ENVIRONMENTAL HEALTH DEPARTMENT **ENVIRONMENTAL PROTECTION** 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

December 12, 2011

Ms. Olivia Skance Chevron Environmental Management 6001 Bollinger Canyon Rd. PO Box 6012 San Ramon, CA 94583 (sent via electronic mail to Olivia.Skance@chevron.com)

Mr. Kenneth and Carla Betts 175 Indian Road Piedmont, CA 94610-1222

Mr. Doug Durein Ken Betts, Inc. 770 Wesley Way Oakland, CA 94610

Subject:

Closure Transmittal; Fuel Leak Case No. RO0000256 (Global ID # T0600100353), Chevron #9-1740, 6550 Moraga Avenue, Oakland, CA 94611

Dear Ms. Skance, Mr. and Mrs. Betts, and Mr. Durein:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25299.37[h]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Environmental Health (ACEH) is required to use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed.

SITE INVESTIGATION AND CLEANUP SUMMARY

Please be advised that the following conditions exist at the site:

- Residual petroleum hydrocarbon contamination in soil and groundwater remains in place at this site. Contrary to some reports, residual soil contamination is not documented to have been removed around the perimeter of the waste oil overexcavation adjacent to station building and Moraga Avenue (WO-2b, WO-2, and WO-10, WX-11, WX-12, WX-13, WX-7, WX-14, WX-15, and WX-16), and adjacent to Mountain Blvd sidewalk (TX4-5). Additionally, final bottom and perimeter overexcavation confirmation soil samples were not collected from the fuel UST overexcavation. Concentrations up to 800 mg/kg, TPHg, 420 mg/kg TPHd, 580 mg/kg TPHmo, 2,100 TOG, and 16 mg/kg benzene appear to remain in soil beneath the site.
- A soil gas survey has not been conducted at the site.
- · Case closure for this fuel leak site is granted for the current commercial land use as a gas station with the one existing building and in the current building configuration only. If a change in land use to any other commercial, residential, or other conservative land use scenario occurs at this site; Alameda County Environmental Health (ACEH) must be notified as required by Government Code Section 65850.2.2. ACEH must also be notified if any construction or excavation activities take place or the building structure is otherwise modified. ACEH will re-evaluate the case upon receipt of approved development/construction plans.
- Excavation or construction activities in areas of residual contamination require planning and implementation of appropriate health and safety procedures by the responsible party prior to and during excavation and construction activities.
- This site is to be entered into the City of Oakland Permit Tracking System due to the residual contamination on site.

Ms. Skance, Mr. and Mrs. Betts, and Mr. Durein RO0000256 December 12, 2011, Page 2

If you have any questions, please call Mark Detterman at (510) 567-6876. Thank you.

Sincerely,

Donna L. Drogos, P.E.

Division Chief

Enclosures: 1. Remedial Action Completion Certificate

2. Case Closure Summary

cc: Ms. Cherie McCaulou (w/enc.), SF- Regional Water Quality Control Board, 1515 Clay Street, Suite 1400, Oakland, CA 94612, (sent via electronic mail to CMacaulou@waterboards.ca.gov)

Leroy Griffin, Oakland Fire Department 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032 (sent via electronic mail to lgriffin@oaklandnet.com)

Donna Drogos, (sent via electronic mail to donna.drogos@acgov.org)

Mark Detterman (sent via electronic mail to mark.detterman@acgov.org)

Electronic File, GeoTracker

ENVIRONMENTAL HEALTH DEPARTMENT ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

December 12, 2011

Ms. Olivia Skance Chevron Environmental Management 6001 Bollinger Canyon Rd. PO Box 6012 San Ramon, CA 94583 Mr. Kenneth and Carla Betts 175 Indian Road Piedmont, CA 94610-1222 Mr. Doug Durein Ken Betts, Inc. 770 Wesley Way Oakland, CA 94610

(sent via electronic mail to Olivia.Skance@chevron.com)

REMEDIAL ACTION COMPLETION CERTIFICATE

Subject: Fuel Leak Case No. RO0000256 (Global ID # T0600100353), Chevron #9-1740, 6550 Moraga Avenue, Oakland, CA 94611

Dear Ms. Skance, Mr. and Mrs. Betts, and Mr. Durein:

This letter confirms the completion of a site investigation and remedial action for the underground storage tank formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

This notice is issued pursuant to subdivision (h) of Section 25299.37 of the Health and Safety Code.

Please contact our office if you have any questions regarding this matter.

Sincerely,

Ariu Levi Director

Alameda County Environmental Health

CASE CLOSURE SUMMARY LEAKING UNDERGROUND FUEL STORAGE TANK - LOCAL OVERSIGHT PROGRAM

I. AGENCY INFORMATION

Agency Name: Alameda County Environmental Health

Address: 1131 Harbor Bay Parkway

City/State/Zip: Alameda, CA 94502-6577

Phone: (510) 567- 6876

Responsible Staff Person: Mark Detterman

Title: Senior Hazardous Materials Specialist

II. CASE INFORMATION

Site Facility Name: Chevron # 9-1740 Site Facility Address: 6550 Moraga Avenue, Oakland, CA 94611 LOP Case No.: RO0000256 RB Case No.: 01-0384 Local Case No .: ---APN: 48F-7353-7 **URF Filing Date:** Geotracker ID: T0600100353 Phone Numbers Responsible Parties Addresses 6001 Bollinger Canyon Road **Chevron Corporation** (925) 842-9655 San Ramon, CA 94583 Stacie Harting-Frerichs Kenneth R & Carla L Betts Trust 175 Indian Road NA Kenneth & Carla Betts Piedmont, CA 94610

Tank I.D. No	Size in Gallons	Contents	Contents Closed In Place/Removed?	
1	1,000	Waste Oil	Removed	8/20/1992
2	550	Waste Oil	Removed	10/6/1992
3	10,000	Gasoline	Removed	5/10/1996
4	10,000	Gasoline	Removed	5/10/1996
5	10,000	Gasoline	Removed	5/10/1996
6	10,000	Diesel	Removed	5/10/1996
THE HA	Piping	04-112-2	Removed	As above

Date: June 23, 2011

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

aste oil UST – No obvious holes or overfilling; heavily contaminated fi ste oil UST – concrete filled; heavily corroded, large holes on bottom gasoline UST – No holes or corrosion noted gasoline UST – No holes or corrosion noted diesel UST – No holes or corrosion noted						
Date Approved By Oversight Agency:						
Number: 4	Proper screened interval? Yes*					
Lowest Depth: 22.89 ft Flow Direction: South to south-southeast						
	Date Approved By Oversi Number: 4					

^{*} Wells C-1, C-3, and C-4 have 20 foot long screens; well C-2 has a 25 foot long screen. All screens begin at approximately 5 ft bgs.

Two wells are northwest of the located across	e site, while one irrigation w	One domestic water supply well is located appeared was located approximately 540 feet west of the layward Fault, and are cross-gradient to the site;	he site. Both wells are
Are drinking wa	ter wells affected? No	Aquifer Name: East Bay Plain	
Is surface water	affected? No	Nearest SW Name: Shephard Creek 1,3	00 feet southeast
Off-Site Benefic	sial Use Impacts (Addresses	/Locations): NA	Team diff.
Reports on file?	Yes	Where are reports filed? Alameda Count and City of Oakland Fire Department	y Environmental Health
	TREATMENT	AND DISPOSAL OF AFFECTED MATERIAL	
Material	Amount (Include Units)	Action (Treatment or Disposal w/Destination)	Date
Tank	1,000-gallon waste oil 550-gallon waste oil 10,000-gallon gasoline 10,000-gallon gasoline 10,000-gallon gasoline 10,000-gallon diesel	Assumed disposed; destination not reported	August 1992 October 1992 May 1996 May 1996 May 1996 May 1996
Piping	Not reported	Assumed disposed; destination not reported	As above
Free Product	Not reported		(-) (-) (-)
Soil	54 yds ³ 200 yds ³ 775 yds ³	Offsite disposal; Forward Inc, Stockton, CA Offsite disposal; Forward Inc, Stockton, CA Offsite disposal; Vasco Road, Livermore & Redwood Landfill, Novato	August 21, 1992 September 15 to October 19, 1992 May 1996; assumed
Groundwater	35,000 gallons	Discharged to EBMUD	May 20 to 24, 1996

MAXIMUM DOCUMENTED CONTAMINANT CONCENTRATIONS BEFORE AND AFTER CLEANUP (Please see Attachments 1 through 6 for additional information on contaminant locations and concentrations)

	Soil (ppm)	Water	(ppb)
Contaminant	Before	After	Before	After
TPH (Gas)	1,100	800	7,900	2,500
TPH (Diesel)	1,200	420	7,500	1,500
TPH (Motor Oil)	2,000	580	Not Analyzed	Not Analyzed
Oil and Grease	3,000	2,100	Not Analyzed	Not Analyzed
Benzene	16	16	1,500	270
Toluene	5.4	5.4	230	7
Ethylbenzene	4.2	4.2	340	3
Xylenes	16	16	350	3
Heavy Metals (Cd, Cr, Pb, Ni, Zn)	110 ¹	65 ²	Not Analyzed	Not Analyzed
MTBE	0.673	0.514	8,500 ⁵	250 ⁶
Other (8240/8270)	0.0037	0.0037	16 ⁸	16 ⁸

NS = Not Sampled

¹ 3.9 mg/kg Cd; 110 mg/kg Cr; 22 mg/kg Pb: 86 mg/kg Ni; 100 mg/kg Zn

^{2 &}lt;0.2 mg/kg Cd; 79 mg/kg Cr; 22 mg/kg Pb: 35 mg/kg Ni; 65 mg/kg Zn</p>

^{3 0.67} mg/kg MTBE; TBA, TAME, ETBE; DIPE, EtOH, EDB; and EDC all not analyzed.

⁴ 0.0.51 mg/kg MTBE; TBA, TAME, ETBE; DIPE, EtOH, EDB; and EDC all not analyzed.

 $^{^5}$ 8,500 µg/l MTBE; < 100 µg/l TBA; 30 µg/l TAME; 240 µg/l ETBE; <2 µg/l DIPE; <50 µg/l EtOH; and <2 µg/l EDB, <2 g/l EDC.

⁶ 250 µg/l MTBE; other oxygenates were not analyzed.

Soil bore SB-7 (across Mountain Boulevard) contained 0.002 mg/kg cis-1,2-DCE and 0.003 mg/kg TCE; otherwise, all semi-volatile compounds onsite were non-detectable at various standard limits of detection. Onsite volatile organic compounds were non-detectable at various standard limits of detection.

 $^{^8}$ = Grab groundwater from SB-7 (across Mountain Boulevard) contained PCE at 1 μg/l; cis-1,2 DCE at 16 μg/l; and TCE at 13 μg/l; all other compounds were non-detectable at standard limits of detection.

Site History and Description of Corrective Actions:

The site is an active service station in a mixed commercial and residential area. Chevron has operated a service station since approximately 1936. Chevron's records indicate that site improvements were made prior to 1936, indicating station operations prior to Chevron's occupation of the site. The site was remodeled in 1960 and included a new station building, two service bays, four 10,000-gallon fuel USTs one 1,000-gallon waste oil UST and two dispenser islands. The site was remodeled again in 1996 with the removal of existing fuel USTs and the installation of three 10,000-gallon USTs, three dispenser islands, and two service bays.

In March 1991 wells C-1 to C-4 were installed. Well C-1 at a depth of 3.5 to 5 feet bgs contained the maximum detected concentrations. TOG was detected at 710 mg/kg, TPHd at 410 mg/kg, TPHg at 433 mg/kg, benzene, at 2 mg/kg, toluene at 16 mg/kg, ethylbenzene at 5 mg/kg, and total xylenes at 38 mg/kg. In August 1992 a 1,000-gallon waste oil UST was removed and replaced, while a 550-gallon waste oil UST was discovered adjacent to the 1,000-gallon UST. The 550-gallon UST was additionally removed in October 1992. Approximately 254 cubic yards of soil were excavated from the enlarged excavations and exported offsite to three landfills. Well C-1 was destroyed during the October 1992 excavations.

In May and June 1996 the station was remodeled as described above. Concentrations up to 1,100 mg/kg TPHg, 1,200 mg/kg TPHd, 16 mg/kg benzene, 14 mg/kg toluene, 19 mg/kg ethylbenzene, and 22 mg/kg total xylenes were detected, some of which remain in place onsite. Due to elevated concentrations the UST excavations was expanded and ultimately approximately 775 cubic yards of soil were removed during the excavation and subsequent overexcavation. The excavation bottom ranged between 5 and 17.5 feet in depth. The excavation was dewatered and treated onsite, and discharged under permit to the EBMUD sanitary sewer. Approximately 35,000 gallons of treated water was discharged.

Between 2001 and 2004 ORC socks were installed in wells C-2 and C-4.

In October and November 2005, and again in April 2006 nine soil bores were installed to define the lateral extent of hydrocarbons in groundwater. SB-5 to SB-7 were installed in October 2005, SB-1 to SB-4 were installed in November 2005, and GP-1 to GP-4 were installed in April 2006. TPHd, TPHg, BTEX, and MTBE were not detected in soil. Except bore SB-5 grab groundwater in all bores contained detectable concentrations of TPHd (up to 2,800 μ g/l in GP-4) in groundwater. In grab groundwater, TPHg was only present in GP-1 at 110 μ g/l, toluene was present up to 1.3 μ g/l, and total xylenes was only present in GP-1 at 0.52 μ g/l. Benzene and ethylbenzene were not detected in the grab groundwater samples. MTBE was only present in grab groundwater from bore SB-7 at a concentration of 4 μ g/l.

During the most recent groundwater sampling event (March 4, 2011) only MTBE was present in wells C-2 and C-3 (80 and 3 μ g/l, respectively). Well C-4 contained 2,500 μ g/l TPHg, 1,500 μ g/l TPHd, 270 μ g/l benzene, 7 μ g/l toluene, 3 μ g/l ethylbenzene, 3 μ g/l total xylenes, and 250 μ g/l MTBE.

Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan? Yes

Does completed corrective action protect potential beneficial uses per the Regional Board Basin Plan? Yes

Does corrective action protect public health for current land use? Alameda County Environmental Health staff does not make specific determinations concerning public health risk. However, based upon the information available in our files to date, it does not appear that the release would present a risk to human health based upon current land use and conditions.

Site Management Requirements:

Case closure for this fuel leak site is granted for the current commercial land use as a gas station with the one existing building and in the current building configuration only. If a change in land use to any other commercial, residential, or other conservative land use scenario occurs at this site; Alameda County Environmental Health (ACEH) must be notified as required by Government Code Section 65850.2.2. ACEH must also be notified if any construction or excavation activities take place or the building structure is otherwise modified. ACEH will reevaluate the case upon receipt of approved development/construction plans.

Excavation or construction activities require planning and implementation of appropriate health and safety procedures by the responsible party prior to and during excavation and construction activities.

This site is to be entered into the City of Oakland Permit Tracking System due to the residual contamination on site.

Was a deed restriction or deed notification file	d? No	Date Recorded:
Monitoring Wells Decommissioned: Yes	Number Decommissioned: 1	Number Retained: 3
List Enforcement Actions Taken: None		

V. ADDITIONAL COMMENTS, DATA, ETC.

Considerations and/or Variances:

- Total volume of soil excavated during 1996 UST removals reported, but not documented.
- Residual petroleum hydrocarbon contamination in soil and groundwater remains in place at this site.
- Strike-out notations (to indicate subsequently removed data points) contained on a second copy of Table 1 "Historic Soil Analytical Results" included in this package do not appear entirely correct based on data submitted. Specifically, residual soil contamination is not documented to have been removed around the perimeter of the waste oil overexcavation adjacent to station building and Moraga Avenue (WO-2b, WO-2, and WO-10, WX-11, WX-12, WX-13, WX-7, WX-14, WX-15, and WX-16), and adjacent to Mountain Blvd sidewalk (TX4-5). Additionally, final bottom and perimeter overexcavation confirmation soil samples were not collected from the fuel UST overexcavation.
- Monitoring wells C-1, C-3, and C-4 contain(ed) 20 foot screen intervals. Well C-2 contains(ed) a 25 foot screen interval.
- A soil gas survey has not been conducted at the site.
- Groundwater has not been sampled for TOG, TRPH, or TPHmo.
- TBA, TAME, ETBE; DIPE, EtOH, EDB; and EDC all not analyzed in soil.
- EDC was not analyzed in groundwater.

Conclusion:

Alameda County Environmental Health staff believe that the levels of residual contamination do not pose a significant threat to water resources, public health and safety, and the environment under the current commercial land use as a gas station with the one existing building in the current configuration, based upon the information available in our files to date. No further investigation or cleanup for the fuel leak case is necessary unless a change in land use to any other commercial, residential, or other conservative land use scenario occurs at the site, or excavation activities take place or the building structure is otherwise modified. ACEH staff recommend closure for this site.

VI. LOCAL AGENCY REPRESENTATIVE DATA

Prepared by: Mark E. Detterman	Title: Senior Hazardous Materials Specialist
Signature: Make	Date: 6/23/11
Approved by: Donna L. Drogos, P.E.	Title: Division Chief
Signature: / Janu & Laike	Date: 06/23/11

This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions.

VII. REGIONAL BOARD NOTIFICATION

Regional Board Staff Name: Cherie McC	aulou	Title: Engineering Geologist	
Notification Date:	130/11		

VIII. MONITORING WELL DECOMMISSIONING

Date Requested by ACEH:	Date of Well Decommissioning Re	port: 11/2/11
All Monitoring Wells Decommissioned: Yes No	Number Decommissioned: 3	Number Retained:
Reason Wells Retained:		
Additional requirements for submittal of groundwa	ater data from retained wells:	NA
ACEH Concurrence - Signature:	J	Date: 2 12 11

Attachments:

- 1. Site Vicinity Map (2 pp)
- 2. Site Plans (10 pp)
- 3. Soil Analytical Data (8 pp)
- Groundwater Analytical Data (15 pp)
- 5. Boring Logs (11 13pp) Bore logs SB-1 and SB-4 not submitted
- 6. Cross Sections (2 pp)

This document and the related CASE CLOSURE LETTER & REMEDIAL ACTION COMPLETION CERTIFICATE shall be retained by the lead agency as part of the official site file.

Detterman, Mark, Env. Health

From: Cherie MCcaulou [CMccaulou@waterboards.ca.gov]

Sent: Wednesday, July 06, 2011 1:21 PM
To: Detterman, Mark, Env. Health

Subject: Re: RO0000256; Closure Review Summary for Chevron #9-1740 (T0600100353)

Thank you for the courtesy notice for ACEH's recommendation for case closure of the subject fuel leak release site. The Regional Water Board staff has no objection to ACEH closing this case. It has been a pleasure working with you.

Sincerely,

Cherie McCaulou
Engineering Geologist
San Francisco Bay Regional Water Quality Control Board
cmccaulou@waterboards.ca.gov
510-622-2342

>>> "Detterman, Mark, Env. Health" < Mark.Detterman@acgov.org> 6/30/2011 3:06 PM >>> Hi Cherie,

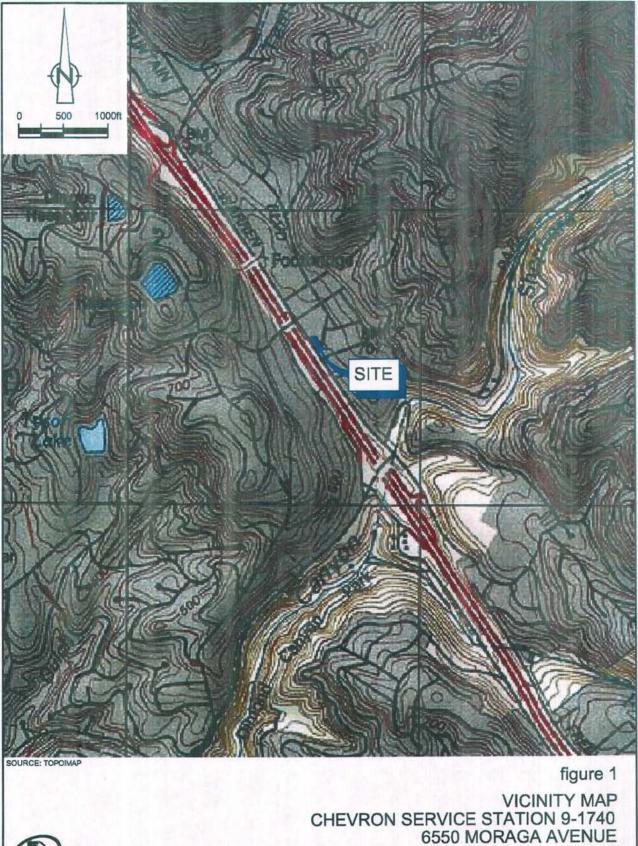
In order to comply with the RWQCB's 30-day review period, attached is the closure summary for the referenced site, located at 6550 Moraga Avenue, Oakland, CA 94611. If no comments from the RWQCB are received within the 30-day review period, ACEH's will proceed with case closure.

This is an older site, with some history. Residual contamination will be left in place and the site will be placed in the Oakland permit tracking system. Four wells are installed; well destruction is pending RWQCB concurrence.

Should you have questions, please let me know.

(Hope the vacation was good!)

Mark Detterman
Senior Hazardous Materials Specialist, PG, CEG
Alameda County Environmental Health
1131 Harbor Bay Parkway
Alameda, CA 94502
Direct: 510.567.6876

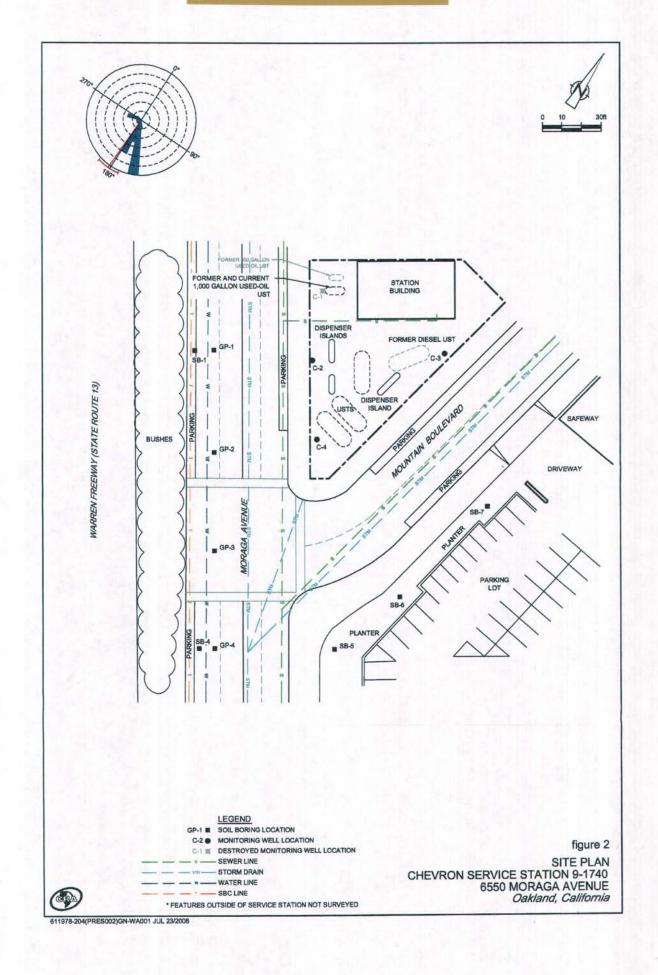

Fax: 510.337.9335

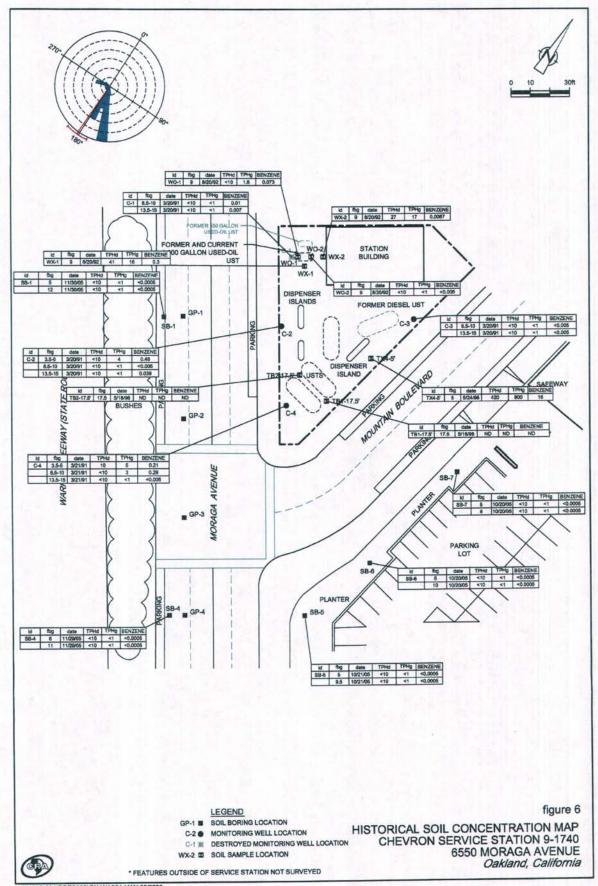
Email: mark.detterman@acgov.org

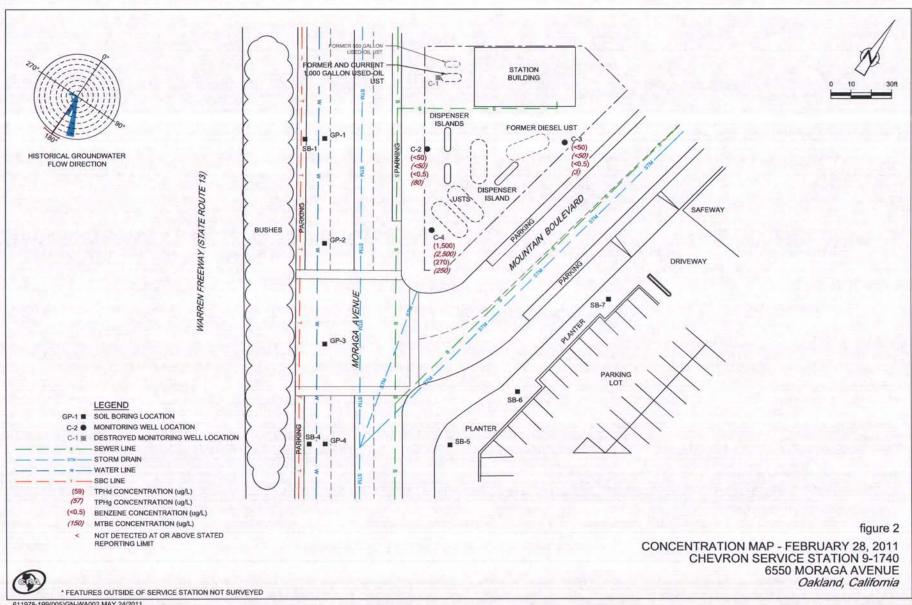
PDF copies of case files can be downloaded at:

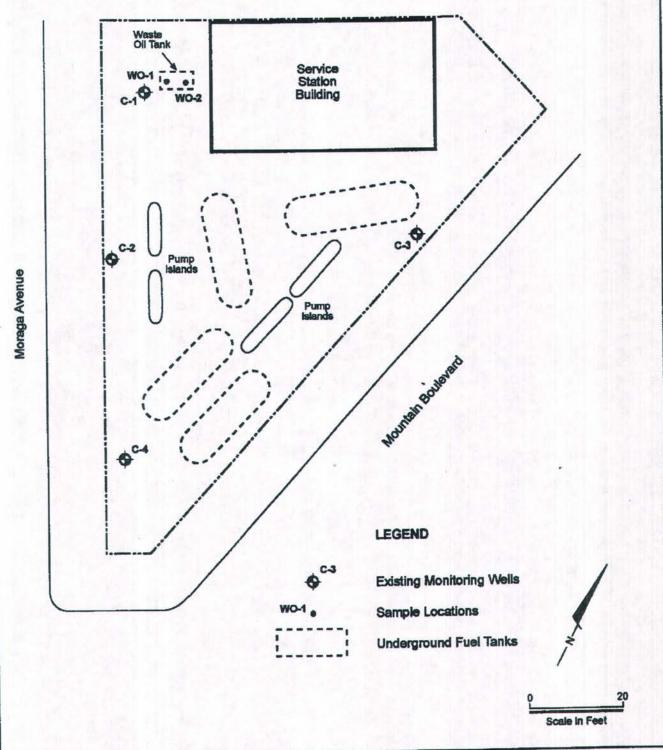
http://www.acgov.org/aceh/lop/ust.htm

ATTACHMENT 1


6550 MORAGA AVENUE Oakland, California




Chevron #9-1740 6550 Moraga Avenue, Oakland, CA 94611

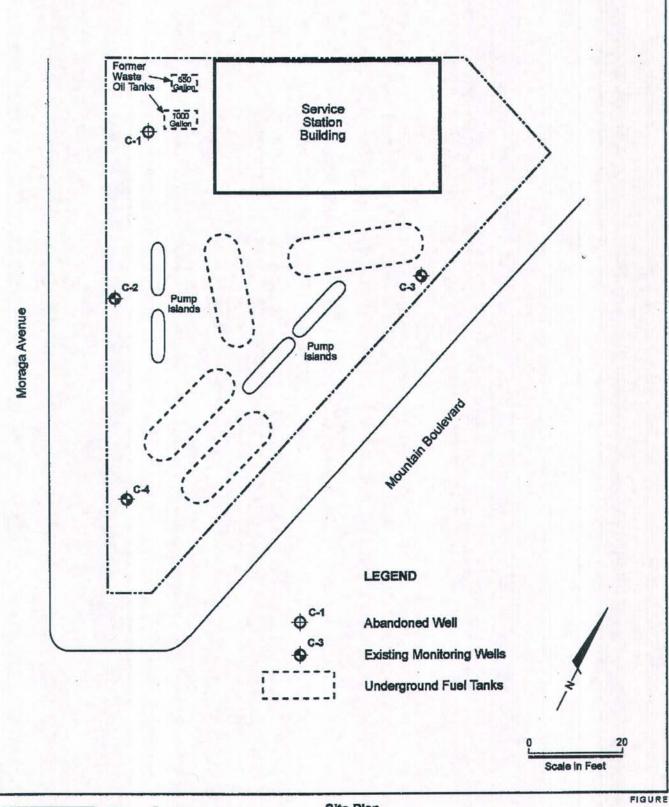


ATTACHMENT 2

Touchstone Developments

Environmental Management

Site Plan / Sample Locations Former Chevron Station 9-1740 6550 Moraga Avenue Oakland, California


FIGURE

PROJECT NUMBER 1740-1

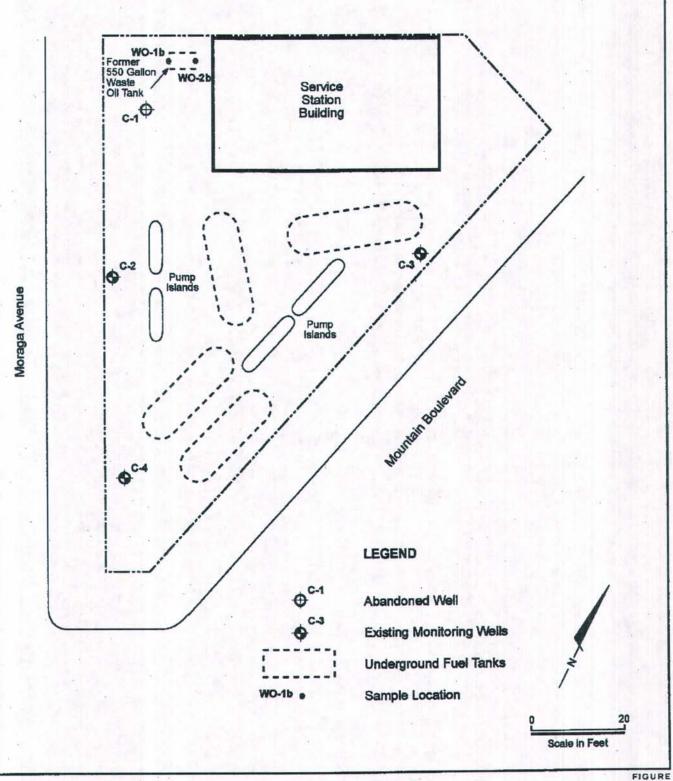
DRAWN PM

APPROVED

DATE 9/92

Touchstone Developments

Environmental Management


Site Plan Chevron Station 9-1740 6550 Moraga Avenue Oakland, California

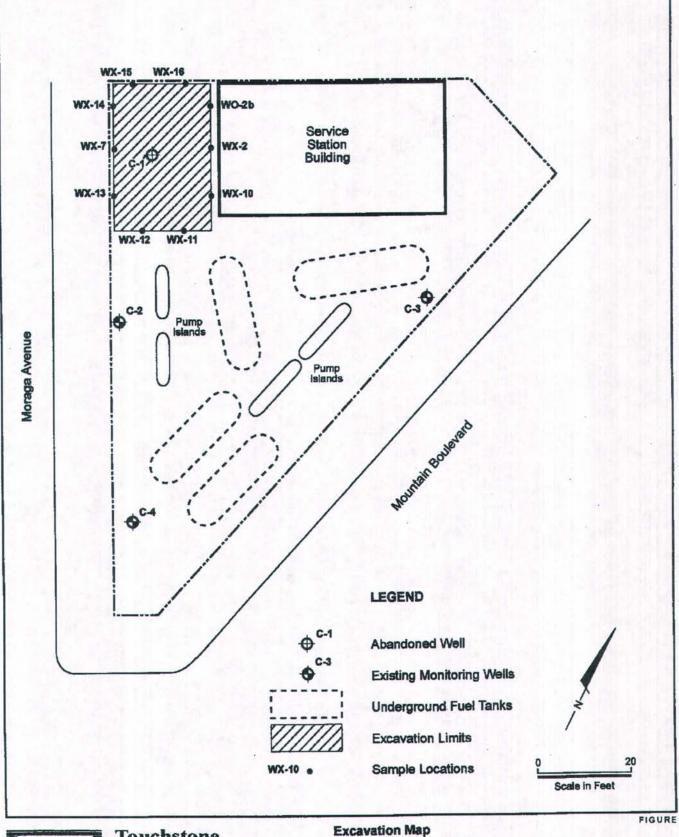
PROJECT NUMBER 1740-2

DRAWN PM

APPROVED

DATE 10/92

Touchstone Developments Environmental Management Sample Location Chevron Station 9-1740 6550 Moraga Avenue Oakland, California


DATE

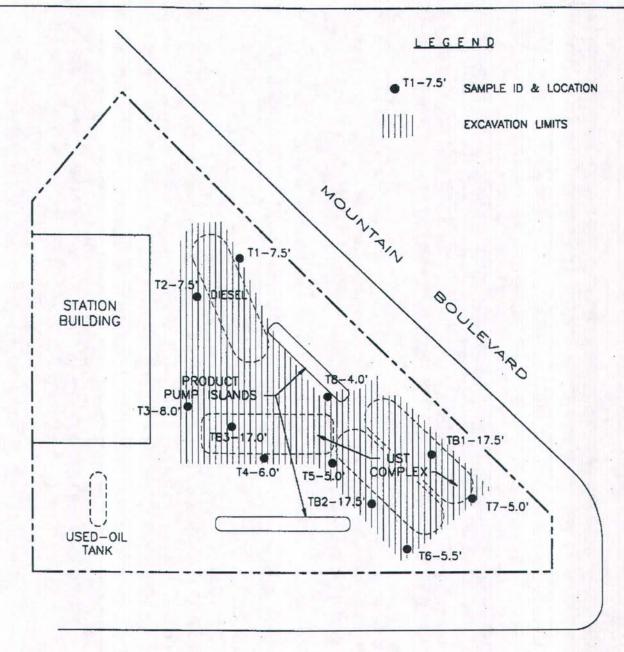
PROJECT NUMBER

PM

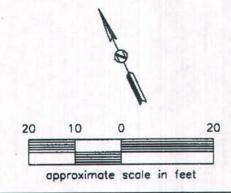
APPROVED

10/92

Touchstone Developments Environmental Management


Chevron Station 9-1740 6550 Moraga Avenue Oakland, California

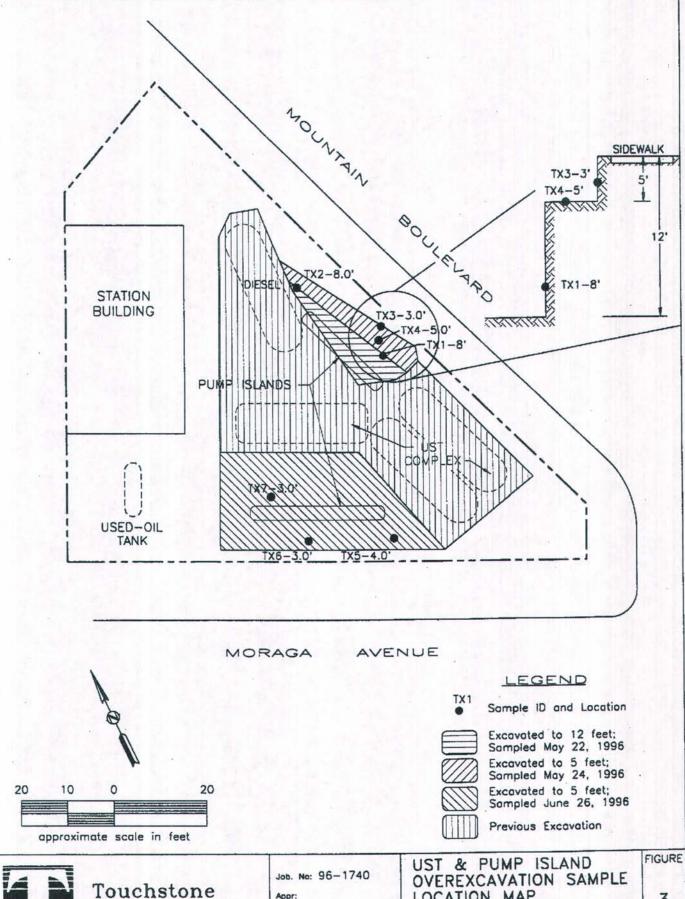
PROJECT NUMBER 1740-2


DRAWN PM

APPROVED

DATE 10/92

MORAGA AVENUE


Touchstone Developments Environmental Management Job. No: 96-1740

Appr:

Drwn: CD Date: DEC 1996

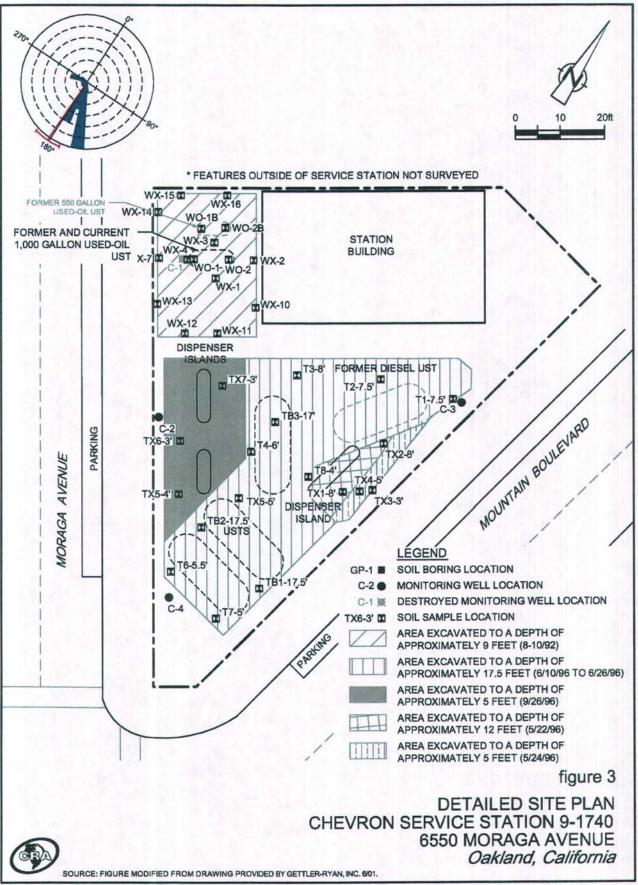
UST REMOVAL SAMPLING MAP Chevron Station No 9-1740 6550 Moraga Way Moraga, California FIGURE

2

Touchstone Developments

Environmental Management

Appr:


CD . Drwn:

DEC 1996 Date:

LOCATION MAP

Chevron Station No 9-1740 6550 Moraga Way Moraga, California

3

TABLE 1: Analytical Results

Analytic Results in Parts Per Million (ppm) Unless Noted

-		PHOAL	/ATION	CARAMI	-
WASTE (298	EXGA		SAMPL	Ea

8/20/92

WS-1

WASTE O	L EXCAVAT	ION SAMPL	ES				90											
Sample Number	Sample Depth (ft)	Date Sampled	Laboratory	TPH-Gas	TPH-Diesel	TOG	8	T	E	x	8010	8270	TPH-Oil	Cd	Cr	Pb	Za	NI
WO-1b	4.5	10/6/92	West	47	NA	540	0.090	ND	0.73	4.0	ND	ND	NA	ND	79	22	48	86
WO-2b	4.5	10/6/92	West	24	NA	1300	ND	ND	ND	0.31	ND	ND	NA	ND	62	22	65	36
WX-2	5.0	8/20/92	West	17	27	380	0.0087	ND	0.021	0.26	DCB	NA	440	3.9	95	11	55	84
WX-5	4.5	9/15/92	West	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
WX-6	4.5	9/15/92	West	NA	NA	2100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
\ WX-7	4.5	9/15/92	West	3.5	ND	ND	0.0056	ND	ND	0.017	DCE/TCE	NA	ND	3.3	100	10	50	76
WX-8	5.0	10/6/92	West	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
WX-9	5.0	10/6/92	West	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA
WX-10	4.5	10/19/92	West	24	85	550	0.21	ND	ND	0.16	DCE/DCB	NA	1200	ND	93	11	100	47
WX-11	4.5	10/19/92	West	100	ND	420	0.50	ND	0.48	9.1	DCB	NA	340	ND	93	6.8	66	72
WX-12	4.5	10/19/92	West	26	ND	1200	0.18	ND	ND	ND	DCE/DCB	NA	1500	ND .	110	13	87	73
WX-13	4.5	10/19/92	West	120	ND	1900	ND	ND	ND	3.5	CB/DCB	NA	2300	ND	85	10	35	55
WX-14	4.5	10/20/92	Superior	ND	14	230	ND	ND	ND	ND	ND	NA	NA	ND	64	7	30	70
WX-15	5.0	10/20/92	Superior	ND	ND	170	ND	ND	ND	ND	ND	NA	NA	ND	55	7	40	70
WX-16	5.0	10/20/92	Superior	ND	ND	170	ND	ND	ND	ND	ND	NA	NA	ND	42	8	50	50
STOCKPIL	E SAMPLES																	
Sample	Date Sampled	Laborator	y 8270	418.1 (TRPH)	Sb As	Ba	Bc Co	1 0	r Co	Cu	РЬ Н	g I	No Ni	Se	Ag	Ti	٧	ZN

ND	=	Not Detected at or above the laboratory detection limit	В	=	Benzene	Cu	=	Copper
ppb		parts per billion	T	=	Toluene	Pb	=	Lead
TRPH		Total Recoverable Petroleum Hydrocarbons	E	=	Ethylbenzene	Hg	=	Mercury
		Toxicity Characteristic Leachate Proceedure	X	=	Xylenes	Mo	=	Molybdenum
TPH-Gas	=	Total Petroleum Hydrocarbons calculated as gasoline	Sb	=	Antimony	Ni		Nickel
TPH=Diesel	=	Total Petroleum Hydrocarbons calculated as diesel	As		Arsenic	Se		Selenium
TOG		Total Oil and Gas	Ba		Barium	Ag		Silver
DCG		Dichlorobenzene	Be	=	Beryllium	TI		Thallium
DCE		Dichloroethane	Cd		Cadmium	٧	=	Vanadium
			Cr	=	Chromium	Zn	=	Zinc
			Co	=	Cobalt			

TABLE C

SOIL STOCKPILE SAMPLING SUMMARY Chevron Service Station No. 9-1740

6550 Moraga Avenue, Oakland, California

Results in mg/Kg - parts per million (ppm)

SOIL STOCKPILE SAMPLING RESULTS

SAMPLE ID	DATE	TPH- Diesel	TPH- Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	Lead
SP-1 (A-D)	10-May-96	150	100	ND	ND	ND	3.9	ND
SP-2 (A-D)	10-May-96	55	7.3	0.016	0.02	0.012	0.18	ND
SP-3 (A-D)	10-May-96	61	29	ND	ND	ND	1.1	5.2
SP-4 (A-D)	10-May-96	47	8.1	ND	ND	ND	0.13	ND .
SP-5 (A-D)	10-May-96	75	18	ND	ND	ND	0.61	8.4
A STATE OF THE STA	10-May-96	52	32	ND	0.065	0.07	0.87	ND
SP-6 (A-D)	10-May-96	66	20	ND	0.05	0.13	0.12	44
SP-7 (A-D) TRSP-1 (A-D)	26-Jun-96	140	170	0.11	0.23	ND	4.2	13

NOTES:

TPH-Gasoline = Total Petroleum Hydrocarbons calculated as gasoline.

TPH-Diesel = Total Petrolaum Hydrocarbons calculated as diesel.

ND = Not detected at or above the laboratory detection limits.

NA = Not Analyzed

Conestoga-Rovers & Associates

Table 1 Historical Soil Analytical Results
Chevron Service Station #9-1740, 6550 Moraga Avenue, Oakland, California

Sample ID	Depth (fbg)	Date Sampled	TPHd	ТРНд	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	МТВЕ	TOG	1,4- Dichloro benzene	1,2- Dichloro benzene	Acetone	Methylene Chloride	PCE	cis-1,2- DCE	TCE
		N 1996						ar to the	concentrat	tions in milliç	gams per k	ilogram (mg						
Monitoring	well Install	lation Samples																
C-1	3.5-5	3/20/1991	410	422		2	16	5	38	-	770	-		-	-	-		-
	8.5-10 ^a	3/20/1991	<10	<1		0.01	0.021	< 0.005	0.034		<50				-	-	-	***
	13.5-15	3/20/1991	<10	<1		0.007	0.010	< 0.005	0.015		<50	-						
	13.3-13	3/20/1991	10	-1		0.007	0.010	0.005	0.015		-50							
C-2	3.5-5	3/20/1991	<10	4		0.48	0.007	0.008	0.021	_		72	322			_	22	
0-2	8.5-10	3/20/1991	<10	<1		< 0.005	< 0.005	< 0.005	< 0.005									
	13.5-15	3/20/1991	<10	<1		0.039	0.012	0.01	0.049		-	-		**		-		
	10.0 10	372011331				0,000												
C-3	8.5-10	3/20/1991	<10	<1		< 0.005	< 0.005	< 0.005	< 0.005		-	722	222	1944	**	-		
-	13.5-15	3/20/1991	<10	<1		< 0.005	< 0.005	< 0.005	< 0.005	7.2	Va	1000	-	22	-	-	241	-
	140,500		225.7															
C-4	3.5-5	3/21/1991	10	5		0.21	0.016	0.041	0.018		***						**	
	8.5-10	3/21/1991	<10	3		0.29	0.008	0.11	0.029		-							
	13.5-15	3/21/1991	<10	<1		< 0.005	0.013	< 0.005	0.016	-	54	-	1.44	124		1.00		
	0.0000000000000000000000000000000000000	3000000000																
Waste Oil	Excavation S	amples																
WO-1b	9	8/20/1992	<10	1.6	- 11	0.0073	< 0.005	< 0.005	0.0095	-	<50	0.0014	0.0095			< 0.001	< 0.005	< 0.001
WO-2 ^b	9	8/20/1992	<10	<1	13	< 0.005	< 0.005	< 0.005	< 0.005		<50	< 0.001	< 0.001			< 0.001	< 0.005	< 0.001
WX-1	5	8/20/1992	41	16	580	0.30	0.13	0.31	2.1		110	0.0034	0.013	-		< 0.001	< 0.005	< 0.001
WX-2	5	8/20/1992	27	17	440	0.0087	< 0.005	0.021	0.26	-	380	0.0019	0.0081	-		< 0.001	< 0.005	< 0.001
11.75 2	-	0.20.1772		17.0	20,000			German		-		-	-	-				
WX-3	5.5	8/20/1992	44	17	740	0.22	0.19	0.40	2.3		180	< 0.001	0.0067			< 0.001	< 0.005	< 0.001
WX-4°	5.5	8/20/1992	130	180	2000	< 0.50	4	1.9	15		3,000	< 0.001	< 0.001			0.04	< 0.005	0.0036
WAT	3.3	8/20/1992	150	100	77.00			222	200			50555	2200			0.04	300,000	
WX-5	4.5	9/15/1992	-			**		-			**			-				
WX-6	4.5	9/15/1992	-	-			(**	-	-	**	2,100	-		-				
WX-7	4.5	9/15/1992	<10	3,5	13	0.0056	< 0.005	< 0.005	0.017		<50	-		-	722	221	**	-
WO-1bd	4.5	10/6/1992	**	47		0.09	< 0.05	0.73	4	**	540	-	**			**	**	
WO-2bd	4.5	10/6/1992		24		< 0.05	< 0.05	< 0.05	0.31		1,300						-	
WX-8	5	10/6/1992		-		-	-	-	-		***		-		-		**	
WX-9	5	10/6/1992		120		-	-	-	-			-		-	-	-	-	
11.12.2	-																	
WX-10	4.5	10/19/1992	85	24	1200	0.21	ND	ND	0.16		550				-		-	
WX-11	4.5	10/19/1992	<10	100	340	0.50	ND	0.48	9.1		420		***	-			***	
WX-12	4.5	10/19/1992	<50	26	1500	0.18	ND	ND	ND		1,200		**			**	**	
WX-13	4.5	10/19/1992	ND	120	2300	< 0.5	ND	ND	3.5		1,900				-	111		
0.02.02.1	7070		7,9771								100							
WX-14	4.5	10/20/1992	14	<1	-	< 0.005	ND	ND	ND		230	-	-	-		-	*	-

Table 1 **Historical Soil Analytical Results**

Chevron Service Station #9-1740, 6550 Moraga Avenue, Oakland, California

Sample ID	Depth (fbg)	Date Sampled	TPHd	TPHg	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TOG	1,4- Dichloro	1,2- Dichloro	Acetone	Methylene Chloride	PCE	cis-1,2- DCE	TCE
									concentrat	ions in millig	ams per k	benzene ilogram (mg.	benzene /kg)					
WX-15	5	10/20/1992	<10	<1	-	< 0.005	ND	ND	ND	-	170				-			
WX-16	5	10/20/1992	<10	<1	-	< 0.005	ND	ND	ND	- 4	170		(/ <u>11</u>	-	-		2	
ST Excav	ation Sample	es																
T1-7.5'	7.5	5/10/1996	13	50		0.15	ND	0.29	0.13	0.14		-	-	**		277		-
T2-7.5'	7.5	5/10/1996	1.7	ND		< 0.005	ND	ND	ND	ND	244			-				***
T3-8.0'	8	5/10/1996	1.1	ND		< 0.005	ND	ND	ND	ND						-		
T4-6.0'	6	5/10/1996	1.2	<1.0		< 0.005	ND	ND	0.0053	1	77	277				**	-	
T5-5.5'	5.5	5/10/1996	4.6	70		0.32	ND	0.37	0.33	0.52	**		277			**		-
T6-6.5'	5.5	5/10/1996	140	170		0.71	ND	3	1	1.1	-	-				**		**
T7-5.0'	5	5/10/1996	90	320	220	1.8	ND	3.5	1.1	2.9						-	**	
T8-4.0'	4	5/10/1996	1,200	1,100	-	2.9	14	19	22	ND	/22		-	-		1922	-	121
ST Overe	xcavation Sa	mples																
TB1-17.5'	17.5	5/16/1996	ND	ND		< 0.005	ND	ND	0.0052	0.034	· www	**		***		-	**.	**
TB2-17.5'	17.5	5/16/1996	ND	ND		< 0.005	ND	ND	ND	0.051	**				-	***	**	:
TB3-17.0'	17	5/17/1996	1	ND		< 0.005	ND	ND	ND	ND	-						440	**
TX1-8.0'	8	5/22/1996	1.1	ND		< 0.005	ND	ND	ND	-	-							
TX2-8.0'	8	5/22/1996	35	8.1		< 0.005	ND	0.012	0.02			199	-		-			
TX3-3.0'	3	5/24/1996	5.6	17		0.096	0.075	0.089	0.019	-	100	-		***		0.00	***	
TX4-5.0'	5	5/24/1996	420	800		16	5.4	4.2	16	440	7a4		**				**	
TX5-4.0'	4	6/26/1996	130	160		1	0.28	0.63	0.71	ND	**	-		-	**	-	**	***
TX6-3.0	3	6/26/1996	8.4	5.9		0.5	0.0059	0.02	0.039	0.67		-		-	-	-		-
TX7-3.0'	3	6/26/1996	200	780	-	3.9	0.73	19	6.5	ND	-	-	-	1/55		-	=	-
Soil Boring	Samples																	
SB-1	5	11/30/05	<10	<1		< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005			-	< 0.007	< 0.002	< 0.001	< 0.001	< 0.001
	11.5	11/30/05	<10	<1	-	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	-	-	-	< 0.007	< 0.002	< 0.001	< 0.001	< 0.001
SB-4	6	11/29/05	<10	<1	-	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005			-	< 0.007	< 0.002	< 0.001	< 0.001	< 0.001
	11	11/29/05	<10	<1		< 0.0005	< 0.001	<0.001	< 0.001	< 0.0005	-			< 0.007	< 0.002	< 0.001	< 0.001	< 0.001
SB-5	5	10/21/05	<10	<1		< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	-	_	2	0.014	0.003	< 0.001	< 0.001	< 0.001
	9.5	10/21/05	<10	<1	-	< 0.0005	<0.001	< 0.001	< 0.001	< 0.0005	-	π.	777.	0.008	0.003	< 0.001	< 0.001	< 0.001
SB-6	5	10/20/05	<10	<1	-	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005				0.018	0.003	< 0.001	< 0.001	< 0.001
	10	10/20/05	<10	<1	-	< 0.0005	< 0.001	< 0.001	< 0.001	<0.0005				0.008	0.003	< 0.001	< 0.001	< 0.001
SB-7	5	10/20/05	<10	<1	_	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005		-	-	0.008	0.003	0.005	< 0.001	< 0.001
	8	10/20/05	<10	<1		< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005			**	0.013	0.004	< 0.001	0.002	0.003

Abbreviations:
TPHd= Total petroleum hydrocarbons as diesel by DRO CA LUFT Method

TCE= Trichloroethene

Conestoga-Rovers & Associates

Table 1 Historical Soil Analytical Results

			Cl	nevron Serv	ice Station	1 #9-1740, 65	50 Moraga	Avenue, O	akland, C	California						
Sample ID Depth (fbg) Date Sampled	TPHd	ТРНд	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TOG	1,4- Dichloro benzene ilogram (mg	1,2- Dichloro benzene /kg)	Acetone	Methylene Chloride	PCE	cis-1,2- DCE	TCE
TPHg = Total petroleum hydrocarbons as BTEX = Benzene, toluene, ethylbenzene, MTBE = Methyl tertiary butyl ether by E PCE=Tetrachloroethene	and xylene	s by EPA Me					voc full sca *Data report <x 1<="" =="" below="" td=""><td>n by EPA Med only for V</td><td>ethod 82601 OCs with de</td><td>B etections above</td><td>ve laboratory</td><td>limits, all o</td><td>thers were non</td><td>-detect</td><td></td><td></td></x>	n by EPA Med only for V	ethod 82601 OCs with de	B etections above	ve laboratory	limits, all o	thers were non	-detect		
a = VOCs not detected b = Semi-VOCs not detected	0.27 8	10.011	4											*		

d = Semi-VOCs and HVOCs not detected

Table 1

Historical Soil Analytical Results
Chevron Service Station #9-1740, 6550 Moraga Avenue, Oakland, California

Sample ID	Depth (fbg)	Date Sampled	TPHd	TPHg	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TOG	1,4-Dichloro benzene	1,2-Dichloro benzene	Acetone	Methylene Chloride	PCE	cls-1,2-DCE	TCE
								-	concentrati	ions in millig	gams per l	kilogram (mg/	kg)					
Annitoring	Well Install	ation Samples																
C-1	3,5-5	3/20/1991	410	422	**	2	16	5	38	-	770			-	-	-	-	-
0-1	8.5-10	3/20/1991	<10	<1	_	0.01	0.021	< 0.005	0.034	-	<50		-	-	-	-	-	-
	13.5-15	3/20/1991	<10	<1	-	0.007	0.010	< 0.005	0.015	-	<50	-	-	-	-	-	-	-
		3/20/1991	<10	4		0.48	0.007	0.008	0.021	_	_	-	- 2	_	_	_	-	-
C-2	3.5-5			(3)		<0.005	< 0.005	<0.005	<0.005		_	_	-	-	_	-	_	-
	8.5-10	3/20/1991	<10	<1	-				0.049				-	-	_	_	-	-
	13.5-15	3/20/1991	<10	<1	-	0,039	0.012	0.01	0.049	_	_		-					
C-3	8.5-10	3/20/1991	<10	<1	-	<0.005	< 0.005	<0.005	<0.005	- 1	-	-	-		-	-	-	-
	13.5-15	3/20/1991	<10	<1	-	<0.005	< 0.005	<0.005	<0.005	-	-	-	-	-	-	-	-	-
C-4	3,5-5	3/21/1991	10	5	-	0.21	0.016	0.041	0.018	_	_			_	-	_	-	-
C-4	8.5-10	3/21/1991	<10	3	-	0.29	0.008	0.11	0.029			-	-				_	
			<10	<1		<0.005	0.013	< 0.005	0.016	-	-	_	-		_	-	-	
	13.5-15	3/21/1991	<10	~1	_	~0.003	0.013	40.003	0.010									
aste Oil	Excavation S	amples														<0.001	<0.005	<0.
WO-1	9	8/20/1992	<10	1.6	11	0.073	< 0.005	<0.005	0.0095	-	<50	0.0014	0.0095	**	-			
WO-2	9	8/20/1992	<10	<1	13	< 0.005	< 0.005	< 0.005	< 0.005		<50	< 0.001	<0.001	-	_	<0.001	<0.005	<0.
WX-I	9	8/20/1992	41	16	580	0.30	0.13	0.31	2.1	-	110	0.0034	0.013	-		<0.001	<0.005	<0.
WX-2	5	8/20/1992	27	17		0.0087	< 0.005	0.021	0.26	_	380	0.0019	0.0081	-	-	< 0.001		<0.
	9	8/20/1992	27	17	440	0.0087	< 0.005	0.021	0.26	-	380	-			-	< 0.001	<0.005	<0.
WX-3	5,5	8/20/1992	44	17	740	0.22	0.19	0.40	2.3	-	180	< 0.001	0.0067	_	-	< 0.001		<0.
WX-4	5.5	8/20/1992	130	180	3000	<0.50	4	1.9	15	-	3,000	<0.001	<0.001		-	0.04	<0.005	0.0
	22	0.050000						_	_	-	_	-	_	_	_	-	-	
WX-5	4.5	9/15/1992	••	-		-	-			_	2,100	-	-	-		-	-	
WX-6	4.5	9/15/1992	-			0.0055	, m	ND	0.017		ND	-	2	724	_	_	_	
WX 7	4.5	9/15/1992	ND	4	-	0.0056	ND	WE	0.01-		ND	- Tal.	- 50					
WO 1b	4.5	10/6/1992	-	47	-	0.09	ND	0.73	4	-	540		-	-	-	2000	-	
WO 26	4.5	10/6/1992	-	24		ND	ND	ND	0.31	-	1,300	-	-	-	-	-	7	
WX-8	5	10/6/1992					-	-	-	-	-			-	-	-	-	
WX-9	5	10/6/1992	-	-	-	-		-	-	-	-	-	-	-	-	-	-	
1107 10	46	10/19/1992	85	24	-	0.21	ИD	ND	0.16	_	550	_	-	-	-	-	-	
WX 10	4.5			100		0,50	ND	0.48	9.1	-	420		-	_	-	-	_	
WX-II	4.5	10/19/1992	ND		-		ND	ND	ATD.	_	1,200			-		-	-	
WX-12	4.5	10/19/1992	D	26	-	0.18			3.5		1,900	_	_		-	-		
WX-13	4.5	10/19/1993	ND.	120	-	ND	ND	D	9:0		11700			77.		50.		
WX-14	4.5	10/20/1992	14	GH	-	ND	ND	ND CIM	ND	-	. 230	-	-	-			-	
WX-15	5	10/20/1992	ND	ND	-	ND	ND	ND	MD	-	170	_	_	_	-	-	_	
		10/20/1992	ND	ND		ND	ND	ND	CIM		170				24.27	1	-	

Table 1
Historical Soil Analytical Results
Chevron Service Station #9-1740, 6550 Moraga Avenue, Oakland, California

Sample ID	Depth (fbg)	Date Sampled	TPHd	TPHg	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TOG	1,4-Dichloro benzene	1,2-Dichloro benzene	Acetone	Methylene Chloride	PCE	cis-1,2-DCE	TCE
									concentrat	ions in millig	ams per l	kilogram (mg/	kg)					
	ration Sampl						Lane.	12122										
T1 7.5	7.5	5/10/1996	13	50	-	0.15	ND	0.29	0.13	0,14		-	-	-	-	-	-	3.00
T2-7.5	7.5	5/10/1996	1.7	ND	-	UM	MD	AD.	GM	ND	-	-	-	-	-	7	_	-
T3-8.0	8	5/10/1996	1.1	ND	_	ND	HD	ND	CH	HD	-		-	-	-	-	-	-
T4 6.0	6	\$/10/1996	1.2	NĐ	-	MD	ИÐ	ND	0.0053	1	-	'	-	-	-	-	-	-
T5-5.5	5.5	5/10/1996	4.6	70	-	0.32	HD	0.37	0.33	0.52	-	_	_	-	-	-	_	-
T6-6.5	5.5	5/10/1996	140	170	-	0.71	AID.	3	4	1.1	-	_	-	-	-	-	-	-
T7-5.0	5	5/10/1996	90	320	-	1.8	ND	3.5	1.1	2.9	-	-	-		-	-	-	-
T8-4.0	4	5/10/1996	1,200	1,100	-	2.9	14	19	22	ND	-	-	-	-	-	-	-	-
UST Overe	excavation S	amples																
TB1-17.5'	17.5	5/16/1996	ND	ND	_	ND	ND	ND	0.0052	0.034	-	-		**		-		
TB2-17.5'	17.5	5/16/1996	ND	ND		ND	ND	ND	ND	0.051	-	f -	-	-	-	-	-	-
TB3-17.0	17.5	5/17/1996	1	ND	_	ND	ND	ND	ND	ND	_	_	-	_	_	_	_	_
	8	5/22/1996		ND		AD GM	ND	GK GK	ND	_	_	_	-	_	_	_	_	-
TX1 8.0'	1, 16, 1	5/22/1996	1.1	8.1		ND	ND	0.013	0.02	-	2	_	_	_	_	200	-	_
TX2 8.0	8		35		-			0.089	0.019	_	_	_	-57	_		-		_
TX3 3.0	3	5/24/1996	5.6	17	-	0.096	0.075						- 2	_	700	112.00		122
TX4-5.0	5	5/24/1996	420	800	_	16	5.4	4.2	16	NID		-			-	-		100
TX5-4.0	4	6/26/1996	130	160	-	1	0.28	0.63	0.71	ND	-	-	-	-	-	-	_	-
TX6 3.0	3	6/26/1996	8,4	5.9	-	0.5	0.0059	0.02	0.039	0.67	_	-	-	-	-	-	-	
TX7-3.0	3	6/26/1996	200	780	-	3.9	0.73	19	6.5	ND	-	-	-	-	-	-		_
Stockpile S	amples						Charles .	2000										
SP-1		5/10/1996	150	100	-	ND	ND	ND	3.9	•	-	-	=	**	-	-	-	-
SP-2		5/10/1996	55	7	-	0.016	0.02	0.012	0.18	77.	-	- 3.00		-	-	500	-	
SP-3		5/10/1996	61	29		ND	ND	ND .	1.1	-	-	-	**	-	-	- 270	-	-
SP-4		5/10/1996	47	8	-	ND	ND	ND	0.13		-	-	-	-	-		-	
SP-5		5/10/1996	75	18	-	ND	ND	ND	0.61		**	-	-	-	_		-	
SP-6		5/10/1996	52	32		ND	0.065	0.07	0.87		-	_	-	-	-	-		
SP-7		5/10/1996	66	20		ND	0.05	0.13	0.12	-	-	-	-	-	-	-		-
TRSP-1		6/26/1996	140	170	Q=)	0.11	0.23	ND	4.2	-	-	-	=	-	-	-	-	-
Soil Boring	Samples																	
SB-1	5	11/30/05	<10	<1	-	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	-	-	-	< 0.007	< 0.002	< 0.001	< 0.001	< 0.001
3D-1	11.5	11/30/05	<10	<1	-	<0.0005	<0.001	<0.001	<0.001	<0.0005	_	-	-	<0.007	<0.002	<0.001	<0.001	<0.001
CD 4		11/29/05	<10	<1		<0.0005	<0.001	<0.001	<0.001	<0.0005		-	_	<0.007	<0.002	<0.001	<0.001	<0.001
SB-4	6			<1	-	< 0.0005	< 0.001	<0.001	< 0.001	< 0.0005	_	-	_	<0.007	< 0.002	< 0.001	< 0.001	< 0.00
	11	11/29/05	<10	~1	_	~0.0003	-0,001		30.001									
SB-5	5	10/21/05	<10	<1	-	< 0.0005	< 0.001	< 0.001	<0.001	< 0.0005	-	-	-	0.014	0.003	< 0.001	< 0.001	< 0.001
	9.5	10/21/05	<10	<1	_	<0.0005	< 0.001	<0.001	<0.001	<0.0005	-			0.008	0.003	<0.001	<0.001	<0.00
SB-6	. 5	10/20/05	<10	<1		<0,0005	<0.001	<0.001	<0.001	<0.0005	_	-	_	0.018	0.003	<0.001	<0.001	<0.00
2B-0			<10	<1		< 0.0005	<0.001	<0.001	< 0.001	<0.0005			_	0.008	0.003	<0.001	100.0>	< 0.00
	10	10/20/05	<10	-1	-	~0.0003	10.001	100,001	-0.001	10.0003				0.000			110000	321

Conestoga-Rovers & Associates

Table 1

Historical Soil Analytical Results

Chevron Service Station #9-1740, 6550 Moraga Avenue, Oakland, California

Sample ID	Depth (fbg)	Date Sampled	TPHd	трнд	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	тос	1,4-Dichloro benzene	1,2-Dichloro benzene	Acetone	Methylene Chloride	PCE	cis-1,2-DCE	TCE
					GHT I				concentrat	ions in millig	ams per	kilogram (mg	/kg)-					
SB-7	5	10/20/05	<10	<1	_	<0.0005	<0.001	< 0.001	< 0.001	<0.0005	-	-	-	0.008	0.003	0.005	<0.001	<0.001
900	8	10/20/05	<10	<1	-	<0.0005	<0.001	<0.001	<0.001	<0.0005	-	-	-	0.013	0.004	< 0.001	0.002	0.003

Abbreviations:
TPHd=Total petroleum hydrocarbons as diesel by DRO CA LUFT Method
TPHg = Total petroleum hydrocarbons as gasoline by N. CA LUFT Gasoline Method
BTEX = Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8260B
MTBE = Methyl tertiary butyl ether by EPA Method 8260B
PCE=Tetrachloroethene

TCE= Trichloroethene

cis-1,2-DCE= cis-1,2-dichloroethene

VOC full scan by EPA Method 8260B
*Data reported only for VOCs with detections above laboratory limits, all others were non-detect

fbg = Feet below grade <x = below laboratory detection limits

TABLE A

SOIL AND GROUNDWATER SAMPLING SUMMARY

Chevron Service Station No. 9-1740

6550 Moraga Avenue, Oakland, California

Results in mg/Kg - parts per million (ppm), unless otherwise noted

UST EXCAVATION GROUNDWATER SAMPLING RESULTS

SAMPLE ID	DATE	TPH-Diesel	TPH- Gasoline	Benzene (ppb)	Toluene (ppb)	Ethyl- Benzene	Xylenes (ppb)	EPA 8240 (ppb)	CAM 17 TTLC (ppm)
BFH20	9-Apr-96	3,500	(ppb) 6,000	25	36	(ppb)	ND	ND*	Ba 1.5 Cu 0.045 Zn 0.054

NOTES:

Sample BFH20 was collected from an onsite UST backfill well.

TPH-Diesel = Total Petroleum Hydrocarbons calculated as diesel.

TPH-Gasoline = Total Petroleum Hydrocarbons calculated as gasoline.

MTBE = Methyl t-Butyl Ether

ND = Not detected at or above the laboratory detection limits.

NA = Not Analyzed.

ppb = Parts per Billion, results reported in ug/L by the laboratory.

ppm = Parts per Million, results reported in mg/Kg by the laboratory.

CAM 17 = TTLC extraction of 17 metals. Detectable parameters listed. See CAR for complete list of parameters.

* EPA 8240 = All analytes reported as ND. See CAR for list of parameters.

Conestoga-Rovers & Associates

Table 2

Grab-groundwater Analytical Results

Chevron Service Station #9-1740, 6550 Moraga Avenue, Oakland, California

Sample ID	Depth (fbg)	Date Sampled	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Acetone	Methylene · Chloride	PCE	cis-1,2-DCE	TCE	TAME	Chloroform
			0		(e)			Co	ncentration	ns in microg	rams per liter (μg/L)				
BFH20		4/9/1996.	3,500	6,000	25	36	ND .	ND	_		_	-	-	-	-	-
SB-5	10	10/21/2005	<150	<50	<0.5	<0.5	<0.5	<0.5	2	<6	2	<0.8	3	<1	<0.5	<0.8
SB-6	10	10/20/2005	430	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<6	2	<0.8	<0.8	<1	<0.5	<0.8
SB-7	10	10/20/2005	530	<50	<0.5	<0.5	<0.5	<0.5	4	<6	. 2	1	16	13	0.5	<0.8
GP-1	10	4/21/2006	220	110	<0.5	1.3	<0.5	0.52 [1]	<0.5	-	<5.0	<0.50	<0.50	<0.50	-	0.57
GP-2	10	4/21/2006	280	<50	<0.5	0.82	<0.5	<1.0	<0.5		<5.0	<0.50	<0.50	<0.50		<0.5
GP-3	. 10	4/21/2006	980	<50	<0.5	0.68	<0.5	<1.0	<0.5	-	<5.0	<0.50	<0.50	<0.50	-	<0.5
GP-4	10	4/21/2006	2,800	<50	<0.5	0.55	<0.5	<1.0	<0.5		<5.0	<0.50	<0.50	<0.50	-	<0.5
C-4		3/15/2008	<1,000	-	<10	<10	<10	<30	<10	-	-	-	-	-	-	-

Abbreviations:

TPHd= Total petroleum hydrocarbons as diesel by DRO CA LUFT Method

TPHg = Total petroleum hydrocarbons as gasoline by N. CA LUFT Gasoline Method

BTEX = Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8260B

MTBE = Methyl tertiary butyl ether by EPA Method 8260B

PCE=Tetrachloroethene

TCE= Trichloroethene

cis-1,2-DCE= cis-1,2-dichloroethene

TAME=tert amyl methyl ether

VOC full scan by EPA Method 8260B

*Data reported only for VOCs with detections above laboratory limits, all others were non-detect

[1]=o-xylene, p,m-xylene < 1.0 µg/l

-= Not Analyzed

fbg = Feet below grade

<x = below laboratory detection limits

Conestoga-Rovers & Associates

Table 3 Total Aromatic Extractable Petroleum Hydrocarbons as Diesel Results Chevron Service Station 9-1740, 6550 Moraga Avenue, Oakland, CA

Well ID	Sample Date	Total Petroleum Hydrocarbons	Total Petroleum Aromatic	Aromatic > C5-C7	Aromatic > C7-C8	Aromatic > C8-C10	Aromatic > C10-C12	Aromatic > C12-C16	Aromátic > C16-C21	Aromatic > C21-C35
					Concentrations	reported in micro	ograms per liter (µ	g/L)		
C-4	3/15/08	5,000	2000	<50	90	53	200	440	810	450

Total Aliphatic Extractable Petroleum Hydrocarbons as Diesel Results

Well ID	Sample Date	Total Petroleum Hydrocarbons	Total Petroleum Aliphatic	Aliphatics > C5-C6	Aliphatics > C6-C8	Aliphatics > C8-C10	Aliphatics > C10-C12	Aliphatics > C12-C16	Aliphatics > C16-C35	
	FILE.				Concentrations	reported in micro	ograms per liter (µ	g/L)		
C-4	3/15/08	5,000	3,000	<50	<50	79	50	1,000	1,900	

Abbreviations/Notes:

<x = Not detected above the laboratory detection limit.</p>
Aromatics and Aliphatics analyzed by EPA Method 8015C.

Table 1
Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-1740 6550 Moraga Avenue Oakland, California

					Oak	and, Californi	a				
WELL ID/	TOC*	GWE	DTW	SPHT	TPH-DRO	TPH-GRO	В	T	E	X	MTRE
DATE	(fL)	(msl)	(ft)	(P-)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
C-2									1.3		
03/25/91	594.57	571.68	22.89	_	_	<50	1.0	<0.5	<0.5	2.0	
07/01/91	594.57	587.20	7.37	-	111	660	190	2.5	28	22	-
09/25/91	594.57	587.59	6.98		-	110	200	1.9	21	1.7	-
12/23/91	594.57	589.56	5.01	_	_	<50	1.2	1.2	<0.5	1.8	
03/24/92	594.57	577.30	17.27	_	_	100	5.9	7.9	4.0	14	
06/23/92	594.57	590.75	3.82	_	-	190	45	4.5	9.5	10	
09/30/92	594.57	580.56	14.01	_	-	240	99	2.3	11	6.1	ELIVERT
12/16/92	594.57	580.05	14.52		120	280	160	6.2	7.4	5.0	
03/30/93	594.57	583.49	11.08	_	_	110	21	<0.5	0.8	<1.5	
06/10/93	594.57	583.08	11.49	_	-	180	53	2.6	8.0	5.8	
09/02/93	594.57	580.49	14.08	-	_	51	18	0.8	4.4	<1.5	_
12/06/93	594.57	579.87	14.70	-	_	<50	20	1.3	2.7	<0.5	
03/02/94	594.57	579.70	14.87		-	<50	9.9	1.6	<0.5	0.8	
06/03/94	594.57	579.35	15.22		-	440	300	2.7	61	2.1	
09/07/94	594.57	587.27	7.30	-		80	30	<0.5	1.6	<0.5	
12/06/94	594.57	589.29	5.28	_	-	120	51	<0.5	4.7	<0.5	-
03/31/95	594.57	589.13	5.44	-	-	770	250	<5.0	74	<5.0	
06/15/95	594.57	589.62	4.95	_	-	240	76	<1.0	26	<1.0	
09/25/95	594.57	587.78	6.79	_	-	<50	1.2	<0.5	<0.5	<0.5	
12/19/95	594.57	588.94	5.63	-		<250	23	<2.5	<2.5	<2.5	860
03/31/97	594.57	589.74	4.83		-	<500	48	<5.0	<5.0	<5.0	2,900
06/23/97	594.57	589.98	4.59			1200	240	<10	<10	<10	4,900
09/02/97	594.57	590.02	4.55	-	_	1400	340	<5.0	54	6.9	2,500
12/15/97	594.57	590.26	4.31		-	540	100	<2.5	8.7	<2.5	2,400
03/10/98	594.57	590.00	4.57		-	<500	<5.0	<5.0	<5.0	<5.0	3,000
06/16/98	594.57	589.99	4.58	-		120	6.6	<1.0	<1.0	<1.0	2,500
08/25/98	594.57	589.67	4.90		-	140	<0.5	<0.5	<0.5	<0.5	2,600
12/29/98	594.57	589.77	4.80		-	1830	17.7	<10.0	<10.0	14.9	4,600/4,890
03/09/99	594.57	590.21	4.36		-	120	16	<1.0	<1.0	<1.0	3,400
06/23/99 ²	594.57	589.92	4.65				_	-	-	-	5,100
09/28/99	594.57	585.99	8.58	-	-	<50	<0.5	<0.5	<0.5	<0.5	1,250
02/29/00	594.57	586.59	7.98	-	-	122	<0.5	<0.5	<0.5	<0.5	249
08/29/00	594.57	587.52	7.05	0.00	-	<50	<0.50	<0.50	<0.50	<0.50	390
03/27/01	594.57	587.73	6.84	0.00	-	<50.0	<0.500	<0.500	<0.500	< 0.500	9.72
09/05/014	594.57	587.37	7.20	0.00	58 ⁵	360	<0.50	<0.50	<0.50	<1.5	1,300/1,0001
03/04/024	594.57	587.59	6.98	0.00	270 ⁶	190	<0.50	<0.50	<0.50	<1.5	440

Table 1
Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-1740 6550 Moraga Avenue Oakland, California

WELL ID/	TOC*	GWE	DTW	SPHT	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(fL)	(msl)	(PL)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
											4.9.
C-2 (cont) 09/03/02 ⁴	594.57	587.29	7.28	0.00	760 ⁶	120	-0.50	-0.50	-0.50		200
03/29/034	594.57				<50°	120	<0.50	<0.50	<0.50	<1.5	290
09/23/03 ^{4,7}		588.06	6.51	0.00		53	<0.5	<0.5	<0.5	<1.5	73
	594.57	587.71	6.86	0.00	646	<50	<0.5	<0.5	<0.5	<0.5	12
03/17/04 ^{7,8}	594.57	587.35	7.22	0.00	<50 ⁶	82	<0.5	<0.5	<0.5	<0.5	370
09/13/047	594.57	589.16	5.41	0.00	<50 ⁶	67	<0.5	<0.5	<0.5	<0.5	530
03/11/057	594.57	589.84	4.73	0.00	846	110	<0.5	<0.5	<0.5	<0.5	580
09/29/057	594.57	589.01	5.56	0.00	826,9	61	<0.5	<0.5	<0.5	<0.5	320
03/20/067	594.57	590.15	4.42	0.00	1206	<50	<0.5	<0.5	<0.5	<0.5	500
08/25/067	594.57	589.06	5.51	0.00	1306	93	< 0.5	<0.5	<0.5	< 0.5	460
03/12/077	594.57	589.66	4.91	0.00	10	<50	< 0.5	< 0.5	<0.5	<0.5	110
03/21/07	594.57	589.85	4.72	0.00	220°	-	-	-	-	-	-
09/21/077	594.57	588.93	5.64	0.00	<50°	<50	< 0.5	< 0.5	<0.5	<0.5	180
03/10/087	594.57	589.76	4.81	0.00	<50°	73	< 0.5	< 0.5	< 0.5	< 0.5	170
09/15/087	594.57	588.61	5.96	0.00	59 ⁶	57	< 0.5	< 0.5	< 0.5	< 0.5	150
03/03/097	594.57	589.92	4.65	0.00	<50 ⁶	<50	< 0.5	< 0.5	< 0.5	< 0.5	54
08/31/097	594.57	588.66	5.91	0.00	<50°	89	< 0.5	< 0.5	< 0.5	< 0.5	240
03/24/107	594.57	590.04	4.53	0.00	626	<50	<0.5	< 0.5	<0.5	< 0.5	50
02/28/117	594.57	590.09	4.48	0.00	<50 ⁶	<50	<0.5	<0.5	<0.5	<0.5	80
200											
C-3			2-2-2								
03/25/91	597.14	591.98	5.16	-	-	<50	<0.5	<0.5	<0.5	0.5	-
07/01/91	597.14	591.30	5.84	-	-	<50	<0.5	<0.5	<0.5	<0.5	-
09/25/91	597.14	591.20	5.94	-	7	<50	<0.5	<0.5	<0.5	<0.5	-
12/23/91	597.14	591.20	5.94	-	-	<50	1.0	<0.5	<0.5	1.5	-
03/24/92	597.14	592.37	4.77	-	-	<50	<0.5	<0.5	<0.5	<0.5	-
06/23/92	597.14	591.47	5.67	-	-	<50	0.9	1.1	0.5	1.6	-
09/30/92	597.14	590.84	6.30	-	-	<50	<0.5	<0.5	<0.5	<0.5	
12/16/92	597.14	591.57	5.57	-	-	<50	<0.5	<0.5	<0.5	<0.5	-
03/30/93	597.14	592.08	5.06	-		<50	<0.5	<0.5	< 0.5	<1.5	-
06/10/93	597.14	591.85	5.29	-		<50	0.6	1.9	0.6	3.5	-
09/02/93	597.14	591.22	5.92		-	<50	<0.5	<0.5	<0.5	<1.5	-
12/06/93	597.14	591.38	5.76		-	<50	<0.5	0.6	<0.5	<0.5	-
03/02/94	597.14	591.97	5.17			<50	<0.5	<0.5	<0.5	<0.5	-
06/03/94	597.14	591.74	5.40	-		<50	<0.5	< 0.5	<0.5	< 0.5	-

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-1740

						land, Californi	a				
WELL ID/	TOC*	GWE	DTW	SPHT	TPH-DRO	TPH-GRO	В	T	E	×	MTBE
DATE	(%)	(msl)	(ft.)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
C-3 (cont)											
09/07/94	597.14	591.14	6.00	-	_	<50	< 0.5	<0.5	<0.5	<0.5	_
12/06/94	597.14	591.95	5.19		_	<50	<0.5	0.8	<0.5	<0.5	
03/31/95	597.14	592.04	5.10			<50	<0.5	<0.5	<0.5	<0.5	-
06/15/95	597.14	591.78	5.36	-	_	<50	<0.5	<0.5	<0.5	<0.5	-
09/25/95	597.14	591.04	6.10	-		<50	<0.5	<0.5	<0.5	<0.5	
12/19/95	597.14	591.46	5.68			<50	<0.5	<0.5	<0.5	<0.5	<2.5
03/31/97	597.14	590.65	6.49		-	<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/23/97	597.14	590.63	6.51		_	<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/02/97	597.14	591.07	6.07	-	_	<50	<0.5	<0.5	<0.5	<0.5	<2.5
12/15/97	597.14	590.86	6.28	_	_	<50	<0.5	<0.5	<0.5	<0.5	<2.5
03/10/98	597.14	590.89	6.25		_	<50	<0.5	<0.5	<0.5	<0.5	4
06/16/98	597.14	590.80	6.34			<50	<0.5	<0.5	<0.5	<0.5	<2.5
08/25/98	597.14	590.61	6.53		-	<50	<0.5	<0.5	<0.5	<0.5	<5.0
12/29/98	597.14	590.59	6.55	_	_	<50	<0.5	<0.5	<0.5	<0.5	<2.0
03/09/99	597.14	591.20	5.94			<50	<0.5	<0.5	<0.5	<0.5	3
09/28/99	597.14	590.26	6.88		SAMPLED A		_	_	_		-
02/29/00	597.14	591.56	5.58		-	<50	<0.5	<0.5	<0.5	<0.5	10
08/29/00	597.14	590.53	6.61	0.00	_	7-1	_		-		-
03/27/01	597.14	591.00	6.14	0.00	_	264	<2.50	<2.50	<2.50	<2.50	870
09/05/01	597.14	590.46	6.68	0.00		-		-	-	_	/<21
03/04/02	597.14	590.93	6.21	0.00	<50 ⁶	<50	<0.50	<0.50	<0.50	<1.5	<5.0
09/03/02	597.14	590.40	6.74	0.00	SAMPLED A		-				
03/29/03	597.14	590.86	6.28	0.00	<50 ⁶	<50	<0.5	<0.5	<0.5	<1.5	<2.5
09/23/03	597.14	590.51	6.63	0.00	SAMPLED A						
03/19/047	597.14	591.24	5.90	0.00	<50 ⁶	<50	<0.5	<0.5	<0.5	<0.5	2
09/13/04	597.14	591.85	5.29	0.00	SAMPLED A		-				
03/11/057	597.14	591.53	5.61	0.00	<50 ⁶	<50	<0.5	<0.5	<0.5	<0.5	2
09/29/05	597.14	590.22	6.92	0.00	SAMPLED A						
03/20/067	597.14	591.86	5.28	0.00	<50 ⁶	<50	<0.5		-0.5		-
08/25/06	597.14	590.51	6.63	0.00	SAMPLED A			<0.5	<0.5	<0.5	3
03/12/07	597.14	591.07	6.07	0.00	-10	55	-0.5	-0.5	-0.5	-0.5	-
03/12/07	597.14				240 ⁶	33	<0.5	<0.5	<0.5	<0.5	2
03/21/07	597.14	590.91 590.29	6.23 6.85	0.00	SAMPLED A	NINITIALI V	-		-		-
03/10/087	597.14	590.89	6.25	0.00	<50 ⁶	87	<0.5	<0.5	-05	-0.5	-
09/15/08	597.14	590.15	6.99	0.00	SAMPLED A				<0.5	<0.5	3
07/13/06	357.14	370.13	0.99	0.00	SAWIFLED A	MOALL	-	-	-	-	-

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-1740

Chevron Service Station #9-17-6550 Moraga Avenue

Oakland, California

WELL ID/	TOC*	GWE	DTW	SPHT	TPH-DRO	TPH-GRO	В	T	Σ	X	MTBE
DATE	(%)	(rist)	(fL)	(%)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
C-3 (cont)											
03/03/097	597.14	591.22	5.92	0.00	55 ⁶	<50	<0.5	<0.5	<0.5	<0.5	3
08/31/09	597.14	590.38	6.76	0.00	SAMPLED AT						
03/24/107	597.14	591.82	5.32	0.00	776	<50	<0.5	<0.5	< 0.5	<0.5	3
02/28/117	597.14	591.79	5.35	0.00	<50 ⁶	<50	<0.5	<0.5	<0.5	<0.5	3
C-4											
03/25/91	593.10	588.65	4.45	-	_	2700	240	16	<0.5	350	-
07/01/91	593.10	587.77	5.33	-	_	7900	1500	230	340	350	_
09/25/91	593.10	587.60	5.50	-		3200	850	160	150	220	_
12/23/91	593.10	588.18	4.92		_	4100	390	52	42	340	_
03/24/92	593.10	589.06**	4.19	0.19	-		-	_	_		_
06/23/92	593.10	588.34**	4.91	0.30	-	-	_	_		_	
09/30/92	593.10	584.44	8.66	-	-	450	97	14	12	29	
12/16/92	593.10	583.30	9.80		_	590	130	18	5.6	29	-
03/30/93	593.10	583.25**	10.00	0.12		_			_	_	-
06/10/93	593.10	583.46	9.64			1300	290	36	17	73	
09/02/93	593.10	583.02	10.08	_		630	97	12	6.6	21	_
12/06/93	593.10	582.85	10.25	-	-	1900	600	68	27	130	-
03/02/94	593.10	584.36	8.74		-	2600	1200	110	43	180	_
06/03/94	593.10	583.27	9.83	-	-	780	180	13	8.5	26	
09/07/94	593.10	582.80	10.30	-	-	<50	14	<0.5	0.7	<0.5	-
12/06/94	593.10	583.90	9.20	-	-	980	270	21	12	38	_
03/31/95	593.10	582.86	10.24	-	-	1500	450	25	11	49	-
06/15/95	593.10	582.78	10.32	-	-	960	250	15	4.5	37	-
09/25/95	593.10	584.72	8.38	-	-	<500	18	<5.0	<5.0	<5.0	-
12/19/95	593.10	582.94	10.16	-	-	<500	32	<5.0	<5.0	<5.0	2,400
03/31/97	593.10	588.42	4.68	-	-	3400	960	51	64	140	2,100
06/23/97	593.10	588.36	4.74			1600	580	19	8.2	27	2,300
09/02/97	593.10	588.33	4.77		-	6900	1400	59	130	410	3,100
12/15/97	593.10	588.60	4.50		-	3300	1200	37	74	130	3,700
03/10/98	593.10	588.92	4.18		-	1100	250	19	13	62	4,000
06/16/98	593.10	586.53	6.57	-	-	1200	350	<10	12	39	4,500
08/25/98	593.10	586.30	6.80		-	290	24	0.72	0.87	1.9	3,600
12/29/98	593.10	586.80	6.30	-		3190	957	<25	<25	<25	8,100/8,50
03/09/99	593.10	585.87	7.23	-	_	2200	850	15	35	56	5,900

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-1740

Chevron Service Station #9-174 6550 Moraga Avenue

Oakland, California

WELL ID/	TOC*	GWE	DTW	SPHT	TPH-DRO	TPH-GRO	В	T.	E	X	MTBE
DATE	(PL)	(msl)	(ft.)	(fL)	(#g/L)	(pg/L)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)
C-4 (cont)											
06/23/99 ²	593.10	585.60	7.50	-	-	_	-		120		
09/28/99	593.10	586.15	6.95	-		1390	7.85	<5.0	<5.0	<5.0	4,190
02/29/00	593.10	586.09	7.01		_	<50	1.35	<0.5	<0.5	<0.5	310
08/29/00	593.10	586.58	6.52	0.00	-	150 ³	60	<0.50	0.79	0.78	570
03/27/01	593.10	587.29	5.81	0.00		986	27.2	<2.50	3.25	4.11	252
09/05/014	593.10	586.72	6.38	0.00	3,8005	330	140	0.84	<0.50	<1.5	580/5201
03/04/024	593.10	587.44	5.66	0.00	2,900 ⁶	170	67	<0.50	<0.50	<1.5	510
09/03/024	593.10	586.62	6.48	0.00	1,900 ⁶	<50	12	<0.50	<0.50	<1.5	64
03/29/034	593.10	587.26	5.84	0.00	950 ⁶	<50	3.3	<0.5	<0.5	<1.5	67
09/23/034.7	593.10	586.91	6.19	0.00	576	<50	<0.5	<0.5	<0.5	<0.5	12
03/17/04 ^{7,8}	593.10	587.12	5.98	0.00	1,900 ⁶	1,500	310	5	2	4	520
09/13/047	593.10	588.22	4.88	0.00	1,300 ⁶	840	260	3	2	1	990
03/11/057	593.10	589.20	3.90	0.00	2,900 ⁶	350	66	1	<1	<1	1,100
09/29/057	593.10	585.07	8.03	0.00	2,500 ⁶	740	160	2	1	<1	1,500
03/20/067	593.10	589.47	3.63	0.00	1,200 ⁶	1,400	300	5	1	2	1,600
08/25/067	593.10	588.30	4.80	0.00	1,300 ⁶	450	82	2	<0.5	<0.5	1,300
03/12/07	593.10	585.50	7.60	0.00	10	670	110	1	<0.5	<0.5	1,100
03/21/07	593.10	585.07	8.03	0.00	1,800 ⁶	_	-		-		-
09/21/077	593.10	585.20	7.90	0.00	2,100 ⁶	260	18	<0.5	<0.5	<0.5	1,100
03/10/087	593.10	585.69	7.41	0.00	7,5006	560	72	1	<0.5	<0.5	1,100
03/15/08	593.10	586.45	6.65	0.00	-	-			-	_	_
09/15/087	593.10	585.10	8.00	0.00	5,200°	760	110	2	0.6	<0.5	1,100
03/03/097	593.10	585.94	7.16	0.00	1,8006	1,700	360	5	2	1	900
08/31/097	593.10	585.17	7.93	0.00	2,000 ⁶	2,700	440	11	3	3	930
03/24/107	593.10	589.36	3.74	0.00	1,600 ⁶	2,100	270	7	2	3	470
02/28/117	593.10	589.40	3.70	0.00	1,500	2,500	270	7	3	3	250
C-1											
03/25/91	595.82	592.54	3.28		-	54	0.7	<0.5	<0.5	2.0	-
07/01/91	595.82	592.39	3.43	-		730	250	3.0	16	4.8	-
09/25/91	595.82	591.67	4.15	-		160	68	1.3	6.1	1.3	-
12/23/91	595.82	592.11	3.71	-	-	170	70	1.6	3.5	2.4	
03/24/92	595.82	592.80	3.02	-	-	60	39	4.4	3.9	9.1	-
06/23/92 NOT MONITO	595.82	592.06	3.76	-	-	60	19	1.1	1.1	1.0	-

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-1740

						and, Californ					
WELL ID/	TOC*	GWE	DTW	SPHT	TPH-DRO	TPH-GRO	В	T	E	X	MTRE
DATE	(fL)	(msl)	(ft.)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)
TRIP BLANK											
03/25/91	-	-	_	-	_	<50	<0.5	<0.5	<0.5	<0.5	_
07/01/91	-		-			<50	<0.5	<0.5	<0.5	<0.5	
09/25/91	-	-	-	-		<50	<0.5	<0.5	<0.5	<0.5	-
12/23/91		-	-		-	<50	<0.5	<0.5	<0.5	<0.5	
03/24/92		-	-		-	<50	<0.5	<0.5	<0.5	<0.5	_
06/23/92			-			<50	<0.5	<0.5	<0.5	<0.5	-
09/30/92		-	-		-	<50	<0.5	<0.5	<0.5	<0.5	-
12/16/92	-	-		-	-	<50	<0.5	<0.5	<0.5	<0.5	
03/30/93	-	_	_	_	_	<50	<0.5	<0.5	<0.5	<1.5	-
06/10/93	-		-			<50	<0.5	<0.5	<0.5	<1.5	_
09/02/93			0		-	<50	<0.5	<0.5	<0.5	<1.5	_
12/06/93		_	_	-	4	<50	<0.5	<0.5	<0.5	<0.5	
03/02/94		-	-			<50	<0.5	<0.5	<0.5	<0.5	_
06/03/94	-	_				<50	<0.5	<0.5	<0.5	<0.5	
09/07/94	-		-			<50	<0.5	<0.5	<0.5	<0.5	_
12/06/94						<50	<0.5	<0.5	<0.5	<0.5	
03/31/95		-	-		-	<50	<0.5	<0.5	<0.5	<0.5	_
06/15/95	-	_	-	_	-	<50	<0.5	<0.5	<0.5	<0.5	-
09/25/95	-	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	_
12/19/95	-	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	-
03/31/97		_		-	-	<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/23/97	-	-	-		-	<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/02/97	-	-	-			<50	<0.5	<0.5	<0.5	<0.5	<2.5
12/15/97		-			-	<50	<0.5	<0.5	<0.5	<0.5	<2.5
03/10/98	-	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/16/98	-	- 10	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	<2.5
08/25/98	-	-			-	<50	<0.5	<0.5	<0.5	<0.5	<5.0
12/29/98		-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	<2.0
3/09/99					-	<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/28/99		-			-	<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/29/00		-		-	-	<50	< 0.5	<0.5	<0.5	<0.5	<5.0
08/29/00	-	-	-	-	-	<50	<0.50	<0.50	<0.50	< 0.50	<2.5
03/27/01	-	-	-	-	-	<50.0	< 0.500	<0.500	< 0.500	< 0.500	<0.500
09/05/01	-	-	-	-	-	<50	<0.50	<0.50	<0.50	<1.5	<2.5
03/04/02		- 2	-		_	<50	<0.50	<0.50	<0.50	<1.5	<2.5

9-1740.xls/#386507

Table 1
Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-1740 6550 Moraga Avenue Oakland, California

DATE (ft.) (mil) (ft.) (ft.) (mil/t.) (WELL ID/	TOC*	GWE	DTW	SPHT	TPH-DRO	TPH-GRO	В	T	E	******* * ******	MTBE
09/03/02	DATE	(%)	(mest)	(fL)	(%)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
03/29/03	QA											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/03/02	-	-		-	-	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/29/03	-	-		-		<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/23/037						<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/19/047	_	-		22	-	<50	< 0.5	<0.5			< 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-	_	-		<50	< 0.5				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-	-								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/29/057		-	_		-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-				-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-	_		_						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_	-		-	-						
$03/10/08^7$ <-50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0			-	-								
$09/15/08^7$ <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5			-		_							
$03/03/09^7$ <50 <0.5 <0.5 <0.5 <0.5			-		-							
			_									
08/31/09' <50 < 0.5 < 0.5 < 0.5 < 0.5	08/31/097		-	_	_		<50	<0.5	<0.5	<0.5	<0.5	<0.5
DISCONTINUED		ED									V.5	

Table 1

Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-1740 6550 Moraga Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to August 29, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing	TPH-D = Total Petroleum Hydrocarbons as Diesel	E = Ethylbenzene
(ft.) = Feet	TPH = Total Petroleum Hydrocarbons	X = Xylenes
GWE = Groundwater Elevation	DRO = Diesel Range Organics	MTBE = Methyl Tertiary Butyl Ether
(msl) = Mean sea level	GRO = Gasoline Range Organics	$(\mu g/L) = Micrograms per liter$
DTW = Depth to Water	B = Benzene	= Not Measured/Not Analyzed
SPHT = Separate Phase Hydrocarbon Thickness	T = Toluene	QA = Quality Assurance/Trip Blank

- * TOC elevations are referenced to msl.
- ** GWE corrected for the presence of Separate Phase Hydrocarbons (SPH), correction factor: [(TOC-DTW)+(SPHTx0.80)].
- Confirmation run.
- ² ORC installed.
- Laboratory report indicates unidentified hydrocarbons C6-C12.
- ORC in well.
- ⁵ Although requested on the Chain of Custody; Laboratory did not perform TPH-D analysis with silica-gel cleanup.
- 6 Analyzed with silica gel cleanup.
- BTEX and MTBE by EPA Method 8260.
- 8 ORC removed.
- Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It elutes in the DRO range later than #2 fuel and is also due to individual peaks eluting in the DRO range.
- Sample containers were lost during shipping.

Table 2
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-1740

WELL ID	DATE	Before Purging	After Purging
000000000000000000000000000000000000000		(mg/L)	(mg/L)
C-2	08/29/00	1.97	
	03/27/01	3.60	
	09/05/01	2.80	
	03/04/02	3.10	-
	09/03/02	2.70	
	03/29/03	2.20	-
	09/23/03	0.50	
C-4	08/29/00	2.11	
	03/27/01	2.90	
	09/05/01	2.30	
	03/04/02	2.90	
	09/03/02	2.10	
	03/29/03	1.90	-
	09/23/03	0.40	

EXPLANATIONS:

(mg/L) = Milligrams per liter

-= Not Measured

Table 3

Groundwater Analytical Results - Oxygenate Compounds Chevron Service Station #9-1740

6550 Moraga Avenue

Oakland, California

WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
C-2	09/05/01	-	<100	1,000	<2	240	30	<2	<2
	09/23/03	<50		12	-		-		-
	03/19/04	<50		370	-	-	-		
	09/13/04	<50	-	530		-	-		
	03/11/05	<50		580				-	
	09/29/05	<50	-	320	_			_	
	03/20/06	<50	-	500		_	-	_	
	08/25/06	<50	_	460	_	_	-	_	-
	03/12/07	<50	-	110	-				_
	09/21/07	<50	-	180			-	_	
	03/10/08	<50	_	170			-	_	_
	09/15/08	<50	-	150	_	-	-	-	-
	03/03/09	<50	_	54	_	2		-	_
	08/31/09	<50	-	240	_	_		_	_
	03/24/10		-	50	-	_	_		_
	02/28/11	_	2	80		_	_	_	_
	00/05/01		<100						
-3	09/05/01		<100	2	<2	<2	<2	<2	<2
	03/19/04	<50	-	2	-	7	-	-	-
	09/13/04	SAMPLED ANNUA	ALLY	-	-		-	-	-
	03/11/05	<50	-	2	-	-	-	-	-
	03/20/06	<50	-	3	-	-	-	-	-
	03/12/07	<50	-	2	-	-	77	-	-
	03/10/08	<50	-	3		-	I I I I I	-	-
	09/15/08	SAMPLED ANNUA	ALLY	-	-	-	-	-	-
	03/03/09	<50	-	3	-	-	-	7	-
	03/24/10	-	-	3	-	-	-	-	-
	02/28/11		-	3	-		-	-	-
-4	09/05/01	T. (1)	<100	520	4	<2	15	2	<2
	09/23/03	<50	-	12	-	-	-	**	-
	03/19/04	<50		520	-	-	-	-	
	09/13/04	<100	-	990	_	_	-	-	
	03/11/05	<100	-	1,100	-	_	-	_	-
	09/29/05	<100		1,500	-	_	_	-	-

Table 3
Groundwater Analytical Results - Oxygenate Compounds
Chevron Service Station #9-1740

WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
C-4 (cont)	03/20/06	<50	-	1,600	-	-	_		-
	08/25/06	<50	-	1,300	-		-	-	-
	03/12/07	<50	-	1,100	-			-	
	09/21/07	<50		1,100	-				-
	03/10/08	<50	-	1,100	-			-	-
	09/15/08	<50	_	1,100	-	-		-	-
	03/03/09	<100	-	900	-	-		-	-
	08/31/09	<50	-	930	-	-	-	-	-
	03/24/10	-	-	470			-	-	
	02/28/11	-	-	250		-	-	_	-

Table 3

Groundwater Analytical Results - Oxygenate Compounds

Chevron Service Station #9-1740 6550 Moraga Avenue Oakland, California

EXPLANATIONS:

TBA = t-Butyl alcohol

MTBE = Methyl Tertiary Butyl Ether

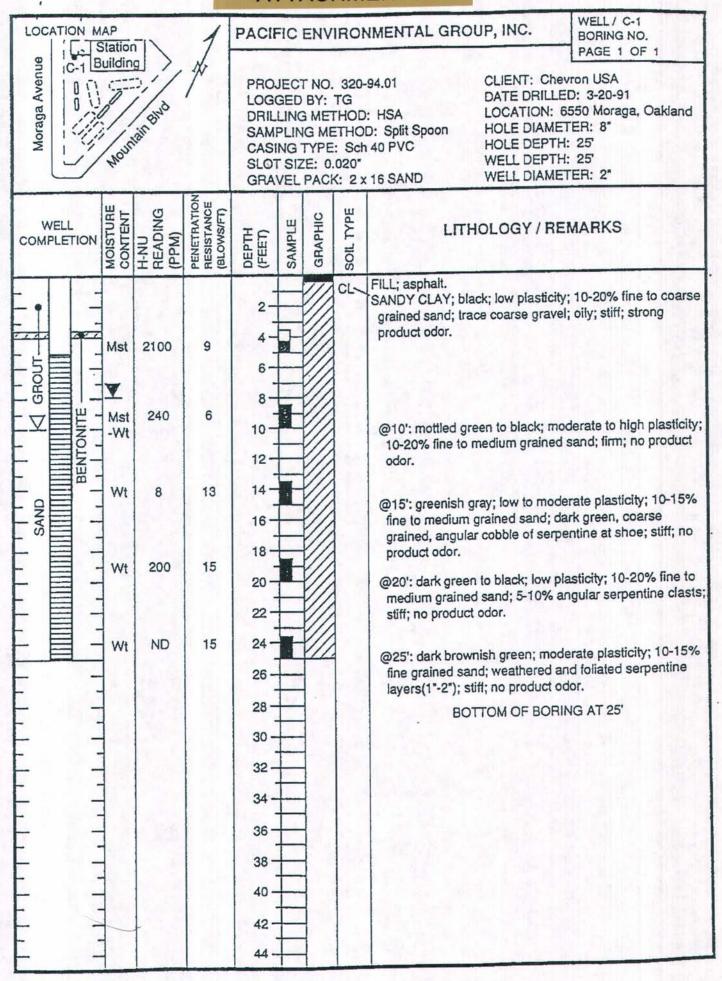
DIPE = di-Isopropyl ether

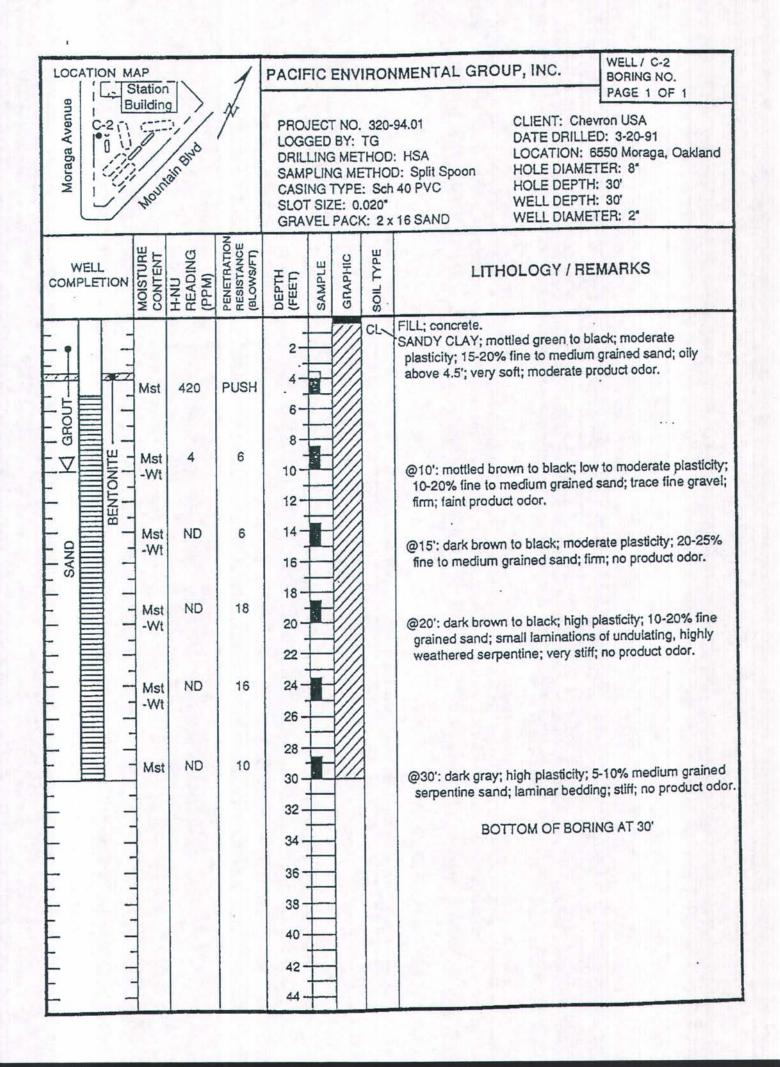
ETBE = Ethyl t-butyl ether

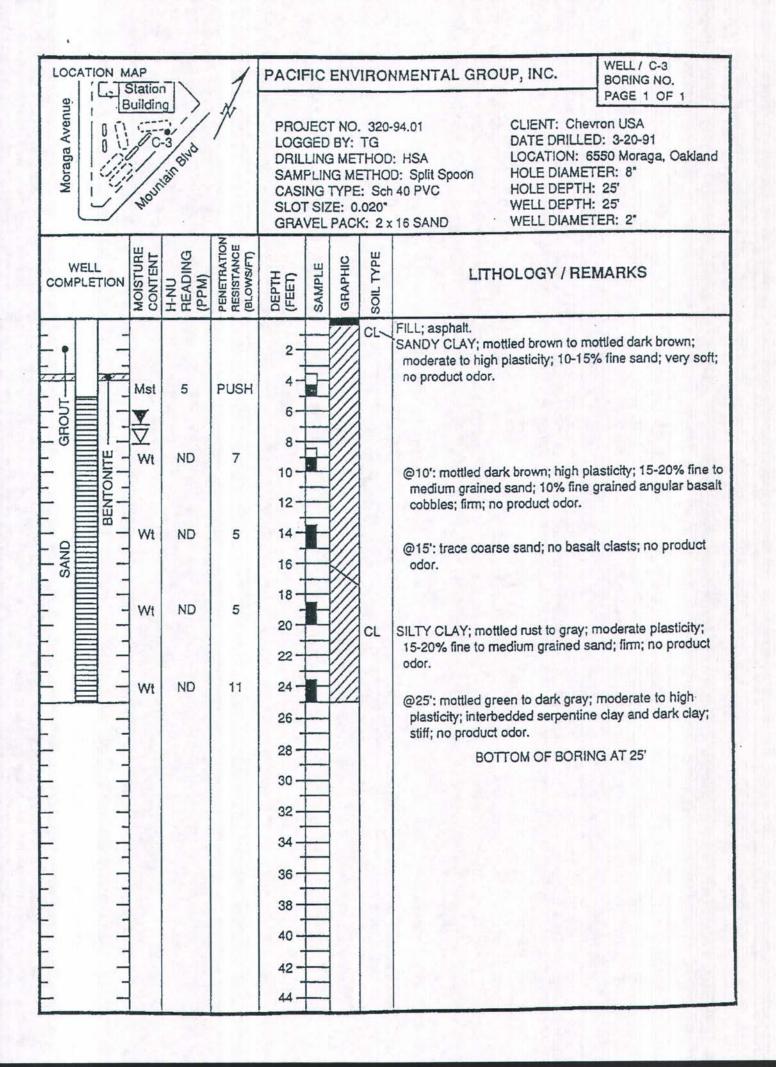
TAME = t-Amyl methyl ether

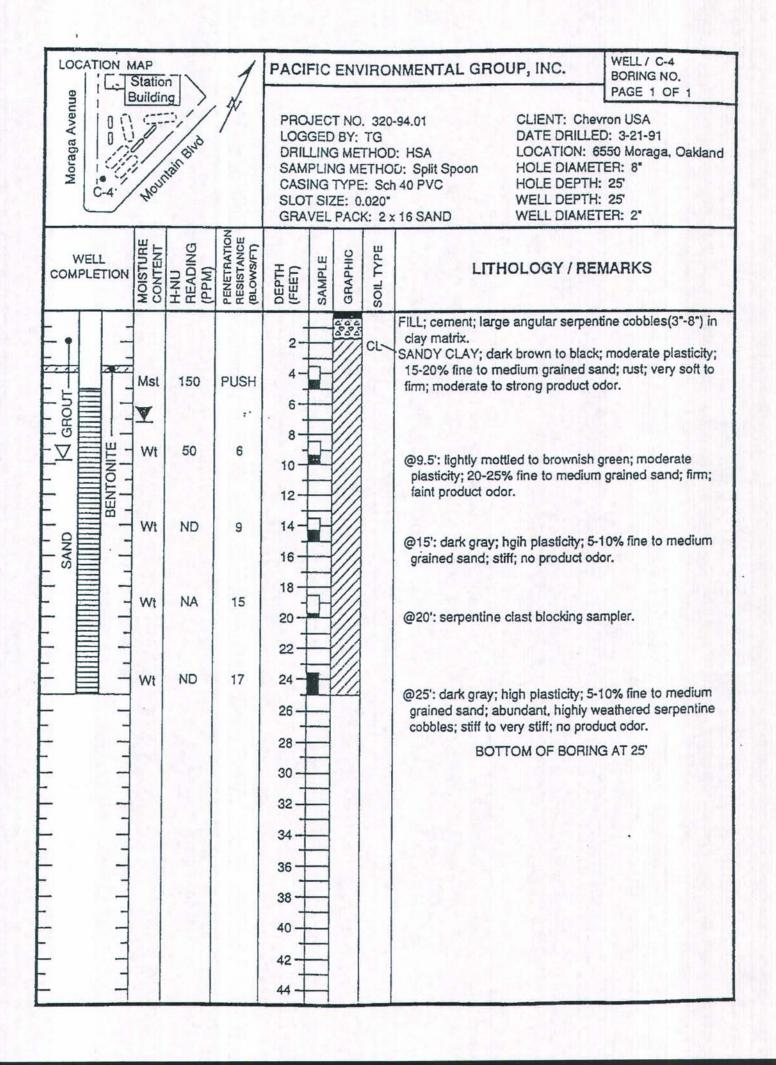
1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane


(μg/L) = Micrograms per liter


-- = Not Analyzed


ANALYTICAL METHOD:


EPA Method 8260 for Oxygenate Compounds

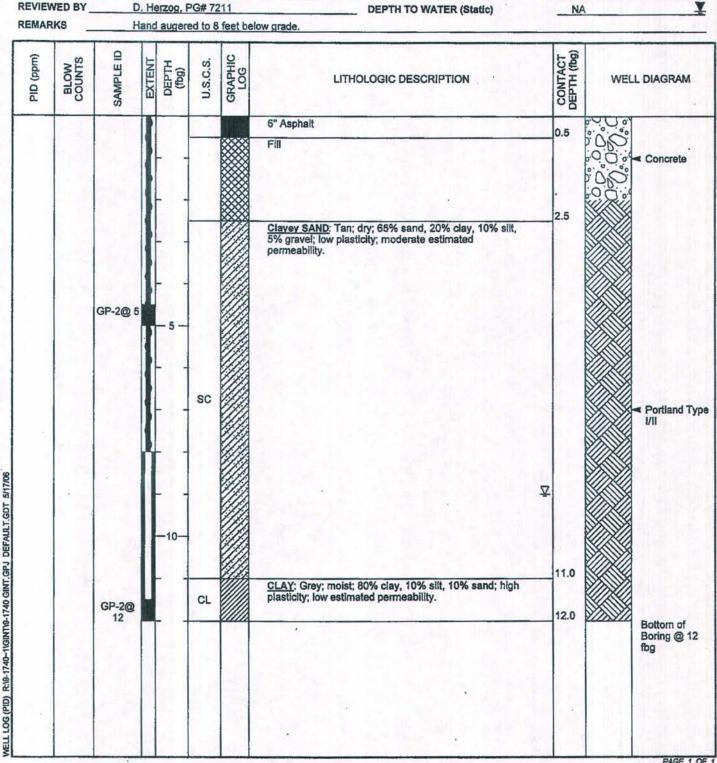
ATTACHMENT 5

Cambria Environmental Technology, Inc. 2000 Opportunity Drive, Suite 110 Roseville, CA Telephone: 916.677.3407 Fax: 916.677.3687

BORING/WELL LOG

PAGE 1 OF

SAMPLE ID	(fbg)	U.S.C.S.	LITHO 6" Asphalt	DLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
P-1@ 5		CL	CLAY: Brown; dry; 50 plasticity; low estimate	0% clay, 40% silt, 10% sand; high sted permeability.	0.5	Concrete
SP-1@ 12		GC CL	estimated permeabil	80% clay, 10% slit, 10% sand; high	7 11.0 12.0	Bottom of Boring @ 12
SP. 1	-1@ 2	-10- -1@ 2	-10- CL	GC estimated permeabile estimated estim	GC CLAY: Grey; moist; 80% clay, 10% slit, 10% sand; high plasticity; low estimated permeability.	estimated permeability. GC CLAY: Grey; moist; 80% clay, 10% slit, 10% sand; high plasticity; low estimated permeability.



Cambria Environmental Technology, Inc. 2000 Opportunity Drive, Suite 110 Roseville, CA Telephone: 916.677.3407

Fax: 916.677.3687

BORING/WELL LOG

CLIENT NAME Chevron Environmental Management Company BORING/WELL NAME GP-2 JOB/SITE NAME Chevron Service Station #9-1740 DRILLING STARTED 21-Apr-06 LOCATION DRILLING COMPLETED 21-Apr-06 6550 Moraga Avenue, Oakland, CA PROJECT NUMBER 61H-1978 WELL DEVELOPMENT DATE (YIELD) NA DRILLER Fisch Environmental **GROUND SURFACE ELEVATION** Not Surveyed **DRILLING METHOD** Hydraulic push TOP OF CASING ELEVATION Not Surveyed **BORING DIAMETER** SCREENED INTERVAL LOGGED BY L. Gearhart 9.0 fbg (21-Apr-06) **DEPTH TO WATER (First Encountered)** REVIEWED BY D. Herzog, PG# 7211 **DEPTH TO WATER (Static)** NA

Cambria Environmental Technology, Inc. 2000 Opportunity Drive, Suite 110 Roseville, CA Telephone: 916.677.3407 Fax: 916.677.3687

BORING/WELL LOG

JOB/SITE NAM LOCATION PROJECT NUM DRILLER DRILLING MET BORING DIAM LOGGED BY REVIEWED BY REVIEWED BY	MBER 6 6 F THOD H ETER 2: D	thevron 550 Mc 1H-197 isch Er lydrauli " Gearh Herzo	Service raga Ave 8 vironme push art g, PG#	Station # enue, Oa ntal	Mand, CA DRILLING COMPLE WELL DEVELOPMI GROUND SURFACT TOP OF CASING E SCREENED INTER' DEPTH TO WATER	DRILLING STARTED 21-Apr-06 DRILLING COMPLETED 21-Apr-06 WELL DEVELOPMENT DATE (YIELD) NA GROUND SURFACE ELEVATION Not Surveyed SCREENED INTERVAL NA DEPTH TO WATER (First Encountered) 7.0) \sum_{\textstyle{\tex
PID (ppm) BLOW COUNTS	SAMPLE ID	EXTENT	(fbg)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	ON	CONTACT DEPTH (fbg)	WELL DI	AGRAM
					6" Asphalt Fill		0.5		oncrete
	GP-3@ 5		CL		CLAY: Dark brown; dry; 50% clay, 40% sil high plasticity; low estimated permeability.	t, 10% sand;	2.5		
			GC		Clayey GRAVEL with sand: Light brown; v gravel, 30% sand, 10% clay, 10% silt; low estimated permeability.	vet; 50% plasticity; high	6.0	Privil	ortland Typ
	GP-3@ 12	-10	CL		CLAY: Dark grey; moist; 80% clay, 10% si high plasticity; low estimated permeability.	lt, 10% sand;	11.0		itom of ring @ 12

Cambria Environmental Technology, Inc. 2000 Opportunity Drive, Suite 110 Roseville, CA

BORING/WELL LOG

Telephone: 916.677.3407 Fax: 916.677.3687

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	GP-4		
JOB/SITE NAME	Chevron Service Station # 9-1740	DRILLING STARTED	21-Apr-06		
LOCATION	6550 Moraga Avenue, Oakland, CA	DRILLING COMPLETED			1112
PROJECT NUMBER	61H-1978	WELL DEVELOPMENT DA		NA	
DRILLER	Fisch Environmental	GROUND SURFACE ELEV	the second secon	Not Surveyed	
DRILLING METHOD _	Hydraulic push	TOP OF CASING ELEVAT	Carlot Partition		1100
BORING DIAMETER _	2"	SCREENED INTERVAL		10,60	
LOGGED BY	L. Gearhart	DEPTH TO WATER (First		7.0 fbg (21-Apr-06)	V
REVIEWED BY	D. Herzog, PG# 7211	DEPTH TO WATER (Statio	and the second s	NA	-
REMARKS	Hand augered to 8 feet below grade	In the found	,	- NO	

PID (ppm) SAMPLE ID CONTACT DEPTH (fbg) BLOW GRAPHIC U.S.C.S. (fbg) EXTENT LITHOLOGIC DESCRIPTION WELL DIAGRAM 6" Asphalt 0.5 < Concrete 2.5 CLAY: Dark brown; dry; 50% clay, 40% silt, 10% sand; medium plasticity; low estimated permeability. CL GP-4@ 5 6.0 Clayey GRAVEL with sand: Brown; wet; 50% gravel, 30% sand, 10% clay, 10% silt; low plasticity; high estimated permeability. GC Ā Portland Type 8.0 CLAY: Grey; dry; 80% clay, 10% silt, 10% sand; high plasticity; low estimated permeability. WELL LOG (PID) R:19-1740-1/GINTI9-1740 GINT.GPJ DEFAULT.GDT 5/17/06 CL GP-4@ 12.0 Bottom of Boring @ 12

Cambria Environmental Technology, Inc. 2000 Opportunity Drive, Suite 110 Roseville, CA 95678 Telephone: 916.677.3407 Fax: 916.677.3687

BORING/WELL LOG

CLIENT NAME Chevron Environmental Management Company BORING/WELL NAME JOB/SITE NAME Chevron Service Station #9-1740 DRILLING STARTED 21-Oct-05 LOCATION 6550 Moraga Avenue, Oakland, CA DRILLING COMPLETED 21-Oct-05 PROJECT NUMBER 61H-1978 WELL DEVELOPMENT DATE (YIELD) NA DRILLER Cascade Drilling, Inc. Not Surveyed **GROUND SURFACE ELEVATION** DRILLING METHOD Hydraulic push TOP OF CASING ELEVATION Not Surveyed BORING DIAMETER SCREENED INTERVAL R. Ratilainen LOGGED BY 10.0 ft (21-Oct-05) **DEPTH TO WATER (First Encountered)**

REVIEWED BY D. Herzog, PG# 7211 **DEPTH TO WATER (Static)** NA

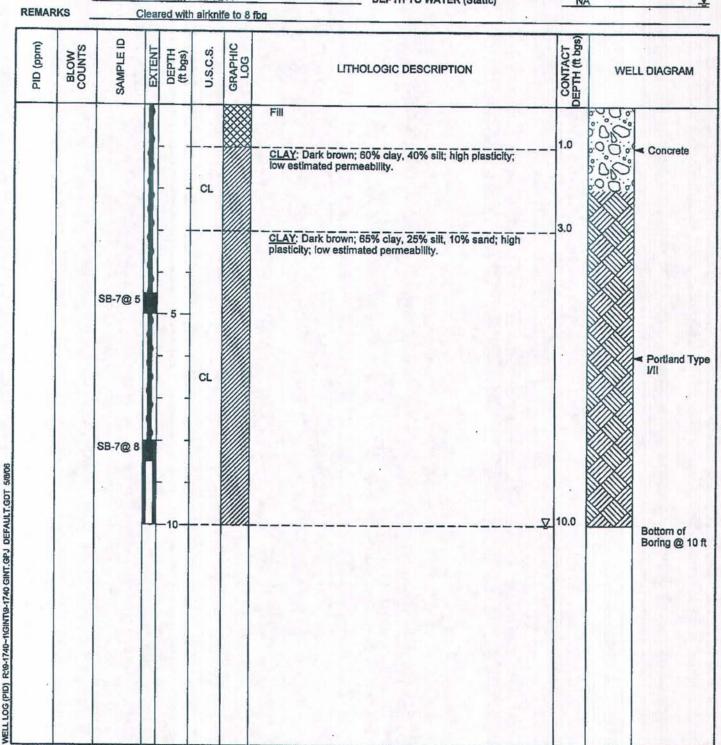
REMARKS Cleared with airknife to 8 fbg CONTACT DEPTH (ft bgs) SAMPLE ID GRAPHIC (mdd) BLOW DEPTH (ft bgs) U.S.C.S. EXTENT LITHOLOGIC DESCRIPTION WELL DIAGRAM PID FIII 1.0 Concrete CLAY: Red brown; 60% clay, 40% sift; high plasticity; low estimated permeability. SB-5@ 5 CL Portland Type SB-5@ R:19-1740-1/GINT\9-1740 GINT.GPJ DEFAULT.GDT 10.0 Bottom of Boring @ 10 ft WELL LOG (PID) PAGE 1 OF

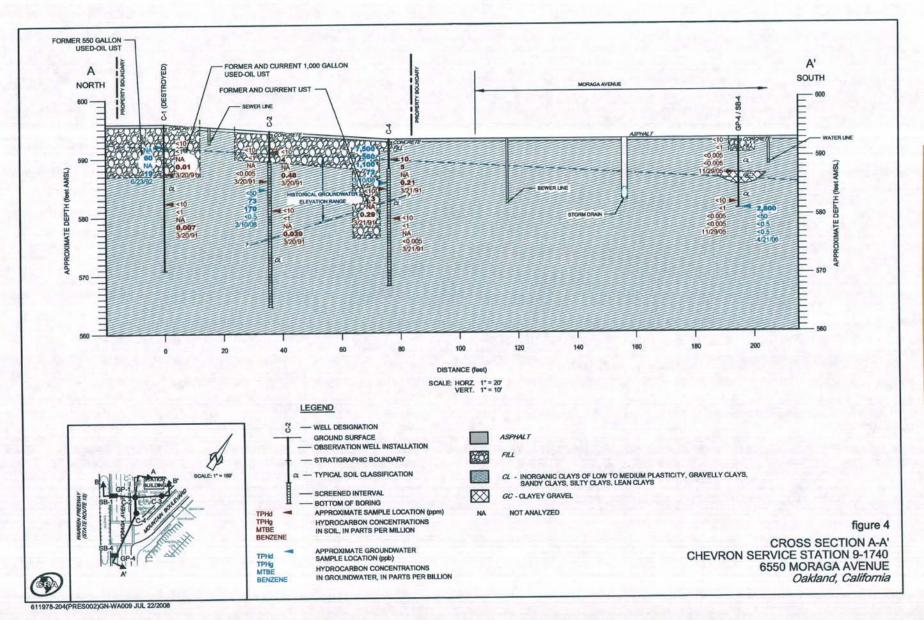
Cambria Environmental Technology, Inc. 2000 Opportunity Drive, Suite 110 Roseville, CA 95678 Telephone: 916.677.3407 Fax: 916.677.3687

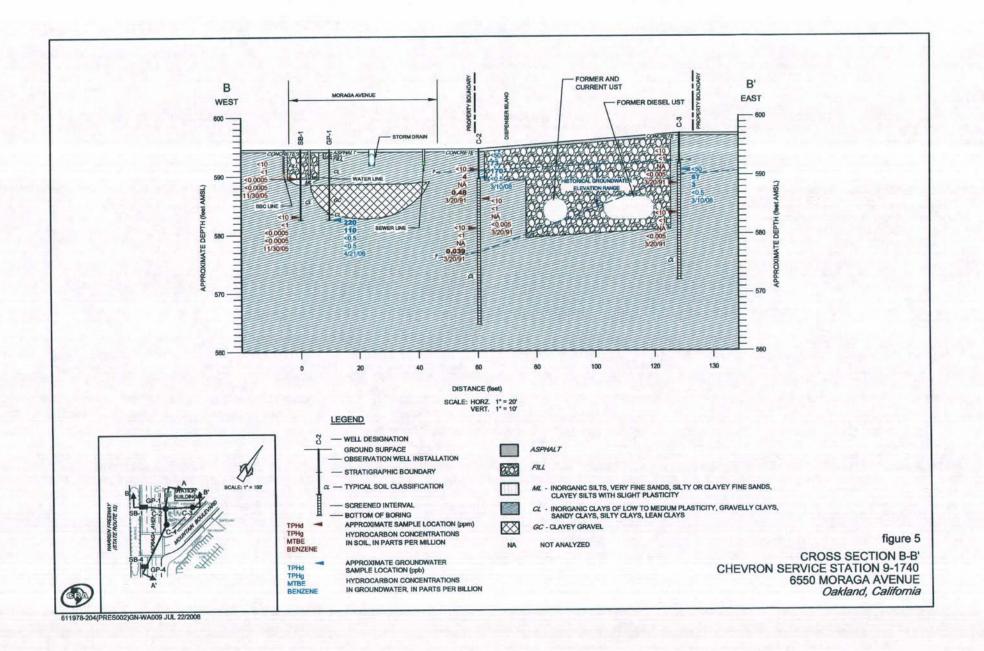
BORING/WELL LOG

CLIENT NAME Chevron Environmental Management Company BORING/WELL NAME JOB/SITE NAME Chevron Service Station # 9-1740 DRILLING STARTED 20-Oct-05 LOCATION 6550 Moraga Avenue, Oakland, CA DRILLING COMPLETED 20-Oct-05 PROJECT NUMBER 61H-1978 WELL DEVELOPMENT DATE (YIELD) NA DRILLER Cascade Drilling, Inc. **GROUND SURFACE ELEVATION** Not Surveyed **DRILLING METHOD** Hydraulic push TOP OF CASING ELEVATION Not Surveyed **BORING DIAMETER** 2" SCREENED INTERVAL LOGGED BY R. Ratilainen DEPTH TO WATER (First Encountered) 10.0 ft (20-Oct-05)

PID (ppm) BLOW COUNTS	SAMPLE ID	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC	LITHOLOGIC DESCRIPTION	CONTACT	DEPTH (ft bgs)	L DIAGRAM
					CLAY: Dark brown; 60% clay, 40% silt; high plasticity; low estimated permeability.	1.0	000	Concrete
	SB-5@ 5	- 5 -	CL					✓ Portland Typ I/II
	SB-6@ 10	-10-				▼ 10.0	0	Bottom of Boring @ 10




Cambria Environmental Technology, Inc. 2000 Opportunity Drive, Suite 110 Roseville, CA 95678 Telephone: 916.677.3407 Fax: 916.677.3687


BORING/WELL LOG

PAGE 1

CLIENT NAME Chevron Environmental Management Company BORING/WELL NAME SB-7 JOB/SITE NAME Chevron Service Station # 9-1740 DRILLING STARTED 20-Oct-05 LOCATION 6550 Moraga Avenue, Oakland, CA DRILLING COMPLETED ____ 20-Oct-05 PROJECT NUMBER 61H-1978 WELL DEVELOPMENT DATE (YIELD) DRILLER Cascade Drilling, Inc. **GROUND SURFACE ELEVATION** Not Surveyed **DRILLING METHOD** Hydraulic push TOP OF CASING ELEVATION Not Surveyed BORING DIAMETER SCREENED INTERVAL NA LOGGED BY R. Ratilainen DEPTH TO WATER (First Encountered) ___10.0 ft (20-Oct-05) REVIEWED BY D. Herzog, PG# 7211 **DEPTH TO WATER (Static)** NA

