STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET, BERKELEY, CA 94710 FAX: 510.644.3859 TEL: 510.644.3123

4670 - 100 -TRANSMITTAL MEMORANDUM DATE: JULY 20, 2004 To: ALAMEDA COUNTY HEALTH CARE SERVICES **AGENCY** DEPT. OF ENVIRONMENTAL HEALTH HAZARDOUS MATERIALS DIVISION 1131 HARBOR BAY PKWY, SUITE 250 ALAMEDA, CA 94502 SES-2004-02 FILE: ATTENTION: MR. SCOTT SEERY REDWOOD REGIONAL PARK FUEL SUBJECT: LEAK SITE ☐ UNDER SEPARATE COVER M HEREWITH WE ARE SENDING: ☐ VIA VIA MAIL SECOND QUARTER 2004 GROUNDWATER MONITORING REPORT THE FOLLOWING: FOR REDWOOD REGIONAL PARK SERVICE YARD SITE -OAKLAND, CALIFORNIA (DATED JULY 15, 2004) ☐ FOR YOUR APPROVAL ☐ AS REQUESTED FOR YOUR USE ☐ FOR REVIEW ☐ FOR YOUR FILES ☐ FOR SIGNATURE By: Bruce Rucker COPIES TO: N. FUJITA (EBRPD) C. WILCOX (CA FISH & GAME) R. BREWER (REGIONAL BOARD)

Geoscience & Engineering Consulting

July 16, 2004

Mr. Scott O. Seery - Hazardous Materials Specialist Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject:

Second Quarter 2004 Site Monitoring Report

Redwood Regional Park Service Yard Site - Oakland, California

Dear Mr. Seery:

Attached is the referenced Stellar Environmental Solutions, Inc. (SES) report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health (Alameda County Health), the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes groundwater and surface monitoring and sampling activities conducted in June 2004 (Second Quarter 2004), and makes recommendations for future corrective action measures. Following the conclusion of the previous quarter, the EBRPD and Alameda County Health agreed to proceed with a bioventing pilot test and full-scale bioventing system design, with full scale implementation when the technical feasibility and design specifications are confirmed. Those activities will be reported in separate (from ongoing groundwater and surface water monitoring quarterly reports) technical submittals, with salient summary discussions in ongoing quarterly groundwater monitoring reports.

If you have any questions regarding this report, please contact Mr. Neal Fujita of the EBRPD, or contact us directly at (510) 644-3123.

No. 6814

Sincerely,

Buse M. Pary/ Bruce M. Rucker, R.G., R.E.A.

Project Manager

Richard S. Makdisi, R.G., R.E.A.

Principal

Michael Rugg, California Department of Fish and Game cc:

Roger Brewer, California Regional Water Quality Control Board

Neal Fujita, East Bay Regional Park District

Z-PROJECTS/RRRPD/2004-02-Redwood Year 2004/Reports/Q2-2004/REPORT-Q2-64(firmi).//sc

SECOND QUARTER 2004 SITE MONITORING REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT P.O. BOX 5381 OAKLAND, CALIFORNIA 94605

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

July 16, 2004

Project No. 2004-02

TABLE OF CONTENTS

Section	on	Page
1.0	INTRODUCTION	1
	Project Background Objectives and Scope of Work Historical Corrective Actions and Investigations Related Site Activities Site Description Regulatory Oversight	1
2.0	PHYSICAL SETTING	6
	Site Lithology Hydrogeology	6 10
3.0	Q2 2004 GROUNDWATER AND SURFACE WATER MONITORING EVENT ACTIVITIES	13
	Groundwater Level Monitoring and Sampling Creek Surface Water Sampling	13 15
4.0	ADDITIONAL SOIL AND GROUNDWATER SAMPLING	16
	Creek Bank Sampling Bioventing Pilot Test Well Soil Sampling	16 17
5.0	REGULATORY CONSIDERATIONS	19
	Groundwater Contamination	19 19
6.0	ANALYTICAL RESULTS	21
	May 2004 Creek Bank Sample Analytical Results	25 27
7.0	SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS	32
	Summary and Conclusions Proposed Actions	32 33

TABLE OF CONTENTS (continued)

Section	n		Page
8.0	REFERI	ENCES AND BIBLIOGRAPHY	34
9.0	LIMITA	TIONS	38
Appen	dices		
Appen	dix A	Historical Groundwater Monitoring Well Water Level Data	
Appen	dix B	Groundwater Monitoring Field Documentation	
Appen	dix C	Analytical Laboratory Reports and Chain-of-Custody Records	
Appen	dix D	Historical Analytical Results	

TABLES AND FIGURES

Tables	Page
Table 1	Groundwater Monitoring Well Construction and Groundwater Elevation Data – June 18, 2004 Monitoring Event Redwood Regional Park Corporation Yard, Oakland, California
Table 2	Creek Bank Soil and Groundwater Sample Analytical Results – May 17, 2004 Redwood Regional Park Corporation Yard, Oakland, California
Table 3	Bioventing Pilot Test Well Borehole Soil Samples Analytical Results – June 1 and 2, 2004 Redwood Regional Park Corporation Yard, Oakland, California
Table 4	Groundwater and Surface Water Sample Analytical Results – June 17, 2004 Redwood Regional Park Corporation Yard, Oakland, California
Table 5	Groundwater Well Sample Analytical Results Natural Attenuation Indicators – June 17, 2004 Redwood Regional Park Corporation Yard, Oakland, California
Figures	Page
Figure 1	Site Location Map
Figure 2	Site Plan and Historical Sampling Locations
Figure 3	Geologic Cross-Section Locations
Figure 4	Geologic Cross-Sections A-A' through C-C'
Figure 5	Geologic Cross-Sections D-D' through F-F'
Figure 6	Groundwater Elevation Map – June 17, 2004
Figure 7	May 2004 Creek Bank Soil Sample Results
Figure 8	May-June 2004 Groundwater Results

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both of two former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (Alameda County Health) has provided regulatory oversight of the investigation since its inception. Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (RWQCB) and the California Department of Fish and Game (CDFG).

OBJECTIVES AND SCOPE OF WORK

This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (SES) between April 1 and July 31, 2004:

- Collecting water levels in site wells to determine shallow groundwater flow direction;
- Sampling site wells for contaminant analysis and natural attenuation indicators;
- Collecting surface water samples for contaminant analysis; and
- Conducting soil and groundwater sampling along Redwood Creek.

In the current quarter, SES also implemented a bioventing pilot test, which included installing one bioventing vent well and three vapor monitoring points and conducting a pilot test. This report discusses the borehole soil analytical data collected during the pilot test well installations. A full discussion of the bioventing program will be presented in separate technical reports.

HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS

Previous SES reports have provided a full discussion of previous site remediation and investigations; site geology and hydrogeology; residual site contamination; conceptual model for contaminant fate and transport; and evaluation of hydrochemical trends and plume stability. Section 8.0 (References and Bibliography) of this report provides a listing of all technical reports for the site. The following summarizes the general phases of site work:

- April through June 1993. Two site UFSTs and 600 cubic yards of contaminated soil were removed, and excavation confirmation soil samples were collected.
- September and October 1993. An initial site characterization was conducted, including advancing and sampling 17 exploratory boreholes.
- February 1994. Initial soil and surface water samples collected along Redwood Creek.
- October and November 1994. Six groundwater monitoring wells (MW-1 through MW-6) were installed, and the initial groundwater monitoring event was conducted.
- April 1999. Ten exploratory boreholes (HP-01 through HP-10) were drilled and sampled. The first of two instream bioassessment events was conducted in Redwood Creek.
- January 2000. The second of two instream bioassessment events was conducted in Redwood Creek.
- October 2000. A Site Feasibility Study was conducted.
- **December 2000.** Two groundwater monitoring wells (MW-7 and MW-8) were installed and added to the quarterly groundwater monitoring program.
- September 2001. Three groundwater monitoring wells (MW-9 through MW-11) were installed and added to quarterly groundwater monitoring program. The first of two ORCTM injection phases (as a corrective action) was conducted, including the injection of 3,000 pounds of ORCTM slurry in 44 boreholes.
- July 2002. The second of two ORCTM injection phases (as a corrective action) was conducted, including the injection of 1,000 pounds of ORCTM slurry in 30 boreholes.
- September 2003. Eight exploratory boreholes were installed and sampled.

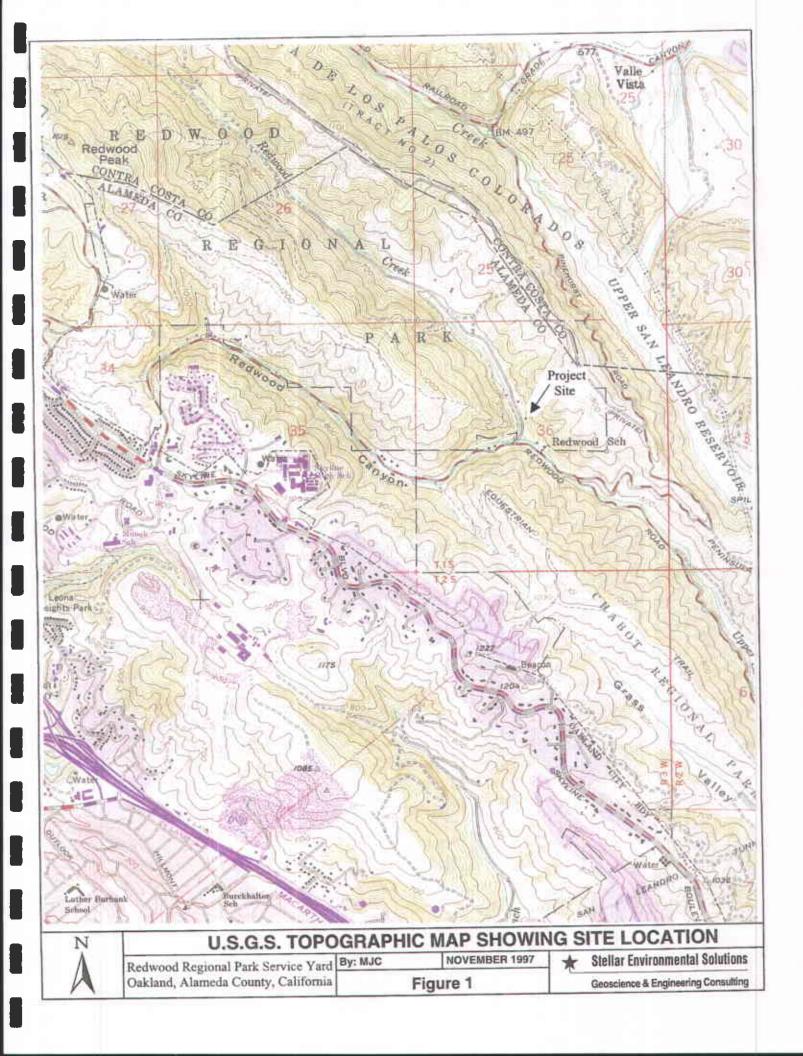
Including the current event, a total of 30 quarterly groundwater monitoring events have been conducted on a quarterly basis since inception (November 1994), and a total of 11 groundwater monitoring wells are currently available for monitoring.

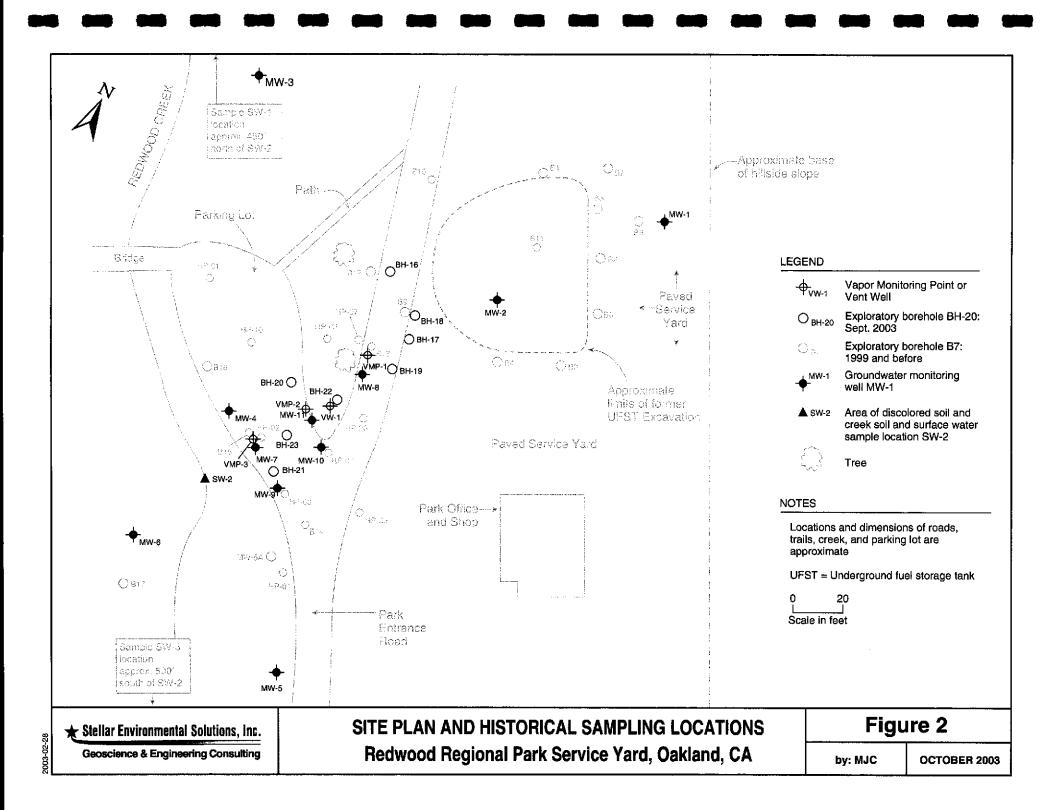
RELATED SITE ACTIVITIES

The EBRPD has proposed to implement bioventing as a corrective action to mitigate residual site contamination. The bioventing approach, approved by Alameda County Health, included the installation (in June 2004) of pilot test bioventing wells (one vent well and three vapor monitoring points), conducting soil sampling during well installations, and measuring water levels in installed wells. Based on the findings, SES has proposed to Alameda County Health that water levels in bioventing wells continued to be measured until they reach their lowest depth, at which time the pilot test will be conducted and the full-scale bioventing system design will be prepared. The pilot test

activities will be documented in a separate technical report. Findings of the pilot test well installations (soil sample analytical results and hydrogeologic information) are presented herein as well, as they supplement the overall site conceptual model.

SITE DESCRIPTION


Figure 1 shows the location of the project site. The site slopes to the west, from an elevation of approximately 564 feet above mean sea level (amsl) at the eastern edge of the service yard to approximately 545 feet amsl at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation. Figure 2 shows the site plan.

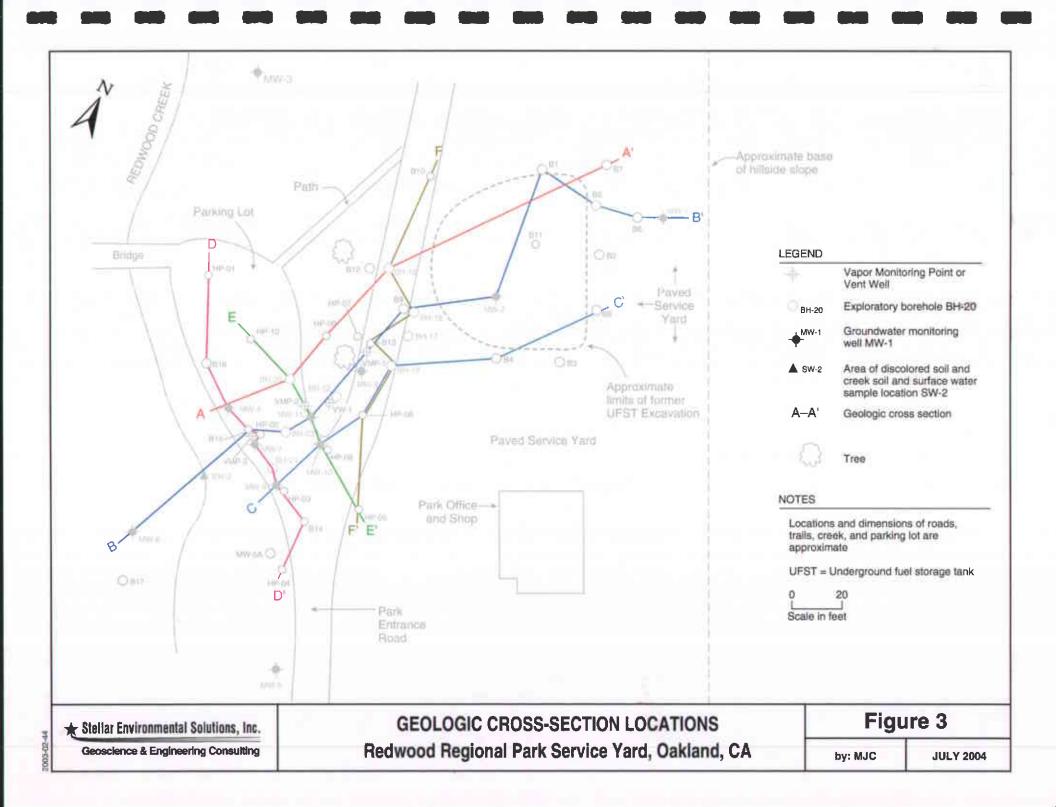

REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is Alameda County Health, with oversight provided by the RWQCB. CDFG is also involved with regard to water quality impacts to Redwood Creek. All workplans and reports are submitted to these agencies. In May 2004, Alameda County Health approved conducting a bioventing pilot test as a corrective action (discussed in separate bioventing-specific technical reports).

Historical Alameda County Health-approved revisions to the groundwater sampling program have included: 1) discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6; 2) discontinuing creek surface water sampling at upstream location SW-1; and 3) reducing the frequency of creek surface water sampling from quarterly to semi-annually (Alameda County Health, 1996). EBPRD has pro-actively elected not to implement the latter-approved revision due to continued concern over potential impacts to Redwood Creek.

Since 2001, Electronic Data Format (EDF) groundwater analytical results, well construction and water level data, and site maps have been successfully uploaded to the State Water Resources Control Board's GeoTracker database, in accordance with that agency's requirements for EDF submittals.

2.0 PHYSICAL SETTING


This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous SES reports have included detailed discussions of site lithologic and hydrogeologic conditions. Alameda County Health requested in a May 2004 e-mail that additional evaluation of site lithology be conducted, specifically the preparation of multiple geologic cross-sections parallel to and perpendicular to the contaminant plume's long axis.

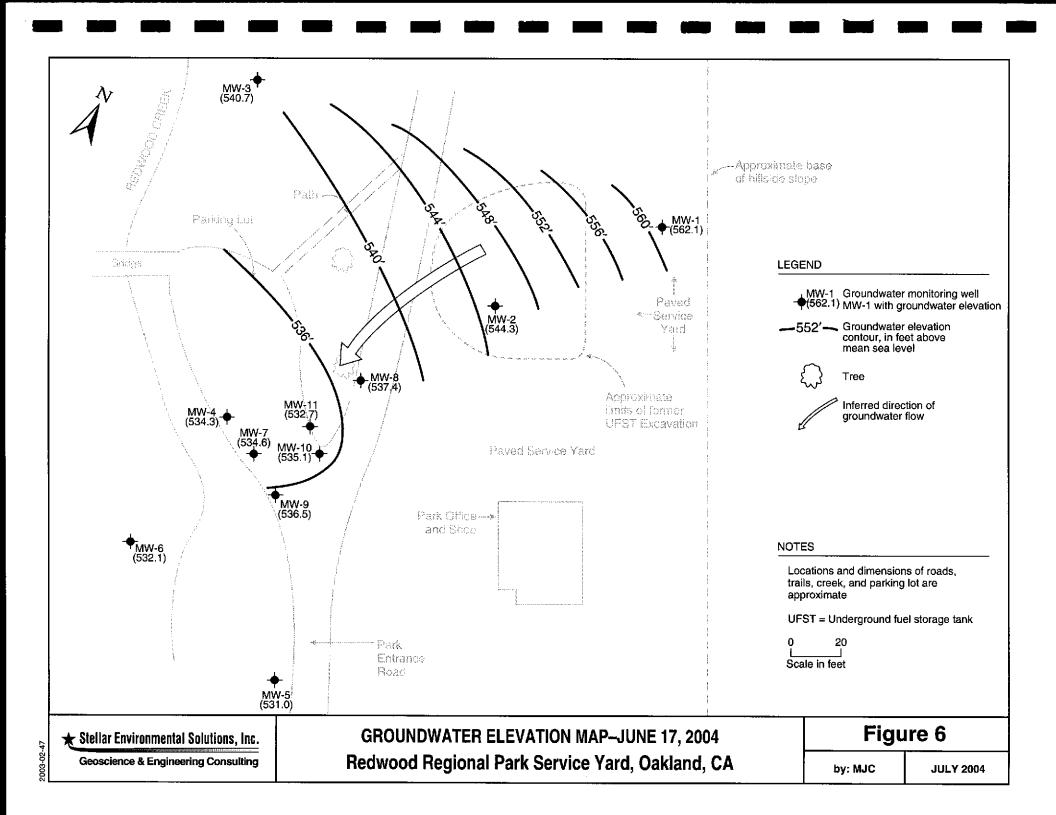
SITE LITHOLOGY

Figure 3 shows the location of geologic cross-sections. Figure 4 shows three sub-parallel geologic cross-sections (A-A' through C-C') along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction). Figure 5 shows three sub-parallel geologic cross-sections (D-D' through F-F') roughly perpendicular to groundwater direction. In each figure, the three sub-parallel sections are presented together for ease of comparison. Due to the small scale, these sections show only lithologic conditions (i.e., soil type and bedrock depth). Additional information on water level depths, historical range of water levels, and inferred thickness of soil contamination) were presented in a previous report (SES, 2004c) for cross-section B-B'.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

A previous SES report (SES, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. That isopleth map and Figures 4 and 5 indicate the following. The bedrock surface slopes steeply (approximately 0.3 feet/foot from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then shows a gentle east-to-west slope in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek. This general gradient corresponds to the

local groundwater flow direction. On the southern side of the plume area, bedrock slopes gently from south to north (opposite of the general topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.


In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 (see Cross Section F-F') and at downgradient location B15/HP-02 (see Cross-Section B-B'). Intervening elevation lows create troughs which trend north-south in the central portion of the plume, and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggest that the bedrock surface may have at one time undergone channel erosion from a paleostream(s) flowing sub-parallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments directly overlie the bedrock surface, it is likely that the hummocky bedrock surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.

HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs), and the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet which is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe.

Figure 6 is a groundwater elevation map constructed from the current event monitoring well static water levels. Table 1 (in Section 3.0) summarizes current event groundwater elevation data. Appendix A contains historical groundwater elevation data. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are generally lower than in the surrounding area. As discussed in the previous sub-section, local groundwater flow direction is likely more variable than expressed by groundwater monitoring well data, due to localized bedrock surface topography.

In the upgradient portion of the site (between well MW-1 and the former UFST source area, in landslide debris), the groundwater gradient is approximately 0.2 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek), the groundwater gradient is approximately 0.1 feet per foot. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.

We assume a site groundwater velocity at 7 to 10 feet per year using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is likely conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to when the USTs were installed in the late 1970s. However, locally, the groundwater velocity could vary significantly. To calculate the specific hydraulic conductivity critical to an accurate site-specific groundwater velocity estimate would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for the occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); therefore, there is little to no observable creek flow at these times.

3.0 Q2 2004 GROUNDWATER AND SURFACE WATER MONITORING EVENT ACTIVITIES

This section presents the creek surface water and groundwater sampling and analytical methods for the most recent groundwater monitoring event (Q2 2004) in June 2004. Groundwater and surface water analytical results are summarized in Section 5.0. Monitoring and sampling protocols were in accordance with the Alameda County Health-approved SES technical workplan (SES, 1998a). Current event activities included:

- Measuring static water levels and field analyzing pre-purge groundwater samples for indicators of natural attenuation (dissolved oxygen, ferrous iron, and redox potential) in all 11 site wells;
- Collecting pre-purge groundwater samples for laboratory analysis of the natural attenuation indicators nitrate and sulfate from monitoring wells MW-3, MW-4, MW-5 (added for this event to supplement recent creek bank grab-groundwater results), MW-7, MW-8, MW-9, MW-10, and MW-11;
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants from wells located within the groundwater plume (MW-2, MW-4, MW-7, MW-8, MW-9, MW-10, and MW-11); and
- Collecting Redwood Creek surface water samples for laboratory analysis from location SW-2 (downstream location SW-3 was not sampled in the current event due to low flow).

Creek sampling and groundwater monitoring/sampling was conducted on June 18, 2004. Creek sampling was conducted by the SES project manager. The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Well construction information and water level data are summarized in Table 1. Appendix B contains the groundwater monitoring field records for the current event.

GROUNDWATER LEVEL MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field analyses were conducted by Blaine Tech Services under the supervision of SES personnel. Groundwater sampling

Table 1
Groundwater Monitoring Well Construction and
Groundwater Elevation Data – June 18, 2004 Monitoring Event
Redwood Regional Park Corporation Yard, Oakland, California

Well	WellDepth	Screened Interval	TOC Elevation	Groundwater Depth (a)	Groundwater Elevation
MW-1	18	7 to17	565.9	3.85	562.1
MW-2	36	20 to 35	566.5	22.23	544.3
MW-3	42	7 to 41	560.9	20.19	540.7
MW-4	26	10 to 25	548.1	13.85	534.3
MW-5	26	10 to 25	547.5	16.51	531.0
MW-6	26	10 to 25	545.6	13.51	532.1
MW-7	24	9 to24	547.7	13.08	534.6
MW-8	23	8 to 23	549.2	11.82	537.4
MW-9	27	12 to 27	549.4	12.93	536.5
MW-10	28	13 to 28	547.3	12.24	535.1
MW-11	26	11 to 26	547.9	15.14	532.7

Notes:

TOC = Top of casing.

Wells MW-1 through MW-6 are 4-inch-diameter; all other wells are 2-inch-diameter.

was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (RWQCB, 1989), and followed the methods and protocols approved by Alameda County Health in the SES 1998 workplan (SES, 1998a).

As the first task of the monitoring event, static water levels were measured using an electric water level indicator. Pre-purge groundwater samples were then collected for field and laboratory analysis of natural attenuation indicators. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, and electrical conductivity) were measured after each purged casing volume to ensure that representative formation water would be sampled. To minimize the potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous quarter).

⁽a) Depths are in feet relative to top of well casing.

⁽b) All elevations are relative to top of well casing, and are expressed as feet above USGS mean sea level. Elevations of wells MW-1 through MW-6 were surveyed by EBRPD relative to USGS Benchmark No. JHF-49. Wells MW-7 through MW-11 were surveyed by a licensed land surveyor using existing site wells as datum.

The well development, purge water, and decontamination rinseate (approximately 100 gallons) from the current event was containerized in the onsite plastic tank. Purge water from future events will continue to be accumulated in the onsite tank until it is full, at which time the water will be transported offsite for proper disposal.

CREEK SURFACE WATER SAMPLING

Surface water sampling was conducted by SES on June 17, 2004. Surface water samples were collected from Redwood Creek location SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination). Downstream sampling location SW-3 (approximately 500 feet downstream of the SW-2 location) was not sampled in the current event due to low-flow conditions. In accordance with a previous Alameda County Health-approved SES recommendation, upstream sample location SW-1 is no longer part of the surface water sampling program.

At the time of sampling, the creek was stagnant (no flow) and water was present locally in pools approximately 6 inches deep. In the vicinity of SW-2 and immediately downstream, where contaminated groundwater discharge to the creek historically has been observed, an orange organic mat (inferred to be iron-fixing bacteria)e was observed growing on the saturated portion of the creek bank. There was a slight visible petroleum sheen, but no petroleum odor was observed. It is likely that the bacteria is utilizing the petroleum as a carbon source, and is therefore a good indicator of the presence of petroleum contamination. A discussion of recent creek bank soil and grab-groundwater sampling is presented in following sections of this report.

4.0 ADDITIONAL SOIL AND GROUNDWATER SAMPLING

Additional soil and grab-groundwater sampling was conducted in the current quarter, for the following two objectives:

- 1. Determine pre-bioventing ("baseline") soil contaminant concentrations at the depth intervals coincident with the newly-installed bioventing wells; and
- 2. Address an Alameda County Health request to evaluate the width and concentrations of contamination at the Redwood Creek bank/groundwater interface, to supplement data available from groundwater well monitoring.

CREEK BANK SAMPLING

The Redwood Creek bank immediately downgradient of the hydrocarbon plume has shown historical evidence of hydrocarbon seepage from the groundwater-surface water interface zone. Historically, there has been visual evidence of contamination in the creek bank (petroleum sheen and/or a thin mat of orange iron-fixing bacteria on the creek bank) in the immediate area of SW-2. To more precisely define this area and collect data more indicative of hydrocarbon concentrations in groundwater nearest the Redwood Creek interface, we collected samples by digging a hole at an angle into the creek bank above the surface water and sampling the resultant infiltrating groundwater.

There are four groundwater monitoring wells (MW-4, MW-7, MW-9, and MW-5) immediately upgradient of Redwood Creek that provide data on the likely width and magnitude of groundwater contamination. These wells are located approximately 20 to 40 feet upgradient of the creek; more proximal wells cannot be installed due to the steep topography. Historical groundwater monitoring has indicated that the groundwater contaminant plume intersects Redwood Creek over an approximately 60-foot-long interval—from near surface water sampling location SW-2 (represented by well MW-4) to a point between wells MW-9 and MW-5. Groundwater contamination was detected at a trace level of 80 μ g/L or less total petroleum hydrocarbons as gasoline (TPHg) in site well MW-5 in some monitoring events prior to 1996. No detectable hydrocarbons were found in well MW-5 between 1996 and 1998. Monitoring was then discontinued until this current event, when MW-5 was resampled and again had no detectable hydrocarbons.

To evaluate if soil and/or groundwater contamination extends a significant distance south of the area of known contamination, in May 2004, SES collected soil and groundwater sampling along the creek bank. As shown on Figures 7 and 8 (in Section 6.0 of this report), we sampled at four locations:

- CB-1: Approximately 15 feet upstream of SW-2 (the most upstream location where evidence of contamination has been observed);
- CB-2: Approximately 15 feet downstream of SW-2;
- CB-3: Approximately 30 feet downstream of CB-2; and
- CB-4: Approximately 30 feet downstream of CB-3 (this location is due west [downgradient] of monitoring well MW-5).

At each location, we utilized the following sampling methodology. A hand auger was used to create an approximately 2-inch-diameter borehole, beginning at the creek bank/creek bed interface, and angled at approximately 45 degrees into the creek bank. Each borehole was advanced until groundwater was encountered (approximately 3 feet into the creek bank). Groundwater entered the boreholes at a depth of approximately 1 foot. It was visually obvious that the water entering the boreholes was groundwater (and not creek surface water) based on the direction from which the water could be seen entering the boreholes (from the creek bank side rather than the creek bed side).

We collected one soil sample from each borehole, at the depth that displayed the most obvious visual/odorous evidence of contamination. In CB-1 (near the area of known contaminated groundwater discharge), the sample was collected at the surface. In the other boreholes, the samples were collected at depths between 1 and 2 feet (corresponding to borehole lengths of 2 and 3 feet). All soil samples were wet (saturated), and appeared to be of the same clayey sand or gravel material that constitutes the upper water-bearing zone at the site. One grab-groundwater sample was collected from each borehole using a new plastic bailer.

Borehole CW-1 exhibited both petroleum sheen/odor and the orange bacterial mat. Borehole CW-2 exhibited only the petroleum sheen and odor, but not the orange bacterial mat. Neither petroleum sheen/odor nor the orange bacterial mat were evident in downstream boreholes CW-3 or CW-4.

Section 6.0 discusses the analytical results of the creek bank sampling.

BIOVENTING PILOT TEST WELL SOIL SAMPLING

Four bioventing wells were installed in June 2004 for a pilot test to evaluate the feasibility of bioventing as a corrective action. Those activities will be discussed in detail in a separate technical report. Soil sampling analytical results conducted during borehole drilling are reported herein as well, as the data contribute to the overall understanding of site contamination.

Figure 2 shows the location of the four wells (VW-1, VMP-1, VMP-2, VMP-3). Two soil samples were collected from each of the four boreholes with 6-inch brass sleeves. All samples were within the interval of soil contamination of the unsaturated zone. Section 6 discusses the analytical results.

5.0 REGULATORY CONSIDERATIONS

The following is a summary of regulatory considerations regarding surface water and groundwater contamination. There are no Alameda County Health or RWQCB cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the RWQCB's San Francisco Bay Region Water Quality Control Plan, all groundwaters are considered potential sources of drinking water unless otherwise approved by the RWQCB, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), RWQCB approval for this exclusion has not been obtained for the site. As summarized in Table 4 (Section 5.0), site groundwater contaminant levels are compared to two sets of criteria: 1) RWQCB Tier 1 Environmental Screening Levels (ESLs) for sites where groundwater is a current or potential drinking water source; and 2) ESLs for sites where groundwater is not a current or potential drinking water source.

As stipulated in the ESL document (July 2003), the ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern, Alameda County Health has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 4 (Section 5.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. EPA, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the RWQCB's ESL document, benthic communities at the groundwater/surface

water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macroinvertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-4, MW-7, and MW-9).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective screening level criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

6.0 ANALYTICAL RESULTS

This section presents the field and laboratory analytical results of the following sampling events conducted in this quarter:

- Redwood Creek bank soil and grab-groundwater sampling (May 2004);
- Bioventing pilot test well installation borehole soil sampling (June 2004); and
- The most recent groundwater and creek surface water monitoring event (June 2004).

Appendix C contains the certified analytical laboratory reports and chain-of-custody records. Appendix D contains a summary of historical groundwater and surface analytical results.

MAY 2004 CREEK BANK SAMPLE ANALYTICAL RESULTS

As discussed in Section 4.0, the objective of the May 2004 creek bank sampling was to provide additional data on the lateral extent and magnitude of contamination at the Redwood Creek/groundwater interface, along the downgradient edge of the contaminant plume. Specifically, the sampling was designed to evaluate if the southern lateral limit of the groundwater contamination is adequately represented by the existing groundwater monitoring wells or, alternatively, if the plume extends farther south than previously inferred. Table 2 summarizes the analytical results of the May 2004 creek bank grab-groundwater samples, which shows concentrations detected in grab-groundwater sample CB-2-GW, located downgradient of well MW-9.

Soil Samples

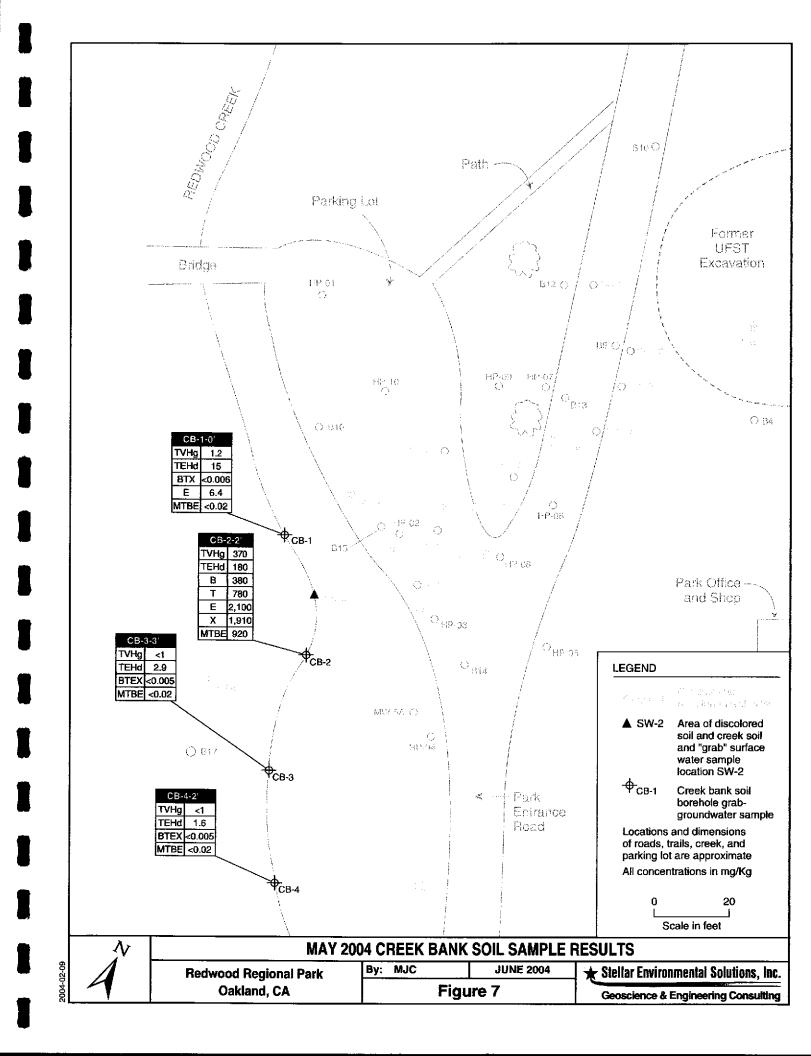
Figure 7 shows the creek bank soil sampling locations and analytical results. Elevated petroleum contamination was present only at location CB-2, just downstream from surface water sampling SW-2 where evidence of creek bank soil contamination historically has been observed. Trace soil contamination was detected in CB-1 and CB-3 (immediately upstream and downstream of CB-2, respectively), indicating the northern and southern limits of the groundwater plume/creek bank interface.

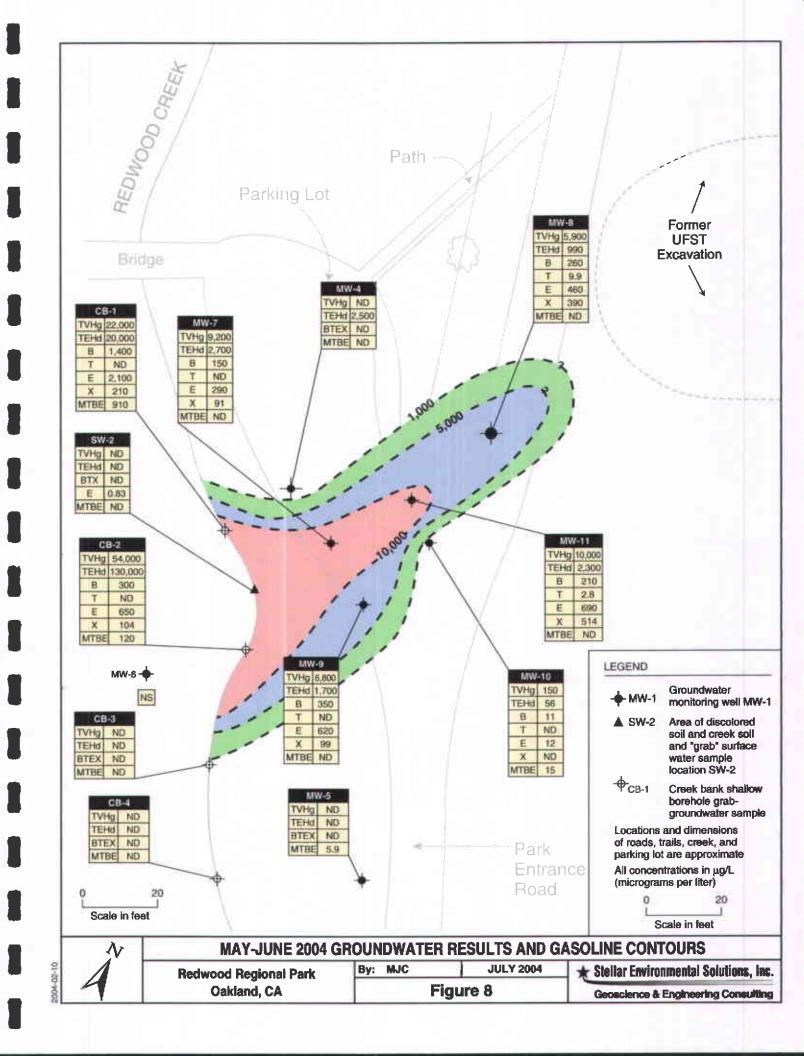
Table 2 Creek Bank Soil and Groundwater Sample Analytical Results – May 17, 2004 Redwood Regional Park Corporation Yard, Oakland, California

	alvilg	mend	Benzene	Toluënë =	Ethyl benzene	Total Xylenes	MEBE
GROUNDWATER SAM	IPLES (conce	ntrations in µg/	L)				•
CB-1-GW	22,000	20,000	1,400	< 5.0	2,100	210	910
CB-2-GW	54,000	130,000	300	< 10	650	104	120
CB-3-GW	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	< 2.0
CB-4-BW	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	< 2.0
SOIL SAMPLES (conce	ntrations in m	g/kg)				·	
CB-1-0°	1.2	15	< 5.6	< 5.6	6.4	< 11.2	< 22
CB-2-2'	370	180	380	780	2,100	1,910	920
CB-3-3'	< 1.1	2.9	< 5.4	< 5.4	< 5.4	< 10.8	< 22
CB-4-2'	< 1.0	1.6	< 5.1	· < 5.1	< 5.1	< 10.2	< 20

Notes:

MTBE = Methyl tertiary-butyl ether.


TEHd = Total extractable hydrocarbons - diesel range (equivalent to total petroleum hydrocarbons - diesel range).


TVHg = Total volatile hydrocarbons - gasoline range (equivalent to total petroleum hydrocarbons - gasoline range).

Groundwater Samples

Figure 8 shows the creek bank groundwater sampling locations and analytical results. The data support the following conclusions.

- The creek bank grab-groundwater samples represent the uppermost portion of the saturated interval, several feet upgradient of the creek itself.
- The lateral extent of groundwater contamination along the creek bank/groundwater interface is approximately 60 feet long, as evidenced by both the analytical results and visual observations during sampling. The northern limit appears to be north (upstream) of creek surface water sampling location SW-2 (approximately downgradient of well MW-4, which in recent events has shown no detectable contamination. The grab-groundwater sample CB-2 represents the highest concentration detected in the creek bank samples; it is downgradient from well MW-7 and the 1999 grab-groundwater sampling location HP-02 (in the area of MW-7), which had the highest detectable hydrocarbon concentrations at the site to date. The southern limit of groundwater contamination is between creek bank samples CB-2 and CB-3,

Approximately 45 feet downstream of SW-2. This distribution concurs with the limits of the groundwater contaminant plume, as indicated by the June 2004 groundwater well sampling data. This indicates that the existing groundwater monitoring well network adequately constrains the lateral limits of the groundwater plume at the creek bank.

- Petroleum concentrations in the creek bank grab-groundwater samples were significantly higher than recent and historical creek surface water samples, even at surface water sampling location SW-2 where maximum creek surface water concentrations have been detected. This is likely due to contaminant dilution of surface water samples.
- Grab-groundwater samples commonly display greater concentrations than groundwater well samples, due to the adsorbed-phase contaminant contribution in unfiltered grab samples. However, it is unlikely that the contaminant concentration variance results from the sampling methodology. It is more likely that groundwater concentrations are indeed greater at the creek bank/groundwater interface, representing a "slug" of higher contamination that has migrated to and has accumulated at that interface. In addition, the creek bank grabgroundwater samples represent the uppermost portion of the saturated interval, which is typically the most contaminated portion of an aquifer with petroleum compounds. It is possible that groundwater well sample concentrations may be an average of higher and lower concentrations that might vary vertically across the saturated interval.
- Historical groundwater analytical results have generally shown diesel concentrations to be approximately 1 order of magnitude below gasoline concentrations. The creek bank groundwater samples show diesel concentrations approximately equal to or greater than gasoline concentrations. This is consistent with the inferred "slug" of contamination discussed above, and the less volatile diesel component of the contamination may be accumulating, while the more volatile gasoline component is reduced in concentration via volatilization and/or flushing by the creek surface water.

BIOVENTING PILOT TEST WELL INSTALLATION BOREHOLE RESULTS

Four bioventing pilot test wells were installed on June 1 and 2, 2004. The wells included one vent well (VW-1) and three vapor monitoring points (VMP-1 through VMP-3). A full discussion of the bioventing pilot test will be presented in separate, bioventing-specific technical reports. The following summarizes the analytical results of soil samples collected during well installations, as these analytical results are relevant to the overall understanding of the groundwater monitoring program. Table 3 summarizes the analytical results (for contaminants only) of the borehole soil samples. Analytical results of those soil samples that were analyzed for bioventing-related physical and chemical characteristics will be reported in the bioventing-specific technical report.

Table 3
Bioventing Pilot Test Well Borehole Soil Samples
Analytical Results – June 1 and 2, 2004
Redwood Regional Park Corporation Yard, Oakland, California

Borehole Soil Sample LD.	Sampling Depth (feet)	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	The second secon
VMP-1-10'	10.5'	< 1.0	< 1.0	< 0.0052	< 0.0052	< 0.0052	< 0.0104	< 0.021
VMP-1-14.5'	14.5'	2,100	42	< 0.5	< 0.5	15	4.0	< 2.0
VMP-2-10.5'	10.5'	3,500	1,000	1.4	< 1.3	42	197	< 5.0
VMP-2-14.5'	14.5'	3,200	650	8.0	< 0.5	40	7 7	< 2.0
VMP-3-10.5'	10.5'	< 1.1	1.2	< 0.0055	< 0.0055	< 0.0055	< 0.011	< 0.022
VMP-3-14.5'	14.5'	1,400	470	< 0.5	< 0.5	8.9	5.3	< 2.0
VW-1-10'	10'	< 0.98	1.1	< 0.0049	< 0.0049	< 0.0049	< 0.098	< 0.02
VW-1-15.5'	15.5'	38	1.5	< 0.025	< 0.025	0.26	0.13	< 0.10

Notes:

MTBE = Methyl tertiary-butyl ether.

TEHd = Total extractable hydrocarbons - diesel range (equivalent to total petroleum hydrocarbons - diesel range).

TVHg = Total volatile hydrocarbons - gasoline range (equivalent to total petroleum hydrocarbons - gasoline range).

All concentrations reported in milligrams per kilogram (mg/kg).

In the upper sampled zone (approximately 10 to 11 feet deep), elevated soil contamination was detected only in the VMP-1 location (approximately 10 feet from the vent well VW-1). At the other three locations, the absence of elevated contaminant concentrations in the upper soil samples constrain the upper depth of residual soil contamination.

In the lower sampled zone (approximately 14 to 15 feet deep), elevated soil contamination was detected in all the wells except VMP-3, which is the most downgradient VMP, approximately 35 feet from vent well VW-1. These data confirm the existing model that a significant mass of residual soil contamination exists in the seasonally-unsaturated zone (above the zone that appears be saturated year-round).

Consistent with previous findings, diesel-range hydrocarbon concentrations were generally much lower than gasoline-range hydrocarbons, especially when petroleum concentrations exceeded 1,000 milligram per kilogram (mg/kg).

CURRENT EVENT GROUNDWATER (WELL) AND SURFACE WATER RESULTS

Table 4 summarizes the contaminant analytical results of the current monitoring event, and Table 5 summarizes natural attenuation indicator results from the current event. Figure 8 shows the current event contaminant analytical results and the inferred limits of the gasoline groundwater plume. In the current event, well MW-5 was sampled for the first time since, to re-confirm that this well constrains the southern limit of the plume.

Current quarter site groundwater contaminant concentrations exceed their respective groundwater ESLs (for both cases in which the drinking water resource <u>is</u> and <u>is not</u> threatened)—with the exception of toluene and MTBE, which do not exceed their respective values for groundwater that is not a drinking source. Site groundwater contaminant concentrations also exceed all surface water screening levels, with the exception of toluene and MTBE.

Consistent with recent historical well sampling events, maximum or near maximum groundwater contaminant concentrations were detected in wells in the downgradient portion of the contaminant plume, including the most downgradient wells MW-7 and MW-9. Minimal contamination was detected in upgradient well MW-2 and crossgradient (to the south) wells MW-10 and MW-5.

Prior to this groundwater monitoring event, well MW-5 had not been sampled since 1998 due to the absence of contamination in the 1996-1998 sampling events. To supplement the creek bank grabgroundwater sampling conducted in this event (see following discussion), well MW-5 was sampled in the current event. The only contaminant detected was MTBE, at a concentration just above the most conservative ESL criterion. These data confirm that the southern limit of the groundwater contaminant plume, in the downgradient portion of the plume, is constrained to the north of MW-5. The trace concentration of MTBE and the absence of other fuel contaminants is expected, given that MTBE is known to have greater lateral dispersivity than other fuel contaminants. As discussed below, the current event groundwater data correlate well with contemporaneous creek bank grabgroundwater sampling results.

The surface water sample collected from location SW-2 had a detectable concentration of only ethylbenzene (0.83 μ g/L), which does not exceed the established regulatory surface water screening level.

CURRENT EVENT NATURAL ATTENUATION PARAMETERS RESULTS

Pre-purge groundwater samples from selected wells were collected and analyzed for indicators of the natural biodegradation of the hydrocarbon contamination or "natural attenuation." Petroleum hydrocarbons require molecular oxygen to efficiently break down the ring structure of specific constituents. Although biodegradation of hydrocarbons can occur under anaerobic conditions,

Table 4 Groundwater and Surface Water Sample Analytical Results – June 17, 2004 Redwood Regional Park Corporation Yard, Oakland, California

	TVHg	тена	Benzene	Toluene	Ethyl- benzene	Fotal Xylenes	100 100 100 100 100 100 100 100 100 100
GROUNDWATER SAM	IPLES	· · · · · · · · · · · · · · · · · · ·					
MW-2	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	15
MW-4	< 50	2,500	< 0.5	< 0.5	< 0.5	< 0.5	3.5
MW-5	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	5.9
MW-7	9,200	2,700	150	< 0.5	290	91	< 2.0
MW-8	5,900	990	260	9.9	460	390	< 10
MW-9	6,800	1,700	350	< 2.5	620	99.2	< 10
MW-10	150	56	11	< 0.5	12	< 0.5	15
MW-11	10,000	2,300	210	2.8	690	514	< 10
Groundwater ESLs (a)	100 / 500	100 / 640	1.0 / 46	40 / 130	30 / 290	13 / 13	5 / 1,800
REDWOOD CREEK SU	JRFACE WA	TER SAMPLE	S				
SW-2	< 50	< 50	< 0.5	< 0.5	0.83	< 0.5	< 2.0
Surface Water Screening Levels (a, b)	500	100	46	130	290	13	8,000

Notes:

MTBE = Methyl tertiary-butyl ether.

TEHd = Total extractable hydrocarbons - diesel range (equivalent to total petroleum hydrocarbons - diesel range).

All concentrations reported in micrograms per liter (µg/L) (equivalent to parts per billion).

hydrocarbon biodegradation is greatest under aerobic conditions. As a result of the demonstrated degradability of petroleum hydrocarbons, remediation by natural attenuation has been found to be a viable option for addressing many hydrocarbon plumes. Under favorable conditions, this approach has the potential to eliminate the need for active remediation.

However, such natural attenuation only occurs if the concentration of hydrocarbons is low enough to facilitate the infiltration of natural oxygen through the interstitial space around the contamination, supporting the microorganisms for which the contamination is a food source (thus "attenuating" it).

⁽a) RWQCB Environmental Screening Levels (drinking water resource threatened/not threatened) (RWQCB, 2004).

⁽b) Lowest of chronic and acute surface water criteria published by the State of California, U.S. Environmental Protection Agency, or U.S. Department of Energy.

TVHg = Total volatile hydrocarbons - gasoline range (equivalent to total petroleum hydrocarbons - gasoline range).

Table 5
Groundwater Well Sample Analytical Results
Natural Attenuation Indicators – June 17, 2004
Redwood Regional Park Corporation Yard, Oakland, California

Sample I.D.	Nitrate (as Nitrogen) (mg/L)	Sulfate (mg/L)	Dissolved Oxygen (mg/L)	Ferrous Iron (mg/L)	Redox Potential (milliVolts)
MW-1	NA	NA	3.2	0	257
MW-2	NA	NA	1.1	0	225
MW-3	< 0.05	37	1.0	0	264
MW-4	0.33	55	10.9	0	267
MW-5	NA	NA	1.2	0	268
MW-6	NA	NA	1.5	0	267
MW-7	< 0.05	1.4	1.0	5.0	210
MW-8	< 0.05	61	1.1	2.0	206
MW-9	< 0.05	66	1.5	0	222
MW-10	< 0.05	62	5.6	0	251
MW-11	< 0.05	7.5	1.3	4.2	198

Notes:

mg/L = Milligrams per liter (equivalent to parts per million).

NA = Not analyzed.

The concentration in soil or groundwater above which natural attenuation is unlikely to take place is still the subject of various research studies. In general, biodegradation of petroleum hydrocarbons in groundwater has a significant role in creating a stable plume and minimizing groundwater contaminant plume extent and concentrations over time.

Conditions that can render natural attenuation an infeasible or unacceptable remedial strategy include: a nearby sensitive receptor; sufficient residual contamination (in soil or groundwater) such that it is a continued input to groundwater contamination; unfavorable conditions for microbial activity; and/or insufficient distance for the plume to stabilize before migrating to a receptor of concern.

Evidence of the historical occurrence and potential for future occurrence of biodegradation can be obtained from analysis of groundwater for specific biodegradation-indicator parameters, including dissolved oxygen, oxidation-reduction potential (ORP), and general mineral analyses.

Dissolved Oxygen

Dissolved oxygen (DO) is the most thermodynamically-favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least 1 to 2 mg/L of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation.

Current monitoring event DO concentrations ranged from 1.2 mg/L to 5.6 mg/L, with one well (MW-4) at 10.9 mg/L. The elevated DO concentration in this well may be a function of localized supersaturation resulting from the previous ORCTM injection. There was no clear correlation between DO and hydrocarbon concentrations in the current event; however, in general, monitoring wells upgradient and crossgradient of the plume had higher DO concentrations than monitoring wells within and downgradient of the plume. This trend is to be expected when oxygen is currently limiting hydrocarbon biodegradation.

Oxidation-Reduction Potential

The oxidation-reduction potential (ORP, or redox potential) of groundwater is a measure of electron activity, and is an indicator of the relative tendency of a solute species to gain or lose electrons. The ORP of groundwater generally ranges from -400 millivolts (mV) to +800 mV. In oxidizing (aerobic) conditions, the ORP of groundwater is typically positive; in reducing (anaerobic) conditions, the ORP is typically negative (or less positive). Therefore, groundwater ORP values inside a hydrocarbon plume are typically less than those measured outside the plume.

For this monitoring event, for the four monitoring wells within the 1,000 μ g/L TVHg contour (MW-7, MW-8, MW-9, and MW-11), ORP values ranged from +198 mV to +222 mV. Other monitoring wells showed positive ORP values ranging from +225 mV to +268 mV. Therefore, the ORP values showed the expected general inverse correlation with hydrocarbon concentrations during this event. The data also indicate that aerobic conditions likely exist outside the plume, and are less aerobic within the plume, suggesting that oxygen depletion is occurring due to the presence of hydrocarbon contamination.

General Mineral Analyses

An inverse relationship between general minerals—including ferrous iron, nitrate, and sulfate—and hydrocarbon concentrations is indicative of the occurrence of anaerobic biodegradation. Specifically, anaerobic degradation of hydrocarbon compounds is indicated when DO concentrations are low (less

than 1.0 mg/L), ORP is low (less than 50 mV), and general mineral concentrations are below background.

In the current site monitoring event, for the four wells within the 1,000- μ g/L TPHg contour, nitrate was not detected and ferrous iron concentrations were generally higher than for other monitoring wells. The results are also consistent with the DO and ORP data, supporting the conclusion that oxygen is currently limiting the more efficient aerobic biodegradation process. Sulfate concentration showed no discernable trend, indicating that anaerobic biodegradation is probably within the iron-reducing redox environment rather than the sulfate-reducing environment.

These results indicate that some degree of aerobic degradation is likely occurring within the plume, predominantly on the lateral edges. Due to the substantial mass of residual soil contamination in the seasonally-unsaturated zone, it is unlikely that natural attenuation is contributing to a significant reduction in groundwater contaminant mass. The recently implemented bioventing pilot test program (reported in separate technical documents) will determine if bioventing is a feasible strategy for reducing residual soil contamination to the point that natural attenuation will become effective for reducing groundwater concentrations.

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory QC samples (e.g., method blanks, matrix spikes, surrogate spikes, etc.) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

7.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical findings.

SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted approximately on a quarterly basis since November 1994 (30 events in the original wells). The existing well layout fully constrains the lateral extent of groundwater contamination, and the vertical (lowest) limit is very likely the top of the siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock upward through the capillary fringe.
- Current site groundwater contaminant concentrations exceed their respective groundwater ESLs (both for cases in which the drinking water resource is and is not threatened)—with the exception of toluene and MTBE, which exceed only the more conservative criterion. Site groundwater contaminant concentrations also exceed all surface water screening levels, with the exception of toluene and MTBE.
- Historical and current event monitoring data indicate that the groundwater contaminant plume has become disconnected from the former source, and has migrated well beyond the former source area (represented by well MW-2) toward Redwood Creek. The area of groundwater contamination in excess of screening level criteria appears to be no greater than 120 feet long by 60 feet wide (at Redwood Creek). The lateral well MW-4 showed significantly reduction of hydrocarbon contamination since the ORC™ injections. Maximum groundwater concentrations for the majority of the contaminants may have reached the most downgradient wells (just upgradient of the creek), and the plume may have stabilized (maximum site contaminant concentrations have not increased in recent sampling events). The lateral extent of the groundwater contaminant plume as illustrated by groundwater monitoring well data concurs with recent downgradient (near the creek bank) grab-groundwater and soil sampling data.
- The only contaminant detected in the current event site surface water (creek samples) was ethylbenzene; however, the detected contaminant concentration is not above the established regulatory surface water screening levels.

- Hydrochemical (contaminant and natural attenuation parameter) trends indicate that the two ORCTM injection phases (in September 2001 and July 2002) were generally successful in increasing DO levels and reducing groundwater contaminant concentrations, but additional seasonal dissolved-phase hydrocarbon input eventually causes contaminant concentrations within the centerline of the plume to rebound. Residual groundwater concentrations exceed groundwater and surface water screening-level criteria, and the active life of the previously-injected ORCTM product has been exceeded.
- The available data indicate that continued contaminant mass input is occurring within the centerline portions of the plume and potentially from sources upgradient of MW-8, possibly from residual light non-aqueous phase liquid in the capillary fringe/unsaturated zone. Any additional corrective action to prevent contaminated groundwater discharge to Redwood Creek would need to address the potential sources of continuing mass input to the plume.
- Four grab-groundwater samples were collected in May 2004 along the Redwood Creek bank surface water/groundwater interface zone by boring back at a angle into the creek bank. The analytical results of the creek bank grab-groundwater samples show significant concentrations detected in grab-groundwater sample CB-2-GW, located downgradient of well MW-9. The hydrochemical results from the four samples along the creek show results that concur with the conceptual model and that generally fit the observed limits of the orange algae degradation zone.
- Four bioventing pilot test wells (one vent well and three vapor monitoring points) were installed in June 2004, and will be used in a pilot test to determine the feasibility and likely efficacy of bioventing as a corrective action. Those activities will be discussed in a separate technical report, to be submitted after the pilot test is conducted.

PROPOSED ACTIONS

EBRPD proposes to implement the following actions to address regulatory concerns:

- Continue the quarterly program of creek and groundwater sampling and reporting; and
- Implement the proposed bioventing pilot test and prepare a full-scale system design, when water levels drop sufficiently to expose lower screened intervals or when water levels appear to have reached their lowest level. The pilot test will be followed by design of a full-scale bioventing system, if the pilot test data support implementing bioventing.

8.0 REFERENCES AND BIBLIOGRAPHY

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons, 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons, 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons, 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons, 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons, 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons, 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons, 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons, 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons, 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 August 1995), Redwood Regional Park Service Yard, Oakland, California.

 November 13.
- Parsons, 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California.

 March 2.

- Parsons, 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons, 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons, 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons, 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons, 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region, 2004. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. February.
- Stellar Environmental Solutions (SES), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- SES, 2004b. Bioventing Feasibility Letter Report Redwood Regional Park Service Yard, Oakland, California. February 6.
- SES, 2004c. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.
- SES, 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- SES, 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- SES, 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.
- SES, 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- SES, 2003e. Letter to Alameda County Health Care Services Agency proposing bioventing as a corrective action remedy at Redwood Regional Park Service Yard, Oakland, California. November 6.

- SES, 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- SES, 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- SES, 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- SES, 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- SES, 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- SES, 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- SES, 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- SES, 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- SES, 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- SES, 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- SES, 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- SES, 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- SES, 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.
- SES, 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. October.

9.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD 7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	
TOC Elevation	565.90	566.50	560.90	548.10	547.50	545.60	547.70	549.20	549.40	547.30	547.90	
Date Monitored		Groundwater Elevations (feet above mean sea level)										
September 18, 1998	563.7	544.2	540.8	534.5	531.1	545.6					A British Company	
April 6, 1999	565.2	546.9	542.3	535.6	532.3	532.9	HALL STATE	10 年 共產黨 10 年 - 11 年 - 12 日			***************************************	
December 20, 1999	562.9	544.7	541.5	534.9	531.2	532.2			PURCUE.			
September 28, 2000	562.8	542.7	538.3	532.2	530.9	532.0						
January 11, 2001	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1			押牌 概念	
April 13, 2001	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8	A STATE OF THE STA			
September 1, 2001	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6		Male Sand		
December 17, 2001	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2	
March 14, 2002	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6	
June 18, 2002	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3	
September 24, 2002	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7	
December 18, 2002	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8	
March 27, 2003	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6	
June 19, 2003	562.3	544.9	541.5	534.8	531.3	532.3	534.9	538.2	536.9	535.7	533.2	
September 10, 2003	561.6	542.1	537.9	533.8	530.8	531.9	533.7	535.6	535.6	534.1	531.9	
December 10, 2003	562.4	542.7	537.6	533.7	530.9	531.9	533.7	535.2	535.5	533.8	531.7	
March 18, 2004	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8	
June 17, 2004	562.1	544.3	540.7	534.3	531.0	532.1	534.6	537.4	536.5	535.1	532.7	

TOC = Top of well Casing

WELLHEAD INSPECTION CHECKLIST

*** **	tellar				Date	6/19	104	
Address _	Redwood	Regio	ral	Park		6/19 oaklan Ac	<u>a</u>	·····
Number _	040617.	- Acl		Tech	nician	Ac		· · · · · · ·
Vell ID	Well inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not inspected (explain below)	Repair Order Submilled
Well ID MW-1	X							
MW-2	×							
MW-3	X							
MW-2 MW-3 MW-4	<u> </u>							-
MW-5	X							
MW-6	X.							
MW-7	X							
WM-8	X							
MW-9	V							
MW-10	X_							
WW-11	X							
<u></u>						1		
£								
OTES:								
							-	
<u> </u>				, <u>,</u>				

BLAINE TECH SERVICES, INC.

BAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

www.blainelech.com

WELL GAUGING DATA

Project#	040617-	AclDate_	6/17/04	Client Stellar	
Site	Redwood	Regional	Park	Oakland	
		Thickg	ness Volume of		<u> </u>

					3.5.1			<u> </u>	
	Well		Depth to	Thickness of	Volume of Immiscibles			Survey	
	Size	Sheen /	Immiscible	V.	Removed	Depth to water	Depth to well	Point: TOB	
Well ID	(in.)	Odor		Liquid (ft.)		(ft.)	bottom (ft.)	or TÖC	
WCH 1D	(112-)	0401	Digitio (IIII)	Diquib (11)	(*****)	(4.7)			
1-MM	4					3,85	19.25	TOL	
MW-2	4					22.23	38.90	1	
MW-3	4					20.19	45.10		·
MW-4	4					13.85	26.40		
MW-5	4					16.51	26.96		•
MW.6	24					13.51	27.45		
MW-7	2			E		13.08	25.40		
MW-8	2					11.82	22.30		
nw-9	2					12.93	26.40		
MW-10	2					12.24	28.35		
MW-1(2					15.14	30.27	¥	
					_				1

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

WILL	MON	TORING	DA	TA	SHEFT
VV P. L.		$\mathbf{I}_{\mathbf{U}}$	תע		

ject #:	040617	-Act		Client: Stellar					
ampler:				Start Date:	6	117/04			
Nell I.D.:	mw-1			Well Diam	eter:	2 3	(4)	6 8	
	ll Depth: լ	9.25		Depth to W	ater	3.85			
3efore:		After:		Before: After:					
epth to	Free Produc	t:		Thickness of Free Product (feet):					
ference		PVC	Grade	D.O. Meter	(if r	eq'd):		YSI HACH	
'urge Metho	Disposable Bail Middleburg Electric Submer Avalysis (Gals.) X		Other: _	Disposable E Extraction I Dedicated To	Port ubing	<u>Diameter Multiplier</u> 0.65 1.47			
	Temp.		Conductivity		<u> </u>				
Time	(°F or °C)	pН	(mS or µS)	Turbidity (N	TU)	Gals. Rem	oved	Observations	
1 14								Fe2+: 0 mg/L	
1									
1									
						· · · · · · · · · · · · · · · · · · ·			
Did well	dewater?	Yes	No	Gallons ac	tuall	y evacuate	ed:		
Smpling	Time:			Sampling I	Date:	•			
Sample I.	.D.:	Laboratory:							
Analyzed	for: TPH-G	ВТЕХ	мтве трн-D	Other:					
Euipme	nt Blank I.E),;	@ Time	Duplicate 1	I.D.:				
Analyzed	l for: трн-G	мтве трн-D	Other:						
D.O. (if r	eq'd):		Pre-purges	3.2	mg/ _L	Post-	purge:	^{mg} /L	
CRP (if r	eq'd):		Pre-purge	257	mV	Post-	purge:	mV	

WELL MONITORING DATA SHEET

roject #:	04061	7-Ac(Client: Stellar						
ampler:	AC			Start Date: 6/17/04						
Vell I.D.:	MW-2			Well Diameter: 2 3 4 6 8						
otal We	ll Depth: 🤫	18.90		Depth to Wat	er: 22.23_					
efore:		After:		Before:		After:				
epth to	Free Produc	ot:		Thickness of	Free Product (feet	:):				
eference	ed to:	(FVO)	Grade	D.O. Meter (i	f req'd):	(SI) HACH				
	od: Bailer Disposable Bail Positive Air Dis Electric Subme	splacement	Waterra Peristaltic Extraction Pump Other	Sampling M	Disposable Extraction Dedicated Other:	Port Tubing				
Case Volum	(Gals.) X	3 =	33 Gals. Calculated Volum	[" 2"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163				
Time	Temp.	pН	Conductivity (mS	Turbidity (NTU)	Gals. Removed	Observations				
108	60.9	6.9	855	86	/1	Fezt: 0 mo/L				
[[1[60.9	6.8	863	108	22	Elear clear				
1113	60.7	6.8	861	112	33	DTW= 24.87				
id well d	lewater?	Yes	∕Ng)	Gallons actua	lly evacuated: 3	3				
ampling		::F.4 20-70			e: <i>b/17/</i> 04					
	D.: MW-	20		Laboratory:	-STE- (
nalyzed	for: TP	H-G STER	MEE MH-D	Other:						
quipmen	t Blank I.D	:	@ Time	Duplicate I.D.	•					
nalyzed	for: TP	H-G BTEX	MTBE TPH-D	Other:						
.O. (if re	eq'd):		Pre-purge:) /./ ^{mg} / _L	Post-purge	mg/ _{1.}				
RP (if re	eq'd):		Pre-purge:) 225 mV	Post-purge	mV				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

WELL.	MONIT	ORING	DATA	SHEET
** *****				

pject #:	040617	-Acc		Client: Stellar Start Date: 6/17/04					
Sempler:	Ac			Start Date: 6	117/04				
Well I.D.:	mw-2	>		Well Diameter: 2 3 (4) 6 8					
_	l Depth: 4			Depth to Water: 20.19					
3efore:		After:		Before:		After:			
Depth to I	Free Produc	t:		Thickness of F	ree Product (fee	et):			
ference	ed to:	PV)	Grade	D.O. Meter (if	req'd):	ÝŠI HACH			
1	Disposable Bail Middleburg Electric Submer	rsible	Waterra Peristaltic Extraction Pump Other	Other: Well Diamete 1" 2" 3"	Disposable Bailer Extraction Port Dedicated Tubing	Diameter <u>Multiplier</u> 0.65 1.47			
Gals.	Temp.		Conductivity						
Time	(°F or °C)	pН	(mS or μS)	Turbidity (NTU)	Gals. Removed	Observations			
835						Fe2+: 0 mg/L			
8									
		· · · · · · · · · · · · · · · · · · ·							
Did well	dewater?	Yes (No	Gallons actuall	y evacuated:				
Simpling	Time: 09	35		Sampling Date	: 6/17/04				
Sample I.	D.: MW-	.3		Laboratory:	-				
Analyzed			мтве трн-D		ite/Sulfa	te			
Huipmer	nt Blank I.D).:	@ Time	Duplicate I.D.:	•				
Analyzed	for: TPH-G	BTEX	мтве трн-D	Other:					
D.O. (if re	eq'd):		Pre-purge:	/. 6 mg/L	Post-purge:	mg/L			
CRP (if r	eq'd):		Pre-purge	264 mV	Post-purge:	mV			

WELL MONITORING DATA SHEET

Project #:	040617	-Acı		Client:	Sk	ellar			
Sampler: p	¥C.			Date:	6/1	7104			
Well I.D.:	MW-4			Well Diameter: 2 3 (4) 6 8					
Total Well I	Depth (TD): 26.	40	Depth to Water (DTW): 13.85					
Depth to Fre	ee Product	•		Thickn	ess of F	ree Product	(fee	t):	
Referenced	to:	(FVC)) Grade	D.O. M	eter (if	req'd):		RED HACH	
DTW with 8	30% Rech	arge [(H	leight of Water	Column	x 0.20)) + DTW]:	16	.36	
Purge Method:	Bailer Disposable B Positive Air I Electric Subm	Displaceme			Well Diamete	r Multiplier	Other:		
2.1 (Case Volume	Gals.) X Speci	3 fied Volum	es Calculated Vo	- 11	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 mdius ² * 0.163	
Time	Temp	pН	Cond. (mS or pS)	ŀ	idity 'Us)	Gals, Remo	ved	Observations	
1014	57.5	7.9	774	139 8.5				Fezt: 0 mg/L	
well	dewat	ered	@			12 ga	i	DTW = 22.59	
1035	58.2	9.0	815	25	9				
Did well de	water?	(Fes)	No	Gallons	actuall	y evacuated	i: j	2	
Sampling D	ate: 6/1	7/04	Sampling Time	e: 103	5	Depth to V	Vater	: 16.36	
Sample I.D.	: mw.	-4		Labora	tory:	Kiff CalSc	ience	Other C3T	
Analyzed for	or: (TPH-G	BTEX	МТВ <u>е</u> ТРН-D	Oxygenates (5) Other: Nitrate/Sulfate					
EB I.D. (if a	ipplicable)):	@ Time	Duplicate I.D. (if applicable):					
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:	··· •		
D.O. (if req	'd): 📑	e-plirge.	10.9	mg/L	mg/L Post-purge: mg/L				
O.R.P. (if re	eq'd): 🔏	re-purge.	267	mV	P	ost-purge:		mV	

WLLL MONITORING DATA SHEE!

Poject #:	Ac(Client: Stella						
Sampler:	Ac			Date:	6/1	7/04			
Well I.D.:	MW-E	5		Well Diameter: 2 3 4 6 8					
Tetal Well	Depth (TD): 26	.96	Depth to Water (DTW): 16.51					
Depth to Fr	ee Product	•		Thickness of Free Product (feet):					
Referenced	to:	P√C)	Grade	D.O. M	eter (if	req'd):	YŠI HACH		
DTW with	80% Rech	arge [(H	leight of Water	Column	x 0.20)	+ DTW]: 18	1.60		
e Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump	Well Diamete	Sampling Method: Other:	Extraction Port Dedicated Tubing		
7 (Gals.) X	3	= 21	[" 2"	0.04 4" 0.16 6"	: 0.65 1.47			
ese Volume		fied Volun		_ Gals. olume	3"	0.37 Other	radius² + 0,163		
Time	Temp Por °C)	pН	Cond. (mS or (KS)	Turb (NT	٠ ا	Gals. Removed	Observations		
2 56	58.4	7.1	616	17	8	7	Fezt: 0 mg/L		
0958	57.5	7.2	615	17	(14	Cloudy, odor		
00	57.2	7.2	619	75	6	21	JL.		
_	χ.								
Did well dev	water?	Yes (No)	Gallons	actually	y evacuated:	21		
Sampling Da	ate: 6/13	7/04	Sampling Time	e: 1005	5	Depth to Water	r: 17.85		
Sample I.D.:	mw-	S		Laborate	ory:	Kiff CalScience	Other C 3 T		
Apalyzed fo	r: TPH-6	BTEX	МТВВ ТРН-Д	Oxygenat	tes (5)	Other:			
Eb I.D. (if a	pplicable)		@ Time	Duplicate I.D. (if applicable):					
Amlyzed fo	r: тр <u>ң</u> -б	BTEX	МТВЕ ТРН-D	Oxygenates (5) Other:					
).O. (if req'	d): (Pr	e-purge	1.2	mg/L	Po	ost-purge:	mg/L		
)P. (if re	q'd): Pr	e-purge.	268	mV	Po	ost-purge:	mV		

WELL MONITORING DATA SHEEL

'roject#:	04061	7-Acı		Client:		ellar			
Sampler:	Ac			Date:	6/1	7/04			
Vell I.D.:	MW-6		··········	Well Di	ameter	: 2 3	4	6 8	
Total Well	Depth (TD)): 27,	45	Depth to	o Wate	r (DTW):	13.	51	
Depth to Fr				Thickness of Free Product (feet):					
₹eferenced	to:	PVC	Grade	D.O. M	eter (if	req'd):		YSI HACH	
OTW with	80% Recha	ırge [(H	eight of Water	Column	x 0.20) + DTW]:		
urge Method:	Disposable Ba Positive Air D Electric Subm	Displaceme Persible	nt Extrac Other	Waterra Peristaltic tion Pump	•	Sampling	Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing	
<u>Field F</u>	tnalysis	-			Vell Diamete 1" 2"	er Multiplier 0.04 0.16	4" 6"	jameter Multiplier 0.65 1.47	
Case Volume	Gals.) X Speci	fied Volum	es Calculated Vo	_ Gals.	3"	0.10	Other	radius ² * 0.163	
Time	Temp (°F or °C)	pН	Cond. (mS or μS)	Turb (NT	-	Gals. Re	moved	Observations	
0930								FEZ+: OMJ/L	
			,						
Did well de	water?	Yes	No	Gallons	actual	ly evacua	ted:		
Sampling I	Date:		Sampling Tim	e:		Depth to	Water	r:	
Sample I.D	**			Labora	tory:	Kiff Ca	lScience	Other	
Analyzed f	or: TPH-G	BTEX	мтве трн-D	Oxygenates (5) Other:					
EB I.D. (if	@ Time	Duplica	ate I.D.	(if applic	able):				
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5) Other:					
D.O. (if red	ı'd): P	re-purge	1.5	mg/L]	Post-purge:		mg/L	
O.R.P. (if r	eq'd): P	re-purge	267	mV] 1	Post-purge:	:	mV	

WELL MONITORING DATA SHEET

ject #:	0406	17-Ac(Client: 5:						
ampler:	Ac			Start Date: 6/17/04						
vell I.D.:	MW-7	•		Well Diame	eter: 🗷	3 4	6 8			
'al Wel	ll Depth:	25.40		Depth to W	ater: [3.08				
lefore:		After:		Before:			After:			
)epth to]	Free Produc	et:		Thickness o	of Free P	Product (feet	:):			
eference	ed to:	PVO	Grade	D.O. Meter	(if req'o	l): (YSI HACH			
	od: Bailer Disposable Bail Positive Air Dis Electric Submer	splacement	Waterra Peristaltic Extraction Pump Other			Bailer Disposable Extraction Dedicated Other:	Port Tubing			
2 Case Volum	(Gals.) X	=	Gals. Calculated Volume]" 2"	0. 0.	04 4" 16 6" 37 Other	0.65 1.47			
Time	Temp.	pН	Conductivity (mS or LS)	Turbidity (NTU)	Ga	ls. Removed	Observations			
35	59.8	チバ	896	362		2	Fe2+, 5.0 mg/L			
1237	60.(7.0	904	774		4	gus oder			
239	61.1	7.0	912	809		6	DW= 14.70			
1						****				
i well	dewater?	Yes	No	Gallons act	ually ev	acuated: (9			
mpling	Time: \	245		Sampling I	Date: (0/17/04	f			
Sample I.	_	1.7		Laboratory	•	STL (c 3 T			
alyzed		HG MEX		Other:	Nitra	te (Sult	ate			
3 uipmei	nt Blank I.I).:	@ Time	Duplicate I	.D.:	. <u>. </u>				
Analyzed	for: T	PH-G BTEX	MTBE TPH-D	Other:	 -					
D. (if r	eq'd):		Pre-purge:	>1.0 "	'g/L	Post-purge	e: mg/L			
PP (if r	eq'd):		Pre-purge:	210 T	nV	Post-purge	mV			
Blaine	Tech Serv	ices, Inc	. 1680 Rogers	Ave., San	Jose, C	CA 95112 (408) 573-0555			

WELT.	MON	ITORING	DATA	SHEET
			DAIA	. Dilliin I

roject #:	04061	7-Ac2		Client:	stellar					
Sampler:	Ac			Start Date: 6/17/04						
Well I.D.	: mw-	8		Well Diameter: (2) 3 4 6 8						
Total We	II Depth:	22.30		Depth to Wate	er: 11.82					
3efore:		After:	· · · · · · · · · · · · · · · · · · ·	Before:		After:				
Depth to	Free Produc	et:		Thickness of l	Free Product (feet)):				
Reference	ed to:	PVC	Grade	D.O. Meter (i	f req'd):	YSI HACH				
'urge Meth	Bailer Disposable Bai Positive Air Di Electric Subme	splacement ersible	Waterra Peristaltic Extraction Pump Other		Nisposable Extraction I Dedicated T Other:	Port Cubing				
Case Volum		$\underline{\underline{5}}$ = cified Volumes	5.25 Gals. Calculated Volum	311	0.37 Other	radius ² * 0.163				
Time	Temp.	pН	Conductivity (mS or as)	Turbidity (NTU)	Gals. Removed	Observations				
1137	59.8	6.9	672	349	1.75	Fe2+ , 2.0 mg/				
1139	60.1	6.9	୫୫୧	55%	3.5	gas odor				
1141	60.4	6.9	905	642	5.25	Drw = 13.21				
Did well	dewater?	Yes	(No)	Gallons actua	lly evacuated: 5.	25				
Sampling	Time:	145		Sampling Dat						
Sample I.	D.: mw	-8		Laboratory:	ZIL (C \$ T				
Analyzed	for:	H-O BFEX		Other:						
Equipme	nt Blank I.I).;	@ Time	Duplicate I.D.	: Nitrate/S	ulfute				
Analyzed	for: T	PH-G BTEX	MTBE TPH-D	Other:		T				
Σ.Ο. (if τ	eq'd):		Pre-purge:	. \ mg/ _L	Post-purge:	mg/				
ORP (if r	eq'd):		Pre-purge	206 mV	Post-purge:	mV				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

WELL	·MO	NITO	RING	DATA	SHEET
VV P.I.I	. IVILLE	INS L W.	THE PARTY	$\boldsymbol{\nu}$	بالاسلاق

ject #:	D406	(7-Acs		Client:	SAe	llar				
Sampler:	AC			Start Date: 6/17/04						
Well I.D.:		<u> </u>		Well Diameter: 2 3 4 6 8						
Tal Wel	ll Depth:	26.40		Depth to	o Wate	r: 12.93	3			
3efore:	-	After:		Before:				After:		
Depth to 1	Free Produc	 :t:		Thickne	ess of F	ree Produc	t (feet)):		
eference	ed to:	PVC	Grade	D.O. M	eter (if	req'd):		YSI	HACH	
'urge Metho	od: Bailer Disposable Bail Positive Air Dis Electric Subme	splacement	Waterra Peristaltic Extraction Pump Other	· 	oling Med	Dis Ex De Ott	sposable traction I dicated Ther:	Port Fubing	<u>altiplier</u>	
Case Volun		3 =	6.3 Gals. Calculated Volume		1" 2" 3"	0.04 0.16 0.37	4" 6" . Other	1.	65 47 .dius ² * 0.163	
rime	Temp.	pН	Conductivity (mS	Turbi (NT	- 1	Gals. Rem	oved	Obse	rvations	
214	58.9	6.8	850	(3:	3	2.5		Fe2+:	0 00/2	
1216	60.0	6.8	852	(2)	9	5		903 0	odor	
149	60.6	6.7	846	138	·	7.5		01W-	14.89	
										
ad well	dewater?	Yes	(No)	Gallons	actual	ly evacuate	:d: 7.	5		
 Sampling	Time: (225		Samplin	ng Date	: 6/17	2/04	1		
Sample I.				Laborat	tory:			C F T	_	
Alalyzed		H-G BTEX	MTBE TPH-D	Other:	N:4	rate/Su	e I fai	le_		
	nt Blank I.I).:	@ Time	Duplica	ate I.D.					
Analyzed		PH-G BTEX	MTBE TPH-D	Other:	-				· · · · · · · · · · · · · · · · · · ·	
DO. (if r	eq'd):		Pre-purge:	1.5	mg/L	Pos	t-purge:		^{mg} / ₁	
ORP (if r	req'd):		Pre-purge	22	2 mV	Pos	t-purge:	;	mV	
Blaine	Tech Serv	vices, Inc	. 1680 Rogers	Ave., S	an Jo	se, CA 95	112 (4	408) 57	73-0555	

WELL MONITORING DATA SHEET

					_			
roject#:	04061	7 · Ac	(Client:	Ste	ller		
ımpler:	Ac			Date:	6/13	7/04		
'ell I.D.:	MW-10			Well D	iameter:	2 3 4	1 6	8
otal Well	Depth (TD): 28	.35	Depth	to Water	(DTW): /	2.24	
epth to Fr	ee Product	†		Thickn	ess of F	ree Product (feet):	
eferenced	to:	PVC	Grade	D.O. M	leter (if	req'd):	(VS)	НАСН
TW with	80% Rech	arge [(F	leight of Water	Column	ı x 0.20)	+ DTW]:	15.4	16
rge Method: 2-5 (Case Volume	Bailer Disposable B Positive Air I Electric Subm Gals.) X Speci	Displaceme nersible	ent Extrac Other	_ Gals.	Well Diamete 1" 2" 3"	0.04 4' 0.16 6'	ner: e]] Diame	Bailer Disposable Bailer Extraction Port Dedicated Tubing ler Multiplier 0.65 1.47 radius ² * 0.163
Time	Temp	pН	Cond. (mS or (LS))		oidity (TUs)	Gals. Remove	ed	Observations
1044	581	8.8	759	139	₹	2.5	F	e2+: 0 mo/L
047	58.5	7.4	766	23	1	.5		cloudy
1050	58.6	7.4	770	40	4	7.5		4
id well de	water?	Yes	[No	Gallons	actuall;	y evacuated:	7.5	5
ampling D	ate: 6/1	7/04	Sampling Time	:: los	5	Depth to Wa	iter:	14.12
ample I.D.				Labora	tory:	Kiff CalScie	nce	Other C?T
nalyzed fo	or: Teff-G		MTBE PH-D	Oxygena	ites (5)	Other: ルル	rate	/Sulfate
B I.D. (if	applicable)):	@ Time	Duplica		(if applicable		
nalyzed fo	or: TPH-G	втех	MTBE TPH-D	Oxygena		Other:		
.O. (if req	'd):	re-purge.	5.6	mg/L	P	ost-purge:		mg/ _L
R.P. (if re	ea'd): 🗡	re-purge:	251	mV	p	ost-purge:		mV

WELL MONITORING DATA SHEET

		, , <u></u>	<u> </u>			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
ect #:	04061	7.Ac(Client: Stel	lar					
ampler:	Ac			Start Date: 6/17/04						
_	mw-1	[[Well Diameter: 2 3 4 6 8						
	I Depth:			Depth to Wate	er: 15.14					
efore:		After:		Before:		After:				
	Free Produc	:t:		Thickness of I	Free Product (feet)	:				
erence		PVC	Grade	D.O. Meter (if		YSI HACH				
	ed: Bailer Disposable Bail Positive Air Dis Electric Subme	splacement	Waterra Peristaltic Extraction Pump Other	Well Dipme	Disposable Extraction I Dedicated I Other: ter Multiplier Well Di	Port Fubing				
Lase Volum		3 =	7.2 Gals. Calculated Volum	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	1.47 radius ² * 0.163				
Time	Temp.	рН	Conductivity (mS		Gals. Removed	Observations				
55	59.7	6-9	1081	201	2.5	Fe2+. 4.2 mg/				
258	59.9	6.8	1059	395	5	gas odor				
1501	59,6	6.8	1033	454	7.5	Fe ²⁴ .4.2 mg/ gas odor DTW= 17.04				
well	dewater?	Yes	(1/6)	Gallons actua	l lly evacuated: न	l 				
appling	Time: \	305		Sampling Dat	e: 6/17/04	<i>(</i>				
ample I.		<u>-</u>		Laboratory:	-STE C	237				
alyzed	for:	ETES (DA	MIBE 7PH-D	Other: Nit	rate/Sulfa	te				
Q ipme	nt Blank I.I).:	@ Time	Duplicate I.D						
nalyzed	l for:	PH-G BTEX	MTBE TPH-D	Other:						
)). (if r	eq'd):		Pre-purge	1.3 mg/1	Post-purge	mg/ ₁				
)PP (if r	eq'd):		Pre-purge	! 198 mV	Post-purge	: mV				
Blaine	Tech Serv	vices, Inc	. 1680 Rogers	Ave., San Jo	se, CA 95112 (408) 573-0555				

May 2004 Creek Bank Samples

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Stellar Environmental Solutions 2198 6th Street Suite 201 Berkeley, CA 94710

Date: 02-JUN-04

Lab Job Number: 172357

Project ID: 2004-02

Location: Redwood Regional Park

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Man

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of <u>35</u>

Laboratory Number:

172357

Client:

Stellar Environmental Solutions

Project:

2004-02

Request Date:

5/17/2004

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for four soil and four water samples requested from the above referenced project on May 17, 2004. The samples were received cold and intact.

Total Volatile Hydrocarbons:

In several samples, the recoveries for the surrogates exceed control limits due to coelution of the surrogate peak with other hydrocarbon peaks. Associated surrogate recoveries are acceptable.

No other analytical problems were encountered.

Total Extractable Hydrocarbons:

No analytical problems were encountered.

		,			_		, \ \			,		_					_						
Laboratory	Curtis C	. 1 ,	-		Met	hod of Shipment	hand .	<u>delivery</u>	•					4							Page _	<u>I</u> 01	
Address	2373				Ship	oment No.	<u></u>		•		,			(//			·						
		<u>ey (A C</u>			— Airb	iil No			-				1	<u> </u>		,	Analys	ls Aec	wired		, ,	_/	
		56-0900	·		— Cod	oler No			-		/	/_	/٤	/ /	′,	/ /	/ ,	/	/ :	/, .	/ /		ì
Project Owne	er <u>EBRT</u>	<u>(12,</u>	Λ <		Pro	ject Manager <u>Brike</u>	Pool	ER	_	/	'. /		(ر									/	
Site Address	<u> Kedwa</u>	od Regio	Sinal	mik_	— Tele	ephone No. <u>(510) 644-</u>	3123		_		y / 3	§ / J	X 2/0/		/						//		1
	e Redwo		.0772	<u>. </u>	Fax	(No(510) 644-	3859		_ ,		/૱૿	A A	0/~/	/ /	′ /	/ /	/ /	/ /	/ ,	/ /	/ /	Rema	rks
Project Name	O 1	1-02	ace for	· -		mplers: (Signature)	S		_ /			<u></u> =/	SHS/		/								
·		Location/	1		Sample		Pre	eservation	1/	/	/1	7	7	/ /	/	/ /	/	/			/		
Field Sa	ample Number	Depth	Date	Time	Type	Type/Size of Container	Cooler	Chemical	 		(- 		f - f	 ({					-1			
CB-1	-0'	ø'	7/1/04	(S31	2016	1602 Class JAR	Yes			1	X	X			-	\dashv							
CB-2	1-2'	2'	1	15 W	5	И	7			1	X	X		_									
CB-		3'		1630	□ <i>)</i>	μ				1	X	X									· · ·		
CB		2'	1	1650	1	1.40				1	X	X											
			1	1945	HzO	(0)	7	(a)		4	X	X											
	1-6w	<u> </u>	1 1	1610	1	(a)		(a)		4	X	X											
C.B-2	•		-	 			$\vdash \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	(4)		4	X	X	1										
(%-3			++	i715	\	(a)	1	 		4	X	1	1										
(8-			1	1650	\ <u>\</u>	(a)	1	(4)	-	 	+	+	<u> </u>					<u> </u>	t	†	-		
Triple	1ank			ļ	ļ		<u> </u>	 	 	12	14	٥٠	9				_	-	\vdash	+-	 	-	
	_			ļ			ļ <u> </u>	ļ	1	-	<u> </u>	-							┼	+	 		
													<u> </u>			<u> </u>		↓_	 	┼-	ļ		
												<u> </u>					<u> </u>	<u>L</u>	L		<u> </u>		
Relinquished	by: / A		Date	Receive	ed by:	Joseph May	Date	· 1	l by:						Date	Pic	sceive	-					Date
Signature	Juff (h-		5/7/4	Sign	aturé	E JUYEN	- 5111	64 Signature									Signa	iture _					
Printed	Stort Pin	AW	Time	 Print	ted LI	saBrooker	_ Tim	Printed _							Time	.	Printe	ed					- Time
			1811	}	\cap	urts & Tompkins	181										Com	nam'					_
Company	STECLAR			Con	pany	unis & iomphins	- '	Company							Date		ecelve						Date
Turnaround	Time: 5-T			· · · · · · · · · · · · · · · · · · ·		N 4 . 4		Figure Signature							₩Q1E	· "		alure .					_
Comments:	comments: a) 3 40mL HU VOAS and 1					proservec) 11 Amb	er	-								_							
 		1		<u>.</u>	4	ave de		Printed .						-	Tlm	e	Print	ed					— Time
PMT	BE abled	Sy Jac T):VCL^	<u> </u>	lar D	842,06		Compan	у								Com	pany					
ı																							

Stellar Environmental Solutions

samples per on ice/intact

2198 Sixth Street #201, Berkeley, CA 94710

Total Volatile Hydrocarbons Location: Redwood Regional Park ab #: 172357 EPA 5030B Stellar Environmental Solutions Client: Prep: roject#: 2004-02 atrix: nits: Sampled: 05/17/04 Water 05/17/04 05/18/04 ug/L 91222 Received: Analyzed: Batch#:

Field ID: Type:

CB-3-GW

SAMPLE

Lab ID: Diln Fac: 172357-007

1.000

Result	Kta		<u> </u>
	_		
	_ : = : =		
			
	Result ND	ND 2.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50	ND 2.0 EPA 8021B ND 0.50 EPA 8021B

Surrogate	*REC	Limits		Analysis
rifluorotoluene (FID)	106	74-142	EPA	8015B
Bromofluorobenzene (FID)	109	80-139	EPA	8015B
Trifluorotoluene (PID)	85	55-139	EPA	8021B
romofluorobenzene (PID)	91	62-134	EPA	8021B

eld ID:

CB-4-GW SAMPLE

Lab ID: Diln Fac: 172357-008

1.000

1		RT.	Analveis
Gasoline C7-C12	ND	50	EPA 8015B
TBE	ND	2.0	EPA 8021B
enzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
🗰,p-Xylenes	ND	0.50	EPA 8021B
-Xylene	ND	0.50	EPA 8021B

Surrogate	*REC	Limits	Analysis	
Trifluorotoluene (FID)	105	74-142	EPA 8015B	
romofluorobenzene (FID)	113	80-139	EPA 8015B	
rifluorotoluene (PID)	85	55-139	EPA 8021B	ł
Bromofluorobenzene (PID)	91	62-134	EPA 8021B	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative ND= Not Detected

RL= Reporting Limit LR= Response exceeds instrument's linear range Page 2 of 3

6.0

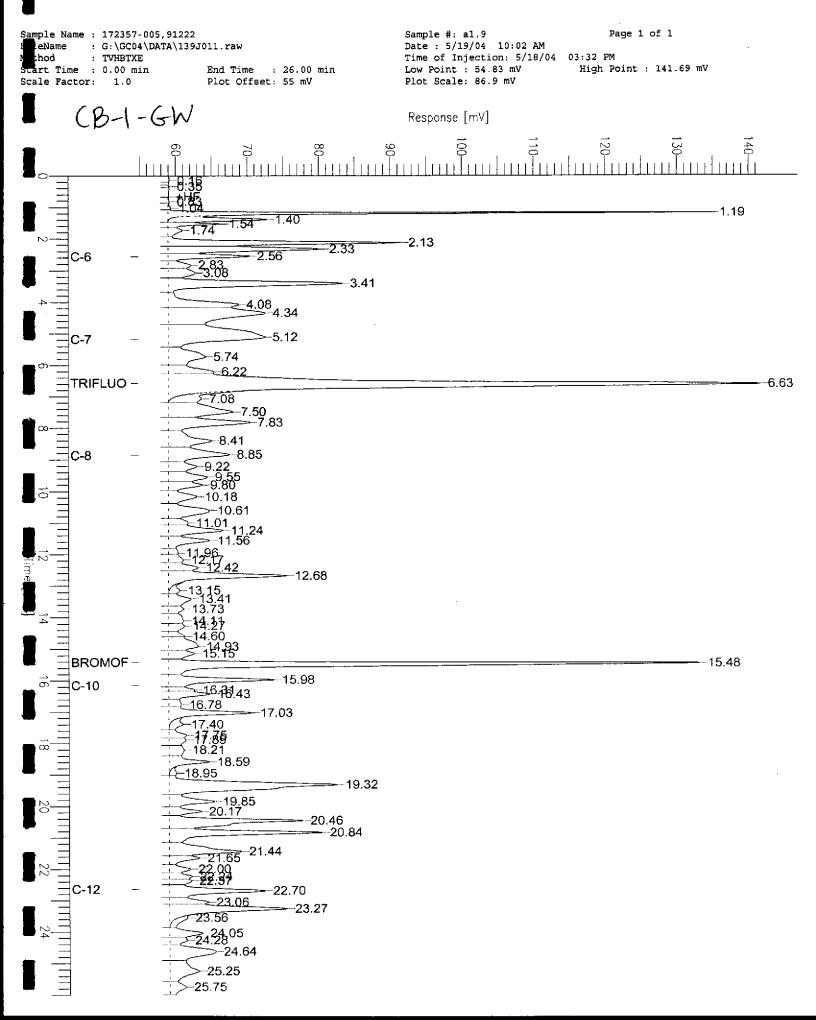
	Te	otal Volat:	ile Hydrocarbo	ns
Lab #: Client: Project#:	172357 Stellar Environmental 2004-02	Solutions	Location: Prep:	Redwood Regional Park EPA 5030B
Matrix: Units: Batch#:	Water ug/L 91222		Sampled: Received: Analyzed:	05/17/04 05/17/04 05/18/04

Type: Lab ID:

BLANK QC251437 Diln Fac:

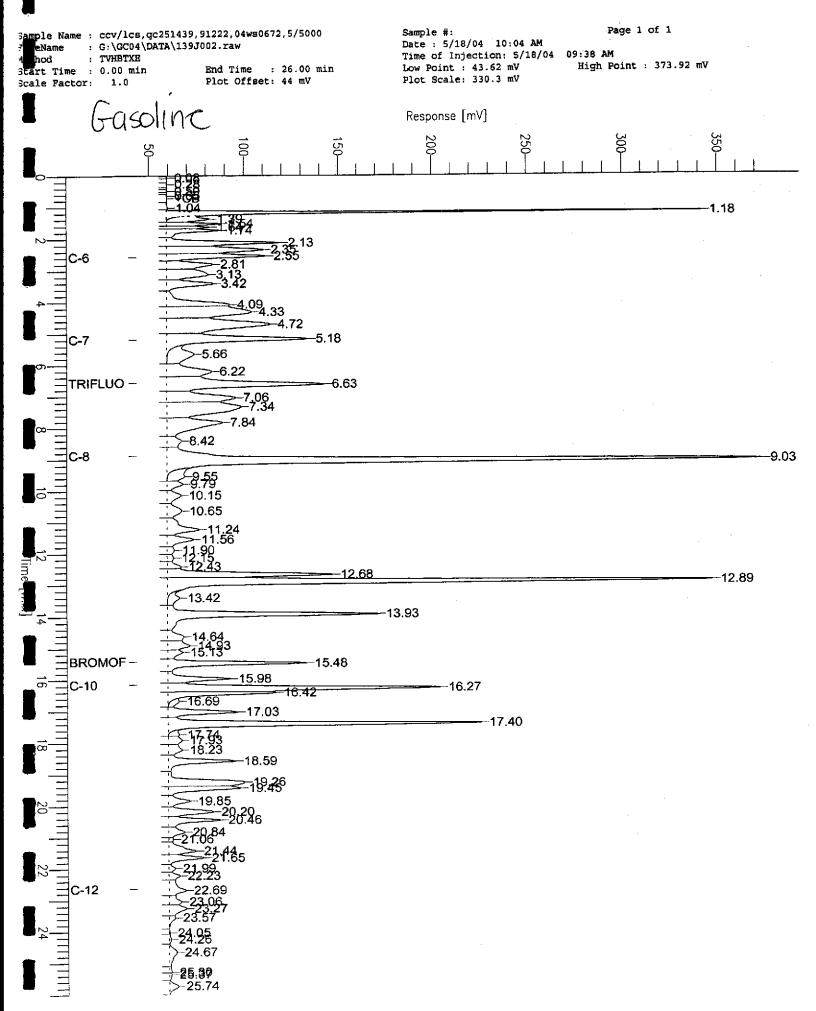
1.000

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	


Surrogate	*REC	Limits	Analysis
Trifluorotoluene (FID)	102	74-142	EPA 8015B
Bromofluorobenzene (FID)	109	80-139	EPA 8015B
Trifluorotoluene (PID)	88	55-139	EPA 8021B
Bromofluorobenzene (PID)	93	62-134	EPA 8021B

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative ND= Not Detected


RL= Reporting Limit
>LR= Response exceeds instrument's linear range
Page 3 of 3

GC04 TVH 'J' Data File FID

GC04 TVH 'J' Data File FID ample Name : 172357-006,91222 Sample #: a1.9 Page 1 of 1 ileName : G:\GC04\DATA\139J006.raw Date : 5/19/04 10:02 AM : TVHBTXE Time of Injection: 5/18/04 12:32 PM ethod High Point: 227.82 mV Low Point : 50.75 mV tart Time : 0.00 min End Time : 26.00 min Plot Scale: 177.1 mV cale Factor: 1.0 Plot Offset: 51 mV CB-2-GW Response [mV] 1.39 1.54 1.75 2.13 _____C-6 -2.33 2.56 2.83 -- 3.11 -3.414.35 5.15 C-7 5.73 =6.24TRIFLUO ---6.61 7.50 7.84 8.42 -8.84 C-8 9.22 9.80 --10.16 ==-10.65 -11.24 11.56 <u> 12.43</u> -12.6813.42 13.74 14.10 14.60 ----14.81 -15.14 BROMOF --15.48 -15.98 C-10 5016.28 16.77 17.03 ≤18.866 <u>18.9</u>6 ---19.32 20.17 20.46 20.84 21.44 C-12 22.00 22.39 22.69 = 23.05 -23.2723.57 24.05 4.2 --24.64 -25.25 25.74

GC04 TVH 'J' Data File FID

3atch QC Report

	Total Vola	tile Hydrocarbo	ons
Lab #:	172357	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2004-02	Analysis:	EPA 8021B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC251438	Batch#:	91222
Matrix:	Water	Analyzed:	05/18/04
Units:	ug/L		

Analyte	Spiked	Result	%RE(C Limits	
MTBE	20.00	17.82	89	59-131	
Benzene	20.00	17.65	88	80-120	
Toluene	20.00	19.03	95	80-120	
Ethylbenzene	20.00	18.38	92	80-120	
m,p-Xylenes	20.00	18.52	93	80-120	
o-Xylene	20.00	18.45	92	80-120	

Surrogate	%REC	! Limits	
Trifluorotoluene (PID)	78	55-139	
Bromofluorobenzene (PID)	84	62-134	

ntch QC Report

Total Volatile Hydrocarbons

ab #: 172357 Location: Redwood Regional Park

lient: Stellar Environmental Solutions Prep: EPA 5030B

Project#: 2004-02 Analysis: EPA 8015B

 Vpe:
 LCS
 Diln Fac:
 1.000

 ab ID:
 QC251439
 Batch#:
 91222

Matrix: Water Analyzed: 05/18/04 inits: ug/L

Analyte Spiked Result REC Limits
Gasoline C7-C12 2,000 2,028 101 80-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	136	74-142
romofluorobenzene (FID)	114	80-139

3atch QC Report

Lab #: 172	357	Location:	Redwood Regional Park
• • • • • • • • • • • • • • • • • • • •	llar Environmental Solutions	Prep:	EPA 5030B
Project#: 200	4-02	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZZ	Batch#:	91222
MSS Lab ID:	172365-003	Sampled:	05/17/04
Matrix:	Water	Received:	05/18/04
Units:	ug/L	Analyzed:	05/18/04
Diln Fac:	1.000	-	

Гуре:

MS

Lab ID:

QC251506

		Spiked	KeButr		
Gasoline C7-C12	20.62	2,000	1,921	95	80-120
					.,

Bromofluorobenzene (FID)	116	80-139	
Trifluorotoluene (FID)	138	74-142	J
Surrogate	*REC	Limits	33 23

Type:

MSD

Bromofluorobenzene (FID)

Lab ID:

QC251507

Gasoline C7-C12	2,000	1,968	97	80-120	2	20
	· ·					
Surrogate	%REC Limit	78				

80-139

109

Total Volatile Hydrocarbons Redwood Regional Park ab #: 172357 Location: EPA 5030B Client: Stellar Environmental Solutions Prep: roject#: 2004-02 05/17/04 atrix: Sampled: 05/17/04 05/18/04 Received: asis: as received Batch#: 91221 Analyzed:

reld ID: Type:

CB-1-0' SAMPLE

Lab ID:

172357-001

Diln Fac:

1.000

			Units Analysis
Analyte	Kesuit 1 2 V	1 1	
asoline C7-C12	1.2 1	27.1	mg/Kg EPA 8015B
MTBE	ND	22	ug/Kg EPA 8021B
Benzene	ND	5.6	ug/Kg EPA 8021B
oluene	ND	5.6	ug/Kg EPA 8021B
thylbenzene	6.4	5.6	ug/Kg EPA 8021B
₩,p-Xylenes	ND	5.6	ug/Kg EPA 8021B
o-Xvlene	ND	5.6	uq/Kq EPA 8021B

Surrogate	*REC	Limits	Analysis	
rifluorotoluene (FID)	105	71-138	EPA 8015B	
Bromofluorobenzene (FID)	110	73-143	EPA 8015B	
Trifluorotoluene (PID)	87	55-135	EPA 8021B	
romofluorobenzene (PID)	101	58-135	EPA 8021B	

eld ID: pe:

CB-2-21 SAMPLE

Lab ID: Diln Fac: 172357-002

10.00

Analyte	Result		RL	J. D. T.	t.s		Anaivsis
Gasoline C7-C12	370	Y	10	mg/	Kg		8015B
TBE	920		200	ug/	Kg	EPA	8021B
enzene	380	C	50	ug/	Κġ	EPA	8021B
Toluene	780		50	ug/	Κġ	EPA	8021B
Ethylbenzene	2,100	C	50	ug/	Κġ	EPA	8021B
, p-Xylenes	410	C	50	ug/	Κġ	EPA	8021B
-Xylene	1,500	С	50	ug/	Κġ	EPA	8021B

Surrogate	%RE(C	Limits		Ana)	ysis	
Trifluorotoluene (FID)	211 '	*	>LR b 7	1-138	EPA 8	015B	
romofluorobenzene (FID)	298 '	*	>LR b 7	3-143	EPA 8	015B	
rifluorotoluene (PID)	126		55-135	EPA	8021B		
Bromofluorobenzene (PID)	149 1	*	58-135	EPA	8021B		

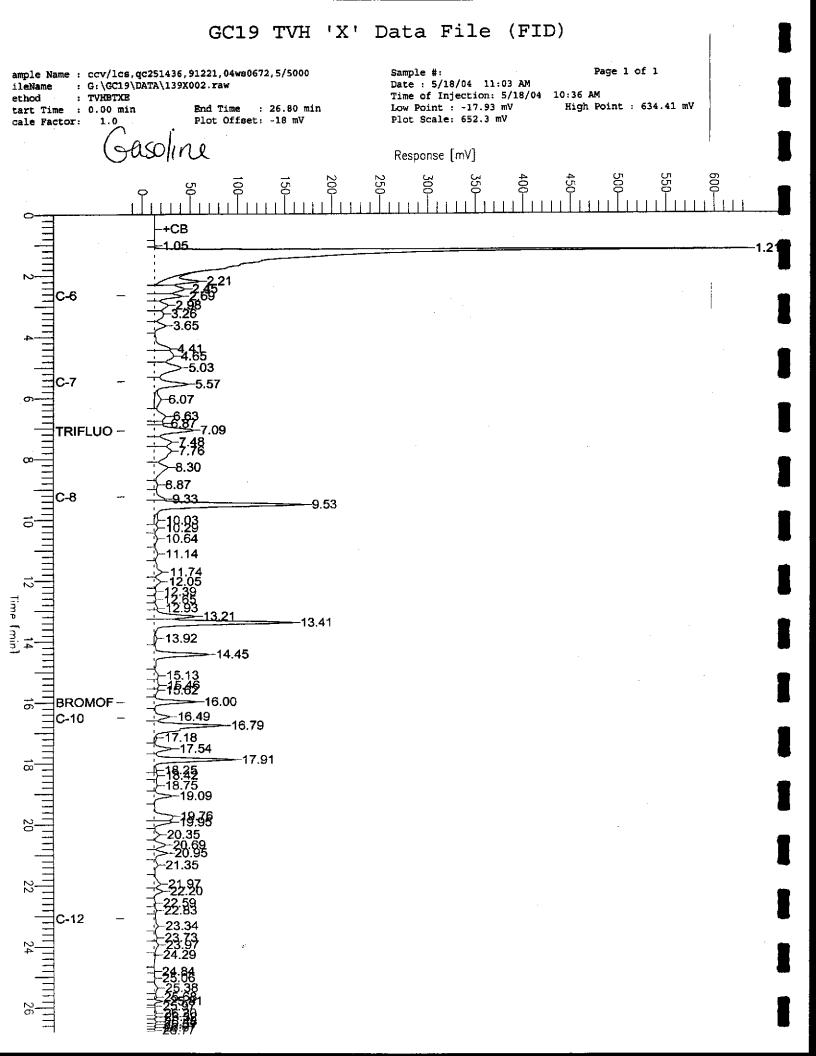
*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative D= Not Detected

L= Reporting Limit

R= Response exceeds instrument's linear range Page 1 of 3

GC19 TVH 'X' Data File (FID) Page 1 of 1 Sample Name: 172357-001,91221 Sample #: a : G:\GC19\DATA\139X004.raw Date: 5/18/04 03:30 PM PileName Time of Injection: 5/18/04 03:03 PM : TVHBTXE 1ethod End Time : 26.80 min High Point : 111.95 mV Start Time : 0.00 min Low Point : 8.02 mV Scale Factor: 1.0 Plot Offset: 8 mV Plot Scale: 103.9 mV CB-1-0' Response [mV] +CB ≒1.05 227.22 2.69 3.40 C-6 3.29 -3.654.57 -5.03 C-7 -5.42 6.16 6.64 TRIFLUO --7.10 -8.30 8,65 8.88 9.34 -9.70 -10.30 10.67 -11.11 11.68 12.08 -16.01 BROMOF -> 16.49 C-10 17:48 17:76 18.25 18.73 19.10 **≥ 19.8**2 -20.35 220,06 21.35 -21.97 22.61 23.02 -23.35


GC19 TVH 'X' Data File (FID)

Sample #: a

ample Name : 172357-002,91221

Page 1 of 1

Date : 5/19/04 08:53 AM : G:\GC19\DATA\139X011 RAW Time of Injection: 5/18/04 07:04 PM High Point : 108.33 mV Low Point : 11.49 mV t Time : 0.02 min End Time : 26.80 min cale Factor: 0.0 Plot Offset: 11 mV Plot Scale: 96.8 mV CB-2-2' Response [mV] +HF -1.66 2:43 C-6 -3.28 -3.66 -4:41 -4:69 -5.35C-7 -6.17-6.65 -7.12 TRIFLUO 7.52 8.69 8.31 -8.88-9.30C-8 -9.71 -18:96 -10.65 -11.1411.72 12.06 12.43 13.63 13.16 BROMOF C-10 -17.16 -17.48 -17.87 **-18.27** -21.35-21.96-22.58-23.00 -23.34 C-12 _23.74 -24.29

Total Volatile Hydrocarbons Redwood Regional Park Lab #: 172357 Location: EPA 5030B Client: Stellar Environmental Solutions Prep: Project#: 2004-02 05/17/04 Sampled: as received 91221 05/17/04 05/18/04 Received: asis: Batch#: <u> Analyzed:</u>

eld ID: Туре:

CB-3-3'

Lab ID:

172357-003

SAMPLE

Diln Fac: 1.000

Analyte			a e e	:00000000000000000000000000000000000000	Analysis
asoline C7-C12	ND ND	1.1 m c	/Ka	EPA	8015B
MTBE	ND				8021B
Benzene	ND	5.4 ug	/Kg	EPA	8021B
Toluene	ND	5.4 ug	j/Kg	EPA	8021B
thylbenzene	ND	5.4 ug	ı/Kg	EPA	8021B
m,p-Xylenes	ND				8021B
o-Xylene	ND	5.4 uc	<u> / Kq</u>	EPA	8021B

Surrogate	%R E C	Limits	Analys	(5)
rifluorotoluene (FID)	98	71-138	EPA 8015B	
Bromofluorobenzene (FID)	112	73-143	EPA 8015B	
Trifluorotoluene (PID)	90	55-135	EPA 8021B	
romofluorobenzene (PID)	104	58-135	EPA 8021B	

eld ID: pe:

CB-4-2' SAMPLE

Lab ID:

172357-004

Diln Fac: 1.000

Analyte	Result	RL I	mits		Analysis
Gasoline C7-C12	ND	1.0 π	ig/Kg	EPA	8015B
ITBE	ND	20 i	ig/Kg	EPA	8021B
Benzene	ND	5.1 i	ığ/Kğ	EPA	8021B
Toluene	ND	5.1 ı	ig/Kg	EPA	8021B
Ethylbenzene	ND	5.1 เ	ig/Kg	EPA	8021B
🗪,p-Xylenes	ND		ıq/Kg	EPA	8021B
-Xylene	ND	<u> </u>	iq/Kq	EPA	8021B

Surrogate	&REC	Limits	Analysis	
Trifluorotoluene (FID)	100	71-138	EPA 8015B	
romofluorobenzene (FID)	111	73-143	EPA 8015B	
Trifluorotoluene (PID)	93	55-135	EPA 8021B	
Bromofluorobenzene (PID)	104	58-135	EPA 8021B	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative ND= Not Detected

RL= Reporting Limit

R= Response exceeds instrument's linear range Page 2 of 3

Total Volatile Hydrocarbons Redwood Regional Park Lab #: 172357 Location: Stellar Environmental Solutions 2004-02 EPA 5030B Client: Prep: Project#: 05/17/04 Soil Sampled: Matrix: as received 91221 05/17/04 05/18/04 Received: Basis: Batch#: Analyzed:

Type:
Lab ID:

BLANK QC251434 Diln Fac:

1.000

Analyte	Result	RL	Units		Analy	Sis
Gasoline C7-C12	ND	1,0	mg/Kg	EPA	8015B	
MTBE	ND	20	ug/Kg	EPA	8021B	
Benzene	ND	5.0	ug/Kg	EPA	8021B	
Toluene	ND	5.0	ug/Kg	EPA	8021B	
Ethylbenzene	ND	5.0	ug/Kg	EPA	8021B	
m,p-Xylenes	ND	5.0	ug/Kg			
o-Xylene	ND	5.0	uq/Kq	EPA	8021B	

				~~~~
Surrogate	*REC	Damair s	Analysis	000000000000000000000000000000000000000
Trifluorotoluene (FID)	0.6	71-138	EPA 8015B	
Trifluorotoluene (FID)	96	17-130	EPA OVIDE	
Bromofluorobenzene (FID)	108	73-143	EPA 8015B	i
Trifluorotoluene (PID)	91	55-135	EPA 8021B	
				Į.
Bromofluorobenzene (PID)	102	<u> 58-135</u>	EPA 8021B	

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative ND= Not Detected

RL= Reporting Limit

>LR= Response exceeds instrument's linear range Page 3 of 3

atch QC Report

	Total Volat:	lle Hydrocarbo	ons
ab #:	172357	Location:	Redwood Regional Park
ab #: lient:	Stellar Environmental Solutions	Prep:	EPA 5030B
	2004-02	Analysis:	EPA 8021B
	LCS	Basis:	as received
ype: ab ID:	QC251435	Diln Fac:	1.000
atrix:	Soil	Batch#:	91221
nits:	ug/Kg	Analyzed:	05/18/04

Analyte	Spiked	Result	%RE(Limits
4TBE	100.0	102.7	103	56-137
enzene	100.0	94.59	95	80-120
oluene	100.0	94.05	94	80-120
Sthylbenzene	100.0	95.95	96	79-120
,p-Xylenes	100.0	96.23	96	80-120
-Xylene	100.0	99.38	99	80-120

Surrogate	%RE	C Limits
rifluorotoluene (PID)	87	55-135
Bromofluorobenzene (PID)	98	58-135

Batch QC Report

	Total Volat:	ile Hydrocarbo	ons
Lab #:	172357	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2004-02	Analysis:	EPA 8015B
Туре:	LCS	Basis:	as received
Lab ID:	QC251436	Diln Fac:	1.000
Matrix:	Soil	Batch#:	91221
Units:	mg/Kg	Analyzed:	05/18/04

Analyte	Spiked	Result	%REC	
Gasoline C7-C12	10.00	10.1	101	80-120

Surrogate	%RBC	Limits	1000013
Trifluorotoluene (FID)	111	71-138	ļ
Bromofluorobenzene (FID)	113	73-143	

tch QC Report

J	Total Volati	le Hydrocarbo	ons
ab #: 172	357	Location:	Redwood Regional Park
elient: Ste	llar Environmental Solutions	Prep:	EPA 5030B
Project#: 200	4-02	Analysis:	EPA 8015B
ield ID:	CB-1-0'	Diln Fac:	1.000
SS Lab ID:	172357-001	Batch#:	91221
Matrix:	Soil	Sampled:	05/17/04
Mnits:	mg/Kg	Received:	05/17/04
asis:	as received		

MS

Analyzed: 05/18/04

Lab ID:

QC251502

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	1.245	10.75	12.22	102	47-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	124	71-138
Bromofluorobenzene (FID)	120	73-143

MSD

Analyzed: 05/19/04

QC251503

A nalyte	Spiked	Result	%REC	Limits	RPD	Lim
asoline C7-C12	10.99	12.58	103	47-120	1	23

Surrogate	%REC	Limits	
rifluorotoluene (FID)	117	71-138	
romofluorobenzene (FID)	122	73-143	

Curtis & Tompkins, Ltd. Total Extractable Hydrocarbons 172357 ab #: Location: Redwood Regional Park Client: EPA 3520C Stellar Environmental Solutions Prep: 2004-02 EPA 8015B ?roject#: Analysis 05/17/04 05/22/04 Matrix: Water Received: Jnits: ug/L Prepared: 05/24/04 3atch#: 91373 Analyzed: Sampled: 05/17/04 ield ID: CB-1-GW 172357-005 Lab ID: SAMPLE Diln Fac: 5.000 /pe: Analyte Result 250 Diesel Cl0-C24 20,000 L AREC Limits Surrogate lexacosane 53-142 ield ID: CB-2-GW 172357-006 Lab ID: SAMPLE Diln Fac: 20.00 /pe: Keepel e Analyte RL 130,000 L Y 1,000

Diesel Cl0-C24

erke vimits Surrogate lexacosane 53-142

ield ID: CB-3-GW 172357-007 Lab ID: SAMPLE 1.000 Diln Fac: ∕pe:

Analyte Result Diesel C10-C24 50

Surrogate lexacosane 105 53-142

ield ID: CB-4-GW 172357-008 Lab ID:

pe: SAMPLE Diln Fac: 1.000

Analyte Result RL. Diesel C10-C24 ND 50

Surrogate *REC Limits 93 Texacosane 53-142

уре: ab ID: BLANK Diln Fac: 1.000 OC252032 Cleanup Method: EPA 3630C

Analyte Result Diesel C10-C24 ND 50

Surrogate ្នាក់ (១០០) ការក្នុង lexacosane 53-142 113

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard D= Diluted Out

D= Not Detected L= Reporting Limit
age 1 of 1

Sample Name: 172357-005,91373

: G:\GC17\CHA\145A012.RAW leName

thod : ATEH139.MTH

art Time : 0.01 min Scale Factor: 0.0

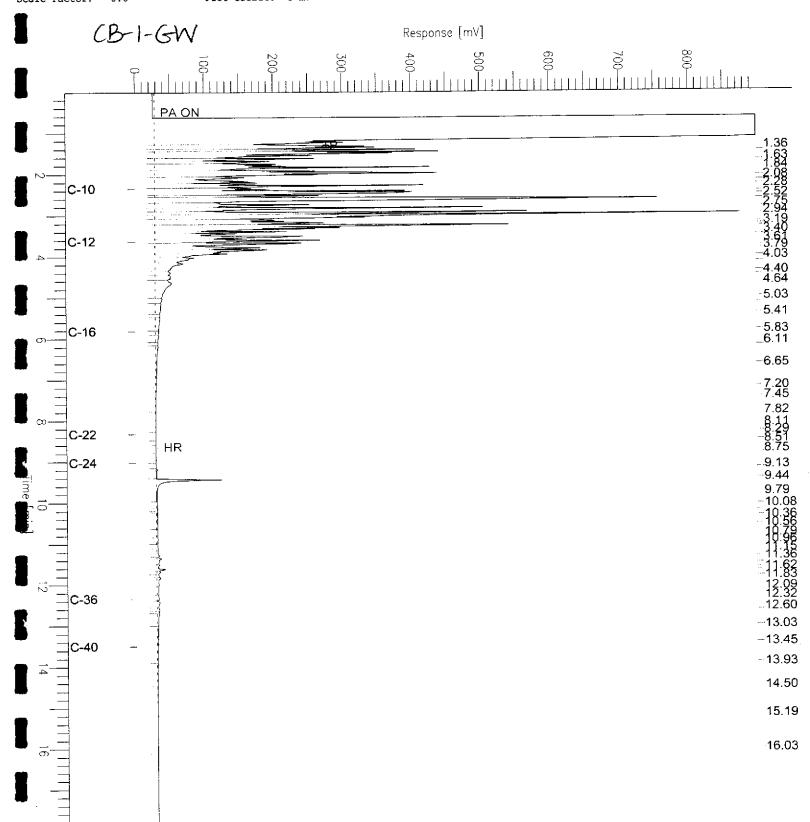
C-50

End Time : 19.99 min

Plot Offset: -0 mV

Sample #: 91373

Date: 5/25/04 08:16 AM


Time of Injection: 5/24/04 05:51 PM

Low Point : -0.24 mV

High Point : 899.28 mV

Page 1 of 1

Plot Scale: 899.5 mV

Sample Name: 172357-006,91373

: G:\GC17\CHA\145A013.RAW FileName

Method : ATEH139.MTH

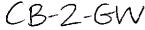
Start Time : 0.00 min Scale Factor: 0.0

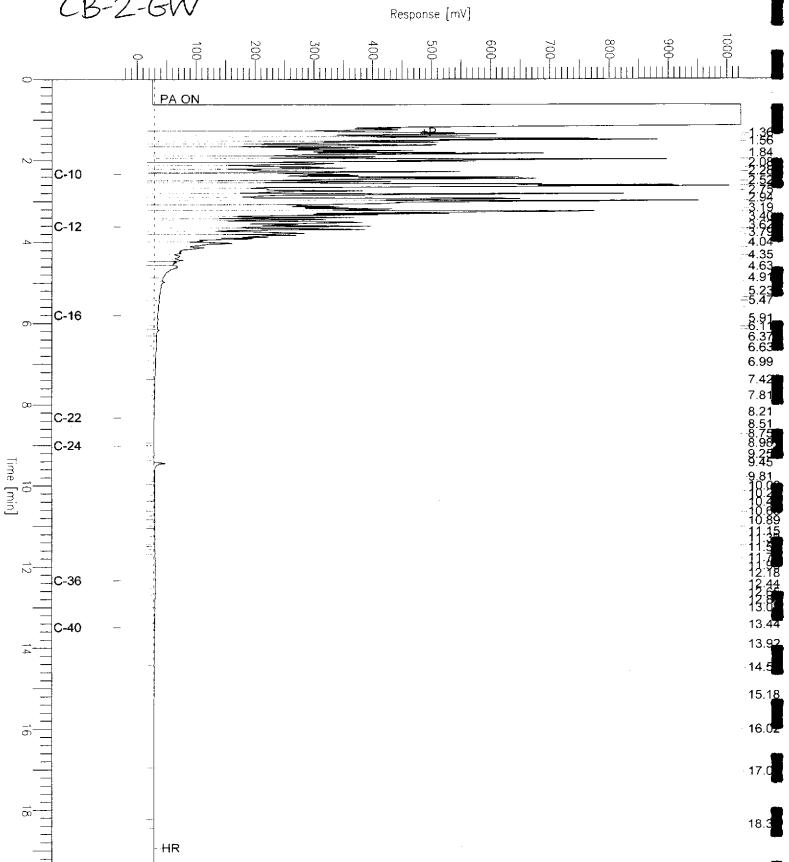
1C-50

End Time : 19.99 min

Plot Offset: -27 mV

Sample #: 91373


Date: 5/25/04 08:16 AM


Page 1 of 1

Time of Injection: 5/24/04 06:19 PM

Low Point : -26.72 mV High Point: 1024.00 mV

Plot Scale: 1050.7 mV

Chromatogram Page 1 of 1 Sample #: 500mg/L Sample Name : ccv, 04ws0894, dsl Date : 5/24/04 09:17 AM : G:\GC13\CHB\145B002.RAW eName Time of Injection: 5/24/04 08:23 AM : BTEH140S.MTH hod Low Point : 21.11 mV High Point : 228.94 mV End Time : 19.99 min Start Time : 0.01 min Plot Offset: 21 mV Plot Scale: 207.8 mV Scale Factor: 0.0 Response [mV] C-10 C-12 C-16 C-20 C-22 C-24 -10.70-HR --11.01 C-28 -12.23C-32 -12.62-13.01-13.44C-36 --13.91 -14.44C-40 -16.62

3atch QC Report

Total Extractable Hydrocarbons

Lab #:

172357

Stellar Environmental Solutions

Location:

Redwood Regional Park

Client:

Prep:

EPA 3520C

Project#: 2004-02

Analysis: Batch#:

EPA 8015B

Matrix: Units:

Water ug/L

91373 05/22/04

Diln Fac:

1.000

Prepared: Analyzed:

05/24/04

`ype:

BS

Cleanup Method: EPA 3630C

ab ID:

QC252033

Spiked

Result

*REC

Limits

Diesel C10-C24

Analyte

2,500

2,575

103

57-128

Surrogate Hexacosane

99

Limits 53-142

'ype:

BSD

Cleanup Method: EPA 3630C

ab ID:

QC252034

Diogol	C10-C24	1000
	Analvte	

S	ρ.	J.	ec	Ĺ
2	, 5	0	0	

Result 2,761

110

%REC Limits

57-128

Surrogate Hexacosane

102

%REC Limits 53-142

Total Extractable Hydrocarbons Lab #: 172357 Redwood Regional Park Location: lient: Stellar Environmental Solutions SHAKER TABLE Prep: roject#: 2004-02 EPA 8015B Analysis: Matrix: Soil Sampled: 05/17/04 nits: 05/17/04 mq/Kq Received: asis: as received Prepared: 05/22/04

eld ID:

Diln Fac:

atch#:

CB-1-0'

1.000

91372

Lab ID:

Analyzed:

172357-001

05/23/04

SAMPLE

Analyte Result

esel C10-C24

15 L Y

Surrogate %REC Limits xacosane 52-131

ld ID:

CB-2-2'

Lab ID:

172357-002

SAMPLE

Analyte Diesel Cl0-C24

Result RL 180 L Y

Surrogate %REC Limits

exacosane

76

52-131

Field ID:

CB-3-3'

Lab ID:

172357-003

SAMPLE

Analyte

Result

iesel Cl0-C24

2.9 H Y

1.0

Surrogate %REC Limits Hexacosane

52-131

Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation

Y = Sample exhibits chromatographic pattern which does not resemble standard

Not Detected

Reporting Limit

Page 1 of 2

10.1

Total Extractable Hydrocarbons Lab #: 172357 Location: Redwood Regional Park Client: Stellar Environmental Solutions SHAKER TABLE Prep: Project#: 2004-02 Analysis: EPA 8015B Matrix: Soil 05/17/04 Sampled: Units: mg/Kg Received: 05/17/04 Basis: as received 05/22/04 Prepared: Diln Fac: 1.000 05/23/04 Analyzed: Batch#: 91372

'ield ID:

CB-4-21

Lab ID:

172357-004

'ype:

SAMPLE

Analyt	ce Result	000010000000		
Diesel C10-C24	1.6	HY	1.0)

Surrog	ate %REC	? Limits
Hexacosane	84	52-131

'ype: ab ID: BLANK

QC252028

Cleanup Method: EPA 3630C

Diesel C10-C24

Result

Analyte ND1.0

%REC Limits Surrogate Hexacosane 52-131

H= Heavier hydrocarbons contributed to the quantitation

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ID= Not Detected

L= Reporting Limit

age 2 of 2

Sample Name : 172357-001,91372

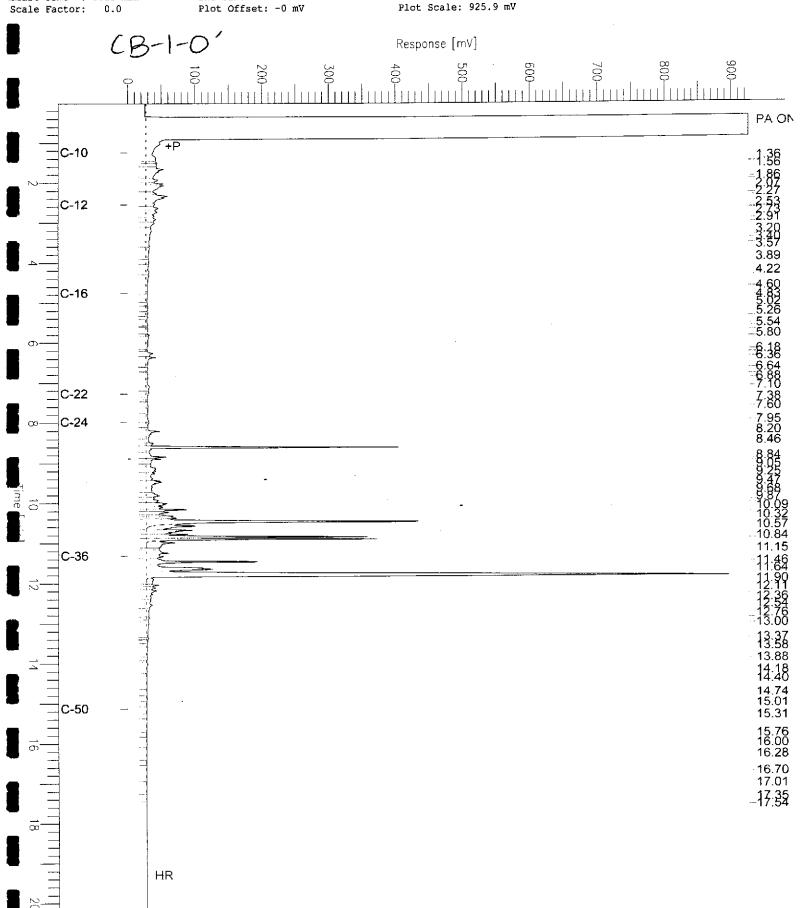
: G:\GC11\CHA\144A008.RAW leName

: ATEH140S.MTH

art Time : 0.01 min

End Time : 20.45 min

0.0


Page 1 of 1

Sample #: 91372 Date : 5/24/04 07:51 AM

Time of Injection: 5/23/04 Low Point : -0.21 mV

03:41 PM High Point : 925.73 mV

Plot Scale: 925.9 mV

Sample Name : 172357-002,91372

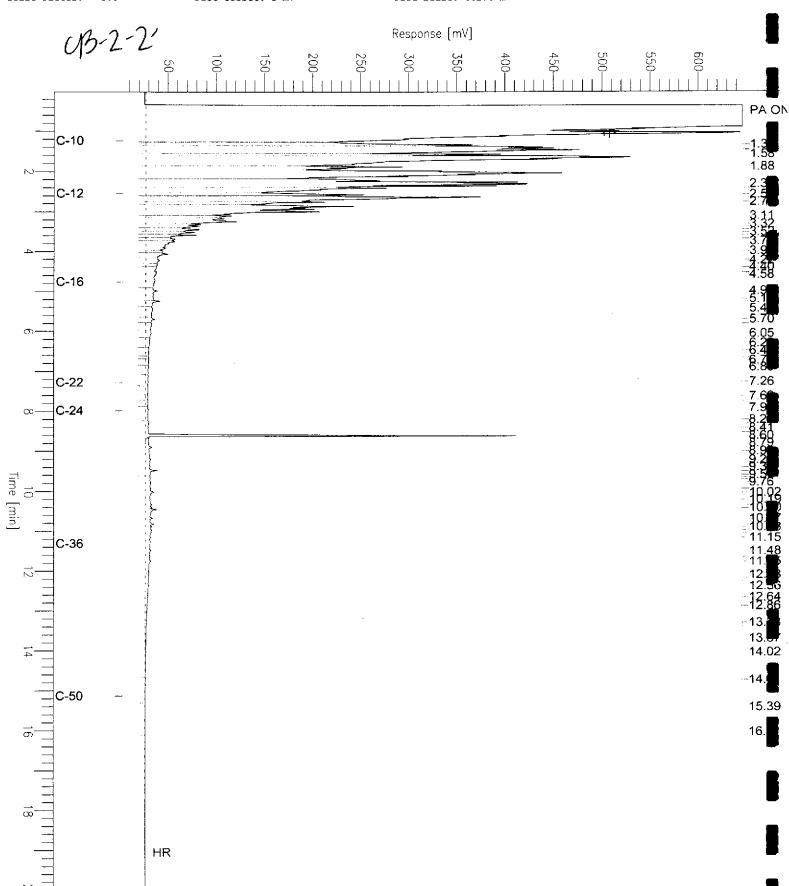
FileName : G:\GC11\CHA\144A009.RAW

Method : ATEH140S.MTH

Start Time : 0.01 min Scale Factor: 0.0

End Time : 20.45 min

Plot Offset: 3 mV


Sample #: 91372 Date: 5/24/04 07:57 AM 04:10 PM

Time of Injection: 5/23/04

High Point : 646.06 mV Low Point : 3.47 mV

Page 1 of 1

Plot Scale: 642.6 mV

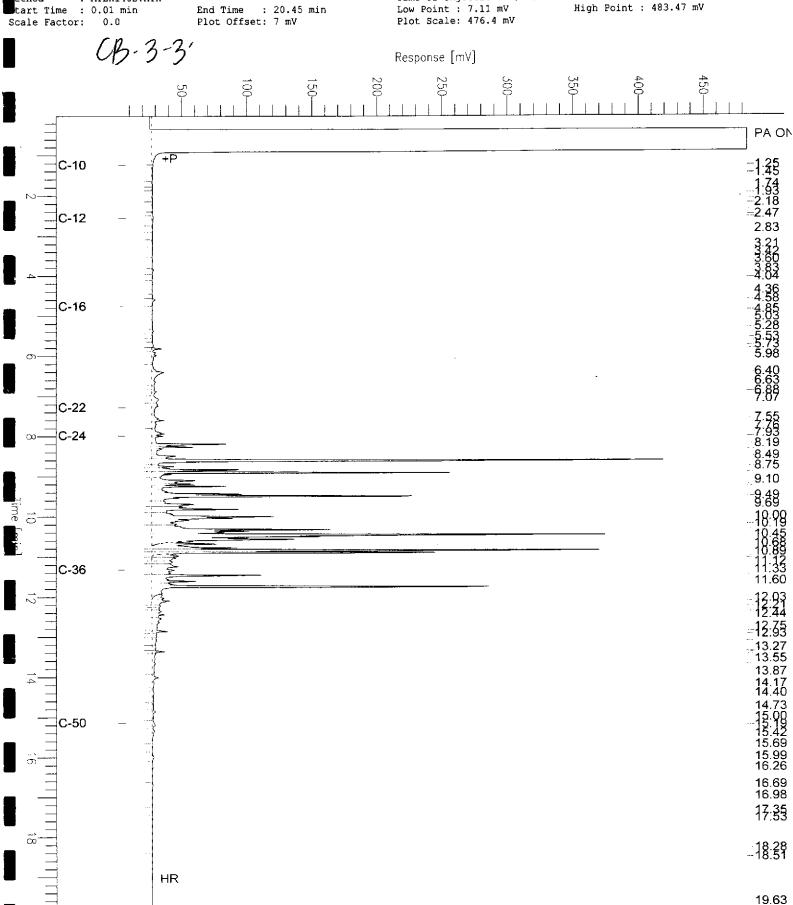
Sample Name : 172357-003,91372

: G:\GC11\CHA\144A010.RAW ileName

: ATEH140S.MTH

tart Time : 0.01 min

End Time : 20.45 min


Sample #: 91372

Date: 5/24/04 07:58 AM

Time of Injection: 5/23/04 04:39 PM

Low Point : 7.11 mV

Page 1 of 1

Sample Name: 172357-004,91372

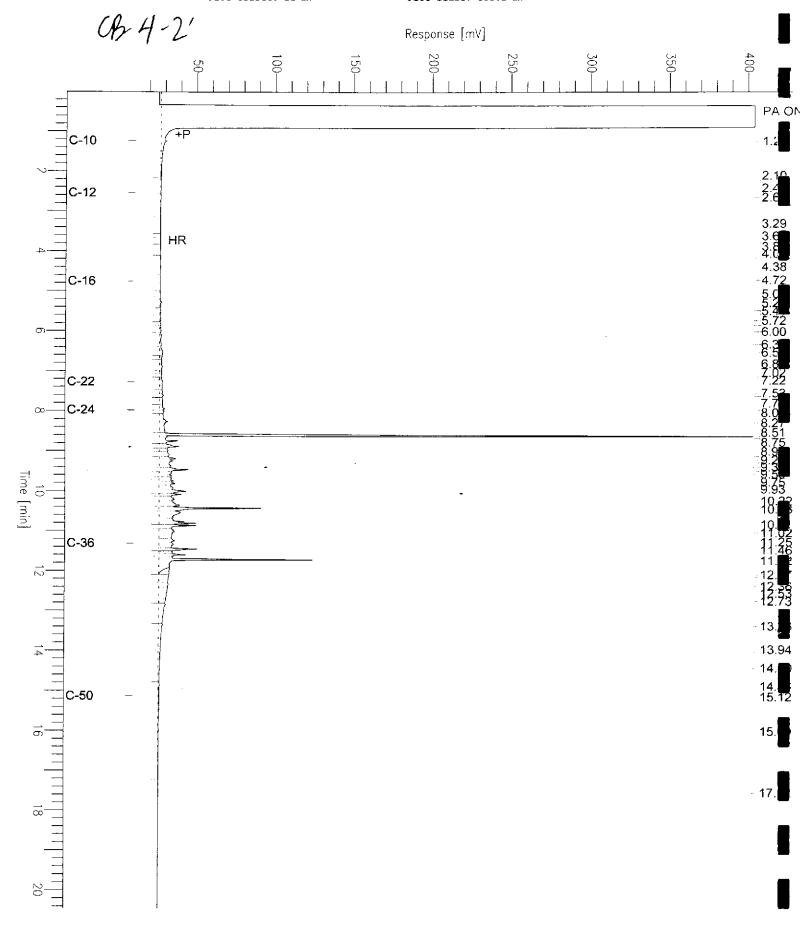
FileName : G:\GC11\CHA\144A011.RAW

Method : ATEH140S.MTH

Start Time : 0.01 min Scale Factor:

End Time : 20.45 min

Plot Offset: 11 mV


Sample #: 91372 Date : 5/24/04 07:58 AM

Page 1 of 1

Time of Injection: 5/23/04 05:08 PM

Low Point : 11.02 mV High Point: 404.13 mV

Plot Scale: 393.1 mV

Chromatogram Page 1 of 1 Sample #: 500mg/L Date : 5/23/04 12:33 PM le Name : ccv,04ws0894,dsl : G:\GC15\CHB\144B002.RAW Time of Injection: 5/23/04 11:52 AM : BTEH1425.MTH High Point : 267.51 mV Low Point : 21.83 mV : 19.99 min End Time : 0.01 min Start Time Plot Scale: 245.7 mV Plot Offset: 22 mV Scale Factor: 0.0 Dissel Response [mV] C10 C12 C-16 C-22 C-24 -9.53 -9.83 -10.3 -10.7 -11.1 -11.4 C-36 -11.7 -12.1 -12.4 -12.7 -13.1-17.8 -18.1

Batch QC Report

	Total Extrac	table Hydroca:	tbons
Lab #:	172357	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	SHAKER TABLE
Project#:	2004-02	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC252029	Batch#:	91372
Matrix:	Soil	Prepared:	05/22/04
Units:	mg/Kg	Analyzed:	05/23/04
Basis:	as received	-	

Cleanup Method: EPA 3630C

Analy	te Spiked	Result	1000000	EC Limits
Diesel C10-C24	49.95	49.49	99	56-129

	*REC	. Pinies	
Hexacosane	99	52-131	

Batch QC Report

	Tota	l Extractable Hydr	oderbone
	1004	T Partiacounte myor	ocal Doug
b #:	172357	Location	Redwood Regional Park
ient:	Stellar Environmental Sc	olutions Prep:	SHAKER TABLE
Project#:	2004-02	Analysis:	EPA 8015B
eld ID:	ZZZZZZZZZ	Batch#:	91372
S Lab ID	: 172380-019	Sampled:	05/17/04
Matrix:	Soil	Received:	: 05/18/04
Units:	mg/Kg	Prepared:	: 05/22/04
sis:	as received	Analyzed:	: 05/23/04
📆 ln Fac:	1.000		

MS

Cleanup Method: EPA 3630C

ID:

QC252030

Result %RBC Limits Analyte MSS Result Spiked 79.25 107 27-146 Diesel C10-C24 25.91 49.96

Surrogate %REC Limits

52-131 89 Hexacosane

MSD

QC252031

Cleanup Method: EPA 3630C

		Anal	yte Spiked	Result	*REC	Limits	RPD	Lim
Į	esel	C10-C24	49.86	78.08	105	27-146	1	50

Surrogate %REC Limits 52-131 xacosane

June 2004 Bioventing Pilot Test Well Soil Samples

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Stellar Environmental Solutions 2198 6th Street Suite 201 Berkeley, CA 94710

Date: 16-JUN-04

Lab Job Number: 172625

Project ID: 2004-02

Location: Redwood Regional Park

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

rations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of <u>52</u>

Laboratory Numbers: 172625

Client: Stellar Environmental Solutions

Location: Redwood Regional Park

Project #: 2004-02

Sampled Date: 06/01/04 Received Date: 06/02/04

CASE NARRATIVE

This hardcopy data package contains sample and QC results for eight water samples, which were received from the site referenced above on June 02, 2004. The samples were received cold and intact.

TVH/BTXE:

High surrogate recoveries were observed for many samples as a result of hydrocarbons coeluting with the surrogate. No other analytical problems were encountered.

TEH by (EPA 8015B):

No analytical problems were encountered.

General Chemistry:

Low Total Phosphorus matrix spike recoveries were observed for sample VW-1-15.5' (CT# 172625-008). The associated laboratory control sample (LCS) passed all quality control criteria. No other analytical problems were encountered.

TKN by (EPA 351.3):

This analysis was sub-contracted to Calscience Environmental Laboratories, Inc. in Garden Grove, California. No analytical problems were encountered.

Total Volatile Hydrocarbons Redwood Regional Park EPA 5030B Lab #: 172357 Location: Client: Stellar Environmental Solutions Prep: 2004-02 Project#: 05/17/04 05/17/04 Matrix: Water Sampled: ug/L 91222 Units: Received: 05/18/04 Batch#: Analyzed:

Field ID: Type:

CB-1-GW

SAMPLE

Lab ID:

172357-005

Analyte	Result	RL	Diln Fa	c Analysis	
Gasoline C7-C12	22,000 Y	2,500	50.00	EPA 8015B	j
MTBE	910 C	20	10.00	EPA 8021B	
Benzene	1,400 C	5.0	10.00	EPA 8021B	
Toluene	ND	5.0	10.00	EPA 8021B	d
Ethylbenzene	2,100	5.0	10.00	EPA 8021B	i i
m,p-Xylenes	210 C	5.0	10.00	EPA 8021B	
o-Xylene	ND	5.0	10.00	EPA 8021B	

Surrogate	REC Limits Dith Pag Analysis	
Trifluorotoluene (FID)	142 74-142 50.00 EPA 8015B	
Bromofluorobenzene (FID)	116 80-139 50.00 EPA 8015B	
Trifluorotoluene (PID)	247 * >LR b 55-139 10.00 EPA 8021B	
Bromofluorobenzene (PID)	181 * 62-134 10.00 EPA 8021B	

Field ID: Type:

CB-2-GW SAMPLE

Lab ID: Diln Fac: 172357-006

20.00

Analyte	Result	PL	Analysis	
Gasoline C7-C12	54,000 Y	1,000	EPA 8015B	
MTBE -	120 C	40	EPA 8021B	
Benzene	300	10	EPA 8021B	
Toluene	ND	10	EPA 8021B	
Ethylbenzene	650	10	EPA 8021B	
m,p-Xylenes	49 C	10	EPA 8021B	
o-Xylene	55	10	EPA 8021B	

Surrogate	%RE	200	Limits	100000000000000000000000000000000000000	Analysis
Trifluorotoluene (FID)	151	*	74-142	EPA	8015B
Bromofluorobenzene (FID)	149	*	80-139	EPA	8015B
Trifluorotoluene (PID)	112		55-139	EPA	8021B
Bromofluorobenzene (PID)	102		62-134	EPA	8021B

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative ND= Not Detected RL= Reporting Limit

>LR= Response exceeds instrument's linear range Page 1 of 3

Laboratory (.offis + Tor				Me	thod of Shipment hav	ud deliv	6-1	_												Page .	<u> </u>	n <u>1</u>	
Address 333 Fifth	K SYMIT CA 94710				ipment No.		•	-			7	7				Anaiv	sis Re	aulred	<u> </u>				\neg
Project Owner East By	101 61900	ne Dis	toa:	Co Pro	oler No	e Rud	रा	- - -	·.	<i> </i>	Mainers /	A Selection of the sele	//		7/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3	(365,3)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7	/-/	7/	7		
Project Name Red was 1	id ca Park Service			Tel	ephone No. <u>(510)</u> 644 x No. <u>(510)</u> 644 implers: <i>(Signature)</i>	-3123 -3859	<u> </u>	- - /		No of	1787	Markey Inter				7			//	//	/ Rem	prks	
Project Number	Location/	Date	Time	Sample Type	Type/Size of Container	Pre	servation Chemical	1/			# £		Z X		19				<u>/</u>	/ -			
VMC-2. 10-51	10.2	ioli lon	५०७	SCIL	prose spore seglass jar	1.,	No		а	χ	χ	X	×	X	X							<u> </u>	_
VMP 21145	145)	1	915	(brass sleeve	1/25	No -		1	Χ					•			_					_
Je(C - 3 - 10 5	10.5		1105		Deans Steens	1/25	No	_	1.	χ							_		ļ				_
VMC - 3 15	15,		1190		brass start Siles for	Yes	No	<u> </u>	X 1			9 ×	$\stackrel{\sim}{\dashv}$		×	e	8k	<u> </u>	<u> </u>				
NMP-1-10-5"	10-5		1310		bruss sleeve	Yes	No	ļ	1	X	X						-	-	 				
Jak 1-115"	19.5	1	1340		bruss showe & glass por	1.5	N ₂		1	χ	Ϋ́	\times	×	×	×		-	 	 	-			
(VW 1-10,	101	6/2/01	83.5		bruss sleve	1/25	N°	 	1	X	X.		<u> </u>	<u> </u>		-	 	\vdash	-	ļ			
yw 1 15.5'	15.5	12	84.5	1	bruss skeverglessjur	¥0:5	No		a	X	X	×	X	×	×	╁		+	-				
					- }			-	<u> -</u>	-	-	 	-	_	_	<u> </u>	+	+-					
		_	<u> </u>					-	-	-	<u> </u>	lacksquare	<u> </u>	<u> </u>	╁—	 	+-	}	+	 			
			ļ				ļ	4	-	-	╁-	<u> </u>	_		-	-	 	-	+-	<u> </u>			•
Relinquished by:		Date 4/2/64	Receiv Sign	ed by:		Date - 6/2/6	Relinquisher Signature			<u> </u>			<u> </u>	Dak	, F	lecelve Sign	ed by: ature .	·				-	Date
Printed Base M. Rycke. Company SIGNAR ENVIR		Time	Prin		As & Tompting Lid	Time	Printed .	y					_	Tim	9	Print	npany						Time
Turneround Time: 1-2 w					1		Relinquishe Signatur	-						Dat	es I		ed by: nature			<u></u>			Date
Comments:		500	-8; 2 (c)	00	1 hood		Printed Compar					-		Tin	16		nted					_	Time

Total Volatile Hydrocarbons

Lab #: 172625 Location: Redwood Regional Park

Client: Stellar Environmental Solutions **EPA** 5030B Prep: Project#: 2004-02

Basis: 06/02/04 as received Received:

Field ID: Type:

Lab ID:

Matrix:

VMP-2-10.5'

SAMPLE 172625-001

Soil

Diln Fac:

250.0

Batch#: Sampled: Analyzed:

91672 06/01/04 06/03/04

Analyte	Result	(34)	1773 (-P)
Gasoline C7-C12	3,500	250	mq/Kq EPA 8015B
MTBE	ND	5,000	ug/Kg EPA 8021B
Benzene	1,400 C	1,300	ug/Kg EPA 8021B
Toluene	ND	1,300	ug/Kg EPA 8021B
Ethylbenzene	42,000	1,300	ug/Kg EPA 8021B
m,p-Xylenes	160,000	1,300	ug/Kg EPA 8021B
o-Xylene	37,000	1,300	ug/Kg EPA 8021B

Surrogate	RE		Analysis
Trifluorotoluene (FID)	117	71-138	EPA 8015B
Bromofluorobenzene (FID)	111	73-143	EPA 8015B
Trifluorotoluene (PID)	93	55-135	EPA 8021B
Bromofluorobenzene (PID)	88	58-135	EPA 8021B

Field ID:

VMP-2-14.5'

Type: Lab ID: Matrix: SAMPLE

172625-002

Diln Fac: Batch#:

100.0 91672

Sampled:

Soil

Analyzed:

06/01/04 06/03/04

Analyte	Result	RU	Unit F	-	or Grady	E 6 (8)
Gasoline C7-C12	3,200	100	mg/K	q EPA	8015B	
MTBE	ND	2,000	ug/K	q EPA	8021B	
Benzene	8,000 C	500	ug/K	q EPA	8021B	
Toluene	ND	500	ug/K		8021B	
Ethylbenzene	40,000	500	ug/K		8021B	
m,p-Xylenes	72,000	500	ug/K		8021B	
o-Xylene	5,000	500	uq/K	G EPA	8021B_	

Surrogate	%RE	(2)	Limita		Analysia
Trifluorotoluene (FID)	180	*	71-138	EPA	8015B
Bromofluorobenzene (FID)	130		73-143	EPA	8015B
Trifluorotoluene (PID)	102		55-135	EPA	8021B
Bromofluorobenzene (PID)	85		58-135	EPA	8021B

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

GC07 TVH 'A' Data File RTX 502

Page 1 of 1 Sample Name : 172625-001,91672 Sample #: a : G:\GC07\DATA\155A016.raw Date: 6/4/04 10:35 AM eName Time of Injection: 6/3/04 08:06 PM : TVHBTXE High Point : 316.20 mV Start Time : 0.00 min End Time : 26.00 min Low Point : -0.50 mV Plot Offset: -1 mV Plot Scale: 316.7 mV Scale Factor: 1.0 Response [mV] +CB =8.97 =1.95 -1.82-3:35 C-6 -3.01 -3.84 -4.69-5.24_6.03 TRIFLUO ---6.60--7.06 --7.39 -7.94-8.41 -8.76 -9.11 -9.36 -9.70 -10.18-12.97 **BROMOF-**C-10 -16.92 --17.28 -17.73 --18.08 -20.90 ~21.42 -21.98 Vmp-2-10.51 -25.23 ± 25.69

GC07 TVH 'A' Data File RTX 502

Sample Name : 172625-002,91672

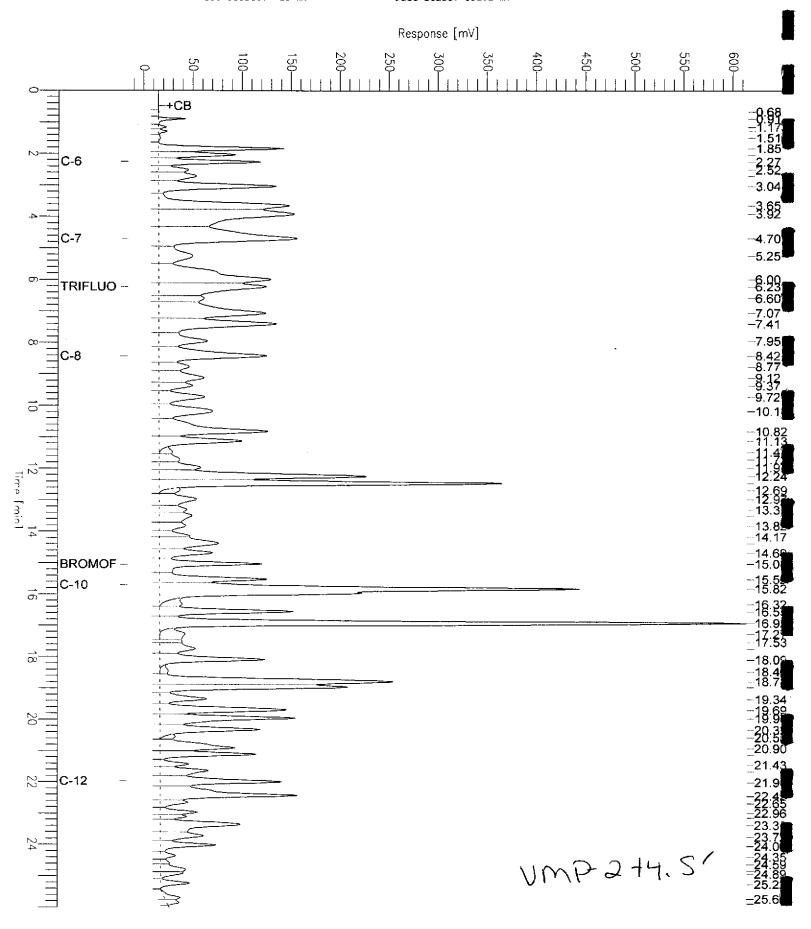
: G:\GC07\DATA\155A017.raw 'ileName

1ethod : TVHBTXE

Start Time : 0.00 min cale Factor: 1.0

End Time : 26.00 min

Plot Offset: -15 mV


Sample #: a

Page 1 of 1

Date: 6/3/04 09:08 PM Time of Injection: 6/3/04 08:41 PM

Low Point : -15.39 mV High Point : 615.72 mV

Plot Scale: 631.1 mV

Total Volatile Hydrocarbons

Redwood Regional Park EPA 5030B Location: 172625 ab #:

Client: Stellar Environmental Solutions Prep: Project#: 2004-02

06/02/04 Basis: as received Received:

Field ID:

VMP-3-10.5'

SAMPLE

pe: b ID:

172625-003 Soil

Diln Fac:

Batch#:

1.000

Sampled: Analyzed: 91651 06/01/04 06/02/04

Analyte	Result	RL	30,6 8		311.7 VIEW
Sasoline C7-C12	ND	1.1	mg/I		8015B
TBE	ND	22	ug/I		8021B
Benzene	ND	5 .5	ug/I		. 8021B
Toluene	ND	5.5	ug/I	Kg EPA	. 8021B
t hylbenzene	ND	5.5	ug/I		8021B
n,p-Xylenes	ND	5.5	ug/I	Kg EPA	. 8021B
-Xylene	ND	5.5	<u>ug/I</u>	Kq EPA	8021B

Surrogata	ERISC	Complete	357.78	
rifluorotoluene (FID)	95	71-138	EPA 8015B	
romofluorobenzene (FID)	116	73-143	EPA 8015B	
Trifluorotoluene (PID)	74	55-135	EPA 8021B	
Bromofluorobenzene (PID)	90	58-135	EPA 8021B	

Field ID:

VMP-3-15'

Type: b ID:

SAMPLE 172625-004 trix: Soil

Diln Fac:

Batch#:

100.0

Sampled: Analyzed: 91672 06/01/04 06/03/04

				
No. 20 April 1972	Regult			**************************************
Sasoline C7-C12	1,400	100	mg/Kg EPA	8015B
ITBE	ND	2,000	ug/Kg EPA	8021B
enzene	ND	500	ug/Kg EPA	8021B
Toluene	ND	500		8021B
Ethylbenzene	8,900	500	ug/Kg EPA	
, p-Xylenes	5,300	500	ug/Kg EPA	8021B
-Xylene	ND	500	uq/Kq EPA	8021B

Surrogate	REC.	rimits.	Anaivels
rifluorotoluene (FID)	149 *	71-138	EPA 8015B
romofluorobenzene (FID)	111	73-143	EPA 8015B
rifluorotoluene (PID)	97	55-135	EPA 8021B
Bromofluorobenzene (PID)	82	58-135	EPA 8021B

= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% MD= Not Detected

= Reporting Limit age 2 of 6

GC07 TVH 'A' Data File RTX 502

Tample Name : 172625-004,91672

: G:\GC07\DATA\155A018.raw

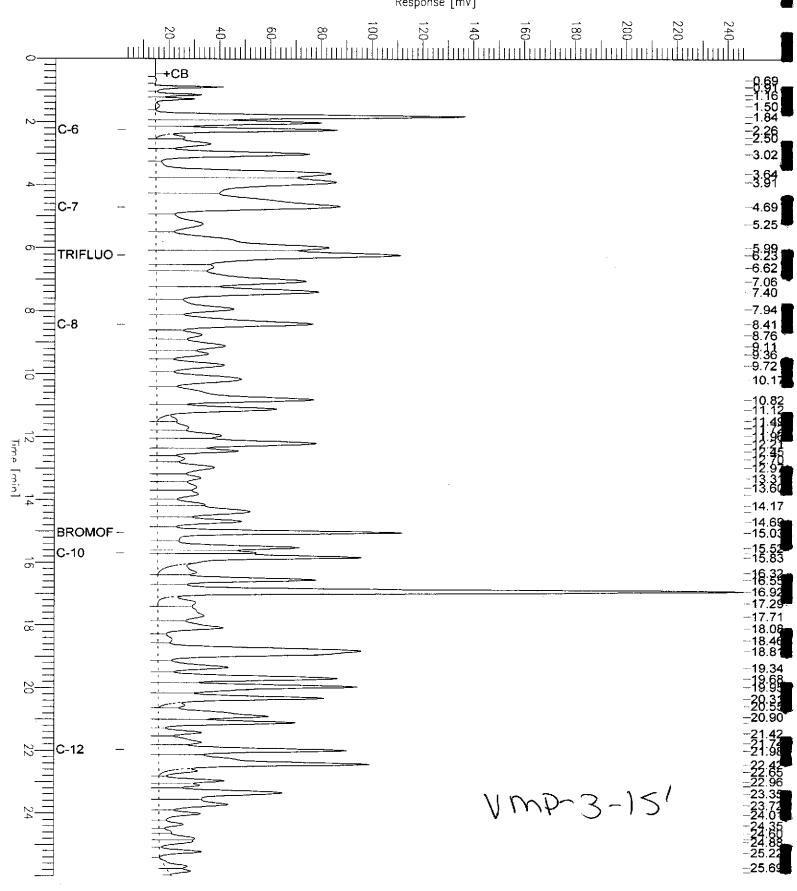
'ileName lethod : TVHBTXE

tart Time : 0.00 min cale Factor: 1.0

End Time : 26.00 min

Plot Offset: 3 mV

Sample #: a


Page 1 of 1

Date : 6/3/04 09:43 PM Time of Injection: 6/3/04 09:17 PM

Low Point : 3.00 mV High Point : 246.75 mV

Plot Scale: 243.7 mV

Response [mV]

Total Volatile Hydrocarbons Lab #: 172625 Location: Redwood Regional Park **EPA 5030B** Client: Stellar Environmental Solutions Prep: Project#: 2004-02 06/02/04 Basis: as received Received:

Field ID: ype: āb ID:

atrix:

VMP-1-10.5' SAMPLE

172625-005 Soil

Diln Fac: Batch#: Sampled:

Analyzed:

1.000 91680 06/01/04 06/03/04

4075 (F) (7.194.-max Ana visa (40.000) mg/Kg EPA 8015B ug/Kg EPA 8021B Gasoline C7-C12 1.0 MTBE ND 21 ug/Kg EPA 8021B 5.2 Benzene ND ug/Kg EPA 8021B ug/Kg EPA 8021B ND 5.2 Toluene 5.2 Ethylbenzene ND m,p-Xylenes ug/Kg EPA 8021B ND 5.2 ug/Kg EPA 8021B o-Xylene ND

Surrogate	*REC	Minite	Analysis	
Trifluorotoluene (FID)	103	71-138	EPA 8015B	
Bromofluorobenzene (FID)	108	73-143	EPA 8015B	
Trifluorotoluene (PID)	95	55-135	EPA 8021B	
Bromofluorobenzene (PID)	98	58-135	EPA 8021B	

Field ID:

VMP-1-14.5' SAMPLE

Diln Fac: Batch#:

100.0 91672 06/01/04

ype: ab ID: atrix:

172625-006 Soil

Sampled: 06/03/04 Analyzed:

United Agentines /.t/(0.044/2.e0..... mg/Kg EPA 8015B ug/Kg EPA 8021B ug/Kg EPA 8021B ug/Kg EPA 8021B Gasoline C7-C12 2,100 100 2,000 MTBE ND Benzene ND 500 Toluene 500 ND ug/Kg EPA 8021B ug/Kg EPA 8021B ug/Kg EPA 8021B 15,000 Ethylbenzene 500 4,000 C 500 m,p-Xylenes 500 o-Xylene

Surrogate	#RK6	Islani eg	A118 (Vg.) (
Trifluorotoluene (FID)	145 *	71-138	EPA 8015B	1
Bromofluorobenzene (FID)	137	73-143	EPA 8015B	
Trifluorotoluene (PID)	98	55-135	EPA 8021B	- 1
Bromofluorobenzene (PID)	91	58-135	EPA 8021B	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

MD= Not Detected

L= Reporting Limit age 3 of 6

GC07 TVH 'A' Data File RTX 502

Sample Name : 172625-006,91672

FileName : G:\GC07\DATA\155A019.raw

Method : TVHBTXE

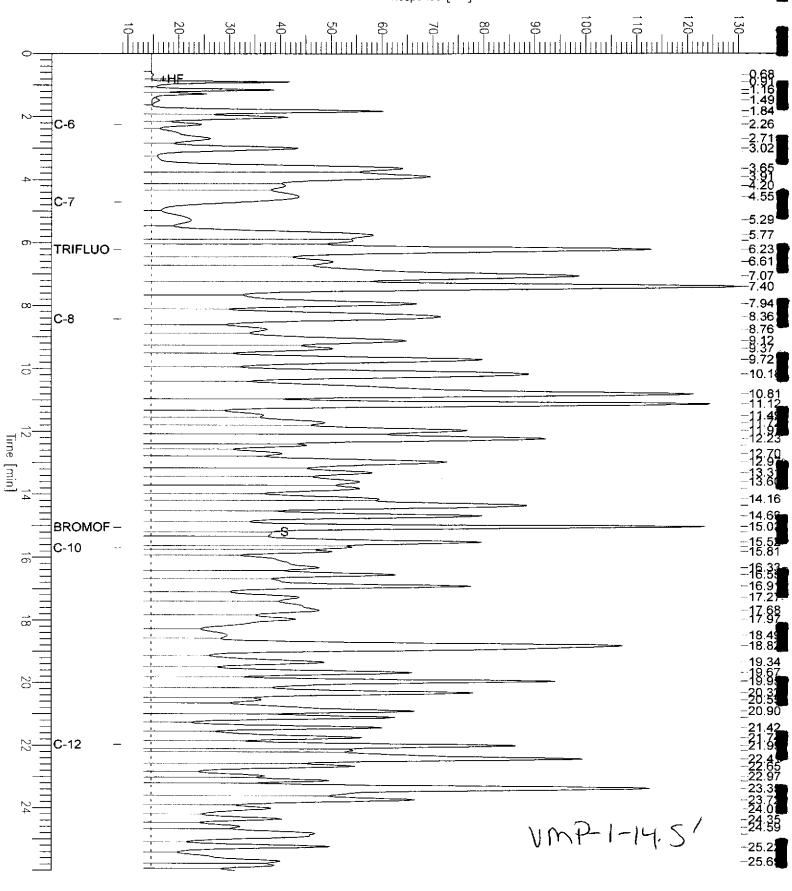
Start Time : 0.00 min Scale Factor: 1.0

End Time : 26.00 min

Plot Offset: 9 mV

Sample #: a

Page 1 of 1


Date : 6/4/04 10:36 AM

Time of Injection: 6/3/04 09:51 PM

Low Point : 8.82 mV High Point: 130.63 mV

Plot Scale: 121.8 mV

Total Volatile Hydrocarbons Lab #: 172625 Location: Redwood Regional Park Client: Stellar Environmental Solutions EPA 5030B Prep: Project#: 2004-02 Basis: received 06/02/04 Received:

Field ID: ype: ab ID:

atrix:

VW-1-10' SAMPLE 172625-007 Soil

Diln Fac: Batch#: Sampled: Analyzed:

1.000 91651 06/02/04 06/02/04

Aralyte Onits Analysis T. Gasoline C7-C12 mg/Kg EPA 8015B 0.98 ND MTBE ND 20 ug/Kg EPA 8021B Benzene 4.9 ND ug/Kg EPA 8021B ug/Kg EPA 8021B ug/Kg EPA 8021B Toluene ND 4.9 Ethylbenzene 4.9 ND m,p-Xylenes ug/Kg EPA 8021B ND 4.9 o-Xylene 4.9 ug/Kg EPA 8021B ND

Surrogate	XR.R		Anal V	i.a
Trifluorotoluene (FID)	98	71-138	EPA 8015B	
Bromofluorobenzene (FID)	122	73-143	EPA 8015B	
Trifluorotoluene (PID)	76	55-135	EPA 8021B	
Bromofluorobenzene (PID)	94	58-135	EPA 8021B	

Field ID: ype: ab ID:

atrix:

VW-1-15.5' SAMPLE 172625-008 Soil

Diln Fac: Batch#: Sampled:

Analyzed:

5.000 91651 06/01/04 06/03/04

\$46.8**\$**746. Name of the second control of the second Gasoline C7-C12 MTBE mg/Kg EPA 8015B ug/Kg EPA 8021B ug/Kg EPA 8021B 5.0 ND 100 Benzene ND 25 Toluene 25 ug/Kg EPA 8021B ND Ethylbenzene ug/Kg EPA 8021B 260 25 ug/Kg EPA 8021B ug/Kg EPA 8021B m,p-Xylenes ND 25 o-Xylene 130 C

Surrogate	ARRC.	Limita	Analysis	
Trifluorotoluene (FID)	123	71-138	EPA 8015B	
Bromofluorobenzene (FID)	161 *	73-143	EPA 8015B	
Trifluorotoluene (PID)	72	55-135	EPA 8021B	
Bromofluorobenzene (PID)	104	58-135	EPA 8021B	

= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

D= Not Detected

L= Reporting Limit age 4 of 6

Sample Name : 172625-008,91651

: G:\GC05\DATA\154G019.RAW FileName

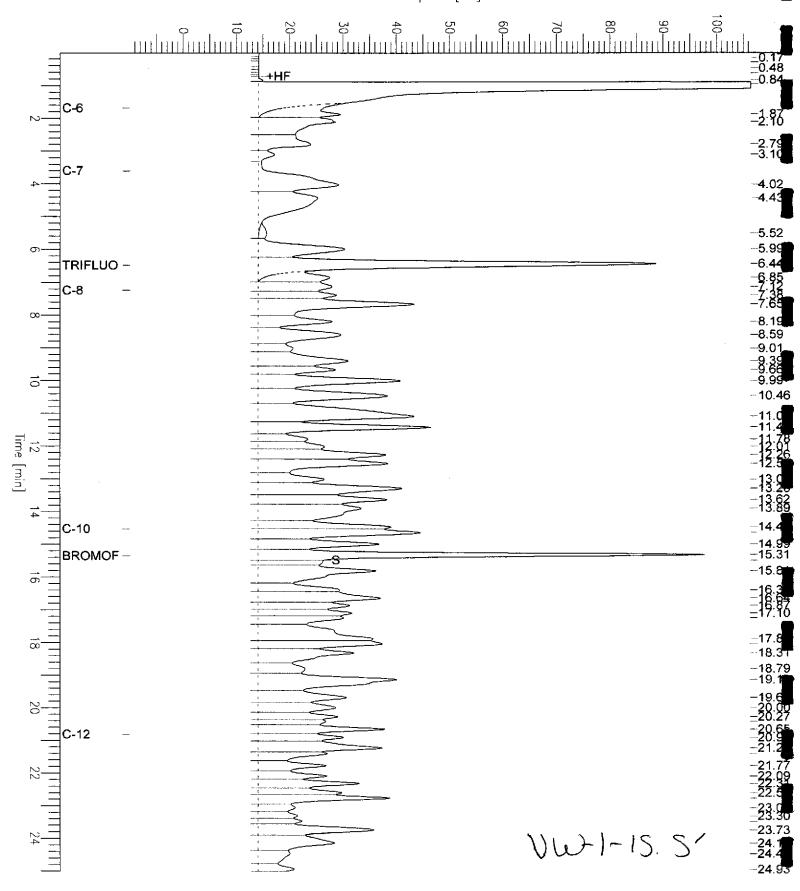
Method

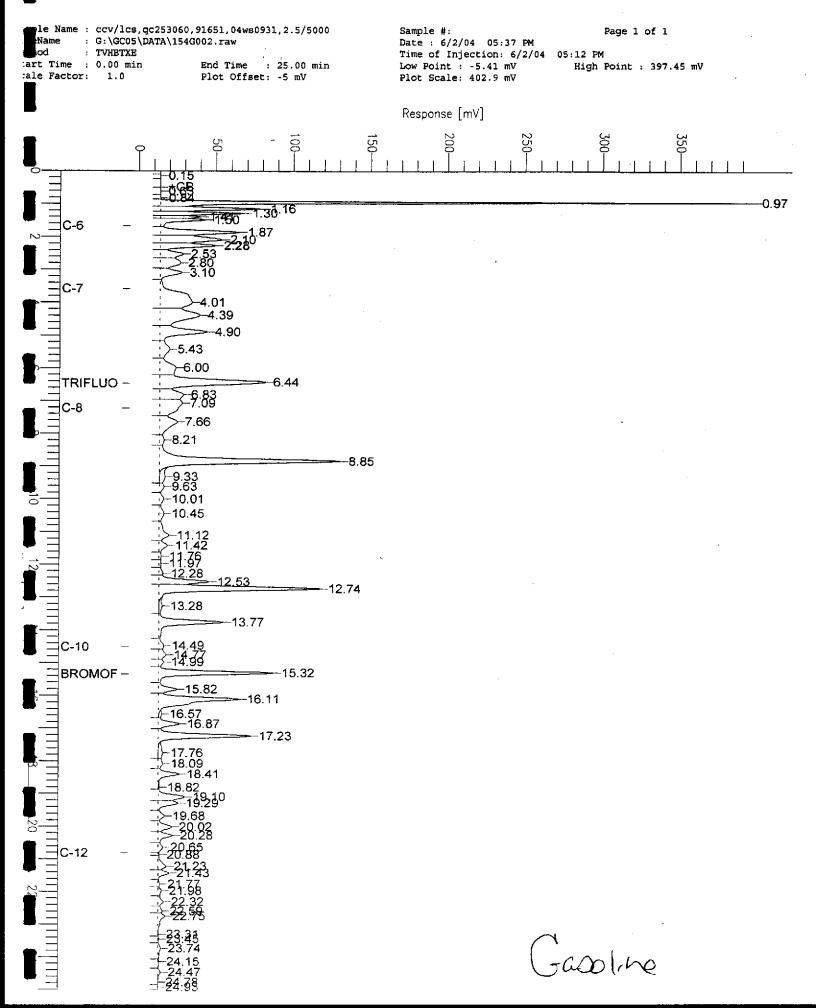
Start Time : 0.02 min Scale Factor: 0.0

End Time : 25.00 min Plot Offset: -10 mV

Sample #: a

Page 1 of 1


Date: 6/3/04 11:02 AM Time of Injection: 6/3/04 02:47 AM


Low Point : -9.89 mV

High Point : 106.43 mV

Plot Scale: 116.3 mV

Total Volatile Hydrocarbons

Redwood Regional Park EPA 5030B Location: Lab #: 172625

Stellar Environmental Solutions Client: Prep: Project#: 2004-02

06/02/04 as received Received: Basis:

Type: Lab ID:

BLANK OC253059 Soil Diln Fac: Batch#:

1.000 91651 06/02/04

Matrix:

Analyzed:

Apalyte	Result	RIL	Statte.		ATIA	<u> 7818</u>
Gasoline C7-C12	ND	1.0	mg/Kg	EPA (8015B	
MTBE	ND	20			8021B	,
Benzene	ND	5.0			8021B	
Toluene	ND	5.0			8021B	
Ethylbenzene	ND	5.0	ug/Kg		8021B	
m,p-Xylenes	ND	5.0	ug/Kg		8021B	
o-Xylene	ND	5.0	ug/Kg		8021B	

Surcogate	00000000000000000000000000000000000000	(******************************	***************************************		
	20000000000000000000000000000000000000	7 ex 20000000 x x x x 1 x x 6 x 5 2000	*****************	685, 4 4 5 1 4 54 48 78 78 43 43 4 78 500000000000000000000000000000000000	***************************************
Trifluorotoluene (FID)	77	71-138	EPA 80	015B	
	, ,	17-730	DEW O	013B	
Bromofluorobenzene (FID)	88	73-143	EPA 80	ለ15¤	
	00	12 T42	DEA O	0135	
Trifluorotoluene (PID)	58	55-135	EPA 80	ስ21 R	
	20	33-133		0210	
Bromofluorobenzene (PID)	68	59~135	RPA 80	021B	
DIOMOTICAL (LID)		~~ +	DIE T	VAAR	

Type: Lab ID: Matrix:

Units:

BLANK QC253138 Water ug/L

Diln Fac: Batch#: Analyzed: 1.000 91672 06/03/04

					_
Analyte	Result	RL			ysis
Gasoline C7-C12	ND	200	EPA	8015B	
MTBE	ND	4.0	EPA	8021B	
Benzene	ND	1.0	EPA	8021B	
Toluene	ND	1.0	EPA	8021B	
Ethylbenzene	ND	1.0	EPA	8021B	
m,p-Xylenes	ND	1.0	EPA	8021B	
o-Xylene	ND	1.0	EPA	8021B	

Surrogate	*RE	. Limite	Anai	VSIB
Trifluorotoluene (FID)	92	71-138	EPA 8015B	
Bromofluorobenzene (FID)	91	73-143	EPA 8015B	1
Trifluorotoluene (PID)	81	55-135	EPA 8021B	
Bromofluorobenzene (PID)	84	58-135	EPA 8021B	

RL= Reporting Limit Page 5 of 6

^{*=} Value outside of QC limits; see narrative
C= Presence confirmed, but RPD between columns exceeds 40% ND= Not Detected

Total Volatile Hydrocarbons Redwood Regional Park Lab #: 172625 Location: **EPA** 5030B Stellar Environmental Solutions Prep: Client: Project#: 2004-02 06/02/04 Received: Basis: as received

Type: ab ID: latrix: BLANK QC253169 Soil

Diln Fac: Batch#: Analyzed:

1.000 91680 06/03/04

mg/Kg EPA 8015B
ug/Kg EPA 8021B
ug/Kg EPA 8021B 30-01 10.500 PAGE 1 (A 📆 1.0 Gasoline C7-C12 ND 20 MTBE ND Benzene ND 5.0 5.0 Toluene ND ND 5.0 Ethylbenzene m,p-Xylenes o-Xylene 5.0 ND ug/Kg EPA 8021B 5.0 ND

	Surrogate	9: P.R.C		anal	V£1.8
	Trifluorotoluene (FID)	100	71-138	EPA 8015B	
4	Bromofluorobenzene (FID)	105	73-143	EPA 8015B	
	Trifluorotoluene (PID)	91	55-135	EPA 8021B	
٦	Bromofluorobenzene (PID)	94	58-135	EPA 8021B	

^{*=} Value outside of QC limits; see narrative
C= Presence confirmed, but RPD between columns exceeds 40%

D= Not Detected L= Reporting Limit Page 6 of 6

	Total Vol	atile Hydrocarbo	nis
Lab #:	172625	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2004-02	Analysis:	EPA 8015B
Type:	LCS	Basis:	as received
Lab ID:	QC253060	Diln Fac:	1.000
Matrix:	Soil	Batch#:	91651
Units:	mg/Kg	Analyzed:	06/02/04

Analvea	Spiked	Result	See 18 18 18 18 18 18 18 18 18 18 18 18 18	C Limita
Gasoline C7-C12	5.000	4.925	99	80-120

Surrogate	*DEC	Limits
Trifluorotoluene (FID)	107	71-138
Bromofluorobenzene (FID)	124	73-143

	T	otal Volatil	e Hydrocarbons	
Lab #:	172625		Location:	Redwood Regional Park
Client:	Stellar Environmental	Solutions	Prep:	EPA 5030B
Project#:	2004-02		Analysis:	EPA 8021B
Туре:	LCS		Basis:	as received
Lab ID:	QC253061		Diln Fac:	1.000
Matrix:	Soil		Batch#:	91651
Units:	ug/Kg		Analyzed:	06/02/04

Amalyte	Spiked	Result	*REC	Limits	
MTBE	50.00	43.79	88	56-137	
Benzene	50.00	44.63	89	80-120	
Toluene	50.00	44.26	89	80-120	
Ethylbenzene	50.00	46.82	94	79~120	
m,p-Xylenes	50.00	45.02	90	80-120	
o-Xylene	50.00	46.38	93	80-120	

Surrogate	%RI	C Limits
Trifluorotoluene (PID)	75	55-135
Bromofluorobenzene (PID)	90	58-135

		Total Volatil	le Hydrocarbons	
Lab #: 1	172625		Location:	Redwood Regional Park
Client: S	Stellar	r Environmental Solutions	Prep:	EPA 5030B
Project#: 2	2004-02	<u></u>	Analysis:	EPA 8015B
Field ID:	·	VMP-3-10.5'	Diln Fac:	1.000
MSS Lab ID:	/ 1	172625-003	Batch#:	91651
Matrix:		Soil	Sampled:	06/01/04
Units:		mg/Kg	Received:	06/02/04
Basis:		as received	Analyzed:	06/02/04

Type:

MS

Lab ID:

QC253064

Analyte		Spiked			KC Limits
Gasoline C7-C12	0.1591	11.11	10.89	97	47-120

Surrogate	VERC	Limits	
Trifluorotoluene (FID)	113	71-138	
Bromofluorobenzene (FID)	132	73-143	

Type:

MSD

Lab ID: QC253065

Analyte		Spiked	Result	¥RE	C Limits	RPD I	A. 6778
Gasoline C7-C12	·	10.75	10.30	94	47-120	2 2	23

Surrogate	V REC	Limits	
Trifluorotoluene (FID)	117	71-138	
Bromofluorobenzene (FID)	135	73-143	

	Total Volat:	ile Hydrocarbo	ons .
Lab #:	172625	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2004-02	Analysis:	EPA 8021B
Type :	LCS	Diln Fac:	1.000
Lab ID:	QC253139	Batch#:	91672
Matrix:	Water	Analyzed:	06/03/04
Units:	ug/L		

Analyte	Spiked	Result	\$REC	Limits
MTBE	20.00	19.84	99	56-137
Benzene	20.00	19.98	100	80-120
Toluene	20.00	19.93	100	80-120
Ethylbenzene	20.00	20.49	102	79-120
m,p-Xylenes	20.00	20.15	101	80-120
b-Xylene	20.00	20.51	103	80-120

Surrogate	\$3	REC Limits	
Trifluorotoluene (PID)	83	55-135	
Bromofluorobenzene (PI	D) 83	58-135	

	Total Volat:	ile Hydrocarbo	nie
Lab #:	172625	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2004-02	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC253140	Batch#:	91672
Matrix:	Water	Analyzed:	06/03/04
Units:	ug/L		· .

Amalyte	Spiked			Limits	
Gasoline C7-C12	2,000	2,207	110	80-120	

Trifluorotoluene (FID) 110 71-138	
Bromofluorobenzene (FID) 94 73-143	

	Total Volat	ile Hydrocarbo	ons
Lab #: 1726	25	Location:	Redwood Regional Park
Client: Stel	lar Environmental Solutions	Prep:	EPA 5030B
Project#: 2004	-02	Analysis:	EPA 8021B
Field ID:	ZZZZZZZZZ	Batch#:	91672
MSS Lab ID:	172630-001	Sampled:	06/02/04
Matrix:	Water	Received:	06/02/04
Units:	ug/L	Analyzed:	06/03/04
Diln Fac:	1,000	_	

ype:

MS

Lab ID:

QC253156

					
Analyte	MSS Result	Spiked	Result	(\$147)	Alm: ba
MTBE	<0.1000	20.00	20.71	104	60-120
Benzene	<0.09000	20.00	20.49	102	62-120
Toluene	<0.04600	20.00	20.02	100	54-120
Ethylbenzene	<0.05900	20.00	20.15	101	46-120
m,p-Xylenes	<0.06600	20.00	19.86	99	43-120
To-Xylene	<0.05300	20.00	20.23	101	45-120

Surrogate	%RE	C Limits
Trifluorotoluene (PID)	85	55-135
Bromofluorobenzene (PID)	96	58-135

Type:

MSD

Lab ID:

QC253157

Analyte	Spiked	Result	%REC	Limita	RPD	Lim
MTBE	20.00	21.73	109	60-120	5	25
Benzene	20.00	20.46	102	62-120	0	20
Toluene	20.00	19.98	100	54-120	0	20
Ethylbenzene	20.00	20.18	101	46-120	0	20
m,p-Xylenes	20.00	19.70	98	43-120	1	20
o-Xylene	20.00	20.29	101	45-120	0	20

Surrogate	%REC	Limits
Trifluorotoluene (PID)	85	55-135
Bromofluorobenzene (PID)	97	58-135

	Total Volat:	lle Hydrodarbo	ons
Lab #:	172625	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2004-02	Analysis:	EPA 8021B
Type:	LCS	Basis:	as received
Lab ID:	QC253170	Diln Fac:	1.000
Matrix:	Soil	Batch#:	91680
Units:	ug/Kg	Analyzed:	06/03/04

Analyte	Spiked	Result	% REE	. Samites	
MTBE	100.0	113.3	113	56-137	
Benzene	100.0	94.10	94	80-120	
Toluene	100.0	94.68	95	80-120	
Ethylbenzene	100.0	97.32	97	79-120	
m,p-Xylenes	100.0	96.39	96	80-120	
o-Xylene	100.0	99.20	99	80-120	

Surregate		Limits	
Trifluorotoluene (PID)	84	55-135	
Bromofluorobenzene (PID)	88	58-135	

	Total Volati	lle Hydrodarbo	ons
Lab #: Client:	172625 Stellar Environmental Solutions	Location: Prep:	Redwood Regional Park EPA 5030B
Project#:	2004-02	Analysis:	EPA 8015B
Type:	LCS	Basis:	as received
Lab ID:	QC253171	Diln Fac:	1.000
Matrix:	Soil	Batch#:	91680
Units:	mg/Kg	Analyzed:	06/03/04

ADSIVES	Spiked	Result		Limits
Gasoline C7-C12	10.00	10.96	110	80-120

Surrogate	% .p	RC Limits	
Trifluorotoluene (FID	<u>)</u> 111	71-138	
Bromofluorobenzene (F	FID) 104	73-143	

		Ŧ	otal Volatil	e Hydrocarbons		
Tob #-	172625					Dork
	172625	Environmental	Calutions	Location:	Redwood Regional EPA 5030B	Park
Project#:			SOLUCIONS	Prep: Analysis:	EPA 8015B	
Field ID:	•	VMP-1-10.5'		Diln Fac:	1.000	
MSS Lab ID	٥:	172625-005		Batch#:	91680	
Matrix:		Soil		Sampled:	06/01/04	
Units:		mg/Kg		Received:	06/02/04	
Basis:		as received		Analyzed:	06/06/04	

Type:

MS

Lab ID:

QC253191

Analyte	**************************************			Result		
Gasoline C7-C12		0.1900	9.901	9.298	92	47-120
			•			

Surrogate	*REC	Limits				
		Limits				
Surrogate Frifluorotoluene (FID)	%RKC 128	Limit# 71-138				

Type:

Gasoline C7-C12

MSD

Analyte

Lab ID:

QC253192

105

AREC Limits RPD Lim

13

47-120

Result

11.36

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	124	71-138	
Bromofluorobenzene (FID)	118	73-143	•

Spiked

10.64

Total Extractable Hydrocarbons

Lab #: 172625 Location: Redwood Regional Park

Client: Stellar Environmental Solutions Prep: EPA 3550

 Project#: 2004-02
 Analysis:
 EPA 8015B

 Matrix:
 Soil
 Batch#:
 91729

 Units:
 mg/Kg
 Received:
 06/02/04

Basis: as received Prepared: 06/05/04

Tield ID: VMP-2-10.5' Diln Fac: 10.00

Type: SAMPLE Sampled: 06/01/04
Lab ID: 172625-001 Analyzed: 06/06/04

Analyte Result RL

Diesel C10-C24 1,000 L Y 10

Surrogate AREC Limits
Hexacosane DO 52-131

Field ID: VMP-2-14.5' Diln Fac: 5.000

Ppe: SAMPLE Sampled: 06/01/04

ab ID: 172625-002 Analyzed: 06/06/04

Analyte Result RL Diesel Cl0-C24 - 650 L Y 5.0

Surrogate %REC Limits

Hexacosane 116 52-131

Type: SAMPLE Sampled: 06/01/04

ab ID: 172625-003 Analyzed: 06/05/04

Analyte Result RL

Diesel C10-C24 1.2 Y 1.0

Surrogate %REC Limits

Hexacosane 107 52-131

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out

MD= Not Detected

L= Reporting Limit

age 1 of 3

Sample Name : 172625-001,91729

FileName : G:\GC11\CHA\158A011.RAW

: ATEH156S.MTH Method

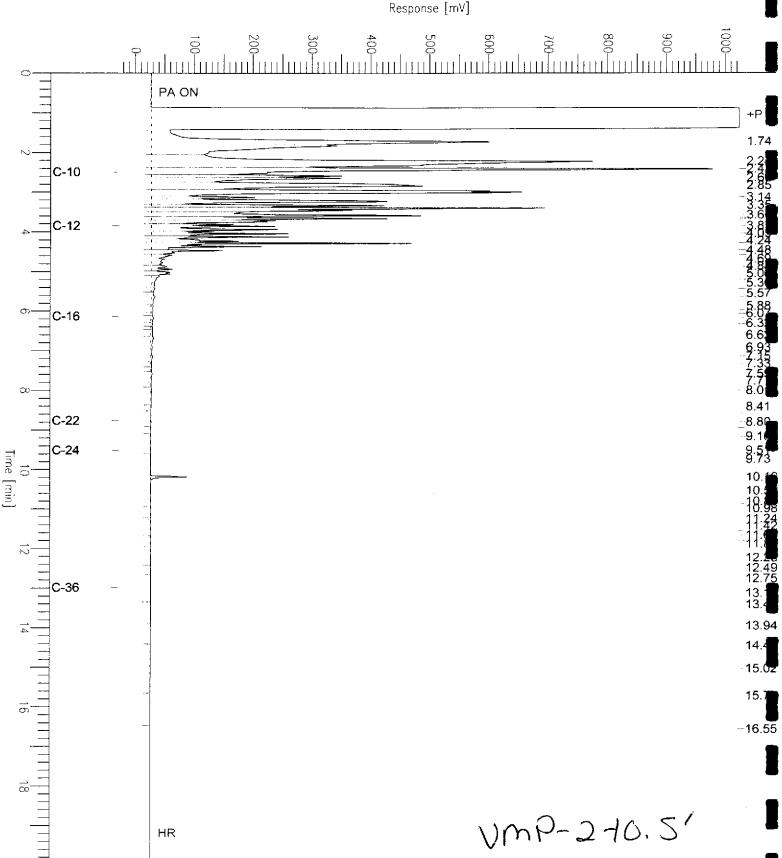
Start Time : 0.00 min Scale Factor: 0.0

End Time : 20.46 min

Plot Offset: -26 mV

Sample #: 91729

Date: 6/7/04 09:20 AM


Time of Injection: 6/6/04 09:28 PM

Low Point : -26.05 mV

Plot Scale: 1050.0 mV

High Point : 1024.00 mV

Page 1 of 1

Sample Name: 172625-002,91729

: G:\GC11\CHA\158A012.RAW leName

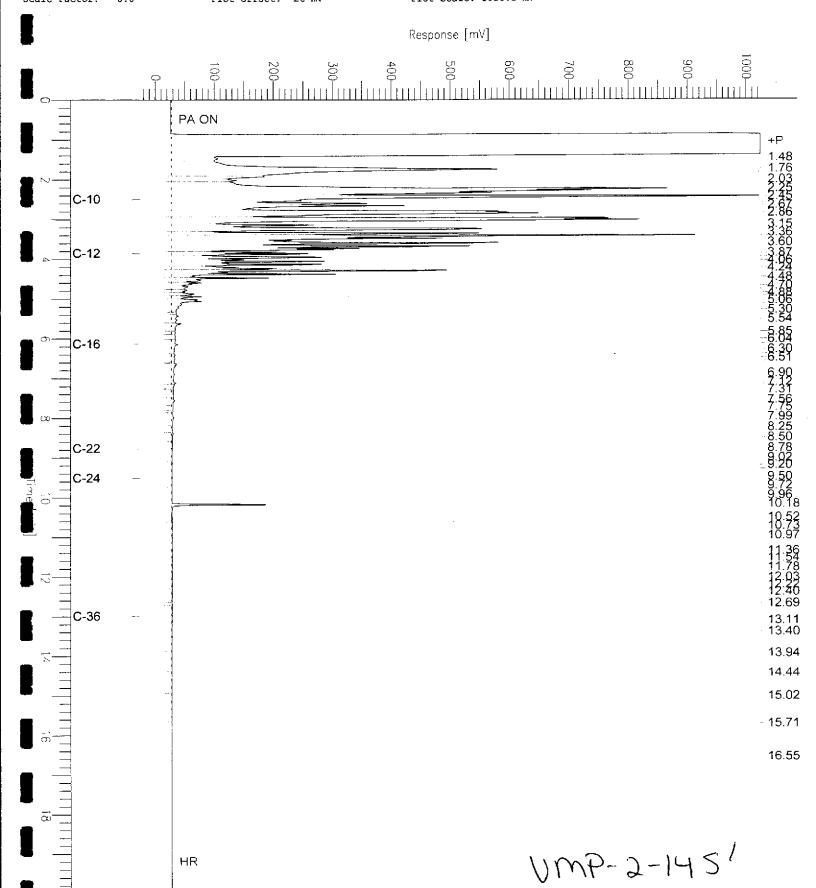
: ATEH156S.MTH

art Time : 0.00 min Scale Factor: 0.0

End Time : 20.46 min

Plot Offset: -26 mV

Sample #: 91729


Date: 6/7/04 09:20 AM

Time of Injection: 6/6/04 09:57 PM

High Point : 1024.00 mV Low Point : -26.06 mV

Page 1 of 1

Plot Scale: 1050.1 mV

Sample Name: 172625-003,91729

FileName : G:\GC17\CHA\157A012.RAW

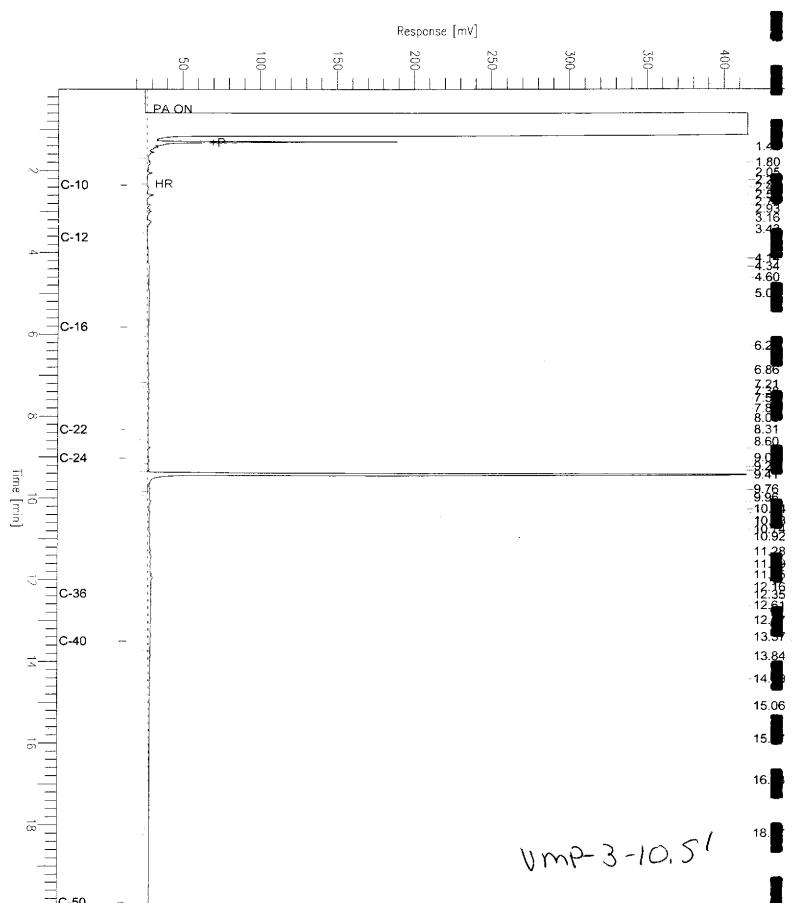
: ATEH147.MTH Method

Start Time : 0.01 min

End Time : 19.99 min

Scale Factor: 0.0

Plot Offset: 14 mV


Sample #: 91729

Page 1 of 1

Date: 6/6/04 04:49 PM Time of Injection: 6/5/04 09:30 PM

High Point: 415.24 mV Low Point: 14.45 mV

Plot Scale: 400.8 mV

Total Extractable Hydrocarbons

Redwood Regional Park Location: Lab #:

EPA 3550 Client: Stellar Environmental Solutions Prep: **EPA 8015B** Project#: 2004-02 Analysis:

Batch#: 91729 Matrix: Soil Units: mg/Kg Received: 06/02/04 06/05/04 Basis: as received Prepared:

ield ID:

Type:

ype:

ab ID:

VMP-3-15' SAMPLE

172625-004

Diln Fac:

5.000 06/01/04 Sampled:

Analyzed:

06/06/04

Result Analyte

Diesel C10-C24 470 L Y 5.0

Surragate trec Limits 104 52-131 Hexacosane

Field ID:

VMP-1-10.5'

SAMPLE

172625-005

Diln Fac:

Sampled:

1.000 06/01/04 06/05/04

Analyzed:

Result Analyte

1.0 Diesel C10-C24

%REC Limits Surrogate Hexacosane 95 52-131

ield ID: Type:

ab ID:

VMP-1-14.5'

SAMPLE

172625-006

Diln Fac:

1.000

Sampled:

06/01/04

Analyzed:

06/05/04

Analyte Result

Diesel Cl0-C24

42 L Y

1.0

Surrogate %REC Limits Hexacosane 106 52-131

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out

ND= Not Detected

= Reporting Limit

age 2 of 3

15.2

Sample Name : 172625-004,91729

: G:\GC11\CHA\158A013.RAW FileName

Method : ATEH156S.MTH

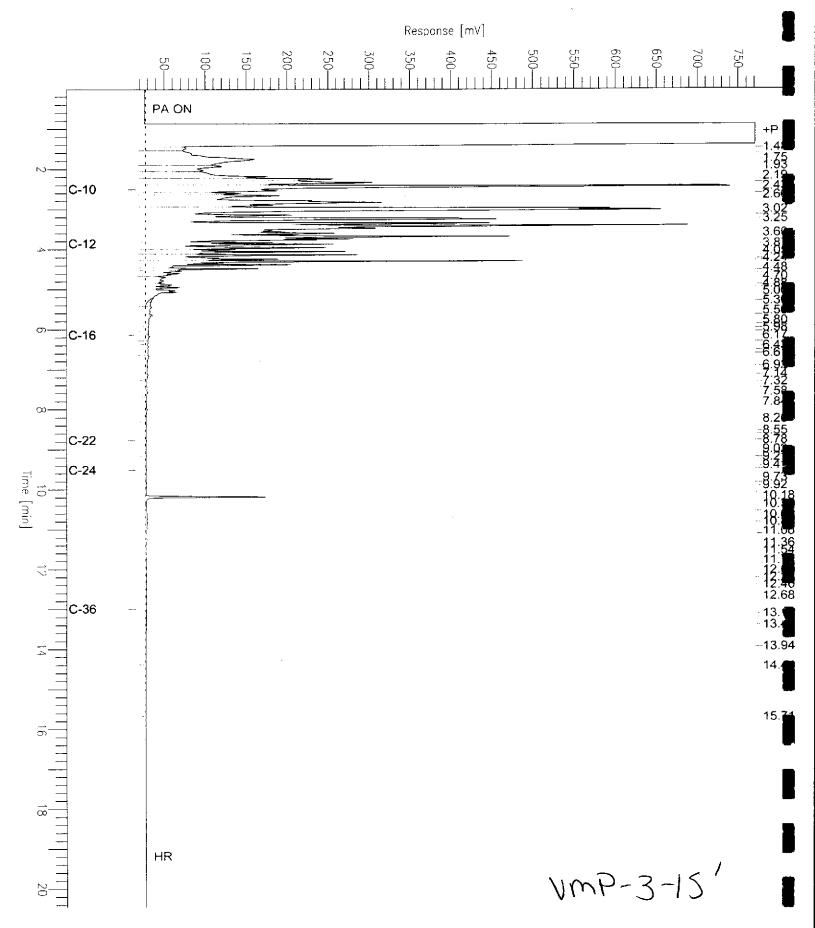
Start Time : 0.01 min

Scale Factor: 0.0

Plot Offset: 15 mV

End Time : 20.45 min

Sample #: 91729


Date: 6/7/04 09:20 AM

Time of Injection: 6/6/04 10:26 PM

High Point : 770.97 mV Low Point : 15.48 mV

Page 1 of 1

Plot Scale: 755.5 mV

Sample Name : 172625-006,91729

: G:\GC17\CHA\157A014.RAW

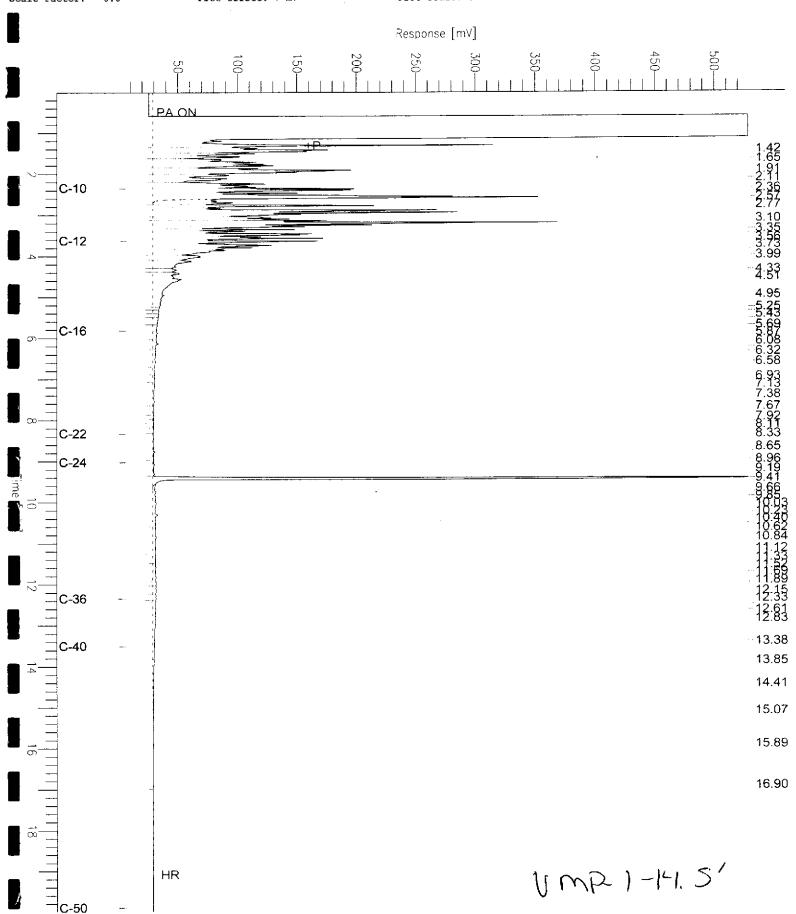
thod : ATEH147.MTH

art Time : 0.01 min Scale Factor: 0.0

End Time : 19.99 min

Plot Offset: 7 mV

Sample #: 91729


Date : 6/6/04 04:50 PM

Time of Injection: 6/5/04 10:26 PM

Low Point : 6.71 mV High Point: 528.66 mV

Page 1 of 1

Plot Scale: 522.0 mV

06/05/04

Total Extractable Hydrocarbons

Prepared:

Lab #: Redwood Regional Park 172625 Location:

Client: Stellar Environmental Solutions EPA 3550 Prep:

Project#: 2004-02 **EPA 8015B** Analysis: Matrix: Soil 91729 Batch#: Units: mg/Kg 06/02/04 Received: Basis:

Field ID: VW-1-10' Diln Fac: 1.000 Type: SAMPLE Sampled: 06/02/04

Lab ID: 172625-007 06/05/04 Analyzed:

Analyte Result Diesel C10-C24 1.1 Y

Surrogate Limite

Hexacosane 99 52-131

as received

Field ID: VW-1-15.5' Diln Fac: 1.000 Type: SAMPLE 06/01/04 Sampled:

Lab ID: 172625-008 06/06/04 Analyzed:

Analyte Result Diesel C10-C24 1.5 Y 1.0

Surrogate AREC Limits Hexacosane 52-131

Type: BLANK Diln Fac: 1.000 Lab ID: QC253350 Analyzed: 06/05/04

Result

Diesel C10-C24 ND 1.0

Surrogate REC Limits Hexacosane 113 52-131

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 3 of 3

Sample Name: 172625-007,91729

leName : G:\GC17\CHA\157A015.RAW

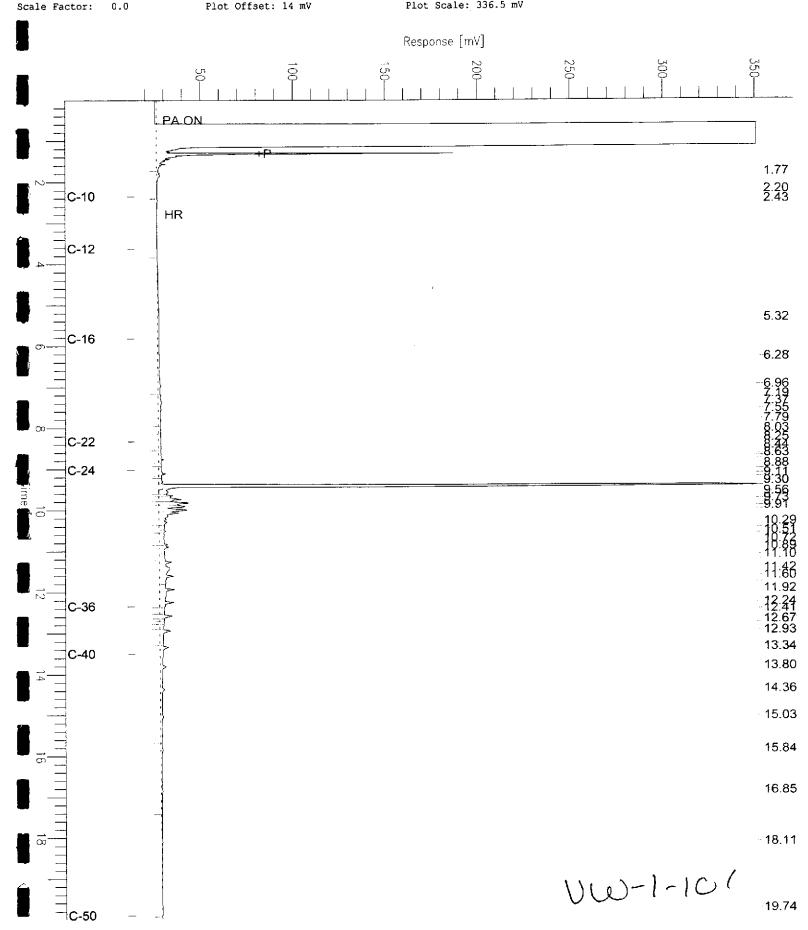
: ATEH147.MTH

art Time : 0.01 min

Plot Offset: 14 mV

End Time : 19.99 min

Sample #: 91729


Date: 6/6/04 04:50 PM

Time of Injection: 6/5/04 10:54 PM

Low Point: 14.41 mV Plot Scale: 336.5 mV

High Point : 350.89 mV

Page 1 of 1

Sample Name: 172625-008,91729

FileName : G:\GC17\CHA\157A025.RAW

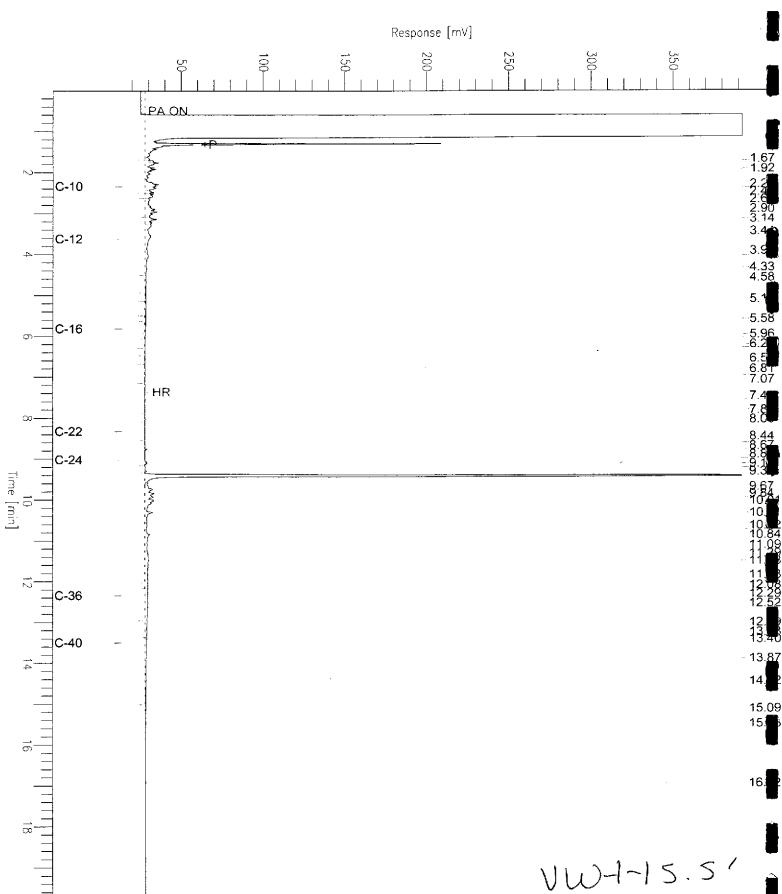
: ATEH147.MTH Method

Start Time : 0.01 min

Plot Offset: 14 mV

Scale Factor: 0.0

End Time : 19.99 min


Sample #: 91729 Date : 6/6/04 04:56 PM

Time of Injection: 6/6/04 03:36 AM

Low Point : 14.16 mV High Point : 392.40 mV

Page 1 of 1

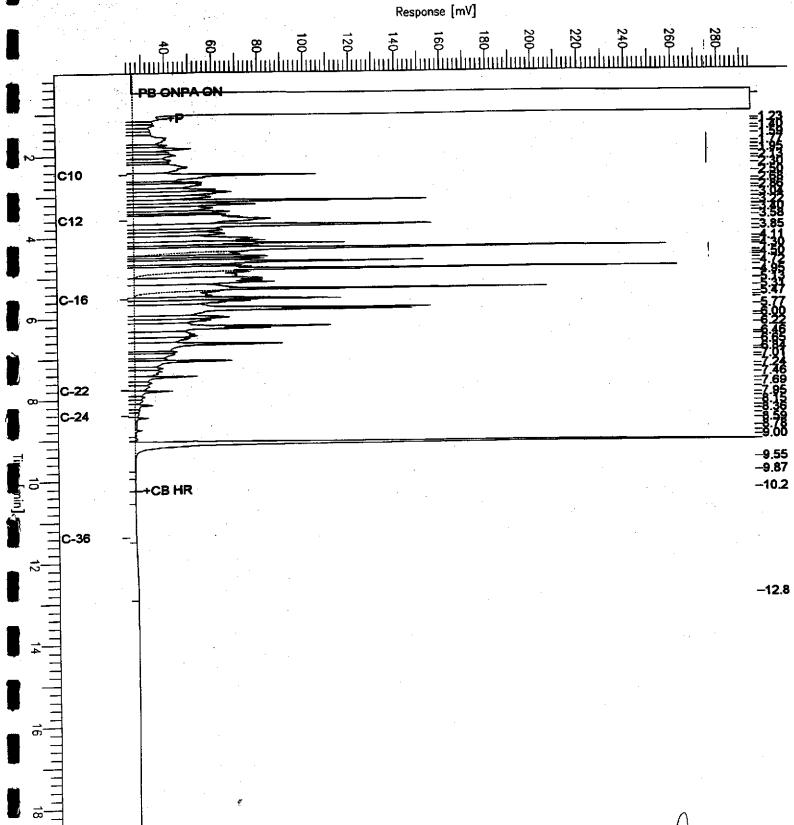
Plot Scale: 378.2 mV

ple Name : ccv,04ws0894,dsl eName : G:\GC15\CHB\157B003.RAW

: BTEH151S.MTH Method Start Time : 0.01 min 0.0

Ale Factor:

End Time : 19.99 min Plot Offset: 24 mV


Sample #: 500mg/L

Page 1 of 1

Date: 6/5/04 04:43 PM Time of Injection: 6/5/04 04:15 PM

High Point: 294.79 mV

Low Point : 23.81 mV Plot Scale: 271.0 mV

Pissel

	Total Extract	table Hydrocar	bons
Lab #:	172625	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 3550
Project#:	2004-02	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC253351	Batch#:	91729
Matrix:	Soil	Prepared:	06/05/04
Units:	mg/Kg	Analyzed:	06/05/04
Basis:	as received		

	Spiked	Result	*RE	C Limits	
Diesel C10-C24	50.29	45.69	91	56-129	

) as a colding on	*	1.000000168.1584.7
Hexacosane	93	52-131

	Total Extract	able Hydrocar	bons
Lab #: 17262	L .	Location:	Redwood Regional Park
	ar Environmental Solutions	Prep:	EPA 3550
Project#: 2004-	02	Analysis:	EPA 8015B
Field ID:	22222222	Batch#:	91729
MSS Lab ID:	172528-016	Sampled:	05/26/04
Matrix:	Soil	Received:	05/27/04
Units:	mg/Kg	Prepared:	06/05/04
Basis:	as received	Analyzed:	06/07/04
Diln Fac:	3.000		

MS

Lab ID: QC253352

	MEG Bostile	Spiked	Result	\$PE	C Minite
Diesel C10-C24	8.932	50.22	51.33	84	27-146

Surrocate	\$1110	Limits
Hexacosane	88	52-131

MSD

Lab ID:

QC253353

Analyte	Spiked	Result	&REC	0.005.004	88 (4 - 2 - 5	Libra
Diesel C10-C24	49.80	49.83	82	27-146	2	50

Surrogate	%rec	Limits	
Hexacosane	90	52-131	

Alkalinity Redwood Regional Park Lab #: 172625 Location: Client: Stellar Environmental Solutions Analysis: EPA 310.1 Project#: 2004-02 Batch#: 91791 Matrix: Soil 06/01/04 06/02/04 mg/Kg Sampled: Units: Received: Basis: as received Analyzed: 06/07/04 Diln Fac: 1.000

Field ID: Type:

VMP-2-10.5'

SAMPLE

Lab ID:

172625-001

Aria trica	Result	RL	
Alkalinity, Bicarbon	ate 410	2.0	
Alkalinity, Carbonat	e ND	2.0	
Alkalinity, Hydroxid	le NTD	2.0	
Alkalinity, Total as	CaCO3 410	2.0	

Field ID: Type:

VMP-1-14.51 SAMPLE

Lab ID:

172625-006

Analyte
Alkalinity, Bicarbonate 2.0 370 2.0 Alkalinity, Carbonate Alkalinity, Hydroxide ND ND 2.0 Alkalinity, Total as CaCO3 370 2.0

Field ID:

Type:

VW-1-15.5'

Lab ID: SAMPLE

172625-008

Analyte	Result	RL	
Alkalinity, Bicarbonate	640	2.0	
Alkalinity, Carbonate	ND	2.0	
Alkalinity, Hydroxide	ND	2.0	
Alkalinity, Total as CaCO3	640	2.0	

Type:

BLANK

Lab ID:

QC253569

Analyte	Result	Ru
Alkalinity, Bicarbonate	ND	2.0
Alkalinity, Carbonate	ND	2.0
Alkalinity, Hydroxide	ND	2.0
Alkalinity, Total as CaCO3	ND.	2.0

Alkalinity

Lab #: 172625 Location: Redwood Regional Park

Client: Stellar Environmental Solutions Analysis: EPA 310.1

Project#: 2004-02

Analyte: Alkalinity, Total as CaCO3 Basis: as received

Type: LCS Diln Fac: 1.000

Lab ID: QC253570 Batch#: 91791
Matrix: Soil Analyzed: 06/07/04

Units: mg/Kg

Spiked	Result	₹RE	Limits	
200.0	171.0	86	80-120	

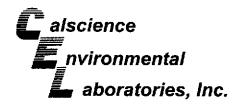
	Alle	alinity	
	-		•
Lab #: 1	L72625	Location:	Redwood Regional Park
Client: S	Stellar Environmental Solutions	Analysis:	EPA 310.1
Project#: 2	2004-02		
Analyte:	Alkalinity, Total as CaCO3	Diln Fac:	1.000
Field ID:	VMP-2-10.5'	Batch#:	91791
MSS Lab ID:	172625-001	Sampled:	06/01/04
Matrix:	Soil	Received:	06/02/04
Units:	mg/Kg	Analyzed:	06/07/04
Basis:	as received		

Type		MSS Result	Spiked	Result	NREC	Takoni Le	(i i i i i i i i i i i i i i i i i i i	
MS	QC253571	409.9	200.0	608.9	100	70-130		- 4
MSD	QC253572		200.0	624.9	107	70-130	3	30

	Total	Phosphorous	
Lab #:	172625	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	METHOD
Project#:	2004-02	Analysis:	EPA 365.2
Analyte:	Phosphorous	Batch#:	91817
Matrix:	Soil	Sampled:	06/01/04
Units:	mg/Kg	Received:	06/02/04
Basis:	as received	Analyzed:	06/09/04

Field ID	Туре	Lab ID	Result	RL	Dila Fac
VMP-2-10.5'	SAMPLE	172625-001	13	2.0	4.000
VMP-1-14.5'	SAMPLE	172625-006	51	10	20.00
	SAMPLE	172625-008	39	10	20.00
	BLANK	QC253665	ND	0.50	1.000

	Total !	Phosphorous	
Lab #: 17262		Location:	Redwood Regional Park
Client: Stell Project#: 2004-	lar Environmental Solutions -02	Prep: Analysis:	METHOD EPA 365.2
Analyte:	Phosphorous	Diln Fac:	20.00
Field ID:	VW-1-15.5'	Batch#:	91817
MSS Lab ID:	172625-008	Sampled:	06/01/04
Matrix:	Soil	Received:	06/02/04
Units:	mg/Kg	Analyzed:	06/09/04
Basis:	as received	<u>-</u>	


Type	Lab ID	MSS Result	Spiked	Result	%REC	Limita	(1	W / 8.79
MS	QC253666	39.10	49.50	67.80	58 *	70-130		,
MSD	QC253667		49.50	66.40	55 *	70-130	2	30
LCS	QC253668		49.50	46.90	95	80-120		

^{*=} Value outside of QC limits; see narrative
RPD= Relative Percent Difference
Page 1 of 1

	Ж	oisturs	
Lab #: Client: Project#:	172625 Stellar Environmental Solutions 2004-02	Location: Prep: Analysis:	Redwood Regional Park METHOD ASTM D2216/CLP
Analyte:	Moisture, Percent	Batch#:	91664
Matrix:	Soil	Sampled:	06/01/04
Units:	ş	Received:	06/02/04
Diln Fac:	1.000	Analyzed:	06/03/04

Field ID	Lab ID	Result	RL	
VMP-2-10.5'	172625-001	18	1	
VMP-1-14.5'	172625-006	20	1	
VW-1-15.5'	172625-008	19	1	

June 10, 2004

Tracy Babjar Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407

Subject:

Calscience Work Order No.:

Client Reference:

04-06-0160

172625

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 6/3/2004 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Don Burley Project Manager Michael J.\Crisostomo

Quality Assurance Manager

alscience nvironmental aboratories, Inc.

Analytical Report

Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407 Date Received: Work Order No: Preparation:

Method:

06/03/04 04-06-0160 N/A EPA 351.3M

Project: 172625

Page 1 of 1

Client Sample Number			Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
VMP-2-10.5			04-06-0160-1	06/01/04	Solid	N/A	06/03/04	40603TKNB1
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Total Kjeldahl Nitrogen	320	10	1		mg/kg			
VMP-1-14.5			04-06-0160-2	06/01/04	Solid	N/A	06/03/04	40603TKNB1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Total Kjeldahl Nitrogen	420	10	1		mg/kg			
VW-1-15.5'			04-06-0160-3	06/01/04	Solid	N/A	06/03/04	40603TKNB1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Total Kjeldahl Nitrogen	150	10	1		mg/kg			
Method Blank			099-05-025-1,08	15 N/A	Solid	N/A	06/03/04	40603TKNB1
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Total Kjeldahl Nitrogen	ND	10	1		mg/kg			

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Quality Control - Duplicate

Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407 Date Received: Work Order No: Preparation: Method: 06/03/04 04-06-0160 N/A EPA 351.3M

Project:

172625

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
04-05-1522-1	Solid	NA	NA	06/03/04	40603TKND1
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	Qualifiers
Total Kjeldahl Nitrogen	15000	15000	1	0-25	

alscience nvironmental aboratories, Inc.

Glossary of Terms and Qualifiers

Work Order Number: 04-06-0160

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
D	The analyte concentration was reported from analysis of the diluted sample.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

WORK ORDER #:

04-06-0160

Cooler __/_ of __/_

SAMPLE RECEIPT FORM

CLIENT:	DATE: 08/03/04
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. °C Temperature blank.	LABORATORY (Other than Calscience Courier): C Temperature blank. C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not Intact)	: Not Applicable (N/A): Initial:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples. Sample container label(s) consistent with custody papers. Sample container(s) intact and good condition. Correct containers for analyses requested. Proper preservation noted on sample label(s). VOA vial(s) free of headspace. Tedlar bag(s) free of condensation.	
COMMENTS:	

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC. Sample Summary Report

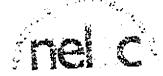
WORK ORDER #:

04-06-0160

QAPP:

0000

#	Client Sample ID	Matrix	Date Collected	NoC	Comment
1	VMP-2-10.5'	S	06/01/2004	2	
2	VMP-1-14.5'	S	06/01/2004	1	
3	VMP-1-15.5'	S	06/01/2004	1	
			- "-		
				,	
				:	
		•			


ANALYTICAL LABORATORIES, SINCE 1878 2323 FIFTH STREET BERKELEY, CA 94710 PHONE (510) 486-0900 FAX (510) 486-0532

THE FOLLOWING FACSIMILE CONTAINS CONFIDENTIAL INFORMATION WHICH MAY BE LEGALLY PRIVILEGED AND WHICH IS INTENDED ONLY FOR THE USE OF THE ADDRESSEE(S) NAMED BELOW. IF YOU ARE NOT THE INTENDED RECIPIENT OF THIS SACSIMILE, OR THE EMPLOYEE OR AGENT RESPONSIBLE FOR DELIVERING IT TO THE INTENDED RECIPIENT, YOU ARE HEREBY NOTIFIED THAT ANY DISSEMINATION OR COPYING OF THIS FACSIMILE IS STRICTLY PROHIBITED IF YOU RECEIVED THIS FACSIMILE IN ERROR, PLEASE NOTIFY US IMMEDIATELY BY TELEPHONE AND RETURN THE ORIGINAL FACSIMILE TO US AT THE ABOVE ADDRESS BY RETURN MAIL THANK YOU

то.			FROM
Do	\wedge		Tracy Babjar (tracy@ctberk.com)
COMPANY			DATE
da 1	Scie	SCS	6/11/04
FAX NUMBER	_		PHONE NUMBER
714-8	94-7	50	(510) 204-4223
PHONE NUMBI	ER-		TOTAL NO OF PAGES INCLUDING COVER
RE			
			•
Fig. 15 cm tr	DFORR	EVIEW	☐ PLEASE COMMENT ☐ PLEASE REPLY ☐ PLEASE RECYCLE
☐ URGENT	LI FUX K		
NOTES/COMM	ENTS:		
		ļ	
		1	
71	~ l		1 MAR 1 15 5 1
rease	Cha	50	5.5 ' UMP-1-15.5'
		U	T
			_ <i>t</i>
+0	M12-	1 - 19	5.5
10	000	`	
			That IUU
			That we Trus-
		į	TIB-
		"	
	1	[

alscience nvironmental aboratories, Inc.

Analytical Report

Jurtis & Toinpkins, Ltd. 2323 Fifth Etreet Berkeley, CA 94710-2407 Date Received: Work Order No: Preparation: Method: 06/03/04 04-06-0160 N/A EPA 351.3M

Page 1 of 1

_	ļ							1082
roject: 172625 Client Sample lumber			Lab Sample Number	Date Collected	Wattix	Date Prepared	Date Analyzed	OC Baten ID
			04-05-01604	06/01/04	Soli4	N/A		
Parameter	Regult	R⊾	Q£	Qual	<u>Umbs</u>			
Total Kjeldahi Lirogen	320	10	1		ωθ _\ κβ			
VNP-1-14.5			8-0810 00 PG	06/01/04	Solld	N/A	06/03/04	40603TKNB1
- V8(**-1-17-2					1 leten			
Parameter	Result	<u>Ru</u>	<u>DF</u>	Qual	<u>Unita</u>			
Total Kjeldahl nutrogen	420	10	j 1		m9∕k3			
384P-14593	A Company of the		0-06-0160-3	06/07/04	Solid	N/A	76/03/04	40003TKNB1
VW-1- 5.5			DF	Qual	<u>มกหร</u>			
Рагатови	Result	<u>R</u> L	F	<u></u>	•			
Total Kjeldan, Nivrogen	150	10	1		mg/kg			and the second of A
		The second secon	999-05-025-1.	IBS N/A	Solid	NA T	06/02/04	HOGOTKING L
Method Et. nk			4 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
* Commotor	Result ·	B⊾	DE	Qual	Units			
<u>Farameter</u>		10	1		mg/kg			
Torai Kjerdal . Nitrogen	ND .	10	j					

RL - Reporting Limit

Dif - Diluton Pactor .

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Curtis & Tompkins, Ltd. Analytical Laboratories, Since 1878 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 (510) 486-0532

Project Number: 172625

Site: Redwood Regional Park

Subcontract Laboratory:

Cal Science

7440 Lincoln Way

Garden Grove, CA 92641-1432

(714) 895-5494

ATTN: Don x132

Results due:

Report Level: II

Please send report to: Tracy Babjar

*** Please report using Sample ID rather than C&T Lab #.

Sample ID	Sampled	Matrix	Analysis	C&T Lab # Comment:	s
VMP-2-10.51	06/01	Soil	TKN	172625-001	
VMP-1-14.5'	06/01	Soil	TKN	172625-006	
VMP-1-15.5'	06/01	Soil	TKN	172625-008	İ

Notes:		/ Relinguishe	ed By:		Received By:
CRI -		mar frence	el	[]	mos
C1'01FORNIA 129000000515 15000000515	Date\/ 	Time: 6.2.4	1350	Date/Time	7 8:00

Fignature on this form constitutes a firm Purchase Order for the services requested above. Page 1 of 1 $\,$

June 2004 Groundwater Samples

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Stellar Environmental Solutions 2198 6th Street Suite 201 Berkeley, CA 94710

Date: 23-JUN-04

Lab Job Number: 172914

Project ID: STANDARD

Location: Redwood Regional Park

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of $\frac{32}{}$

Laboratory Numbers: 172914

Client: Stellar Environmental Solutions

Location: Redwood Regional Park

Sampled Date: 06/17/04 Received Date: 06/17/04

CASE NARRATIVE

This hardcopy data package contains sample and QC results for ten water samples, which were received from the site referenced above on June 17, 2004. The samples were received cold and intact.

TVH/BTXE:

High Trifluorotoluene surrogate recoveries were observed for many samples as a result of hydrocarbons coeluting with the surrogates. No other analytical problems were encountered.

TEH by (EPA 8015B):

No analytical problems were encountered.

General Chemistry:

No analytical problems were encountered.

· v					Ch	ain of	Cus	tody Re	cor	ď				ୃଷ୍ଟ						Cab job n		
Laboratory Cyrens Address 2323					thod of Shipm								7	ج ه ع						Page	1 of	
Benuc	Airbill No.						-		\int	7	B		,^	nalysi	s Requ	ilred	7 ==	~ /	_/			
Project Owner	Perman			Pro Tel	oler No oject Manager lephone No x No mplers: <i>(Sign</i>	BRU (510) 644- (510) 644-	3123 3859	Rucker	<u>-</u> - - /	Fillered	No or Compa	The Line of the Control of the Contr	14 0 0 X			/ / /·			 		Remar	ks -
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of (Container	Pre Cooler	servation Chemical	<u> [</u>		<u> </u>		Ý	7_/	/	_/	/· /	{/	{/	<u> </u>		· ·
5W-9	_		800	O _c H	1 L glass	VON	/	Haj				X L			_	_	_	_	-	-		
MW-11		6/17	1305	1	POLY 21 Amber	/VOAS		NA 3 HCL		0	~	<u> </u>		1-1	_	4						·
MW-7		6/17	1245		ZAMSE	1300A	~						<u> </u>	4				_		_		<u></u> -
MW-9		6/17	1225		2 Amber	1300A	/						د ر	 - 	_	\dashv		_	-			
8-mm		6/17	1145		2 Awber	1300A	<u></u>			6	-	×إ×	<u> </u>	1-1				-			_	
mw-2		6/17	1120		2 Amber	3V04			1 1		X.	X		_			_	_				
mW-10		6/17	055		2 Amber	/3VOA			(0	_		<u> </u>	+		_						
mw-4		6/17	1035		2 Amber	3VOA	/	-		2			<u> </u>							<u>.</u>		
MW-S		6/17	1005		2 Anyber		1	_火		5.	X	×				_		_	_			
MW-3		6/17	083	¥	1 Poly		1	N.P.		1			XX	<u> </u>				{	_			
					<u> </u>		<u> </u>						_									
Relinquished by:	n_	Date	Flecelve F Sign	ature 📈	1526	2 2	Daye 6/17/0	Relinquished Signature						Date		ceived Signat	•		<u>-</u>			Date
Printed Aaron GS Company Blaine to		Time 430	Print	ed	CST	Stanle	7 Time 143	Printed						Time		Printer						Time
_	collecto	1 6-1	Bive	Ru	Ker of S	Es -18	m-Na	Refinquished Signature	l by:				-	Date		Signal	ture				 -	Date
						· · · -		Printed Company			-			Time	•	Printe						- Time

Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

Total Volatile Hydrocarbons Lab #: 172914 Redwood Regional Park EPA 5030B Location: Prep: Client: Stellar Environmental Solutions STANDARD Project#: Matrix: 06/17/04 06/17/04 Water Sampled: ug/L 92037 Units: Received: Batch#:

Field ID: Type: Lab ID:

SW-2

SAMPLE

172914-001

Diln Fac: Analyzed: 1.000

06/18/04

Analyte	Result	RL		Analysis
Gasoline C7-C12	ND	50	EPA	8015B
MTBE	ND	2.0	EPA	8021B
Benzene	ND	0.50	EPA	8021B
Toluene	ND	0.50	EPA	8021B
Ethylbenzene	0.83	0.50	EPA	8021B
m,p-Xylenes	ND	0.50	EPA	8021B
o-Xylene	ND	0.50	EPA	8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	99	74-142	EPA 8015B	
Bromofluorobenzene (FID)	106	80-139	EPA 8015B	- 1
Trifluorotoluene (PID)	92	55-139	EPA 8021B	
Bromofluorobenzene (PID)	105	62-134	EPA 8021B	

Field ID:

MW-11

Type: Lab ID:

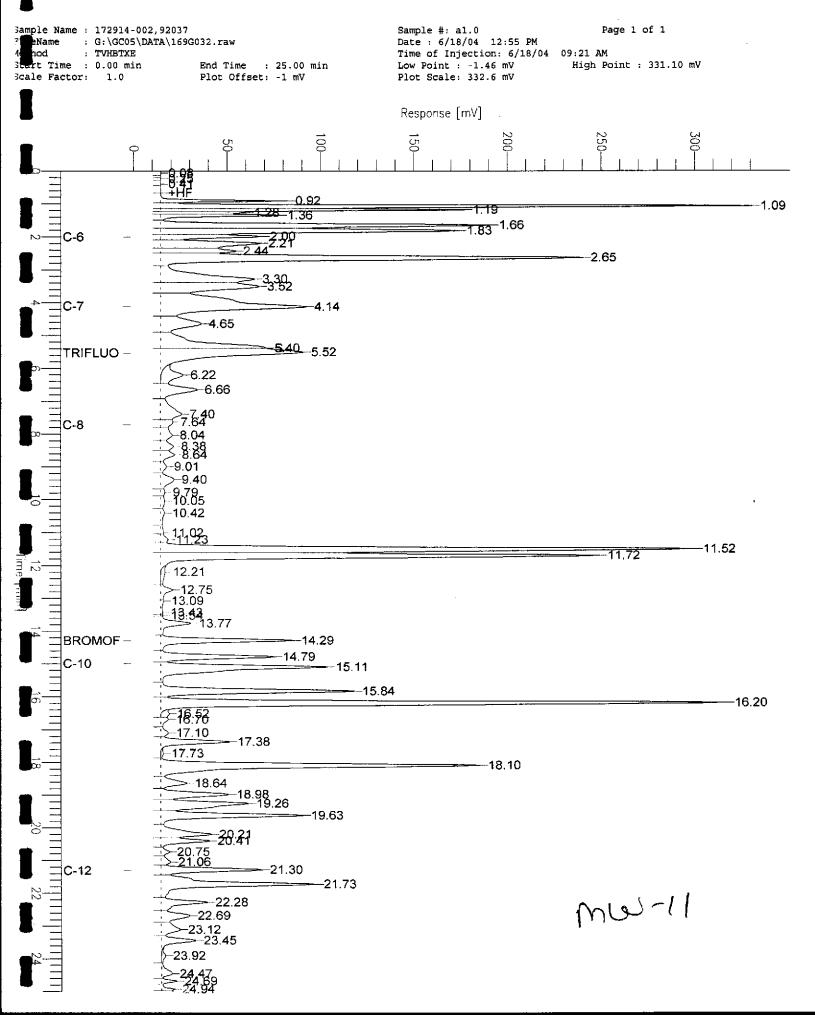
SAMPLE

172914-002

Diln Fac: Analyzed: 5.000

06/18/04

Analyte	Result	RI	Analysis	
Gasoline C7-C12	10,000	250	EPA 8015B	
MTBE	ND	10	EPA 8021B	
Benzene	210	2.5	EPA 8021B	
Toluene	2.8 C	2.5	EPA 8021B	
Ethylbenzene	690	2.5	EPA 8021B	
m,p-Xylenes	500	2.5	EPA 8021B	
o-Xylene	14	2.5	EPA 8021B	


Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	143 *	74-142	EPA 8015B	
Bromofluorobenzene (FID)	111	80-139	EPA 8015B	P
Trifluorotoluene (PID)	109	55-139	EPA 8021B	
Bromofluorobenzene (PID)	106	62-134	EPA 8021B	,

RL= Reporting Limit

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

b= See narrative ND= Not Detected

>LR= Response exceeds instrument's linear range Page 1 of 5

Total Volatile Hydrocarbons Redwood Regional Park EPA 5030B Lab #: 172914 Location: Stellar Environmental Solutions STANDARD Client: Prep: Project#: 06/17/04 06/17/04 Matrix: Water Sampled: Units: ug/L 92037 Received: Batch#:

Field ID: Type: Lab ID:

MW - 7

SAMPLE

172914-003

Diln Fac: Analyzed:

1.000

06/18/04

Analyte	Result	RL	Analysis
Gasoline C7-C12	9,200	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	150	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	290	0.50	EPA 8021B
m,p-Xylenes	88	0.50	EPA 8021B
o-Xylene	3.0	0.50	EPA 8021B
	·····		

Surrogate	%RBC Limits Analysis
Trifluorotoluene (FID)	928 * >LR b 74-142 EPA 8015B
Bromofluorobenzene (FID)	131 80-139 EPA 8015B
Trifluorotoluene (PID)	579 * >LR b 55-139 EPA 8021B
Bromofluorobenzene (PID)	122 62-134 EPA 8021B

Field ID:

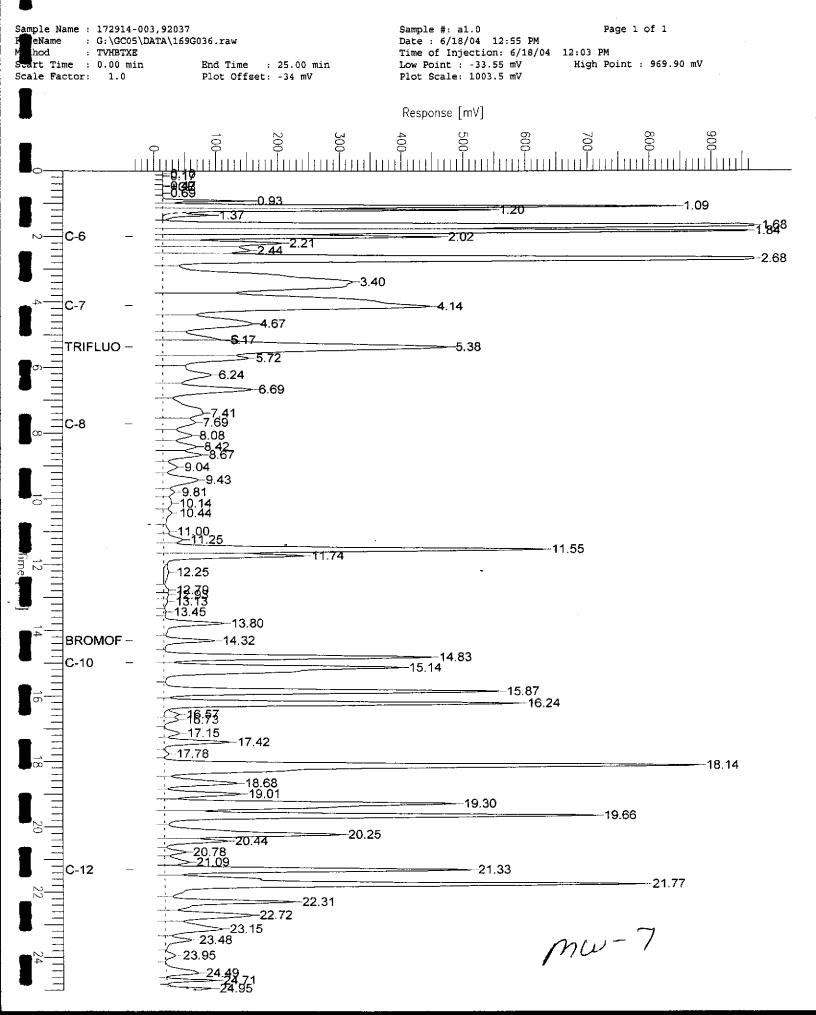
MW - 9

Type: Lab ID:

SAMPLE

172914-004

Diln Fac: Analyzed: 5.000 06/18/04


Analyte	Result	Pi.	Analysis	2000 NGC
Gasoline C7-C12	6,800	250	EPA 8015B	
MTBE	ND	10	EPA 8021B	
Benzene	350	2.5	EPA 8021B	
Toluene	ND	2.5	EPA 8021B	
Ethylbenzene	620	2.5	EPA 8021B	
m,p-Xylenes	95	2.5	EPA 8021B	
o-Xylene	4.2 C	2.5	EPA 8021B	

Surrogate	*REC	Limits	Analysis	
Trifluorotoluene (FID)	124	74-142	EPA 8015B	
Bromofluorobenzene (FID)	108	80-139	EPA 8015B	1
Trifluorotoluene (PID)	106	55-139	EPA 8021B	- 1
Bromofluorobenzene (PID)	105	62-134	EPA 8021B	ŀ

RL= Reporting Limit >LR= Response exceeds instrument's linear range Page 2 of 5

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

b= See narrative ND= Not Detected

ample Name : 172914-004,92037 Sample #: a1.0 Page 1 of 1 ileName : G:\GC05\DATA\169G033.raw Date: 6/18/04 12:55 PM ethod : TVHBTXE Time of Injection: 6/18/04 10:07 AM tart Time : 0.00 min End Time : 25.00 min Low Point : 2.16 mV High Point : 260.34 mV cale Factor: 1.0 Plot Offset: 2 mV Plot Scale: 258.2 mV Response [mV] 1.35 1.66 -1.82 C-6 -2.66 ≤3.5031 C-7 4.16 4.68 **6.42** TRIFLUO --5.55 6.22 -6.68 7.28 7.66 C-8 -8.07 -8.40 -8.66 9.03 -9.43 9.80 10.05 10.46 11.24 11.74 12.24 12.80 13.14 13.59 14.03 BROMOF--14.32 14.82 C-10 -15.13 -15.87 16.23 18:53 17.78 -18.13 18.68 19.29 19.66 20.44 20.24 > 20.78 > 21.09 C-12 21.32 21.76 22.4²².31 22.72

—23.15 -23.47 23.94 MW-9

Total Volatile Hydrocarbons Lab #: 172914 Location: Redwood Regional Park Prep: EPA 5030B Client: Stellar Environmental Solutions roject#: STANDARD 06/17/04 Matrix: Sampled: Water ug/L 06/17/04 Units: Received: Batch#: 92037

ield ID:

Gasoline C7-C12

Ethylbenzene

m,p-Xylenes

MW - 8

SAMPLE

Diln Fac: Analyzed: 5.000 06/18/04

2.5

Type: ab ID:

MTBE

Benzene

Toluene

o-Xylene

172914-005

Analveis Analyte Result EPA 8015B 5,900 250 ND 10 EPA 8021B 2.5 EPA 8021B 260 9.9 C 2.5 EPA 8021B 2.5 EPA 8021B

*RBC Analysis Limits Surrogate Trifluorotoluene (FID) 111 74-142 EPA 8015B EPA 8015B Bromofluorobenzene (FID) 108 80-139 55-139 Trifluorotoluene (PID) 115 EPA 8021B <u>Bromofluorobenzene (PID)</u> 62-134 EPA 8021B 106

460

370

20

ield ID:

MW - 2

SAMPLE

Diln Fac: Analyzed:

1.000 06/18/04

EPA 8021B

EPA 8021B

ype: Lab ID: 172914-006

Analyte	Result	RI.	Analysis	55 x 55 c 100 c 25 x 5 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c
Gasoline C7-Cl2	ND	50	EPA 8015B	
MTBE	15	2.0	EPA 8021B	
Benzene	0.75	0.50	EPA 8021B	
≝ Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
n,p-Xylenes	ND	0.50	EPA 8021B	
o-Xvlene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Aı	nalysis
Frifluorotoluene (FID)	97	74-142	EPA 801	5B
Bromofluorobenzene (FID)	110	80-139	EPA 8015	5B
Trifluorotoluene (PID)	84	55-139	EPA 8023	iB
Bromofluorobenzene (PID)	106	62-134	EPA 8023	LB

Page 3 of 5

^{*=} Value outside of QC limits; see narrative C≈ Presence confirmed, but RPD between columns exceeds 40%

b= See narrative

ND= Not Detected RL= Reporting Limit

LR= Response exceeds instrument's linear range

Page 1 of 1 Sample Name : 172914-005,92037 Sample #: a1.0 FileName : G:\GC05\DATA\169G034.raw Date: 6/18/04 12:55 PM 1ethod : TVHBTXE Time of Injection: 6/18/04 10:39 AM Low Point : 4.71 mV Plot Scale: 202.4 mV Start Time : 0.00 min End Time : 25.00 min High Point : 207.11 mV Scale Factor: 1.0 Plot Offset: 5 mV Response [mV] <u></u>გე₽ ____0.93 1.19 1.09 1.36 1.83 ^{1.67} C-6 2.00 -2.22 2 45 2.66 <u>-3.31</u> 3.54 C-7 4.16 4.67 **6**.40 TRIFLUO -5.55 6.23 -6.68 C-8 8.41 8.66 9.03 9.41 9792 10.46 10.97 -11.25 12 Time [min] 11.74 -12.77 13:44 13.79 BROMOF --14.31 14.82 C-10 15.13 15.86 16.22 16.56 <u>-17</u>.13 17.40 17.75 -18.12 -18.66 ----19.01 -----19.29 -19.65 ≥ 20.24 20.77 21.09 C-12 21.32 21.76 > 22.31 **–22.72** MW-E 23.15 -23.48 23.96

Total Volatile Hydrocarbons 172914 lab #: Redwood Regional Park Location: Client: Stellar Environmental Solutions Prep: EPA 5030B STANDARD Project#: 06/17/04 latrix: Water Sampled: nits: ug/L 92037 Received: 06/17/04 Batch#

eld ID:

MW-10 SAMPLE

Diln Fac: Analyzed: 1.000 06/18/04

172914-007 b ID:

Gasoline C7-C12	150	50	EPA 8015B
MTBE	15 C	2.0	EPA 8021B
enzene	11	0.50	EPA 8021B
oluene	ND	0.50	EPA 8021B
thylbenzene	12	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	An	alysis
Trifluorotoluene (FID)	111	74-142	EPA 8015	В
Bromofluorobenzene (FID)	110	80-139	EPA 8015	B
rifluorotoluene (PID)	98	55-139	EPA 8021	В
romofluorobenzene (PID)	108	62-134	EPA 8021	В

eld ID: pe:

Lab ID:

MW - 4 SAMPLE

172914-008

Diln Fac: Analyzed: 1.000 06/18/04

Analyte Result RL Analysis asoline C7-C12 ND EPA 8015B 50 TBE EPA 8021B 3.5 2.0 Benzene ND 0.50 EPA 8021B 0.50 EPA 8021B oluene NDthylbenzene ND 0.50 EPA 8021B .p-Xylenes o-Xylene ND EPA 8021B 0.50 ND 0.50 EPA 8021B

Surrogate	%REC	Limits	Analysis	
rifluorotoluene (FID)	99	74-142	EPA 8015B	
Bromofluorobenzene (FID)	110	80-139	EPA 8015B	
Trifluorotoluene (PID)	95	55-139	EPA 8021B	
Promofluorobenzene (PID)	109	62-134	EPA 8021B	

*= Value outside of QC limits; see narrative
C= Presence confirmed, but RPD between columns exceeds 40%

b= See narrative D= Not Detected

L= Reporting Limit

R= Response exceeds instrument's linear range Page 4 of 5

ample Name : 172914-007,92037

: G:\GC05\DATA\169G038.raw 'ileName

ethod : TVHBTXE

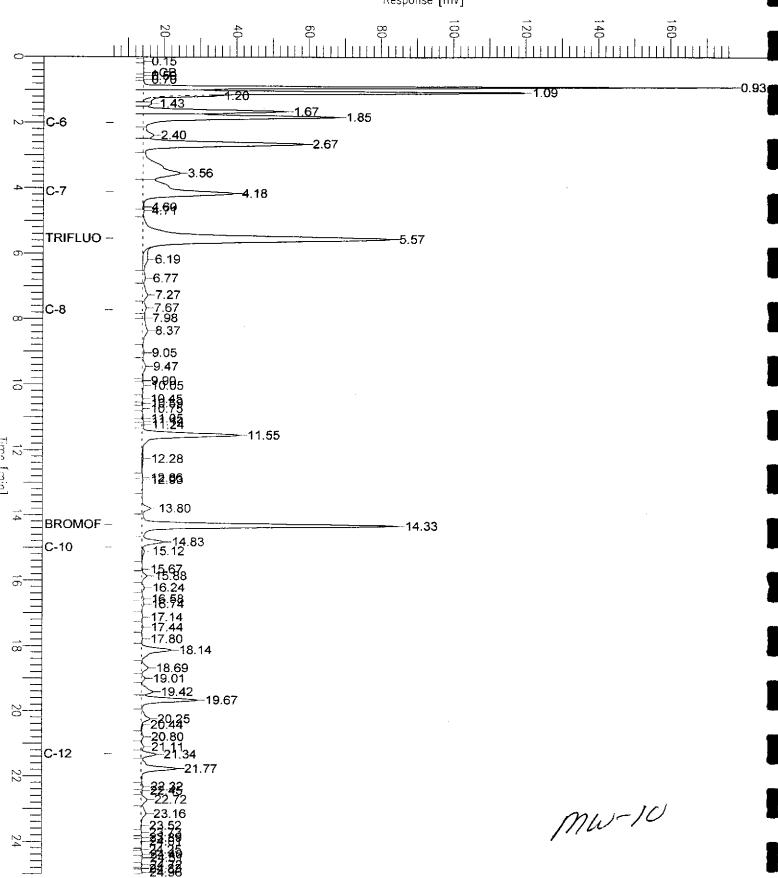
tart Time : 0.00 min cale Factor: 1.0

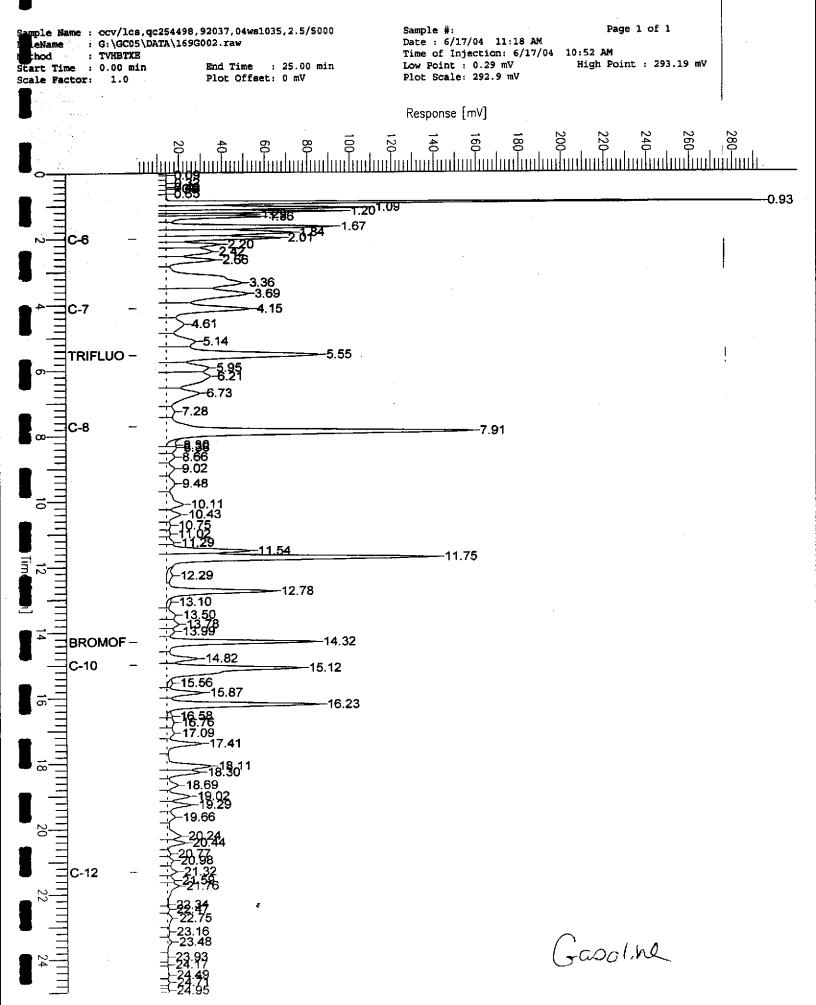
End Time : 25.00 min

Plot Offset: 6 mV

Sample #: al.0

Date : 6/18/04 01:33 PM


Page 1 of 1


Time of Injection: 6/18/04 01:07 PM

Low Point : 5.97 mV High Point : 177.29 mV

Plot Scale: 171.3 mV

Total Volatile Hydrocarbons Lab #: 172914 Location: Redwood Regional Park Stellar Environmental Solutions EPA 5030B Client: Prep: Project#: STANDARD 06/17/04 06/17/04 Matrix: Water Sampled: Units: ug/L Received: Batch#: <u>9</u>2037

Field ID:

MW-5

SAMPLE

Type: Lab ID:

172914-009

Diln Fac:

1.000

Analyzed:

06/18/04

Analyte	Result		Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	5.9	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND_	0.50	EPA 8021B	

Surrogate	%RE(. Trimits	Analy	sis
Trifluorotoluene (FID)	96	74-142	EPA 8015B	
Bromofluorobenzene (FID)	114	80-139	EPA 8015B	
Trifluorotoluene (PID)	91	55-139	EPA 8021B	•
Bromofluorobenzene (PID)	113	62-134	EPA 8021B	

Type: Lab ID: BLANK QC254496 Diln Fac: Analyzed:

1.000 06/17/04

Analyte Result Analysis Gasoline C7-C12 ND 50 EPA 8015B MTBE ND 2.0 EPA 8021B Benzene ND 0.50 EPA 8021B Toluene ND0.50 EPA 8021B Ethylbenzene ND 0.50 EPA 8021B m,p-Xylenes ND 0.50 EPA 8021B o-Xylene ND 0.50 EPA 8021B

Surrogate	*REC		Analysis	
Trifluorotoluene (FID)	100	74-142	EPA 8015B	
Bromofluorobenzene (FID)	102	80-139	EPA 8015B	
Trifluorotoluene (PID)	96	55-139	EPA 8021B	•
Bromofluorobenzene (PID)	101	62-134	EPA 8021B	

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

b= See narrative ND= Not Detected

RL= Reporting Limit

>LR= Response exceeds instrument's linear range Page 5 of 5

Patch QC Report

	Total Volat	ile Hydrocarbo)TLB
Lab #: Client:	172914	Location:	Redwood Regional Park
client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8021B
Type: Lab ID:	LCS	Diln Fac:	1.000
Lab ID:	QC254497	Batch#:	92037
Matrix:	Water	Analyzed:	06/17/04
Inits:	ug/L	-	

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	9.722	97	59-131
Benzene	10.00	10.14	101	80-120
Toluene	10.00	9.592	96	80-120
Ethylbenzene	10.00	10.09	101	80-120
h,p-Xylenes >-Xylene	10.00	10.60	106	80-120
>-Xylene	10.00	10.47	105	80-120

Surrogate	%REC	Limits
rifluorotoluene (PID)	98	55-139
Bromofluorobenzene (PID)	103	62-134

Batch QC Report

	Total Volati	ile Hydrocarbo	ons
Lab #:	172914	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	: STANDARD	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC254498	Batch#:	92037
Matrix:	Water	Analyzed:	06/17/04
Units:	ug/L		

Gasoline C7-C12		1,000	1,044	104	80-120	
Surrogate	%REC	Limits				
Trifluorotoluene (FID)	118	74-142				·
Bromofluorobenzene (FID)	109	80-139				

Analyte Spiked Result %REC Limits

atch QC Report

	Total Volat	ile Hydrocarbo	one
Lab #: 1729	914	Location:	Redwood Regional Park
client: Stel	llar Environmental Solutions	Prep:	EPA 5030B
Project#: STAN	NDARD	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZZ	Batch#:	92037
MSS Lab ID:	172892-001	Sampled:	06/16/04
Matrix:	Water	Received:	06/16/04
Units:	\mathtt{ug}/\mathtt{L}	Analyzed:	06/17/04
Diln Fac:	1.000	-	

MS

Lab ID: QC254540

Analyte	MSS Result	Spiked	Result	%RE	2 Limits
Gasoline C7-C12	11.76	2,000	2,072	103	80-120

Surrogate	%REC	Limits
[rifluorotoluene (FID)	134	74-142
Bromofluorobenzene (FID)	115	80-139

Type:

MSD

Lab ID:

QC254541

Analyte	Spiked	Result	%REC	Limits l	CONTRACTOR OF THE PROPERTY OF THE
Gasoline C7-C12	2,000	2,106	105	80-120 2	2 20
Surrogate	%REC Limits				

Surrogate	%REC	Limits
Trifluorotoluene (FID)	139	74-142
Bromofluorobenzene (FID)	118	80-139

Total Extractable Hydrocarbons

Lab #: 172914 Stellar Environmental Solutions Client:

Project#: STANDARD

Matrix: Water Jnits: ug/L

<u> Diln Fac:</u> .000 Location:

Redwood Regional Park EPA 3520C

Prep: EPA 8015B 06/17/04 Analysis:

Sampled:

Received: 06/17/04

ield ID:

SW-2 ype: ab ID: SAMPLE

172914-001

Batch#: Prepared: Analyzed:

92093 06/18/04 06/21/04

Analyte

Result

Diesel Cl0-C24

50

50

Surrogate Texacosane 105 53-142

ield ID:

MW-11

/pe: ab ID:

SAMPLE 172914-002 Batch#:

92093

Prepared: Analyzed: 06/18/04 06/21/04

Analyte Diesel Clo-C24

Result

2,300 L Y

RIE(O DAME (- S

Surrogate lexacosane

95 53-142

teld ID:

SAMPLE

MW - 7

172914-003

Batch#:

92093

Prepared: Analyzed: 06/18/04 06/21/04

Analyte Diesel C10-C24

Kelenda e 2,700 L Y

53-142

RL. 50

Surficeate

lexacosane

89

ield ID:

MW - 9

SAMPLE

Batch#:

92093

172914-004

Prepared: Analyzed:

06/18/04 06/21/04

Analyte Diesel ClO-C24

Result

87

Surrogate

1,700 L Y

RL 50

<u>Iexacosane</u>

SRICE Francisco 53-142

¹⁼ Lighter hydrocarbons contributed to the quantitation

⁼ Sample exhibits chromatographic pattern which does not resemble standard

>= Not Detected

⁼ Reporting Limit age 1 of 3

Sample Name: 172914-002,92093

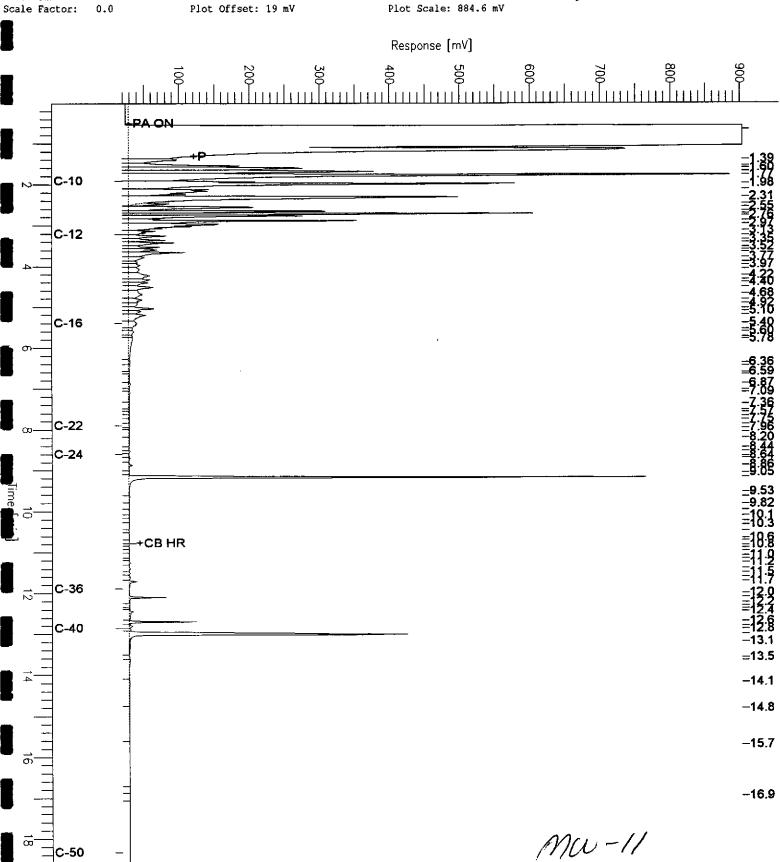
: G:\GC17\CHA\173A011.RAW leName

: ATEH168.MTH

tart Time : 0.01 min

End Time : 19.99 min

Sample #: 92093


Date: 6/21/04 04:02 PM

Time of Injection: 6/21/04 02:47 PM

Low Point: 19.13 mV

High Point : 903.68 mV

Page 1 of 1

Sample Name : 172914-003,92093

FileName : G:\GC17\CHA\173A012.RAW

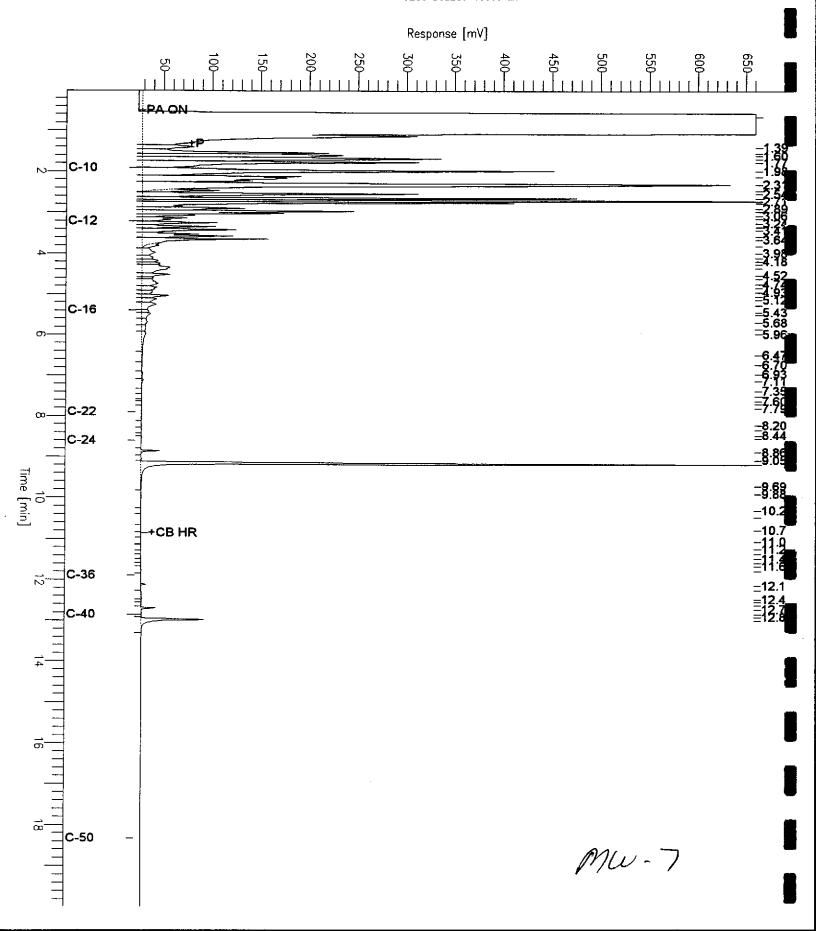
Method : ATEH168.MTH

Start Time : 0.01 min Scale Factor: 0.0

End Time : 19.99 min

Plot Offset: 22 mV

Sample **#**: 92093


Date: 6/21/04 04:03 PM Time of Injection: 6/21/04 03:15 PM

Low Point: 22.04 mV

High Point : 660.08 mV

Page 1 of 1

Plot Scale: 638.0 mV

Sample Name : 172914-004,92093

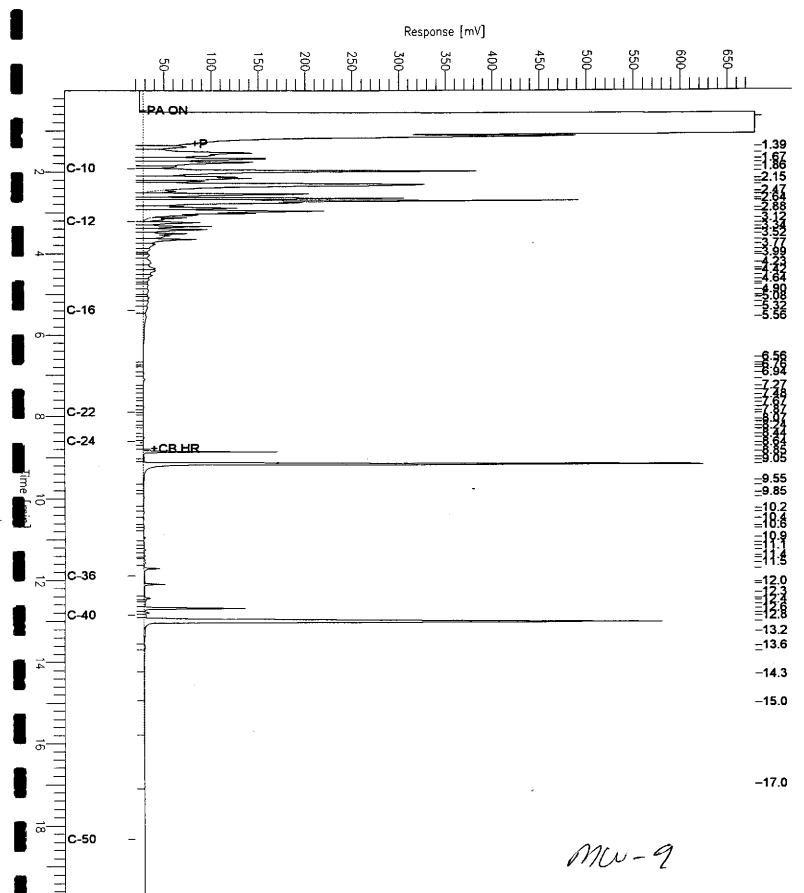
ileName : G:\GC17\CHA\173A013.RAW

ethod : ATEH168.MTH

tart Time : 0.01 min End Time

Scale Factor: 0.0 Plot Offset

End Time : 19.99 min Plot Offset: 19 mV Sample #: 92093


Date : 6/21/04 04:06 PM

Time of Injection: 6/21/04 03:43 PM

Low Point: 19.06 mV High Point: 679.72 mV

Page 1 of 1

Plot Scale: 660.7 mV

Total Extractable Hydrocarbons

Lab #: 172914

Client: Stellar Environmental Solutions Project#: STANDARD

Water Matrix: ug/L 1.000 Jnits: Diln Fac:

Location: Prep:

Redwood Regional Park

EPA 3520C EPA 8015B <u> Analysis:</u>

Sampled: 06/17/04 06/17/04 Received:

ield ID:

8-WM SAMPLE ype: āb ID: 172914-005 Batch#:

Prepared:

92093 06/18/04

Analyzed: 06/21/04

Anallytes Diesel C10-C24

Result

990 L Y

SERVE COMPANY AND A STREET

Texacosane

53-142

ield ID:

MW-2 SAMPLE

172914-006

Batch#:

Prepared:

92093

Analyzed:

06/18/04 06/21/04

Analyte Diesel C10-C24

र्दे≐ हो । विक्

50

Surrogate

%REC Limits

53-142

lexacosane

ield ID:

/pe: ab ID:

MW-10 SAMPLE

172914-007

Batch#:

Prepared: Analyzed: 92093

06/18/04 06/21/04

Analyte

86

Diesel C10-C24

56 L Y

RL 50

Superconate

lexacosane

87

\$3:4:(e) # FTTS [27] 53-142

ield ID:

MW-4 SAMPLE

172914-008

Batch#:

Prepared:

92107

Analyzed:

06/19/04 06/21/04

Analyte

53-142

Diesel Cl0-C24

93

2,500 Y

50

Surrogate Iexacosane

SREC Limite

= Lighter hydrocarbons contributed to the quantitation = Sample exhibits chromatographic pattern which does not resemble standard

)= Not Detected

= Reporting Limit age 2 of 3

Sample Name: 172914-005,92093

: G:\GC17\CHA\173A014.RAW leName

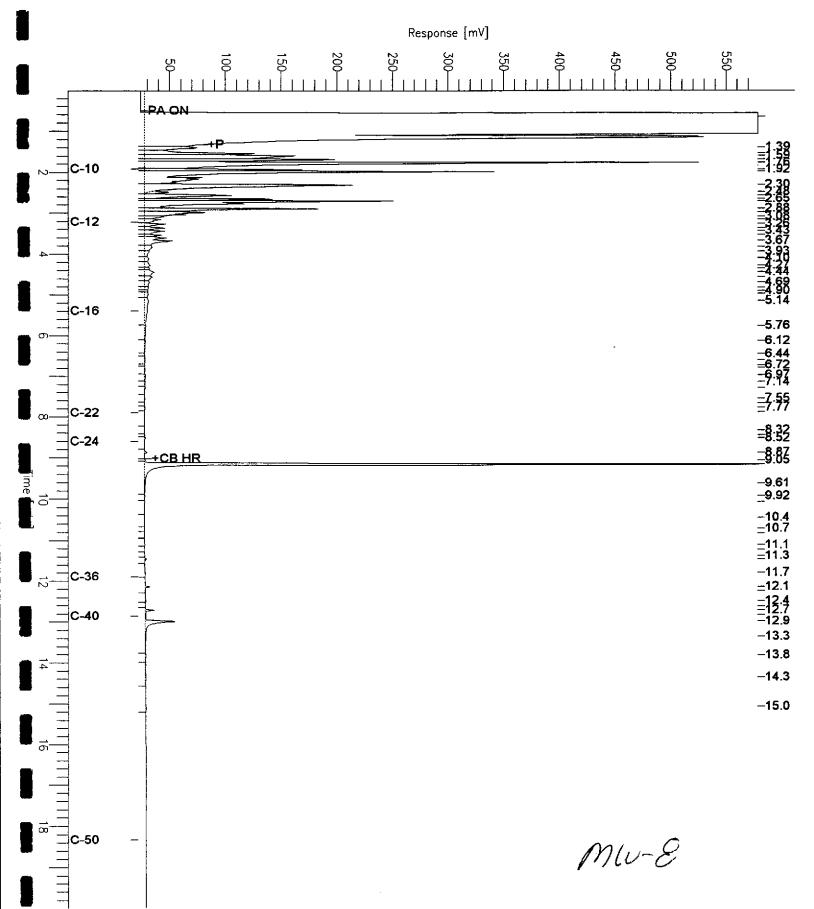
thod : ATEH168.MTH

art Time : 0.01 min Scale Factor: 0.0

End Time : 19.99 min Plot Offset: 22 mV

Sample #: 92093

Date : 6/21/04 04:53 PM


Time of Injection: 6/21/04 04:12 PM

Low Point : 21.97 mV

High Point : 578.98 mV

Page 1 of 1

Plot Scale: 557.0 mV

Sample Name: 172914-007,92093

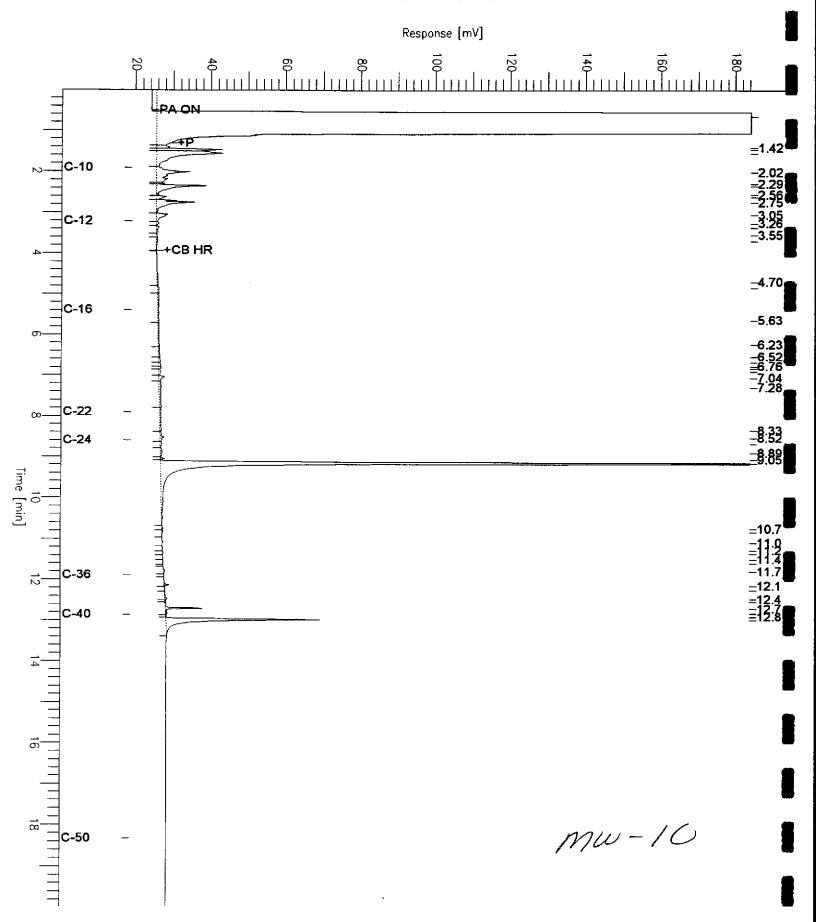
FileName : G:\GC17\CHA\173A016.RAW

Method : ATEH168.MTH

Start Time : 0.01 min Scale Factor: 0.0

B.MTH

End Time : 19.99 min Plot Offset: 19 mV Sample #: 92093


Page 1 of 1

Date: 6/21/04 05:32 PM

Time of Injection: 6/21/04 05:08 PM

Low Point: 19.01 mV High Point: 184.22 mV

Plot Scale: 165.2 mV

Lo V. 0/22/09 Sample Name: 172914-008,92017

: G:\GC15\CHB\173B023.RAW

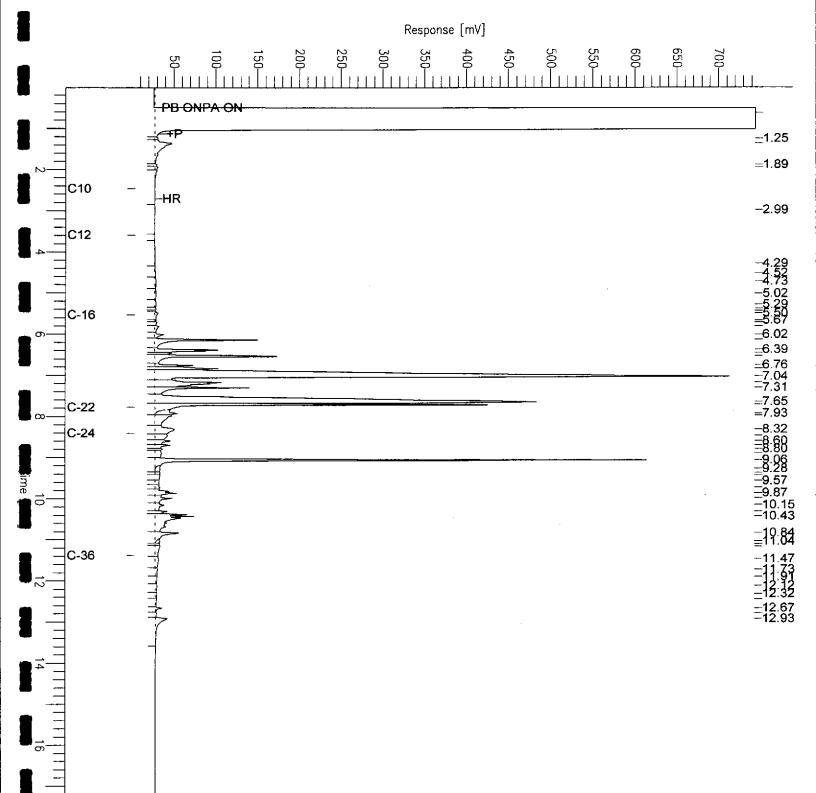
: BTEH167S.MTH

art Time : 0.01 min Scale Factor: 0.0

End Time : 19.99 min Plot Offset: 4 mV

Sample #: 92017

Date: 6/22/04 08:58 AM


Time of Injection: 6/21/04 09:18 PM

Low Point : 3.68 mV

High Point: 744.35 mV

Page 1 of 1

Plot Scale: 740.7 mV

mw-4

mple Name : ccv,04ws0894,dsl

leName : G:\GC17\CHA\172A002.RAW

thod : ATEH168.MTH

art Time : 0.01 min ale Factor: 0.0

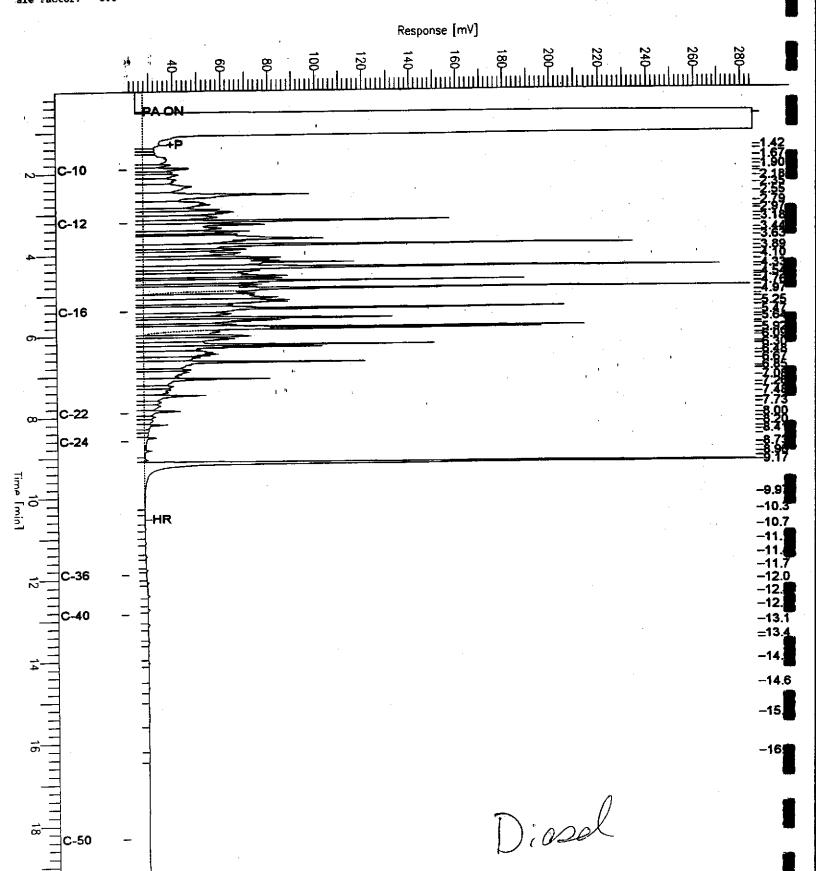
min End Time : 19.99 min

Plot Offset: 21 mV

Sample #: 500mg/L

Page 1 of 1

01:02 PM


Date: 6/20/04 01:43 PM

Time of Injection: 6/20/04

Low Point : 20,88 mV

High Point : 285.08 mV

Plot Scale: 264.2 mV

Total Extractable Hydrocarbons

b #: 172914 Redwood Regional Park Location:

Client: Stellar Environmental Solutions Prep: **EPA 3520C** EPA 8015B 06/17/04 Project#: STANDARD Analysis: Sampled: ltrix: Water

ug/L 06/17/04 its: Received: ln Fac 000

ld ID: MW-5

92107 06/19/04 Batch#: ype: ab ID: SAMPLE Prepared: 172914-009 06/21/04 Analyzed:

Analyte Result 50

C10-C24 ND

RRC Ministe Surrogate xacosane 53-142

06/18/04 BLANK Prepared:

QC254718 Analyzed: 06/20/04 92093 EPA 3630C Cleanup Method:

Result Analyte esel C10-C24 ND 50

Surrogate *REC Limits Hexacosane 53-142

BLANK 06/19/04 Prepared: ID: QC254772 Analyzed: 06/20/04

EPA 3630C ch#: 92107 Cleanup Method: Analyte Result RL

Diesel C10-C24

REC Limits Surrogate xacosane 106 53-142

L= Lighter hydrocarbons contributed to the quantitation Sample exhibits chromatographic pattern which does not resemble standard Not Detected Reporting Limit age 3 of 3

Batch QC Report

Lab #:

Total Extractable Hydrocarbons

172914 Location: Redwood Regional Park

Client: Stellar Environmental Solutions Prep: EPA 3520C

Project#: STANDARD Analysis: EPA 8015B

 Matrix:
 Water
 Batch#:
 92093

 Units:
 ug/L
 Prepared:
 06/18/04

Diln Fac: 1.000 Analyzed: 06/20/04

уре:

ab ID:

ВŞ

QC254719

Cleanup Method: EPA 3630C

Analyte Spiked Result %REC Limits
Diesel C10-C24 2,500 1,858 74 57-128

Surrogate %RBC Limits
Hexacosane 80 53-142

30 53-142

ype: BSD

b ID: QC254720

Cleanup Method: EPA 3630C

Analyte Spiked Result %REC Limits RPD Lim
Diesel Clo-C24 - 2,500 2,007 80 57-128 8 38

Surrogate *REC Limits
Hexacosane 91 53-142

3atch QC Report

		ð																				

ab #: 172914 Location: Redwood Regional Park

lient: Stellar Environmental Solutions Prep: EPA 3520C

Project#: STANDARD Analysis: EPA 8015B

#atrix: Water Batch#: 92107 hits: ug/L Prepared: 06/19/04

Diln Fac: 1.000 Analyzed: 06/20/04

lype:

BS Cleanup Method: EPA 3630C

ID: QC254773

Analyte Spiked Result %REC Limits
Liesel C10-C24 2,500 2,417 97 57-128

Surrogate 4REC Limits

Hexacosane 107 53-142

Be: BSD

e: BSD Cleanup Method: EPA 3630C ID: QC254774

Analyte Spiked Result %REC Limits RPD Lim

Lesel C10-C24 2,500 2,767 111 57-128 14 38

Surrogate %REC Limits

Exacosane 121 53-142

Nitrate Nitrogen Lab #: 172914 Location: Redwood Regional Park Client: Stellar Environmental Solutions Analysis: EPA 300.0 Project#: STANDARD Analyte: Nitrogen, Nitrate Batch#: 92054 Matrix: Water Sampled: 06/17/04 Units: mg/L Received: 06/17/04 Diln Fac: 1.000

Field ID	Type Lab ID	Result	RL	Analyzed
MW-11	SAMPLE 172914-002	ND	0.05	06/18/04
MW - 7	SAMPLE 172914-003	ND	0.05	06/18/04
1W-9	SAMPLE 172914-004	ND	0.05	06/18/04
1W - 8	SAMPLE 172914-005	ND	0.05	06/18/04
W-10	SAMPLE 172914-007	ND	0.05	06/18/04
W - 4	SAMPLE 172914-008	0.33	0.05	06/18/04
IW - 3	SAMPLE 172914-010	ND	0.05	06/18/04
	BLANK QC254559	ND	0.05	06/17/04

Sulfate

Lab #: 172914

Stellar Environmental Solutions

Project#: STANDARD

Sulfate Water

Matrix: Units:

lient:

Analyte:

mg/L

Location: Analysis: Redwood Regional Park

EPA 300.0

Batch#: 92054

Sampled:

06/17/04

Received:

06/17/04

Field ID	Туре	Lab ID	R	esult	RL	Diln Fac	Analyzed
W-11	SAMPLE	172914-002		7.5	0.50	1.000	06/18/04
MW - 7	SAMPLE	172914-003		1.4	0.50	1.000	06/18/04
<u>M</u> W-9	SAMPLE	172914-004		66	5.0	10.00	06/18/04
1W - 8	SAMPLE	172914-005		61	5.0	10.00	06/18/04
. W-10	SAMPLE	172914-007		62	5.0	10.00	06/18/04
MW - 4	SAMPLE	172914-008		55	5.0	10.00	06/18/04
1W - 3	SAMPLE	172914-010		37	0.50	1.000	06/18/04
	BLANK	QC254559	ND		0.50	1.000	06/17/04

Batch QC Report

	Nitra	te Nitrogen	
Lab #: 1729	14	Location:	Redwood Regional Park
Client: Stel Project#: STAN	lar Environmental Solutions DARD	Analysis:	EPA 300.0
Analyte:	Nitrogen, Nitrate	Batch#:	92054
Field ID:	ZZZZZZZZZZ	Sampled:	06/16/04
MSS Lab ID:	172904-011	Received:	06/16/04
Matrix:	Water	Analyzed:	06/17/04
Units:	mg/L	•	

Туре	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lin	n Diln Fa	áC .
BS	QC254560		1.000	0.9640	96	80-120	100000000000000000000000000000000000000	<u> </u>	1.000	<u> </u>
BSD	QC254561		1.000	0.9271	93	80-120	4	20	1.000	
MS	QC254562	<0.01100	5.000	4.724	94	80-120			10.00	
MSD	QC254563		5.000	4.752	95	80-120	1	20	10.00	

Patch QC Report

		Sulfate	
Lab #: 1729 flient: Stel Project#: STAN	lar Environmental Solutio	Location: ons Analysis:	Redwood Regional Park EPA 300.0
Inalyte: Tield ID: MSS Lab ID: Matrix: Inits:	Sulfate ZZZZZZZZZZ 172904-011 Water mg/L	Batch#: Sampled: Received: Analyzed:	92054 06/16/04 06/16/04 06/17/04

Туре	Lab ID)	MSS Result	Spiked	Result	%REC	Limits	RPD	Lin	Diln Fac
S	QC254560		10.00	9.816	98	80-120			1.000
SD	QC254561		10.00	9.380	94	80-120	5	20	1.000
MS	QC254562	1.051	50.00	49.24	96	80-120			10.00
SD	QC254563		50.00	49.53	97	80-120	1	20	10.00

HISTORICAL GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

					Well N	IW-2			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1.	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	dilibility of MA
2	Feb-95	89	< 50	18	2.4	1.7	7.5	29.6	AND TOTAL
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8	AN REAL PROPERTY.
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	MA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<u> </u>	A CARREST AND
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	NA
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.2	
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	NA NA
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	104
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31.4	MA
12	Feb-98	2,000	200	270	92	150	600	1,112	
13	Sep-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		7.0
14	Apr-99	82	710	4.2	< 0.5	3.4	4	12	7.5
15	Dec-99	57	< 50	20	0.6	5.9	<0.5	27	4.5
16	Sep-00	< 50	< 50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27
20	Dec-01	74	69	14	0.8	3.7	3.5	22	6.6

	Well MW-2 (continued)												
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE				
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2				
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		7.7				
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5	_	13				
24	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5	_	< 2.0				
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16				
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	< 0.5	1.9	8.7				
27	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23.0				
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4				
29	Mar-04	374	<100	81.0	1.2	36	7.3	126	18.0				
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15.0				

					Well N	IW-4			_
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	NAME OF THE PARTY OF
2	Feb-95	11,000	330	420	17	440	460	1,337	Will To
3	May-95	7,200	440	300	13	390	330	1,033	erior and it is
4	Aug-95	1,800	240	65	6.8	89	67	227	
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA.
6	Aug-96	3,700	120	63	2.0	200	144	409	N/A
7	Dec-96	2,700	240	19	< 0.5	130	93	242	l I NA
8	Feb-97	3,300	< 50	120	1.0	150	103	374	
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	
10	Aug-97	1,900	150	8.6	3.5	78	53	143	
11	Dec-97	1,000	84	4.6	2.7	61	54	123	La L
12	Feb-98	5,300	340	110	24	320	402	856	11 P
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23
14	Apr-99	2,900	710	61	1.2	120	80	263	32
15	Dec-99	1,000	430	4.0	2.0	26	14	45.9	< 2.0
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20.1	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0

				W	/ell MW-4 (continued)			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.0
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2.0
21	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
28	Dec-03	<50	<100	<0.3	<0.3	<0.3	<0.6	_	< 5.0
29	Mar-04	<50	<100	<0.3	<0.3	<0.3	<0.6		< 5.0
30	Jun-04	<50	2,500	<0.3	<0.3	<0.3	<0.6		< 5.0

					Well M	IW-5			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	AV SELECTION
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	BAN FAA
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	····	編集儀式以為
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	NA THE
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	AN Industrial
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	AN American
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		Hall Samuel
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	ANA THE
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	i Julina
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		<2
	Groundwate	er monitorin	g in this w	ell discontin	ued with Al	ameda County H	ealth Care Service	es Agency appro	val
14	Jun-04	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		5.9

	Well MW-7												
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	МТВЕ				
1	Jan-01	13,000	3,100	95	4	500	289	888	95				
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52				
3	Aug-01	12,000	5,000	55	25	440	198	718	19				
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	< 10				
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200				
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18				
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2.0				
8	Dec-02	9,600	3,700	110	< 0.5	400	188.9	699	< 2.0				
9	Mar-03	10,000	3,600	210	12	360	143	725	45				
10	Jun-03	9,300	4,200	190	< 10	250	130	570	200				
11	Sep-03	10,000	3,300	150	11	300	136	597	< 2.0				
12	Dec-03	9,140	1,100	62	45	295	184	586	89				
13	Mar-04	8,170	600	104	41	306	129	580	84				
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2.0				

Well MW-8													
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE				
11	Jan-01	14,000	1,800	430	17	360	1230	2,037	96				
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42				
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14				
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4.				
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240				
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19				
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2.0				
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2.				
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	< 1				
10	Jun-03	7,900	2,200	370	7.4	620	562	1,559	< 4.				
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2.1				
12	Dec-03	485	100	19	1.5	26	36	83	< 5.				
13	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90				
14	Jun-04	5,900	990	260	9.9	460	390	1,120	< 1				

					Well N	IW-9			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	11,000	170	340	13	720	616	1,689	48
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 10
3	Mar-02	1,700	300	53	4.2	120	67	244	20
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4.0
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 10
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2.0
8	Jun-03	7,600	1,600	490	10	620	167	1,287	< 4.0
9	Sep-03	8,300	2,900	420	14	870	200	1,504	< 10
10	Dec-03	7,080	700	287	31	901	255	1,474	< 10
11	Mar-04	3,550	600	122	15	313	84	534	35
12	Jun-04	6,800	1,700	350	< 2.5	620	99.2	1,069	< 10
					Well M	W-10			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	-	25
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0
10	Dec-03	162	<100	6.9	<0.3	8	<0.6	15	9.9
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5.0
12	Jun-04	150	56	11	< 0.5	12	< 0.5	23	15

	Well MW-11												
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE				
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 10				
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 10				
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4				
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< 4				
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 10				
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 10				
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53				
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 10				
9	Sep-03	10,000	3000	250	9.9	700	527	1,487	< 4				
10	Dec-03	15,000	1,100	314	60	1,070	802	2,246	173				
11	Mar-04	4,900	400	72	17	342	233	664	61				
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 10				

HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in ug/L, equivalent to parts per billion [ppb])

Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	il Salahiji AV
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		Name NA
3	May-96	< 50	< <u>50</u>	< 0.5	< 0.5	< 0.5	< 0.5		N
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		HART W
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	N/
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		· N
_8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		N.
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0

Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
_4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
8	Aug-97	350	130	13	0.89	19	11	44
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8
13	Dec-99	1,300	250	10	1.0	47	27	85
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56
24	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
25	Sep-03	190	92	2.1	< 0.5	4.2	< 0.5	6.3
26	Dec-03	86	< 100	< 0.3	< 0.3	< 0.3	< 0.6	
27	Mar-04	<50	<100	<0.3	<0.3	1.1	<0.6	1.1
28	Jun-04	<50	<50	<0.5	<0.5	0.83	<0.5	0.83

Sampling Location SW-3 (Downstream of Contaminated Groundwater Discharge Location SW-2)									
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		建筑新 花丛
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5		电路图 系
4 ·	Aug-96	69	< 50	< 0.5	< 0.5	< 0 .5	< 0.5		NA.
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		基础基 为
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	Maria NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		AND TO NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		ANTHEISE !
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		Ma ANA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	· 	< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
13	Sep-00	Ns	. NS	III - III NS	NS	NS WARRING	NS		Jan NS
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
15	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0
16	Sep-01	i i NS	i si i Ns	NS	NS NS	NS	de la		NS.
17	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		< 2.0
19	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		2.4
20	Sep-02	NS	NS.	NS	u ¥NS	Ns.	HALL MANAGENS	一种,加州市	HARRING
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	•	< 2.0
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
23	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.0
24	Sep-03	NS	' NS	NS	· WS	NS	LI PARTITION OF THE PAR		
25	Dec-03	60	< 100	< 0.3	< 0.3	< 0.3	< 0.6	_	< 5.0
26	Mar-04	<50	<100	<0.3	<0.3	<0.6	<0.6	•	< 5.0
27	Jun-04	NS.	. HANS	ri III NS	······································	NS	SATURE HARMEN		響動

NA = Not Analyzed for this constituent NS = Not Sampled (no surface water present during sampling event)

Summary of Historical Grab-Groundwater Sample Analytical Results Redwood Regional Park Service Yard - Oakland, California

(all concentrations in $\mu g/L$)

Sample LD.	TVHg	TEHA	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
	Explo	ratory Borel	hole Samples	– September	and Octobe	r 1993	
B10-GW	< 0.05	0.57	< 0.001	< 0.001	< 0.001	< 0.001	NA
B11-GW	1.4	1.3	0.016	0.042	0.033	0.17	NA
B13-GW	810	2,300	12	18	22	73	NA
B14-GW	19	4.5	0.03	< 0.01	0.35	0.85	NA
B15-GW	16	99	0.02	< 0.01	0.33	0.81	NA
	_	Explorat	ory Borehole	Samples - A	pril 1999		
HP-01-GW	1,300	850	< 0.5	< 0.5	< 0.5	0.67	< 2
HP-02-GW	31,000	270,000	760	12	1,100	833	260
HP-03-GW	3,700	1,400 (a)	25	0.71	130	40.5	31
HP-04-GW	67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	15
HP-05-GW	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	18
HP-06-GW	54,000	16,000	830	< 13	2,800	11,000	190
HP-07-GW	42,000	15,000	750	49	2,500	5,290	230
HP-08-GW	13,000	1,900	150	5.4	570	931	120
HP-09-GW	40,000	6,700	1,700	110	2,100	6,890	200
HP-10-GW	23,000	8,400	53	3.2	600	928	57
HP-11-GW	2,000	440	30	0.85	92	53.3	31
		Exploratory	Borehole Sa	mples – Sept	ember 2003	•	
BH-16-GW	35	35	0.01	0.22	0.19	0.98	<0.035
BH-20-GW	<3.0	1.5	<0.005	<0.005	<0.005	<0.015	< 0.035
	Red	vood Creek (Creekbank B	orehole Sam	ples – May 2	2004	· · · · · · · · · · · · · · · · · · ·
CB-1-GW	22,000	20,000	1,400	< 5.0	2,100	210	910
CB-2-GW	54,000	130,000	300	< 10	650	104	120
CB-3-GW	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	< 2.0
CB-4-GW	< 50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	< 2.0

Notes:

TVHg = Total volatile hydrocarbons - gasoline range

TEHd =Total petroleum hydrocarbons - diesel range

NA = Not Analyzed for this constituent