

RECEIVED

By dehloptoxic at 3:02 pm, Jan 03, 2007

Aqua Science Engineers, Inc. 208 West El Pintado, Suite C, Danville, CA 94526 (925) 820-9391 - Fax (925) 837-4853 - www.aquascienceengineers.com

September 15, 2006

QUARTERLY GROUNDWATER MONITORING REPORT AUGUST 2006 GROUNDWATER SAMPLING ASE JOB NO. 3934

at Albany Hill Mini Mart 800 San Pablo Avenue Albany, CA 94706

Prepared by:
AQUA SCIENCE ENGINEERS, INC.
208 W. El Pintado
Danville, CA 94526
(925) 820-9391

1.0 INTRODUCTION

Site Location (Site), See Figure 1 Albany Hill Mini Mart 800 San Pablo Avenue Albany, CA 94706

Responsible Party
Dr. Joginder Sikand
1300 Ptarmingan Drive #1
Walnut Creek, CA 94595

Environmental Consulting Firm
Aqua Science Engineers, Inc. (ASE)
208 W. El Pintado, Suite C
Danville, CA 94526
Contact: Robert Kitay, Senior Geologist
(925) 820-9391

Agency Review
Alameda County Health
Care Services Agency (ACHCSA)
1131 Harbor Bay Pkwy
Suite 250
Alameda, CA 94502
Contact: Jerry Wickham
(510) 567-6791

California Regional Water Quality Control Board (RWQCB) San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, CA 94612 Contact: Ms. Betty Graham (510) 622-2433

The following is a report detailing the results of the August 2006 quarterly groundwater sampling at the Albany Hill Mini Mart Property. This sampling was conducted as required by the ACHCSA and RWQCB. ASE prepared this report on behalf of Dr. Joginder Sikand, the property owner and responsible party.

2.0 GROUNDWATER FLOW DIRECTION AND GRADIENT

On August 24, 2006, ASE measured the depth to groundwater in all ten site monitoring wells using an electric water level sounder. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen. No sheen or free-floating hydrocarbons were observed in any of the monitoring wells. Groundwater elevation data is presented in Table One. A groundwater potentiometric surface map is presented as Figure 2. The groundwater flow direction and gradient beneath the site is very inconsistent this quarter with flow direction components to the west, east and south.

3.0 GROUNDWATER SAMPLE COLLECTION AND ANALYSIS

On August 24, 2006, ASE collected groundwater samples from all ten monitoring wells. Prior to sampling, each monitoring well was purged of at least three well casing volumes of groundwater using disposable polyethylene bailers. The parameters pH, temperature, and conductivity were monitored during the well purging, and samples were not collected until these parameters stabilized. Groundwater samples were collected from each well using the same polyethylene bailers and were decanted from the bottom of the bailers using low-flow emptying devices into 40-ml volatile organic analysis (VOA) vials, pre-preserved with hydrochloric acid. The samples were capped without headspace, labeled, and placed in coolers with wet ice for transport to Kiff Analytical of Davis, California (ELAP #2236) under appropriate chain-of-custody documentation. Petroleum hydrocarbon odors were noted during the purging and sampling of all the monitoring wells. Well sampling field logs are presented in Appendix A.

The well purge water was placed into a 55-gallon steel drum and labeled for temporary storage until proper disposal could be arranged.

The groundwater samples were analyzed by Kiff for total petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, ethylbenzene, and total xylenes (collectively known as BTEX), and fuel oxygenates including methyl tertiary-butyl ether (MTBE) by EPA Method 8260B, and total petroleum hydrocarbons as diesel (TPH-D) by EPA Method 8015. The analytical results for this and previous sampling events are summarized in Table Two. The most recent certified analytical report and chain-of-custody documentation are included as Appendix B.

4.0 RESULTS AND CONCLUSIONS

- Concentrations of TPH-G, ethyl benzene and MTBE detected in groundwater samples collected from monitoring well MW-1 increased slightly this quarter, while total xylenes concentrations decreased in the same sample.
- Concentrations of TPH-G, TPH-D, benzene, ethyl benzene, and MTBE detected in groundwater samples collected from monitoring well MW-2 decreased slightly this quarter.

- Concentrations of TPH-G, BTEX, and TBA detected in groundwater samples collected from monitoring well MW-3 decreased significantly this quarter, while MTBE concentrations increased significantly in the same sample.
- Concentrations of TPH-G and benzene detected in groundwater samples collected from monitoring well MW-4 increased this quarter, while MTBE decreased slightly in the sample.
- Concentrations of TPH-G and BTEX detected in groundwater samples collected from monitoring well MW-5R increased this quarter.
- Concentrations of TPH-G, BTEX, TBA, and MTBE detected in groundwater samples collected from monitoring well MW-6 decreased this quarter.
- Concentrations of TPH-G and BTEX detected in groundwater samples collected from monitoring well MW-7 decreased slightly this quarter, while MTBE increased slightly in the sample.
- Concentrations of TPH-G, benzene, ethyl benzene, and MTBE detected in groundwater samples collected from monitoring well MW-8 decreased this quarter.
- Concentrations of TPH-G and BTEX detected in groundwater samples collected from monitoring well MW-9 decreased this quarter.
- Concentrations of MTBE detected in groundwater samples collected from monitoring well MW-10 increased this quarter, while all other results remained similar to the previous quarter.

Concentrations exceeding Environmental Screening Levels¹ (ESLs)

- In MW-1, the TPH-G, benzene and total xylenes concentrations exceeded the ESLs.
- In MW-3, the total xylenes and MTBE concentrations exceeded the ESLs.
- In MW-4, the TPH-G, benzene, and total xylenes concentrations exceeded the ESLs.
- In MW-5R, the TPH-G, benzene, ethyl benzene and total xylene concentrations exceeded the ESLs.
- In MW-6, the TPH-G, TPH-D, and benzene concentrations exceeded the ESL.
- In MW-7, the TPH-G, benzene, and total xylenes concentrations exceeded ESLs.
- In MW-8, the TPH-G, benzene, total xylenes, and MTBE concentrations exceeded ESLs.
- In MW-9, the TPH-G, benzene, toluene, and total xylenes concentrations exceeded ESLs.

5.0 RECOMMENDATIONS

ASE recommends continued groundwater monitoring on a quarterly basis. The next groundwater sampling is scheduled for December 2006.

6.0 REPORT LIMITATIONS

The results presented in this report represent the conditions at the time of the groundwater

¹ As presented in the "Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater" document prepared by the California Regional Water Quality Control Board, San Francisco Bay Region dated February 2005.

sampling, at the specific locations where the groundwater samples were collected, and for the specific parameters analyzed by the laboratory. It does not fully characterize the site for contamination resulting from sources other than the former underground storage tanks and associated plumbing at the site, or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of an independent CAL-DHS certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

Aqua Science Engineers appreciates the opportunity to provide environmental consulting services for this project, and trust that this report meets your needs. Please feel free to call us at (925) 820-9391 if you have any questions or comments.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Michael Rauser Project Geologist

Robert E. Kitay, P.G., R.E.A.

Senior Geologist

had & Kty

Attachments: Figures 1 and 2

Tables One and Two Appendices A and B

cc: Mr. Jerry Wickham, ACHCSA

Ms. Betty Graham, RWQCB

FIGURES

SCALE: 1'' = 20'

WASHINGTON AVENUE

SAN PABLO AVENUE

LEGEND

WELL NOT USED FOR CONTOUR MAP

MW-9

(37.33') MONITORING WELL

GROUNDWATER ELEVATION COUNTOUR LINE WITH FLOW DIRECTION

APPROXIMATE FORMER UST LOCATION AND AREA OF EXCAVATION

POTENTIOMETRIC SURFACE CONTOUR MAP JUNE 27, 2006

ALBANY HILL MINI MART 800 SAN PABLO AVENUE ALBANY, CALIFORNIA

AQUA SCIENCE ENGINEERS

Figure 2

TABLES

Groundwater Elevation Data Albany Hill Mini Mart 800 San Pablo Avenue, Albany, CA

Mall	Date of	Top of Casing Elevation*	Depth to Water	Groundwater Elevation
Well	Date of Measurement	(feet)	(feet)	(feet)
ID	MEasurellietti	(1661)	(1000)	(1000)
MW-1	8/6/99	101.68	11.95	89.73
	11/5/99		12.72	88.96
	2/7/00		10.34	91.34
	5/5/00		10.59	91.09
	8/3/00		11.75	89.93
	11/8/00		11.67	90.01
	2/8/01		11.20	90.48
	6/7/01		11.35	90.33
	9/7/01		11.71	89.97
	12/13/01		10.67	91.01
	6/13/02		11.42	90.26
	9/11/02		12.42	89.26
	2/14/03	46.42	10.69	35.73
	9/10/04		13.83	32.59
	12/7/04		12.18	34.24
	4/18/05		9.92	36.50
	6/20/05		10.64	35.78
	10/7/05		12.42	34.00
	12/7/05	40.02	11.51 9.35	34.91 39.47
	3/6/06	48.82	10.07	38.75
	6/27/06		10.07 12.02	36.80
	8/24/06		12.02	30.80
MW-2	8/6/99	101.57	10.83	90.74
	11/5/99		11.66	89.91
	2/7/00		9.23	92.34
	5/5/00		9.54	92.03
	8/3/00		10.69	90.88
	11/8/00		10.62	90.95
	2/8/01		10.17	91.40
	6/7/01		10.30	91.27
	9/7/01		10.65	90.92
	12/13/01		9.65	91.92
	6/13/02		10.37	91.20
	9/11/02	45.21	11.32	90.25
	2/14/03	45.31	9.59 11.78	35.72
	9/10/04		11.78	33.53 34.18
	12/7/04		8.71	36.60
	4/18/05 6/20/05		9.60	35.71
	10/7/05		11.39	33.92
	12/7/05		11.49	33.82
	3/6/06	47.71	8.22	39.49
	6/27/06	71./1	9.45	38.26
	8/24/06		10.35	37.36
	0/24/00		10.55	37.30

Groundwater Elevation Data Albany Hill Mini Mart

800 San Pablo Avenue, Albany, CA

Well ID	Date of Measurement	Top of Casing Elevation* (feet)	Depth to Water (feet)	Groundwater Elevation (feet)
NAM 2	0.46.400	100.33	10.58	89.75
MW-3	8/6/99	100.33	11.39	88.94
	11/5/99		9.05	91.28
	2/7/00		9.29	91.04
	5/5/00 8/3/00		10.43	89.90
	11/8/00		10.33	90.00
	2/8/01		9.94	90.39
	6/7/01		10.04	90.29
	9/7/01		10.31	90.02
	12/13/01		9.38	90.95
	6/13/02		10.03	90.30
	9/11/02		11.02	89.31
	2/14/03	45.08	9.40	35.68
	9/10/04	13.00	12.51	32.57
	12/7/04		11.86	33.22
	4/18/05		8.49	36.59
	6/20/05		9.34	35.74
	10/7/05		11.11	33.97
	12/7/05		10.22	34.86
	3/6/06	47.49	8.84	38.65
	6/27/06		6.07	41.42
	8/24/06		10.26	37.23
MW-4	6/13/02	100.05	10.18	89.87
	9/11/02		11.12	88.93
	2/14/03	45.20	9.51	35.69
	9/10/04		11.59	33.61
	12/7/04		10.91	34.29
	4/18/05		8.62	36.58
	6/20/05		9.45	35.75
	10/7/05		11.20	34.00
	12/7/05		10.30	34.90
	3/6/06	47.61	8.19	39.42
	6/27/06		9.71	37.90
	8/24/06		10.43	37.18
MW-5	6/13/02	98.37	8.88	89.49
	9/11/02		9.95	88.42
	2/14/03	44.12	8.66	35.46
	9/10/04		10.26	33.86
	12/7/04		10.79	33.33
	4/18/05 6/20/05	Well Destroyed by City Du Well Destroyed by City Du	-	

Groundwater Elevation Data Albany Hill Mini Mart

800 San Pablo Avenue, Albany, CA

		Top of Casing	Depth to	Groundwater
Well	Date of	Elevation*	Water	Elevation
ID	Measurement	(feet)	(feet)	(feet)
MM ED	10/7/05		10.94	
MW-5R	12/7/05		9.97	
	3/6/06	47.36	4.93	42.43
	6/27/06		9.47	37.89
	8/24/06		10.10	37.26
MAN C	6/13/02	99.36	8.85	90.51
MW-6	9/11/02	55.50	9.82	89.54
	2/14/03	43.88	8.21	35.67
	9/10/04	+3.00	10.33	33.55
	12/7/04		9.83	34.05
	4/18/05		7.08	36.80
	6/20/05		7.52	36.36
	10/7/05		10.92	32.96
	12/7/05		8.85	35.03
	3/6/06	46.27	6.22	40.05
	6/27/06	10.27	7.40	38.87
	8/24/06		9.15	37.12
MW-7	6/13/02	100.96	10.95	90.01
V VV - /	9/11/02	100.50	11.90	89.06
	2/14/03	45.59	10.25	35.34
	9/10/04	10.00	12.35	33.24
	12/7/04		11.42	34.17
	4/18/05		9.34	36.25
	6/20/05		10.19	35.40
	10/7/05		12.96	32.63
	12/7/05	not sampled		
	3/6/06	48.36	8.92	39.44
	6/27/06		10.41	37.95
	8/24/06		11.21	37.15
MW-8	6/13/02	100.54	10.57	89.97
1-111	9/11/02		11.53	89.01
	2/14/03	45.59	9.98	35.61
	9/10/04	10.00	11.98	33.61
	12/7/04		11.42	34.17
	4/18/05		8.99	36.60
	6/20/05		9.83	35.76
	10/7/05		11.60	33.99
	12/7/05		11.69	33.90
	3/6/06	47.99	8.58	39.41
	6/27/06	17.55	10.06	37.93
	8/24/06		10.77	37.22
	0/24/00			0

Groundwater Elevation Data **Albany Hill Mini Mart** 800 San Pablo Avenue, Albany, CA

		Top of Casing	Depth to	Groundwater
Well	Date of	Elevation*	Water	Elevation
ID	Measurement	(feet)	(feet)	(feet)
MW-9	2/14/03	46.86	10.84	36.02
	9/10/04		12.97	33.89
	12/7/04		12.84	34.02
	4/18/05		9.75	37.11
	6/20/05		10.83	36.03
	10/7/05		12.59	34.27
	12/7/05		12.56	34.30
	3/6/06	49.24	10.24	39.00
	6/27/06		9.83	39.41
	8/24/06		11.91	37.33
MW-10	10/7/05		10.52	
	12/7/05	not sampled		
	3/6/06	46.90	7.46	39.44
	6/27/06		9.03	37.87
	8/24/06		9.75	37.15

Notes:

Data prior to September 10, 2004, including survey data, is based on tables compiled by AARS. * Top of casing elevations were initially surveyed to an arbitrary benchmark. The elevations were resurveyed on November 11, 2002 with respect mean sea level.

TABLE TWO

Summary of Analytical Results for GROUNDWATER Samples
Albany Hill Mini Mart
800 San Pablo Avenue, Albany, CA
All results are in parts per billion (ppb)

Well ID or	Date	TPH	TPH			Ethyl-	Total	7.115	TDA	WEDE	Other
Sample Point	Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	TAME	TBA	MTBE	VOCs
MW-1	8/6/99	1,500	1,200	4.3	2.9	9.1	28			ND	
	11/5/99	1,800	1,400	5.1	3.2	8.9	33			ND	
	2/7/00	1,100	890	3.3	1.9	5.6	21			ND	
	5/7/00	970	650	2.9	1.7	4.9 41	18 160			ND 360	
	8/3/00	1,200	270* 230*	190 990	43.0 200.0	130	560			840**	
	11/8/00 2/8/01	4,200 2,800	380*	630	130.0	51	250			390	
	6/7/01	650	190	97	13.0	20	62			320	
	9/7/01	970	400	260	17.0	44	140			460	
	12/13/01	291	< 50	91.7	1.4	17.4	7.2			499	
	6/13/02	5,120	2,160*	1,860	22.0	316	318			325	
	11/11/02	824	< 50	216	< 5	22	20			290	
	2/14/03	1,783	590*	546	5.0	90 52	52 23	< 0.5	5.1	321 220	< 0.5
	9/10/04	900 540	82 < 80	210 130	8.4 3.1	24	14	< 0.5	< 5.0	240	< 0.5
	12/7/04 4/18/05	1,600	< 200	390	3.6	32	57	< 0.5	< 5.0	240	0.53 1,2-DCA
	6/20/05	2,500	< 300	740	12.0	110	69	< 0.5	5.7	240	< 0.50
	10/7/05	520	130	97	26.0	11	28	< 0.50	<5.0	190	< 0.50
	12/7/05	220	86	42	11.0	6.2	12	< 0.50	<5.0	230	< 0.50
	3/6/06	180	69	63	1.6	3.8	2.3	< 0.50	< 0.50	180	< 0.50
	6/27/06	2,800	< 300	1,100	7.1	140	44	< 0.50	9.9	220	< 0.50
	8/24/06	3,200	< 200	1,100	6.6	170	16	< 2.0	< 9.0	250	< 2.0
MW-2	8/6/99	ND	340	ND	ND	ND	ND			ND	
	11/5/99	ND	420	ND	ND	ND	0.7			ND	
	2/7/00	ND	310	ND	ND	ND	0.6			ND	
	5/7/00	ND	280	ND	ND	ND	< 1			ND	
	8/3/00	460	70*	79	3.0	43	8			3,300	
	11/8/00	200	120	57	2.0	13	8 4			3,000	
	2/8/01	290	80	50	1.0	0.6 3	5			3,100 2,000	
	6/7/01	210 230	80 ND	18 51	0.6 ND	8	8			2,400	
	9/7/01 12/13/01	172	ND	53	1.2	7.7	8.4			1,780	
	6/13/02	86	< 50	6	6.7	1.1	4.5			1,830	
	11/11/02	1,040	< 50	5	1.0	< 1	5			1,250	
	2/14/03	82	< 50	8	< 1	1	< 3			1,520	
	9/10/04	< 100	72	1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	620	< 1.0
	12/7/04	< 150	86	17	< 1.5	< 1.5	< 1.5	< 1.5	< 7.0	540 840	< 1.5
	4/18/05	280	130	55	< 1.5	4.4 2.4	< 1.5 2.7	< 1.5 < 0.90	< 20 5.2	540	< 1.5 < 0.90
	6/20/05	200 <90	100 150	34 11	< 0.90 <0.90	< 0.90	< 0.90	<0.90	<5.0	360	< 0.90
	10/7/05 12/7/05	<90	110	1.5	<0.90	< 0.90	< 0.90	< 0.90	<5.0	500	< 0.90
	3/6/06	< 90	88	7.0	< 0.90	< 0.90	< 0.90	< 0.50	5.2	610	< 0.50
	6/27/06	270	150	49	< 0.50	5.1	3.4	0.58	8.9	540	< 0.50
	8/24/06	110	120	13	< 0.50	1.3	< 0.50	< 0.50	< 5.0	480	< 0.50
			ND	ND	ND	ND	ND			ND	
MW-3	8/6/99	ND 92	ND 54	ND ND	ND ND	0.6	1.7			ND	
	11/5/99 2/7/00	120	71	ND	0.6	0.8	2.2			ND	
	5/7/00	100	68	ND	ND	0.7	1.9			ND	
	8/3/00	910	300*	220	9.0	35	16			11,000**	
	11/8/00	990	200	320	0.8	18	9			8,000	
	2/8/01	990	110	180	21.0	7	24			5,200**	
	6/7/01	370	140	62	4.0	8	13			6.600**	
	9/7/01	460	ND	87	1.0	11	25			9,400**	
	12/13/01	251	ND	66.8	0.9	2.6	8.4			6,610	
	6/13/02	3,630	< 50	41	60.0	41	187			8,820**	
	11/11/02		< 50	150	< 1	5 2	< 3 < 3			7,770 5,040	
	2/14/03	176	< 50 140	31 110	< 1 < 10	< 10	21	20	200	4,400	< 10
	9/10/04	< 1,000 1,000	150	310	19.0	24	50	21	< 100	4,000	< 10
	12/7/04 4/18/05	750	150	170	16.0	33	36	6.1	< 50	1,700	< 5.0
	6/20/05	680	120	140	9.7	20	38	7.4	< 20	1,900	< 4.0
	10/7/05	630	160	140	10.0	11	34	9.2	<20	2,000	< 4.0
	12/7/05	550	200	128	6.4	7.2	10	11	56	2,400	< 4.0
	3/6/06	88	36	< 2.0	5.3	2.1	4.2	13	1,000	1,000	< 2.0
	6/27/06	7,400	< 1,500	2,800	12	190	56	9.8	110 40	760	< 4.0 < 4.0
	8/24/06	< 400	130	24	< 4.0	< 4.0	14	9.0	40	2,800	< 4.0

TABLE TWO

Summary of Analytical Results for GROUNDWATER Samples Albany Hill Mini Mart 800 San Pablo Avenue, Albany, CA All results are in parts per billion (ppb)

Well ID or Sample Point	Date Sampled	TPH Gasoline	TPH Diesel	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TAME	TBA	MTBE	Other VOCs
MW-4	6/13/02	4,460	1,500*	425	409.0	115	730			32	
	11/11/02	5,150	2,380*	2,010	74.0	399	252			< 20	
	2/14/03	6,360	2,410*	1,560	82.0	274	573			< 1	
	9/10/04	1,600	180	370	6.5	68	93	< 1.0	10	13	1.1 (DIPE)
	12/7/04	1,900	< 200	450	8.2	72	100	< 0.9	5.4	9.5	< 0.9
	4/18/05	10,000	< 800	1,500	27.0	420	900	< 1.5	15	18	< 1.5
	6/20/05	6,100	< 600	830	19.0	280	400	< 1.5	17	22 14	< 1.5
	10/7/05	3,200	<500	660	8.7	110 48	140 37	< 1.5 < 0.5	12 < 5.0	12	< 1.5 < 0.5
	12/7/05	1,000	< 200	220 280	2.5 2.1	32	77	0.65	< 0.50	75	1.0 (DIPE) /
	3/6/06	1,200	< 300	200	۷.۱	32	, ,	0.03	(0.50		.57(1,2-DCA)
	6/27/06	2,000	< 300	570	4.0	110	120	< 0.90	15	110	1.2(DIPE)
	8/24/06	2,500	< 300	830	6.5	120	120	< 0.90	18	95	< 0.90
MW-5	6/13/02	536	< 50	6.4	0.6	22	23			11	
	11/11/02	3,270	1,230*	< 1	< 1	28	8			< 1	
	2/14/03	1,260	610*	9	7.0	22	5			< 1	
	9/10/04	1,300	150	2.4	< 0.50	0.77	< 0.50 < 0.50	< 0.50 < 0.50	< 5.0 < 5.0	< 0.50 < 0.50	< 0.50 < 0.50
	12/7/04 4/18/05	1,000	< 200	4.1 Improperly I	< 0.50 Destroyed b	1.4 y City of Al				< 0.50	< 0.50
50		760	.000			8.3	1.2	< 0.50	< 5.0	< 0.50	< 0.50
MW-5R	10/7/05	760 5,200	<800 < 2,000	2 36	< 0.50 1.0	320	1.2	< 0.50	< 5.0	< 0.50	< 0.50
	12/7/05 3/6/06	6,300	< 3,000	44	1.2	370	19	< 0.90	5.9	< 0.90	< 0.90
	6/27/06	5,100	< 2,000	53	1.3	370	17	< 0.50	5.6	< 0.50	< 0.50
	8/24/06	6,500	< 2,000	80	1.8	510	18	< 0.90	9.9	< 0.90	< 0.90
MW-6	6/13/02	2,980	1,460*	31	2.3	3.8	12			310	
	11/11/02	3,570	1,210*	336	5	< 5	< 15			95	
	2/14/03	3,770	1,620*	429	12	7	10			122	
	9/10/04	< 1,000	390	2.7	< 0.50	< 0.50	< 0.50	2.3	48	280	< 0.50
	12/7/04	1,800	< 600	32	1.7	< 0.50	1.1	2.2	49	160	< 0.50
	4/18/05	1,200	1,400	34	1.3	< 0.50	0.90	0.86 < 0.50	19 5.5	36 8.5	< 0.50 < 0.50
	6/20/05	590	1,300	3.3	< 0.50 < 0.50	< 0.50 < 0.50	< 0.50 < 0.50	0.67	20	82	< 0.50
	10/7/05	470 420	1,300 910	6.8 10	< 0.50	< 0.50	< 0.50	< 0.50	7.3	22	< 0.50
	12/7/05 3/6/06	790	590	3.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	4.3	< 0.50
	6/27/06	2,600	980	100	4.0	0.96	2.2	1.0	49	78	< 0.50
	8/24/06	1,200	960	57	2.3	< 0.50	1.1	0.82	34	64	< 0.50
MW-7	6/13/02	24,100	1,570*	2,310	657	945	5,430			951	
	11/11/02	4,760	2,160*	1,820	21	316	1,141			702	
	2/14/03	4,320	2,380*	1,020	7	223	293			1,410	1. 5
	9/10/04	4,800	< 300	640	16	250	490 70	< 1.5 4.0	31 < 20	590 960	< 1.5 < 2.0
	12/7/04	990	< 300	140	3.4 1.3	49 96	16	< 1.0	20	370	< 1.0
	4/18/05	1,400	< 300 < 200	260 320	1.3	130	24	< 0.50	17	370	< 0.50
	6/20/05 10/7/05	1,900 2,600	< 200	190	4.7	91	200	< 0.73	8.0J	310	< 0.50
	12/7/05				No	ot sampled.	Inaccessab	le			
	3/6/06	640	< 200	85	0.88	24	30	< 0.50	8.0	150	< 0.50
	6/27/06	1,200	< 200	180	1.7	64	64	< 0.50	14	150	< 0.50
	8/24/06	990	< 200	120	0.96	36	51	< 0.50	13	180	< 0.50
MW-8	6/13/02	20,000	7,760*	2,200	1,140	1,050	4,090			12,000	
	11/11/02	5,010	2,010*	187	< 1	15	< 3			16,600	
	2/14/03	1,980	< 50	607	6	113	40			11,500	
	9/10/04	< 2,000	200	110	< 20	26 40	49 61	25 31	< 200 100	8,600	< 20 < 10
	12/7/04	2,000	280	420	< 10	23	< 10	17	< 100	6,800 3,700	< 10
	4/18/05	< 1000	250	76 190	< 10 < 7.0	21	40	19	< 40	3,400	< 7.0
	6/20/05 10/7/05	1,300 <700	300 200	85	< 7.0	9.3	8.3	23	< 40	4,400	< 7.0
	12/7/05	1,400	300	250	8.7	41	90	18	< 40	4,400	< 7.0
	3/6/06	.,			No	ot sampled.					
		710	250	100	< 5.0 < 5.0	ot sampled. 7.8 5.4	Inaccessat 26 45	16 15	30 < 25	3,100 2,700	< 5.0 < 5.0

TABLE TWO

Summary of Analytical Results for **GROUNDWATER** Samples Albany Hill Mini Mart

800 San Pablo Avenue, Albany, CA All results are in parts per billion (ppb)

Well ID or	Date	TPH	TPH			Ethyl-	Total	T.1145	TD 4	MTDE	Other
Sample Point	Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	TAME	TBA	MTBE	VOCs
					4 750	501	F 410			< 0.5	
MW-9	6/27/02	19,000		1,430	1,750	501	5,410				
	11/11/02	19,000	13,200*	3,390	4,540	1,020	9,050			549	
	2/14/03	21,300	8,200*	1,700	2,200	701	4,970			< 1	
	9/10/04	12,000	< 1,500	890	37	280	2,000	< 5.0	< 50	< 5.0	< 5.0
	12/7/04	13,000	< 1,500	950	580	480	2,900	< 5.0	< 50	< 5.0	< 5.0
	4/18/05	9,600	< 1,000	620	180	260	1,400	< 2.5	< 25	< 2.5	< 2.5
	6/20/05	9.800	< 1,500	760	260	430	1,400	< 2.0	< 9.0	< 2.0	< 2.0
	10/7/05	3,400	<1000	350	170	100	480	< 0.50	< 5.0	< 0.50	< 0.50
				320	97	200	580	< 0.90	<5.0	< 0.50	< 0.50
	12/7/05	5,600	< 1000			97	600	< 0.90	< 5.0	< 0.90	< 0.50
	3/6/06	4,200	< 800	460	120					< 2.0	< 0.50
	6/27/06	8,100	< 1,000	710	330	390	1,700	< 0.50	< 5.0		
	8/24/06	6,100	< 800	550	220	280	1,200	< 2.0	< 9.0	< 2.0	< 2.0
MW-10	10/7/05	470	330	17	< 0.50	2	11	1.2	9.4J	210	< 0.50
1-111	12/7/05				No	t sampled.	Inaccessab	le			
	3/6/06	130	130	4.2	< 0.50	< 0.50	< 0.50	4.9	13	820	0.55 (DIPE)
		< 400	140	4.4	< 0.50	< 0.50	< 0.50	8.9	21	1.300	0.60 (DIPE)
	6/27/06					< 4.0	< 4.0	7.0	< 20	1,400	< 4.0
	8/24/06	< 400	140	< 4.0	< 4.0	< 4.0	\ 4.0	7.0	~ 20	1,-100	٧٠.0
ESL		500	640	46	130	290	13	NE	NE	1,800	Varies

Notes:
Data prior to August 2004 is based on a table compiled by AARS - ASE has not checked results against original laboratory reports.

ESL = Environmental screening levels presented in the "Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater (July 2003)" document prepared by the California Regional Water Quality Control Board, San Francisco Bay Region.

Most recent concentrations are in Bold.

Non-detectable concentrations noted by the less than sign (<) followed by the laboratory detection limit.

NE indicates that no ESL has been established for this compound.

^{*} Does not match diesel pattern

^{**} Confirmed by GC/MS method 8260

APPENDIX A

Well Sampling Field Logs

	WELL SAMI	LING FIELD LOG	
PROJECT NAME All	04/ (4,11		
JOB NUMBER	3934	DATE OF SAMPLING	8-24-06
WELL ID.	MW-1	SAMPLER	MLR
TOTAL DEPTH OF WELL	24.2	WELL DIAMETER	2
DEPTH TO WATER PRIOR I	TOPURGING 12.02		
PRODUCT THICKNESS	0		
DEPTH OF WELL CASING IN	IWATER 12,18		
NUMBER OF GALLONS PER	WELL CASING VOLUME 1. 9		
NUMBER OF WELL CASING	VOLUMES TO BE REMOVED 3		
REQUIRED VOLUME OF GRO	DUNDWATER TO BE PURGED PRIOR TO	SAMPLING 5. 8	
EQUIPMENT USED TO PURG	VP ,		
TIME EVACUATION STARTE	1016	TIME EVACUATION COMPLE	ETED 1235
TIME SAMPLES WERE COLL	ECTED 1240		
DID WELL GO DRY	NO	AFTER HOW MANY GALLON	NS -
OLUME OF GROUNDWATER	RPURGED 6.0		
SAMPLING DEVICE	Paller		
HMPLE COLOR	clear	ODORIBEDIMENTS TV.	g HCU/Nos
		,	
VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
	65.6	7.12	1131
2	65.0	7.10	1194
3	64.9	7.08	1218

SHMPLE	E TE TANTAMERA	2175 AND 17725 OF 3505		
AA 1 C- /	1	SIZE FIND I FE OF DONLANER	17/17/10/0	FREBER; =
/° (W =	- <u>-)</u>	VOA		1110
				III

WELL SAMPLING FIELD LOG

	TILL DAIVI	LING FIELD LUG	
PROJECTNAME /	lbany Hill		
JOB NUMBER	3934	DATE OF SAMPLING	8-24-06
WELL ID.	MW-2	SAMPLER	MIR
TOTAL DEPTH OF WELL	24.8	WELL DIAMETER	7
DEPTH TO WATER PRIOR	TOPURGING 10.35		Carrier
PRODUCT THICKNESS	0		
DEPTH OF WELL CASING!	NWATER 1445		
NUMBER OF GALLONS PE	RWELL CASING VOLUME 2.4		
NUMBER OF WELL CASINO	FVOLUMES TO BE REMOVED 3		
REQUIRED VOLUME OF GR	OUNDWATER TO BE PURGED PRIOR TO	SAMPLING 7. 2	
EQUIPMENT USED TO PUR	ia		
TIME EVACUATION START	R CC	TIME EVACUATION COMPLETE	ED 1010
TIME SAMPLES WERE COL	LECTED ///S		
DID WELL GO DRY	No	AFTER HOW MANY GALLONS	
OLUME OF GROUNDWATE	RPURGED Y. O		
SAMPLINGDEVICE	Paller		
SAMPLE COLOR	Clear	ODOR/SEDIMENT slight	HC Oder (u.S.
CHEMICAL PATA			·
VOLUME PURGED	TEMPERATURE	211	
	68.6	7 1 g	CONDUCTIVITY
2	60.6	7.17	523 520
3	66.8	7.11	220
	66.8	1.06	522
ALIDI FO COLL FOT	ro.		

SAMPLE	= OF CONTAINERS	SIZE AND TYPE OF CONTAINER	
MW-2	and the second	VOA	1

WELL SAMPLING FIELD LOG

PROJECT NAME	Alberry	Hill					
JOB NUMBER	393	4		DATE OF SAMPLING	8-2	9-06	
WELL ID.	MW-3			SAMPLER	1916	-R	
TOTAL DEPTH OF WELL	238			WELL DIAMETER	2		
DEPTH TO WATER PRIC	R TO PURGING	10.28)				
PRODUCT THICKNESS							
DEPTH OF WELL CASINO	SINWATER	13.54					
NUMBER OF GALLONS F	PER WELL CASING VI	DLUME 3	. 2				
NUMBER OF WELL CASI	NG VOLUMES TO BE	REMOVED	3				
REQUIRED VOLUME OF	GROUNDWATER TO E	BE PURGED PRIC	DR TO SA	ampling 6. 7			
EQUIPMENT USED TO PL	JRGE WELL	Ballen					
TIME EVACUATION STAR	RTED /	155		TIME EVACUATION COM	IPLETED 7	4(2 115	
TIME SAMPLES WERE C	OLLECTED	1210					
DID WELL GO DRY	NO			AFTER HOW MANY GAL	LONS ~	•	
VOLUME OF GROUNDWA	TER PURGED	Balles	7.0				
SAMPLINGDEVICE	B	iler			,		
SAMPLE COLOR	Clear			ODOR/SEDIMENT 1	ight	0 / N	15
					, -		

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
(69-1	7.36	675
2	681	6.88	759
3 -	679	6.84	746

SAMPLE		SIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERV
MW-3	5	VC A		1410

WELL SAMPLING FIELD LOG

PROJECT MAME Albany Hill	
JOB NUMBER 3934	DATE OF SAMPLING 8-29-06
WELL ID. MW-4	SAMPLER MLR
TOTAL DEPTH OF WELL 245	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 10.43	
PRODUCT THICKNESS	
DEPTH OF WELL CASING INWATER 14,07	
NUMBER OF GALLONS PER WELL CASING VOLUME 2.2	
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRIOR	TO SAMPLING 6. 7
EQUIPMENTUSED TO PURGE WELL Bailer	
TIME EVACUATION STARTED 130	TIME EVACUATION COMPLETED 1/4
TIME SAMPLES WERE COLLECTED 1150	
DID WELL GO DRY NO	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED 70	
SAMPLING Bailer	
SAMPLE COLOR (Ear gozy	ODOR/SEDIMENT W. / W.,
SHEMICAL DATA	

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
	65.8	6.80	1642
2	65,6	6.72	1631
3	65.6	6.68	1628

SAMPLE	# OF CONTAINERS		4 XI4 I VOIO	
MW-4	5	VOA		14/1
		y .		119

WELL SAMPLING FIELD LOG

PROJECT NAME Abbany Hill	
JOB NUMBER 3934	DATE OF SAMPLING 8-29-06
WELLID. MW-5R	SAMPLER MLR
TOTAL DEPTH OF WELL 19.58	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING (0.10	
PRODUCT THICKNESS	
DEPTH OF WELL CASING IN WATER 9.48	
NUMBER OF GALLONS PERWELL CASING VOLUME . 5	
NUMBER OF WELL CASING VOLUMES TO BE REMOVED 3	
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRIOR TO	SAMPLING 45
EQUIPMENT USED TO PURGE WELL Bailer	
TIME EVACUATION STARTED (110)	TIME EVACUATION COMPLETED 1120
TIME SAMPLES WERE COLLECTED 1/25	
DID WELL GO DRY NO	AFTER HOW MANY GALLONS —
VOLUME OF GROUNDWATER PURGED 5.0	
SAMPLINGDEVICE Bailey	
SAMPLE COLOR (126)	ODOR/SEDIMENT NO / NO
CHEMICAL PATA	

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
	68.	7.61	532
2	67.9	7.26	529
3	67.6	7.20	504

PAMPLE .	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	*****	
MW-SR	5	VCA	ANALT 315	PRESERVE
		y 0 / !		

WELL SAMPLING FIELD LOG

PROJECT NAME	-lbany Hill		
JOB NUMBER	3934	DATE OF SAMPLING	8-29-06
WELL ID.	MW-6	SAMPLER	MLR
TOTAL DEPTH OF WELL	24.7	WELL DIAMETER	7
DEPTH TO WATER PRIOR TO	PURGING 9.15		STATE OF THE PROPERTY OF THE P
PRODUCT THICKNESS	0		
DEPTH OF WELL CASING IN W	ATER 15.55		
NUMBER OF GALLONS PERW	ELL CASING VOLUME 2.5		
NUMBER OF WELL CASINGVO	DLUMES TO BE REMOVED 3		
REQUIRED VOLUME OF GROU	NDWATER TO BE PURGED PRIOR TO	SAMPLING 78	
EQUIPMENT USED TO PURGE	WELL Bailer		
TIME EVACUATION STARTED	1020	TIME EVACUATION COMPLE	TED 1035
TIME SAMPLES WERE COLLEC	CTED 1040		
DID WELL GO DRY	No	AFTER HOW MANY GALLON	6
VOLUME OF GROUNDWATER F	PURGED 8.0		
SAMPLINGDEVICE	Bailer		
SAMPLE COLOR	Clear	odor/sediment $N_{\it 0}$	0/No 501

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
1	1011	7 (6	CONDUCTIVITY
	61.7	/. 60	564
2	1 4 3	7/0	200
7	6 5. /	(540
5 . 1	679	715	(77
	9 1.	1.()	L 5 6 5

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	60-
MV-6	5	1/11	7 1 1 1 1 1 1 1 1	TRESERVE
1100		VOCT		HU

WELL SAMPLING FIELD LOG

PROJECT NAME Albany H: []	
JOB NUMBER 3134	DATE OF SAMPLING 8-29-06
WELLID. MW-7	SAMPLER MLR
TOTAL DEPTH OF WELL 24 7	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 11.21	
PRODUCT THICKNESS O	
DEPTH OF WELL CASING IN WATER 13.49	
NUMBER OF GALLONS PER WELL CASING VOLUME 22	
NUMBER OF WELL CASING VOLUMES TO BE REMOVED 3	
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRIOR TO SA	AMPLING 6 7
EQUIPMENT USED TO PURGE WELL Bailer	
TIME EVACUATION STARTED 925	TIME EVACUATION COMPLETED 945
TIME SAMPLES WERE COLLECTED 950	
DID WELL GO DRY \mathcal{N} θ	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED Barton 70	
SAMPLINGDEVICE Bailer	
SAMPLE COLOR C/COL	ODOR/SEDIMENT HC udor / No S
CHEMICAL DATA	

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
•	662	7.28	807
2	65.7	7.17	800
5	65.4	7 10	8.19

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	
MW-7	5	VUA	7111 12 10:01	I FRESERV

WELL SAMPLING FIELD LOG

,,	II LII VO I ILLO LOO
PROJECT NAME Albany H:11	
JOB NUMBER 3934	DATE OF SAMPLING 8-29-06
WELLID. MW-8	SAMPLER MLK
TOTAL DEPTH OF WELL 19.	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 10-77	
PRODUCT THICKNESS 0	
DEPTH OF WELL CASING INWATER 8.33	
NUMBER OF GALLONS PERWELL CASING VOLUME 1.3	
NUMBER OF WELL CASING VOLUMES TO BE REMOVED 3	
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRIOR T	OSAMPLING 3. 9
EQUIPMENTUSED TO PURGE WELL Bala	·
TIME EVACUATION STARTED 900	TIME EVACUATION COMPLETED 915
TIME SAMPLES WERE COLLECTED 920	
DID WELL GODRY N	AFTER HOW MANY GALLONS
OLUME OF GROUNDWATER PURGED 4.0	
BAMPLINGDEVICE BAller	
BAMPLE COLOR C(TOL	ODORIBEDIMENT Slight U/N, S

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
	68.1	7.7.3	793
2	67.4	740	800
3	67. (7-34	8(1

SAMPLE	= OF CONTHINERS	SIZE AND TYPE OF CONTUNED	24127	
$\Lambda\Lambda$ / σ	7	A della		I SESERVE!
1-14-0	<u></u>	VOA		11/1
				1.00

WELL SAMPLING FIELD LOG

PROJECT NAME Alba	(ny)		
JOB NUMBER	3934	DATE OF SAMPLING \$ -	29-06
WELL ID.	Mw-9		1LR
TOTAL DEPTH OF WELL	16. 8	WELL DIAMETER	2
DEPTH TO WATER PRIOR TO P	PURGING // 9/		
PRODUCT THICKNESS C			
DEPTH OF WELL CASING IN WA	ATER 4.89		
NUMBER OF GALLONS PER WE	ELL CASING VOLUME , &		
NUMBER OF WELL CASING VOI	LUMES TO BE REMOVED 3		
REQUIRED VOLUME OF GROUN	IDWATER TO BE PURGED PRIOR TO	DSAMPLING 2.4	
EQUIPMENT USED TO PURGE V	VELL Bailer		
TIME EVACUATION STARTED	1245	TIME EVACUATION COMPLETED	1:05
TIME SAMPLES WERE COLLECT	TED 110		
DID WELL GO DRY	\int_{0}	AFTER HOW MANY GALLONS	and the same of th
VOLUME OF GROUNDWATER PL	JRGED 3.0		
SAMPLING DEVICE	Bailer		
SAMPLE COLOR	Clear	ODOR/SEDIMENT STRANG	0/N05
CHEMICAL DATA			
VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
• 7	71.4	7.60	700
3	68.6	7.44	666
5	67.9	7.39	651
SAMPLES COLLECTED			
SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS PRESEN
MW-9	5	YUA-	ANALYSIS PRESERV
/			

WELL SAMPLING FIELD LOG

PROJECTNAME Albany Hill	
JOB NUMBER 3934	DATE OF SAMPLING 8-29-06
WELLID. MW-10	SAMPLER MIR
TOTAL DEPTH OF WELL 24. 7	WELL DIAMETER
DEPTH TO WATER PRIOR TO PURGING 9.75	
PRODUCT THICKNESS O	
DEPTH OF WELL CASING IN WATER 14, 95	
NUMBER OF GALLONS PERWELL CASING VOLUME 2 4	9
NUMBER OF WELL CASING VOLUMES TO BE REMOVED 3	
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRIOR TO	SAMPLING 7. 4
EQUIPMENT USED TO PURGE WELL Bailer	
TIME EVACUATION STARTED (045	TIME EVACUATION COMPLETED 11(1)
TIME SAMPLES WERE COLLECTED 1105	
DID WELL GO DRY NO	AFTER HOW MANY GALLONS ~
VOLUME OF GROUNDWATER PURGED \$. O	
SAMPLINGDEVICE	
SAMPLE COLOR gray - grzen	ODOR/SEDIMENT Slight O/ Some gray So
CHEMICAL DATA	·

VOLUME PURGED	TEMPERATURE	PH	COMPLICATION
	69.1	7.31	GONDUCTIVITY 991
2	68.7	710	1/1/4
3 .	68.5	707	1/137

SAMPLE	# OF CONTAINERS	CIZE AND TWO TO BE		
MI/- 10	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERVED
1147-10		VO A		HE

APPENDIX B

Certified Analytical Report and Chain of Custody Documentation

Date: 8/31/2006

Mike Rauser Aqua Science Engineers, Inc. 208 West El Pintado Rd. Danville, CA 94526

Subject: 10 Water Samples Project Name: Albany Hill Project Number: 3934

Dear Mr. Rauser,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Subject:

10 Water Samples

Project Name :

Albany Hill

Project Number:

3934

Case Narrative

The Method Reporting Limit for TPH as Diesel is increased due to interference from Gasoline-Range Hydrocarbons for samples MW-1, MW-4, MW-5R, MW-7 and MW-9.

Tert-Butanol results for sample MW-3 may be biased slightly high and are flagged with a 'J'. A fraction of MtBE (typically less than 1%) converts to Tert-Butanol during the analysis of water samples. We consider this conversion effect to be mathematically significant in samples that contain MtBE/Tert-Butanol in ratios of over 20:1.

Matrix Spike/Matrix Spike Duplicate Results associated with sample MW-4 for the analyte Benzene were affected by the analyte concentrations already present in the un-spiked sample.

Approved By:

Joe Kiff

Report Number: 51882

Date: 8/31/2006

Project Number: 3934

Sample: MW-1

Matrix: Water

Lab Number: 51882-01

Report Number: 51882

Date: 8/31/2006

Sample Date :8/24/2006		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	1100	2.0	ug/L	EPA 8260B	8/29/2006
Toluene	6.6	2.0	ug/L	EPA 8260B	8/29/2006
Ethylbenzene	170	2.0	ug/L	EPA 8260B	8/29/2006
Total Xylenes	16	2.0	ug/L	EPA 8260B	8/29/2006
Methyl-t-butyl ether (MTBE)	250	2.0	ug/L	EPA 8260B	8/29/2006
Diisopropyl ether (DIPE)	< 2.0	2.0	ug/L	EPA 8260B	8/29/2006
Ethyl-t-butyl ether (ETBE)	< 2.0	2.0	ug/L	EPA 8260B	8/29/2006
Tert-amyl methyl ether (TAME)	< 2.0	2.0	ug/L	EPA 8260B	8/29/2006
Tert-Butanol	< 9.0	9.0	ug/L	EPA 8260B	8/29/2006
TPH as Gasoline	3200	200	ug/L	EPA 8260B	8/29/2006
Toluene - d8 (Surr)	96.1		% Recovery	EPA 8260B	8/29/2006
4-Bromofluorobenzene (Surr)	102		% Recovery	EPA 8260B	8/29/2006
TPH as Diesel	< 200	200	ug/L	M EPA 8015	8/30/2006
Octacosane (Diesel Surrogate)	97.0		% Recovery	M EPA 8015	8/30/2006

Approved By:

Project Name:

Albany Hill

Project Number: 3934

Sample: MW-2

Matrix: Water

Lab Number: 51882-02

Report Number: 51882

Date: 8/31/2006

Sample Date :8/24/2006		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	13	0.50	ug/L	EPA 8260B	8/30/2006
Toluene	< 0.50	0.50	ug/L	EPA 8260B	8/30/2006
Ethylbenzene	1.3	0.50	ug/L	EPA 8260B	8/30/2006
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	8/30/2006
Methyl-t-butyl ether (MTBE) Diisopropyl ether (DIPE)	480 < 0.50	1.5 0.50 0.50	ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B	8/29/2006 8/30/2006 8/30/2006
Ethyl-t-butyl ether (ETBE) Tert-amyl methyl ether (TAME)	< 0.50 < 0.50	0.50	ug/L	EPA 8260B	8/30/2006
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	8/30/2006
TPH as Gasoline	110	50	ug/L	EPA 8260B	8/30/2006
Toluene - d8 (Surr) 4-Bromofluorobenzene (Surr)	99.2 95.1		% Recovery % Recovery	EPA 8260B EPA 8260B	8/30/2006 8/30/2006
TPH as Diesel	120	50	ug/L	M EPA 8015	8/29/2006
Octacosane (Diesel Surrogate)	97.8		% Recovery	M EPA 8015	8/29/2006

Approved By:

oel Kiff

Project Number: 3934

Sample: MW-3

Matrix: Water

Lab Number: 51882-03

Report Number: 51882

Date: 8/31/2006

Sample Date :8/24/2006	Measured	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Parameter	Value				
Benzene	24	4.0	ug/L	EPA 8260B	8/28/2006
Toluene	< 4.0	4.0	ug/L	EPA 8260B	8/28/2006
Ethylbenzene	< 4.0	4.0	ug/L	EPA 8260B	8/28/2006
Total Xylenes	14	4.0	ug/L	EPA 8260B	8/28/2006
Methyl-t-butyl ether (MTBE)	2800	4.0	ug/L	EPA 8260B	8/29/2006
Diisopropyl ether (DIPE)	< 4.0	4.0	ug/L	EPA 8260B	8/28/2006
Ethyl-t-butyl ether (ETBE)	< 4.0	4.0	ug/L	EPA 8260B	8/28/2006
Tert-amyl methyl ether (TAME)	9.0	4.0	ug/L	EPA 8260B	8/28/2006
Tert-Butanol	40 J	20	ug/L	EPA 8260B	8/29/2006
TPH as Gasoline	< 400	400	ug/L	EPA 8260B	8/28/2006
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	8/28/2006
4-Bromofluorobenzene (Surr)	104		% Recovery	EPA 8260B	8/28/2006
TPH as Diesel	130	50	ug/L	M EPA 8015	8/29/2006
Octacosane(Diesel Surrogate)	100		% Recovery	M EPA 8015	8/29/2006

Approved By:

Project Number: 3934

Octacosane (Diesel Surrogate)

Sample: MW-4

Matrix: Water

Lab Number: 51882-04

8/29/2006

Report Number: 51882

Date: 8/31/2006

Sample Date :8/24/2006		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	830	2.5	ug/L	EPA 8260B	8/29/2006
Toluene	6.5	0.90	ug/L	EPA 8260B	8/28/2006
Ethylbenzene	120	0.90	ug/L	EPA 8260B	8/28/2006
Total Xylenes	120	0.90	ug/L	EPA 8260B	8/28/2006
Methyl-t-butyl ether (MTBE)	95	2.5	ug/L	EPA 8260B	8/29/2006
Diisopropyl ether (DIPE)	1.6	0.90	ug/L	EPA 8260B	8/28/2006
Ethyl-t-butyl ether (ETBE)	< 0.90	0.90	ug/L	EPA 8260B	8/28/2006
Tert-amyl methyl ether (TAME)	< 0.90	0.90	ug/L	EPA 8260B	8/28/2006
Tert-Butanol	18	15	ug/L	EPA 8260B	8/29/2006
TPH as Gasoline	2500	90	ug/L	EPA 8260B	8/28/2006
Toluene - d8 (Surr)	96.2		% Recovery	EPA 8260B	8/28/2006
4-Bromofluorobenzene (Surr)	103		% Recovery	EPA 8260B	8/28/2006
TPH as Diesel	< 300	300	ug/L	M EPA 8015	8/29/2006

104

Approved By:

% Recovery M EPA 8015

Project Number: 3934

Sample: MW-5R

Matrix: Water

Lab Number : 51882-05

Report Number: 51882

Date: 8/31/2006

Sample Date :8/24/2006		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	80	0.90	ug/L	EPA 8260B	8/28/2006
Toluene	1.8	0.90	ug/L	EPA 8260B	8/28/2006
Ethylbenzene	510	0.90	ug/L	EPA 8260B	8/28/2006
Total Xylenes	18	0.90	ug/L	EPA 8260B	8/28/2006
Methyl-t-butyl ether (MTBE)	< 0.90	0.90	ug/L	EPA 8260B	8/28/2006
Diisopropyl ether (DIPE)	< 0.90	0.90	ug/L	EPA 8260B	8/28/2006
Ethyl-t-butyl ether (ETBE)	< 0.90	0.90	ug/L	EPA 8260B	8/28/2006
Tert-amyl methyl ether (TAME)	< 0.90	0.90	ug/L	EPA 8260B	8/28/2006
Tert-Butanol	9.9	5.0	ug/L	EPA 8260B	8/28/2006
TPH as Gasoline	6500	90	ug/L	EPA 8260B	8/28/2006
Toluene - d8 (Surr)	95.6		% Recovery	EPA 8260B	8/28/2006
4-Bromofluorobenzene (Surr)	105		% Recovery	EPA 8260B	8/28/2006
TPH as Diesel	< 2000	2000	ug/L	M EPA 8015	8/29/2006
Octacosane (Diesel Surrogate)	102		% Recovery	M EPA 8015	8/29/2006

Approved By:

Project Number: 3934

Sample: MW-6

Matrix: Water

Lab Number : 51882-06

Report Number: 51882

Date: 8/31/2006

Sample Date :8/24/2006 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene Toluene Ethylbenzene Total Xylenes	57 2.3 < 0.50 1.1	0.50 0.50 0.50 0.50	ug/L ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	8/29/2006 8/29/2006 8/29/2006 8/29/2006
Methyl-t-butyl ether (MTBE) Diisopropyl ether (DIPE) Ethyl-t-butyl ether (ETBE) Tert-amyl methyl ether (TAME) Tert-Butanol	64 < 0.50 < 0.50 0.82 34	0.50 0.50 0.50 0.50 5.0	ug/L ug/L ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B	8/29/2006 8/29/2006 8/29/2006 8/29/2006 8/29/2006
TPH as Gasoline Toluene - d8 (Surr)	1200 101	50	ug/L % Recovery	EPA 8260B EPA 8260B	8/29/2006 8/29/2006
4-Bromofluorobenzene (Surr)	95.7 960	50	% Recovery	EPA 8260B M EPA 8015	8/29/2006 8/29/2006
TPH as Diesel Octacosane (Diesel Surrogate)	97.8	00	% Recovery		8/29/2006

Approved By:

Project Number: 3934

Sample: MW-7

Report Number: 51882

Date: 8/31/2006

Lab Number: 51882-07 Matrix: Water

Sample Date :8/24/2006		Method				
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	120	0.50	ug/L	EPA 8260B	8/29/2006	
Toluene	0.96	0.50	ug/L	EPA 8260B	8/29/2006	
Ethylbenzene	36	0.50	ug/L	EPA 8260B	8/29/2006	
Total Xylenes	51	0.50	ug/L	EPA 8260B	8/29/2006	
Methyl-t-butyl ether (MTBE)	180	0.50	ug/L	EPA 8260B	8/29/2006	
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	8/29/2006	
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	8/29/2006	
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	8/29/2006	
Tert-Butanol	13	5.0	ug/L	EPA 8260B	8/29/2006	
TPH as Gasoline	990	50	ug/L	EPA 8260B	8/29/2006	
Toluene - d8 (Surr)	99.2		% Recovery	EPA 8260B	8/29/2006	
4-Bromofluorobenzene (Surr)	95.5		% Recovery	EPA 8260B	8/29/2006	
TPH as Diesel	< 200	200	ug/L	M EPA 8015	8/29/2006	
Octacosane (Diesel Surrogate)	102		% Recovery	M EPA 8015	8/29/2006	

Approved By:

Sample: MW-8

Project Number: 3934

Matrix: Water

Lab Number: 51882-08

Report Number: 51882

Date: 8/31/2006

Sample Date :8/24/2006

Sample Date :8/24/2006		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	74	5.0	ug/L	EPA 8260B	8/28/2006
Toluene	< 5.0	5.0	ug/L	EPA 8260B	8/28/2006
Ethylbenzene	5.4	5.0	ug/L	EPA 8260B	8/28/2006
Total Xylenes	45	5.0	ug/L	EPA 8260B	8/28/2006
Methyl-t-butyl ether (MTBE)	2700	5.0	ug/L	EPA 8260B	8/28/2006
Diisopropyl ether (DIPE)	< 5.0	5.0	ug/L	EPA 8260B	8/28/2006
Ethyl-t-butyl ether (ETBE)	< 5.0	5.0	ug/L	EPA 8260B	8/28/2006
Tert-amyl methyl ether (TAME)	15	5.0	ug/L	EPA 8260B	8/28/2006
Tert-Butanol	< 25	25	ug/L	EPA 8260B	8/28/2006
TPH as Gasoline	540	500	ug/L	EPA 8260B	8/28/2006
Toluene - d8 (Surr)	97.0		% Recovery	EPA 8260B	8/28/2006
4-Bromofluorobenzene (Surr)	109		% Recovery	EPA 8260B	8/28/2006
TPH as Diesel	260	50	ug/L	M EPA 8015	8/29/2006
Octacosane (Diesel Surrogate)	101		% Recovery	M EPA 8015	8/29/2006

Approved By:

Project Number: 3934

Date: 8/31/2006

Report Number: 51882

Matrix: Water Lab Number: 51882-09

Sample Date :8/24/2006

Sample: MW-9

Sample Date :8/24/2006					
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	550	2.0	ug/L	EPA 8260B	8/29/2006
Toluene	220	2.0	ug/L	EPA 8260B	8/29/2006
Ethylbenzene	280	2.0	ug/L	EPA 8260B	8/29/2006
Total Xylenes	1200	2.0	ug/L	EPA 8260B	8/29/2006
Methyl-t-butyl ether (MTBE)	< 2.0	2.0	ug/L	EPA 8260B	8/29/2006
Diisopropyl ether (DIPE)	< 2.0	2.0	ug/L	EPA 8260B	8/29/2006
Ethyl-t-butyl ether (ETBE)	< 2.0	2.0	ug/L	EPA 8260B	8/29/2006
Tert-amyl methyl ether (TAME)	< 2.0	2.0	ug/L	EPA 8260B	8/29/2006
Tert-Butanol	< 9.0	9.0	ug/L	EPA 8260B	8/29/2006
TPH as Gasoline	6100	200	ug/L	EPA 8260B	8/29/2006
Toluene - d8 (Surr)	99.3		% Recovery	EPA 8260B	8/29/2006
4-Bromofluorobenzene (Surr)	103		% Recovery	EPA 8260B	8/29/2006
TPH as Diesel	< 800	800	ug/L	M EPA 8015	8/30/2006
Octacosane (Diesel Surrogate)	105		% Recovery	M EPA 8015	8/30/2006

Approved By:

Project Number: 3934

Report Number: 51882

Date: 8/31/2006

Sample: MW-10

Matrix: Water

Lab Number: 51882-10

Sample Date :8/24/2006		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 4.0	4.0	ug/L	EPA 8260B	8/28/2006
Toluene	< 4.0	4.0	ug/L	EPA 8260B	8/28/2006
Ethylbenzene	< 4.0	4.0	ug/L	EPA 8260B	8/28/2006
Total Xylenes	< 4.0	4.0	ug/L	EPA 8260B	8/28/2006
Methyl-t-butyl ether (MTBE)	1400	4.0	ug/L	EPA 8260B	8/28/2006
Diisopropyl ether (DIPE)	< 4.0	4.0	ug/L	EPA 8260B	8/28/2006
Ethyl-t-butyl ether (ETBE)	< 4.0	4.0	ug/L	EPA 8260B	8/28/2006
Tert-amyl methyl ether (TAME)	7.0	4.0	ug/L	EPA 8260B	8/28/2006
Tert-Butanol	< 20	20	ug/L	EPA 8260B	8/28/2006
TPH as Gasoline	< 400	400	ug/L	EPA 8260B	8/28/2006
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	8/28/2006
4-Bromofluorobenzene (Surr)	105		% Recovery	EPA 8260B	8/28/2006
TPH as Diesel	140	50	ug/L	M EPA 8015	8/30/2006
Octacosane (Diesel Surrogate)	107		% Recovery	M EPA 8015	8/30/2006

Approved By:

Date: 8/31/2006

QC Report : Method Blank Data

Project Name: Albany Hill

Project Number: 3934

Parameter	Measured Value	Method Report Limit		Analysis Method	Date Analyzed
TPH as Diesel	< 50	50	ug/L	M EPA 8015	8/29/2006
Octacosane (Diesel Surrogate)	99.8		%	M EPA 8015	8/29/2006
Benzene	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Toluene	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	8/28/2006
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	8/28/2006
Toluene - d8 (Surr)	95.8		%	EPA 8260B	8/28/2006
4-Bromofluorobenzene (Surr)	102		%	EPA 8260B	8/28/2006
Benzene	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Toluene	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	8/28/2006
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	8/28/2006
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	8/28/2006
Toluene - d8 (Surr)	100		%	EPA 8260B	8/28/2006
4-Bromofluorobenzene (Surr)	92.2		%	EPA 8260B	8/28/2006

Parameter	Measured Value	Method Reportin Limit	ng Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	8/29/2006
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	8/29/2006
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	8/29/2006
Benzene	< 0.50	0.50	ug/L	EPA 8260B	8/29/2006
Toluene	< 0.50	0.50	ug/L	EPA 8260B	8/29/2006
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	8/29/2006
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	8/29/2006
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	8/29/2006
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	8/29/2006
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	8/29/2006
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	8/29/2006
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	8/29/2006
Toluene - d8 (Surr)	97.6		%	EPA 8260B	8/29/2006
4-Bromofluorobenzene (Surr)	95.2		%	EPA 8260B	8/29/2006

opproved By:

loel Kiff

Date: 8/31/2006

Project Name: Albany Hill

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number: 3934

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	e Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
TPH as Diesel	Blank	<50	1000	1000	942	1000	ug/L	M EPA 8015	8/29/06	94.2	100	6.45	70-130	25
Benzene	51879-05	<0.50	39.9	39.8	39.7	39.9	ug/L	EPA 8260B	8/28/06	99.5	100	0.836	70-130	25
Toluene	51879-05	<0.50	39.9	39.8	37.9	38.0	ug/L	EPA 8260B	8/28/06	95.0	95.6	0.633	70-130	25
Tert-Butanol	51879-05	< 5.0	200	199	198	194	ug/L	EPA 8260B	8/28/06	99.0	97.5	1.50	70-130	25
Methyl-t-Butyl Ethe	er 51879-05	<0.50	39.9	39.8	43.2	41.2	ug/L	EPA 8260B	8/28/06	108	104	4.31	70-130	25
Benzene	51869-01	<0.50	40.0	40.0	43.3	42.8	ug/L	EPA 8260B	8/28/06	108	107	1.06	70-130	25
Toluene	51869-01	< 0.50	40.0	40.0	43.1	42.8	ug/L	EPA 8260B	8/28/06	108	107	0.765	70-130	25
Tert-Butanol	51869-01	<5.0	200	200	204	199	ug/L	EPA 8260B	8/28/06	102	99.5	2.54	70-130	25
Methyl-t-Butyl Eth		1.0	40.0	40.0	44.8	44.8	ug/L	EPA 8260B	8/28/06	110	109	0.203	70-130	25
Benzene	51877-02	110	40.0	40.0	166	161	ug/L	EPA 8260B	8/29/06	135	123	9.58	70-130	25
Toluene	51877-02	1.2	40.0	40.0	43.0	41.7	ug/L	EPA 8260B	8/29/06	104	101	3.25	70-130	25
Tert-Butanol	51877-02	200	200	200	408	410	ug/L	EPA 8260B	8/29/06	103	104	0.753	70-130	25
Methyl-t-Butyl Eth	er 51877-02	0.71	40.0	40.0	41.7	41.8	ug/L	EPA 8260B	8/29/06	102	103	0.121	70-130	25
Benzene	51887-02	<0.50	40.0	40.0	43.0	40.5	ug/L	EPA 8260B	8/29/06	108	101	6.18	70-130	25
Toluene	51887-02	< 0.50	40.0	40.0	41.5	38.5	ug/L	EPA 8260B	8/29/06	104	96.2	7.47	70-130	25
Tert-Butanol	51887-02	<5.0	200	200	199	181	ug/L	EPA 8260B	8/29/06	99.7	90.6	9.57	70-130	25
Methyl-t-Butyl Eth		4.1	40.0	40.0	43.4	40.5	ug/L	EPA 8260B	8/29/06	98.2	91.1	7.57	70-130	25

Date: 8/31/2006

Project Name: Albany Hill

QC Report : Laboratory Control Sample (LCS)

Project Number: 3934

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit			
Benzene	40.0	ug/L	EPA 8260B	8/28/06	99.1	70-130			
Toluene	40.0	ug/L	EPA 8260B	8/28/06	94.8	70-130			
Tert-Butanol	200	ug/L	EPA 8260B	8/28/06	96.8	70-130			
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	8/28/06	106	70-130			
Benzene	40.0	ug/L	EPA 8260B	8/28/06	104	70-130			
Toluene	40.0	ug/L	EPA 8260B	8/28/06	106	70-130			
Tert-Butanol	200	ug/L	EPA 8260B	8/28/06	101	70-130			
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	8/28/06	106	70-130			
		3							
Benzene	40.0	ug/L	EPA 8260B	8/29/06	102	70-130			
Toluene	40.0	ug/L	EPA 8260B	8/29/06	105	70-130			
Tert-Butanol	200	ug/L	EPA 8260B	8/29/06	102	70-130			
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	8/29/06	108	70-130			
Wethyl-t-Butyl Ether	40.0	ug/L	217102000	0/20/00	100	70 100			
			ED	0.10.0.10.6	400	70.400			
Benzene	40.0	ug/L	EPA 8260B	8/29/06	103	70-130			
Toluene	40.0	ug/L	EPA 8260B	8/29/06	101	70-130			
Tert-Butanol	200	ug/L	EPA 8260B	8/29/06	94.5	70-130			
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	8/29/06	96.7	70-130			

Approved By:

Joe Kiff

Aqua Science Engineers, Inc. 208 W. El Pintado Road Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853

Chain of Custody

FAX (925) 837-4853								
SAMPLER (SIGNATURE)	al and a	PROJECT ADDRESS	-	Alban 800	y	Pablu	JOB NO.	OF
MW-3 MW-3 MW-4 ILSO MW-5R MW-5R ILZS MW-7 MW-7 MW-7 MW-7 MW-8 1940 1940 1940 1940 1940	MATRIX AUMITTY TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	XXXXXXXX	Jemo °C	SAMPLE RE	CEIPT	XYYXX FUEL OXYGENATES - S (EPA 8260) \$1EX/TM-6 (PP (TOTAL or DISSOLVED) (EPA 6010)	(EPA 601/8010) (MULTI-RANGE HYDROCARBONS	SILICA-GEL CLEANUP Y X X X HOLD (EDF)
RELINQUISHED BY: (signature) (time) (signature) (time) (signature) (printed name) (data)	ine)	RELINQUISH (signature) (printed nam, Company	EDBY: (tiple)	RECE (Signal (Signal (print Comp	EIVED BY LABORATOR' ature) ed name) (date) any- iff Amyfurd	fullyted 1130	1	X