RECEIVED

By dehloptoxic at 2:58 pm, Jan 03, 2007

Q3/Q4 2006 BIOVENTING STATUS AND ANNUAL SUMMARY REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

December 2006

Q3/Q4 2006 BIOVENTING STATUS AND ANNUAL SUMMARY REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT P.O. BOX 5381 OAKLAND, CALIFORNIA 94605

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS 2198 SIXTH STREET, SUITE 201 BERKELEY, CALIFORNIA 94710

December 27, 2006

Project No. 2006-17

GEOSCIENCE & ENGINEERING CONSULTING

December 27, 2006

Mr. Jerry Wickham, P.G. Hazardous Materials Specialist Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Third and Fourth Quarters 2006 Bioventing Status and Annual Summary Report,

Redwood Regional Park Service Yard Site, Oakland, California – RO #0000246

Dear Mr. Wickham:

This report discusses activities conducted during the third and fourth quarters of 2006, and summarizes activities related to a bioventing corrective action system at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. A microbial respiration test was conducted during this period, from October 31 to November 2, 2006. This project is being conducted for the East Bay Regional Park District, and follows previous site investigation and remediation activities (conducted since 1993). The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions regarding this report, please contact Mr. Neal Fujita of the East Bay Regional Park District, or contact me directly at (510) 644-3123.

Sincerely,

Richard S. Makdisi, R.G., R.E.A. Principal and Project Manager

Brust S. Mildi

cc: Carl Wilcox - California Department of Fish and Game Neal Fujita - East Bay Regional Park District State of California GeoTracker system (electronic upload)

TABLE OF CONTENTS

Secti	on Pag	e
1.0	PROJECT DESCRIPTION AND SITE HISTORY	1
	Project Description	1 4
2.0	BIOVENTING SYSTEM DESCRIPTION	5
3.0	THIRD AND FOURTH QUARTERS ACTIVITIES AND FINDINGS1	1
	System Operation 1 O&M Activities 1 O&M Findings 1 In-Situ Respiration Test 1 Respiration Test 1	1 2 6
4.0	SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS 20 Summary and Conclusions 20 Proposed Actions 20	0
5.0	REFERENCES22	2

Appendices

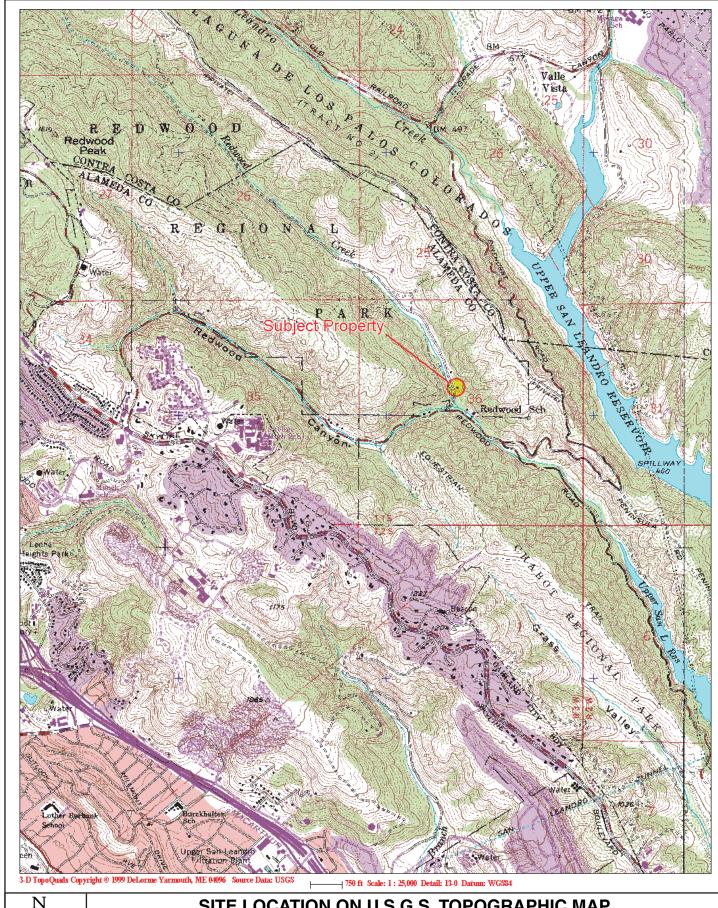
Appendix A Monthly System O&M Checklists

TABLES AND FIGURES

Tables	Page
	Bioventing Well Construction Data Redwood Regional Park Service Yard, Oakland, California
Figure	Page
Figure 1	Site Location on USGS Topographic Map
Figure 2	Full Scale Bioventing System Site Plan
Figure 3	As-Built Vent Well Construction Details
Figure 4	As-Built Vapor Monitoring Point Construction Details
Figure 5	Bioventing Process Flow and Instrumentation Diagram
_	Historical Groundwater Levels Relative to Top of Bioventing Well Screened Intervals
Figure 7	Historical Groundwater Levels Relative to Top of Shallow Vapor Monitoring Point Screened Intervals
	Historical Groundwater Levels Relative to Top of Deep Vapor Monitoring Point Screened Intervals
Figure 9	Respiration Plot Data

1.0 PROJECT DESCRIPTION AND SITE HISTORY

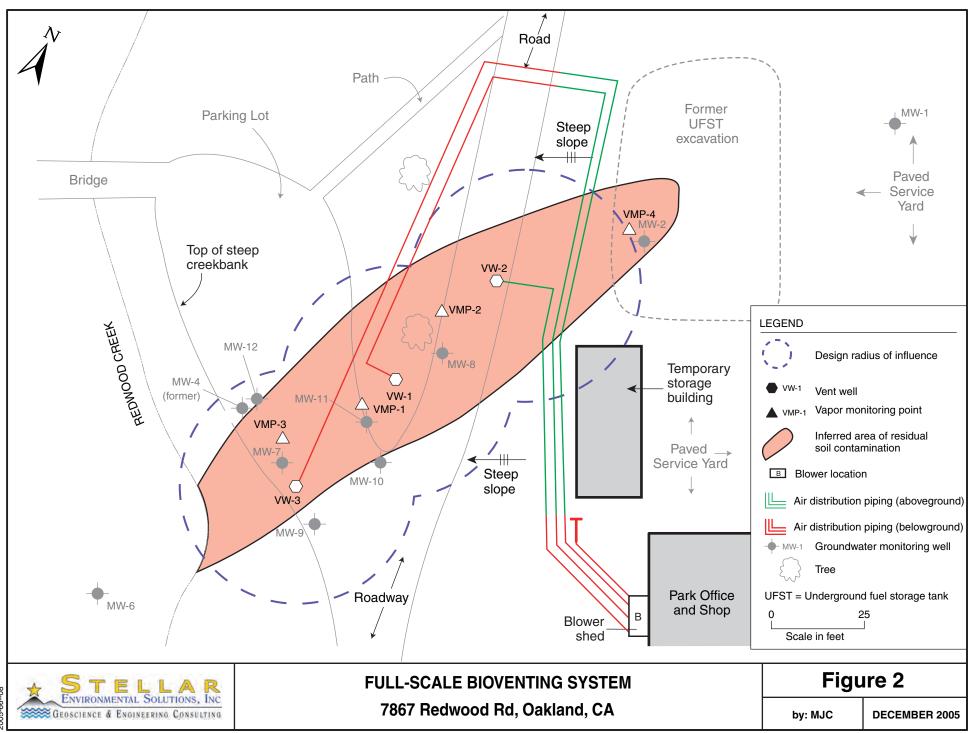
PROJECT DESCRIPTION


The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard, located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both of two former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Health Care Services Agency, Department of Environmental Health (Alameda County Environmental Health) has provided regulatory oversight of the investigation since its inception. Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board – San Francisco Bay Region (Water Board) and the California Department of Fish and Game (CDFG).

Bioventing was selected as an appropriate corrective action to mitigate residual petroleum contamination, based on site conditions, residual contaminant distribution, and results from a previously conducted bioventing pilot test in 2004 (SES, 2004b). The bioventing system was approved by Alameda County Environmental Health (Alameda County Environmental Health, 2005b), and was installed and started up in December 2005 and January 2006 (SES, 2006a). The First Quarter Bioventing Status Report was issued in April 2006 (SES, 2006b). Alameda County Environmental Health responded to that report (in its letter of March 15, 2006) approving the proposed approach of monthly bioventing operations and maintenance (O&M) and reporting.

This report documents the activities conducted in the Third and Fourth Quarter of 2006, and summarizes the soil bioventing system-related activities conducted at the site throughout 2006. A microbial respiration test was conducted during the Fourth Quarter, from October 31 to November 2, 2006.

SITE DESCRIPTION


Figure 1 shows the location of the project site. A site plan showing the full-scale bioventing system is presented on Figure 2.

SITE LOCATION ON U.S.G.S. TOPOGRAPHIC MAP

Redwood Reg. Park Service Yard By: MJC Oakland, CA MARCH 2006 Figure 1

2005-66--08

The site slopes to the west, from an elevation of approximately 564 feet above mean sea level (amsl) at the eastern edge of the service yard to approximately 530 feet amsl at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation.

From east to west, the study area consists of:

- Flat, paved EBRPD service yard with several permanent and temporary buildings/sheds (former UFST excavation area);
- Steep slope (approximately 45 degrees) between the western edge of the service yard and the park entrance road (immediately west of MW-2);
- Hummocky terrain with low vegetation (between MW-8 and MW-11), including a large EBRPD-designated sycamore tree (adjacent to MW-8 and VMP-2);
- Flat, unpaved parking lot (between MW-11 and MW-7); and
- Steep slope (approximately 45 degrees) to Redwood Creek (immediately west of MW-12, MW-7, and MW-9).

SITE HISTORY AND CONTAMINATION

Contaminant corrective actions and investigations have been conducted at the site since 1993. General phases of work previously conducted include:

- Removal of UFSTs and contaminated soil;
- Installation and quarterly monitoring of groundwater monitoring wells;
- Several phases of remedial investigation-oriented exploratory borehole drilling and sampling;
- A correction action feasibility study;
- Two phases of ORCTM injection;
- An evaluation of bioventing feasibility as a corrective action, which included a bioventing pilot test; and
- Installation and startup of the bioventing system in December 2005 and January 2006. After startup, four weekly monitoring/air flow optimization events were conducted.

As detailed in previous SES reports, the available data support the following conclusions:

■ The saturated zone overlies laterally extensive bedrock, which limits downward migration of groundwater contamination.

- The unsaturated zone varies in thickness due to seasonal water level fluctuations of several feet.
- Site chemicals of concern include total petroleum hydrocarbons (TPH)—specifically as gasoline (TPHg) and diesel (TPHd); benzene, toluene, ethylbenzene, and xylenes (BTEX); and methyl *tertiary*-butyl ether (MTBE).
- Residual soil contaminant mass in the unsaturated zone is acting as a long-term source of groundwater contamination; the maximum thickness of the residual soil contamination (during lowest water level periods) is approximately 10 feet.
- Previous ORCTM injection programs resulted in apparent permanent reductions at the peripheral plume margins, but were followed by rebound to pre-injection conditions within the central portions of the plume, corroborating the conceptual model that remaining unsaturated zone soil contamination is continuing to impact groundwater.
- Site conditions appear favorable for bioventing as a corrective action to reduce unsaturated zone soil contamination, especially in the near-source area that is inaccessible to other methods due to the hilly topography.

REGULATORY STATUS AND DATA REPORTING

The lead regulatory agency for the site investigation and remediation is Alameda County Environmental Health, with oversight provided by the Water Board. The CDFG is also involved with regard to water quality impacts to Redwood Creek. The most recent regulatory agency input was Alameda County Environmental Health's approval to install and start up the full-scale bioventing system (Alameda County Environmental Health, 2005b), and to implement the monthly bioventing O&M program and conduct an in-situ respiration test (Alameda County Environmental Health, 2006).

The site is in compliance with the State Water Resources Control Board's GeoTracker requirements for uploading of electronic data and reports. In addition, electronic copies of all bioventing-related reports have been uploaded to Alameda County Environmental Health's online file transfer protocol (ftp) system. Per Alameda County Environmental Health's October 31, 2005 "Miscellaneous Administrative Topics and Procedures" directive, effective January 31, 2006, paper copies of reports are no longer required to be provided to Alameda County Environmental Health.

2.0 BIOVENTING SYSTEM DESCRIPTION

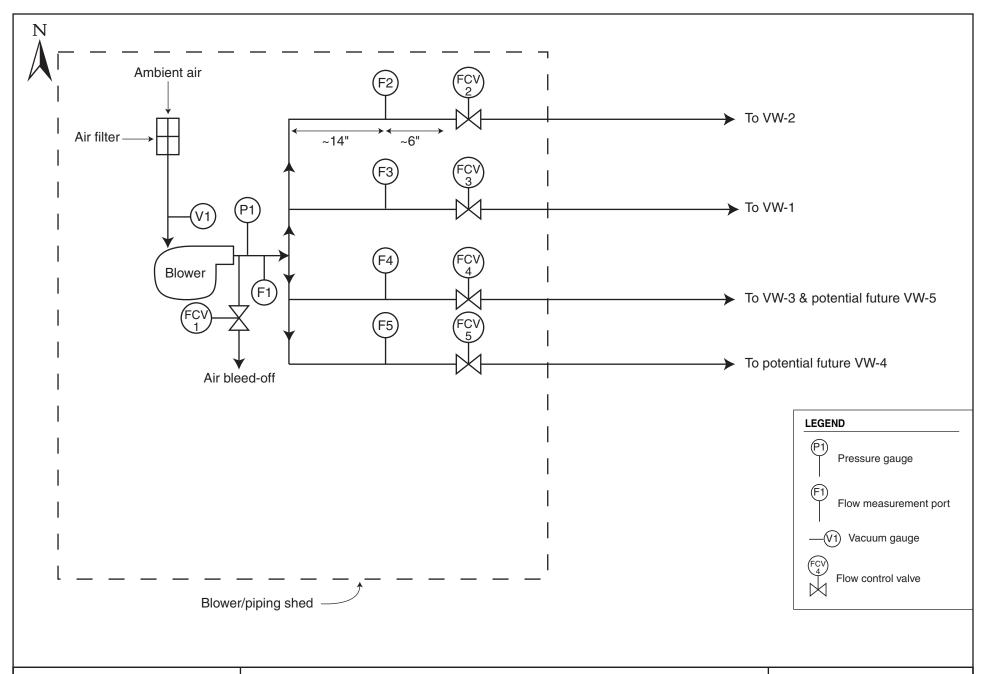
The bioventing system consists of the following components:

- Three vent wells (VWs), screened across the unsaturated zone.
- Four vapor monitoring points (VMPs), each with two nested screened intervals at depths coincident with VW screened intervals.
- A regenerative-type air blower installed in a small shed on the west side of the service yard garage building. The blower is rated at 140 cubic feet per minute (cfm) and exerts a pressure of approximately 1 to 3 pounds per square inch (psi).
- Air distribution piping between the blower and the VW wellheads, including a manifold just downstream of the blower.
- Appurtenant air flow valves, pressure/vacuum gauges, and air sampling ports.

Table 1 summarizes bioventing well construction data. Figure 2 (in the previous chapter) is a site plan showing the layout of the bioventing system. Figures 3 and 4 are as-builts for typical site VMPs and VWs, respectively. Figure 5 is a flow instrumentation diagram for the blower and associated manifold. This blower system was designed and configured based on the pilot test design specifications—i.e., achieving a potential 30-foot radius of influence and a flow rate of 40 standard cubic foot per minute (scfm) to individual VWs under induced pressure conditions.

Table 1
Bioventing Well Construction Data
Redwood Regional Park Service Yard, Oakland, California

Well	Screen Interval Depth (feet)	Filter Pack Sand Depth Interval (feet)
VW-1	6 – 16	4 – 16
VW-2	8 – 18	6 – 18
VW-3	8 – 18	6 – 18
VMP-1	10 – 11.5	9.5 – 12
	14 – 15.5	13.5 – 16
VMP-2	10 – 11.5	9.5 – 12
	14 – 15.5	13.5 – 16
VMP-3	10 – 11.5	9.5 – 12
ľ	12.5 – 14	12 – 14.5
VMP-4	15.5 – 17	15 – 17.5
"	20.5 – 22	20 – 20.5


Note:

All depths are in feet below top of well box (approximately ground surface).

GEOSCIENCE & ENGINEERING CONSULTING

by: MJC

DECEMBER 2005

3.0 THIRD AND FOURTH QUARTERS ACTIVITIES AND FINDINGS

SYSTEM OPERATION

As discussed in the bioventing system installation and startup report (SES, 2006a), the system was started up in January 2006, and four weekly monitoring/air flow optimization events were conducted. During that time, manifold valves were open to all three VWs; however, no measurable air injection occurred in VW-2 (fully flooded well screen) or VW-3 (partially flooded well screen). Blower outlet pressure during that period was set at 50 inches of water.

Since May 2006, the system has operated continuously with VW-1, VW-2, and VW-3 fully open—except for temporary system shutdowns for monthly O&M activities, the in-situ respiration test, and a power outage that resulted in a shutdown for approximately 1 week in December 2006.

O&M ACTIVITIES

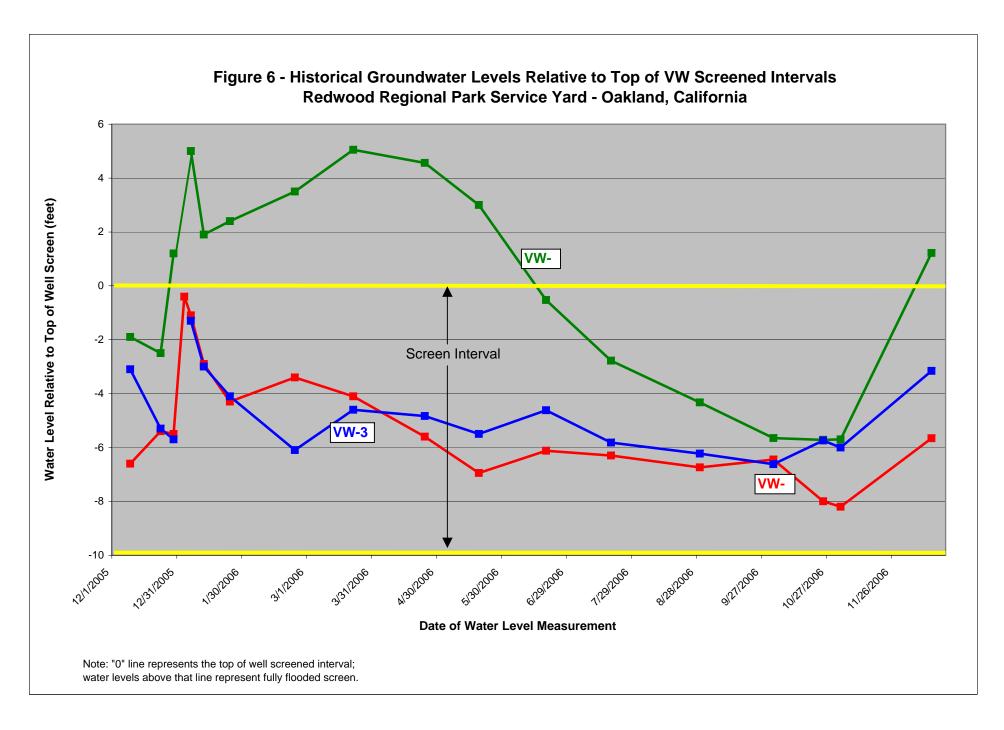
Monthly O&M events were conducted during the third and fourth quarters (on July 19, August 29, October 2, October 25, November 2, and December 14, 2006), with the following objectives:

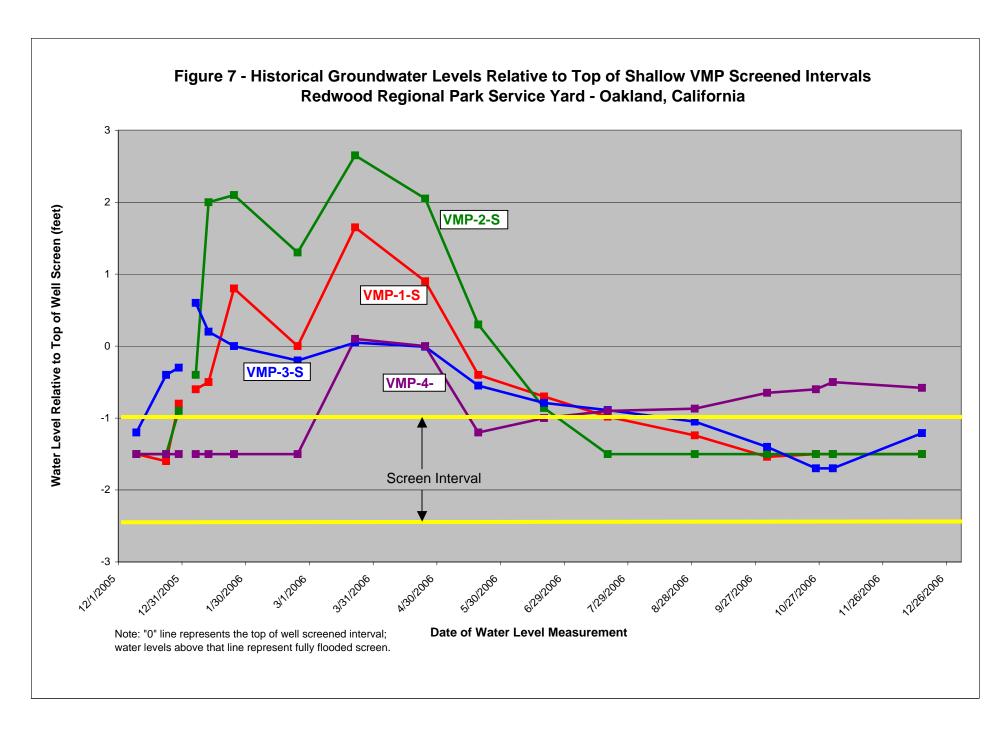
- Confirm that the system was operating within design parameters, with no system problems (e.g., leaks, non-functioning components).
- Conduct preventive maintenance (i.e., clean blower air filter).
- Continue to evaluate air flow through the VW screened intervals.

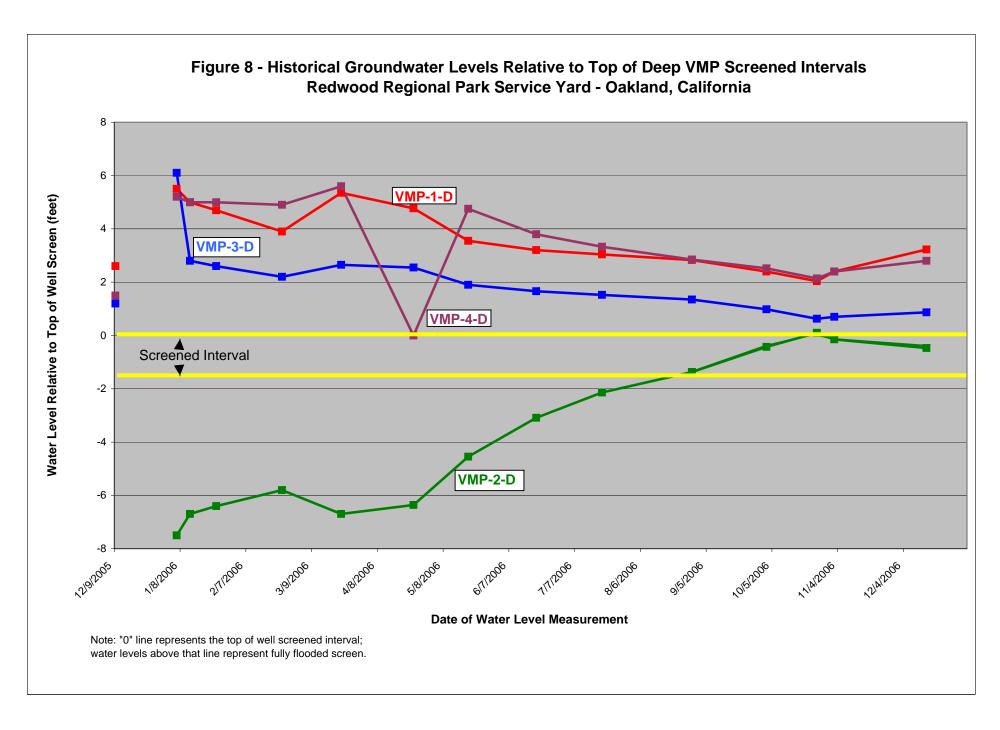
Monthly O&M activities included:

- Measure water levels in all VMPs and VWs.
- Inspect aboveground portions of the system (i.e., blower, air distribution piping, and wellheads) for leaks or structural problems.
- Record blower outlet pressure and inlet vacuum.
- Qualitatively evaluate if air was flowing across the VW intervals. This was achieved by opening individual VW manifold wells while the blower was operating, and looking for a

drop in blower pressure (a drop in outlet pressure when a valve is opened indicates that air flow is occurring).


- Inspect and clean the blower inlet filter.
- Repair VW-1 piping union and tighten all aboveground piping clamps (in the August 2006 O&M event).
- Complete an O&M checklist.


Appendix A contains the completed checklists for the third and fourth quarters.


O&M FINDINGS

The results of the O&M activities are as follows:

- The blower is functioning properly, there are no significant air leaks in the piping system, and the VMP and VW wellheads and air distribution piping are in good condition.
- Water levels are approximately the same in the shallow VMPs as in the deep VMPs (at each nested well location), suggesting that both the deep and shallow VMP well screens are under similar hydraulic conditions.
- Water levels in VWs showed a general increase after the wells were installed, resulting in partially or fully flooded well screens in all VWs. VW-1 and VW-3 showed a water level decrease through May 2006; the water levels in these VWs have fluctuated since then, but have always been below top of screen. Figure 6 shows groundwater levels in VWs relative to the top of the screened interval. The screen in VW-2 was fully flooded as of May 2006, at which point the water level began to lower. Wells VW-1 and VW-3 have had partially exposed screens since installation. Water levels in all of the VWs have begun to increase since the end of November.
- As shown on Figure 7, water levels since March 2006, have begun to drop. As of May 2006, all of the shallow VMP water levels were below the top of well screens.
- As shown on Figure 8, water levels in deep VMPs have been relatively stable since the VMPs were installed, with the exception of VMP-2-D, which has shown an increase since March 2006. Since the deep VMPs were installed, water levels in three of the four deep VMPs have been above the top of the well screen; only VMP-2-D has exposed well screen.
- Air is being injected (and has been since system startup) in the non-flooded portion of the VW-1 screen, but at flow rates less than optimum due to the partially flooded screen. Monthly system monitoring has shown a significant increase in air flow as groundwater lowers.

- No measurable air injection occurred in VW-2 since system startup until mid-October, due to the fully flooded screen. Air flow occurred through the VW-2 screened interval from approximately mid-October through November (until the first significant rains in late November/early December), presumably due to the raised groundwater level and the corresponding saturation of the well screen interval.
- No measurable air injection has occurred in VW-3 since system startup, although that well's screen has been at least partially exposed (not flooded) since installation. SES confirmed (by physical probing) that the screened interval of that well is properly installed (from 8 to 18 feet), and that water is infiltrating into the well (confirming that the annular filter pack was not inadvertently cemented in during well installation). The inability to inject air may be due to residual saturation in the well filter pack and/or surrounding soils, or because the native soils in the borehole annulus may have been smeared during installation.

IN-SITU RESPIRATION TEST

Groundwater elevations in the third and fourth quarters of 2006 lowered an average of 2 feet compared to the previous quarter, which reflects the dry summer season. The lowering of groundwater below the bioventing screened interval zone allowed for a microbial respiration test to be conducted.

RESPIRATION TEST

The initial planned respiration test was delayed because of the unusually high groundwater in the summer months due to the extensive rainfall in the previous winter season. In the past 2 months, bioventing system monitoring indicated that an increased volume of air was being delivered to the subsurface at VW-1 and VW-2.

A respiration test conducted at the site to access the degree of microbial biodegradation activity included: 1) two vapor monitoring points, VMP-1 and VMP-2, with both nested shallow and deep screen intervals; and 2) two vent wells, VW-1 and VW-2, for a total of six measuring points. The test consisted of measuring percent oxygen, percent carbon dioxide, and parts per million (ppm) by volume air of total volatile hydrocarbons (TVH) over a 2-day period.

Only VMP-2 showed a significant decrease in oxygen that would be indicative of microbial activity. The position of VMP-2 (nearly midway between the two vent wells) and its relatively higher elevation likely resulted in increased aeration and microbial activity at this point. The highest TVH measurements were also collected from VMP-2, ranging from 844 to 1,202 ppm.

While only VMP-2 showed response, this is the most important area, as it is the source area with the residual contamination that feeds the groundwater plume and thus this is the critical area where the bioventing must work. The respiration test completed at the site was a 48 hour test designed to evaluate oxygen utilization by indigenous microorganisms as an indicator of their ability to utilize the hydrocarbons in the soil as a food source. Oxygen utilization rates are determined from data obtained during the in-situ respiration test. The rates are calculated as the zero order relationship between percent oxygen and time, typically measuring the percent oxygen decrease within the first 24-hours to estimate a 24-hour utilization rate. Once oxygen concentrations drop below approximately 5 % there is considered to be no more utilization.

To calculate oxygen utilization rates, only the first 24-hour linear portion of the data is used because this represents oxygen utilization when the oxygen supply is not limited, as is the case during active bioventing. To estimate hydrocarbon biodegradation rates from the oxygen utilization rates, a stoichiometric relationship for the oxidation of the contaminant is used. For hydrocarbons, hexane is used as the representative hydrocarbon. The stoichiometric relationship used to determine petroleum degradation rates is:

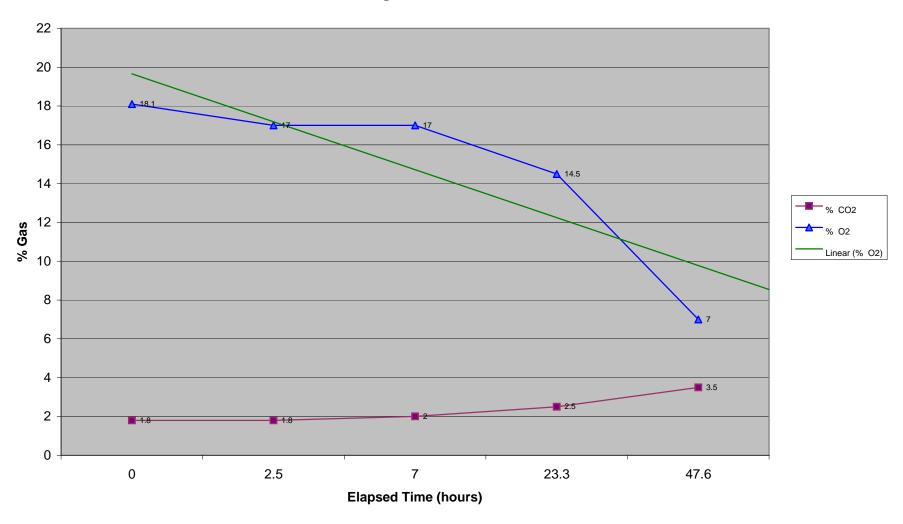
$$C_6H_{14} + 9.5O_2 \rightarrow 6CO_2 + 7H_2O$$

Based on the utilization rates (% oxygen per day), the biodegradation rate in terms of milligrams of hexane-equivalent per kilogram of soil per day is estimated using the above equation. These terms may be derived through either direct measurement or estimation. The oxygen utilization rate, k_0 is directly measured in the in-situ respiration test. The ratio of hydrocarbons to oxygen required for mineralization, C, can be calculated based on stoichiometry (see Equation for hexane) but generally will fall between 0.29 and 0.33. This neglects any conversion to biomass, which probably is small and difficult, if not impossible, to measure.

Figure 9 shows the respiration test results. The oxygen utilization within the first 24- hours is approximately 6%. The oxygen utilization are of the only resiration test derived value, the other terms of the equation used to estimate the Biodegradation rate, K_B, are literature derived, summarized by Leeson and Hinchee (1996), such as the soil bulk density, density of oxygen, and mass of hydrocarbon to oxygen required for mineralization (1/3.5).

Thus is we assume an average oxygen utilization rate of 6% O₂/day and an initial average soil concentration of 6,000 mg TPH/kg soil (based on the average of the soil samples from the source area), the oxygen utilization is related to hydrocarbon degradation by the following equations:

$$C_6H_{14} + 9.5 O_2 \rightarrow 6 CO_2 + 7 H_2O$$


Using the above assumptions, an oxygen utilization rate of 6% O₂/day would correspond to a biodegradation rate of approximately 4.1 mg/kg-day. Given that the initial soil concentration is 6,000 mg/kg, an estimate of cleanup time is calculated as follows:

6,000 mg/kg = 1,500 days = 4 years at 4.1 mg/kg-day

This calculation provides a reasonable estimate of the amount of time necessary to remediate the site. This method tends to underestimate treatment time because k_B decreases over time. At the same time, this calculation overestimates treatment time because it does not consider treatment in the expanded bioreactor. Therefore, the calculation must be coupled with process monitoring to provide field-based evidence—such as reduction in the dissolved hydrocarbon fraction in the Redwood monitoring wells—to gauge whether the site actually is remediated within this time period. Due to widely variable contaminant concentrations in the soil (from a few 100 mg/kg to 8,000 mg/kg), the average biodegradation rate does not reflect actual biodegradation rates throughout the site. Biodegradation rates also may fluctuate with season and as contaminant concentrations decrease. Therefore, process monitoring is an important parameter in determining treatment time.

In-situ respiration testing should be used as the primary indicator for site closure. A good indication that the site is remediated and that final soil sampling can be conducted is when the in-situ respiration rate in the contaminated area is similar to that in the uncontaminated area. In-situ respiration testing to determine remediation success is preferable economically to relying on soil sampling as the sole indicator of site remediation, because it eliminates the high cost of intermediate soil sampling. A 2007 respiration test will be performed to evaluate changes in the apparent oxygen utilization rate.

Figure 9: Respiration Test VMP-2 O₂-CO₂ Trend Plot October 31- November 2, 2006 Redwood Regional Park, Oakland, CA

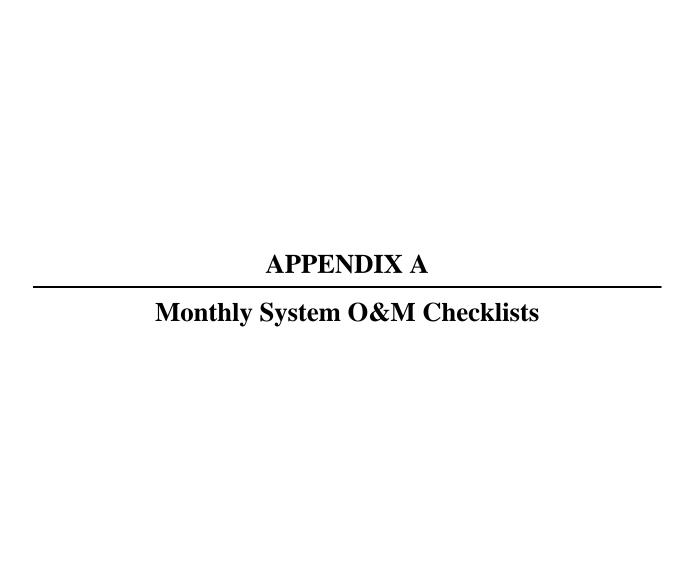
4.0 SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS

This section presents the conclusions and proposed actions with regard to continued operation of the bioventing corrective action system at the Redwood Regional Park Service Yard.

SUMMARY AND CONCLUSIONS

- The blower is operating within design parameters, and there are no physical problems with the blower or air distribution piping.
- High groundwater has resulted in the bioventing wells remaining particularly or fully saturated, thus impeding air flow to the sediments.
- Air flow is occurring through a small portion of the VW-1 screened interval, but at a less-than-optimum rate due to high water level conditions.
- Air flow occurred through the VW-2 screened interval from approximately mid-October through November (until the first significant rains in late November/early December) at which point air flow ceased due to raised groundwater and corresponding saturation of the well screen interval.
- No air flow has occurred through the VW-3 screened interval; a portion of the well screen is below the water level, and the capillary fringe likely is still saturated. An air injection test (conducted at 1 order of magnitude greater pressure than that delivered by the blower) indicated that air is leaking from the well, likely through fittings below grade and near the surface.
- An estimate of biodegradation of approximately 1,500 ppm per year is estimated from the respiration test at VMP-2 based on the oxygen utilization.
- Continued monthly O&M (including water level measurements) will determine whether air injection rates at the VWs will improve.

PROPOSED ACTIONS


EBRPD proposes to implement the following actions with regard to the bioventing program:

■ Continue to conduct monthly system O&M events, including air flow optimization when water level changes and/or air injection rates warrant.

- Continue to evaluate water levels in VWs and VMPs.
- Conduct an in-situ respiration test in 2007, at such time as water levels drop sufficiently to evaluate response in at least the shallow VMP screens, which should occur in late summer to early fall.
- Continue to report on bioventing system progress/activities in quarterly progress reports, and prepare an annual summary report.
- If future O&M events demonstrate the continued absence of air flow through the VW-3 well screen, additional troubleshooting and/or corrective action will be evaluated.

5.0 REFERENCES

- Alameda County Health Care Services Agency, Department of Environmental Health (Alameda County Environmental Health), 2006. Letter approving monthly bioventing O&M and reporting and in-situ respiration test. March 15.
- Alameda County Health Care Services Agency, Department of Environmental Health (Alameda County Environmental Health), 2005a. Letter regarding Alameda County Health's review of SES Bioventing Pilot Test Report. May 25.
- Alameda County Health Care Services Agency, Department of Environmental Health (Alameda County Environmental Health), 2005b. Letter approving installation and implementation of bioventing full-scale system. June 24.
- Leeson, Andrea and Robert E. Hinchee. Principals of Bioventing, Battelle Memorial Institute, 1996.
- Stellar Environmental Solutions, Inc. (SES), 2006a. Bioventing System Installation and Startup Report Redwood Regional Park Service Yard, Oakland, California. February 21.
- Stellar Environmental Solutions, Inc. (SES), 2006b. First Quarter 2006 Bioventing Status Report Redwood Regional Park Service Yard, Oakland, California. April 3.
- Stellar Environmental Solutions, Inc. (SES), 2006c. Second Quarter 2006 Bioventing Status Report Redwood Regional Park Service Yard, Oakland, California. July 5.
- Stellar Environmental Solutions, Inc. (SES), 2004a. Bioventing Feasibility Letter Report Redwood Regional Park Service Yard, Oakland, California. February 6.
- Stellar Environmental Solutions, Inc. (SES), 2004b. Bioventing Pilot Tests Result Report, Redwood Regional Park Service Yard, Oakland, California. October 29.
- Stellar Environmental Solutions, Inc. (SES), 2003. Letter to Alameda County Health Care Services Agency proposing bioventing as a corrective action remedy at Redwood Regional Park Service Yard, Oakland, California. November 6.

Redwood Regional Park Service Yard **Bioventing Operation & Maintenance Checklist Blower and Vent Wells**

Date:	7/19/2006	

	Air Flo	ow (scfm)		llet Vaccum es H₂0)	Blower Outle		Depth to Top of Screen	Water Level	Well Head in
	Before adjustment	After adjustment	Before adjustment	After adjustment	Before adjustment	After adjustment	(ft below TOC)	(ft below TOC)	Good Condition?
Blower (a)	NM	NM	18	18	38	40			
VW-1 ^(b)	NM	NM					5.6	11.90	yes
VW-2 ^(b)	NM	NM					8.4	11.18	yes
VW-3 ^(b)	NM	NM					8.8	14.62	yes

Wells on-line (valve open) at arrival

VW-1, -2 & -3

Wells on-line at departure

VW-1, -2 & -3

Notes:

TOC - Top of Casing of well

NM = Not Measured

Checklist Items

Is any airflow evident through VW-1?		20	inches H₂O drop
(Close all VW valves, set outlet pressure at 40 inches H	₂ 0, then open VW-1 valve only)		
Is any airflow evident through VW-2?		0	inches H ₂ O drop
(Close all VW valves, set outlet pressure at 40 inches H	₂ 0, then open VW-2 valve only)		
Is any airflow evident through VW-3?		0	inches H ₂ O drop
(Close all VW valves, set outlet pressure at 40 inches H	₂ 0, then open VW-3 valve only)		
Any audible air leaks in air distribution piping or VW wellheads?	No.		
Blower filter removed and brushed off? Yes	Blower filter replaced?	No	

⁽a) Air flow measured at sampling port between blower discharge and manifold.
(b) Air flow measured at blower manifold sampling port

Redwood Regional Park Service Yard Bioventing Operations & Maintenance Checklist Vapor Monitoring Points

Date: 7/19/2006

	Depth to Top of Screen (ft below TOC)	Water Level (ft below TOC)	Well Head in Good Condition?
	(It below 100)	(It below 100)	Good Cortaillorrs
VMP-1-Shallow	9.3	10.28	Yes
VMP-1-Deep	13.4	10.36	Yes
VMP-2-Shallow	9.5	DRY	Yes
VMP-2-Deep	13.9	11.76	Yes
VMP-3-Shallow	9.8	10.69	Yes
VMP-3-Deep	12.0	10.48	Yes
VMP-4-Shallow	15.1	16.00	Yes
VMP-4-Deep	20.8	17.47	Yes

TOC= Top of well Casing

Redwood Regional Park Service Yard Bioventing Operation & Maintenance Checklist Blower and Vent Wells

Date:	8/29/2006	3		-					
	Air Flo	ow (scfm)		nlet Vaccum es H ₂ 0)	Blower Outle		Depth to Top of Screen	Water Level	Well Head
	Before adjustment	After adjustment	Before adjustment	After adjustment	Before adjustment	After adjustment	(ft below TOC)	(ft below TOC)	Good Condition?
Blower ^(a)	NM	NM	18	18	40	65			
VW-1 ^(b)	NM	NM					5.6	12.34	yes
VW-2 ^(b)	NM	NM					8.4	12.73	yes
VW-3 ^(b)	NM	NM					8.8	15.03	yes
(b) Air flow me	easured at blower Casing of well	oling port between ler manifold samplir							
Is any airflow	evident through (Close all VW	n VW-1? valves, set outlet p	oressure at 40 i	nches H_20 , then o	pen VW-1 valve	only)	23	inches H ₂ O d	rop
Is any airflow	Is any airflow evident through VW-2? (Close all VW valves, set outlet pressure at 40 inches H ₂ 0, then open VW-2 valve only)								rop
Is any airflow	evident through (Close all VW	n VW-3? valves, set outlet p	oressure at 40 i	nches H_20 , then o	pen VW-3 valve	only)	1	inches H ₂ O d	rop
Any audible a	air leaks in air di	stribution piping or	· VW wellheads	?	no				
Blower filter r	emoved and bru	ushed off?	yes		Blower filter rep	laced?	no		

Redwood Regional Park Service Yard Bioventing Operations & Maintenance Checklist Vapor Monitoring Points

Date: **8/29/2006**

	Depth to Top of Screen (ft below TOC)	Water Level (ft below TOC)	Well Head in Good Condition?
	(It below TOC)	(It below TOC)	Good Condition?
VMP-1-Shallow	9.3	10.54	yes
VMP-1-Deep	13.4	10.57	yes
VMP-2-Shallow	9.5	dry	yes
VMP-2-Deep	13.9	12.53	yes
VMP-3-Shallow	9.8	10.85	yes
VMP-3-Deep	12.0	10.65	yes
VMP-4-Shallow	15.1	15.97	yes
VMP-4-Deep	20.8	17.95	yes

TOC= Top of well Casing

Redwood Regional Park Service Yard Bioventing Operation & Maintenance Checklist Blower and Vent Wells

Date: 10/2/2006 (missed a Sept date)

	Air Flo	ow (scfm)		let Vaccum es H₂0)	Blower Outle		Depth to Top of Screen	Water Level	Well Head in
	Before adjustment	After adjustment	Before adjustment	After adjustment	Before adjustment	After adjustment	(ft below TOC)	(ft below TOC)	Good Condition?
Blower ^(a)	NM	NM	16.5	18	40	40			
VW-1 ^(b)	NM	NM					5.6	12.05	yes
VW-2 ^(b)	NM	NM					8.4	14.05	yes
VW-3 ^(b)	NM	NM					8.8	15.42	yes

Wells on-line (valve open) at arrival 1,2,3, Wells on-line at departure 1,2,3,

Notes:

TOC - Top of Casing of well NM = Not Measured

Checklist Items

Is any airflow evident through VW-1?		20	inches H ₂ O drop
(Close all VW valves, set outlet pressure at 40 inches H ₂ 0), then open VW-1 valve only)		
Is any airflow evident through VW-2?		5	inches H ₂ O drop
(Close all VW valves, set outlet pressure at 40 inches H ₂ C), then open VW-2 valve only)		
Is any airflow evident through VW-3?		1	inches H ₂ O drop
(Close all VW valves, set outlet pressure at 40 inches H ₂ C), then open VW-3 valve only)		
Any audible air leaks in air distribution piping or VW wellheads?	no		
Blower filter removed and brushed off? yes	Blower filter replaced?		no

⁽a) Air flow measured at sampling port between blower discharge and manifold.

⁽b) Air flow measured at blower manifold sampling port

Redwood Regional Park Service Yard Bioventing Operations & Maintenance Checklist Vapor Monitoring Points

Date: 10/2/2006 (missed a Sept date)

	Depth to Top of Screen (ft below TOC)	Water Level (ft below TOC)	Well Head in Good Condition?
VMP-1-Shallow	9.3	10.84	Y
VMP-1-Deep	13.4	11.00	Y
VMP-2-Shallow	9.5	Dry	Y
VMP-2-Deep	13.9	13.47	Y
VMP-3-Shallow	9.8	11.20	Y
VMP-3-Deep	12.0	11.02	Y
VMP-4-Shallow	15.1	15.75	Y
VMP-4-Deep	20.8	18.28	Y

TOC= Top of well Casing

Redwood Regional Park Service Yard Bioventing Operation & Maintenance Checklist Blower and Vent Wells

	Air Flow (scfm)		Blower Inlet Vaccum (inches H ₂ 0)		Blower Outlet Pressure (inches H ₂ 0)		Depth to Top of Screen	Water Level	Well Head in
	Before adjustment	After adjustment	Before adjustment	After adjustment	Before adjustment	After adjustment	(ft below TOC)	(ft below TOC)	Good Condition?
Blower ^(a)	NM	NM	21	18	40	26			
VW-1 ^(b)	NM	NM					5.6	13.60	Yes
VW-2 ^(b)	NM	NM					8.4	14.12	yes
VW-3 ^(b)	NM	NM					8.8	14.54	yes
IOC - Top of	Casing of well								
Checklist Iter	ms evident through		NM = Not Meas	sured			20	inches H ₂ O d	rop
Checklist Iter	evident through				oen VW-1 valve	only)	20	inches H₂O d	rop
Checklist Iter	evident through (Close all VW) evident through	n VW-1? valves, set outlet p	oressure at 40 ii	nches $ extsf{H}_2 extsf{0},$ then op		• •		inches H ₂ O d	•
Checklist Iter Is any airflow Is any airflow	evident through (Close all VW evident through (Close all VW	n VW-1? valves, set outlet p n VW-2? valves, set outlet p	oressure at 40 in	nches $ m H_2O$, then open ches $ m H_2O$, then open ches $ m H_2O$, then open ches $ m H_2O$	oen VW-2 valve	only)	20		rop

Blower filter replaced?

no

Blower filter removed and brushed off?

yes

10/25/2006

Date:

Redwood Regional Park Service Yard Bioventing Operations & Maintenance Checklist Vapor Monitoring Points

Date: 10/25/2006

	Depth to Top of Screen (ft below TOC)	Water Level (ft below TOC)	Well Head in Good Condition?
VMP-1-Shallow	9.3	dry	Y
VMP-1-Deep	13.4	11.36	Y
VMP-2-Shallow	9.5	Dry	Y
VMP-2-Deep	13.9	14.00	Y
VMP-3-Shallow	9.8	dry	Y
VMP-3-Deep	12.0	11.37	Y
VMP-4-Shallow	15.1	15.70	Y
VMP-4-Deep	20.8	18.66	Y

TOC= Top of well Casing

Redwood Regional Park Service Yard Bioventing Operation & Maintenance Checklist Blower and Vent Wells

Date: 11/2/2006 TURNED ON SYSTEM BLOWER AFTER RESPIRATION TEST (10/31-11/2)

Blower filter removed and brushed off? **yes**

	Air Flov	v (scfm)		et Vaccum s H ₂ 0)	Blower Outlet Pressure (inches H ₂ 0)		Depth to Top of Screen	Water Level	Well Head in
	Before adjustment	After adjustment	Before adjustment	After adjustment	Before adjustment	After adjustment	(ft below TOC)	(ft below TOC)	Good Condition?
Blower (a)	NM	NM	0	22	0	26			
VW-1 ^(b)	NM	NM					5.6	13.80	Yes
VW-2 ^(b)	NM	NM					8.4	14.10	yes
VW-3 ^(b)	NM	NM					8.8	14.80	yes

Wells on-line (valve open) at arrival Notes: (a) Air flow measured at sampling port be (b) Air flow measured at blower manifold to too. Too of Casing of well	_	Wells on-line at departure and manifold.	1,2,3	
Checklist Items				
Is any airflow evident through VW-1?			20	inches H ₂ O drop
(Close all VW valves, set of	outlet pressure at 40 inches	s H ₂ 0, then open VW-1 valve or	nly)	
Is any airflow evident through VW-2?			20	inches H ₂ O drop
(Close all VW valves, set of	outlet pressure at 40 inches	s H ₂ 0, then open VW-2 valve of	nly)	
Is any airflow evident through VW-3?			1	inches H ₂ O drop
(Close all VW valves, set of	outlet pressure at 40 inches	s H ₂ 0, then open VW-3 valve of	nly)	
Any audible air leaks in air distribution pi	ping or VW wellheads?	no		

Blower filter replaced?

no

Redwood Regional Park Service Yard Bioventing Operations & Maintenance Checklist Vapor Monitoring Points

Date: 11/2/2006

	Depth to Top of Screen (ft below TOC)	Water Level (ft below TOC)	Well Head in Good Condition?
VMP-1-Shallow	9.3	dry	Y
VMP-1-Deep	13.4	11.00	Y
VMP-2-Shallow	9.5	dry	Y
VMP-2-Deep	13.9	13.75	Y
VMP-3-Shallow	9.8	dry	Y
VMP-3-Deep	12.0	11.30	Y
VMP-4-Shallow	15.1	15.60	Y
VMP-4-Deep	20.8	18.40	Y

TOC= Top of well Casing

Redwood Regional Park Service Yard Bioventing Operation & Maintenance Checklist Blower and Vent Wells

	Air Flow (scfm)		Blower Inlet Vaccum (inches H ₂ 0)		Blower Outlet Pressure (inches H ₂ 0)		Depth to Top of Screen	Water Level	Well Head i
	Before adjustment	After adjustment	Before adjustment	After adjustment	Before adjustment	After adjustment	(ft below TOC)	(ft below TOC)	Good Condition?
Blower ^(a)	NM	NM	18	19	54	40			
VW-1 ^(b)	NM	NM					5.6	11.26	yes
VW-2 ^(b)	NM	NM					8.4	7.18	yes
VW-3 ^(b)	NM	NM					8.8	11.96	yes
Checklist Iter	evident through				1004		20	inches H ₂ O d	rop
		ı VW-1?					20	inches H₂O d	rop
		valves, set outlet p	ressure at 40 i	ncnes H ₂ U, then op	oen VVV-1 valve	only)			
ls any airflow	evident through (Close all VW	n VW-2? valves, set outlet p	ressure at 40 i	nches H_2 0, then op	oen VW-2 valve	only)	0	inches H ₂ O d	rop
ls any airflow	evident through	า VW-3?					0	inches H ₂ O d	rop
	(Close all VW	valves, set outlet p	ressure at 40 i	nches H_20 , then or	en VW-3 valve	only)			
Any audible	air leaks in air di	stribution piping or	VW wellheads	?	no				

12/14/2006

Date:

Redwood Regional Park Service Yard Bioventing Operations & Maintenance Checklist Vapor Monitoring Points

Date: 12/14/2006

	Depth to Top of Screen	Water Level	Well Head in
	(ft below TOC)	(ft below TOC)	Good Condition?
VMP-1-Shallow	9.3	Dry	yes
VMP-1-Deep	13.4	10.17	yes
VMP-2-Shallow	9.5	Dry	yes
VMP-2-Deep	13.9	13.43	yes
VMP-3-Shallow	9.8	11.01	yes
VMP-3-Deep	12.0	11.13	yes
VMP-4-Shallow	15.1	15.68	yes
VMP-4-Deep	20.8	18.00	yes

TOC= Top of well Casing