2025 2034

<u>geo - logic</u>

geotechnical and environmental consulting services

1140 - 5th Avenue, Crockett, CA 94525

(510) 787-6867 - Fax (510) 787-1457

LETTER OF TRANSMITTAL

December 17, 2001

To: Ms. Susan Hugo

Alameda County Environmental Health Services

1131 Harbor Bay Parkway, 2nd Floor

Alameda, CA 94608

Enclosed:

4th Quarter 2001 Quarterly Monitoring Report Former Berkeley Farms Truck Shop and Yard 4575 San Pablo Avenue Emeryville, CA OKC TO THE

geo - logic geotechnical and environmental consulting services

1140 - 5th Avenue, Crockett, CA 94525

(510) 787-6867 - Fax (510) 787-1457

GL-97-110.R19 Paradiso Job No. 1120-02 December 17, 2001

Mr. Peter Puckett Berkeley Farms 25500 Clawiter Road Hayward, California

RE:

4th Quarter 2001 Monitoring and Sampling Report for Former Berkeley Farms Truck Repair Shop and Yard 4575 San Pablo Avenue, Emeryville, California

Mr. Puckett:

This report presents the results of the fourth quarter 2001 monitoring and sampling of the wells at the subject site. During this quarter, the three wells were monitored and sampled on December 6, 2001. The work during this quarter was performed in compliance with the guidelines established Regional Water Quality Control Board (RWQCB), and the Alameda County Department of Environmental Health (ACDEH).

SITE DESCRIPTION AND BACKGROUND

The subject site is located on the western side of San Pablo Avenue between 45th and 47th Streets in Emeryville, California, and formerly contained a service station facility at the southern portion of the property. Until 1998, the site operated as a truck repair shop and yard for Berkeley Farms. A Site Plan (Figure 1) is attached to this report.

Geo-Logic's previous work at the site includes sampling during overexcavation of a waste oil tank at the northern end of the property. This work is summarized in Geo-Logic's reports (GL-97-110.R1 and GL-97-110.R2), both dated February 10, 1998.

Following this work, installation of three monitoring wells was proposed (workplan/proposal GL-98-110, dated November 15, 1997). The wells were installed in February, 1998. This work, including the results of the first quarter of monitoring and sampling, was documented in Geo-Logic's report (GL-97-110.R3) dated March 7, 1998.

In April and May, 1998, a former service station fuel tank pit at the southern portion of the site was extensively overexcavated. This work, and the results of the second quarter of monitoring and sampling, was documented in Geo-Logic's report (GL-97-110.R4) dated June 9, 1998.

On September 5, 1998, as discussed in a prior meeting with Ms. Susan Hugo of the ACDEH, ORC filter socks were placed in monitoring wells MW2 and MW3. ORC is a insoluble solid peroxygen consisting of magnesium peroxide which has been formulated to release oxygen at a controlled rate when hydrated. The purpose of the ORC in wells MW2 and MW3 was to enhance conditions for the natural biodegradation of petroleum hydrocarbons. Prior to installation of the ORC, baseline measurements of dissolved oxygen in groundwater (DO) were taken. With the concurrence of MS. Susan Hugo of the ACDEH, the ORC was removed from well MW2 on February 5, 1999.

On July 30, 1999, well MW1, damaged during construction, was properly abandoned, and replacement well MW1A was constructed, developed, and initially sampled. This work was documented in Geo-Logic's report (GL-97-110.R9) dated August 12, 1999. The wells have been monitored and sampled quarterly since that time.

RECENT FIELD ACTIVITIES

Wells MW1A, MW2 and MW3 were monitored and sampled during this quarter on December 6, 2001. Prior to sampling, the wells were checked for depth to water, and the presence of free product and sheen. No free product or sheen was noted in any of the wells. Monitoring data collected this quarter is summarized in Table 1. Water samples were then collected by the use of a clean Teflon bailer. The samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory.

HYDROLOGY

On December 6, 2001, the measured depth to ground water in the three monitoring wells varied between 3.56 and 5.12 feet below the tops of the well casings. Since last quarter, the elevation of ground water in the wells has increased between 3.32 and 5.8 feet. The calculated ground water flow direction at the site on December 6, 2001, was to the west, as shown on the attached Potentiometric Surface Map, Figure 1. The hydraulic gradient at the site on December 6, 2001, was approximately 0.02.

4th Qtr. 2001 Monitoring and Sampling Report, 4575 San Pablo Avenue, Emeryville

ANALYTICAL RESULTS

Water samples from the three wells were analyzed at McCampbell Analytical, Inc., in Pacheco, California. All samples analyzed were accompanied by properly executed Chain of Custody documentation. The samples were analyzed for TPH as gasoline and TPH as diesel by EPA method 8015, and benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA method 8020. In addition, the sample collected from MW2, located in the downgradient vicinity of a former waste oil tank, was analyzed for TPH as Motor Oil by EPA Method 8015-modified.

The concentrations of TPH as gasoline, benzene, and TPH as diesel detected in the ground water samples collected on December 6, 2001, are shown on the attached Figure 2. The results of the water analyses are summarized in Table 2. Copies of the laboratory analyses and the Chain of Custody documentation are attached to this report.

DISTRIBUTION

A copy of this report should be sent to Ms. Susan Hugo of the ACDEH.

LIMITATIONS

Environmental changes, either naturally occurring or artificially induced, may cause changes in ground water levels and flow paths, thereby changing the extent and concentration of any contaminants. Our studies assume that the field and laboratory data are reasonably representative of the site as a whole, and assume that subsurface conditions are reasonably conducive to interpolation and extrapolation.

The results of this work are based on the data obtained from the field and laboratory analyses obtained from a state-certified laboratory. We have analyzed these data using what we believe to be currently applicable engineering techniques and principles in the Northern California region. We make no warranty, either expressed or implied, regarding the above, including laboratory analyses, except that our services have been performed in accordance with generally accepted professional principles and practices existing for such work.

If you have any questions regarding this report, please do not hesitate to call me at (510) 787-6867.

Sincerely,

Geo-Logic

Joel G. Greger, C.E.G.

Certified Engineering Geologist

License No. EG 1633 Exp. Date 8/31/2002

Attachments:

Tables 1 and 2

Figures 1 and 2

Laboratory Analyses and

Chain of Custody documentation

4th Qtr. 2001 Monitoring and Sampling Report, 4575 San Pablo Avenue, Emeryville

TABLE 1
SUMMARY OF GROUND WATER MONITORING AND PURGING DATA

	Ground Water Elevation	Depth to Water	Total Well Depth	Product Thickness		Water Purged
Well #	(feet)	(feet)♦	(feet)*	(feet)	Sheen	(gallons)
<u></u>			mpled on Dec			(90220110)
MW1A	31.09	10.92	16.90	0	No	0
MW2	32.55	8,23	16.50	0	No	Ō
МWЗ	33.39	7.69	16.56	Ō	No	Ó
	(Monitor		mpled on Sep	tember 17	. 2001)	
MW1A	31.09	10.92	16.90	0	No	0
MW2	32.55	8.23	16.50	0	No	Ō
MW3	33.39	7.69	16.56	Ŏ	No	Ŏ
	(Monitor	ed and Sa	mpled on Jun	e 15, 200	1)	
MW1A	31.50	9.28	16.90	0	No	0
MW2	32.73	8.35	16.51	0	No	0
MW3	34.37	7.64	16.56	0	No	0
	(Monitor	ed and Sar	mpled on Mar	ch 13, 200	01)	
MW1A	35.54	6.47	16.91	0	No	0
MW2	34.54	6.24	16.51	0	No	0
MW3	35.87	5.21	16.56	0	No	0
	(Monitor		mpled on Dec	ember 13,	2000)	
MW1A	32.68	9.33	16.92	0	No	0
MW2	32.56	8.22	16.52	0	No	0
MW3	33.67	7.41	16.56	0	No	0
	(Monitor		mpled on <u>Sep</u>	tember 19		
MW1A	32.10	9.91	16.92	0	No	0
MW2	32.04	8.74	16.53	0	No	0
EWM	32.89	8.19	16.57	0	No	0
			mpled on <u>Jun</u>			
MW1A	33.59	8.42	16.93	0	No	0
MW2	32.46	8.32	16.53	0	No	0
MW3	33.93	7.15	16.58	0	No	0
			mpled on <u>Mar</u>		- '	
MW1A	36.46	5. 55	16.93	0	No	0
MW2	35.77	5.01	16.54	0	No	8
MW3	37.49	3.59	16.58	0	No	8
			mpled on <u>Dec</u>			_
MW1A	32.95		16.93		N_{O}	8
MW2	31.87	8.91	16.55	0	No	. 8
MW3	32.57	8.51	16.58	0	No	8
			mpled on <u>Sep</u>			_
MW1A	32.92	9.88	16.94	0	No	8
MW2	32.16	8.62	16.55	0	No	8
KWM	32.88	8.20	16.59	0	No	8

TABLE 1 - (Continued) SUMMARY OF GROUND WATER MONITORING AND PURGING DATA

	(Monitored		led on <u>June</u>			
MW1		(Well	inaccessib	ole, damage	ed)	
MW2	32.65	8.13	16.55	0	No	8
MW3	33.57	7.51	16.61	0	No	8
	(Monitored	d and Sampl	ed on Marc	h 4. 1999)		
MW1	•		inaccessib		d)	
MW2	35.28	5.5	16.56	0	No	8
MW3	35.85	5.23	16.60	ō ·	No	8
	(Monitored		ed on Nove	mber 17, 1		-
MW1	32.95	9.06	16.59	0	No	7
MW2	31.73	9.05	16.55	0	No	7
MW3	33.09	7.99	16.61	0	No	7
	(Monitored	i and Sampl	ed on Augu:	st 21, 1990	8)	
MW1	35.51	7.84	16.60	0	No	7
MW2	34.17	8.61	16.56	0	No	7
MW3	35.42	6.27	16.61	0	No	
	(Monitored	d and Sampl	ed on June	3, 1998)		
MW1	35.51	6.50	16.60	0	No	8
MW2	34.17	6.61	16.57	0	No	8
MW3	35.42	5.66	16.62	0	No	8
	(Monitored	and Sampl	ed on Febru	uary 27, 19	998)	
MW1	37.51	4.50	16.61	0	No	8
MW2	35.61	5.17	16.58	0	No	8
MW 3	37.28	3.80	16.63	0	No	8
	(Monitore	d and Deve	loped on Fe	bruary 24,	1998)	
MW1	37.57	4.44	16.59 —	0	No	24
MW2	35.69	5.09	16.58	0	No	21
MW3	37.38	3.70	16.62	0	No	25

Well #	Top of Casing Elevation* (feet)
MW1A	42.01
MW2	40.78
MW3	41.08

- ♦ Depth to water and total well depth measurements are taken from the top of the well casings.
- * The elevation of the tops of the well casings have been surveyed relative to City of Oakland Benchmark No. 241.

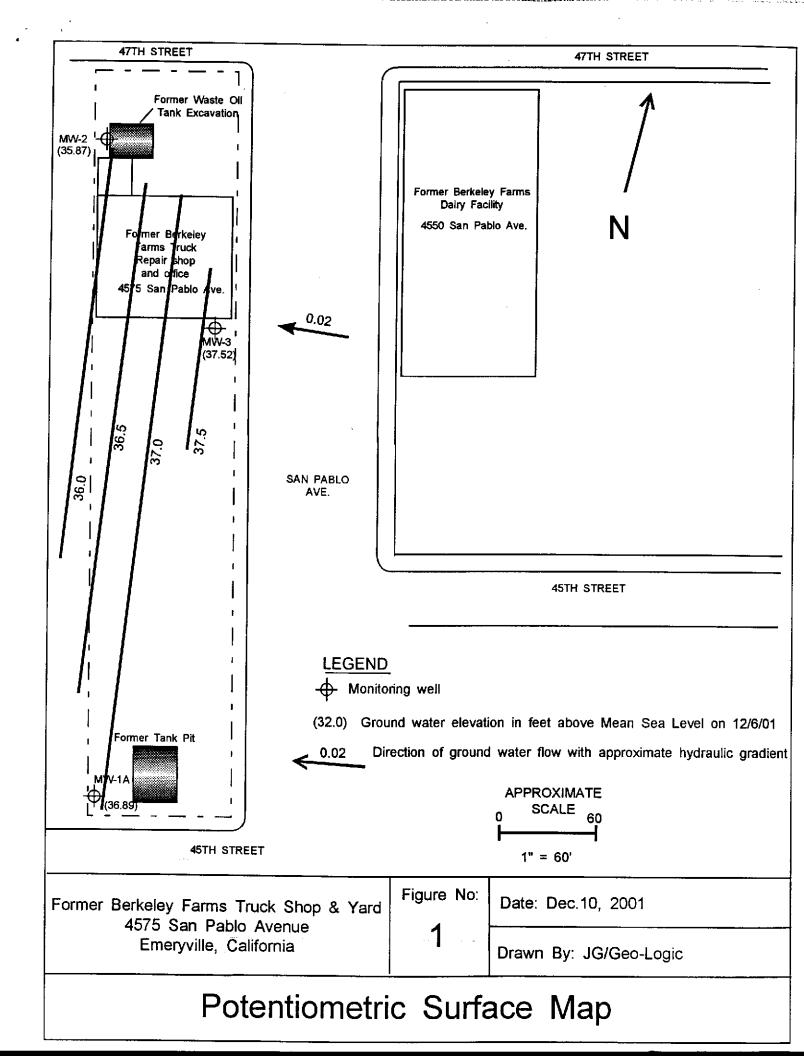
4th Qtr. 2001 Monitoring and Sampling Report, 4575 San Pablo Avenue, Emeryville

TABLE 2
SUMMARY OF LABORATORY ANALYSES-WATER

<u>Date</u>	Sample Number	TPH as Diesel	TPH as Gasoline	Benzene	<u>Toluene</u>	Ethyl benzene	Xylenes
12/6/0	l MW1A	1100	3600	270	-23	130	610
9/17/0:	l MW1A	180	820	84	7.7	8.4	26
6/15/0		94	350	15	3.5	<0.5	<0.5
3/13/0:		1,600	15,000	980	37	820	2,100
12/13/0		250	1,400	96	12	<2.0	10
9/19/00		< 50	<50	<0.5	<0.5	<0.5	<0.5
6/6/00	MW1A	630	2,400	270	9.5	7 9	27
3/6/00	MW1A	2,100	13,000	560	<20	640	1,200
12/8/99		310	1,200	93	1.8	48	53
9/6/99	MW1A	<5.0	<5.0	<0.5	<0.5	<0.5	<0.5
8/6/99	MW1A	<5.0	<5.0	<0.5	<0.5	<0.5	<0.5
6/7/99	MW1		(Well	inaccessib	ole, damage	d)	
3/4/99	MW1			inaccessib	ole, damaged	d)	
11/17/9		88,000	29,000	2,300	3,000	3,600	3,100
8/21/98		96,000	38,000	1,700	1,000	2,400	3,300
6/2/98	MW1	105,000	34,000	1,900	1,600	2,400	3,500
2/27/98	MW1	81,000	27,000	2,200	910	1,700	2,700
12/6/01		<50	<50	<0.5	<0.5	<0.5	<0.5
9/17/01	MW2	<50	<50	<0.5	<0.5	<0.5	<0.5
6/15/01		< 50	<50	<0.5	<0.5	<0.5	<0.5
3/13/01		<50	<50	<0.5	<0.5	<0.5	<0.5
12/13/0		<50	<50	<0.5	<0.5	<0.5	<0.5
9/19/00	MW2	330	2,000	210	8.7	5.5	6.0
6/6/00	MW2	<50	<50	<0.5	<0.5	<0.5	<0.5
3/6/00	MW2	< 50	<5.0	<0.5	<0.5	<0.5	<0.5
12/8/99	MW2	<50	<5.0	<0.5	<0.5	<0.5	<0.5
9/6/99	MW2	<5.0	<5.0	<0.5	<0.5	<0.5	<0.5
6/7/99	MW2	<5.0	<5.0	<0.5	<0.5	<0.5	<0.5
3/4/99	MW2	<5.0	<5.0	<0.5	<0.5	<0.5	<0.5
11/17/9		4,300	260	190	420	470	600
8/21/98		1,900	<5.0	<0.5	<0.5	220	400
6/2/98	MW2	7,600	60	220	510	800	1,100
2/27/98	MW2	14,000	<5.0	<0.5	120	460	730

TABLE 2
SUMMARY OF LABORATORY ANALYSES-WATER (continued)

Date	Sample Number	TPH as Motor Oil	MTBE	TOTAL LEAD
12/6/01	MW1A		110	
9/17/01	MW1A		120	
6/15/01	MW1A		84	
3/13/01	MW1A		320	
12/13/00	MW1A		170	
9/19/00	MW1A		13	 .
6/6/00	MW1A		210	
3/6/00	MW1A	320	<400	
12/8/99	MW1A		140	
9/6/99	MW1A		<0.5	
8/6/99	MW1A		<0.5	
6/7/99	MW1	(Well ina	accessib	le, damaged)
3/4/99	MW1	(Well ina	accessib	le, damaged)
11/17/98	MW1		<0.5	
6/2/98	MW1*	80,000	<0.5	<5.0
2/27/98	MW1		<0.5	
12/6/01	MW2	<250	<5.0	
9/17/01	MW2	<250	<5.0	
6/15/01	MW2	<250	<5.0	
3/13/01	MW2	<250	<5.0	
12/13/00	MW2	<250	<5.0	
9/19/00	MW2	<250	180	
6/6/00	MW2	<250	<5.0	
3/6/00	MW2	<250	<5.0	
12/8/99	MW2	<250	<5.0	
9/6/99	MW2	47	<0.5	
6/7/99	MW2	<0.5	<0.5	
3/4/99	MW2	<0.5	<0.5	
11/17/98	MW2	<0.5	<0.5	·
6/2/98	MW2*	3,800	<0.5	<5.0
2/27/98	MW2	20,000**	<0.5	


TABLE 2
SUMMARY OF LABORATORY ANALYSES-WATER(continued)

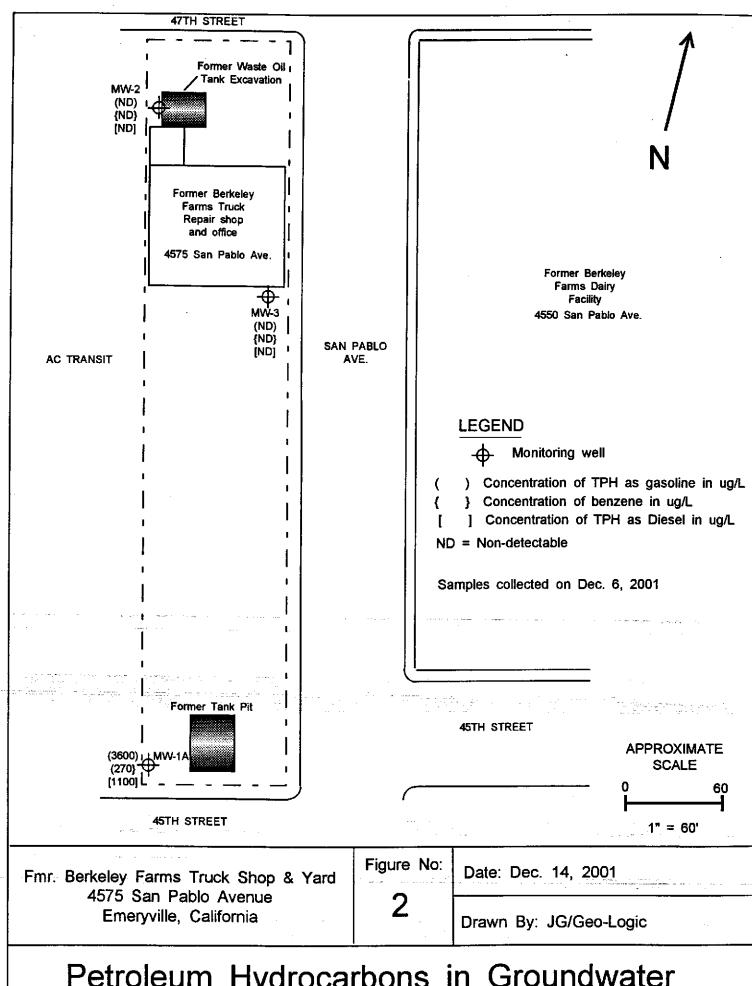

Sample Date Numb	TPH as per Diesel	TPH as Gasoline	Benzene	Toluene	Ethyl benzene	Xylenes
			<u> </u>	10140110	<u> </u>	nyronoz
12/6/01 MV	w73 <50	<50	<0.5	<0.5	<0.5	<0.5
9/17/01 MV	N3 <50	<50	<0.5	<0.5	<0.5	<0.5
6/15/01 MV	vi3 <50	<50	<0.5	<0.5	<0.5	<0.5
3/13/01 MV	√73 . <50	<50	<0.5	<0.5	<0.5	<0.5
12/13/00 MV	v 3 <50	< 50	<0.5	<0.5	<0.5	<0.5
9/19/00 MV	v 3 <50	<50	<0.5	<0.5	<0.5	<0.5
6/6/00 MV	v 3 <50	<50	<0.5	<0.5	<0.5	<0.5
3/6/00 MW	V 3 <50	<5.0	<0.5	<0.5	<0.5	<0.5
12/8/99 MW	√3 <50	<5.0	<0.5	<0.5	<0.5	<0.5
9/6/99 MW	V 3 <5.0	<5.0	<0.5	<0.5	<0.5	<0.5
6/7/99 MW	V 3 <5.0	<5.0	<0.5	<0.5	<0.5	<0.5
3/4/99 MW	V3 <5.0	<5.0	<0.5	<0.5	<0.5	<0.5
11/17/98 MW	7 3 <5.0	<5.0	<0.5	<0.5	<0.5	<0.5
	V3 + <5.0	<5.0	<0.5	<0.5	<0.5	<0.5
6/2/98 MW	7 3 <5.0	<5.0	<0.5	<0.5	<0.5	<0.5
2/27/98 MW	7 3	<5.0	<0.5	<0.5	<0.5	<0.

TABLE 2
SUMMARY OF LABORATORY ANALYSES-WATER(continued)

Sample	in the second of the second	TPH as		
Date	Number	Motor Oil	MTBE	TOTAL LEAD
12/6/01	MW3	-	20	
9/17/01	KWM3		8.4	
6/15/01	EWM		6.7	
3/13/01	MW3		11	
12/13/00	MW3		9.3	
9/19/00	MW3		<5.0	
6/6/00	MW3		21	
3/6/00	MW3	<250	24/21++	
12/8/99	EWM		18	
9/6/99	MW3		<0.5	
6/7/99	MW3		<0.5	
3/4/99	MW3		<0.5	
11/17/98	MWЗ		<0.5	
6/2/98	MW3*	<5.0	<0.5	<5.0
2/27/98	MW3			

- -- Analyses not performed.
- + Cadmium, chromium, lead, nickel, and zinc were nondetectable, except for 0.078 mg/l of nickel detected in MW1.
- ++ 21 ppb by EPA Method 8260.
- * All EPA Method 8010 constituents were nondetectable.
- ** 20,000 ppb of Total Recoverable Petroleum Hydrocarbons by EPA Method 418.1. Results are in micrograms per liter (μ g/L), unless otherwise indicated.

Petroleum Hydrocarbons in Groundwater

McCAMPBELL ANALYTICAL INC.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.inccampbell.com E-mail: main@mccampbell.com

Client Project ID: #1120-02; 4575 San	Date Sampled: 12/06/01	
radio Ave, Emeryville	Date Received: 12/07/01	
Client Contact: Joel Greger	Date Extracted: 12/07-12/10/01	
Client P.O:	Date Analyzed: 12/07-12/10/01	
	Pablo Ave, Emeryville Client Contact: Joel Greger	

bons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

200,0	ds 5030, modifi Client ID	Matrix	TPH(g)*	МТВЕ	Benzene	Toluene	Ethyl- benzene	Xylenes	% Recover
84971	MWIA	W	3600,a	110	270	23	130	610	Surrogate 101
84972	MW2	W	ŅĎ	ND	ND	ND	ND	ND	104
84973	MW3	W	ND	20	ND	ND	ND	ND	98
						e de la companya de l			
				-					
					-				
						1			
-									
Reporting Li Otherwise st	ated: ND	W	50 ug/L	5.0	0.5	0.5	0.5	0.5	
eans not deta the reporti	ng limit	S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts

deluttered chromatogram; sample peak coclutes with surrogate peak

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); !) one to a few isolated peaks present; 2) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immissible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

McCAMPBELL ANALYTICAL INC.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.inccampbell.com E-mail: main@mccampbell.com

Gen-Logic	anua	Client P Pablo A	roject ID: #1120- ve, Emeryville	Diject ID: #1120-02; 4575 San Date Sampled: 12/06/01			
f		<u> </u>			Date Receiv	ed: 12/07/01	
Crockett, CA	1 94525	Client C	ontact: Joel Grege	er	Date Extracted: 12/07/01		
		Client P.			Date Analyz		
Diesei Ra EPA methods m	ange (C10-C23) and 355	and Oll-Rang 50 or 3510; Calif	ge (C18+) Extrac ornia RWQCB (SF Ba	table Hydroc	arbons as Diese	and Motor Oil*	
Lab ID	Client ID	Matrix	TPH(đ)*		TPH(mo)	% Recovery Surrogate	
84971	MWIA	W	1100,6	Western market		99	
84972	MW2	W	ND		ND	99	
84973	MW3	W	ND		***	97	
				100000	· · · · · · · · · · · · · · · · · · ·		
				Anna documenta			
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
				1	······································		
			·		· · · · · · · · · · · · · · · · · · ·		
	-						
Reporting Limit	unless otherwise	W	50 ug/L	2	50 ug/L,		
the report	ing limit	S	1.0 mg/kg	5.	0 mg/kg	1	

^{*}water samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in ug/L

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment.

^{*} cluttered chromatogram resulting in coeluted surrogate and sample peaks, or, surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

勼

Comments

5 DAX

72 HR

Total Petroleum Oil & Grease (5520 E&F/B&F) BTEX & TPH as Gas (602/8020 + 8015)/ MTBP PAH's / PNA's by EPA 625 / 8270 / 8310 Total Petroleum Hydrocarbons (418.1) BIEX ONLY (EPA 602 / 8020) EPA 608 / 8080 PCB'R ONL Y Lead (7240/1421/239.2/6010) SAMPLING METHOD MATRIX Type Coatsiners TPH as Diesel (8015) EPA 624 / 8240 / 8260 PRESERVED # Containers Conductivity EPA 601 / 8010 SAMPLE ID LOCATION EPA 608 / 8080 BPA 625 / 8270 CAM-17 Metals LUPT 5 Metals Date Time Afr Sludge Other Water HNO, Other 8 lce BC Specific F 55 MW/A BF XX 260m mw3 Tare of Tree Local Control of Calab 84973 Date: Time March ved By: 132/ VOAS OAG METALS OTHER Reliaguished By: Date: Time: ICE/r Received By: PRESERVATION GOOD CONDITION APPROPRIATE HEAD SPACE ABSENT Relinquished By: CONTAINERS Date: Time: Received By:

29117= GEOL 48. doc McCAMPBELL ANALYTIC

TURN AROUND TIME

CHAIN OF CUSTODY RECORD

24 HR

48 HR

Other

RUSH

Analysis Request

110 2" AVENUE SOUTH, #D7 PACHECO, CA 94553-5560

Telephone: (925) 798-1620 Fax: (925) 798-1622 Bill To: Peradoc Mechanical

Contpany:

Tele: 570 78

Project #: //20 Project Name: / Project Location:

Sampler Signature:

Report To:

N