STELLAR ENVIRONMENTAL SOLUTIONS

2198 SIXTH STREET, BERKELEY, CA 94710 Tel: 510.644.3123 * FAX: 510.644.3859

MAY 1 1 2001

TRANSMITTAL MEMORANDUM

05/09/01
SES-2001-36
R SEPARATE COVER
OUR APPROVAL
OUR USE
OUR FILES
uce Rucker (BMR 5/9/04

2198 Sixth Street, Suite 201, Berkeley, CA 94710 Tel: (510) 644-3123 • Fax: (510) 644-3859

Geoscience & Engineering Consulting

May 4, 2001

Mr. Scott O. Seery
Hazardous Materials Specialist
Alameda County Health Care Services Agency
Department of Environmental Health, Hazardous Materials Division
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502

Subject: Site Monit

Site Monitoring Report

Redwood Regional Park Service Yard Site - Oakland, California

Dear Mr. Seery:

Please find attached the Stellar Environmental Solutions (SES) Site Monitoring Report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District, and follows previous site investigation and remediation activities associated with former leaking underground fuel storage tanks, conducted since 1993. The key regulatory agencies for this investigation are the Alameda County Health Care Services Agency, the California Regional Water Quality Control Board (RWQCB), and the California Department of Fish and Game.

This report summarizes the April 2001 site monitoring event, which included groundwater and creek surface water sampling and analysis. If you have any questions regarding this report, please contact Mr. Ken Burger of the Park District, or contact us directly at (510) 644-3123.

Sincerely,

Bruce M. Rucker, R.G., R.E.A

Project Manager

Brue M. Plyly!

Richard S. Makdisi, R.G., R.E.A

Principal

ÇÇ:

Michael Rugg, California Department of Fish and Game Roger Brewer, California Regional Water Quality Control Board Ken Burger, East Bay Regional Park District

F::Docs-M8Word/2001-36-Redwood 2001/REPORT-Redwood-April 2001 Monitoring Event-Final-5-D1.doc

SITE MONITORING REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared For:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

Prepared By:

STELLAR ENVIRONMENTAL SOLUTIONS 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

May 4, 2001

Project No. 2001-36

TABLE OF CONTENTS

			Page
1.0	INTRO	DUCTION	1
	Objective Site Des	Background ves and Scope of Work scription tory Oversight	1
2.0	PHYSIC	CAL SETTING	5
3.0	APRIL	2001 CREEK AND GROUNDWATER SAMPLING	7
		water Level Monitoring and Sampling	
4.0	MONIT	TORING EVENT ANALYTICAL RESULTS	10
	Natural Creek S	water Sample Results Attenuation Parameters Measured Surface Water Sample Results Control Sample Analytical Results	11 14
5.0	SUMM	ARY, CONCLUSIONS AND PROPOSED ACTIONS	15
		ry and Conclusionsed Actions	
6.0	REFER	ENCES AND BIBLIOGRAPHY	17
7.0	LIMITA	ATIONS	19
APPE	NDICES	,	
Apper	ndix A	Groundwater Monitoring Field Records	
Apper	ndix B	Analytical Laboratory Reports and Chain-of-Custody Records	
Apper	ndix C	Historical Analytical Results	

TABLES AND FIGURES

Tables	Page
Table 1	Groundwater Monitoring Well Construction and Groundwater Elevation Data
Table 2	Groundwater and Surface Water Sample Analytical Results
Table 3	Groundwater Sample Analytical Results Natural Attenuation Indicators
Figures	Page
1 igui es	1 age
Figure 1	Site Location Map
Figure 2	Site Plan and Historical Sampling Locations
Figure 3	Groundwater Elevation Map
Figure 4	Groundwater and Surface Water Analytical Results

F/Docs-MSWord/2001-36-Redwood 2001/REPORT-Redwood-April 2001 Monkoring Event-Final-3-01 doc

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or more of two former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Health Care Services Agency (ACHCSA) has provided regulatory oversight of the investigation since its inception. Other involved regulatory agencies include the California Regional Water Quality Control Board (RWQCB) and the California Department of Fish and Game (CDFG).

OBJECTIVES AND SCOPE OF WORK

This report discusses the results from the April 2001 surface water and groundwater monitoring event, which included determining shallow groundwater flow direction; collecting groundwater samples from site wells for contaminant analysis and natural attenuation indicators; and collecting surface water (creek) samples for contaminant analysis. Previous SES reports submitted in June 1999 and April 2000 provided a full discussion of previous site remediation and investigations; site geology and hydrogeology; residual site contamination; conceptual model for contaminant fate and transport; and evaluation of hydrochemical trends and plume stability. An October 2000 Feasibility Study report for the site, submitted to ACHCSA, provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (SES, 2000d). The previous most recent site monitoring event was conducted in January 2001.

SITE DESCRIPTION

The project site is located at 7867 Redwood Road in Oakland, Alameda County, California. Figure 1 shows the location of the project site. The site slopes to the west, from an elevation of approximately 564 feet above mean sea level (amsl) at the eastern edge of the service yard to approximately 545 feet amsl at Redwood Creek, which approximately defines the western edge of the project site with regard to this investigation. Figure 2 is a site plan.

2000-46-04

REGULATORY OVERSIGHT

Historical ACHCSA-approved revisions to the groundwater sampling program have included: 1) discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6; 2) discontinuing creek surface water sampling at upstream location SW-1; and 3) reducing the frequency of creek surface water sampling from quarterly to semi-annually (ACHCSA, 1996). The latter recommendation has not yet been implemented due to continued concern over potential impacts to Redwood Creek.

2.0 PHYSICAL SETTING

Following is a brief summary of the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. A full discussion is presented in the SES June 1999 report.

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot thick silty clay unit. In all monitoring well boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit was encountered that laterally grades to a clay or silty clay. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

Groundwater at the site occurs under unconfined and semi-confined conditions at a depth between 12.5 and 19 feet below ground surface (bgs), corresponding to the top of the clayey, silty sand-gravel zone. Local perched water zones have been observed well above the top of the capillary fringe. Local groundwater flow direction has been consistently measured as northeast to southwest. Figure 3 is a groundwater elevation map constructed from the April 2001 monitoring well static water levels, and Table 2 (in Chapter 4.0) summarizes current event groundwater elevation data. The groundwater gradient is relatively steep—approximately 2 feet per foot—between well MW-1 and the former UFST source area, resulting from the topography and the highly disturbed nature of sediments in the landslide debris. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek), the groundwater gradient is approximately 0.1 feet per foot. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with site historical groundwater flow direction.

From site-specific empirical data (using the estimated time for UFST-sourced contamination to reach Redwood Creek), a conservative estimate of groundwater velocity within the aquifer material is at 7 to 10 feet per year, with the rate of movement within the clay rich zones being substantially less.

Redwood Creek borders the site to the west, and is a seasonal creek known for the occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation with little to no flow during the summer and fall dry season, and vigorous flow with depths to 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater) in the vicinity of the site that discharges into Upper San Leandro Reservoir, located approximately 1 mile southeast of the site.

3.0 APRIL 2001 CREEK AND GROUNDWATER SAMPLING

This section presents the creek surface water and groundwater sampling and analytical methods for the current event. Groundwater and surface water analytical results are summarized in Section 4.0. Monitoring and sampling protocols were in accordance with the ACHCSA-approved SES technical workplan (SES 1998a). Activities conducted included:

- Measuring static water levels and field analyzing pre-purge groundwater samples for indicators of natural attenuation (dissolved oxygen, ferrous iron, and redox potential) in all eight site wells;
- Collecting pre-purge groundwater samples for laboratory analysis of the natural attenuation indicators nitrate and sulfate from monitoring wells MW-3, MW-4, MW-7, and MW-8;
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants from wells located within the groundwater plume (MW-2, MW-4, MW-7, and MW-8); and
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3.

The current monitoring and sampling event was conducted on April 13, 2001. The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2. Well construction information and water level data are summarized in Table 1. Appendix A contains the groundwater monitoring field record.

GROUNDWATER LEVEL MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field analyses were conducted by Blaine Tech Services under the direct supervision of SES personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (RWQCB, 1989), and followed the methods and protocols approved by the ACHCSA in the SES 1998 workplan (SES, 1998a).

Table 1
Groundwater Monitoring Well Construction and Groundwater Elevation Data
Redwood Regional Park Corporation Yard, Oakland, California

Weil	Well Depth	Screened Interval	TOC Elevation	Groundwater Elevation (4/13/01)
MW-1	18	7 to17	565.9	562.1
MW-2	36	20 to 35	566.5	545.7
MW-3	42	7 to 41	560.9	541.7
MW-4	26	10 to 25	548.1	535.1
MW-5	26	10 to 25	547.5	531.5
MW-6	26	10 to 25	545.6	532.4
MW-7	24	9 to24	547.7	535.3
MW-8	23	8 to 23	549.2	539.8

Notes:

TOC = Top of Casing.

Wells MW-1 through MW-6 are 4-inch diameter. Wells MW-7 and MW-8 are 2-inch diameter.

All elevations are feet above USGS mean sea level. Elevations of Wells MW-1 through MW-6 were surveyed by EBRPD relative to USGS Benchmark No. JHF-49. Wells MW-7 and MW-8 were surveyed by a licensed land surveyor using existing site wells as datum.

As the first task of the monitoring event, static water levels were measured in all eight site wells using an electric water level indicator. Pre-purge groundwater samples from all wells were field analyzed for indicators of natural attenuation including ferrous iron, dissolved oxygen, and oxygen reduction potential (ORP, or redox potential). The third natural attenuation indicator that is normally measured for this site is dissolved oxygen. Dissolved oxygen was not measured in the current event because of a meter failure in the field. Pre-purge groundwater samples were collected from wells MW-3, MW-4, MW-7, and MW-8 for offsite laboratory analysis of the natural attenuation indicator sulfate. The other natural attenuation indicator normally collected for offsite laboratory analysis (nitrate) was analyzed 2 days after the method-specified 48-hour sample hold time. Thus, while the nitrate results may not be data-validatable, they are still reported to observe as part of the natural attenuation trends.

A total of approximately 60 gallons of purge water and decontamination rinseate from the current groundwater sampling event was containerized in the onsite plastic tank. The purge water will continue to be accumulated in the onsite tank until it is full, at which time it will be transported offsite for proper disposal.

CREEK SURFACE WATER SAMPLING

Surface water sampling was conducted by SES. Surface water samples were collected on April 13, 2001 from Redwood Creek locations SW-2 (immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination) and SW-3 (approximately 500 feet downstream from SW-2) (see Figure 2 for locations). In accordance with a previous ACHCSA-approved SES recommendation, upstream sample location SW-1 was not sampled.

At the time of sampling, the creek was flowing briskly and water depths at the sampling locations ranged from 6 to 12 inches. At the SW-2 location, where contaminated groundwater discharge to the creek has historically been observed, a petroleum sheen was noted, as was an orange algae growing on the saturated portion of the creek bank. It is inferred that this algae is utilizing the petroleum as a carbon source, and is therefore a good indicator of the presence of petroleum contamination.

4.0 MONITORING EVENT ANALYTICAL RESULTS

This section presents the field and laboratory analytical results of the most recent (April 2001) monitoring event, including surface water and groundwater well sampling results. Table 2 and Figure 4 summarize the contaminant analytical results of the current monitoring event samples. Table 3 summarizes natural attenuation indicator results from the current event. Appendix B contains the certified analytical laboratory report and chain-of-custody record. A detailed discussion of hydrochemical and surface water trends was included in the October 2000 Feasibility Study report, and it continues to be addressed in upcoming annual summary reports. Appendix C contains a tabular summary of historical groundwater and surface water analytical results.

GROUNDWATER SAMPLE RESULTS

The current event data indicate the following:

- Maximum groundwater contaminant concentrations continue to be detected in downgradient site wells (MW-7 adjacent to the creek, and MW-8 just upgradient of MW-7), with concentrations in former source area well MW-2 generally 1 order of magnitude below downgradient well concentrations.
- Contaminant concentrations in new well MW-7 (adjacent to and south of existing of well MW-4) are approximately 1 order of magnitude greater than in MW-4, confirming our previous hypothesis that well MW-7 more accurately represents maximum groundwater concentrations at the leading edge of the plume than does MW-4.
- New well MW-8 is located upgradient of new well MW-7, at the location where maximum historical groundwater contamination was detected in a 1993 borehole grab-groundwater sample. Contaminant concentrations at MW-8 exceeded those at MW-7 for all contaminants except diesel and ethylbenzene. This indicates that, except for these two contaminants, the center of mass of the groundwater plume is located upgradient of MW-7.

As discussed in previous reports, these data indicate that the groundwater contaminant plume has migrated well beyond the former source area (represented by well MW-2) toward Redwood Creek, and that maximum groundwater contaminant concentrations has not reached Redwood Creek.

Table 2
Groundwater and Surface Water Sample
Analytical Results – April 13, 2001
Redwood Regional Park Corporation Yard, Oakland, California

Concentrations in µg/L									
Compound	TPHg	трна 🔭	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE		
GROUNDWATER SAMPLES									
MW-2	110	ND	10	< 0.5	11	6.4	10		
MW-4	1,700	1,100	4.5	2.8	48	10.7	5.0		
MW-7	13,000	3,900	140	< 0.5	530	278	52		
MW-8	11,000	3,200	320	13	560	1,163	42		
REDWOOD CREEK SURFACE WATER SAMPLES									
SW-2	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0		
SW-3	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0		

Notes:

MTBE = Methyl tertiary-butyl ether.

TPHg = Total petroleum hydrocarbons - gasoline range (equivalent to total volatile hydrocarbons - gasoline range).

TPHd = Total petroleum hydrocarbons - diesel range (equivalent to total extractable hydrocarbons - diesel range).

 $\mu g/L$ = Micrograms per liter, equivalent to parts per billion (ppb).

NATURAL ATTENUATION PARAMETERS MEASURED

Ferrous iron and redox potential were field-measured in all eight wells with electronic meters. Dissolved oxygen was field-measured in only two wells before meter failure. Sulfate and nitrate samples from well MW-3 (outside the contaminant plume) and wells MW-4, MW-7, and MW-8 (inside the contaminant plume) was analyzed in the laboratory; however, the nitrate samples were analyzed 2 days beyond the method-specified 48-hour hold time. An inverse relationship between general minerals—including Fe^{2+} , NO_3^- , and SO_4^{2-} —and hydrocarbon concentrations is indicative of the occurrence of biodegradation. Specifically, anaerobic degradation and oxidation of compounds is implied where general mineral concentrations are low and TPH concentrations are high. The natural attenuation indicators will often need to be looked at over a period of years to note sustainable trends, as seasonal effects and unique filed conditions during a given monitoring event can show misleading results.

Table 3
Groundwater Sample Analytical Results
Natural Attenuation Indicators - April 13, 2001
Redwood Regional Park Corporation Yard, Oakland, California

Sample LD.	Nitrogen (as Nitrate) (mg/L)	Sulfate (mg/L)	Dissolved Oxygen (mg/L)	Ferrous Iron (mg/L)	Redox Potential (milliVolts)
MW-1	NA	NA	NM	0.00	- 58
MW-2	NA	NA	NM	0.00	-29
MW-3	0.09	37	NM	0.00	- 37
MW-4	< 0.05	7.0	NM	4.2	44
MW-5	NA	NA	1.0	0.00	92
MW-6	NA	NA	NM	0.00	3.0
MW-7	< 0.05	0.55	NM	10	- 68
MW-8	< 0.05	60	1.2	0.8	133

Notes:

mg/L = Milligrams per liter, equivalent to parts per million (ppm).

NA = Not analyzed.

NM = Not measured due to meter failure.

In the current site monitoring event, the nitrate results showed the expected inverse correlation—with hydrocarbon concentrations, ferrous iron, and sulfate concentrations having no significant correlation with the occurrence of natural attenuation.

Dissolved oxygen (DO) is the most thermodynamically-favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least 1 to 2 mg/L of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation. Only limited DO data (two of the eight wells) were available during this event due to meter failure. These limited data provide no meaningful information, other than showing relatively low (approximately 1 mg/L) levels of DO both inside and outside the plume.

The oxidation-reduction potential (ORP) of groundwater is a measure of electron activity, and is an indicator of the relative tendency of a solute species to gain or lose electrons. The ORP of groundwater generally ranges from -400 millivolts (mV) to +800 mV. In oxidizing conditions, the ORP of groundwater is positive, while in reducing conditions the ORP is typically negative (or less positive). Reducing conditions (less positive ORP) are consistent with occurrence of anaerobic biodegradation. Therefore, ORP values of groundwater inside a hydrocarbon plume are typically less than those measured outside the plume. The current event ORP data generally show a good correlation with the expected trend, with the exception of MW-7 (inside the plume) that showed a strongly negative value, in the range similar to the wells outside the plume.

Future monitoring for bio-indicator analyses will allow for a more complete evaluation of the occurrence of biodegradation at the site. SES will further evaluate the occurrence of biodegradation, the influence of natural attenuation, and the ultimate extent of the hydrocarbon plume underlying the site.

CREEK SURFACE WATER SAMPLE RESULTS

No surface water contaminants were detected in the current event.

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory QC samples (e.g., method blanks, matrix spikes, surrogate spikes, etc.) were analyzed by the laboratory in accordance with requirements of each analytical method, with one exception: nitrate analyses were conducted 2 days beyond the method-specified hold time of 48 hours. All laboratory QC sample results and sample holding times (except nitrate) were within the acceptance limits of the methods (Appendix B).

5.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions presented are focused on the findings of the April 2001 surface water and groundwater monitoring event report, as well as some salient historical findings.

SUMMARY AND CONCLUSIONS

- Two additional groundwater monitoring wells (MW-7 and MW-8) were installed at the site in December 2000. Well MW-7 was installed in the inferred centerline of the contaminant plume at the most downgradient available location, and well MW-8 was installed in the inferred centerline of the contaminant plume approximately halfway between the former source area and Redwood Creek (coincident with historical maximum detected groundwater concentrations).
- Soil samples collected from the capillary fringe in each of the two well boreholes had contaminant concentrations comparable to those historically detected, reflecting the continued contribution of groundwater-sourced contamination to the capillary fringe at areas downgradient of the release.
- Groundwater sampling has been conducted on an approximately quarterly basis since November 1994 (18 events). The existing monitoring well network has defined the lateral limits of groundwater contamination.
- Historical maximum monitoring well contaminant concentrations (for all analytes except diesel and ethylbenzene) have been detected in new well MW-8, located approximately halfway between the former source area and Redwood Creek, indicating that the center of mass of the groundwater plume has not reached Redwood Creek.
- Since its installation in January 2001, contaminant concentrations in well MW-7 have exceeded those in nearby well MW-4, confirming that well MW-7 (located along the centerline of the plume) is the more appropriate sampling location for precise evaluation of downgradient maximum contaminant concentrations.
- Natural attenuation is indicated to be occurring at the site, mainly at the plume margins and former source area. Natural attenuation is likely minimal in the higher concentration portion

along the centerline of the plume due to limited oxygen content, suggesting that natural attenuation has not been, and will not be in the future, sufficient to mitigate impacts to the creek.

- No site contaminants were detected in either surface water sampling location (either at the area of groundwater discharge to the creek, or at a location approximately 500 feet downstream).
- In accordance with an ACHCSA request, SES completed a Feasibility Study (October 2000) to determine the most appropriate and cost-effective remedial strategy. This was determined to be injection of oxygen-release compound (ORC) and post-remediation compliance monitoring. The ACHCSA approved the remedial strategy in its January 8, 2001 letter to the EBRPD.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address regulatory concerns:

- Implement the approved remedial strategy as delineated in the Feasibility Study, as soon as practical after funding is secured by the EBRPD.
- Continue the quarterly program of creek and groundwater sampling and reporting.

6.0 REFERENCES AND BIBLIOGRAPHY

- Alameda County Health Care Services (ACHCSA), 2000. Letter to Mr. Ken Burger of East Bay Regional Park District. August 22.
- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28
- Parsons, 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31
- Parsons, 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4
- Parsons, 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30
- Parsons, 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22
- Parsons, 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6
- Parsons, 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24
- Parsons, 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8
- Parsons, 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23
- Parsons, 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 August 1995), Redwood Regional Park Service Yard, Oakland, California.

 November 13

- Parsons, 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California.

 March 2
- Parsons, 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13
- Parsons, 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17
- Parsons, 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28
- Parsons, 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16
- Parsons, 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3
- Stellar Environmental Solutions (SES), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21
- SES, 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19
- SES, 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19
- SES, 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20
- SES, 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8
- SES, 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9
- SES, 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9
- SES, 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4

7.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

WELL GAUGING DATA

Project # 010413-51	_ Date _	4/13/01	Client Steller Env	iconmental Solution
Site Reduced Regional	Park	Service Yard	Dakland	

				Thickness	Volume of			<u> </u>	<u> </u>
	Well		Depth to	of	Immiscibles			Survey	D.O. /
Well ID	Size	Sheen / Odor	Immiscible	Immiscible	1	Depth to water			Pard inco
	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	or(TOC)	- J
MW-1	Ц					3.77	18.85		N/A-58
UW-2	نا					20,77	38.8Z	-C-record programme and a second programme an	N/A 36
MW-3	4			_		19,16	44.10		N/A -37
MW-4	4					12.96	26,5]	ne al alla de la companya de la comp	N/A 44
MW-5	4	·				16.01	26.92		1.0 92
MW-6	L-\					13,21	27.39		N/A 3
MW-7	2	·				12.45	25.33		N/A - 68
8-WM	2		The second secon			9,42	22.21	V	1.2
				:				Name understalligen (1974)	
			H P A A A A A A A A A A A A A A A A A A					- CLACK OR BEAUTY AND	
			A PAPER A PAPE					The state of the s	
STATE OF THE STATE	0 u n n n n n n n n n n n n n n n n n n		THE CHARLES BEAUTIFUL BEAU						
	TAT CALLED AND AND AND AND AND AND AND AND AND AN		* Providence distance and the second						
									
				_					
			t jost je i i i i i i i i i i i i i i i i i i						1

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

	TOTAL OF THE TOTAL			
Project #: 010413-51	Client: Stellas Environmental Solutions			
Sampler: Hout / Sean	Start Date: 4 / 13 / 0 /			
Well I.D.: $mw-1$	Well Diameter: 2 3 4 6 8			
Total Well Depth: 18.85	Depth to Water: 3.77			
Before: After:	Before: After:			
Depth to Free Product:	Thickness of Free Product (feet):			
Referenced to: PVC Grade	D.O. Meter (if req'd): YSI HACH			
Purge Method: Bailer Waterra Disposable Bailer Densialtic Middleburg Extraction Pump Electric Submersible Other Calculated Volume Output Calculated Volumes	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47 Gals. 37			
Time Temp (°F) pH Cond.	Turbidity Gals. Removed Observations			
1312 545 7.14 870	01.2			
D.D. Meter INOP	Ferrous Iron O.DMG/L			
Did well dewater? Yes No	Gallons actually evacuated:			
Sampling Time:	Sampling Date:			
Sample I.D.:	Laboratory:			
Analyzed for: TPH-G BTEX MTBE TPH-D	Other:			
Equipment Blank I.D. @	Duplicate I.D.:			
Analyzed for: TPH-G BTEX MTBE TPH-D	Other:			
D.O. (if req'd):	Post-purge: mg/L			
ORP (if req'd): Pre-purge	- 58 mV Post-purge: mV			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Project #: 010413-51	Client: Stellas Environmental Solutions
Sampler: Log + / Sean	Start Date: 4 / 13 / 0/
Well I.D.: mw-Z	Well Diameter: 2 3 4 6 8
Total Well Depth: 38.82	Depth to Water: 20.77
Before: After:	Before: After:
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: PVC Grade	D.O. Meter (if req'd): (YSI) HACH
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Middleburg Extraction Pump Electric Submersible Other (Gals.) X Specified Volumes = 35./ Calculated Vo	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47 1.4
Time Temp (°F) pH Cond.	Turbidity Gals. Removed Observations
1423 58.5 7.20 834	7200 12
Well Dewatered OTa 37.23 a	1427 24 20
	36
DTW a Sampling 34,20 last	Well For Today
D.O. Meter INOP	Ferrows Iron o.o.mak
Did well dewater? (Yes) No	Gallons actually evacuated: ZO
Sampling Time: /43/	Sampling Date: 4/13/0/
Sample I.D.: MW-Z	Sampling Date: 4/13/0/ Laboratory: Curfis & Tompkins
Analyzed for: TPH-G BTEX MTBE TPH-D	Other:
Equipment Blank I.D.:	Duplicate I.D.:
Analyzed for: TPH-G BTEX MTBE TPH-D	Other:
D.O. (if req'd):	Post-purge: mg/L
ORP (if req'd): Pre-purge:	729 mV Post-purge: mV

Project #: 010413-51	Client: Stellas Environmental Solutions			
Sampler: Hoy + / Sean	Start Date: 4 / 13 / 0/			
Well I.D.: MW-3	Well Diameter: 2 3 4 6 8			
Total Well Depth: 4410	Depth to Water: 19,16			
Before: After:	Before: After:			
Depth to Free Product:	Thickness of Free Product (feet):			
Referenced to: PVC Grade	D.O. Meter (if req'd): (YSI) HACH			
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Middleburg Extraction Pump Electric Submersible Other (Gals.) X = 1 Case Volume Specified Volumes Calculated Vo.	Disposable Bailer			
Time Temp (°F) pH · Cond.	Turbidity Gals. Removed Observations			
1422 57.3 7.3 618	\$700 O			
	> 200 9			
D.O Meter INOP	Ferrous Iron 0 3/1			
Did well dewater? Yes No	Gallons actually evacuated:			
Sampling Time: 1423	Sampling Date: 4/13/01			
Sample I.D.: MW-3	Laboratory: Curtis + Tompkins			
Analyzed for: TPH-G BTEX MTBE TPH-D	Other: Nitrate + Sultate			
Equipment Blank I.D.:	Duplicate I.D.:			
Analyzed for: TPH-G BTEX MTBE TPH-D	Other:			
D.O. (if req'd):) ^{mg} / _L Post-purge: ^{mg} / _L			
ORP (if req'd):	-37 mV Post-purge: mV			

		
Client: Stellas	Environmenta	Solutions
Start Date:	4/13/01	
Well Diameter	: 2 3	6 8
Depth to Wate	r: 12,96	
Before:		After:
Thickness of F	ree Product (fee	et):
D.O. Meter (if	req'd):	YSI ⁾ HACH
_ Other:	Disposable Bailer Extraction Port Dedicated Tubing er Multiplier Well 1 0.04 4" 0.16 6"	Diameter Multiplier 0.65 1.47 r radius ² * 0.163
Turbidity	Gals. Removed	Observations
197.2	9	•
98.9	18	
167.3	27	
	Ferrors	tron 4.2 mg/2
Gallons actuall		
Sampling Date	: 4/13/6	·/
Laboratory:		
Other: Notra	te & Sulfa	k 2 1347
Duplicate I.D.:		
Other:		
mg/L	Post-purge:	mg/L
<u> </u>		
	Start Date: Well Diameter Depth to Wate Before: Thickness of F D.O. Meter (if Sampling Method: Other: Gals. Gals. Turbidity / 97. Z 98. 9 / 67. 3 Gallons actuall Sampling Date Laboratory: Other: Other: Other:	Well Diameter: 2 3 Depth to Water: 12,96 Before: Thickness of Free Product (fee D.O. Meter (if req'd): Sampling Method: Bailer Extraction Port Dedicated Tubing Other: Well Diameter Multiplier Well 1" 0.04 4" 2" 0.16 6" 3" 0.37 Othe Turbidity Gals. Removed 197.2 9 98.9 18 167.3 27 Ferrows Gallons actually evacuated: Sampling Date: 4/13/Ce Laboratory: Other: Other: Other:

Project #: 010413-51				Client: Stellas Environmental Solutions			
Sampler: Hout / Sean				Start Date: 4 / 13 / 0 /			
Well I.D.: MW-5 Total Well Depth: 19.85 76.92				Well Diameter: 2 3 4 6 8 Depth to Water: 3.77 /6.0/			
Depth to Free Product:				Thickness of Free Product (feet):			
Referenc	ed to:	(PVC)	Grade	D.O. Meter (if req'd): YSI HACH			
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Middleburg Extraction Pump Electric Submersible Other (Gals.) X = 1 Case Volume Specified Volumes Calculated Vo				Disposable Bailer			
Time	Temp (°F)	pH ·	Cond.	Turbidity	Gals. Removed	Observations	
1230	56.9	7.01	596	10.2	0		
,							
	-				Ferroc	S Iran O.O Mg/L	
Did well o	lewater?	Yes	No	Gallons actual	•		
Sampling Time:				Sampling Date:			
Sample I.]	D.:			Laboratory:			
Analyzed	for: трӊ-	G BTEX	мтве трн-р	Other:			
Equipmen	t Blank I.I	D.:	@ Tune	Duplicate I.D.:			
Analyzęd	for: TPH-	G BTEX	MTBE TPH-D	Other:	/		
D.O. (if re	q'd):		Pre-purge:	1.0 mg/L	Post-purge:	mg/L	
ORP (if req'd): Pre-purge:				92 mV	Post-purge:	mV	
					· · · · · · · · · · · · · · · · · · ·		

Client: Stellas Environmental Solutions				
Start Date: 4 / 13 / 0/				
Well Diameter: 2 3 4 6 8				
Depth to Water: 13.21				
Before: After:				
Thickness of Free Product (feet):				
D.O. Meter (if req'd): YSI HACH				
Sampling Method: Disposable Bailer Extraction Port Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier				
Gals. olume 1" 0.04 4" 0.65 2" 0.16 6" 1.47 3" 0.37 Other radius 2* 0.163				
Turbidity Gals. Removed Observations				
07.4				
Ferrous Iron 0.0 make				
Gallons actually evacuated:				
Sampling Date:				
Laboratory:				
Other				
Duplicate I.D.:				
Other:				
Post-purge: mg/L				
Post-purge: mV				

Project #: 010413-51	Client: Stellas Environmental Solutions				
Sampler: Hout / Sean	Start Date: 4 / 13 / 0 /				
Well I.D.: MW - 7	Well Diameter: 2 3 4 6 8				
Total Well Depth: 25.33	Depth to Water: 12.45				
Before: After:	Before: After:				
Depth to Free Product:	Thickness of Free Product (feet):				
Referenced to: PVC Grade	D.O. Meter (if req'd): YSI HACH				
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Middleburg Extraction Pump Electric Submersible Other Calculated V	Disposable Bailer				
Time Temp (°F) pH Cond.	Turbidity Gals. Removed Observations				
1246 56.3 6.9 753	(200 2				
1248 55.8 7.0 784	< 200 4				
1230 56.0 7.0 784	< 200 6.5				
	Ferrous Iron 10 mg/1				
Did well dewater? Yes	Gallons actually evacuated: 6.5				
Sampling Time: 1255	Sampling Date: 4/13/01				
Sample I.D.: MW - 7 Laboratory: Curtis + Tompkins					
Analyzed for TPH-G BTEX MTBE TPH-D Other: Nitrate + Sulfate @ 12:35					
Equipment Blank I.D.: @ Time Duplicate I.D.:					
Analyzed for: TPH-G BTEX MTBE TPH-D Other:					
D.O. (if req'd):	Post-purge: mg/L				
ORP (if req'd): Pre-purge	7 - 68 mV Post-purge: mV				

		WELL MONI	TORING DAT	A SHEET		
Project #: 010413-51			Client: Stellas Environmental Solutions			
Sampler: Hoy + / Sean			Start Date: 4/13/0/			
Well I.D.:) - 8		Well Diameter: (2) 3 4 6 8			
Total Well Depth: 22.21			Depth to Water: 9.42			
Before:	After:		Before: After:			
Depth to Free Proc	luct:		Thickness of Free Product (feet):			
Referenced to:	PVC	Grade	D.O. Meter (if req'd): (YSI) HACH			
Bailer Disposable I Middleburg Electric Substitution (Gals.) X 1 Case Volume S)	Waterra Peristaltic Extraction Pump Other = 6.0 Calculated V	Sampling Method Other Gals. Gals. Oume 3"	Disposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier 0.65 1.47 radius ² * 0.163	
Time Temp (°F)	pН	Cond.	Turbidity	Gals. Removed	Observations	
N4 12.7	6.2	859	< 200	2		
1143 12.9	6.8	868	< 200	4		
1145 12.9	7.0	8 79	< 200	6.5		
75:1		~			ron D. & ma/s	
Did well dewater? Yes No			Gallons actually evacuated: 6.5			
Sampling Time: 1148			Sampling Date: 4/13/0/			
Sample I.D.: MW-8			Laboratory: Custis + Tompkins			
Analyzed for TPH-G BTEX MTBE TPH-D			Other: Nitra	he and Su	. (1)	
Equipment Blank I.I	D.:	Time	Duplicate I.D.:			

Other:

TPH-D

Pre-purge:

Pre-purge:

Analyzed for:

D.O. (if req'd):

ORP (if req'd):

TPH-G

BTEX

 MTBE

Duplicate I.D.:

1.2

133

mg/L

mV

Post-purge:

Post-purge:

mV

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Stellar Environmental Solutions 2198 6th Street Suite 201 Berkeley, CA 94710

Date: 07-MAY-01 Lab Job Number: 151444 Project ID: N/A

Location: Redwood Regional Park

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of 2

CHAIN OF CUSTODY FORM

Page 1 of 1

Curtis & Tompkins, Ltd.					Analys	ses
Analytical Laboratory Since 1878 2323 Fifth Street			C&T LOGIN# 151444			
Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax	Sampler:	Blaine Tech				
Project No:	Report To:	Bruce Rudges				
Project Name: Rollyood Regional Pack	Company :	Stellar Envir.	Solvious			
Project P.O.: 2000-46	Telephone:	510 649	1-363		MYSE MYSE	
Turnaround Time:	Fax:			· ^ 용		•
Matr		Preservative		1.1	BTEX 7	
Laboratory Sample ID. Sampling Sample ID. Date Time	# of Containers	HCL H2SO HNO ₃	Field Notes	TVH.	STEX	2
- MH-8 413101 1198 X	, b	X X	HCI in vons only	Х	X X >	
>-2 MW-7 4/13/01 W55 X		х	11 11	X		
_						
0-3 MW-4 " 1400 X	<u> </u>	Х Х	η ((X	XXX	
0 0 0 MW-3 1403 X	1	X				
	- 5)(p		XXX	
0-5 MW-2 1431 X					1 1 1	
a	Dresen	Stice Correct?				
	12 YB3	ation Cerrect?			+ + + +	
Notes:	1_/_		RELINQUISHED BY:		RECEIVED	BY:
				DATE/TIME 1/3 17		
		DA ⁻	TE/TIME		DATE/TIME	
DATE/TIME DATE/TIME						

Total Extractable Hydrocarbons Redwood Regional Park Lab #: 151444 Location: Prep: EPA 3520 Stellar Environmental Solutions Client: EPA 8015M Analysis: Project#: STANDARD Sampled: 04/13/01 Matrix: Water 04/13/01 Received: Units: ug/L 04/18/01 Prepared: Batch#: 63095

Field ID:

MW-8

Type:

SAMPLE

Diln Fac:

1.000

Analyzed:

04/19/01

151444-001 Lab ID:

Result Analyte

Diesel C10-C24

3,200 L Y

50

Limits Surrogate

Hexacosane

87 44-121

Field ID:

Type:

Lab ID:

MW-7

SAMPLE

151444-002

Diln Fac:

2.000

Analyzed:

04/20/01

Result RL Analyte

Diesel C10-C24

3,900 L Y

100

Surrogate %REC Limits

Hexacosane

78

44-121

Field ID:

MW - 4

Diln Fac:

1.000

Type:

SAMPLE

Analyzed:

04/19/01

Lab ID:

151444-003

Analyte Result

Diesel C10-C24

1,100 L Y

RL 50

Surrogate %REC Limits

Hexacosane

44-121

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits fuel pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Total Extractable Hydrocarbons Redwood Regional Park 151444 Location: Lab #: EPA 3520 Prep: Client: Stellar Environmental Solutions Analysis: EPA 8015M Project#: STANDARD 04/13/01 Sampled: Matrix: Water Received: 04/13/01 Units: ug/L 04/18/01 Prepared: 63095 Batch#:

Field ID:

MW-2

Diln Fac:

1.000

Type:

SAMPLE

Analyzed:

04/19/01

Lab ID:

151444-005

Ana	lyte Result	RL
C10-C24		50

Surrogate %REC Limits 44-121 Hexacosane

Type:

BLANK

Diln Fac:

1.000

Lab ID:

QC143408

Analyzed:

04/19/01

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate		Limits	
Hexacosane	76	44-121	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits fuel pattern which does not resemble standard

Chromatogram

Sample Name: 151444-001,63095

; G:\GC13\CHB\108B039.RAW

: leName : BTEH108.MTH Method

Start Time : 0.01 min

End Time : 31.91 min

Page 1 of 1

Sample #: 63095 Date : 04/20/2001 10:03 AM

Time of Injection: 04/19/2001 07:21 PM

High Point : 980.25 mV

Chromatogram

ample Name: 151444-002,63095

: G:\GC13\CHB\108B071.RAW 'ileName

lethod

Start Time : 0.00 min

: BTEH108.MTH

End Time : 31.90 min Plot Offset: -17 mV

Sample #: 63095

Page 1 of 1

Date: 04/22/2001 06:18 PM Time of Injection: 04/20/2001 04:47 PM

High Point : 1024.00 mV

Low Point : -17.48 mV Plot Scale: 1041.5 mV

Chromatogram

Sample Name : 151444-003,63095

: G:\GC13\CHB\108B044.RAW

: BTEH108.MTH Method

Start Time : 0.09 min

Scale Factor: 0.0

End Time : 31.91 min Plot Offset: 30 mV

Sample #: 63095

Date: 04/20/2001 10:59 AM

Time of Injection: 04/19/2001 10:38 PM

High Point : 546.02 mV Low Point : 29.60 mV

Page 1 of 1

Plot Scale: 516.4 mV

iample Name : ccv,01ws0904,ds1 ileName : G:\GC13\CHB\108B002.RAW

sethod : BTEH10B.MTH

End Time : 31.91 min Plot Offset: 32 mV

Sample #: 500mg/L Date: 04/19/2001 08:42 AM Time of Injection: 04/18/2001

05:07 PM

High Point : 369.81 mV

Page 1 of 1

Low Point : 31.94 mV Plot Scale: 337.9 mV

CIII OMA COBLAM

imple Name : ccv, 01ws0763, mo

: G:\GC13\CHB\108B003.RAW .leName : BTEH108.MTH

chod art Time : 0.01 min

ś.,

End Time : 31.91 min Plot Offset: 28 mV

Sample #: 500mg/L

Date: 04/19/2001 08:43 AM

Time of Injection: 04/18/2001 05:46 PM

High Point : 215.60 mV

Page 1 of 1

Total Extractable Hydrocarbons Redwood Regional Park Lab #: 151444 Location: EPA 3520 Client: Stellar Environmental Solutions Prep: EPA 8015M Project#: STANDARD Analysis: Matrix: Water Batch#: 63095 04/18/01 Units: Prepared: ug/L 04/19/01 Diln Fac: 1.000 Analyzed:

Type:

BS

Lab ID:

QC143409

The state of the s	Spiked	Result	%REC	Limits	
Diesel C10-C24	2,339	1,347	58	45-110	1

Surrogate	%REC	Limite	
Hexacosane	70	44-121	

Type:

BSD

Lab ID:

QC143410

Analyte	Spiked	Result	%REC	Limits		Lim
Diesel C10-C24	2,339	1,549	66	45-110	14	22

Surrogate			
Hexacosane	84	44-121	

	Gasoline b	y GC/FID CA LU	FT
Lab #:	151444	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8015M
Matrix:	Water	Sampled:	04/13/01
Units:	\mathtt{uq}/\mathtt{L}	Received:	04/13/01

Field ID:

MW-8

Type:

SAMPLE

Lab ID:

151444-001

Diln Fac:

10.00

Batch#:

63287

Analyzed:

04/27/01

Analyte	Result	RL	
Gasoline C7-C12	11,000	500	

Surrogate		C Limits
Trifluorotoluene (FID)	96	59-135
Bromofluorobenzene (FID)	93	60-140

Field ID:

MW - 7

Type: Lab ID:

SAMPLE 151444-002

Diln Fac:

10.00

Batch#:

63287

Analyzed:

04/27/01

	Analyte	Result	RL	
'	Gasoline C7-C12	13,000	500	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	98	59-135
Bromofluorobenzene (FID)	89	60-140

Field ID:

MW - 4

Type: Lab ID: SAMPLE

151444-003

Diln Fac:

Batch#:

1.000

63162

Analyzed:

04/22/01

Analyte	Result	RL	
Gasoline C7-C12	1,700	50	

Surrogate	%RE(: Limits
Trifluorotoluene (FID)	124	59-135
Bromofluorobenzene (FID)	110	60-140

ND= Not Detected RL= Reporting Limit Page 1 of 2

Gasoline by GC/FID CA LUFT

Redwood Regional Park Lab #: 151444 Location:

Client: Stellar Environmental Solutions Prep: EPA 5030 Project#: STANDARD Analysis: EPA 8015M

Matrix: Water 04/13/01 Sampled: Units: ug/L Received: 04/13/01

Field ID: MW-2

Type: SAMPLE Lab ID:

151444-005

Diln Fac:

Batch#:

1.000

63162

Analyzed: 04/22/01

Analyte Result Gasoline C7-C12 110

%REC Limits Surrogate Trifluorotoluene (FID) 106 59-135 Bromofluorobenzene (FID) 106 60-140

Type:

Diln Fac:

BLANK

1.000

Lab ID: QC143694 Batch#:

63162

Analyzed:

04/22/01

Analyte	Result	RL	
G1: GG G10		- C	
Gasoline C7-C12	ND	50	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	103	59-135
Bromofluorobenzene (FID)	103	60-140

Type:

BLANK

Lab ID:

QC144158 1.000

Batch#:

63287

Analyzed:

04/26/01

Diln Fac:

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

Surrogate	%rec	Limits	
Trifluorotoluene (FID)	80	59-135	
Bromofluorobenzene (FID)	78	60-140	

ND= Not Detected RL= Reporting Limit

Page 2 of 2

Benzene, Toluene, Ethylbenzene, Xylenes Redwood Regional Park Lab #: 151444 Location: Stellar Environmental Solutions Prep: EPA 5030 Client: EPA 8021B Project#: STANDARD <u>Analysis:</u> 04/13/01 Matrix: Water Sampled: <u>04/13/</u>01 Received: uq/L <u>Units:</u>

Field ID: Type: Lab ID:

MW - 8 SAMPLE 151444-001 Diln Fac: Batch#: Analyzed:

10.00 63287 04/27/01

Analyte Result 20 MTBE 42 5.0 Benzene 320 5.0 13 Toluene 5.0 560 Ethylbenzene m,p-Xylenes o-Xylene 5.0 1,100 5.0 63

%REC Surrogate Trifluorotoluene (PID) 85 56-142 55-149 87 Bromofluorobenzene (PID)

Field ID: Type:

Lab ID:

MW-7 SAMPLE 151444-002 Diln Fac:

10.00 63287

Batch#: Analyzed:

04/27/01

Restatie RIG Analyte 20 MTBE 52 5.0 140 Benzene ND 5.0 Toluene 530 5.0 Ethylbenzene m,p-Xylenes 5.0 270 <u>o-Xylene</u> 8. 5.0

Surrogate Limits *REC Trifluorotoluene (PID) 87 56-142 Bromofluorobenzene (PID) 55-149

Field ID: Type:

Lab ID:

MW - 4 SAMPLE 151444-003 Diln Fac:

1.000

Batch#: Analyzed:

63162 04/22/01

Analyte	Result	RL	
MTBE	5.0	2.0	
Benzene	4.5 C	0.50	i
Toluene	2.8	0.50	1
Ethylbenzene	48	0.50	
m,p-Xylenes	10	0.50	
o-Xylene	0.72	0.50	

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	122	56-142	
Bromofluorobenzene (PID)	107	55-149	

C= Presence confirmed, but confirmation concentration differed by more than a factor of two ND= Not Detected RL= Reporting Limit Page 1 of 3

Benzene, Toluene, Ethylbenzene, Xylenes Redwood Regional Park Lab #: Location: Client: Stellar Environmental Solutions EPA 5030 Prep: EPA 8021B Project#: STANDARD Analysis: 04/13/01 04/13/01 Sampled: Water Matrix: Units: uq/L Received

Field ID: Type: Lab ID: MW-2 SAMPLE 151444-005 Diln Fac: Batch#: Analyzed:

1.000 63220 04/24/01

Result Analyte MTBE 2.0 10 10 0.50 Benzene 0.50 ND Toluene Ethylbenzene 11 0.50 m,p-Xylenes o-Xylene 0.50 6.4 ND0.50

Surrogate AREC Limits
Trifluorotoluene (PID) 98 56-142
Bromofluorobenzene (PID) 95 55-149

Type: Lab ID: Diln Fac:

BLANK QC143694 1.000 Batch#:

63162 04/22/01

Analyzed:

Analyte Result ND 2.0 MTBE 0.50 Benzene ND 0.50 ND Toluene 0.50 ND Ethylbenzene m,p-Xylenes o-Xylene ND 0.50 0.50 ND

 Surrogate
 %REC
 Limits

 Trifluorotoluene (PID)
 104
 56-142

 Bromofluorobenzene (PID)
 101
 55-149

Type: Lab ID: Diln Fac:

BLANK QC143899 1.000 Batch#: Analyzed:

63220 04/24/01

Analyte Result 2.0 MTBE ND ND0.50 Benzene 0.50 Toluene ND Ethylbenzene ND 0.50 0.50 m,p-Xylenes ND <u>o-Xylene</u>

Surrogate	%RE(o origini (Es	
Trifluorotoluene (PID)	98	56-142	
Bromofluorobenzene (PID)	93	55-149	

C= Presence confirmed, but confirmation concentration differed by more than a factor of two ND= Not Detected RL= Reporting Limit Page 2 of 3

	Benzene, Toluene	e, Ethylbenzene,	Xylenes
Lab #:	151444	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030
Project#	: STANDARD	Analysis:	EPA 8021B
Matrix:	Water	Sampled:	04/13/01
Units:	uq/L	Received:	04/13/01

Type: Lab ID: Diln Fac:

BLANK QC144158 1.000

63287 04/26/01 Batch#: Analyzed:

Analyte	Result	RL
MTBE	ND	2.0
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xvlenes	ND	0.50
o-Xylene	ND	0.50

Surrogate	%RB	C Limits	
Trifluorotoluene (PID)	74	56-142	
Bromofluorobenzene (PID)	76	55-149	

C= Presence confirmed, but confirmation concentration differed by more than a factor of two ND= Not Detected RL= Reporting Limit Page 3 of 3 $\,$

Gasoline by GC/FID CA LUFT Location: Redwood Regional Park Lab #: 151444 Client: EPA 5030 Stellar Environmental Solutions Prep: Project#: STANDARD Analysis: EPA 8015M Diln Fac: 1.000 Type: LCS Batch#: 63162 Lab ID: QC143695 04/21/01 Analyzed: Matrix: Water Units: ug/L

Analyte	Spiked	Result	%RE	C Lamits	
Gasoline C7-C12	2,000	1,930	97	73-121	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	126	59-135
Bromofluorobenzene (FID)	108	60-140

Gasoline by GC/FID CA LUFT

Location:

<u>Analysis:</u>

Prep:

Lab #: Client: 151444

Stellar Environmental Solutions

Project#: STANDARD

Type: Lab ID:

Matrix:

Units:

LCS

Water ug/L

QC144159

Diln Fac: 1.000 Batch#: 63287 04/26/01 Analyzed:

EPA 5030 EPA 8015M

Redwood Regional Park

Analyte	Spiked	Result		Limits
Gasoline C7-C12	2,000	1,977	99	73-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	101	59-135
Bromofluorobenzene (FID)	94	60-140

	Benzene, Toluene,	Ethylbenzene,	Xylenes
Lab #:	151444	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8021B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC143698	Batch#:	63162
Matrix:	Water	Analyzed:	04/21/01
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits	
MTBE	20.00	20.64	103	51-125	
Benzene	20.00	22.14	111	67-117	
Toluene	20.00	21.89	109	69-117	
Ethylbenzene	20.00	22.07	110	68-124	
m,p-Xylenes	40.00	48.42	121	70-125	
o-Xylene	20.00	23.09	115	65-129	

Surrogate	%REC	Limits
Trifluorotoluene (PID)	104	56-142
Bromofluorobenzene (PID)	103	55-149

	Benzene, Toluene,	Ethylbenzene,	Xylenes
Lab #:	151444	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8021B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC143898	Batch#:	63220
Matrix:	Water	Analyzed:	04/24/01
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	19.49	97	51-125
Benzene	20.00	21.02	105	67-117
Toluene	20.00	21.68	108	69-117
Ethylbenzene	20.00	21.01	105	68-124
m,p-Xylenes	40.00	46.40	116	70-125
o-Xylene	20.00	22.09	110	65-129

Surrogate	%RE	C Limits
Trifluorotoluene (PID)	98	56-142
Bromofluorobenzene (PID)	94	55-149

	Benzene, Toluene,	Ethylbenzene,	Xylenes
Lab #:	151444	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8021B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC144160	Batch#:	63287
Matrix:	Water	Analyzed:	04/26/01
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	19.41	97	51-125
Вепzепе	20.00	22.57	113	67-117
Toluene	20.00	21.86	109	69-117
Ethylbenzene	20.00	22.74	114	68-124
	40.00	47.40	119	70-125
m,p-Xylenes o-Xylene	20.00	23.63	118	65-129

Surrogate	%REC	Limits
Trifluorotoluene (PID)	84	56-142
Bromofluorobenzene (PID)	87	55-149

	Nitra	te Nitrogen	
Lab #:	151444	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	METHOD
Project#:	STANDARD	Analysis:	EPA 300.0
Analyte:	Nitrogen, Nitrate	Batch#:	63035
Matrix:	Water	Sampled:	04/13/01
Units:	mg/L	Received:	04/13/01
Diln Fac:	1.000	Analyzed:	04/17/01

Field I	Type Lab ID	Re	sult	RL	
MW-8	SAMPLE 151444-001	ИD		0.05	
MW-7	SAMPLE 151444-002	ND		0.05	
MW-4	SAMPLE 151444-003	ND		0.05	
MW-3	SAMPLE 151444-004		0.09	0.05	
	BLANK QC143192	ND		0.05	<u></u>

ND= Not Detected RL= Reporting Limit Page 1 of 1

		Sulfate	
Lab #:	151444	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	METHOD
Project#:	STANDARD	Analysis:	EPA 300.0
Analyte:	Sulfate	Sampled:	04/13/01
Matrix:	Water	Received:	04/13/01
Units:	mg/L	Analyzed:	04/17/01
Batch#:	63035		

Field I	D Туре	Lab ID	Result		RL	Diln	Fac
MW - 8	SAMPLE	151444-001	60		2.5	5.000	
MW-7	SAMPLE	151444-002	0.	. 55	0.50	1.000	
MW-4	SAMPLE	151444-003	7.	. 0	0.50	1.000	
MW-3	SAMPLE	151444-004	37		0.50	1.000	
	BLANK	QC143192	ND		0.50	1.000	

	Nitrat	e Nitrogen	
Lab #:	151444	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	METHOD
Project#:	STANDARD	Analysis:	EPA 300.0
Analyte:	Nitrogen, Nitrate	Batch#:	63035
Field ID:	ZZZZZZZZZZ	Sampled:	04/12/01
MSS Lab II): 151412-025	Received:	04/12/01
Matrix:	Water	Analyzed:	04/17/01
Units:	mg/L	·	

Туре	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim	Diln Fac	
BS	QC143193		2.000	2.000	100	90-110			1.000	
BSD	QC143194		2.000	2.010	100	90-110	0	20	1.000	
MS	QC143195	8.502	10.00	18.50	100	80-120			10.00	
MSD	QC143196		10.00	18.90	104	80-120	2	20	10.00	

		Sulfate	
		Surrace	
Lab #:	151444	Location:	Redwood Regional Park
Client:	Stellar Environmental Solutions	Prep:	METHOD
Project#:	STANDARD	Analysis:	EPA 300.0
Analyte:	Sulfate	Batch#:	63035
Field ID:	ZZZZZZZZZZ	Sampled:	04/12/01
MSS Lab ID:	151412-025	Received:	04/12/01
Matrix:	Water	Analyzed:	04/17/01
Units:	mg/L		

Type	Lab ID	MSS Result	Spiked	Result	%RBC	Limits	RPD	Lim Diln	Fac
BS	QC143193		20.00	20.05	100	90-110		1.000	
BSD	QC143194		20.00	20.07	100	90-110	0	20 1.000	
MS	QC143195	129.1	100.0	227.2	98	80-120		10.00	
MSD	QC143196		100.0	230.0	101	80-120	1	20 10.00	

RPD= Relative Percent Difference Page 1 of 1

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Stellar Environmental Solutions 2198 6th Street Suite 201 Berkeley, CA 94710

Date: 27-APR-01 Lab Job Number: 151454 Project ID: N/A

Location: REDWOOD REGIONAL PARK

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of _____

Laboratory Numbers: 151583
Client: Stellar Environmental

Location: REDWOOD REGIONAL PARK

Sampled Date: **04/13/01** Received Date: **04/13/01**

CASE NARRATIVE

This hardcopy data package contains sample and QC results for two water samples, which were received from the site referenced above on March 13, 2001. The samples were received cold and intact.

TVH/BTXE:

High Trifluorotolune surrogate recovery was observed for the matrix spike duplicate of sample MW-8 (CT# 151444-001), due to hydrocarbons coeluting with the surrogate peak. No other analytical problems were encountered.

TEH (EPA 8015M):

No analytical problems were encountered.

Chain of Custody Record

				Chamo	Que	touy n	CCUIT									cao jo	u 110	
Laboratory Cutis +	Tournokins, L	.td.	Me	ethod of Shipment	nd del	ivery	-											
Address 339	3 FIFTH	234cJ		nipment No		l '	_									Page)'
Berke	1 486- E		Ai	rbill No.				/	/	$\overline{}$			Analys	sis Requ	uired			
Brainet Owner East Bay	Rajonal P	erk Dis	1 1	ooler No	Rud	t r	A440°		siners	/./	//4	Τ,	7/	7/		T/		
Site Address 7867 R	and CD	<u> </u>	Te	elephoпе No. <u>(510) 644</u> -	3123		- /	Pillered /		/-					/ /	/ /		
Project Name Redwood	Regional	Pack_	Fa	ex No. (510) 644	-3859	\.\	- /	13	6		/ ₹/	/ ,	/ /	/ /			Rem	arks
Project Number	000-46		Sa	amplers: (Signature)	3.M. 7	untu	-//	/ /	₹	\star/i	<u>)</u>	' /			/ ,	/ /		
Field Sample Number	Location/ Depth	Date	Time Sample Type	Type/Size of Container	Cooler	eservation Chemical	1//	/F	7.5	5	MIBE	_	(/_/				
		<u> </u>			ļ		╽		1			<u></u>						
Sw-J		4/13/01	ocH _	1	/	None	1	_	X			ļ						
SW-2	note	1		40 ml VOAs	1	HCI	0	X	-	χ		-				_		
	pylom						 		_			_						
Sw-3				1-L ambre	<u>~</u>	none	1		X			_			\perp			
5W-3		6	6	40 ml VOAs	~	HCI	6	<u>ا</u> X	-	X		-						
					-			-				-	ļ , ,					
		+			 		11		-					1				
	Receiv	ed 📮	Of Ice		—		1		_			 				-		
	Cold 🗆	Ambient	Intac		Pre	Servation Co		+-	4			<u> </u>		 	\perp			
				+	11 YE	S D No	rects	_	\bot			-	-	\vdash \dashv				<u> </u>
							-				<u> </u>	1,	<u> </u>					
Relinquished by: Signature		Date	Received by Signature		Date	Relinquished Signature					Da'	te F	Received Signa	-	·		<u> </u>	Date -
Printed Bive Rucker		Time	Printed DLC	higheth buter	Time	Printed _			<u> </u>		— Tin	ne	Printe	ed	·			Time
Company Stellas Env.	Solviums		Company		_	Company	·						Comp	oany				-
		11	<u> </u>			Relinquishe	•				Da	te F	Receive	•				Date
Turnaround Time:	Reduced (ieck at	fo thick	president dist	Mile	Signature	·				-		Signa	ature				-
Comments: 5W-3 -	Reducal	(rek	~ 500	groundwater disal	M-9	Printed _					— Tir	nė	Printe	ed				Time
-																		

	Gas	oline by GC/FID C	A LUFT
Lab #:	151454	Location:	REDWOOD REGIONAL PARK
Client:	Stellar Environmental Sol	utions Prep:	EPA 5030
Project#:	STANDARD	Analysis:	: EPA 8015M
Matrix:	Water	Sampled:	04/13/01
Units:	ug/L	Received:	: 04/13/01
Diln Fac:	1.000	Analyzed:	: 04/22/01
Batch#:	63162		

Field ID:

SW 2

Lab ID: 151454-001

Type:

SAMPLE

Analyte	Result	RL.	
Gasoline C7-C12	ND	50	

Bromofluorobenzene (FID)	108	60-140	
Trifluorotoluene (FID)	105	59-135	
Surrogate	%REC	Limits	

Field ID:

SW-3

Lab ID: 151454-002

Type:

SAMPLE

Analyte	Result	RĹ	
Analyte	K-SULL	•	
Gasoline C7-C12	ND	50	ı

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	108	59-135	
Bromofluorobenzene (FID)	106	60-140	

Type:

BLANK

Lab ID: QC143694

CONTROL OF THE PROPERTY OF THE	B	DT	2595536666666666666666666666666666666666
	KESUIT.	RL	
	The state of the s		
013 02 012	NII	E /\tau	
Gasoline C/-Cl2	מא	30	

Surrogate	*REC	: Limits	
Trifluorotoluene (FID)	103	59-135	
Bromofluorobenzene (FID)	103	60-140	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Benzene, Toluene, Ethylbenzene, Xylenes REDWOOD REGIONAL PARK Lab #: 151454 Location: EPA 5030 EPA 8021B 04/13/01 04/13/01 Stellar Environmental Solutions Prep: Client: Analysis: Sampled: Project#: STANDARD Matrix: Water Received: Units: ug/L 1.000 Analyzed: 04/23/01 Diln Fac: 63179 Batch#:

Field ID:

Type:

SW 2

SAMPLE

Lab ID:

151454-001

Analyte	Result	RL
MTBE	ND	2.0
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogate %REC Limits
Trifluorotoluene (PID) 105 56-142
Bromofluorobenzene (PID) 100 55-149

Field ID: Type: SW-3

SAMPLE

Lab ID:

151454-002

Ł			
	Analyte	Result	RIL
ŀ	MTBE	ND	2.0
	Benzene	ND	0.50
	Toluene	ND	0.50
ŀ	Ethylbenzene	ND	0.50
ĺ	m,p-Xylenes	ND	0.50
•	o-Xvlene	ND	0.50

Surrogate	%REC		
Trifluorotoluene (PID)	105	56-142	
Bromofluorobenzene (PID)	101	55-149	

Type:

BLANK

Lab ID:

QC143751

Analyte	Result	RL
MTBE	ND	2.0
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xyle <u>ne</u>	ND	0.50

Surrogate	%REC	imite	
Trifluorotoluene (PID)	102	56-142	
Bromofluorobenzene (PID)	97	55-149	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Gasoline by GC/FID CA LUFT REDWOOD REGIONAL PARK Lab #: 151454 Location: EPA 5030 Stellar Environmental Solutions Client: Prep: EPA 8015M Project#: STANDARD Analysis: Diln Fac: 1.000 LCS Type: Batch#: 63162 Lab ID: QC143695 04/21/01 Analyzed: Water Matrix: Units: ug/L

Analyte	Spiked			: Limits	
Gasoline C7-C12	2,000	1,930	97	73-121	

Surrogate	%RE	Limits	
Trifluorotoluene (FID)	126	59-135	1
Bromofluorobenzene (FID)	108	60-140	

	Benzene, Toluene,	Ethylbenzene,	Xylenes
Lab #:	151454	Location:	REDWOOD REGIONAL PARK
Client:	Stellar Environmental Solutions	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8021B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC143750	Batch#:	63179
Matrix:	Water	Analyzed:	04/23/01
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	19.21	96	51-125
Benzene	20.00	20.43	102	67-117
Toluene	20.00	20.88	104	69-117
Ethylbenzene	20.00	20.43	102	68-124
	40.00	44.72	112	70-125
m,p-Xylenes o-Xylene	20.00	21.37	107	65-129

Surrogate	%REC	Limits
Trifluorotoluene (PID)	105	56-142
Bromofluorobenzene (PID)	99	55-149

	Gasoline by	y GC/FID CA LU	FT
Lab #: 15149	54	Location:	REDWOOD REGIONAL PARK
•	lar Environmental Solutions	Prep:	EPA 5030
Project#: STANI	DARD	Analysis:	EPA 8015M
Field ID:	MW-8	Batch#:	63162
MSS Lab ID:	151444-001	Sampled:	04/13/01
Matrix:	Water	Received:	04/13/01
Units:	ug/L	Analyzed:	04/22/01
Diln Fac:	1.000		

Type:

MS

Lab ID:

QC143696

	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	8,539	2,000	9,152	31 NM	65-131
Surrogate	%REC Limits				
		······································			

Bromofluorobenzene (FID)	112	80-140	
Bromofluorobenzene (FID)	110	60-140	
Trifluorotoluene (FID)	132	59-135	
Surrogate	%REC		

Type:

MSD

Lab ID: QC143697

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	9,007	23 NM	65-131	2	20
	<u> </u>					

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	166 *	59-135	
Bromofluorobenzene (FID)	111	60-140	

NM= Not Meaningful

RPD= Relative Percent Difference

Page 1 of 1

^{*=} Value outside of QC limits; see narrative

	Benzene, Toluene,	Ethylbenzene,	Xylenes
Lab #: 15	1454	Location:	REDWOOD REGIONAL PARK
Client: St	ellar Environmental Solutions	Prep:	EPA 5030
Project#: ST	ANDARD	Analysis:	EPA 8021B
Field ID:	ZZZZZZZZZZ	Batch#:	63179
MSS Lab ID:	151523-009	Sampled:	04/17/01
Matrix:	Water	Received:	04/17/01
Units:	${ m ug/L}$	Analyzed:	04/24/01
Diln Fac:	1.000		

Type:

MS

Lab ID:

QC143752

Analyte	MSS Result	Spiked	Result	& RJEC	Limits
MTBE	9.989	20.00	29.76	99	33-131
Benzene	2.384	20.00	22.68	101	65-123
Toluene	1.644	20.00	22.85	106	73-122
Ethylbenzene	2.059	20.00	22.99	105	59-137
m,p-Xylenes	6.063	40.00	50.39	111	68-132
o-Xylene	2.014	20.00	23.96	110	61-140

Surrogate	*REC	Limits
Trifluorotoluene (PID)	101	56-142
Bromofluorobenzene (PID)	98	55-149

Type:

MSD

Lab ID:

QC143753

Analyte	Spiked	Result	%rec	Limits	RPD	Lim
MTBE	20.00	30.13	101	33-131	1	20
Benzene	20.00	23.43	105	65-123	3	20
Toluene	20.00	22.05	102	73-122	4	20
Ethylbenzene	20.00	22.40	102	59-137	3	20
m,p-Xylenes	40.00	50.22	110	68-132	0	20
o-Xylene	20.00	23.80	109	61-140	1	20

Surroga	te	%REC	Limits
Trifluorotoluene	(PID)	101	56-142
Bromofluorobenzen	e (PID)	98	55-149

Total Extractable Hydrocarbons Location:

Lab #: 151454 Stellar Environmental Solutions Client:

Prep:

REDWOOD REGIONAL PARK

EPA 3520 EPA 8015M <u> Analysis:</u>

Water Sampled: Received: uq/L

04/13/01 04/13/01 04/17/01

Diln Fac: 1.000 63070 Batch#:

Project#: STANDARD

Field ID:

Type:

Matrix:

Units:

SW 2

Lab ID:

151454-001

SAMPLE

Analyzed:

Prepared:

04/18/01

Analyte

Result

RL

Diesel C10-C24

%REC Limits Surrogate 44-121 Hexacosane

Field ID:

Type:

SW-3

SAMPLE

Lab ID:

151454-002

Analyzed:

04/19/01

Analyte

Result

Diesel Cl0-C24

ND

Surrogate

Hexacosane

%REC Limits

44-121

BLANK

Analyzed:

04/18/01

Type: Lab ID:

QC143321

Analyte

Surrogate

Result

RL 50

Diesel C10-C24

Hexacosane

ND

%REC Limits 44-121

ND= Not Detected RL= Reporting Limit Page 1 of 1

Total Extractable Hydrocarbons

Lab #: 151454 Location: REDWOOD REGIONAL PARK

Client: Stellar Environmental Solutions Prep: EPA 3520

 Project#: STANDARD
 Analysis:
 EPA 8015M

 Matrix:
 Water
 Batch#:
 63070

 Units:
 ug/L
 Prepared:
 04/17/01

Diln Fac: 1.000 Analyzed: 04/18/01

Type: BS Lab ID: QC143322

Analyte Spiked Result %REC Limits
Diesel C10-C24 2,339 1,623 69 45-110

Surrogate %REC Limits

Hexacosane 81 44-121

Type: BSD Lab ID: QC143323

 Analyte
 Spiked
 Result
 %REC Limits
 RPD Lim

 Diesel C10-C24
 2,339
 1,890
 81
 45-110
 15
 22

Surrogate %REC Limits
Hexacosane 87 44-121

Table A.1
Summary of Historical Soil Sample Analytical Results
Redwood Regional Park Service Yard
Oakland, California

			spinos pinos P S	ample Concen	tration (mg/k	g):	
Sample: I.D.	Depth (ft bgs)	TPHg	ТРНа	Benzene	Toluene	Ethyl- benzene	Total: Xylenes
UFST Exca	ation Confirn	nation Samples	– May & Jun	ie 1993 (*indic	cates soil at the	it location was	removed)
DT-1*	10	NA ·	4	< 0.005	< 0.005	< 0.005	< 0.005
DT-2*	10	NA	3	< 0.005	< 0.005	< 0.005	< 0.005
GT-1*	12	800	NA	6.3	43	18	94
GT-2	12	2,200	NA	19	120	45	250
E1-17	17	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005
E2-16	16	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005
E3-16	16	12,000	NA	80	390	230	1,100
E4-13	13	6	NA	0.37	0.006	0.1	0.1
E5-7.5	7.5	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005
	Ex	cploratory Bore	hole Samples	– September a	ind October 19	794	
B1-11	11	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005
B1-27	27	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005
B2-11	11	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005
B2-15	15	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005
B3-12	12	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005
B3-18	18	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005
B4-18	18	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005
B4-23	23	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005
B5-11	11	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005
B7-12	12	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005
B8-4	4	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005
B8-10	10	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005
B9-11	11	370	NA	1.7	7.9	6.9	34
B9-21	21	< 1	NA	0.1	0.011	0.017	0.069
B9-28	28	< 1	NA	< 0.005	0.033	0.035	0.14
B10-6	6	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005

905 E 00 - 4 1-11 AD - 4			Š	ample Concen	tration (mg/k	g) + + + + + + + + + + + + + + + + + + +	
Sample 1,D,	Depth: (ft bgs)	neig –	TPHd	Benzene	Toluene	Ethyl-: benzene	Total Xylenes
B10-21	21	< 1	7	< 0.005	< 0.005	< 0.005	< 0.005
B11-11.5	11.5	< 1	< 2	0.021	< 0.005	< 0.005	< 0.005
B12-14.5	14.5	150	NA	0.24	0.44	1.7	4.6
B12-15	15	77	NA	0.15	0.24	0.9	2.7
B12-21	21	97	NA	0.46	1.2	2	5.4
B13-12	12	1,500	NA	< 0.4	< 0.4	13	78
B13-15	15	1,800	420	8.8	39	30	120
B14-18	18	210	50	0.017	0.1	0.34	0.63
B15-17	17	1,900	1,300	1.1	0.8	9.1	14
B16-17.5	17.5	50	NA	< 0.1	< 0.1	0.2	0.2
B17-12.5	12.5	< 1	NA	< 0.005	< 0.005	< 0.005	< 0.005
	Мо	nitoring Well	Installation B	orehole Sampl	es – October 1	994	
MW1-5	5	< 1	3	< 0.005	< 0.005	< 0.005	< 0.005
MW-21	21	130	48	0.31	0.18	1.3	4.4
MW3-10	10	< 1	3	< 0.005	< 0.005	< 0.005	< 0.005
MW3-25	25	< 1	5	< 0.005	< 0.005	< 0.005	< 0.005
MW4-15.5	15.5	22	4	< 0.005	0.038	< 0.005	0.49
MW4-16.5	16.5	10	43	< 0.005	0.009	0.11	0.21
MW5A-15	15	570	200	< 0.005	1.1	1.9	2.9
MW5-15	15	< 1	2	< 0.005	< 0.005	< 0.005	< 0.005
MW6-19	19	< 1	2	< 0.005	< 0.005	< 0.005	< 0.005
Exploratory .	Borehole Sam	ples - April 19	99				
HP-01- 17.5'	17.5°	< 1.0	3.8	< 0.005	< 0.005	< 0.005	< 0.005
HP-02-14'	14'	970	640	1.3	1,3	5.5	8.7
HP-03-13'	13'	< 1.0	5.8	< 0.005	< 0.005	< 0.005	< 0.005
HP-04-15'	15'	< 1.0	1.7	< 0.005	< 0.005	< 0.005	< 0.005
HP-05-15'	15'	< 1.0	4.3	< 0.005	< 0.005	< 0.005	< 0.005
HP-06-11'	11'	1,700	360	1.4	2.7	21	81
HP-07-12'	12'	2.9	340	0.028	< 0.005	0.13	0.347
HP-08- 15.5'	15.5	580	83	< 0.1	1.0	4.7	4.7

in made a second		i prati ali ali ali ali					
Sample I.D.	Depth (ft bgs)	TPHg	TPHd.	Benzene	Toluene	Ethyl- benzene	Total Xylenes
HP-09-15'	15'	610	630	1.5	1.5	3.8	11.2
HP-10-14'	14'	500	76	0.19	1.6	2.0	3.21
<u>,,,,, , , , , , , , , , , , , , , , , </u>	Mon	itoring Well I	nstallation Bo	rehole Sample:	s – December	1999	L.,
MW-7- 15.5' (a)	15.5'	640	170	3.0	< 0.1	5.1	4.4
MW-8-16' (a)	16'	1,800	780	6.2	< 1.3	23	43.7

Notes:

TPHg = Total petroleum hydrocarbons - gasoline range (equivalent to total volatile hydrocarbons)

TPHd =Total petroleum hydrocarbons - diesel range (equivalent to total extractable hydrocarbons)

NA = Not Analyzed

mg/kg = milligrams per kilogram (equivalent to parts per million – ppm)
(a) MTBE (methyl tertiary butyl ether) analyzed for and not detected in this sample.

TABLE A.2

HISTORICAL GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS

REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(wells MW-1,MW-3 and MW-6 not sampled after August 1995 based on absence of detected contamination)

(all concentrations in μg/L, equivalent to parts per billion [ppb])

					Well N	IW-2			
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	NA
2	Feb-95	89	< 50	18	2.4	1.7	7.5	29.6	NA
3	May-95	< 50	< 50	3.9	< 0.5	1.6	2.5	8	NA
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	NA
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.24	NA
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	14	NA
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	NA
11	Dec-97	61	< 50	21	< 0.5	6.5	3.9	31.4	NA
12	Feb-98	2,000	200	270	92	150	600	1,112	NA
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		7
14	Apr-99	82	710	4.2	< 0.5	3.4	4	11.6	7.5
15	Dec-99	57	<50	20	0.61	5.9	<0.5	26.5	4.5
16	Sep-00	< 50	<50	0.72	< 0.5	< 0.5	< 0.5	0.7	7.9
17	Jan-01	51	<50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	<50	10	< 0.5	11	6.4	27.4	10.0

TABLE A.2 (continued)

					Well N	IW-4			
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	NA
2	Feb-95	11,000	330	420	17	440	460	1,337	NA
3	May-95	7,200	440	300	13	390	330	1,033	NA
4	Aug-95	1,800	240	65	6.8	89	66.5	227	NA
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	NA
6	Aug-96	3,700	120	63	2	200	144	409	· NA
7	Dec-96	2,700	240	19	< 0.5	130	92.9	242	NA
8	Feb-97	3,300	< 50	120	1.0	150	102.5	374	NA
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	NA
10	Aug-97	1,900	150	8.6	3.5	78	52.6	143	NA
11	Dec-97	1,000	84	4.6	2.7	61	54.2	123	NA
12	Feb-98	5,300	340	110	24	320	402	856	NA
13	Sep-98	1,800	<50	8.9	< 0.5	68	26.9	104	23
14	Apr-99	2,900	710	61	1.2	120	80.4	263	32
15	Dec-99	1,000	430	4	2	26	13.9	45.9	<2
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20.1	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	64.9	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66.0	5

TABLE A.2 (continued)

			· · · · · · · · · · · · · · · · · · ·		Well N	IW-5		- · · · · · · · · · · · · · · · · · · ·	
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<u> </u>	NA
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2
(Groundwate	er monitorin	g in this w	ell discontin	ued with Al	ameda County H	ealth Care Servic	es Agency appro	val

TABLE A.2 (continued)

	Well MW-7												
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE				
1	Jan-01	13,000	3,100	95	4	500	289	888	95				
2	Apr-01	13,000	3,900	140	<0.5	530	278	948	52				

	Well MW-8													
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE					
1	Jan-01	14,000	1,800	430	17	360	1230	2037	96					
2	Apr-01	11,000	3,200	320	13	560	1,163	2056	42					

TABLE A.3

HISTORICAL SURFACE WATER ANALYTICAL RESULTS

REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA

(all concentrations in $\mu g/L$, equivalent to parts per billion [ppb])

Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		N/
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		N/
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	N/
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		N/
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<u> </u>	N/
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		N/
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		N/
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<u> </u>	N/
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		N/
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<u></u>	< 2
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2

TABLE A.3 (continued)

		Sampli	ng Locati	on SW-2 (A	rea of Cor	ntaminated Grou	ındwater Dischaı	ge)	
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	NA
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	12.9	NA
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<u> </u>	NA
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA
8	Aug-97	350	130	13	0.89	19	10.7	43.6	NA
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<u> </u>	NA
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<u> </u>	NA
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5		< 2
11	Арг-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3
13	Dec-99	1,300	250	10.0	1.0	47	27	85.0	2.2
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2

TABLE A.3 (continued)

	Samplir	ng Location	า SW-3 (D	ownstream	of Contan	ninated Groundy	vater Discharge	Location SW-2)	
Event	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5	<u>—</u>	NA
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<u> </u>	NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
12	Dec-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
13	Sep-00	NS	NS	NS	NS	NS	NS	_	NS
14	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2

NS = Not Sampled (no surface water present during sampling event)