	water?	Yes (No	Gallons	actuall	y evacua	ted:				
Sampling L	Date: 3/16/1	06	Sampling Tim	ie: 12	55	Depth to	Wate	r: -			
Sample I.D	.: OM	100-6		Labora	tory:	STL O	ther	74			
Analyzed f	or: <u>TPH-G</u>	BTEX	MTBE TPH-D	Other:							
EB I.D. (if	applicable):	@ Time	Duplicate I.D. (if applicable):							
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Other:							
D.O. (if rec	1'd): P	re-purge:		^{mg} /L	P	ost-purge:	:	^{mg} /L			
O.R.P. (if r	eq'd): P	re-purge:		mV Post-purge:							

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

				·					
BTS #: 060	Site: 50° 40 th St. Oakland, CA								
Sampler:	Date: 3116100								
Well I.D.:	Well Diameter: 2 3 (4) 6 8								
Total Well	Depth to Water (DTW): 10,47-								
Depth to Fr	Thickness of Free Product (feet):								
Referenced		AVQ.	Grade	D.O. Meter (if req'd): YSI HACH					
DTW with	80% Recha	urge [(H	eight of Water	Column	x 0.20)	+DTV	/]: -		
Purge Method:	Disposable Ba Positive Air D Electric Subm	Displaceme nersible	nt Extrac	-	<u>Vell Diamete</u> 1" 2"	-	g Method: Other: er Well D 4" 6"	Bailer C Disposable Bailer Extraction Port Dedicated Tubing <u>iameter</u> 0.65 1.47	
1 Case Volume	(Gals.) X N <u>o</u> Speci	fied Volun	e nes Calculated V	_ Gals. olume	3"	0.37	Other	radius ² * 0.163	
Time	Temp (°F)	pH	Cond. (mS o	Turb (NT	•	Gals. R	emoved	Observations	
1243	63.1	6.9	354	<u> </u>			-	clear	
Did well d			<u>D</u> to	Gallons	<u>.</u>				
Sampling 1	Date: 3/16	106	Sampling Tirr	$ne: \Gamma \mathcal{L}$	43	Depth	to Wate	r:	<u> </u>
Sample I.I): <u>M</u> W-	8	<u>.</u>	Laborat	tory:	STL	Other t	<u> </u>	<u> </u>
Analyzed t	Other:								
EB I.D. (if	Duplicate I.D. (if applicable):								
Analyzed	for: TPH-G	BTEX	MTBE TPH-D	Other:				······	100
D.O. (if re	^{mg} /L	I	Post-purge:			^{ing} / ₁			
O.R.P. (if	mV	I	Post-purge:			mV			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

				1						
BTS #: 060316 - DAY				Site: 500 40 m St. Oakland, CA						
Sampler: CA					Date: 3/16/16					
Well I.D.: OMW-9					Well Diameter: 2 3 (4) 6 8					
Total Well Depth (TD): ノフ・08					Depth to Water (DTW): 11.17					
Depth to Free Product:					Thickness of Free Product (feet):					
Referenced to: Grade					D.O. Meter (if req'd): HACH					
DTW with 8	30% Recha	rge [(H	eight of Water	Column	1 x 0.20)	+ DTW]	:	~		
-	Bailer Disposable Br Positive Air E Electric Subm Gals.) X No	Displaceme	nt Extrac Other	Waterra Peristaltic tion Pump		Sampling I r <u>Multiplier</u> 0.04 0.16	Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47		
1 Case Volume	· · ·	fied Volum	nes Calculated Vo		3"	0.37	Other	radius ² * 0.163		
Time	Temp (°F)	pH	Cond. (mS or TIS)		oidity TUs)	Gals. Rer	noved	Observations		
1312	62.6	7.0	622	32	-0			doudy, odongreu		
				 	<u>-</u>					
·				ļ						
				ļ						
Did well dewater? Yes 😡					Gallons actually evacuated:					
Sampling D	ate:3/16/0	6	Sampling Tim	e:	312	Depth to	Water	r:		
Sample I.D.: OMW-9					Laboratory: STL Other 74					
Analyzed fo	Other:									
EB I.D. (if applicable):				Duplicate I.D. (if applicable):						
Analyzed for: TPH-G BTEX MTBE TPH-D										
D.O. (if req'd): Pre-purge:					^{ing} / _L Post-purge meter malfur			mater malfunction mg/L		
O.R.P. (if req'd): Pre-purge:				mV	P	Post-purge:				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

BTS #: 060316-092				Site: 500 40th st. Oakland, CA						
Sampler: 🔥					Date: 3)16/06					
Well I.D.: OMW=13					Well Diameter: 2 3 🖗 6 8					
Total Well Depth (TD):					Depth to Water (DTW):					
Depth to Free Product:					Thickness of Free Product (feet):					
Referenced to: FVO Grade					D.O. Meter (if req'd): YSI HACH					
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]:										
Purge Method:	Disposable Ba Positive Air I Electric Subm Gals.) X No	Displaceme nersible	Other	Gals.	<u>Well Diamete</u> I" 2"	r Multiplie 0.04 0.16	4" 6"	Bailer ✓ Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47 radius ² * 0.163		
1 Case Volume Specified Volumes Calculated Volume 5" 0.37 Unter radius + 0.163										
Time	Temp (°F)	pH	Cond. (mS or AS)		bidity FUs)	Gals. Re	emoved	Observations		
	Wei	Was	parked Or	er. c	Inable	to a	<u> </u>			
	•		· · · · · · · · · · · · · · · · · · ·							
Did well de	water?	 R	 Gallon	Gallons actually evacuated:						
Did well dewater? Yes Did Sampling Date: Sampling Sampling					······································					
					Laboratory: STL Other TA					
Analyzed for: TPH-G BTEX MTBE TPH-D Other:										
EB I.D. (if applicable):										
Analyzed for: TPH-G BTEX MTBE TPH-D Other:										
D.O. (if req'd): Pre-purge:				^{mg} / _L Post-purge:			mg/L			
O.R.P. (if req'd): Pre-purge:				mV	nV Post-purge:			mV		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558