

W. A. CRAIG, INC.

Environmental Contracting and Consulting

6940 Tremont Road
Dixon, California 95620
Contractor and Hazardous Substances License #455752
e-mail: tech@wacraig.com
(800) 522-7244

Dixon (707) 693-2929

Napa (707) 252-3353

Fax: (707) 693-2922

QUARTERLY MONITORING REPORT FEBRUARY 2002

> SITE LOCATION: Oakland Truck Stop 1107 Fifth Street

Oakland, California

RO 234 /992

PREPARED FOR:
Mr. Reed Rinehart
Rinehart Distribution, Inc.

P.O. Box 725 Ukiah, California 94582

SUBMITTED TO:

Mr. Barney Chan
Alameda County Department of Environmental Health Services
Division of Environmental Protection
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502-6577
(510) 567-6774
fax (510) 337-9335

W. A. CRAIG, INC. PROJECT # 3628 April 8, 2002

PROFESSIONAL CERTIFICATION

Quarterly Monitoring Report – February 2002

Oakland Truck Stop 1107 Fifth Street Oakland, California

W.A. Craig, Inc. Project No. 3628

April 8, 2002

This document has been prepared by the staff of W. A. Craig, Inc., under the professional supervision of the persons whose seals and signatures appear hereon. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analysis, conclusions and recommendations contained in this document are based upon site conditions as they existed at the time of the investigation and they are subject to change.

The conclusions presented in this document are professional opinions based solely upon visual observations of the site and vicinity, and interpretation of available information as described in this document. W.A. Craig, Inc., recognizes that the limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs, or requirements of other state agencies, or of other users. Any use or reuse of this document or its findings, conclusions or recommendations presented herein is at the sole risk of said user.

No. C054036

Tim Cook, P.E.

Principal Engineer

in

INTRODUCTION

Site Location and Description

The Oakland Truck Stop located at 1107 5th Street in Oakland, California ("the Site") is owned by Mr. Tony Muir. Rino Pacific, Inc. and Rinehart Distribution, Inc. lease the property from the owner. The Site is in a commercial and industrial district at the intersection of Adeline and 5th Streets (**Figure 1**). A service station building, two underground storage tanks, four pump dispenser islands, a truck scale and scale house currently occupy the Site.

The Site topography is flat and is bounded on the north by Fifth Street, on the west by Adeline Street, on the south by a restaurant and parking lot and on the east by Chestnut Street. The nearest surface water is the Oakland Estuary located approximately 2,400 feet south of the Site.

Background

The Site was developed as a truck stop approximately 40 years ago and has been in operation throughout this period. Three 10,000-gallon underground storage tanks (USTs) and one 8,000-gallon UST were formerly maintained at the Site. All four USTs were constructed of single-wall steel. Of the 10,000-gallon USTs, two contained diesel fuel and one contained mid-grade unleaded gasoline. The 8,000-gallon UST contained regular unleaded gasoline. Prior to the recent remodel of the Site, fuel product lines were constructed of single-wall fiberglass.

In mid-1995 an unauthorized release of fuel occurred as a result of a leak in a product line. Product lines associated with this release were replaced as soon as the leak was discovered. Interim cleanup of the spill was performed by installing and operating two product recovery sumps in the vicinity of the release. The sumps recovered approximately 6.3 gallons of gasoline using a skimmer device and reduced the floating product thickness to a sheen on the water in the recovery wells. The sumps were removed during recent leaseholder improvements at the Site. The water table fluctuates seasonally between 10 inches and 4 feet below grade.

In March 1999, the four single-walled USTs were replaced with two 15,000-gallon double-walled fiberglass USTs. An interim remedial action was performed during UST replacement activities to remove the grossly contaminated soil and groundwater.

The following is a summary of interim remedial activities performed at the Site by Trinity Excavating and Engineering, Inc. of Santa Rosa, California. The work was performed between February 8, 1999 and May 5, 1999.

2/8 through 2/10, 1999	Excavated to tops of tanks and rinsed three gasoline and one diesel underground fuel tanks
2/11/1999	Removed tanks and disposed offsite (observed by Fire Inspector)
3/3 &3/4, 1999	Removed approximately 2,100 tons of contaminated soil from excavation bottom and sides before sampling as directed by Fire Inspector. Collected excavation and stockpile samples. Removed water from pit as needed. Stored approximately 33,000 gallons of contaminated water in temporary storage tanks.
2/24 through 5/19, 1999	Loaded, manifested and disposed of 2,000.5 tons of contaminated soil at the Forward non-hazardous disposal facility near Stockton, California.
2/1 through 5/6, 1999	Provided and placed approximately 1,700 tons of backfill.
5/3 through 5/5, 1999	Disposed of contaminated water at Seaport Environmental.

The lateral extent of hydrocarbon contamination has not yet determined. Quarterly groundwater monitoring is being conducted. The direction of groundwater flow has varied from southwest to north. Interpretation of the groundwater gradient is suspect and could be affected by tidal fluctuation, improper monitoring well construction or by very localized recharge (i.e., leaking water or sewer lines).

The shallow aquifer beneath the Site has no beneficial use as a potential drinking water resource due to its high total dissolved solids concentration (>3,000 mg/l). Proposed Groundwater Amendments to the Water Quality Control Plan (Basin Plan), dated April 2000, specifically states that shallow groundwater to a depth of about 100 feet in portions of the East Bay Plain is often brackish due to naturally-occurring saltwater intrusion. However, well yields may be sufficient for industrial or irrigation uses.

This same document states that cleanup in areas that have no beneficial use as a drinking water resource, should be protective of ecological receptors, human health and probable non-potable uses (e.g., irrigation or industrial process supply). Pursuant to State Board Resolution No. 92-49, pollution sites will continue to be required to demonstrate that 1) reasonably adequate source removal has occurred, 2) the plume has been reasonably defined both laterally and vertically and 3) a long-term monitoring program is established to verify that the plume is stable and will not impact ecological receptors or human health (e.g., from volatilization into trenches and buildings). In the East Bay Plain there are deep aquifers that will continue to be designated as potential drinking water resources. In such a setting, the deep aquifers (defined as aquifers below the Yerba Buena Mud) are subject to protection as potential drinking water resources.

In a letter to Rinehart Distributing Inc. dated July 27, 2001, Alameda County Health Care Services (ACHCS) requested that additional investigation be performed to delineate the extent of petroleum hydrocarbons both on-site and off-site. Specifically, they requested monitoring wells to the south or adjacent to the main building. A Site Investigation Work Plan dated October 22,

2001 has been submitted and approved by the ACHCS. A site access agreement has been executed with the adjacent property owner. We will install two additional monitoring wells upon approval of the budget for this task by the UST Cleanup Fund.

SCOPE OF WORK

The scope of work conducted by W.A. Craig, Inc (WAC) during this period included the following:

- Measure dissolved oxygen concentrations and static water levels in eight on-site monitoring wells;
- Purge and sample groundwater from these wells;

Missipality to the filter of the control

- Analyze groundwater samples for total petroleum hydrocarbons as gasoline (TPH-g), total petroleum hydrocarbons as diesel (TPH-d), benzene, toluene, ethylbenzene, xylenes (BTEX), fuel oxygenates (MtBE, ETBE, TAME, DIPE, tert-Butanol, methanol, ethanol) and lead scavengers (EDB and 1,2 DCA); and
- Prepare this Quarterly Monitoring Report.

GROUNDWATER SAMPLING AND ANALYSIS

Groundwater Elevations

WAC measured water levels in the eight monitoring wells on February 15, 2002 using an electronic water-level indicator. The wells are located as shown on Figure 2. Well construction details are summarized in Table 1. The wells were exposed to atmospheric conditions for approximately 30 minutes to stabilize static water levels. The depths to static water level measurements were subtracted from the top of casings to obtain static water elevations. Groundwater appears to be mounding in the vicinity of the former UST excavation. Flow directions radiate from the former UST excavation, however the gradient is steepest toward monitoring well MW-7. Groundwater elevations for this and previous monitoring events are presented on Table 2.

Groundwater Sampling

On February 15, 2002, the wells were purged prior to collecting groundwater samples to ensure that formation water was sampled. The dissolved oxygen concentration was measured prior to sampling. Dissolved oxygen concentrations and temperature are summarized in **Table 3**.

Three well volumes were purged from each well prior to sampling to ensure that water samples were representative of the ambient groundwater quality. Groundwater sampling logs are included in **Attachment A**.

Groundwater samples were collected using disposable polyethylene bailers. The samples were collected in laboratory cleaned sample bottles appropriate for each analysis. Monitoring well MW-7 contained approximately ½ inch of floating product. Two samples were collected from the well. One sample was decanted from the top of the bailer and a second duplicate sample was collected from the bottom of the bailer. The samples were submitted under chain-of-custody control to McCampbell Analytical, Inc. (MAI), of Pacheco, California. The purged groundwater is currently stored on-site in labeled, DOT approved, 55-gallon, steel drums.

Groundwater Analytical Results

The groundwater samples were analyzed for TPH-g/TPH-d using EPA Method 8015 (modified), for purgeable aromatic hydrocarbons (BTEX) using EPA Method 8020 and for fuel oxygenates and lead scavengers using EPA Method 8260. MAI is certified by the State of California to perform these analyses. The results of the analyses are summarized in **Table 4.** A copy of the laboratory analytical report and chain-of-custody document are in **Attachment B**.

Conclusions

MtBE concentrations remain very high in wells MW-4, MW-7 and MW-8. MtBE and all other petroleum constituents continue to have the highest in concentrations in well MW-7. Approximately ½ inch of floating free product was observed in well MW-7. Groundwater sample MW-7D yielded the highest TPH-g and benzene concentrations at 160,000 μg/L and 30,000 μg/L, respectively. Hydrocarbons in the vicinity of MW-7 may have originated from the former UST excavation, a leak from the former product piping or a leak from the pump dispenser located east of well MW-7. The distribution of MtBE in groundwater samples is presented on Figure 3.

MtBE is the principle constituent of concern (COC). TPH-g and BTEX constituents are present in many wells but at lower concentrations. Remediation of MtBE will also remove the other COCs. The hydrocarbon plume appears to be centered about wells MW-4, MW-5, MW-6, MW-7 and MW-8. This area includes the former UST pit, and dispenser islands to the west, and east of the former UST pit. This area will be the focus of the remedial action. The next quarterly sampling event will be in May 2002.

Recommendations

We will abandon well MW-3, due to incompatible well screening with the other seven monitoring wells and replace it with well MW-3A. Well MW-3A will have a screened interval similar to the most recently installed wells. We will also install two additional monitoring wells on an adjacent property south of the Site to determine the groundwater flow direction. Details of this proposed investigation are presented in the Site Investigation Work Plan (Revision 1), dated October 22, 2001. This work is scheduled for May 2002. Sampling results from the new wells will be included in the next Quarterly Monitoring Report.

Quarterly Monitoring Report-February 2002

Oakland Truck Stop
Oakland, CA

After the direction of groundwater flow has been determined, we recommend the installation of offsite temporary borings to determine the lateral extent of the contaminant plume. In a meeting with the UST Fund representative, Dave Charter, temporary borings adjacent to underground utility lines were recommended to identify possible preferential pathways.

We further recommend active remediation in the vicinity of well MW-7 to remove a portion of the hydrocarbon mass present in the shallow groundwater. To this end, we propose Preliminary Active Remediation Goals (PARGs). The purpose of the PARGs is to establish remediation cleanup goals that are achievable and that will remove a large mass of the contaminant plume.

We recommend that this Site be included in the pilot study Pay for Performance Program (PFP) administered by the State Water Resources Control Board, UST Cleanup Fund. The purpose of this pilot PFP is to demonstrate expedited site cleanups using PARGs and payment of the consultant based on performance (i.e., attainment of clean up milestones). We propose establish PARGs and a timeline that are mutually agreeable to the owner, the environmental consultant, ACHCS and the California UST Cleanup Fund.

Table 1
Well Construction Data
Oakland Truck Stop

Well Number	Date Installed	Casing Diameter (inches)	Borehole Depth (feet)	Screened Interval (feet)	Filter Pack Interval (feet)	Bentonite Interval (feet)	Grouting Interval (feet)
MW-1	10/10/96	2	20.5	10-20	9-20	7-9	1-7
MW-2	10/10/96	2	14.0	8-13	7-8	5-7	1-5
MW-3	10/10/96	2	17.0	12-17	11-17	9-11	1-9
MW-4	08/16/00	2	20.5	5-20	4-20	3-4	1-3
MW-5	08/16/00	2	20.5	5-20	4-20	7-13	1-3
MW-6	08/16/00	2	20.5	5-20	4-20	3-4	1-3
MW-7	08/17/00	2	20.5	5-20	4-20	3-4	1-3
MW-8	08/16/00	2	20.5	5-20	4-20	3-4	
MW-9	08/23/00	2	20,5	5-20	4-20	3-4	1-3

Notes: MW-2 was abandoned during the UST excavation and removal in March 1999.

Table 2
Groundwater Elevations
Oakland Truck Stop

			Depth Below TOC	Elevation Above MSL
Well Number	Date	Top of Casing (ft)	(ft)	(ft)
MW-1	10/21/96	7.60	5.08	2.52
1	11/04/96	1	3.02	4.58
	03/04/97	1	2.28	5.32
1	06/12/97	1	4.80	2.80
	07/14/97	1	2.66	4.94
	09/09/97	1	2,45	5,15
	09/19/97	1	2.60	5.00
	02/13/98	1	2.76	4,84
	07/07/98	1	2.15	5.45
	10/01/98	1	3.63	3.97
	12/30/98		4.40	3.20
	03/21/00	1	2.62	4,98
	08/30/00	1	3.21	4.39
	11/06/00	1	3.10	4.50
	02/22/01	1	3.50	4.10
	05/07/01	1	2.94	4.66
	08/22/01	1	3.70	3.90
	11/04/01]	3.89	3.71
	02/15/02	1	2.95	4.65
MW-2	10/21/96	4.48	4.66	-0.18
	11/04/96	1	4.60	-0.12
	03/04/97		3,68	0.80
	06/12/97]	3.70	0.78
	07/14/97		4.16	0.32
	09/09/97]	3.88	0,60
	09/19/97		4.50	-0.02
	02/13/98		3.08	1.40
	07/07/98	Ì	3.74	0.74
}	10/01/98		4.63	-0.15
	12/30/98]	3.90	0.58
	03/21/00		t.	Destroyed
MW-3	10/21/96	7.79	7.66	0.13
[11/04/96]	5.70	2.09
	03/04/97		11.38	-3.59
	06/12/97		5.18	2.61
	07/14/97		7.96	-0.17
	09/09/97		10.16	-2,37
	09/19/97	4	12.80	-5.01
	02/13/98		11.42	-3.63
	07/07/98		11.76	-3.97
	10/01/98		11.34	-3.55
	12/30/98	1	4,56	3.23
	03/21/00	-	10.92	-3.13
	08/30/00		5.12	2.67
	11/06/00	1	4.10	3.69
	02/22/01	1	6.60	1,19
i	05/07/01	4	6.30	1.49
	08/22/01	ł	5.21	2.58
	11/04/01	-	5.47	2.32
L	02/15/02		4.65	3,14

Table 2
Groundwater Elevations
Oakland Truck Stop

İ			Denth Below TOC	Elevation Above MSL
Well Number	Date	Top of Casing (ft)	(ft)	(ft)
MW-4	08/30/00	7.74	3.74	4.00
	11/06/00	-	3.85	3.89
	02/22/01		4.66	3.08
	05/07/01		2.66	5.08
	08/22/01		4.13	3.61
	11/04/01	7	4.53	3,21
	02/15/02	-	3.62	4.12
MW-5	08/30/00	7.53	3,01	4.52
	11/06/00	1	3,35	4.18
Ì	02/22/01	7	3.00	4.53
ľ	05/07/01	1	2.73	4.80
Ì	08/22/01	7	3.88	3.65
	11/04/01	1	3.95	3.58
	02/15/02	1.	2.84	4.69
MW-6	08/30/00	7.89	3,40	4.49
[11/06/00	7	3.72	4.17
ſ	02/22/01	7	3.34	4.55
1	05/07/01	7	3.08	4.81
	08/22/01	7	3.77	4.12
	11/04/01		4,33	3.56
	02/15/02		3.22	4.67
MW-7	08/30/00	8.96	6.72	2.24
†	11/06/00]	6.85	2.11
	02/22/01]	6.00	2.96
	05/07/01		6.35	2.61
	08/22/01		6,86	2.10
	11/04/01		6.66	2.30
	02/15/02		6,45	2.51
MW-8	08/30/00	7.32	3.06	4.26
1	11/06/00	_	2.98	4.34
[02/22/01	_[2.46	4.86
1	05/07/01	_]	2.76	4.56
ļ	08/22/01	_	3.56	3.76
ļ.	11/04/01		3.76	3,56
	02/15/02		2.72	4.60
MW-9	08/30/00	7.30	2.81	4.49
Ļ	11/06/00		2.68	4.62
Ļ	02/22/01	4	2.20	5.10
Ļ	05/07/01		2.75	4.55
ļ.	08/22/01	.	3.80	3.50
Ļ	11/04/01	4	3.61	3.69
	02/15/02		2.92	4.38

Notes: Monitoring wells elevations are based on City of Oakland Datum # 16NW10 which lies 15 ft west of the centerline intersection of 3rd Street and Linden Street.: Elevation = 8.108 (City of Oakland Datum = 5.108 + 3.00

^{= 8.108).} Elevations have been converted to U.S. Geodetic Datum by adding 3.00 feet,

Table 3 Dissolved Oxygen Concentrations Oakland Truck Stop

Monitoring Well	Date	Dissolved Oxygen Concentration (mg/l)	Temperature (Celsius)	Dissolved Oxygen Percent of Saturation
MW-1	08/30/00	0.27	24,2	3.2%
	11/06/00	0.24	21.8	2.7%
	02/22/01	0.76	15.7	7.6%
	05/07/01	0.79	20.3	8.6%
	08/27/01	0,20	23.9	2,4%
	11/04/01	0.60	22.5	6.9%
	02/15/02	0.32	17.8	3.3%
MW-3	08/30/00	0.35	26.4	4.4%
	11/06/00	0.23	22.7	2.6%
	02/22/01	0.97	15.3	9.6%
	05/07/01	NS	NS	NS
	08/27/01	0.40	23.9	4.7%
	11/04/01	NS	NS	NS
	02/15/02	0.37	18.7	3.9%
MW-4	08/30/00	0.16	27.4	2.0%
	11/06/00	0.30	23.9	3.5%
	02/22/01	0.85	16.3	8.6%
	05/07/01	0.95	20,5	10.4%
	08/27/01	0.20	26.1	2.5%
	11/04/01	0.30	23.7	3.5%
	02/15/02	0.18	17.0	1.8%
MW-5	08/30/00	0.28	27.0	3.6%
	11/06/00	0.24	22.6	2.8%
	02/22/01	0.77	14.7	7.5%
[05/07/01	0.99	19.8	10.7%
[08/27/01	0.20	26,4	2.5%
	11/04/01	0.60	23.1	7.0%
	02/15/02	0.27	16.9	2.8%
MW-6	08/30/00	0.42	27.7	5,4%
	11/06/00	0.23	23.0	2.7%
	02/22/01	1.01	15.3	10.0%
	05/07/01	0.89	21.0	9.9%
1	08/27/01	0.15	26.5	1.9%
[11/04/01	0.50	23.0	5.8%
	02/15/02	0.23	18.3	2.4%
MW-7	08/30/00	0.17	26.8	2.1%
[11/06/00	0,25	23.5	2.9%
[02/22/01	0.66	17.1	6.8%
[05/07/01	0,56	21.0	6,2%
[08/27/01	0.40	25.4	4.9%
	11/04/01	0.42	24.0	5.0%
	02/15/02	0.18	18.3	1.9%

eliffers w/ Temp. 8.4

Table 3
Dissolved Oxygen Concentrations
Oakland Truck Stop

Monitoring Well	Date	Dissolved Oxygen Concentration (mg/l)	Temperature (Celsius)	Dissolved Oxygen Percent of Saturation
MW-8	08/30/00	0.18	26.4	2.3%
	11/06/00	0.25	23.7	2.9%
	02/22/01	0.69	17.1	7.1%
	05/07/01	0.96	21.1	10.7%
	08/27/01	0.15	26.1	1.9%
	11/04/01	0.3	24,2	3,6%
	02/15/02	0,25	17.0	2.6%
MW-9	08/30/00	0.30	22,8	3.5%
	11/06/00	0.31	21.7	3.5%
	02/22/01	0.71	16.2	7.2%
	05/07/01	0.97	18.8	10.3%
	08/27/01	0.2	23.0	2.3%
	11/04/01	0.3	22.1	3.4%
	02/15/02	0.22	17.6	2.3%

Notes: NS = not sampled

Table 4
Groundwater Analytical Results
Oakland Truck Stop

				MtBE			ethyl-	
Well Number	Date	TPH-g	TPH-d	8260	benzene	toluene	benzene	xylenes
								,
MW-5	08/30/00	1,000	450	NS	ND	ND	ND	ND
1111	11/06/00	ND<1,000	520	42,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0
	02/22/01	ND<1,000	270	39,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0
'	05/07/01	ND<1,800	470	59,000	ND<5.0	ND<2.0	ND<2.0	ND<2.0
	08/22/01	ND<2,200	780	70,000	ND<3.0	ND<3.0	ND<3,0	ND<3.0
	11/04/01	ND<1,700	670	37,000	ND<2.0	ND<2.0	ND<2.0	ND<2.0
	02/15/02	ND<1,100	480	33,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0
MW-6	08/30/00	1,300	1,300	NS	55	ND	16	27
`	11/06/00	ND<630	1,100	27,000	7	8,1	ND<3	5,2
	02/22/01	ND<200	420	8,000	ND	ND	ND	ND
	05/07/01	ND<1000	900	40,000	ND<2.0	ND<2.0	ND<1.0	ND<1.0
	08/22/01	ND<350	520	8,800	ND<2.0	ND<1.0	ND	ND
	11/04/01	ND<500	420	17,000	ND<2.0	ND<2.0	ND	ND
	02/15/02	ND<960	910	26,000	2.6	4.5	ND<1.0	4.2
MW-7	08/30/00	160,000	2,600	NS	28,000	15,000	1,200	5,900
	11/06/00	80,000	1,700	920,000	23,000	12,000	1,200	5,000
	02/22/01	80,000	2,000	460,000	19,000	12,000	1,100	3,200
	05/07/01	100,000	7,600	520,000	25,000	16,000	1,700	6,600
	08/22/01	110,000	520	250,000	18,000	12,000	2,000	9,400
	11/04/01	85,000	6,500	180,000	17,000	2,700	2,100	9,700
	02/15/02	96,000	21,000	200,000	21,000	7,300	2,600	13,000
MW-7D	02/22/01	84,000	2,400	500,000	20,000	13,000	1,200	3,400
duplicate	05/07/01	100,000	8,200	500,000	25,000	17,000	1,700	6,700
	02/15/02	160,000	29,000	200,000	30,000	27,000	3,700	19,000
MW-8	08/30/00	ND	690	NS	ND	ND	ND	ND
	11/06/00	ND<3,300	810	76,000	ND<8	ND<5	ND<3	ND<7
	02/22/01	ND<2,500	1,100	130,000	ND<3	ND<3	ND<3	ND<3
	05/07/01	ND<5,000	1,300	120,000	32	ND<10	ND<5.0	ND<5.0
<u> </u>	08/22/01	ND<4,000	1,200	86,000	ND<5.0	ND<5.0	ND<5.0	16
	11/04/01	590	1,100	49,000	6.9	ND	ND	ND
	02/15/02	ND<3,400	1,500	91,000	ND<5,0	ND<5.0	ND<5.0	ND<5.0
MW-9	08/30/00	ND	770	NS	ND	ND	ND	ND
	11/06/00	ND	390	220	ND	ND	ND	ND
	02/22/01	ND	240	160	ND	ND	ND ND	ND ND
	05/07/01	ND	190	150	ND	ND	ND	ND
ļ	08/22/01	ND	120	120	ND	ND	ND	ND
	11/04/01	ND	160	120	ND ND	ND	ND	ND
Notes:	02/15/02	ND	150	98	ND	ND	ND	ND

Notes:

units are micrograms per liter (ug/L)

ND = Not detected

NS = Not sampled

PARG = Preliminary Active Remediation Goal

MW-2 was destroyed during excavation of contaminated soil

MW-4 through MW-9 were constructed in August 2000

The following petroleum hydrocarbon constituents have not been detected to date DIPE, ETBE, TAME, TBA, methanol, ethanol, EDB and 1,2-DCA

Table 4
Groundwater Analytical Results
Oakland Truck Stop

	Date		,	MtBE		<u> </u>	ethyl-	
Well Number	Sampled	TPH-g	TPH-d	8260	benzene	toluene	benzene	volenes
MW-1	11/04/96	ND	220	NA NA	ND	ND	ND	xylenes ND
TAT AA - Y	03/05/97	ND	230	NA NA	ND ND	ND ND	ND ND	ND ND
	06/12/97	ND	290	NA NA	ND	ND	ND	ND
	09/09/97	ND	180	NA NA	ND ND	ND ND	ND ND	ND ND
	02/13/98	ND	590	NA NA	ND	ND ND	ND ND	ND
	07/07/98	ND	1,400	2.7	ND	ND	ND ND	ND ND
	10/01/98	ND	1,100	1.8	ND	ND	ND ND	ND
Ì	12/30/98	ND	1,700	2.3	ND ND	ND	ND	ND
	03/21/00	220	3,100	4,800	11	ND	ND	ND
	08/30/00	140	1,600	NS	5.3	ND ND	ND ND	
	11/06/00	51	1,500	2,100	1.0	ND ND	ND ND	ND ND
	02/22/01	140	3,000	1,100	ND	ND	ND	
	05/07/01	ND	3,800	1,100	ND	ND		ND ND
	08/22/01	ND<110	1,800	1,100	ND ND	ND ND	ND ND	ND ND
	11/04/01	ND ND	1,300	1,500	ND	ND	ND ND	ND ND
	02/15/02	ND ND	2,000	770	ND ND	ND ND	ND ND	ND ND
MW-2	11/04/96	910	2,700	NA	120	23	3.5	51
171 41 -2	03/05/97	4,400	2,700	NA NA	1,500	51	24	100
	06/12/97	3,600	2,400	NA NA	1,300	14	12	40
	09/09/97	3,700	970	NA NA	570	31	19	60
:	02/13/98	6,500	2,200	NA NA	2,400	31	ND	ND
	07/07/98	5,200	2,700	1,000,000	2,800	ND	ND	ND
l :	10/01/98	1,200	1,200	360,000	330	12	8.8	11
Well Destroyed	12/30/98	1,000	1,900	360,000	96	ND	ND	ND
MW-3	11/04/96	ND	310	NA	ND	ND	ND	ND
3,21,0	03/05/97	ND	210	NA	ND	ND	ND	ND
:	06/12/97	ND	94	NA NA	ND	ND	ND	ND
	09/09/97	ND	2,300	NA	ND	ND	ND	ND
.	02/13/98	ND	570	NA	ND	ND	ND	ND
	07/07/98	ND	1,100	6.6	ND	ND	ND	ND
1	10/01/98	ND	390	4.8	ND	ND	ND	ND
	12/30/98	ND	64	4,5	ND	ND	ND	ND
	03/21/00	ND	2,800	4.8	ND	ND	ND	ND
[08/30/00	ND	260	NS	1.3	ND	ND	ND
	11/06/00	ND	940	12	ND	ND	ND	ND
	02/22/01	ND	340	26	1.2	1.5	ND	0.74
	05/07/01	140	460	33	0.76	4.7	2.2	14.0
	08/22/01	ND	130	44	ND	ND	ND	ND
	11/04/01	ND	190	43	ND	ND	ND	ND
	02/15/02	ND	780	45	ND	ND	ND	ND
MW-4	08/30/00	1,300	390	NS	64	63	9.7	110
	11/06/00	ND<3,300	170	120,000	80	ND<4.0	ND<5.0	ND<3.0
	02/22/01	ND<3,300	120	150,000	30	ND<3.0	ND<3.0	ND<3.0
	05/07/01	ND<4,200	240	200,000	ND<20	ND<10	ND<5.0	ND<5.0
	08/22/01	ND<5,400	300	190,000	ND<5.0	ND<5.0	ND<5.0	ND<5.0
	11/04/01	ND<5,000	210	170,000	ND<5.0	ND<5.0	ND<5.0	ND<5.0
	02/15/02	ND<5,000	340	160,000	ND<5.0	ND<5.0	ND<5.0	ND<10

APPENDIX A GROUNDWATER SAMPLING LOGS

- 1.175 - 17.4 (1975) - 18.4 (1974) - 1974

							il Number	MW-4
al Depth of thod of Put sing Volum oth to Wate	rging Welt_	2.83 ampling	Volume Fa	ictors:	2″=0.166g/1 3 ′= 8′4	Depth to Water Method of Sam It; 4"=0.653g/ft; (pling Well	water Elevation
eld Parar		arripid ig						
		Temperature	SP	рН	Turbidity	Comments (cok	or/odor/sheen/p	roduct etc.)
	gin purging							
	3	16.5	3692	7.14		0000 1 Sher	in Tast vice	المراع ويديا
	5	16.8	3351	7,14	1		4 E .	· ·
ن		17.4	3999	7,14			, ,	·
ក្រ ents:		 	<u> </u>		·^	0, 0,		
ini Gulai	Dec 20 Inc	tiell be	ζ [D.O.	2.6	@ 17.00	•	
1.	JAT 1357 174	00001						
li								
li								
<u>. </u>								
						i de la companya de l		
								· .
ll Data							l Number	MW-8

Turbidity | Comments (color/odor/sheen/product etc.) Volume (gal) Temperature SP pН Time Begin purging well last rockments Shirt M 1926 244 202 7.14 1883 7,19 WARD IN CIVIL box DO. 2.3 @ 17.6 C° mments:

> W.A. Craig Inc., Dixon, California (707)693-2929

	,, <u> </u>					Mali Name to a distance of
ell Da			A			Well Number 400 - 3 Depth to Water 40 M Groundwater Elevation
		4.51	Casing Ele	evation		Method of Sampling Well
	f Purging Well_ olume	,	Volume E	actors.	2"=0 166a#	n; 4"=0.653g/ft; 6"=1.47g/ft; 8"=2.61g/ft; 12"=5.88g/
ung vi	olume			6 × 3	= 40	ans a
	arameters	Satispining.			· · · · · · · · · · · · · · · · · · ·	
		Temperature	SP	рH	Turbidity	Comments (color/odor/sheen/product etc.)
ime	Begin purging			 		
	30 is 15	18	2609	6.79	 	TDS = 134 ppm
	CANS	17.6	2.535	7.14		1 DI sectioners Very stanky TDST
	1 45 11 2	1		1	Ì	
	-					
	- 					
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
inent	Dry well	_				
.=					3.77	7 11A°C
. 1 1 - 1					3.19	(e,7°C
					3.79	
II Da	ta				3.7%	Well Number Mi()-
II Da	ta th of Well		Casing Ele		3.79	Well Number Mi() - Depth to Water 2,45 Groundwater Elevation
II Da	ta th of Well 4 1	L.35	Casing Ele	evation_		Well Number Mig- Depth to Water 2, 45 Groundwater Elevation Method of Sampling Well
II Da	ta th of Well 1 Furging Well	L35_	Casing Ele	evation_	2"=0 166a/fl	Well Number Mi() Depth to Water 2.15 Groundwater Elevation Method of Sampling Well 4"=0.6530/ft; 6"=1.470/ft; 8"=2.61g/ft; 12"=5.88g/ft
II Da I Depleted of the to Vertical to Ver	ta th of Well 3 1 Purging Well 5 plume Water Prior to S	L35_	Casing Ele	evation_	2"=0 166a/fl	Well Number Mi() - Depth to Water 2,45 Groundwater Elevation
I Da I Depl iod of ing Vo h to V	ta th of Well 1 Purging Well blume Water Prior to S	1.35_ 2,4 Sampling	Casing Ele Volume Fa	evation_ actors: 2	2"=0.166g/ft 2_,4	Well Number Mi()-
II Da I Depl nod of ng Vo th to V	ta th of Well Purging Well blume Water Prior to S arameters Volume (gal)	1.35 2.4 ampling	Casing Ele Volume Fa	evation_	2"=0.166g/ft 2_,4	Well Number Mill
II Da I Depl nod of ng Vo th to V	ta th of Well Purging Well Dlume Water Prior to S arameters Volume (gal) Begin purging	L.35 2.4 ampling Temperature	Casing Ele Volume Fa SP	evation_ ectors: 2	2"=0.166g/ft 2_,4	Well Number Mill
II Da I Depl nod of ng Vo th to V	ta th of Well Purging Well Dlume Water Prior to S arameters Volume (gal) Begin purging	L.35 2.4 campling Temperature well	Casing Ele Volume Fa SP	pH	2"=0.166g/ft 2_,4	Well Number Mill
I Da Deplod of ng Vo	ta th of Well Purging Well Plume Water Prior to S arameters Volume (gal) Begin purging Zal	L.35 2,4 Sampling Temperature well 17.4	Casing Ele Volume Fa SP 377 1 39 9 7	pH	2"=0.166g/ft 2_,4	Well Number Mill
I Da Deplod of ng Vo	ta th of Well Purging Well Dlume Water Prior to S arameters Volume (gal) Begin purging	L.35 2.4 campling Temperature well	Casing Ele Volume Fa SP	pH	2"=0.166g/ft 2_,4	Well Number Mill
II Da I Depl nod of ng Vo th to V	ta th of Well Purging Well Plume Water Prior to S arameters Volume (gal) Begin purging Zal	L.35 2,4 Sampling Temperature well 17.4	Casing Ele Volume Fa SP 377 1 39 9 7	pH	2"=0.166g/ft 2_,4	Well Number Mi()-
II Da I Depl nod of ng Vo	ta th of Well Purging Well Plume Water Prior to S arameters Volume (gal) Begin purging Zal	L.35 2,4 Sampling Temperature well 17.4	Casing Ele Volume Fa SP 377 1 39 9 7	pH	2"=0.166g/ft 2_,4	Well Number Mill
II Da I Depl nod of ng Vo th to V	ta th of Well Purging Well Plume Water Prior to S arameters Volume (gal) Begin purging Zal	L.35 2,4 Sampling Temperature well 17.4	Casing Ele Volume Fa SP 377 1 39 9 7	pH	2"=0.166g/ft 2_,4	Well Number Mill
II Da I Depl nod of ng Vo th to V	ta th of Well Purging Well Plume Water Prior to S arameters Volume (gal) Begin purging Zal	L.35 2,4 Sampling Temperature well 17.4	Casing Ele Volume Fa SP 377 1 39 9 7	pH	2"=0.166g/ft 2_,4	Well Number Mill
II Da I Depl nod of ng Vo th to V	ta th of Well the following Well plume Water Prior to Sarameters Volume (gal) Begin purging Zant Sing yant	L.35 2.4 campling Temperature veil 17.4 (2.9 16.4	Casing Ele Volume Fa SP 3777 37977 3179	pH	2"=0.166g/ff 	Well Number Mili-
II Da ii Depl nod of ing Vo th to V	ta th of Well the following Well plume Water Prior to Sarameters Volume (gal) Begin purging Zant Sing yant	L.35 2.4 campling Temperature veil 17.4 (2.9 16.4	Casing Ele Volume Fa SP 3777 37977 3179	pH	2"=0.166g/ff 	Well Number Mill
II Da al Depl hod of ing Vo th to V	ta th of Well the following Well plume Water Prior to Sarameters Volume (gal) Begin purging Zant Sing yant	L.35 2,4 Sampling Temperature well 17.4	Casing Ele Volume Fa SP 3777 37977 3179	pH	2"=0.166g/ff 	Well Number Mili- Depth to Water 2.15 Groundwater Elevation Method of Sampling Well 12"=5.88g/ft; 4"=0.653g/ft; 6"=1.47g/ft; 8"=2.61g/ft; 12"=5.88g/ft X 3 = 1.2 grals Comments (color/odor/sheen/product etc.)

W.A. Craig Inc., Dixon, California (707)693-2929

FORM WACgwm152198

l Da	ta					Well Number Mu-5
Dept	th of Well	1.48	Casing Ele	evation_		Depth to Water 2, 24 Groundwater Elevation
od of	f Purging Well				•	Method of Sampling Well
ng Vo	olume 2 34		Volume Fa	actors:	2°=0.160g/1	h; 4"=0.653g/fi; 6"=1.47g/fi; 8"=2.61g/fi; 12"=5.88g/ 3 G/A/S
	Nater Prior to Sa	ampling		4	x3 = 7	92 dan
	arameters			· · · · · · · · · · · · · · · · · · ·	1 44 4:4:4	1 - 1- (-closed declahasan hasada yak aka)
пе	Volume (gal)		SP	pН	Turbiany	Comments (color/odor/sheen/product etc.)
	Begin purging	well	<u> </u>	 	 	<u> </u>
	I					
	 			 	 	
	 		<u> </u>	 	 	
	 			 		
4	 			 		
	 					
_		t t		1	T .	
cents	s: Water in	uell box	×		D.c.	2.8 @ 16.9°C
ent	s: WATEZ IN	well bo,	×		D.c.	2.8 @ 16.9°C
ents	WATEZ IN					Well Number_ Mພ-1
Dat Depti	ta th of Well		X Casing Ele	vation		Well Number Mu-1 Depth to Water 3 62 Groundwater Elevation
Dation Deption	ta th of Well [9] Purging Well	1.72_ (Casing Ele			Well Number Mu-1 Depth to Water 3 62 Groundwater Elevation Method of Sampling Well
Dati	ta th of Well [9] Purging Well_	3,12	Casing Ele		2°=0.166g/ft	Well Number MW-9 Depth to Water 3, 62 Groundwater Elevation Method of Sampling Well t; 4"=0.6539/ft; 6"=1.479/ft; 8"=2.61g/ft; 12"=5.88g/f
Dation of to Volume	ta th of Well [9] Purging Well slume Vater Prior to Sa	3,12	Casing Ele		2°=0.166g/ft	Well Number Mu-1 Depth to Water 3 62 Groundwater Elevation Method of Sampling Well
Dation of to Volume	ta th of Well Purging Well lume Vater Prior to Sa	1.12\ ampling\	Casing Ele Volume Fa	ctors: 2	2*=0.166g/ft ⟨?∿੶	Well Number <u>Mいつ</u> Depth to Water <u>3 ん2</u> Groundwater Elevation Method of Sampling Well は、4"=0.653g/ft; 6"=1.47g/ft; 8"=2.61g/ft; 12"=5.88g/f
Dation of to Volume	ta th of Well [9] Purging Well slume Vater Prior to Sa	ampling	Casing Ele Volume Fa	ctors: 2	2*=0.166g/ft ⟨?∿੶	Well Number MW-9 Depth to Water 3, 62 Groundwater Elevation Method of Sampling Well t; 4"=0.653g/ft; 6"=1.47g/ft; 8"=2.61g/ft; 12"=5.88g/f
Dat Deptiod of ng Vointo W	ta th of Well Purging Well lume Vater Prior to Sa	ampling	Casing Ele Volume Fac SP	pH	2"=0.166g/ft (?*** Turbidity	Well Number Mu-9
Dat Deptiod of ng Vointo W	ta th of Well [9] Purging Well slume Vater Prior to Sa	ampling	Casing Ele Volume Fa	pH	2"=0.166g/ft	Well Number Mu-1
Dat Deptiod of ng Vointo W	ta th of Well [9] Purging Well lume Vater Prior to Sa	Temperature well	Casing Ele Volume Fa SP 조심장용 강기준은	pH	2"=0.166g/ft (?*** Turbidity	Well Number Mu-1 Depth to Water 3 62 Groundwater Elevation Method of Sampling Well 4"=0.653g/ft; 6"=1.47g/ft; 8"=2.61g/ft; 12"=5.88g/ft Comments (color/odor/sheen/product etc.)

mments:

WATER in well box

DO. 1.8 @ 17.0 °C

Nell Da	ata		التوندورية بالبيدة المحادث		Programme and the second secon	Well Number MUC-6
otal Dep	oth of Well	6aEA	Casing El	evation		Depth to Water 3,22 Groundwater Elevation
Method o	f Purging Well_					Method of Sampling Well
asing V		<u> </u>	Volume F	actors:	2"=0.166g/1	n; 4"=0.653g/n; 6"=1.47g/n; 8"=2.61g/n; 12"=5.88g/n
تنتقف كالمسأودي	Water Prior to S	sampling	وسيدون	. الكالس	X_X	() - 600
	arameters	(-			7	10
1 Ime		Temperature	SP	рН	IUDICITY	Comments (color/odor/sheen/product etc.)
	Begin purging	14, S	17. 11	7.14	25	11 5 Galat 2005
	 	14.6	1211	5,14	3	shim light ador
	+ 5	14.7	117 2	7.14	*	11
	1		<u> </u>	†		
147		 		1		
	-			1		
		<u> </u>		.i	L	
ر ماند در اور اور اور اور اور اور اور اور اور او						
_ പമപ ent	s:				C 4 (10.30 Costredurge
emin ent ا	S: DATED IN	well box	- I).o,	2,4 @	18.3°C Costreduy
ے ا	S: DATED IN	well box	£).o.	2.4 @	18.3°C Costreduy
	S: DATED IN	well box	[).o.	2,4 @	18.3°C Costredunga
anaicent (S: DATED IN	well box	£).o.	2,4 @	18.3°C Costredury
ematent L	S: DATED IN	well box	Σ).o.	2,4 @	18.3°C Costreduy
omatent L	S: DATED IN	well box	Ε).o,	2.4 @	18.3°C Costredurge
ana ant	S: DATED IN	well box	[).o.	2.4 @	
emment (DATED IN					Well Number_ M(i)=7
rell Da	ta th of Well_19.		Casing Ele			Well Number <u>M() </u>
fell Da	ta th of Well_[9]	.39	Casing Ele	evation_		Well Number M(±) = 7 Depth to Water € Groundwater Elevation Method of Sampling Well
fell Darotal Deplethod of asing Vo	ta th of Well	2,1	Casing Ele	evation_	"=0.166g/ft	Well Number N() / / Depth to Water → Groundwater Elevation Method of Sampling Well ; 4"=0.653g/ft; 6"=1.47g/ft; 8"=2.61g/ft; 12"=5.88g/ft
fell Davatal Deplement of asing Vo	ta th of Well	2,1	Casing Ele	evation_	"=0.166g/ft	Well Number M(±) = 7 Depth to Water € Groundwater Elevation Method of Sampling Well
fell Davatal Deplement of asing Vo	ta th of Wellf9. Purging Well lume Vater Prior to Sa	39 (Casing Ele Volume Fa	evation_ actors: 2	"=0.166g/ft;	Well Number_ M(い) / Depth to Water(ふう Groundwater Elevation
fell Davatal Deplement of asing Vo	ta th of Well [9] Purging Well lume Vater Prior to Sa	39 (Casing Ele	evation_	"=0.166g/ft;	Well Number_ M(い) / Depth to Water を Groundwater Elevation Method of Sampling Well
fell Daratal Deplethed of asing Vo	ta th of Well 19 Purging Well lume Vater Prior to Sa Tameters Volume (gal) Begin purging	39 ampling Temperature	Casing Ele Volume Fa SP	vation_ actors: 2	"=0.166g/ft, 2\ Turbidity	Well Number_ M(い) / Depth to Water を Groundwater Elevation Method of Sampling Well
fell Daratal Deplethed of asing Vo	ta th of Well [9] Purging Well lume Vater Prior to Sa	ampling Temperature well (8.3	Casing Ele Volume Fa	pH	"=0.166g/ft;	Well Number_ M(いつ) Depth to Water(ふくう Groundwater Elevation Method of Sampling Well ; 4"=0.653g/ft; 6"=1.47g/ft; 8"=2.61g/ft; 12"=5.88g/ft × 3 < といもられる

W.A. Craig Inc., Dixon, California (707)693-2929

mments: Collected simple MW-7 from top of tribes (decent)
WATER IN WELL DOX
D.O.A.M. @ 18-30

andria. 1980: Carlos de Carlo 1980: Carlos de
APPENDIX B LABORATORY ANALYTICAL REPORTS

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

W. A. Craig, Inc.	Client Project ID: #3628; Rinehart	Date Sampled: 02/15/2002
6940 Tremont Road		Date Received: 02/15/2002
Dixon, CA 95620-9603	Client Contact: Tim Cook	Date Extracted: 02/15/2002
	Client P.O:	Date Analyzed: 02/15/2002

02/25/2002

Dear Tim:

Enclosed are:

- 1). the results of 9 samples from your #3628; Rinehart project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Edward Hamilton, Lab Director

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com/E-mail: main@mccampbell.com/

W. A. Craig, Inc.	Client Project ID: #3628; Rinehart	Date Sampled: 02/15/2002
6940 Tremont Road		Date Received: 02/15/2002
Dixon, CA 95620-9603	Client Contact: Tim Cook	Date Extracted: 02/20-02/22/2002
	Client P.O:	Date Analyzed: 02/20-02/22/2002

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

EPA meth	ods 5030, modifie	d 8015, and	8020 от 602; Са	lifomia RW(QCB (SF Bay	Region) meti	hod GCFID(50	30)	
Lab ID	Client ID	Matrix	TPH(g) ⁺	МТВЕ	Benzene	Toluene	Ethyl- benzene	Xylenes	% Recovery Surrogate
90550	MW-1	W	ND	610	ND	ND	ND	ND	103
90551	MW-3	W	ND	38	ND	ND	ND	ND	108
90552	MW-4	W	ND<5000	160,000	ND<5.0	ND<5.0	ND<5.0	ND<10	97
90553	MW-5	W	ND<1100	33,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	98
90554	MW-6	W	ND<960	23,000	2.6	4.5	ND<1.0	4.2	99
90555	MW-7	W	96,000,a,h	180,000	21,000	7300	2600	13,000	102
90556	MW-7D	W	160,000,a,h	170,000	30,000	27,000	3700	19,000	103
90557	MW-8	W	ND<3400	110,000	ND<5.0	ND<5.0	ND<5.0	ND<5.0	97
90558	MW-9	W	ND	92	ND	ND	ND	ND	101
							-		
otherwi	g Limit unless se stated; ND	W	50 ug/L	5.0	0.5	0.5	0.5	0.5	
	detected above porting limit	S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

[&]quot; cluttered chromatogram; sample peak coelutes with surrogate peak

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com/E-mail: main@mccampbell.com/

W. A. Craig, Inc.	Client Project ID: #3628; Rinehart	Date Sampled: 02/15/2002
6940 Tremont Road		Date Received: 02/15/2002
Dixon, CA 95620-9603	Client Contact: Tim Cook	Date Extracted: 02/15/2002
	Client P.O:	Date Analyzed: 02/15/2002

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel *

EPA methods modified 8015, and 3550 or 3510; California RWQCB (SF Bay Region) method GCF[D(3550) or GCF[D(3510)

Lab ID Client ID		Matrix	TPH(d) [†]	% Recovery Surrogate
90550	MW-1	w	2000,c	104
90551	MW-3	W	780,g,b	103
90552	MW-4	w	340,b,g	105
90553	MW-5	w	480,c	102
90554	MW-6	W	910,c	103
90555	MW-7	w	21,000,d,h	100
90556	MW-7D	W	29,000,d,h	100
90557	MW-8	W	1500,c	93
90558	MW-9	W	150,c	92
Reporting Limit	unless otherwise not detected above	W	50 ug/L	
	rting limit	S	1.0 mg/kg	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in ug/L

^{*}The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment.

^{*} cluttered chromatogram resulting in cocluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Client Project ID: #3628; Rinehart

Date Sampled: 02/15/2002

W. A. Craig, Inc.	Client Project ID: #3628; Rinehart Date Sampled: 02/15/200						
6940 Tremont Road				Date Received: 02/15/2002			
Dixon, CA 95620-9603	Client Contact:	Tim Cook		Date Extracted	: 02/20-02	/21/2002	
	Client P.O:			Date Analyzed	: 02/20-02	/21/2002	
Se EPA method 8260 modified	even Oxygenated	Volatile Or	ganics By GC/	MS			
Lab ID	90550	90551	90552	90553		· · · · · · · · · · · · · · · · · · ·	
Client ID	MW-1	MW-3	MW-4	MW-5	Reporti	ng Limit	
Matrix	W	W	W	W	S	w	
Compound		Conce	entration*		ug/kg	ug/L	
Di-isopropyl Ether (DIPE)	ND<20	ND	ND<2500	ND<1250	5.0	1.0	
Ethyl tert-Butyl Ether (ETBE)	ND<20	ND	ND<2500	ND<1250	5.0	1.0	
Methyl tert-Butyl Ether (MTBE)	770	45	160,000	33,000	5.0	1.0	
tert-Amyl Methyl Ether (TAME)	ND<20	ND	ND<2500	ND<1250	5.0	1.0	
tert-Butanol	ND<100	ND	ND<12,500	ND<6250	25	5.0	
Methanol	ND<10,000	ND	ND<1,250,000	ND<625,000	2500	500	
Ethanol	ND<1000	ND	ND<125,000	ND<62,500	250	50	
	Surro	gate Recoveries	(%)	<u></u>		<u>.</u>	
Dibromofluoromethane	107	106	97	99	11/%. <u>(jung</u>		
Comments:							

^{*} water samples are reported in ug/L, soil and sludge samples in ug/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L ND means not detected above the reporting limit; N/A means surrogate not applicable to this analysis

⁽h) lighter than water immiscible sheen is present; (i) liquid sample that contains greater than \sim 5 vol. % sediment; (j) sample diluted due to high organic content

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

W. A. Craig, Inc.	Client Project	Date Sampled: ()2/15/200)2			
6940 Tremont Road				Date Received: 02/15/2002			
Dixon, CA 95620-9603	Client Contact	Tim Cook		Date Extracted:	02/20-02	/21/2002	
	Client P.O:		Í	Date Analyzed:	02/20-02	/21/2002	
Se EPA method 8260 modified	even Oxygenated	d Volatile Org	anics By GC	MS			
Lab ID	90554	90555	90556	90557	_		
Client ID	MW-6	MW-7	MW-7D	MW-8	Report	ing Limit	
Matrix	w	w	W	W	s	w	
Compound		Concentration* ug/kg					
Di-isopropyl Ether (DIPE)	ND<1000	ND<5000	ND<5000	ND<2500	5.0	1.0	
Ethyl tert-Butyl Ether (ETBE)	ND<1000	ND<5000	ND<5000	ND<2500	5.0	1.0	
Methyl tert-Butyl Ether (MTBE)	26,000	200,000	200,000	91,000	5.0	1.0	
tert-Amyl Methyl Ether (TAME)	ND<1000	ND<5000	ND<5000	ND<2500	5.0	1.0	
tert-Butanol	ND<5000	ND<25000	ND<25000	ND<12,500	25	5.0	
Methanol	ND<500,000	ND<2,500,000	ND<2,500,000	ND<1,250,000	2500	500	
Ethanol	ND<50,000	ND<250,000	ND<250,000	ND<125,000	250	50	
	Surro	gate Recoveries ((%)			<u>. </u>	
Dibromofluoromethane	98	97	95	94			
Comments:		h	h				

^{*} water samples are reported in ug/L, soil and sludge samples in ug/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L ND means not detected above the reporting limit; N/A means surrogate not applicable to this analysis

⁽h) lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~5 vol. % sediment; (j) sample diluted due to high organic content

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

W. A. Craig, Inc.	Client Project I	D: #3628; Rinehart	Date Sampled:	02/15/200	2
6940 Tremont Road			Date Received:	02/15/200)2
Dixon, CA 95620-9603	Client Contact:	Tim Cook	Date Extracted	: 02/20-02	/21/2002
	Client P.O:		Date Analyzed	02/20-02	/21/2002
Se EPA method 8260 modified	ven Oxygenated	l Volatile Organics By GO	C/MS		
Lab ID	90558				
Client ID	MW-9			Reportir	ng Limit
Matrix	W			S	w
Compound		Concentration*	<u> </u>	ug/kg	ug/L
Di-isopropyl Ether (DIPE)	ND<2.5			5.0	1.0
Ethyl tert-Butyl Ether (ETBE)	ND<2.5			5.0	1.0
Methyl tert-Butyl Ether (MTBE)	98			5.0	1.0
tert-Amyl Methyl Ether (TAME)	ND<2.5			5.0	1.0
tert-Butanol	ND<12.5			25	5.0
Methanol	ND<1250			2500	500
Ethanol	ND<125			250	50
	Surro	ogate Recoveries (%)			
Dibromofluoromethane	105				
Comments:					
* water samples are reported in ug/L, soil ND means not detected above the reportion (h) lighter than water immiscible sheen i	ng limit; N/A means s	surrogate not applicable to this an	alysis		-

high organic content

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

W. A. Craig, Inc.		Client Proj	ect ID: #3628; Rinehart	Date Sampled:	Date Sampled: 02/15/2002			
6940 Tremon	t Road			Date Received	Date Received: 02/15/2002			
Dixon, CA 95	5620-9603	Client Con	tact: Tim Cook	Date Extracted	: 02/20-02/21/2002			
		Client P.O:	4.74	Date Analyzed	: 02/20-02/21/2002			
EPA method 826	Ethylene Dibror	nide (1,2-Dil	promoethane) and 1,2-1	Dichloroethane (1,2-De	CA)			
Lab ID	Client ID	Matrix	EDB	1, 2- DCA	% Recovery Surrogate			
90550	MW-I	w	ND<20,j	ND<20	107			
90551	MW-3	w	ND	ND	106			
90552	MW-4	w	ND<2500,j	ND<2500	97			
90553	MW-5	w	ND<1250,j	ND<1250	99			
90554	MW-6	w	ND<1000.j	ND<1000	98			
90555	MW-7	w	ND<5000,j,h	ND<5000	97			
90556	MW-7D	w	ND<5000,j,h	ND<5000	95			
90557	MW-8	w	ND<2500.j	ND<2500	94			
90558	MW-9	W	ND<2.5,j	ND<2.5	105			
	nit unless otherwise	w	1.0 ug/L	1.0				
	norting limit	s	5.0 ug/kg	5.0				

^{*} water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg, wipes in ug/wipe and all TCLP / SPLP extracts in ug/L

Edward Hamilton, Lab Director

DHS Certification No. 1644

h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content.

110 2nd Ave. South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC REPORT

EPA 8015m + 8020

Date: 02/20/02					Matrix:	Water	
		%Rec	overy				
Compound	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
SampleID: 22002					Instrume	nt: Go	C-3
Surrogate1	ND	102.0	100.0	100.00	102	100	2.0
Xylenes	ND	30.0	29.8	30.00	100	99	0.7
Ethylbenzene	ND	9.9	9.8	10.00	99	98	1.0
Toluene	ND	10.1	9.7	10.00	101	97	4.0
Benzene	ND	8.5	9.4	10.00	85	94	10.1
MTBE	ND	8.9	8.6	10.00	89	86	3.4
TPH (gas)	ND	89.4	87.0	100.00	89	87	2.7

% Re covery =
$$\frac{(MS-Sample)}{AmountSpiked} \cdot 100$$

RPD= $\frac{(MS-MSD)}{(MS+MSD)} \cdot 2\cdot 100$

110 2nd Ave. South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC REPORT

EPA 8015m + 8020

Date: 02/15/02	Extractio	n: EPA (5030		Matrix:	Water	
	Concentration: ug/L					%Recovery	
Compound	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
SamplelD: 21102					Instrume	nt: GC-	2 B
Surrogate1	ND	89.0	90.0	100.00	89	90	1.1
TPH (diesel)	ND	6650.0	6750.0	7500.00	89	90	1.5

% Re covery =
$$\frac{\text{(}MS-Sample\text{)}}{AmountSpiked} \cdot 100$$

110 2nd Ave. South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC REPORT

VOCs (EPA 8240/8260)

Date: 02/20/02	Extraction	Extraction: EPA 5030					
Compound		Concent	ration:	ug/L	%Rec	overy	
	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
SampleID: 21102					Instrumer	<u>nt:</u> GC	-10
Surrogate	ND	100.0	98.0	100.00	100	98	2.0
tert-Amyl Methyl Ether	ND	9.5	9.4	10.00	95	94	1 .1
Methyl tert-Butyl Ether	ND	9.3	9.2	10.00	93	92	1.1
Ethyl tert-Butyl Ether	ND	9.9	9.9	10.00	99	99	0.0
Di-isopropyl Ether	ND	9.8	9.8	10.00	98	98	0.0
Toluene	ND	10.5	10.5	10.00	105	105	0.0
Benzene	ND	10.0	10.3	10.00	100	103	3.0
Chiorobenzene	ND	10.3	10.5	10.00	103	105	1.9
Trichloroethene	ND	9.1	9.3	10.00	91	93	2.2
1,1-Dichloroethene	ND	11,1	11.3	10.00	111	113	1.8

% Re covery =
$$\frac{(MS-Sample)}{AmountSpiked} \cdot 100$$

$$RPD = \frac{(MS - MSD)}{(MS + MSD)} \cdot 2.100$$

MCCAMPBELL ANALYTICAL INC. CHAIN OF CUSTODY RECORD 110 2nd AVENUE SOUTH, #D7 TURN AROUND TIME PACHECO, CA 94553-5560 24 HOUR 48 HOUR RUSH Fax: (925) 798-1622 Telephone: (925) 798-1620 Analysis Request Other Comments Bill To: Report To: Company: W. A. Craig Grease (5520 E&F/B&F) 6940 Tremont Road EPA 625 / 8270 / 8310 Dixon, CA 95620-9603 XXO Total Petroleum Hydrocarbons (418.1) Fax: (707) 693-2922 Tele: (707) 693-2929 Project Name: RINEMMET 3628 BTEX ONLY (EPA 602 / 8020) Project #: BPA 608 / 8080 PCB's ONES Lead (7240/7421/239,2/6010) Project Location: OAK LOW & BTEX & TPH as Gas (602/8020 EPA 624 / 8240 (82606 Sampler Signature: -Total Petroleum Oil & METHOD TPH as Diesel (8015) SAMPLING MATRIX PRESERVED PAH's / PNA's by Type Containers CAM-17 Metals EPA 601 / 8010 EPA 625 / 8270 LUFT 5 Metals # Containers LOCATION SAMPLE ID Air Sludge Other HNO, Date Time Water Other Soil HC RCI S. * 90550 415 Mω-1 90551 MW-3 90552 MW-6 90553 X MW-7 MW-7D 90554 MW-8 MW-9 90555 90556 90557 90558 Received By: Remarks: Time: 15/02 Date: Refinanished By: 15 VOASTORGINETALSTOTICE Received By: Date: Time: Reimquished By: **PRESERVATION** KEND APPROPRIATE NEXTO CONTATION Date. Time: Received By: Relinquished By: HEAD SPACE ABSENT CONTARGERS