cook

271 Las Juntas Way, Walnut Creek, CA 94597 Phone 925.937.1759 Cell 925.787.6869 cookenvironmental@att.net

May 2, 2005

Bob Schultz Alameda County Environmental Health 1311 Harbor Bay Pkwy, Ste 250 Alameda, California 94502-6577

Subject:

Express Gas & Mart,

2951 High Street, Oakland, California

Dear Mr. Schultz:

Enclosed is the *Quarterly Verification Monitoring Report, Second Quarter 2005* for the subject LUFT site. A *Verification Monitoring Work Plan* was submitted to you on November 26, 2004. The ACEH has yet to comment on this work plan. Per your verbal approval, the verification monitoring program was started on January 3, 2005. On this same date the ozone sparge system was permanently turned off. Four rounds of verification monitoring have now been completed. All constituents of concern are <u>significantly</u> below site-specific threshold levels (SSTLs). The site no longer poses a potential threat to groundwater quality. If concentrations of all constituents of concern remain below their respective SSTLs for two more verification monitoring events, we recommend that the LUFT case be closed.

Please call me at (925) 937-1759 if you have any questions or comments in regard to this report.

Very truly yours,

Cook Environmental Services, Inc.

Tim Cook, P.E., CEG

Principal

ce: Aziz Kandahari, Express Gas & Mart

Betty Graham, SFRWQCB

271 Las Juntes Way, Walnut Creek, CA 94597 Phone 925.937.1759 Cell 925.787.6869 cookenvironmental@att.net

QUARTERLY VERIFICATION MONITORING REPORT Second Quarter 2005

PROJECT SITE: Express Gas & Mart 2951 High Street Oakland, California 94619

PREPARED FOR: Mr. Aziz Kandahari **Himalaya Trading Company** 2951 High Street Oakland, California 94619

SUBMITTED TO: **Alameda County Health Care Services Environmental Health Services** 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

PREPARED BY: Cook Environmental Services, Inc. 271 Las Juntas Way Walnut Creek, California 94597

Project No. 1004

May 2, 2005

PROFESSIONAL CERTIFICATION

QUARTERLY VERIFICATION MONITORING REPORT

Second Quarter 2005

Express Gas & Mart 2951 High Street Oakland, California 94619

Cook Environmental Services, Inc. Project No. 1004 May 2, 2005

This document has been prepared by Cook Environmental Services, Inc. under the supervision of the licensed professional whose signature appears below. No warranty, either expressed or implied, is made as to the professional advice presented in this document. The data analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of our investigation. Site conditions are subject to change with time, and such changes may invalidate the interpretations and conclusions in this document.

The conclusions presented in this document are professional opinions based solely upon the stated scope of work and the interpretation of available information as described herein. Such information may include third party data that either has not, or could not be independently verified. Cook Environmental Services, Inc. recognizes that the limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs or requirements of other potential users, including public agencies not directly involved. Any use or reuse of this document or the findings, conclusions, and recommendations presented herein is at the sole risk of said user.

Tim Cook, P.E., CEG

Principal

INTRODUCTION

This report presents the results of the second quarter 2005 verification monitoring program for the Express Gas & Mart located at 2951 High Street in Oakland, California (the "Site"). The sampling described herein is part of an ongoing characterization and remediation of subsurface contamination that was caused by accidental releases from underground storage tanks (USTs) that were replaced in 2001. The contaminant investigation and corrective action are being conducted by Cook Environmental Services, Inc. (CES) on behalf of the responsible party, Mr. Aziz Kandahari. The local oversight program (LOP) agency overseeing this case is Alameda County Environmental Health (ACEH). Groundwater monitoring this quarter was conducted on April 5, 2005.

PHYSICAL SETTING

Site Location

The Site is a retail gasoline station and convenience store located on the corner of High Street and Penniman Avenue, in southeastern Oakland, California. The Site location is shown on **Figure 1** and Site features are depicted on **Figure 2**. Neighboring land use is commercial and residential.

Topography and Drainage

The Site is located about 3½ miles east of San Francisco Bay. The Site location is near the base of the Oakland Hills, at a surface elevation of approximately 132 feet above mean sea level (amsl). Hilly topography occurs directly south and east of the Site. The ground surface at the Site slopes gently toward High Street, but the regional topography slopes southwesterly from the Oakland Hills. The nearest surface water body is Peralta Creek, located approximately ½ mile north-northeast of the Site.

Geology and Soils

The Site area is located on an alluvial apron that extends northwest and southeast between the San Francisco Bay on the west and the Diablo Range on the east. The active Hayward Fault forms a structural boundary between the alluvial apron and the Diablo Range. Surficial sediments are Holocene-age alluvial fan and fluvial deposits (Helley, E.J. and Graymer, R.W., 1997). These sediments are gravelly sand and sandy gravel that grade into sand and silty clay. The nearby hilly areas directly south and east of the Site are underlain by similar, though older, deposits of Pleistocene age.

Soil borings were drilled and sampled and monitoring wells were installed at the Site in March and April 2003. Soils encountered in the 25-foot deep borings were gravelly to sandy silts with

some interbedded silts, sandy clays and silty fine sands. Groundwater was observed in two of the four borings, at depths of 16 feet below grade (fbg) and 4 fbg. The latter boring was drilled offsite, within the High Street right-of-way.

Groundwater

The Site is within the San Francisco Bay regional watershed. The Quaternary alluvial deposits of the region host beneficial use aquifers. Slightly less than half the region's water supply is derived from groundwater. The balance is obtained from imported surface water. The water bearing unit at the Site is primarily gravelly clay. The porosity of the water bearing zone is secondary. Groundwater moves primarily through fractures in the gravelly clay. Static water levels in the onsite monitoring wells range from about 5 to 9 fbg, depending upon the season. Water level data indicate the direction of groundwater flow is southerly. Field measurements of specific conductance (SC) among the monitoring wells range from approximately 400 to 2,000 microsiemens.

PROJECT BACKGROUND

Groundwater monitoring has been conducted periodically at the Site since early 1995. Groundwater quality was impacted by petroleum hydrocarbons such as benzene, toluene, ethylbenzene, xylenes (BTEX), and methyl tert-butyl ether (MtBE). A report by Aqua Science Engineers, Inc. (ASE), dated November 14, 2000, indicates that 2,550 pounds of oxygen releasing compound (ORC®) slurry was injected into borings along the northern and eastern side of the former USTs in June 1997. The ORC® apparently increased the dissolved oxygen (DO) concentrations in the five nearby monitoring wells for approximately one year. Contaminant concentrations decreased slightly in well MW-5 during that period. ORC® socks were installed in wells MW-4 and MW-5 in August 1998 after the DO concentrations declined. The ORC® socks were removed in September 2000 after proving ineffective at reducing petroleum hydrocarbon concentrations in groundwater.

A Tier 2 Risk-Based Corrective Action (RBCA) analysis was performed for the Site by Christopher Palmer in August 1997. The RBCA was conducted to develop site-specific threshold levels for petroleum hydrocarbon contaminants in soil and groundwater (SSTLs are listed in **Table 3**). The RBCA was reviewed and commented on by Alameda County. Alameda County approved the RBCA in a letter dated October 21, 1997.

On February 28, 2001, soil samples were collected along a product line leading to the fuel dispensers in front of the convenience mart during the installation of new dispensers. All of the soil samples yielded detectable concentrations of petroleum hydrocarbons. Total petroleum hydrocarbons as gasoline (TPH-g) was detected at concentrations ranging from 71 milligrams per kilogram (mg/kg) to 3,600 mg/kg. A Site Investigation Work Plan dated March 26, 2001 was submitted to the ACEH. The work plan described methods and procedures to conduct a soil

and groundwater investigation around the fuel dispensers. The ACEH approved the work plan and requested that the USTs and contaminated soils be removed and disposed.

Six soil borings were drilled and sampled in late April 2001. Sample results from the borings yielded TPH-g concentrations in soil up to 4,000 mg/kg and in groundwater up to 78,000 micrograms per liter (µg/L), confirming that petroleum hydrocarbons had impacted soil and groundwater. The dispenser pumps, product lines, and four steel gasoline USTs were excavated and removed from the Site by W.A. Craig, Inc. in May 2001. The USTs were inspected and appeared to be in good condition. However, soil samples from the base and the sides of the UST excavation yielded TPH-g concentrations up to 1,700 mg/kg on the west sidewall of the excavation at 8 fbg. W.A. Craig, Inc. excavated approximately 3,700 tons of hydrocarbon contaminated soil between May 9 and September 27, 2001. The soil was disposed of at the B&J Class II Landfill in Vacaville, California. The excavation area is shown on Figure 2.

Following Site restoration and re-opening of the Express Gas & Mart, little additional activity occurred until March 2003, when four new monitoring wells were installed to replace wells removed during excavation. Monitoring well construction information is summarized in **Table 1**. Quarterly groundwater monitoring was resumed in April 2003. The wells had not been sampled since the September 2000 sampling reported by ASE. The April 2003 analytical data indicated that MtBE was above the SSTL of $8,400 \, \mu g/L$ in wells MW-5 and MW-7.

Based on the April 2003 groundwater sampling results, W.A. Craig, Inc. recommended corrective action to remediate the subsurface contamination at the Site to below SSTLs. A Feasibility Study/Corrective Action Plan dated July 28, 2003 and an Addendum to Corrective Action Plan dated September 10, 2003 were submitted to ACEH. The ACEH approved the installation of an OS system in a letter dated February 18, 2004.

An OS system consisting of ten ozone-sparge wells and a control panel began operating on April 14, 2004. Prior to startup, monitoring wells MW-5, MW-7, MW-8, and MW-9 were purged and sampled to determine baseline concentrations. Except for brief periods of mechanical failure or maintenance, the system operated continuously from April 14, 2004 until January 4, 2005.

This quarter, wells were sampled on April 5, 2005. Concentrations in all eight Site monitoring wells have remained below the SSTLs since May 13, 2004. The OS system is responsible for reducing these concentrations. Tim Cook of CES called Bob Schultz, the caseworker at ACEH for the Site on November 19, 2004 to discuss Site closure. Mr. Schultz requested a *Verification Monitoring Work Plan* describing methods and procedures to ensure the Site is no longer a risk to groundwater quality. This work plan was submitted to ACEH on November 26, 2004. Mr. Schultz conditionally approved the work plan during a phone conversation on January 19, 2005. The OS system was turned off and verification monitoring began on January 4, 2005. The ACEH has yet to review or comment on the *Verification Monitoring Work Plan*.

SCOPE OF WORK

The scope of work performed during this quarter included the following tasks:

- Maintained the California State Water Resources Control Board Geographical Environmental Information Management System (GeoTracker) database;
- Collected and analyzed monthly verification monitoring groundwater samples from four monitoring wells;
- Measured static water levels in eight monitoring wells;
- Collected and analyzed quarterly verification monitoring groundwater samples from eight monitoring wells;
- Collected field measurements from eight monitoring wells including water level, DO concentrations, temperature, pH, and specific conductance;
- Analyzed groundwater samples for TPH-g, BTEX, MtBE, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and DCA (see *Laboratory Analyses* section of this report for chemical names and analytical methods used);
- Prepared this Quarterly Groundwater Monitoring Report.

FIELD PROCEDURES

Groundwater Level Measurements

CES measured water levels in Site monitoring wells on April 5, 2005 using an electronic water level indicator. Water levels were recorded on monitoring well sampling logs included in **Appendix A**. Prior to taking the measurements, the wells were uncapped and water levels were allowed to equilibrate with atmospheric pressure for at least 30 minutes. Water level measurements were referenced to the surveyed top of the well casings. The depth-to-water measurements were used to calculate the standing water volume and the amount of water to be purged prior to collecting a sample. The depth to water and surveyed wellhead elevations are also used to determine the static groundwater elevations and flow direction.

Purging and Sampling

CES purged and sampled only monitoring wells MW-3, MW-5, MW-7 and MW-8 on February 3 and March 3, 2005. All eight monitoring wells were sampled on April 5, 2005. At least three well casing volumes were purged from each well before collecting groundwater samples. Wells were purged using clean disposable polyethylene bailers. The DO concentration, pH, temperature, and SC of the groundwater were intermittently monitored with portable

instrumentation during purging. Field measurements were recorded on the monitoring well sampling logs in **Appendix A**.

Upon completion of purging activities, a groundwater sample was collected from each well with a dedicated disposable bailer. The groundwater samples were decanted from the bailer into laboratory-supplied, 40-ml volatile organic analysis (VOA) vials preserved with hydrochloric acid. Care was taken to ensure that the vials were completely filled to avoid headspace volatilization of dissolved petroleum hydrocarbons. Each sample vial was labeled with the well ID. Samples were stored on ice and submitted under chain-of-custody control to McCampbell Analytical Inc. of Pacheco, California (DHS certification number 1644).

Samples were analyzed for TPH-g using EPA Method 8015C (modified), for BTEX and MtBE using EPA Method 8021B, and for MtBE, di-isopropyl ether (DIPE), ethyl tert-butyl ether (EtBE), tert-amyl methyl ether (tAME), tert-butyl alcohol (tBA), methanol, ethanol, ethylene dibromide (EDB), and 1,2-dichloroethane (DCA) using EPA Method 8260B. Discussions in this report cite MtBE concentrations determined by EPA Method 8260B, which is considered a more accurate analysis than Method 8021B.

DATA EVALUATION

Groundwater Levels and Elevations

Water level data for Site monitoring wells is summarized in **Table 2**. The surveyed top-of-casing (TOC) elevations and the depth to water measurements were used to calculate groundwater elevations in the monitoring wells. The water level in well MW-7 was slightly depressed below its static water level due to residual high pressure from a nearby sparge point. This water level is not indicative of the static water level in this well. The static water levels in wells ranged from 5.41 feet below TOC in MW-1 to 7.63 feet below TOC in MW-9. Groundwater elevations ranged from 120.07 feet above mean sea level (msl) in well MW-10 to 127.16 feet above msl in MW-6. Excluding well MW-7, groundwater elevations decreased an average of 2.32 feet since the last quarterly monitoring event on January 3, 2005. Groundwater elevations are shown on **Figure 3**. The groundwater gradient was calculated using static water elevations in wells MW-3, MW-8, and MW-9. On, April 5, 2005 the groundwater flow direction was S 10° W with a gradient of 0.035 feet per foot (ft/ft). On January 3, 2005 the groundwater flow direction was S 6° W with a gradient of 0.038 feet per foot (ft/ft). The groundwater flow and gradient this quarter are consistent with previous monitoring events. Hydrographs for all eight monitoring wells are presented on **Figure 4**.

Quarterly Groundwater Monitoring Results

The only petroleum hydrocarbons detected in Site wells this quarter were MtBE, tBA and DCA. MtBE was detected in wells MW-1, MW-3, MW-5, MW-7, MW-8, MW-9 and MW-10. tBA

was detected in wells MW-1, MW-8, MW-9 and MW-10. The presence of tBA is most likely caused by the incomplete breakdown of MtBE. DCA was detected only in well MW-7. Concentrations of all constituents of concern were below their respective SSTLs. Groundwater analytical results are summarized in **Table 3**. Laboratory analytical reports are included in **Appendix B**.

The highest MtBE concentration was 520 μg/L and was observed in well MW-10, which is approximately 70 feet downgradient of the Site. This concentration is considerably below the SSTL for MtBE, which is 8,400 μg/L and considerably below its concentration of 1,700 μg/L last quarter. MtBE concentrations in the monitoring wells on April 5, 2005 are shown on Figure 5. Since startup of the OS system, petroleum hydrocarbon concentrations in the wells closest to the former USTs that previously yielded the highest hydrocarbon concentrations (wells MW-5, MW-7, and MW-9) have shown a remarkable decrease. MtBE in MW-5 this quarter was 14 μg/L compared to 20,000 μg/L on April 14, 2004, the same day the OS system was turned on. The MtBE concentration in well MW-7 this quarter was 6.7 μg/L, having decreased from 21,000 μg/L on April 14, 2004. Graphs of MtBE concentrations in wells MW-3, MW-5, MW-7 and MW-8 are shown on Figure 6. MtBE concentrations in wells MW-1 and MW-3 have decreased one order of magnitude since the OS system began operation, while MtBE concentrations in MW-5 and MW-7 have decreased three orders of magnitude. MtBE in well MW-8 decreased slightly to 140 μg/L from 180 μg/L last January. Graphs of MtBE concentrations in wells MW-1, MW-9 and MW-10 are shown on Figure 7.

BTEX constituents were not detected in any monitoring well this quarter. DCA was detected in well MW-7 at 3.2 μ g/L. DCA has been detected intermittently in this well since January. It was probably not detected prior to this date due to matrix effects from the high concentrations of hydrocarbons that used to be present in this well. Previously benzene had been detected in wells MW-5 and MW-7 at concentrations above the SSTL of 34 μ g/L. Benzene was not detected above the laboratory detection limit (0.5 μ g/L) in any well this quarter. A graph of benzene concentrations versus time in wells MW-5 and MW-7 is shown on **Figure 8**.

TPH-g was not detected in any well this quarter for the first time. Before the installation of the OS system, wells MW-5, MW-7, and MW-10 consistently yielded detectable TPH-g concentrations. The TPH-g concentration in well MW-5 was 6,600 μ g/L on the same day the OS system was turned on, but TPH-g has not been detected in this well since then. The TPH-g concentration in well MW-7 the day the OS system was turned on was 8,900 μ g/L.

Baseline DO concentrations were measured in wells MW-1, MW-3, MW-5 and MW-7 on April 14, 2004. The average baseline DO concentration was approximately 0.22 milligrams per liter (mg/L). The average DO concentration in these same wells on January 3, 2005 was 5.54 mg/L and the average DO in these wells this quarter was 5.83 mg/L. DO concentrations in wells MW-1, MW-3, MW-5, and MW-7 remain significantly above baseline concentrations, which suggest

that the residual DO is from the OS system. DO concentrations in the monitoring wells are summarized in **Table 4**.

GeoTracker Requirements

Laboratory data were submitted electronically to the GeoTracker database as required by AB2886 (Water Code Sections 13195-13198). Electronic analytical reports (EDF files) are prepared and formatted by the laboratory and submitted by CES. Groundwater elevations in Site wells (GEO WELL file) were also submitted.

CONCLUSIONS

The OS system began operation on April 14, 2004 and ceased operation on January 3, 2005. Verification monitoring began on January 3 in accordance with the *Verification Monitoring Work Plan* to ensure that concentrations of constituents of concern remain below SSTLs.

On April 5, 2005 the direction of groundwater flow was S 10° W with a gradient of 0.035 feet per foot (ft/ft). This is consistent with previous measurements. The groundwater elevation in well MW-7 was slightly depressed due to residual pressure caused by the OS system.

MtBE was the principal constituent of concern in groundwater at the Site. Constituents of concern have remained below their respective SSTLs since May 26, 2004. Quarterly groundwater monitoring of all eight monitoring wells on April 5, 2005 and monitoring of wells MW-3, MW-5, MW-7 and MW-8 on February 3 and March 4, 2005 verified that constituents of concern remain below SSTLs for the ninth straight sampling event. TPH-g and BTEX were not detected in any well this quarter.

DO concentrations remain substantially above baseline levels in wells MW-1, MW-3, MW-5 and MW-7. The increased DO concentrations indicate that residual oxygen from the OS system is causing aerobic degradation of the remaining dissolved hydrocarbons in the subsurface.

RECOMMENDATIONS

If concentrations of all constituents of concern remain below their respective SSTLs for two more consecutive sampling events, we recommend Site closure.

TABLES

Table 1
Monitoring and Ozone-Sparge Well Construction Information
2951 High Street
Oakland, California

Well ID	Date Installed	Casing Diameter (inches)	Total Depth (fbg)	Screened Interval (fbg)	Water-Bearing Unit	Top of Casing Elevation (feet amsl)	Northing (feet)	Easting (feet)
MW-1	2/95	2	25	N/A	N/A	131.64	2,112,552.39	6,070,038.16
MW-3	2/95	Ž	25	N/A	N/A	131.05	2,112,539.60	6,070,048.55
MW-5	12/9/1996	2	30	5-30	N/A	131.99	2,112,582.04	6,070,083.59
MW-6	1/7/1997	$\tilde{2}$	30	5-30	N/A	132,58	2,112,662.53	6,070,113.49
MW-7	3/24/2003	2	25	15-25	gravelly sandy silt	130.93	2,112,533.18	6,070,106.31
MW-8	3/24/2003	2	25	15-25	gravelly sandy silt	131.15	2,112,527.86	6,070,153.72
MW-9	3/25/2003	2	25	15-25	silty gravelly sand	130.00	2,112,484.75	6,070,065.55
MW-10	4/4/2003	2	25	15:25	sandy silt	127.19	2,112,393.29	6,069,984.72
SP-1	3/25/2004	3/4	37	30.5-33	clayey sand	130.39	2,112,529.17	6,070,105.65
SP-2	3/25/2004	3/4	31	26.5-29	sandy clay	130.07	2,112,534.87	6,070,118.37
SP-3	3/24/2004	3/4	32	28.5-31	gravelly sandy clay	130.66	2,112,541.87	6,070,131.76
SP-4	3/25/2004	3/4	33	14.5-17	gravelly sandy clay	130.51	2,112,541.66	6,070,102.66
SP-5	3/26/2004	3/4	30	20-22.5	clayey gravelly sand	130.55	2,112,553.75	6,070,115.66
SP-6	3/26/2004	314	30	21.5-24	clayey sandy gravel	130.88	2,112,564.81	6,070,106.43
SP-7	3/26/2004	3/4	30	25.5-28	gravelly sand	131.20	2,112,575.20	6,070,106.74
SP-8	3/26/2004	3/4	31	28.5-31	gravelly sandy clay	130.98	2,112,569.95	6,070,091.53
SP-9	3/25/2004	3/4	33	25-27.5	clayey sand	130.85	2,112,562.57	6,070,080.59
SP-10	3/26/2004	3/4	30	21.5-24	gravelly clay	131.23	2,112,578.47	6,070,085.11

Notes:

MW denotes monitoring wells. SP denotes sparge wells.

fbg = feet below grade; amsl = above mean sea level; N/A = data not available.

Monitoring wells surveyed by Virgil Chavez Land Surveying on April 15, 2003.

Ozone-sparge wells surveyed by Virgil Chavez Land Surveying on April 22, 2004.

MW-1, MW-3, MW-5, and MW-6 were installed by Aqua Science Engineers, Inc.

MW-7, MW-8, MW-9, MW-10, and SP-1 through SP-10 were installed by W.A. Craig, Inc.

Table 2 Groundwater Elevations in Monitoring Wells 2951 High Street Oakland, California

Well ID	Date	TOC Elevation	DTW	Groundwater Elevation
MW-1	04/04/03	131.64	5.07	126.57
	07/16/03		7.32	124.32
	10/28/03		9.16	122.48
	01/13/04	!	4.03	127.61
	04/14/04		5.37	126.27
	04/29/04		5.55	126.09
	05/13/04		6.24	125.40
	05/26/04		6.61	125.03
	06/10/04		7.08	124.56
	07/08/04		7.49	124.15
	10/01/04		8.38	123.26
	01/03/05		2.12	129.52
	04/05/05		5.41	126.23
MW-3	04/04/03	131.05	5.86	125.19
	07/16/03		7.86	123,19
	10/28/03		9.43	121.62
	01/13/04		5.76	125.29
	04/14/04		6.72	124.33
	04/29/04		6.81	124.24
	05/13/04		7.62	123.43
	05/26/04		7.80	123.25
	06/10/04		8.17	122.88
	07/08/04		8.34	122.71
	10/01/04		9.41	121.64
	01/03/05		4.19	126.86
	02/03/05		5.41	125.64
	03/04/05		3.90	127.15
	04/05/05		6.75	124.30
MW-5	04/04/03	131.99	6.94	125.05
	07/16/03		8.17	123.82
	10/28/03		9.43	122.56
	01/13/04		6.27	125,72
	04/14/04		6.79	125.20
	04/29/04		7.35	124.64
	05/13/04		7.71	124.28
	05/26/04		7.66	124.33
	06/10/04		8.11	123.88
	07/08/04		8.38	123.61
	10/01/04		8.83	123.16
	01/03/05		4.96	127.03
	02/03/05		5.91	126,08
	03/04/05		4.48	127.51
	04/05/05		6.81	125.18

Table 2 Groundwater Elevations in Monitoring Wells 2951 High Street Oakland, California

Well ID	Date	TOC Elevation	DTW	Groundwater Elevation
MW-6	04/04/03	132.58	5.13	127.45
111111	07/16/03		7.99	124.59
	10/28/03		9.18	123.40
i	01/13/04		5.97	126.61
	04/29/04		7.05	125.53
	07/08/04		8.01	124.57
	10/01/04		8.59	123.99
	01/03/05		4.25	128.33
	04/05/05		5.42	127.16
MW-7	04/04/03	130.93	7.06	123.87
	07/16/03		8.11	122.82
	10/28/03		9.25	121.68
	01/13/04		6.80	124.13
	04/14/04		7.30	123.63
	04/29/04	*	20.80	110.13
	05/13/04	*	17.51	113.42
	05/26/04	*	18.79	112.14
	06/10/04	*	19.41	111.52
	07/08/04	*	13.92	117.01
	10/01/04	*	19.61	111.32
	01/03/05	*	7.25	123.68
	02/03/05	*	11.41	119.52
	03/04/05		5.05	125.88
	04/05/05	*	7.32	123.61
MW-8	04/04/03	131.15	6.60	124.55
	07/16/03		7.79	123.36
	10/28/03		8.83	122.32
	01/13/04		6.02	125.13
	04/14/04		6.90	124.25
	04/29/04	1	7.25	123.90
	05/13/04		7.52	123.63
	05/26/04	1	7.71	123.44
	06/10/04	1	7.89	123.26
	07/08/04	1	7.45	123.70
	10/01/04	1	8.46	122.69
1	01/03/05	1	4.40	126.75
	02/03/05		5.78	125.37
	03/04/05	1	4.40	126.75
	04/05/05	1	6.95	124.20

Table 2 **Groundwater Elevations in Monitoring Wells** 2951 High Street Oakland, California

Well ID	Date	TOC Elevation	DTW	Groundwater Elevation
MW-9	04/04/03	130.00	7.35	122.65
141 44-2	07/16/03		8.50	121.50
	10/28/03		9.56	120.44
	01/13/04		6.83	123.17
	04/14/04		7.61	122.39
	04/29/04		8.23	121.77
	05/13/04		8.25	121.75
	05/26/04		8.44	121.56
	06/10/04		8.71	121.29
	07/08/04		8.68	121.32
	10/01/04		9.29	120.71
	01/03/05		5.30	124.70
	04/05/05		7.63	122.37
MW-10	04/23/03	127.19	7.06	120.13
W1 W-10	07/16/03		7.72	119.47
	10/28/03		8.61	118.58
	01/13/04		6.15	121.04
	04/29/04		7.09	120.10
	07/08/04		7.84	119.35
	10/01/04		8.25	118.94
	01/03/05		4.60	122.59
	04/05/05		7.12	120.07

Notes:

Elevations are in feet above mean sea level.

TOC, Top of casing. DTW, Depth to water in feet below TOC.

* Water level in MW-7 is affected by ozone sparging.

Table 3
Analytical Results for Groundwater Samples
2951 High Street
Oakland, California

Well ID	Date	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	DIPE	EtBE	tAME	tBA	methanol		EDB	DCA
MW-1	02/23/95	<50	<0.5	<0.5	<0.5	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT
147 AA - I	05/26/95	<50	<0.5	<0.5	<0.5	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT
	08/23/95	<50	<0.5	<0.5	<0.5	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT
	04/04/03	<50	<0.5	<0.5	<0.5	<0.5	270	<5	<5	<5	<50	<5,000	<500	<5	<5 <10
	07/16/03	<50	<0.5	<0.5	<0.5	<0.5	420	<10	<10	<10	<100	<10,000	<1,000	<10	<u> </u>
	10/28/03	<50	<0.5	<0.5	< 0.5	< 0.5	1,200	<50	<50	<50	<500	<50,000	<5,000	<50	<50
	01/13/04	58	0.85	<0.5	3.1	8.4	380	<0.5	<0.5	<0.5	<5.0	<50	<5	<0.5	<0.5
*	04/29/04	<50	<0.5	<0.5	<0.5	<0.5	260	<5	<5	<5	<50	<5,000	<500	<5	<5
	07/08/04	<50	<0.5	<0.5	<0.5	<1.0	341	<0.5	<1	<1	<10	NT	<100	<1.0	<0.5
	10/01/04	<50	<0.5	< 0.5	<0.5	<0.5	1.7	< 0.5	< 0.5	<0.5	<5.0	<500	<50	< 0.5	<0.5 <0.5
	01/03/05	<50	<0.5	<0.5	<0.5	< 0.5	33	<0.5	<0.5	<0.5	<5.0	<500	<50	<0.5 <0.5	<0.5
	04/05/05	<50	<0.5	<0.5	<0.5	<0.5	44	<0.5	<0.5	<0.5	6.8	<500	<50		NT
MW-3	02/23/95	<50	< 0.5	< 0.5	<0.5	<0.5	NT	NT	NT	NT	NT	NT	NT	NT NT	NT
141 44-2	05/26/95		<0.5	<0.5	< 0.5	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT
	08/23/95	<50	< 0.5	<0.5	< 0.5	< 0.5	NT	NT	NT	NT_	NT	NT	NT (2.500	<25	<25
	04/04/03	<50	<0.5	< 0.5	<0.5	<0.5	1,600	<25	<25	<25	<250	<25,000	<2,500 <5,000	<50	<50
	07/16/03	<50	<0.5	<0.5	<0.5	<0.5	1,200	<50	<50	<50	<500	<50,000	<5,000	<50	<50
	10/28/03	<50	<0.5	< 0.5	<0.5	< 0.5	1,400	<50	<50	<50	<500	<50,000	<20	<2	<2
	01/13/04	<200	<2	<2	<2	<2	790	<2_	<2	<2	<20	<200	<500	<5	<5
*	04/29/04	+	<0.5	<0.5	<0.5	< 0.5	140	<5	<5	<5	<50	<5,000 NT	<100	<1.0	<0.5
	07/08/04	<50	<0.5	<0.5	<0.5	<1.0	24.3	<0.5	<1	<1	<10	<500	<50	<0.5	<0.5
	10/01/04		<0.5	<0.5	<0.5	< 0.5	4.0	<0.5	<0.5	<0.5	<5.0	<1000	<100	<1.0	<1.0
	01/03/05		<0.5	<0.5	< 0.5	< 0.5	49	<1.0	<1.0	<1.0	<10	<500	<50	<0.5	<0.5
ļ	02/03/05	+	< 0.5	<0.5	< 0.5	<0.5	4.9	<0.5	<0.5	<0.5	<5.0		<50	<0.5	1.5
	03/04/05		<0.5	<0.5	<0.5	<0.5	32	<0.5	<0.5	<0.5	<5.0 <5.0	<500 <500	<50	<0.5	<0.5
	04/05/0		<0.5	<0.5	< 0.5	<0.5	12	<0.5	<0.5	<0.5	<5.0	1 >300	1 30	1 .0.5	

Table 3
Analytical Results for Groundwater Samples
2951 High Street
Oakland, California

WellID	Date	ТРН-g	benzene	toluene	ethyl- benzene	xylenes	MiBE	DIPE	EtBE	tAME		methanol		EDB	DCA
MW-5	12/13/96	3,600	180	350	81	510	430	NT	NT	NT	NT	NT	NT	NT NT	NT NT
1.117	03/27/97	120,000	28,000	16,000	2,600	10,000	64,000	NT	NT	NT	NT	NT	NT NT	NT NT	NT
**	06/27/97	6,300	10,000	2,400	290	4,500	43,000	NT	NT	NT	NT	NT	NT NT	NT	NT
	09/22/97	<50,000	7.9	3.3	0.6	3.3	30,000	NT	NT	NT	NT	NT	NT NT	NT	NT
	12/06/97	<5,000	33	12	<5	7.3	33,000	NT	NT	NT	NT	NT	NT	NT	NT
	03/23/98	29,000	150	160	130	320	34,000	NT	NT	NT	NT	NT		NT	NT
	06/10/98	53,000	7,000	2,400	540	3,400	67,000	NT	NT	NT	NT	NT	NT	NT	NT
	07/23/98	36,000	1,000	270	<120	740	51,000	NT	NT	NT	NT	NT	NT	NT	NT
***	09/16/98		3,400	1,300	430	1,800	84,000	NT	NT	NT	NT	NT	NT	NT	NT
	11/23/98		5,700	2,900	500	2,200	87,000	NT	NT	NT	NT	NT	NT	NT	NT
	03/05/99		<250	<250	<250	<250	38,000	NT	NT	NT	NT	NT	NT	NT NT	NT
	06/17/99		510	85	5.6	89	61,000	NT	NT	NT	NT	NT	NT	NT	NT
	09/15/99	+	8,500	1,800	420	2,400	55,000	NT	NT	NT	NT	NT	NT	NT	NT
	12/09/99		1,600	230	130	570	33,000	NT	NT	NT	NT	NT	NT	NT	NT
	03/06/00	21,000	7,800	870	440	2,100	30,000	NT	NT	NT	NT	NT	NT NT	NT	NT
	06/07/00	<50,000	11,000	890	570	3,000	68,000	NT	NT	NT	NT	NT	NT	NT	NT
	09/18/00	40,000	4,900	<250	<250	1,700	46,000	NT	NT	NT	NT	NT		<330	<330
	04/04/03	1,800	560	<5.0	<5.0	30	19,000	<330	<330	<330	<3,300	<330,000		<200	<200
	07/16/03	2,800	1,000	<5	10	80	16,000	<200	<200	<200	<2,000	<200,000		<170	<170
	10/28/03	740	290	<5.0	<5.0	7.2	14,000	<170	<170	<170	<1,700	<170,000	<17,000 <50	<5	<5
	01/13/04		48	<5	<5	<5	2,000	<5_	<5	<5	<50	<500		<500	<500
	04/14/04	6,600	2,700	<50	<50	260	20,000	<500	<500	<500	<5,000	<500,000		<250	<250
*	04/29/04	<500	6.3	<5	<5	7.8	11,000	<250	<250	<250	<2,500	<250,000		<50	<50
	05/13/04		<0.5	<0.5	< 0.5	< 0.5	3,000	<50	<50	<50	<500	<50,000	<5,000	<10	<10
	05/26/04		<0.5	< 0.5	<0.5	<0.5	460	<10	<10	<10	<100	<10,000	<1,000	<0.5	<0.5
	06/10/04		<0.5	<0.5	< 0.5	<0.5	38	<0.5	<0.5	<0.5	<5.0	<50	<5.0		<0.5
	07/08/04		1.5	<0.5	<0.5	<1.0	9.6	<0.5	<1	<1	<10	NT	<100	<1.0 <0.5	<0.5
	10/01/04		<0.5	< 0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	<5.0	<500	<50	<0.5	<0.5
	01/03/0		<0.5	<0.5	< 0.5	<0.5	2.2	<0.5	<0.5	<0.5	<5.0	<500	<50	<0.5	<0.5
	02/03/0		<0.5	<0.5	<0.5	<0.5	4.2	<0.5	<0.5	<0.5	<5.0	<500	<50 <50	<0.5	<0.5
	03/04/0		<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<0.5	<0.5	<5.0	<500 <500	<50 <50	<0.5	<0.5
	04/05/0		<0.5	<0.5	<0.5	<0.5	14	<0.5	<0.5	<0.5	<5.0	1 <300	1 >30	1 70.3	1 .0.3

Table 3
Analytical Results for Groundwater Samples
2951 High Street
Oakland, California

Well ID	Date	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	DIPE	E#BE	tame	tBA	methanol	ethanol	ÉDB	DEA
MW-6	01/13/97	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
TAT AA -O	03/27/97	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	06/27/97	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	09/22/97	<50	<0.5	<0.5	<0.5	<0.5	24	NT	NT	NT	NT_	NT	NT	NT	NT
	12/06/97	94	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	03/23/98	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	06/10/98	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	07/23/98	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	09/16/98		<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	03/05/99	55	<0.5	0.92	0.5	1.3	<5	NT	NT	NT	NT	NT	NT	NT	NT
	06/17/99	<50	<0.5	<0.5	< 0.5	< 0.5	8.0	NT	NT	NT	NT	NT	NT	NT	NT NT
	09/15/99		<0.5	<0.5	< 0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT NT
	12/09/99		<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT_	NT	NT NT	NT
	03/06/00		<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT NT	NT	NT
	06/07/00	<50	< 0.5	< 0.5	<0.5	< 0.5	<5	NT	NT	NT_	NT	NT	<50	<0.5	<0.5
	04/04/03	<50	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<500 <500	<50	<0.5	<0.5
	07/16/03	<50	<0.5	<0.5	< 0.5	<0.5	0.54	<0.5	<0.5	<0.5	<5	<500	<50	<0.5	<0.5
	10/28/03	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<50	<5	<0.5	<0.5
	01/13/04	<50	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<500	<50	<0.5	<0.5
*	04/29/04	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5 <10	NT	<100	<1.0	<0.5
	07/08/04	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<1	<1			<50	<0.5	<0.5
	10/01/04	<50	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<500	<50	<0.5	<0.5
	01/03/05	<50	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5 <5	<500 <500	<50	<0.5	<0.5
	04/05/05		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1 3	1 /300	-50	1 .0.5	1 .0.5

Table 3
Analytical Results for Groundwater Samples
2951 High Street
Oakland, California

							lanu, Cu				2 Visco 1 and	y, 100 / 100 (A) (A 2)	100		<u></u>
Well ID	Date	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	DIPE	EtBE	tAME	3 12/15 3 5 5 4 1 2	methanol		EDB	DEA
MW-7	04/04/03	1,400	54	27	15	180	26,000	<500	<500	<500	<5,000	<500,000	<50,000	<500	<500
14 T 4 A - 1	07/16/03	18,000	1,100	630	1,100	2,000	13,000	<200	<200	<200	<2,000	<200,000	<20,000	<200 <500	<200 <500
	10/28/03	10,000	750	370	750	1,000	17,000	<500	<500	<500	<5,000	<500,000	<50,000	<500 <50	<50
	01/13/04	7,200	430	150	560	550	22,000	<50	<50	<50	<500	<5000	<500	<500	<500
	04/14/04	8,900	520	360	640	1,100	21,000	<500	<500	<500	<5,000	<500,000	<50,000	<250	<250
*	04/29/04	<500	<5	<5	<5	12	12,000	<250	<250	<250	<2,500	<250,000	<25,000	<170	<170
	05/13/04	660	<5.0	28	25	120	10,000	<170	<170	<170	<1,700	<170,000		<200	<200
	05/26/04	380	<2.5	15	15	79	7,600	<200	<200	<200	<2,000	<200,000	<20,000	<10	<10
	06/10/04	<1,000	<10	<10	<10	<10	4,900	<10	<10	<10	300	<10,000	<100 <100	<1.0	<0.5
	07/08/04	67	<0.5	<0.5	1.3	10	1,040	<0.5	<1	<1	<10	NT -50,000	<5,000	<50	<50
	10/01/04	85	<0.5	< 0.5	0.63	6.0	2,300	<50	<50	<50_	<500	<50,000	<250	<2.5	3.2
	01/03/05	<50	< 0.5	<0.5	<0.5	<0.5	130	<2.5	<2.5	<2.5	<25	<2500 <500	<50	<0.5	2.9
	02/03/05	<50	<0.5	< 0.5	<0.5	<0.5	4.5	<0.5	<0.5	<0.5	<5	<500	<50	<0.5	<0.5
	03/04/05	<50	<0.5	<0.5	<0.5	<0.5	21	<0.5	<0.5 <0.5	<0.5 <0.5	<5 <5	<500	<50	<0.5	3.2
	04/05/05	<50	< 0.5	<0.5	<0.5	<0.5	6.7	<0.5			<50	<5,000	<500	<5	<5
MW-8	04/04/03	<50	<0.5	<0.5	<0.5	<0.5	230	<5	<5	<5 <5	<50	<5,000	<500	<5	<5
	07/16/03	<50	<0.5	<0.5	<0.5	<0.5	340	<5	<5 <5.0	<5.0	<50	<5,000	<500	<5	<5.0
	10/28/03	<50	< 0.5	<0.5	<0.5	<0.5	250	<5.0	<0.5	<0.5	<5.0	<50	<5	<0.5	<0.5
	01/13/04	<50	<0.5	<0.5	<0.5	<0.5	140	<0.5	<5	<5	<50	<5,000	<500	<5	<5
	04/14/04	<50	<0.5	<0.5	<0.5	<0.5	260	<5 <5	<5	<5	<50	<5,000	<500	<5	<5
*	04/29/04	<50	<0.5	<0.5	<0.5	<0.5	130	<2.5	<2.5	<2.5	<25	<2,500	<250	<2.5	<2.5
	05/13/04	<50	<0.5	<0.5	<0.5	<0.5	110_		<2.5	<2.5	<25	<2,500	<250	<2.5	<2.5
	05/26/04	<50	<0.5	<0.5	<0.5	<0.5	150	<2.5 <0.5	<0.5	<0.5	<5.0	<50	<5.0	<0.5	< 0.5
	06/10/04		<0.5	<0.5	<0.5	<0.5	290		<1	<1	<10	NT	<100	<1.0	<0.5
	07/08/04		<0.5	<0.5	<0.5	<1.0	395	<0.5	<10	<10	<100	<10,000		<0.5	<0.5
	10/01/04		<0.5	<0.5	< 0.5	<0.5	450	<10 <5	<5	<5	<50	<5,000	<500	<5	<5
	01/03/0		<0.5	<0.5	< 0.5	<0.5	330	<5	<5	<5	53	<5,000	<500	<5	<5
	02/03/0		<0.5	<0.5	<0.5	<0.5	360	<5	<5	<5	53	<5,000	<500	<5	<5
	03/04/0		<0.5	<0.5	<0.5	<0.5	180	<2.5	<2.5	<2.5	29	<2500	<250	<2.5	<2.5
	04/05/0	5 <50	<0.5	<0.5	<0.5	<0.5	140		1 2.3	1 2.3	<u> </u>	1			

Table 3 **Analytical Results for Groundwater Samples** 2951 High Street Oakland, California

Well ID	Date	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	DIPE	EtBE	tAME	tBA	methanol	ethanol	EDB	DCA
MW-9	04/04/03	<50	<0.5	<0.5	<0.5	<0.5	85	<1.5	<1.5	<1.5	<12	<1,200	<120	<1.5	2
171 VV -7	07/16/03	<50	<0.5	<0.5	<0.5	<0.5	170	<2.5	<2.5	3	27	<2,500	<250	<2.5	<2.5
	10/28/03	<50	<0.5	<0.5	<0.5	<0.5	230	<5.0	<5.0	<5.0	57	<5,000	<500	<5.0	<5.0
	01/13/04	<50	<0.5	<0.5	<0.5	<0.5	55	<0.5	<0.5	0.72	5.8	<50	<5	<0.5	1
	04/14/04	<50	<0.5	<0.5	<0.5	< 0.5	58	<1	<1	<1	<10	<1,000	<100	<1	<1
*	04/29/04		<0.5	<0.5	<0.5	<0.5	4.7	< 0.5	< 0.5	<0.5	<5	<500	<50	<0.5	0.63
	05/13/04		<0.5	<0.5	<0.5	< 0.5	5.9	<0.5	<0.5	<0.5	<5.0	<50	<5.0	<0.5	0.66
	05/26/04	<50	<0.5	<0.5	<0.5	<0.5	2.5	<0.5	< 0.5	<0.5	<5.0	<500	<50	<0.5	0.53
	06/10/04	<50	<0.5	<0.5	<0.5	<0.5	14	<0.5	< 0.5	<0.5	<5.0	<50	<5.0	<0.5	0.60
	07/08/04	<50	<0.5	<0.5	<0.5	<1.0	7.3	<0.5	<1	<1	<10	NT	<100	<1.0	<0.5
	10/01/04	<50	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	<0.5	<5.0	<500	<50	< 0.5	<0.5
	01/03/05	<50	<0.5	<0.5	<0.5	<0.5	4.0	<0.5	<0.5	< 0.5	<5.0	<500	<50	< 0.5	< 0.5
	04/05/05	<50	<0.5	<0.5	< 0.5	< 0.5	48	<0.5	<0.5	0.75	13	<500	<50	<0.5	<0.5
MW-10	04/23/03	79	<0.5	< 0.5	< 0.5	<0.5	1,900	<25	<25	58	<250	<25,000	<2,500	<25	<25
111 11 - 10	07/16/03		20	< 0.5	<0.5	< 0.5	1,100	<20	<20	39	<200	<20,000	<2,000	<20	<20
	10/28/03		<0.5	<0.5	<0.5	< 0.5	1,900	<50	<50	<50	<500	<50,000	<5,000	<50	<50
	01/13/04		<5	<5	<5	<5	2,300	<5	<5	72	<50	<500	<50	<5	<5
*	04/29/04		<0.5	< 0.5	< 0.5	< 0.5	1,000	<17	<17	24	<170	<17,000	<1,700	<17	<17
	07/08/04		<0.5	<0.5	<0.5	<1.0	1,650	<0.5	<1	37	211	NT	<100	<1.0	<0.5
	10/01/04	67	<0.5	< 0.5	< 0.5	<0.5	1,500	<50	<50	<50	<500	<50,000	<5,000	<50	<50
	01/03/05	62	<0.5	<0.5	< 0.5	<0.5	1,700	<25	<25	<25	<250	<25,000	<2,500	<25	<25
	04/05/05		<0.5	< 0.5	<0.5	<0.5	520	<17	<17	<17	230	<17,000	<1,700	<17	<17
SS	IL .	NE	34	270	180	470	8,400	NE	NE	, NE	NE .	NE	NE	NE	NE

Notes:

DIPE

SSTLs are site-specific target levels developed for the site by Aqua Science Engineers, Inc. in 1997. Bold concentrations exceed the SSTL.

Concentrations are micrograms per liter (ug/L). NE, SSTL not established for this compound. NT, analyte not tested.

Data prior to April 2003 are from Groundwater Monitoring Report for September 2000 Sampling by Aqua Science Engineers, Inc. dated 11/14/2000.

- First sampling event after the OS system was started up on April 14, 2004.
- Oxygen Release Compound (ORC) was injected into borings on the south side of MW-5 in late June 1997. **
- ORC socks were placed in MW-5 in August 1998 and removed in September 2000.

ethylene dibromide (1,2-dibromoethane) EtBE ethyl tert-butyl ether EDB total petroleum hydrocarbons as gasoline TPH-g

DCA 1,2-dichloroethane tert-amyl methyl ether tAME methyl tert-butyl ether MtBE tert-butyl alcohol di-isopropyl ether tBA

Table 4
Field Measurements of Dissolved Oxygen and Temperature
2951 High Street
Oakland, California

Well ID	Date	DO (mg/L)	Temperature (Celsius)	% Oxygen Saturation
100 200 47	04/04/03	0.64	18.5	6.7%
MW-1		0.82	18.5	8.6%
	07/16/03	0.51	19.3	5.5%
	10/28/03	0.17	19.3	1.8%
	01/13/04 04/14/04	0.23	18.4	2.4%
*	04/29/04	0.56	18.1	5.9%
*	05/13/04	0.70	18.4	7.4%
	05/26/04	0.40	18.5	4.2%
	06/10/04	1.42	18.5	15.0%
		0.71	18.7	7.5%
	07/08/04	1.97	19.5	21.2%
	10/01/04	2.06	19.2	22.0%
	01/03/05 04/05/05	2.41	18.9	25.6%
		0.78	18.8	8.3%
MW-3	04/04/03	2.13	18.8	22.6%
	07/16/03	0.67	19.1	7.2%
	10/28/03	0.07	19.3	2.7%
	01/13/04	0.23	18.6	1.8%
	04/14/04	6.52	18.0	68.1%
*	04/29/04	5.87	18.5	61.9%
	05/13/04	2.76	18.5	29.1%
	05/26/04	6.12	18.5	64.5%
	06/10/04	0.76	18.7	8.0%
	07/08/04	3.45	19.3	37.0%
	10/01/04	2.71	19.2	29.0%
	01/03/05	2.60	19.2	27.8%
	02/03/05	3.34	16.3	33.7%
	03/04/05	3.53	18.6	37.3%
	04/05/05	0.70	19.2	7.5%
MW-5	04/04/03		NA	NA
	07/16/03	NA 0.82	19.70	9.0%
	10/28/03	0.83	19.80	6.2%
	01/13/04	0.57	19.70	3.5%
	04/14/04	0.32	19.50	105.8%
*	04/29/04	, 9.83	19.50	117.2%
	05/13/04	10.89	19.50	113.0%
	05/26/04	10.50	19.50	152.1%
	06/10/04	14.14		123.0%
	07/08/04	11.46	19.40	136.3%
	10/01/04	12.67	19.50	130.376
	01/03/05	9.25	20.10	147.3%
	02/03/05	13.50	20.20	72.1%
	03/04/05	6.96	17.60	105.0%
	04/05/05	9.78	19.40	103.070

Table 4
Field Measurements of Dissolved Oxygen and Temperature
2951 High Street
Oakland, California

Well ID	Date	DO (mg/L)	Temperature (Celsius)	% Oxygen Saturation
MW-6	04/04/03	NA	NA	NA
171 77 -0	07/16/03	0.54	19.1	5.8%
	10/28/03	1.26	19.3	13.5%
	01/13/04	0.27	19.4	2.9%
*	04/29/04	1.37	18.7	14.5%
	07/08/04	0.31	19.8	3.4%
	10/01/04	0.27	19.3	2.9%
	01/03/05	1.30	19.1	13.9%
	04/05/05	1.40	19.2	15.0%
MW-7	04/04/03	0.97	20.1	10.6%
141 44 - 7	07/16/03	0.69	19.8	7.5%
	10/28/03	0.49	20.5	5.4%
	01/13/04	0.14	20.5	1.5%
	04/14/04	0.17	20.2	1.9%
*	04/29/04	7.34	20.0	79.8%
	05/13/04	10.60	19.9	115.0%
	05/26/04	13.73	19.9	148.9%
	06/10/04	13.16	19.9	142.7%
	07/08/04	10.50	20,0	114.1%
	10/01/04	9.12	20.6	100.4%
	01/03/05	7.52	20.1	81.9%
	02/03/05	11.10	20.7	122.4%
	03/04/05	9.03	18.0	94.3%
	04/05/05	7.58	19.9	82.2%
MW-8	04/04/03	1.50	20.8	16.6%
141 44 -0	07/16/03	0.78	20.5	8.6%
	10/28/03	0.41	21.3	4.6%
	01/13/04	0.58	21.4	6.5%
	04/14/04	0.20	20.6	2.2%
*	04/29/04	1,10	20.1	12.0%
	05/13/04	1.15	20.4	12.6%
	05/26/04	0.64	20.5	7.0%
	06/10/04	0.22	20.5	2.4%
	07/08/04	0.22	20.5	2.4%
	10/01/04	0.12	21.3	1.3%
	01/03/05	0.93	20.9	10.3%
	02/03/05	0.20	21.2	2.2%
	03/04/05	1.50	17.9	15.6%
	04/05/05	0.87	20.3	9.5%

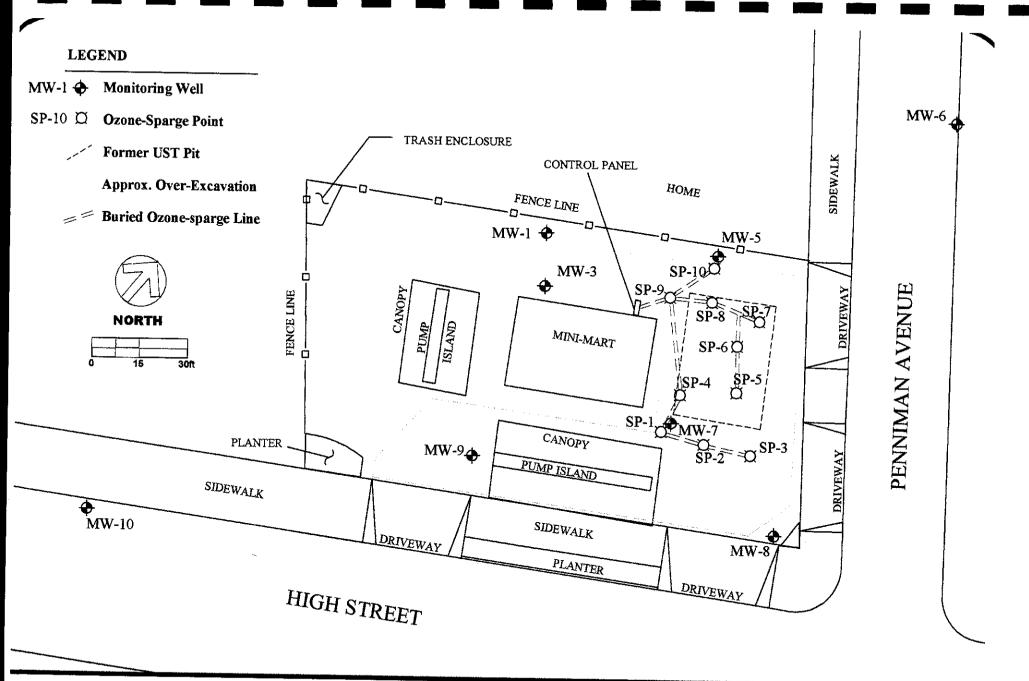

Table 4
Field Measurements of Dissolved Oxygen and Temperature
2951 High Street
Oakland, California

Well ID	Date	DO (mg/L)	Temperature (Celsius)	% Oxygen Saturation
MW-9	04/04/03	1.30	20.4	14.2%
147 44 -2	07/16/03	0.82	20.1	8.9%
	10/28/03	0.41	20.4	4.5%
	01/13/04	0.11	20.5	1.2%
	04/14/04	0.14	20.2	1.5%
*	04/29/04	10.02	20.2	109.3%
	05/13/04	10.91	20.0	118.6%
	05/26/04	6.16	19.9	66.8%
	06/10/04	5.84	19.9	63.3%
	07/08/04	3.99	19.9	43.3%
	10/01/04	3,30	20.3	36.1%
	01/03/05	3.33	19.5	35.8%
	04/05/05	3.21	20.5	35.2%
MW-10	04/23/03	2.75	19.1	29.3%
M M-10	07/16/03	1.00	19.2	10.7%
	10/28/03	0.55	19.6	5.9%
	01/13/04	0.13	19.7	1.4%
*	04/29/04	0.19	18.7	2.0%
•	07/08/04	0.19	19	2.0%
	10/01/04	0.14	19.4	1.5%
	01/03/05	1.27	18.3	13.3%
	04/05/05	1.10	18.6	11.6%

Notes: DO, Dissolved oxygen concentration in milligrams per liter. Formula for calculating % saturation = C/(-0.1883*T+12.967), where C is the DO concentration in mg/L and T is the temperature in degrees Celsius.

* First sampling event after the OS system was started up on April 14, 2004. N/A No data available.

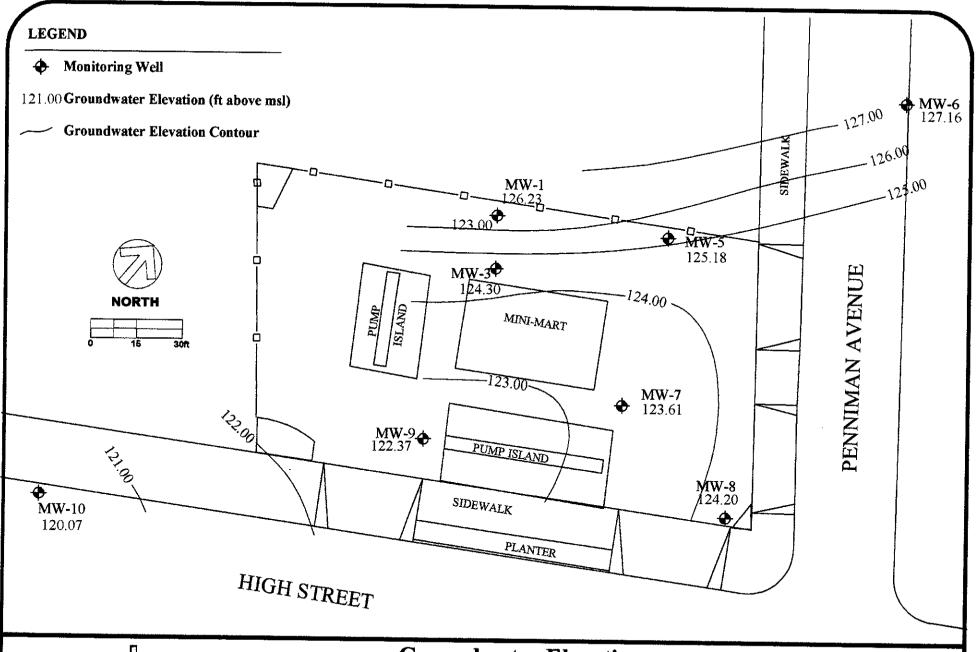
FIGURES


cook

Site Location Map

Express Gas & Mart 2951 High Street Oakland, California

Project #: 1004	Figure:
Date: 2/10/05	
Scale: as shown]

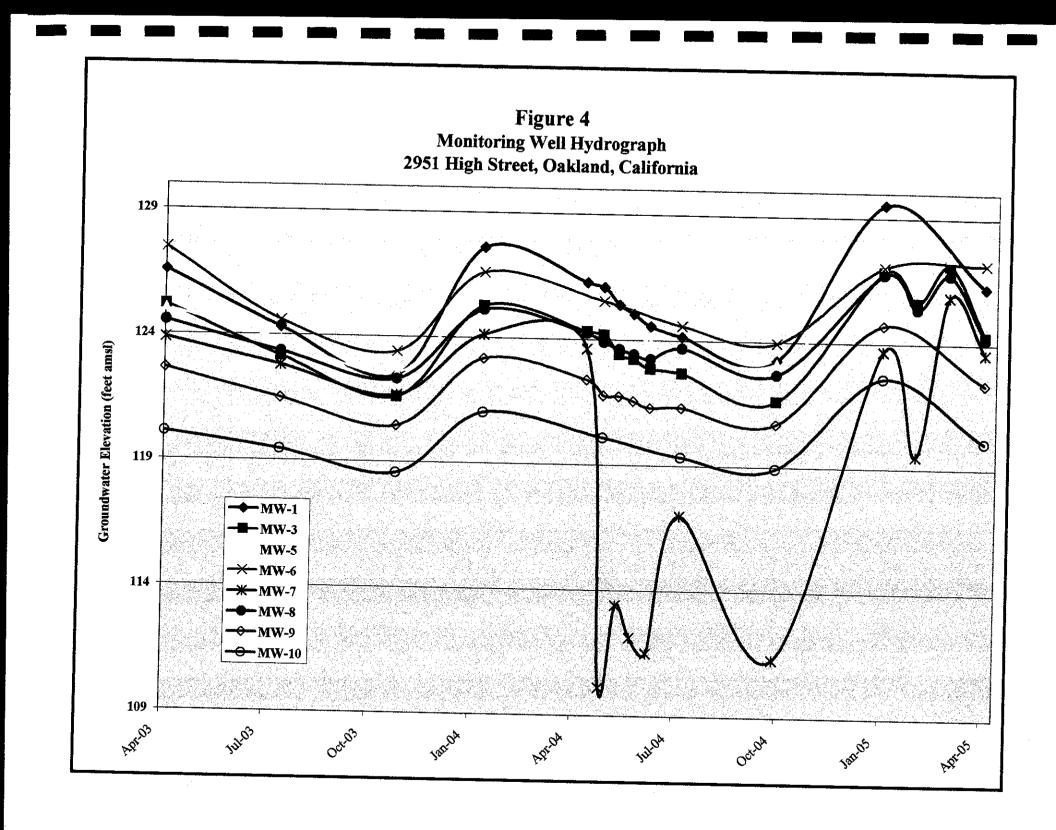


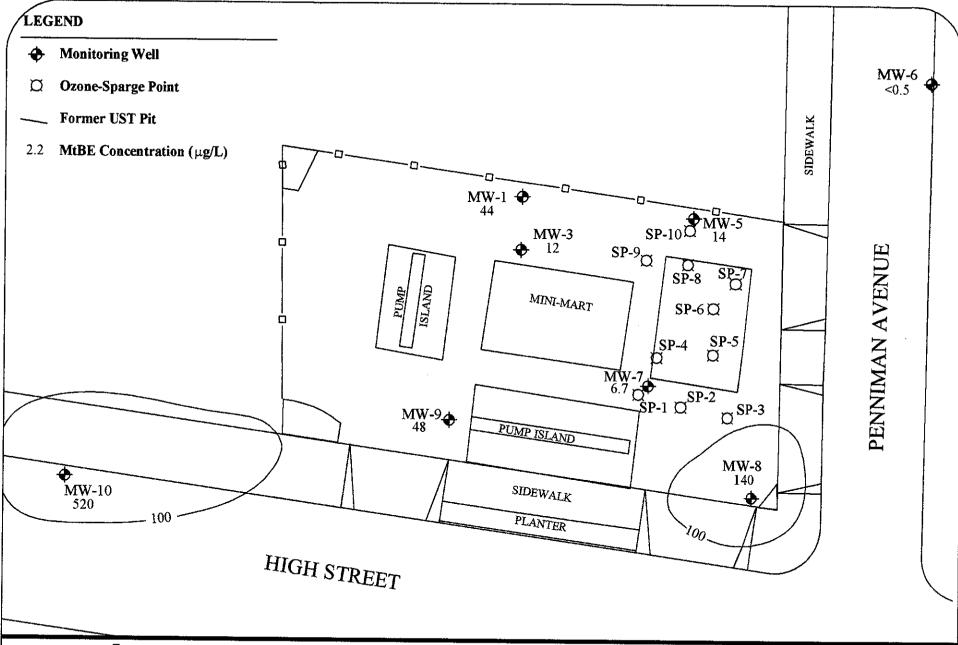
GOOK :

Site Features

Express Gas & Mart 2951 High Street Oakland, California

Project #: 1004	Figure:
Date: 5/2/05	7
Scale: 1"=30'	

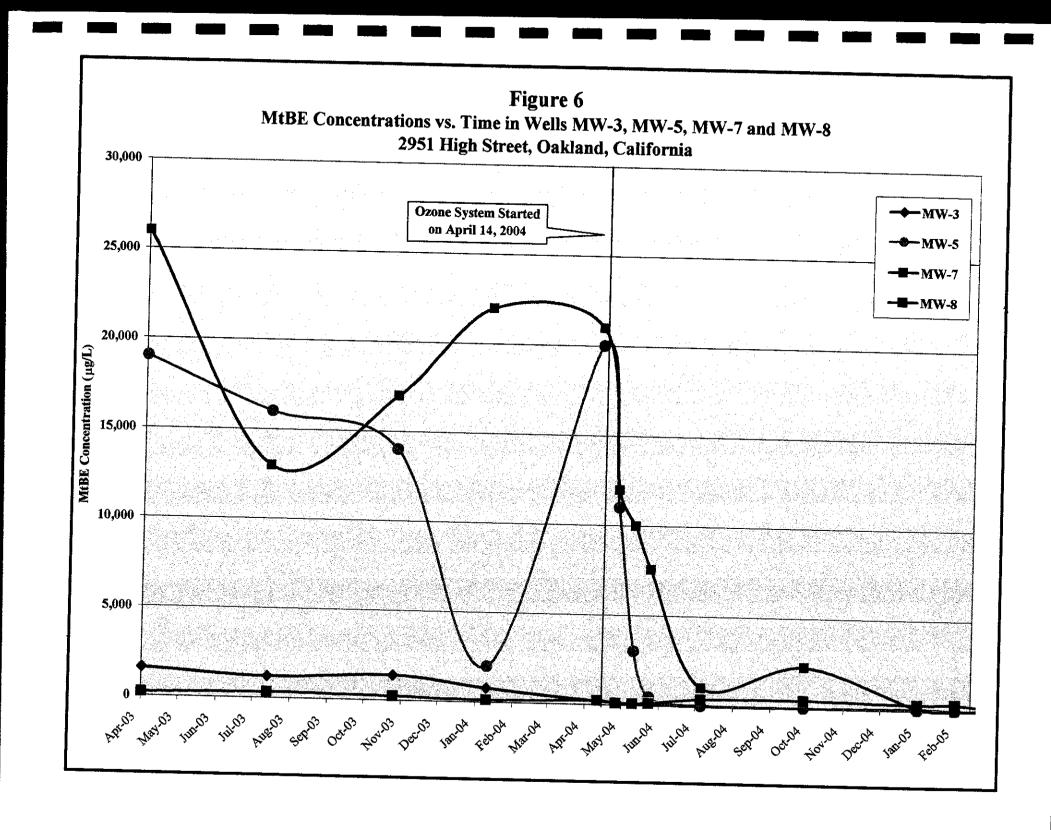


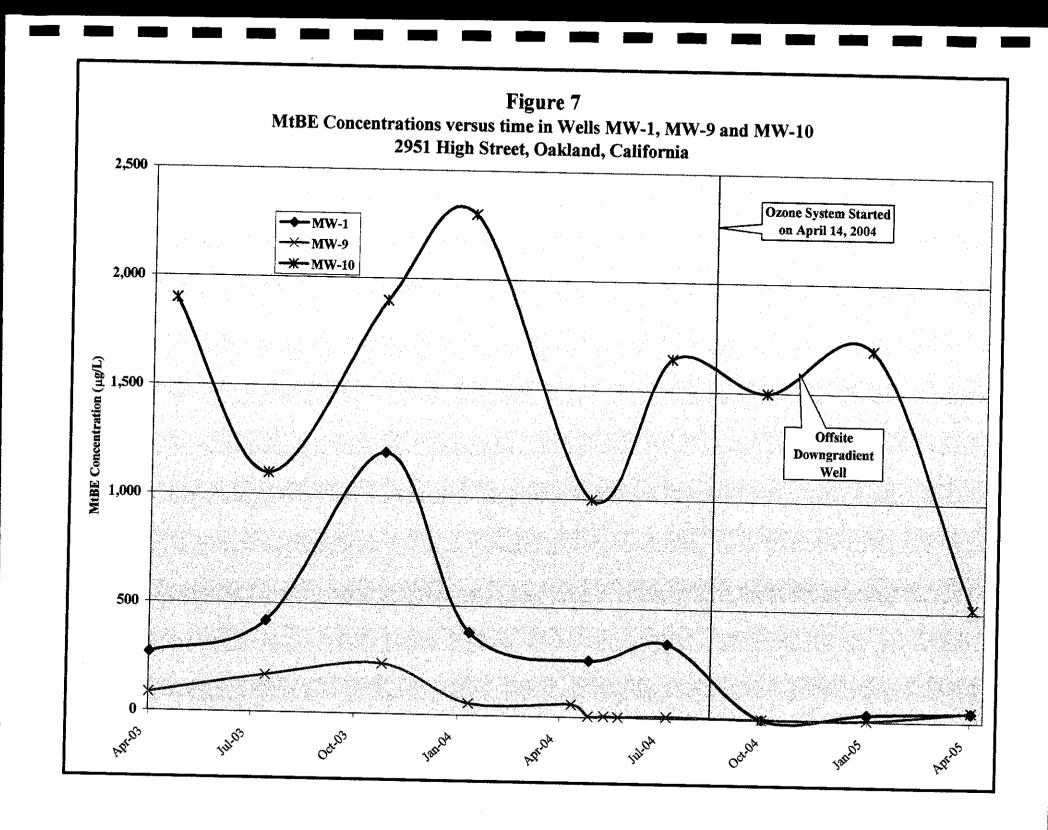

cook

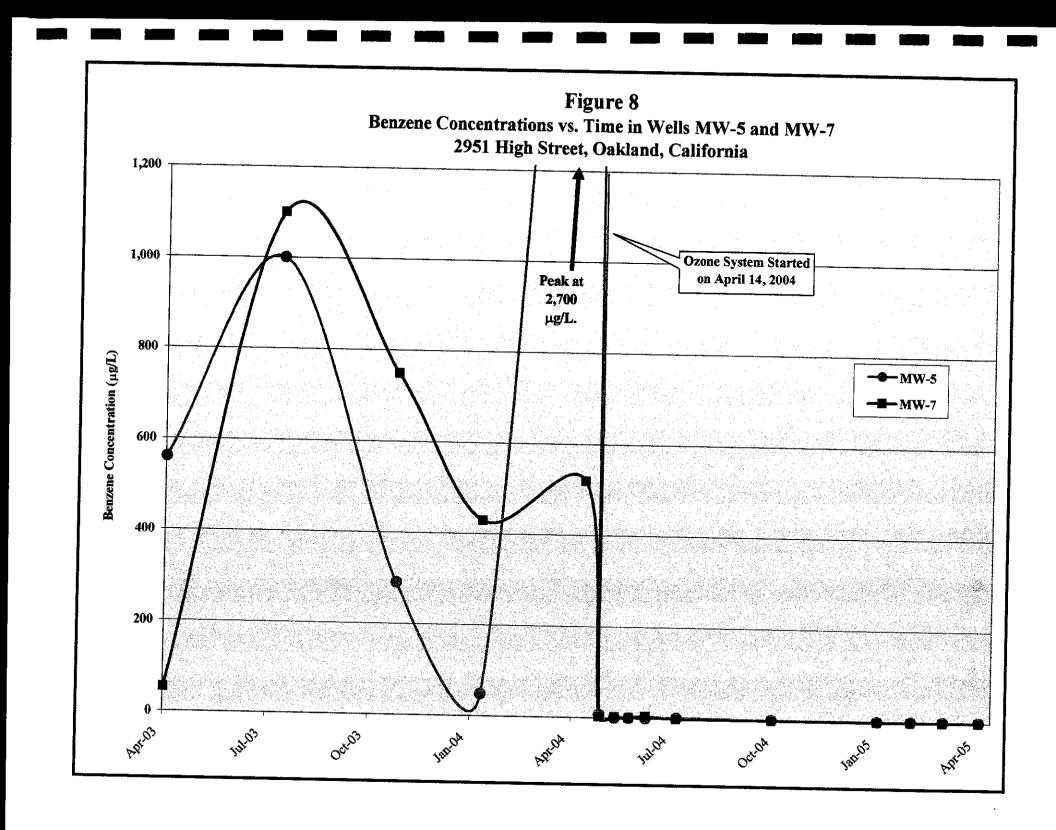
Groundwater Elevations on April 5, 2005

Express Gas & Mart 2951 High Street Oakland, California

Project #: 1004	Figure:
Date: 4/5/05	13
Scale: 1"=30'	


GOOK ENVIRONMENTAL SERVICES, INC.


271 Las Juntas Wey, Walnut Creek, CA 94597 Phone 925 937.1759 Cell 925.787.5869 cookenvironmental@att.net


MtBE Concentrations in Groundwater

on April 5, 2005 Express Gas & Mart 2951 High Street Oakland, California

Project #1004	Figure:
Date: 4/5/05	5
Scale:1"=30'])

APPENDIX A

Monitoring Well Sampling Logs

Verification Monitoring Sampling February 3, 2005

COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	High Street	Job# <u>1004</u>	
Date:	2-3-05	Sampler: <u>T. Cook</u>	
Well ID;	<u>Mw-3</u>	Well Diameter 2" Column 1	943
Well Depth	24.84	Depth to Water 5.41	
c	asing Volume 3.4 (2" well = col height *	3 Casing Volumes 9.9 0.17 gal/ft, 4" well = 0.66 gal/ft)	
Purge Method	bailer_	Sample Method DAIGO	

Time 1520 1525	Gallons Purged	Temp C 16,9	pH 6.80 6.47	sc (us) 484 484	Turbidity (NTU)	(mg/L)	Comments
536	10_	18.7	6.44	497		3.2	

INSTU 19.2 2.6 28.6

sampled @ 1540

MONITORING WELL SAMPLING LOG

Site Name:	High Street	Job # <u>1004</u>
Date:	2-3-05	Sampler: T. Cook
Weil ID:	<u>Mw-5</u>	Well Diameter 211 Column 2117
Well Depth	casing volume	Depth to Water 5.91 3 Casing Volumes 10.8
	(2" well = col height	0.17 gal/ft, 4" well = 0.66 gal/ft)
Purge Metho	d: <u>bale</u> 2	Sample Method bales

Time	Gallons Purged	Temp C	рН	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
445	_3	18.8	8.40	1135		9.4	Comments
1450	6	20.3	8.39	1189		11.8	
500	10	20,0	8,64	142	,	601	
	·			1		102	
	_					······································	

1NISTO 700 76

COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	High Street				Job#	1004	
Date:	2-3-0	2			Sampler	T. Cook	
Well ID:	MW-7	_	Well Diameter	2'	f	Column	13.6
Well Depth	25.01		Depth to Water	11.4	1× w	zII und	lee pressure , not fully reovered
С	asing Volume (2" well = co	<u>2</u> ,31 height * 0).17 gal/ft, 4" we	3 Casino	Volumes	_6.	9
Purge Method	: baile		Samp	le Method	baile	n	_
Time	Gallons Purged	Temp C	Hq	80 (10)	Turbidity	DO	
1410	3	202		SC (us)	(NTU)	(mg/L) / わ、O	Comments

Time 1410 1415 420	Gallons Purged 3	Temp C 20,2 20,0	7.43 7.31 7.50	sc (us) 365 367 361	Turbidity (NTU)	DO (mg/L) (mg/L) (mg/L)	Comments つのわけ、
							,

INS 170 Temp DO 20.7 11.1 Sampled @ 1423 SAT% 108

Cook Environmental Services, Inc. 271 Las Juntas Way Walnut Creek, CA 94597 (925) 937-1759

COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	High Street	Job# 1004
Date:	2-3-05	<u> 1907</u>
		Sampler: <u>T. Cook</u>
Well ID:	Mw-8	Well Diameter 2" Column 19.5
Well Depth	25.28	Depth to Water 5.78
C	Casing Volume $\frac{3.8}{(2'')}$ well = col height *	3 Casing Volumes 0.17 gal/ft, 4" well = 0.66 gal/ft)
Purge Method	bayler	Sample Method DALLOZ

Time 12:03 1:209 12:16	Gallons Purged	Temp C 19.6 20.8 21.0	6.62 6.63 6.63	sc (us) 536) 491 472	Turbidity (NTU)	DO (mg/L)	Comments clanz, No adis kas clanz mod Turbid, No ods

Temp DO 90 SAT 21.2 O.2 2%

INSTTU DO Sampled@ 12:18

> Cook Environmental Services, Inc. 271 Las Juntas Way Walnut Creek, CA 94597 (925) 937-1759

Verification Monitoring Sampling March 4, 2005

COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	High Street		Job#	<u>1004</u>	
Date:	3-4-05		Sampler:	T. Cook	
Well ID: Well Depth	MW-3 24.84	Well Diameter 2" Depth to Water 3.		Column	20.94
•	asing Volume _ 3	55	a Volumes	10'	6
Purge Method:	bouter	Sample Method	ı bale	2/2	

Time	Gallons Purged	Temp C	рН	SC (uS)	Turbidity (NTU)	DO (mg/L)	C
4:53	3	17.3	10.98	688	(1410)	2,53	Comments
4:59	5	17.3	6,69	561		-3.24	
511P	8	/7.8	6.70	5/5/	······································	3'3	
5115	10	17,8		5.56		2.47	
	· · · · · · · · · · · · · · · · · · ·						

TEMP DO
16.3 3.39

Cook Environmental Services, Inc. 271 Las Juntas Way Walnut Creek, CA 94597 (925) 937-1759

COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	High Street	Job# <u>1004</u>	
Date:	<u>3-4-05</u>	Sampler: T. Cook	
Well ID:	<u>Mw-5</u>	Well Diameter 211 Column 22,60)
Well Depth	27.08	Depth to Water 4.48	
C	pasing volume	3 Casing Volumes 11.5 * 0.17 gal/ft, 4" well = 0.66 gal/ft)	
Purge Method	: boller	Sample Method SALLER	

Time	Gallons Purged	Temp C.	pH	SC (uS)	Turbidity (NTU)	DO (mg/L)	
3,51	3	10.8	8:09	1099	(110)	7,05	Comments
4:01	_5	19.1	8.25	1075		11.05	
4:27	8	195	8.71	1/5/		11.05	
4:35	10	19.7	8.51	1081		10.23	
4:41	11.5	1906	8-55	7077		10.28	
ļ							

INSITO 17.6 6.96 73.3%

_ COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	nigh Street	Job # <u>1004</u>	
Date:	3-4-07	Sampler: T. Cook	
Well ID:	MW-7	Well Diameter 2" Column 19,96	_
Well Depth	25.01	Depth to Water 5.05	
		* 0.17 gal/ft, 4" well = 0.66 gal/ft)	
Purge Metho	od: bailer	Sample Method barlen	

Time	Gallons Purged	Temp C	pΗ	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
226	3	19,0	7063	453		8.40	
281	5	9.5	7.64	426		7.70	
246	8	20.3	7.75	395		8,40	
25	10	201	7.69	318		g.03	
			· · · · · · · · · · · · · · · · · · ·				
			<u>. </u>				
							,
<u> </u>		<u> </u>	··			·	

Temp. DO 9,03 94,9%

K. . .

Cook Environmental Services, Inc. 271 Las Juntas Way Walnut Creek, CA 94597 (925) 937-1759

JOOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	High Street		Job#	<u>1004</u>	
Date:	3-4-05		Sampler:	T. Cook	
Well ID:	MW-8	Well Diameter	2"	Column	20 ^{,88}
Well Depth	25.28	Depth to Water	4,40		
C	asing Volume 3.55 (2" well = col height *		3 Casing Volumes I = 0.66 gal/ft)	10.9	·····
Purge Method	: barlez	Sampi	le Method <u>baild</u>	7	

Time	Gallons Purged	Temp C	рН	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
3:10	3	20.1	6.96	534		3,90	
316	15)	20.5	7,05	549		2,45	
3:22	83	19.8	7.09	549		1067	
8:20	10	20.6	6.96	527		7.33	· ·
							Marine and the second s
				<u> </u>			
							

INSITU Temp DO 1.50

Cook Environmental Services, Inc. 271 Las Juntas Way Walnut Creek, CA 94597 (925) 937-1759 Verification Monitoring Sampling April 5, 2005

COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	High Street		Job#	1004	
Date:	4/5/2005		Sampler:	T. Cook	
Well ID:	MW-381 24.81	Well Diameter Depth to Water	2" 5.41	Column _	19,40
C	asing Volume 3/3/ (2" well = col height *		3 Casing Volumes = 0.66 gal/ft)	9.9	
Purge Method	: bailer	Sample	Method: bailer	_	

Time	Gallons Purged	Temp C	рH	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
1030	3	19.8	6,63	568	· · · · · · · · · · · · · · · · · · ·	7.20	49.00
	6	19,1	6.58	574		2,37	
1105	10	1809	6.72	575		2,41	
				, ,			

COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	High Street		Job#	1004	
Date:	4/5/2005		Sampler:	T. Cook	
Well ID: Well Depth	14.84 Sasing Volume 3.6	3 Cas	75	Column .	18.09
	(2" well = col height * (0.17 gal/ft, 4" well = 0.66	3 gal/ft)	· · · · · · · · · · · · · · · · · · ·	÷

Purge Method: bailer Sample Method: bailer

Time	Gallons Purged	Temp C	рН	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
1115	3	19.5	6.47	557		3,51	Comments
	6	18.9	6,68	562		7,49	
1145	9	18.6	6.75	561		3,53	
	·						
				ļ		····	
-							
<u></u>							
		<u> </u>					
		<u> </u>					

COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	<u>High Street</u>	Job#	1004
Date:	4/5/2005	Sampler:	T. Cook
Well ID:	MW-5	Well Diameter 2"	Column 20,27
Well Depth	27.08	Depth to Water 6.81	3
	Casing Volume 3.44 (2" well = col height *	3 Casing Volumes 0.17 gal/ft, 4" well = 0.66 gal/ft)	10.3
Purge Metho	od: <u>bailer</u>	Sample Method: <u>bailer</u>	.

Time	Gallons Purged	Temp C	рН	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
1155	3	20.1	6.75	1145		7061	
11.	6	19.7	6.83	1215		853	
12.35		19.4	6.87	1187		9.78	
				1101			
							
		 		<u> </u>			
	<u> </u>	1	 				

COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:

High Street

Job# 1004

Date:

4/5/2005

Sampler: T. Cook

Well ID:

MW-6

Well Diameter 2"

23.18 Column

Well Depth

Depth to Water 5.42

Casing Volume

3.94

3 Casing Volumes

(2" well = col height * 0.17 gal/ft, 4" well = 0.66 gal/ft)

Purge Method: bailer

Sample Method: bailer

Time	Gallons Purged	Temp C	Нq	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
0836	1	1904	7.09	524		0.9	Comments
	3	9.7	6.87	53	<i>'</i>	11	
	5	19.4	6.61	541		1.0	
0905	8	19.6		563		1.3	
0911		19.2	6.58	550		104	
· · · · · · · · · · · · · · · · · · ·							
<u></u>		<u> </u>					

COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	<u>High Street</u>		Job#	<u>1004</u>		
Date:	4/5/2005		Sampler:	T. Cook		
Well ID:	<u>MW-7</u>	Well Diameter 2"		Column	17.69	
Well Depth	25.01	Depth to Water 7.3	2. * un	der pro	ssure	
	Casing Volume 3,0 (2" well = col height *	3 Casir 0.17 gat/ft, 4" well = 0.66 g	ng Volumes gal/ft)	9,0	<u> </u>	
Durge Metho	nd: hailer	Cample Method	مار امسالم			

Purge Method: bailer Sample Method: bailer

Time	Gallons Purged	Temp C	pH	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
0920	2	20:1	7.32	363		7,50	
	4	19.9	7,26	361		7,62	
	6	19.0	7,29	370		7,70	
	8	19.8		360		7.61	
0945	9	19.9	7.23	365		7.58	
		,					
	·····	ļ	····				
				<u>L</u>			

COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	High Street	Job#	<u>1004</u>	
Date:	4/5/2005	Sampler:	T. Cook	
Well ID:	MW-8 25:28	Well Diameter $\frac{2^n}{6.95}$	Column	18,33
•	Casing Volume 3, 1 (2" well = col height * (3 Casing Volumes 0.17 gal/ft, 4" well = 0.66 gal/ft)	9.3	
Purge Metho	d: bailer	Sample Method: bailer	_	

Time	Gallons Purged	Temp C	рН	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
0955	3	20.1	6.32	450		0.90	
	6	203	6.36	461		0.93	
1020	9	20.3	G 38	4/8		O.87	
				16.6			
		1	******				
				1			

COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	High Street	Job#	<u>1004</u>	
Date:	4/5/2005	Sampler:	T. Cook	
Well ID: Well Depth	25.32 asing Volume 3.4	Well Diameter 2" Depth to Water 7 6 3 3 Casing Volumes 0.17 gal/ft, 4" well = 0.66 gal/ft)	Column _	17.69
Purae Methor		Sample Method: bailer		

Purge Method: bailer

Time	Gallons Purged	Temp C	рН	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
1027	3	2001	6.75	872		2.78	
		20.3	6.83	1835		3,5	
1035	q	20.5	6.85	827		3.21	
	1						

COOK ENVIRONMENTAL SERVICES MONITORING WELL SAMPLING LOG

Site Name:	High Street		Job#	<u>1004</u>	
Date:	4/5/2005		Sampler:	T. Cook	
Well ID:	<u>MW-10</u> 24.95	Well Diameter 2" Depth to Water	7612	Column _	17.83
•	Casing Volume 3.03 (2" well = col height * (з с	asing Volumes	9.1	***************************************
Purge Metho	od: bailer	Sample Me	thod: bailer		

Time	Gallons Purged	Temp C	рН	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
1320	3	19.0	6.78			0.87	
	6	1800	6.81			0.99	
1345	9	1806	6085			1010	

APPENDIX B

Laboratory Analytical Reports

Verification Monitoring Results February 3, 2005

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-nail: main@mccampbell.com

Cook Environmental Services, Inc	Client Project ID: #1004; High Street	Date Sampled: 02/03/05
271 Las Juntas Way		Date Received: 02/03/05
Walana Carala CA 04506	Client Contact: Tim Cook	Date Reported: 02/10/05
Walnut Creek, CA 94596	Client P.O.:	Date Completed: 02/10/05

WorkOrder: 0502072

February 10, 2005

Dear Tim:

Enclosed are:

- 1). the results of 4 analyzed samples from your #1004; High Street project,
- 2), a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

Yours truly

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cook Environmental Services, Inc	Client Project ID: #1004; High Street	Date Sampled: 02/03/05
271 Las Juntas Way		Date Received: 02/03/05
,	Client Contact: Tim Cook	Date Extracted: 02/09/05-02/10/05
Walnut Creek, CA 94596	Client P.O.:	Date Analyzed: 02/09/05-02/10/05

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

extraction r	nethod: SW5030B			Analytical	methods: SW80211				Order: 0	
ab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001B	MW-3 W ND ND ND ND				ND	ND	ND	1	102	
002B	MW-5	w	ND	6.2	ND	ND	ND	ND	1	102
003B	MW-7	w	ND	5.8	ND	ND	ND	ND	1	106
004B	MW-8	w	ND	320	ND	ND	ND	ND	1	111
		ļ		and the second state of th		and have an administration of the state of t				ļ <u>.</u>
	, <u> </u>									-
			والمراجعة المراجعة ا							
			·. <u> </u>							-
		\$				-		T. T. T. T. T. T. T. T. T. T.		<u> </u>
		-				<u> </u>				
								<u>!</u>	_	-
	ng Limit for DF =1; ns not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	_ 1	μg
	the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/l

[•] water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cook Environmental Services, Inc	Client Project ID: #1004; High Street	Date Sampled: 02/03/05
271 Las Juntas Way		Date Received: 02/03/05
Walnut Creek, CA 94596	Client Contact: Tim Cook	Date Extracted: 02/03/05
manus orong or 197090	Client P.O.:	Date Analyzed: 02/03/05

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

Extraction Method: SW5030B	An	alytical Method: SW826	OB .		Work Order: 0502072				
Lab ID	0502072-001A	0502072-002A	0502072-003A	0502072-004A					
Client ID	MW-3	MW-5	MW-7	MW-8	Reporting Limit for				
Matrix	W	W	W	W	DF=i				
DF	1	1	10	s	w				
Compound			ug/kg	μg/L					
tert-Amyl methyl ether (TAME)	ND	ND	ND ·	ND<5.0	NA NA	0.5			
t-Butyl alcohol (TBA)	ND	ND	ND	53		5.0			
1,2-Dibromoethane (EDB)	ND	ND	ND	ND<5.0	NA	0.5			
1,2-Dichloroethane (1,2-DCA)	ND	ND	2.9	ND<5.0	NA	0.5			
Diisopropyl ether (DIPE)	ND .	ND	ND	ND<5.0	NA	0.5			
Ethanol	ND	ND	ND	ND<500	NA	50			
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	ND<5.0	NA	0.5			
Methanol	ND	ND	ND	ND<5000	NA	500			
Methyl-t-butyl ether (MTBE)	4.9	4.2	4.5	360	NA	0.5			
	Surro	ogate Recoveries	(%)						
%SS1:	104	105	105	105					
Comments			and the second s						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~! vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0502072

- QA/QC Officer

EPA Method: SW8021B/	8015Cm E	xtraction:	SW5030B	3	Batch	1D: 14958	S	piked Sampl	e ID: 0502	145-001A
Analyda	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptanc	e Criteria (%)
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSE
TPH(btex) [£]	ND	60	94.2	109	14.4	92.8	91.9	0.982	70 - 130	70 - 130
мтве	ND	10	90.3	95.7	5.81	96.8	100	3.40	70 - 130	70 - 130
Benzene	ND	10	105	109	3.84	105	97.9	6.69	70 - 130	70 - 130
Toluene	ND	10	102	107	5.33	104	91.7	12.9	70 - 130	70 - 130
Ethylbenzene	ND	10	104	117	11.7	102	102	0	70 - 130	70 - 130
Xylenes	ND	30	90.7	95.7	5.37	90.3	90.7	0.368	70 - 130	70 - 130
%SS:	110	10	112	113	0.829	115	110	4.46	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is
inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or energy content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0502072

EPA Method: SW8260B	E	Extraction:	SW50308	3	Batch	ID: 14902	s	Spiked Sample ID: 0502054-002B							
Analyte	Sample Spiked		MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance Criteria						
7 (10), (0	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD					
tert-Amyl methyl ether (TAME)	0.5884	10	82.9	89.8	7.42	110	95.8	14.2	70 - 130	70 - 130					
t-Butyl alcohol (TBA)	ND	50	88.1	89.7	1.85	102	98.7	3.05	70 - 130	70 - 130					
1,2-Dibromoethane (EDB)	ND	10	111	108	2.83	120	120	0	70 - 130	70 - 130					
1,2-Dichloroethane (1,2-DCA)	ND	10	103	104	0.848	116	111	4.58	70 - 130	70 - 130					
Diisopropyl ether (DIPE)	ND	10	- 107	109	1.93	109	113	3.37	70 - 130	70 - 130					
Ethanol	ND	500	103	106	2.70	98.7	104	5.24	70 - 130	70 - 130					
Ethyl tert-butyl ether (ETBE)	ND	10	103	104	1.27	116	111	3.99	70 - 130	70 - 130					
Methanol	ND	2500	101	101	0	100	101	0.525	70 - 130	70 - 130					
Methyl-t-butyl ether (MTBE)	ND	10	97.1	98.4	1.27	115	107	7.08	70 - 130	70 - 130					
%SS1:	99	10	105	106	0.341	107	104	2.40	70 - 130	70 - 130					

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoverles and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is Inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Leboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0502072

ClientID: CESW

۵₽۵	2	+	tn	•

Tim Cook

Cook Environmental Services, Inc.

271 Las Juntas Way

Walnut Creek, CA 94596

TEL: FAX:

925-937-1759

925-937-1759

ProjectNo: #1004; High Street PO:

Bill to:

Requested TAT:

5 days

Tim Cook

Cook Environmental Services, Inc.

271 Las Juntas Way

Date Received:

02/03/2005

Walnut Creek, CA 94596 Date Printed: 02/09/2005

										Requ	ested 7	Tests	(See le	egend b	elow)					
Sample ID	ClientSamplD	Matrix	Collection Date	Hold	1	2	3	4	5	(6	7	8	9	10	11	12	13	14	15
0502072-001	MW-3	Water	2/3/05		Δ	В		1	Т				 -			 .	i			
0502072-002	MW-5	Water	2/3/05		A	В				<u> </u>										
0502072-003	MW-7	Water	2/3/05		Α	В														
0502072-004	MW-8	Water	2/3/05		Α	В								ļ		[T

Test Legend:

1	9-OXYS_W
6	
11	

2	G-MBTEX_W
7	
12	

3	
8	
13	

4	
9	
14	

5	
10	
15	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCAMPBELL A 110 2nd AVENUE SO PACHECO, CA 9455	OUTH, #D7	AL, INC.					•							Т	UR	N	ΑĐ						F (CUS)D	Y	RI		O	RI Q		<u> </u>
Website: www.mcc Telephone: (925)	ampbell.com	Email: m			ell.com (925)		162	,							DF I								_	RUSH Yes		HF		48	HR	No	72 I		5 DAY
Report To: Tim (Bill To	<u> </u>	7 7 0 -	102.							EI	UF I	xeq.	шпе	u: (_061				equ		44.1	ne (<u> </u>	יוע	2	_	Oth	er	Comment:
Company: Cook		ntal Servi							-									ĺ					T.	Ī	T							T	f
271 L	as Juntas V	/ay												널		E							ļ	}									Filter Samples
Wain	ut Creek, C	A 9457	E-M	ail: co	okenv	iron	mei	ntal	@at	t.ne	et			8015)/MTBE		/B&	=						1			8310							for Metals
Tele: (925) 937-1	759		I	ax:	(925) 9	37-1	1759)						115)/(Eck	(418						1			-			1				analysis:
Project #:1004			<u> </u>	rojec	t Nam	e: l	High	ı Ştı	reet					28 +		220	Suc		୍ଲି		>			İ		82	_						Yes / No
Project Location:	Oakland															se (5	arb		80;		ONLY		1	출		325	920	070	6				
Sampler Signatur	·e:	Lul	K-											(602/8020		Grease (5520 E&F/B&F)	lroc	_	202		8.0			yso		PA (2	9/0	199				C
		SAMP	LING		ers		ΜA	TRI	IX		MET RES			Gas (6	8015)		n Hyd	/ 802	EPA (PCB	_		9 oxys only	8270	by E	s (601	(601	76.00				{
SAMPLE ID (Field Point Name)	LOCATION	Date 02.03.05	Time	# Containers	Type Containers	Water	Soil	Air.	Sludge	ICE.	HCL	HNO,	Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's	EPA 8140 / 8141	EPA 8150 / 8151	EPA 8260 AII	EPA 525 / 625 / 8270	PAH's / PNA's by EPA 625 / 8270	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)				
MW-3		1/4/05		3	VOA	X	-	+	+	1,	x x			X	 - -		 		-	-		 	-	X	-			-		\vdash	\top	十	
MW-5		1/4/05		3	VOA	11	<u>.</u> L	-+	+-	1 3		٠	-	X			 			ļ				X	\vdash			<u> </u>		<u></u>	ļ	 	
MW-7		1/4/05	 	3	VOA			-	-	1,		<u> </u>		X					_	-			 	X	\vdash		ļ -	<u></u>		 			
MW-8		1/4/05	 -	3	VOA	1_1		+	+	7		i		Х										Х	 					<u> </u>	-	·	
					 		1		1	\dagger		-													-		-						
					···		1			T	+	\vdash								t					1	-				ļ		†	
					 		-+		+	╁╌	+-									 					-				-			-	
				 				+	-	╁	+				-							L		L			 -		H	 	+		·
			 	-	 				+-	+-	+	-													-	<u> </u>	<u> </u>				+	+	
					 		-			╀-	+	<u> </u>			ļ																	ļ	
				<u> </u>	<u> </u>					\perp	_									ļ					ļ		ļ			ļ		ļ	
		- ·- · · · · · · · · · · · · · · · · ·			<u> </u>					L															ļ					<u> </u>	ļ	ļ	
				1	1				l											Ĺ					L					<u> </u>		<u> </u>	
																	}															<u></u>	
									1	T	1																				Ţ]	
Relinquished By		Date: 2-3	Time:	Refe	ived By	0	<u>a</u>)	V					GC	E/t°_ OOD	CON	IDIT	ION	V NT	/ -/	<u> </u>	 -	<u> </u>	-			CO	MM	ENT	S:	 -	1	· · · · · · · · · · · · · · · · · · ·
Relinquished By:		Date:	Time:	Rece	ived By									DE AP	CHI PRO ESE	.ORi PRI	INAT ATE	COI	IN L NTA	AB_	RS_		_										
Relinquished By:		Date:	Time:	Rece	ived By	:									FSF			VC		_ o	&G	ME	ETAL	s or	HER	ł							

Verification Monitoring Results March 4, 2005

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Cook Environmental Services, Inc	Client Project ID: #1004; High Street	Date Sampled: 03/04/05
271 Las Juntas Way		Date Received: 03/04/05
Walnut Carely CA 04506	Client Contact: Tim Cook	Date Reported: 03/09/05
Walnut Creek, CA 94596	Client P.O.:	Date Completed: 03/09/05

WorkOrder: 0503099

March 09, 2005

Dear Tim:

Enclosed are:

- 1), the results of 4 analyzed samples from your #1004; High Street project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Cook Environmental Services, Inc	Client Project ID: #1004; High Street	Date Sampled: 03/04/05
271 Las Juntas Way		Date Received: 03/04/05
Walnut Creek, CA 94596	Client Contact: Tim Cook	Date Extracted: 03/04/05-03/09/05
Wallat Olock, CA 94370	Client P.O.;	Date Analyzed: 03/04/05-03/09/05

Lab ID	nethod: SW5030B Client ID	Matrix	TD11(-)		methods: SW8021I		T = 1 4 4 4 4 1		Order: 0	
LAUID	Chent ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-3	w	ND,i	28	ND	ND	ND	ND	1	92
002A	MW-5	w	ND	ND	ND	ND	ND	ND	ı	114
003A	MW-7	w	ND,i	23	ND	ND	ND	ND	1	95
004A	MW-8	w	ND	190	ND	ND	ND	ND	1	96
										<u> </u>
		<u> </u>								
		<u> </u>								
	·	<u> </u>								ļ
-										
		-							ļ	
		 								
		 								
							,	***	·	
		-						······································		
	· II									
Reporting	Limit for DF =1;	w	50	5.0	0.5	0.5	0.5	0.5	1	μg/
	reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/l

above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/l
• water and vapor samples and product/oil/non-aqueous liqui	d all TCI d sample	LP & SPLP extracts in mg/L.	ets are reported in	ug/L, soil/sludge	l e/solid samples ir	ı mg/kg, wipe sa	i mples in μg/wipe	,	

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cook Environmental Services, Inc	Client Project ID: #1004; High Street	Date Sampled: 03/04/05
271 Las Juntas Way		Date Received: 03/04/05
Walnut Crook CA 04506	Client Contact: Tim Cook	Date Extracted: 03/07/05-03/08/05
Walnut Creek, CA 94596	Client P.O.:	Date Analyzed: 03/07/05-03/08/05

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

Extraction Method: SW5030B	An	Work Order: 0503099					
Lab ID	0503099-001B	0503099-002B	0503099-003B	0503099-004B			
Client ID	MW-3	MW-5	MW-7	MW-8	Reporting Limit for		
Matrix	W	W	W	W			
DF	1	1	1	10	S	w	
Compound		ug/kg	μg/L				
tert-Amyl methyl ether (TAME)	ND	ND	ND	ND<5.0	NA	0.5	
t-Butyl alcohol (TBA)	ND	ND	ND	ND<50	NA	5.0	
1,2-Dibromoethane (EDB)	ND	ND	ND	ND<5.0	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	1.5	ND	, ND	ND<5.0	NA	0.5	
Diisopropyl ether (DIPE)	ND	ND	ND	ND<5.0	NA	0.5	
Ethanol	ND	ND	ND	ND<500	NA	50	
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	ND<5.0	NA	0.5	
Methanol	ND	ND	ND	ND<5000	NA	500	
Methyl-t-butyl ether (MTBE)	32	1.8	21	180	NA	0.5	
	Surr	ogate Recoverie	s (%)				
%SS1:	106	101	104	104			
Comments	i		ì		<u> </u>	asangan ega Nen	

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0503099

EPA Method: SW8021B	/8015Cm	Extraction	n: SW503	0B	Bat	chID: 152	49	Spiked Sam	ple ID: 0503	107-001A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(btex) [£]	ND	60	100	103	3.30	99.3	97.3	2.09	70 - 130	70 - 130
МТВЕ	ND	10	107	102	4.03	101	103	2.44	70 - 130	70 - 130
Benzene	ND	10	113	116	2.97	116	117	1.14	70 - 130	70 - 130
Toluene	ND	10	113	113	0	113	113	0	70 - 130	70 - 130
Ethylbenzene	ND	10	116	119	2.54	116	116	0	70 - 130	70 - 130
Xylenes	ND	30	107	107	0	103	103	0	70 - 130	70 - 130
%\$\$:	92	10	113	111	2.16	115	114	0.180	70 - 130	70 - 130

 $\textbf{All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: \\$

NONE

Sample ID	Batch ID	Date Sampled	Date Analyzed	Sample ID	Batch ID	Date Sampled	Date Analyzed
0503099-001A	15249	3/04/05	3/07/05 6:30 PM	0503099-002A	15249	3/04/05	3/09/05 3:41 AM
0503099-003A	15249	3/04/05	3/04/05 11:58 PM	0503099-004A	15249	3/04/05	3/05/05 12:29 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

• MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not epplicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

QA/QC Officer

110 2nd Avenue South, #17, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0503099

EPA Method: SW8260B	Extraction: SW5030B				Ва	tchID; 152	44	Spiked Sample ID: 0503085-011B				
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	· · · · · · · · · · · · · · · · · · ·	e Criteria (%)		
	μg/L μg/L % Rec. % Rec. % RPD % Rec.		% Rec.	% RPD		LCS/LCSD						
tert-Amyl methyl ether (TAME)	ND	10	90.9	87.1	4.28	86.2	89.8	4.05	70 - 130	70 - 130		
t-Butyl alcohol (TBA)	ND	50	99.3	97.5	1.82	98.9	98.5	0.468	70 - 130	70 - 130		
1,2-Dibromoethane (EDB)	ND	10	112	111	0.618	115	119	2.83	70 - 130	70 - 130		
1,2-Dichloroethane (1,2-DCA)	ND	10	102	102	0	98.1	101	3.13	70 - 130	70 - 130		
Diisopropyl ether (DIPE)	ND	10	96.6	97.6	1.11	90.5	93.4	3.13	70 - 130	70 - 130		
Ethanol	ND	500	104	100	3.77	103	99.6	3.40	70 - 130	70 - 130		
Ethyl tert-butyl ether (ETBE)	ND	10	97.3	98.3	1.08	91.4	95.3	4.18	70 - 130	70 - 130		
Methanol	ND	2500	99.8	101	1.30	98.9	99.5	0.634	70 - 130	70 - 130		
Methyl-t-butyl ether (MTBE)	ND	10	98.6	101	2.41	93.1	97.5	4.62	70 - 130	70 - 130		
%SS1:	98	10	101	102	0.366	103	102	0.172	70 - 130	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

Sample ID	Batch ID	Date Sampled	Date Analyzed	Sample ID	Batch ID	Date Sampled	Date Analyzed
0503099-001B	15244	3/04/05	3/07/05 9:35 PM	0503099-002B	15244	3/04/05	3/07/05 10:18 PM
0503099-003B	15244	3/04/05	3/07/05 11:01 PM	0503099-004B	15244	3/04/05	3/08/05 2:58 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS Certification No. 1644

QA/QC Officer

110 Second Avenue South, #D7
Pacheco, CA 94553-5560
(925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0503099

ClientID: CESW

Report to:

Tim Cook

Cook Environmental Services, Inc.

271 Las Juntas Way

Walnut Creek, CA 94596

TEL: FAX:

925-937-1759

FAX: 925-937-1759 ProjectNo: #1004; High Street

PO:

Bill to:

Requested TAT:

5 davs

Tim Cook

Cook Environmental Services, Inc.

271 Las Juntas Way Walnut Creek, CA 94596 Date Received:

03/04/2005

Date Printed:

03/04/2005

Sample ID ClientSampID	Matrix	Collection Date	Hold	,[-44												-
- Transcampin	Matrix	Collection Date	Hold	ai a							-	eque	stea	lest	s (Se	e le	gend i	below)							$\overline{}$
0503000 004				-	1	2	3	3	4	.]	5	6		7		3	9	10		11	12	13		14	15
0503099-001 MW-3	Water	3/4/05	777	T -	· · · ·		· + :			₍															7
0503099-002 MW-5	Water	3/4/05	╅╫	B	3	A	A						+		Ļ	-									
0503099-003 MW-7 0503099-004 MW-8	Water	3/4/05	15	В	3	A	1	-					-			-		-	 	+		 	 -		_
0503099-004 MW-8	Water	3/4/05		В	3	Α			- · · · · · · ·				+		 	+		+	+						

Test Legend:

1 9-0XYS_W	2
6	7
11	12

2	G-MBTEX_W	
7	· · · · · · · · · · · · · · · · · · ·	2
12	An amount of appropriate and a	

3	PREDF REPORT
8	
13	

4	
9	
14	
L	

5	
3 - 4	
10	
	
15	

Prepared by: Rosa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Verification Monitoring Results
April 5, 2005

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.nccampbell.com E-mail: main@mccampbell.com

Cook Environmental Services, In	Client Project ID: #1004; High Street	Date Sampled: 04/05/05
271 Las Juntas Way		Date Received: 04/05/05
Walnut Creek, CA 94596	Client Contact: Tim Cook	Date Reported: 04/08/05
	Client P.O.:	Date Completed: 04/08/05

WorkOrder: 0504046

April 08, 2005

Dear Tim:

Enclosed are:

- 1). the results of 8 analyzed samples from your #1004; High Street project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cook Environmental Services, Inc	Client Project ID: #1004; High Street	Date Sampled: 04/05/05
271 Las Juntas Way		Date Received: 04/05/05
Walnut Creek, CA 94596	Client Contact: Tim Cook	Date Extracted: 04/06/05-04/07/05
	Client P.O.:	Date Analyzed: 04/06/05-04/07/05

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Lab ID	Client ID	Matrix	TPH(g)	MTBE	methods: SW8021E		7		Order: (50404
			(6/	MIDE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	%:
001A	MW-1	W	ND	33	ND	ND	ND	ND	1	10
002A	MW-3	W	ND	11	ND	ND	ND	ND	1	97
003A	MW-5	W	ND	12	ND	ND	ND :	ND		91
004A	MW-6	W	ND	ND	ND	ND	ND ;	ND	1	97
005A	MW-7	W	ND	6.3	ND	ND	ND :	ND	1	99
006A	MW-8	w	ND	98	ND	ND	ND ·	ND	1	97
007A	MW-9	w	ND	40	ND	ND	ND	ND	1	96
V800	MW-10	w	ND	500	ND	ND	ND	ND	1	11
					-				-	
										·
							;			
	-									
Reporting Li	mit for DF =1;	W	50	50			:			
D means no	t detected at or eporting limit	S	30	5.0	0.5	0.5	0.5	0.5	1	μg/L

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Cook Environmental Services, I	nc Client Project ID: #1004; High Street	Date Sampled: 04/05/05
271 Las Juntas Way		Date Received: 04/05/05
Walnut Creek, CA 94596	Client Contact: Tim Cook	Date Extracted: 04/07/05
Wallut Cleek, CA 94390	Client P.O.:	Date Analyzed: 04/07/05
Ovegano	ted Valatile Organies + EDD and 1.2 DCA	by DeT and CCMC+

	Client P.O.:		D	Date Analyzed: 04/07/05							
Oxygenated Extraction Method: SW5030B	l Volatile Organ	tics + EDB and 1 alytical Method: SW8260	•	T and GC/MS*	Work Ord	er: 0504046					
Lab ID	0504046-001B	0504046-002B	0504046-003B	0504046-004B							
Client ID	MW-1	MW-3	MW-5	MW-6	Reporting Limit						
Matrix	w	w	W	W	DF						
DF	1	1	1	l	S	W					
Compound		Conce	entration		ug/kg	μg/L					
tert-Amyl methyl ether (TAME)	ND	ND	ND	ND	NA	0.5					
t-Butyl alcohol (TBA)	6.8	ND	ND	ND	NA	5.0					
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	NA	0.5					
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND	ND	NA	0.5					
Diisopropyl ether (DIPE)	ND	ND	ND	ND	NA	0.5					
Ethanol	ND	ND	ND	ND	NA	50					
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	ND	NA	0.5					
Methanol	ND	ND	ND	ND	NA	500					
Methyl-t-butyl ether (MTBE)	44	12	14	ND	NA	0.5					
	Surr	ogate Recoveries	(%)			l					
%SS1:	105	106	107	105							
Comments					7						
<u> </u>	<u> </u>	L									

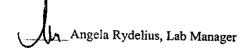
* water and vapor samples are reported in μg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coclutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com


Compound		Conce	entration		110/kg	ua/ī					
DF]	5	1	33	S	W					
Matrix	W	W	W	W	DF	=1					
Client ID	MW-7	MW-8	MW-9	MW-10	Reporting Limit for						
Lab ID	0504046-005B	0504046-006B	0504046-007B	0504046-008B							
Oxygenated Extraction Method: SW5030B		ics + EDB and 1		T and GC/MS*	Work Orc	ler: 0504046					
	Client P.O.:		D	ate Analyzed: 04/	07/05						
Walnut Creek, CA 94596	Client Contact:	Tim Cook	D	Date Extracted: 04/07/05							
271 Las Juntas Way			D	ate Received: 04	/05/05						
Cook Environmental Services, Inc	Client Project I	D: #1004; High	Street D	Date Sampled: 04/05/05							

						ľ
tert-Amyl methyl ether (TAME)	ND	ND<2.5	0.75	ND<17	NA	0.5
t-Butyl alcohol (TBA)	ND	29	13	230	NA	5.0
1,2-Dibromoethane (EDB)	ND	ND<2.5	ND	ND<17	NA	0.5
1,2-Dichloroethane (1,2-DCA)	3.2	ND<2.5	ND	ND<17	NA	0.5
Diisopropyl ether (DIPE)	ND	ND<2.5	ND	ND<17	NA	0.5
Ethanol	ND	ND<250	ND	ND<1700	NA	50
Ethyl tert-butyl ether (ETBE)	ND	ND<2.5	ND	ND<17	NA	0.5
Methanol	ND	ND<2500	ND	ND<17,000	NA	500
Methyl-t-butyl ether (MTBE)	6.7	140	48	520	NA	0.5

Surrogate Recoveries (%)

%SS1:	103	103	108	104	
Comments	21414				

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

110 2nd Avenue South. #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0504046

EPA Method: SW8021B	/8015Cm	Extraction	n: SW503	0B	Bat	chID: 157	34	Spiked Sample ID: 0504046-004A				
Analyte	Sample	Spiked	piked MS* MSD* MS-MSD* LCS LCSD LCS-LC		LCS-LCSD	Acceptance Criteria (%						
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS/MSD	LCS/LCSD		
TPH(btex) [£]	ND	60	92.8	92	0.866	103	96.4	6.99	70 - 130	70 - 130		
МТВЕ	ND	10	93.8	90	4.10	103	102	1.57	70 - 130	70 - 130		
Benzene	ND	10	108	104	4.21	113	112	0.599	70 - 130	70 - 130		
Toluene	ND	10	104	101	3.15	109	108	0.851	70 - 130	70 - 130		
Ethylbenzene	ND	10	105	102	3.48	109	108	1.63	70 - 130	70 - 130		
Xylenes	ND	30	91.3	90.3	1.10	96	95.3	0.697	70 - 130	70 - 130		
%SS:	97	10	117	113	2.81	112	114	1.58	70 - 130	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 15734 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0504046-001A	4/05/05	4/06/05 10:00 PM	4/06/05 10:00 PM	0504046-002A			
0504046-003A	4/05/05	4/06/05 11:05 PM		1 000 10 10 00271	4/05/05	4/06/05 10:33 PM	4/06/05 10:33 PM
			4/06/05 11:05 PM	0504046-004A	4/05/05	4/06/05 11:38 PM	4/06/05 11:38 PM
0504046-005A	4/05/05	4/07/05 12:11 AM	4/07/05 12:11 AM	0504046-006A	4/05/05	4/07/05 12:43 AM	4/07/05 12:43 AM
0504046-007A	4/05/05	4/07/05 3:59 AM	4/07/05 3:59 AM	0504046-008A			
0504046-008A	4/05/05	4/07/05 10:34 PM		100000000000000000000000000000000000000	4/05/05	4/07/05 6:46 AM	4/07/05 6:46 AM
	4,00,00	4/0//03 10:34 FIVI	4/07/05 10:34 PM	1			I

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoverles and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(blex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

110 2nd Avenue South, #107, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0504046

EPA Method: SW8260B		Extractio	n: SW 503	0B	Bat	chID: 157	33	Spiked Sample ID: 0504046-004B					
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)			
, wayto	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSE			
tert-Amyl methyl ether (TAME)	ND	10	96.9	96.2	0.738	97.7	92.3	5.68	70 - 130	70 - 130			
t-Butyl alcohol (TBA)	ND	50	98.5	94.8	3.83	95.6	86.6	9.88	70 - 130	70 - 130			
1,2-Dibromoethane (EDB)	ND	10	87.1	86.7	0.409	87.3	84.7	2.99	70 - 130	70 - 130			
1,2-Dichloroethane (1,2-DCA)	ND	10	113	113	0	111	. 105	4.96	70 - 130	70 - 130			
Diisopropyl ether (DIPE)	ND	10	102	102	0	105	98.6	5.85	70 - 130	70 - 130			
Ethanol	ND	500	100	101	0.764	105	93.4	11.6	70 - 130	70 - 130			
Ethyl tert-butyl ether (ETBE)	ND	10	96.1	94.3	1.93	96.9	91.8	5.45	70 - 130	70 - 130			
Methanol	ND	2500	96.5	93.4	3.28	97.1	95.4	1.84	70 - 130	70 - 130			
Methyl-t-butyl ether (MTBE)	ND	10	98.4	97.1	1.32	96.2	87.8	9.07	70 - 130	70 - 130			
%SS1:	105	10	99	98	0.837	98	96	1.42	70 - 130	70 - 130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 15733 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0504046-001B	4/05/05	4/07/05	4/07/05 4:26 AM	0504046-002B	4/05/05	4/07/05	4/07/05 5:09 AM
0504046-003B	4/05/05	4/07/05	4/07/05 5:52 AM	0504046-004B	4/05/05	4/07/05	4/07/05 6:34 AM
0504046-005B	4/05/05	4/07/05	4/07/05 7:17 AM	; 0504046-006B	4/05/05	4/07/05	4/07/05 1:18 PM
0504046-007B	4/05/05	4/07/05	4/07/05 9:53 AM	0504046-008B	4/05/05	4/07/05	4/07/05 3:24 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS Certification No. 1644

QA/QC Officer

CHAIN-OF-CUSTODY RECORD

of 1

WorkOrder: 0504046

ClientID: CESW

Report to:	

Tim Cook

Cook Environmental Services, Inc.

271 Las Juntas Way

Walnut Creek, CA 94596

TEL:

925-937-1759

FAX: 925-937-1759 ProjectNo: #1004; High Street

PO:

Bill to:

Tim Cook

Cook Environmental Services, Inc.

271 Las Juntas Way Walnut Creek, CA 94596

Date Printed:

04/05/2005

5 days

Requested TAT:

Date Received:

04/05/2005

				ſ				-		F	Reque	ested	Test	s (See	legend	below)						
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4		5	6		7	8	9	10	11		12	13	14	15
0504046-001		Water	4/5/05		B	A	A	<u> </u>	<u> </u>		Ţ			T	Т	Ţ					Ţ	$\neg \neg$
0504046-002	MW-3	Water	4/5/05	151	В	Α	 	-	+					<u> </u>	1						<u> </u>	1
0504046-003	MW-5	Water	4/5/05		В	Α		1													1	
0504046-004	MW-6	Water	4/5/05		В	Α												\top				
0504046-005	MW-7	Water	4/5/05		B	Α					i											
0504046-006	MW-8	Water	4/5/05	1 🗆 [₿	Α		1											1		T	
0504046-007	MW-9	Water	4/5/05		В	Α															1	
0504046-008	MW-10	Water	4/5/05		В	Α					1											\top

Test Legend:

1	9-OXYS_W
6	
11	

2	G-MBTEX_W
7	
12	

3	PREDF REPORT
8	
13	

ł	4	
[9	
1	14	

5	· · · · · · · · · · · · · · · · · · ·
10	
15	

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Ny-

0504046

McCAMPBELL AT	NALYTIC/	AL. INC.			<u> </u>	<u> </u>		_				_	$\overline{}$	Г		—	_		_		, T	<u></u>	$\overline{\alpha}$	<u>-</u>	CTIC		$\overline{\Delta t}$	<u>~</u>	<u> </u>	<u></u>	$\overline{\sim}$	DI		
110 2nd AVENUE SO	10 2 nd AVENUE SOUTH, #D7												}	CHAIN OF CUSTODY RECORD														_						
PACHECO, CA 94553-		Email: m	esin@mec	J	TURN AROUND TIME									,		_			-	_	_													
Telephone: (925) 7	www.mccampbell.com Email: main@mccampbell.com ne: (925) 798-1620 Fax: (925) 798-1622												j	E	DF	Rec	wir	red?	. C c	neit	(Nr	arm	ıal)		RUSH Yes	-	24 HR Write On (I			8 HR W)	No.		HR	5 DAY
Report To: Tim Cook Bill To:													→			F Required? Coelt (Normal) Yes Write On (DV Analysis Request												<u></u>		Othe	ıer	Comments		
Company: Cook I			ices, Inc.	,															T			T	T	, 🗂		\top	T	T	T	T	\vdash	T	\top	Filter
	271 Las Juntas Way													1 #		E								, 1	1		ے			'				Samples
	Walnut Creek, CA 9457 E-Mail: cookenvironmental@att.r													8015)/MTBE		E&F/B&F)	=	<u>:</u>						, 1	1		625 / 8270 / 8310	i		'				for Metals
Tele: (925) 937-17	/59		(925) 93									18		E&	418							, }	1		70.	اد		'				analysis:		
Project #:1004			P	rojec	ct Name	<u>e:</u>]	ligh	<u>. St</u> r	reet					┨┾│		5520	Suc	<i>5</i>	Ę	20)	1	ا پر		, 1	1		/82	۽ ان	ء ا ۽	_				Yes / No
Project Location:			#										J	8020		Grease (5520	arb	Á	0) &c	7	ONLY		, 1	only				1020	<u>ا</u> ا				
Sampler Signature	<u> </u>	Link	<u>Ke</u>	}		_				Τ,	-57		لي	602/		, le	dro.		13	709		28.		,	9 oxys only				ءِ ا جَ	· [69]				(
	1 1	SAMPLING E MATRIX PRE							METE			s Gas (602/8020	(8015	Oil &	H Hy	. / 80°	Va.	(Era	1	2 P.C.	41	51	xo 6 1	/ 827(by E) !e (60	(09) s	7 6.002						
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge Other	ICE	HCL	HNO3	Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oii &	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	EFA UVE. U.	BTEX ONLY (EPA 602 / 8020) FPA 608 / 8081	EPA OUO / DOW	EPA 608 / 8082 PCB's	EPA 8140 / 8141	EPA 8150 / 8151	EPA 8260 All	EPA 525 / 625 / 8270	PAH's / PNA's by EPA	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)				
MW-1	,	4/5/05		3	VOA	X	1	\top	+	X	X	$_{1}$ \top	1	Х		\top	\top	+	+	+	\top	+	+		Х	+	+	+	+	+-		+	+	
MW-3	1	4/5/05	<u> </u>	3	VOA	X	,		+	X	X	\Box	1	X		+	-		+	1	\top	+	\top	, —	X	+	+	+		+ '	ļ	†	1-	
MW-5	1	4/5/05		3	VOA	X	\top	+	+-1	X	X	1	17	Х		+	+	+	+	+	+	+	+	, —†	X	+	+	+	+	+	-	+	+	
- MW-6	,	4/5/05		3	VOA	X	1	+	+	X	X	, —	1	X	.†		+	+	+	+	+	+	+		X	+	+	+	 	+	\vdash	+	+	
MW-7	,	4/5/05	1	3	VOA	X		+	+	X	X	,++	1	X	-		 	 	+	+	+	+	+		X	+	+	+	+	+		-	+	
MW-8	<i>i</i>	4/5/05	1	3	VOA	X	-	+	+	X	X	1	1	X	_	-	-	+	+	+	+	+	+	-	X	-	+	+-	+-	+	-		-	
MW-9	<i>i</i>	4/5/05		3	VOA		1 1	+	+	1	X			Х			-	-	+-	+	+	+	+	+	X	+	+	+	+	+-1	 	+-	+	
MW-10					1		J	1	<u> </u>		J		1	X						1	1	1			\geq	1				1			t	<u> </u>
					/			1	'									\perp	\perp		1.				<u> </u>					\perp'				
Relinquished By:		Dotas	Time:	Pag	1				'					 	77/40	'	-	_					\perp		<u></u>	\perp		<u></u>	23.61	1				<u></u>
Tm 4	ek_1	Date:	1:37pm	1	sived Pg:	W	;/	7.	_	-				GO		CON							_					ti	DMIN	MENT	. `S :			
Relinquished By:		Date:	Time:	Rece	eived By:				(7	DE API	HEAD SPACE ABSENT DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB																						
Relinquished By:		Date:	Time:	Recei	eîved By:			_								ERVE ERVA		V		s f	- 5&6		MET pH<2		LS OT	THE	R							