

USA GASOLINE CORPORATION

30101 Agoura Court, Ste. 200, Agoura Hills, CA 91301-4311 (818) 865-9200 FAX (818) 865-0092

ENVIRORMENTAL PROTECTION

95 MAY -9 PM 2: 11

May 4, 1995

Alameda County Health Agency
Department of Environmental Health
1131 Harbor Bay Parkway
Alameda, CA 94502

4490

RE:

USA Gasoline Station #57 10700 MacArthur Blvd. Oakland, California

Dear Mr. Chen,

Please find enclosed, a copy of the Site Assessment Report for the above referenced site. This report was prepared by Alton GeoScience for USA Gasoline Corporation. We appreciate all your cooperation.

If you have any questions please call me at (818) 865-9200 Ext 214.

Thank you.

Sincerely,

Srikanth Dasappa

Environmental Engineer

SUPPLEMENTARY SITE ASSESSMENT REPORT April 24, 1995

FORMER USA GASOLINE STATION #57 10700 MacArthur Boulevard Oakland, California 94605

Alton Project No. 41-0034

Prepared For:

USA GASOLINE CORPORATION 30101 Agoura Court, Suite 200 Agoura Hills, California 91391-0092

Prepared By

Ailsa S. Le May

Geologist

Matthew W. Katen, RG Senior Geologist

No. 5167

ALTON GEOSCIENCE 30A Lindbergh Avenue Livermore, California 94550

TABLE OF CONTENTS (Continued)

Tables

- 1 Summary of Soil Sample Analysis
- 2 Summary of Groundwater Monitoring and Analysis

Appendices

- A General Field Procedures, Boring Logs, and Well Construction Details
- B Analytical Methods, Official Laboratory Reports, and Chain of Custody Records
- C Survey Data

1.0 INTRODUCTION

This report presents the findings of a supplementary site assessment investigation conducted at Former USA Gasoline Station #57, located at 10700 MacArthur Boulevard in Oakland, California (Figure 1). This work was performed in accordance with the Alameda County Health Care Services Agency (ACHCSA), Department of Environmental Health requirements, and the Alton Geoscience site assessment workplan dated September 8, 1994.

The planned site assessment activities were performed to:

- further characterize the lateral and vertical extent of soil hydrocarbons beneath the site;
- further characterize the lateral extent of dissolved-phase hydrocarbons beneath the site; and
- establish the local ground water gradient beneath the site.

2.0 SITE DESCRIPTION

Present Site Use:

The site is currently vacant (Figure 2).

Past Site Use:

The site was formerly a retail fuel station dispensing gasoline and diesel fuel from four underground storage tanks (USTs) located in the southern portion of the site. On July 19, 1994, four USTs (three 12,000-gallon tanks containing gasoline, and one 8,000-gallon tank containing diesel fuel)

were excavated and removed from the site.

Future Site Use:

There are plans to redevelop the shopping center which occupies the site

and surrounding property.

Adjacent Property:

The site is located in the southeast corner of the Foothill Square Shopping Center, which is bounded on the north by 106th Avenue, on the east by Foothill Boulevard, on the south by 108th Avenue, and on the west by MacArthur Boulevard. The immediate vicinity of the site is an asphalt parking area. Residences are located south of the site, across 108th Avenue. Highway 580, a multi-lane, limited access freeway, is located

east of the site, across Foothill Boulevard.

Geography:

The site is located in the City of Oakland, California, approximately 1 mile north of downtown San Leandro, at an elevation of approximately 80 feet above mean sea level (National Geodetic Vertical Datum [NGVD]-1929). The site is near the eastern edge of the East Bay Plain; the Berkeley Hills rise abruptly east of the site. The topography in the site vicinity slopes to the southwest.

Regional Geology:

The site is located in the East Bay Plain, in the eastern part of the San Francisco Bay area. Much of the East Bay Plain is underlain by the Temescal formation and the Alameda formation, which are of Pleistocene age (DWR, 1975). The Temescal formation consists of interfingering layers of clayey gravel, sandy silty clay, and various clay-silt-sand mixtures. The formation varies in thickness to a maximum of approximately 60 feet. Underlying the Temescal formation is the Alameda formation, which consists of unconsolidated continental and marine gravels, sands, silts, and clays, with some shells and organic material in places. The Alameda formation has a maximum known thickness of 1,050 feet (Radbruch, 1957).

Regional Hydrogeology:

The site is located in the East Bay Plain Ground Water Area, a subarea of the Santa Clara Valley Basin. Groundwater occurs in unconsolidated Quaternary alluvium, including the Alameda formation (DWR, 1975).

Ground Water Quality and Usage:

Most water used in the area is imported from the Sierra Nevada by the East Bay Municipal Utilities District. Scattered wells supply individual dwellings, and a few commercial and industrial developments (DWR, 1975).

3.0 BACKGROUND SITE CONDITIONS

Site conditions prior to this investigation include the following:

Two onsite groundwater monitoring wells (S-1 and S-2) were present at the site.

- The static water level was previously calculated to be approximately 17.3 feet below grade (fbg) (WEGE, 1994). The groundwater gradient and direction were not determined.
- Dissolved-phase hydrocarbons were detected in ground water samples collected from Monitoring Wells S-1 and S-2.
- Adsorbed-phase gasoline hydrocarbons were detected in soil samples collected beneath the former gasoline USTs at depths of approximately 12.5 to 19.5 fbg (maximum concentration of total petroleum hydrocarbons as gasoline [TPH-G] of 1,400 parts per million [ppm]), and beneath the product lines south of the former dispensers at a depth 3.5 fbg (maximum TPH-G concentration of 4,500 ppm). Adsorbed-phase diesel hydrocarbons were detected beneath the former diesel UST at depths of approximately 12.5 to 15.5 fbg (maximum concentration of total petroleum hydrocarbons as diesel [TPH-D] of 230 ppm) (USA Gas, 1994).
- Soil samples collected by Alton Geoscience in October, 1994 from the former UST tank cavity during over excavation activities indicated concentrations of hydrocarbon-impacted soil at approximately 12 and 13 fbg to the south and southwest of the former tanks. Samples TC3-3, TC3-4, TC3-5, and TC3-6 yielded TPH-G concentrations of 300 ppm, 510 ppm, 2,400 ppm, and 940 ppm, respectively. Soil Sample TC3-3, directly adjacent to the former diesel tank also contained 330 ppm TPH-D (Alton Geoscience, December 13, 1994).
- Over excavation of the former UST cavity extended to a maximum depth of approximately 18 fbg. Alton Geoscience personnel observed no water infill in the cavity. Friable and fractured sandstone was observed at approximately 13 fbg in the south portion of the tank cavity.

4.0 FIELD ACTIVITIES

4.1 DRILLING AND SOIL SAMPLING

On February 28 through March 2, 1995, Alton Geoscience conducted a supplementary site assessment at Former USA Gasoline Station #57. The investigation included the drilling of eight soil borings (B-1 through B-8) to depths from 12 to 46 fbg, and the installation of one groundwater monitoring well (MW-3) to a depth of 45 fbg. Refer to Figure 2 for the soil boring and well locations. The soil boring proposed to be drilled in the area between the former diesel

tank and the pump island was not drilled due to inaccessibility. The groundwater monitoring well was developed approximately 72 hours after installation.

Soil samples were collected at depth intervals of 5 feet or less using a California-modified split spoon sampler. Refer to Appendix A for details regarding general field procedures, boring logs, and groundwater monitoring well construction details. See Figures 3 and 4 for geologic cross sections showing soil types beneath the site.

Select soil samples collected during drilling were submitted to a state-certified laboratory and were analyzed for total petroleum hydrocarbons as gasoline (TPH-G) using EPA Method 8015 modified for gasoline, total petroleum hydrocarbons as diesel (TPH-D) using EPA Method 8015 modified for diesel, and toluene, ethylbenzene, and total xylenes (BTEX) using EPA Method 8020. As originally proposed in the workplan, soil samples were not analyzed for total lead as per the ACHCSA, Department of Environmental Health letter, dated November 2, 1994. The results of the laboratory analysis for soil samples are listed in Table 1, and select results are shown on Figure 5. Refer to Appendix B for a description of the analytical methods used and copies of the Official Laboratory Reports, Quality Assurance/Quality Control (QA/QC) Reports, and Chain of Custody Records.

4.2 WELL ELEVATION SURVEY

On March 15, 1995, the groundwater monitoring wells were surveyed relative to a City of Oakland benchmark by Ron Archer, Civil Engineer Inc. Refer to Appendix C for the survey data.

4.3 FLUID LEVEL MONITORING AND GROUNDWATER SAMPLING

On March 3, 1995 fluid levels were measured and groundwater samples collected from three monitoring wells as per standard regulatory protocol. The groundwater samples were submitted to a state-certified laboratory for analysis for TPH-G using EPA Method 8015 modified for gasoline, TPH-D using EPA Method 8015 modified for diesel, and BTEX using EPA Method 8020. Results of the laboratory analysis for water samples are listed in Table 2 and shown in Figure 6. A groundwater elevation contour map is shown in Figure 7.

4.4 SOIL AND WATER DISPOSAL

Approximately 3.5 cubic yards of soil cuttings were generated during drilling activities. The soil was stockpiled on and covered with plastic sheeting pending disposal at a certified waste disposal facility. Approximately 200 gallons of rinsate water and groundwater generated during well development and groundwater sampling activities were stored onsite in DOT-approved drums pending transport and disposal at a certified waste disposal facility.

5.0 FINDINGS

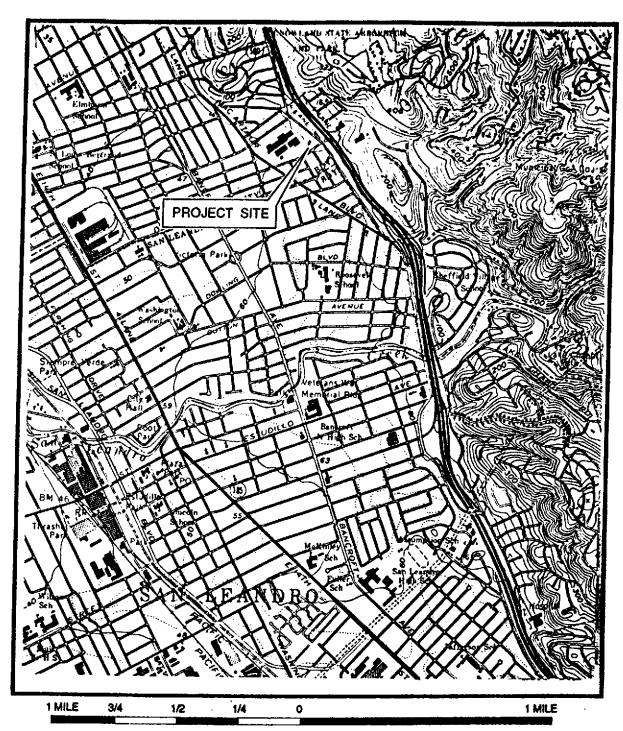
The results of this investigation are summarized as follows:

- Average depth to static groundwater at the site is approximately 14 fbg. The local hydraulic gradient established by water levels in Monitoring Wells S-1, S-2, and MW-3 is calculated to be approximately 0.015 foot-per-foot towards the north-northeast.
- The depth to first encountered groundwater in MW-3 was approximately 40 fbg, as measured on February 28, 1995. After approximately 20 hours, the depth to groundwater was measured to be approximately 31 fbg. The depth to first encountered groundwater in B-1 and B-2 was 44 and 29 fbg, respectively. The static groundwater level was measured to be approximately 14 fbg on March 3, 1995. No groundwater was encountered at a depth of 18 fbg in the excavation cavity of the former USTs during over excavation activities performed during the month of October, 1994 (the excavation remained open for an extended period of time).
- Groundwater sampling activities on March 3, 1995, showed that the groundwater monitoring wells did not yield large quantities of water; the recharge rate in MW-3 was approximately 5 gallons per hour.
- Silty clays and sandy and clayey silts were encountered from 0 to 13 fbg in some areas of the site. Gravelly sand was encountered at approximately 13 to fbg in Soil Borings B-1 and MW-3. From approximately 16 fbg to the entire depth of investigation, fractured and friable sandstone interbedded with weathered relatively unconsolidated clays and silts.
- Soil hydrocarbon-concentrations were detected in Soil Borings B-1, B-2, B-3, B-6, B-8 and MW-3 (maximum TPH-G concentrations of 540 and 2.6 ppm, respectfully were detected in Soil Boring B-1 at a depth of 13.0 feet).

- TPH-D concentrations were detected in soil samples collected from Borings B-1, B-2, B-3, B-6, and MW-3. A maximum TPH-D concentration of 55 ppm was detected in Soil Boring B-1 at a depth of 13.0 feet.
- No soil hydrocarbon concentrations were detected in Soil Borings B-4, B-5, or B-7 in the area of the former pump islands.
- Dissolved-phase TPH-G, TPH-D, and BTEX concentrations were detected in the
 monitoring wells at the site. Maximum TPH-G, TPH-D, and Benzene concentrations of
 24,000, 6,000, and 1,900 ppb, respectfully, were detected in Monitoring Well S-2, located
 downgradient of the former tank cavity.

6.0 CONCLUSIONS

Based on the results of this investigation, Alton Geoscience concludes:


- Local groundwater flow direction beneath the site flows in a north-northeasterly direction.
- Based on the first encountered groundwater depths during drilling (29 to 44 fbg), the lack of groundwater encountered during tank excavation activities to a depth of 18 fbg, and the slow recharge characteristics of MW-3 during installation, it appears that groundwater exists under confined or semi-confined conditions below a depth of approximately 20 fbg. Groundwater stabilizes at a depth of approximately 13 to 15 fbg in wells at the site:
- The onsite monitoring wells will not readily yield large quantities of water as indicated by the very slow well recharge rates observed during sampling activities.
- The soil hydrocarbons have been adequately characterized vertically in Soil Borings B-1 and MW-3.
- Soil hydrocarbon concentrations are present in the soil beneath the site adjacent to the southeast/southwest corner of the former USTs. Hydrocarbons may have migrated along the gravelly sand and fractured bedrock present at depths of 13 to 16 fbg in the southwest corner of the tank cavity.

- Soil hydrocarbon concentrations were found in low to non-detectable amounts in borings
 drilled in the area of the former pump islands. The lateral and vertical extent of soil
 hydrocarbons have been adequately characterized in the vicinity of the former pump
 islands.
- Dissolved-phase hydrocarbon concentrations are present in the water beneath the site. The lateral extent of the dissolved-phase plume has not been characterized beneath the site.

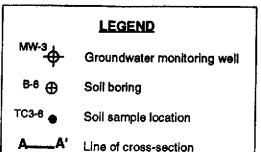
The site assessment activities summarized in this report have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, expressed or implied, is made regarding the conclusions and recommendations presented in this report. The conclusions and recommendations are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.

7.0 REFERENCES

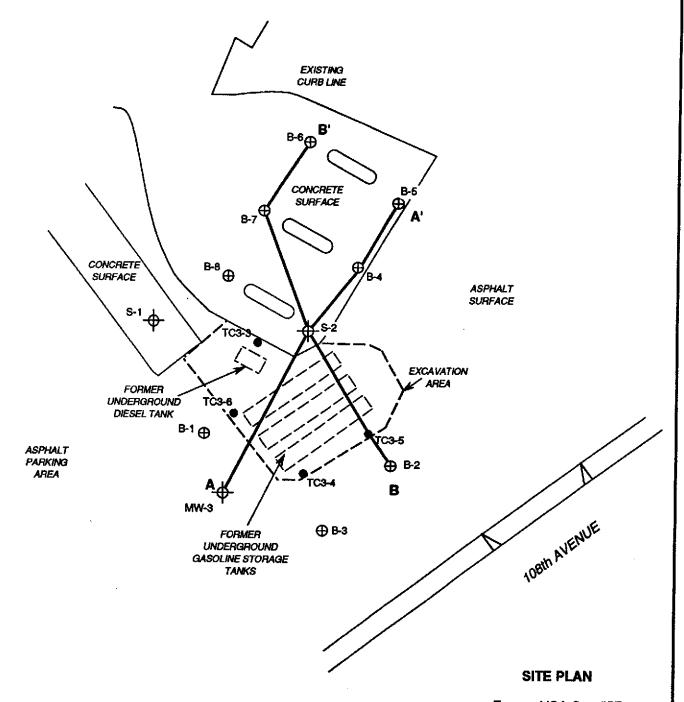
- Alton Geoscience, September 8, 1994, Supplementary Site Assessment Workplan for Former USA Gasoline Station #57, 10700 MacArthur Boulevard in Oakland, California.
- Alton Geoscience, December 13, 1994, Letter Report for Tank Cavity Soil Sampling Activities for Former USA Gasoline Station #57, 10700 MacArthur Boulevard in Oakland, California.
- California Department of Water Resources (DWR), October 1975, Sea-Water Intrusion in California; Inventory of Coastal Ground Water Basins, Bulletin No. 63-5.
- Radbruch, Dorothy H., 1957, Areal and Engineering Geology of the Oakland West Quadrangle, California, United States Geologic Survey Miscellaneous Geologic Investigations Map I-239.
- Western Geo-Engineers (WEGE), February 23, 1994, USA Station #57 Groundwater Monitoring, Oakland, Alameda County, California on 1/27/94 for USA Gasoline Corporation.
- USA Gasoline, 1994. Results of tank cavity soil sampling activities carried out by WEGE during the month of September, 1994 (provided by USA Gasoline, personal communication).

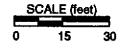
SCALE 1:24,000

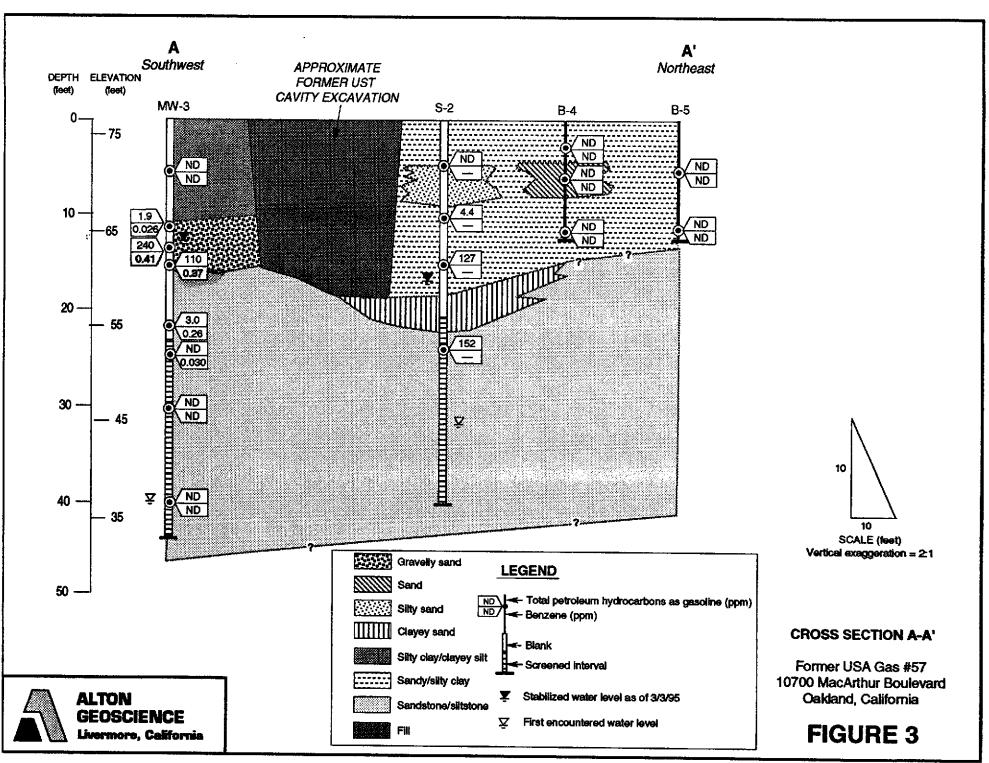
Source: U.S.G.S. Map San Leandro Quadrangle California 7.5 Minute Series

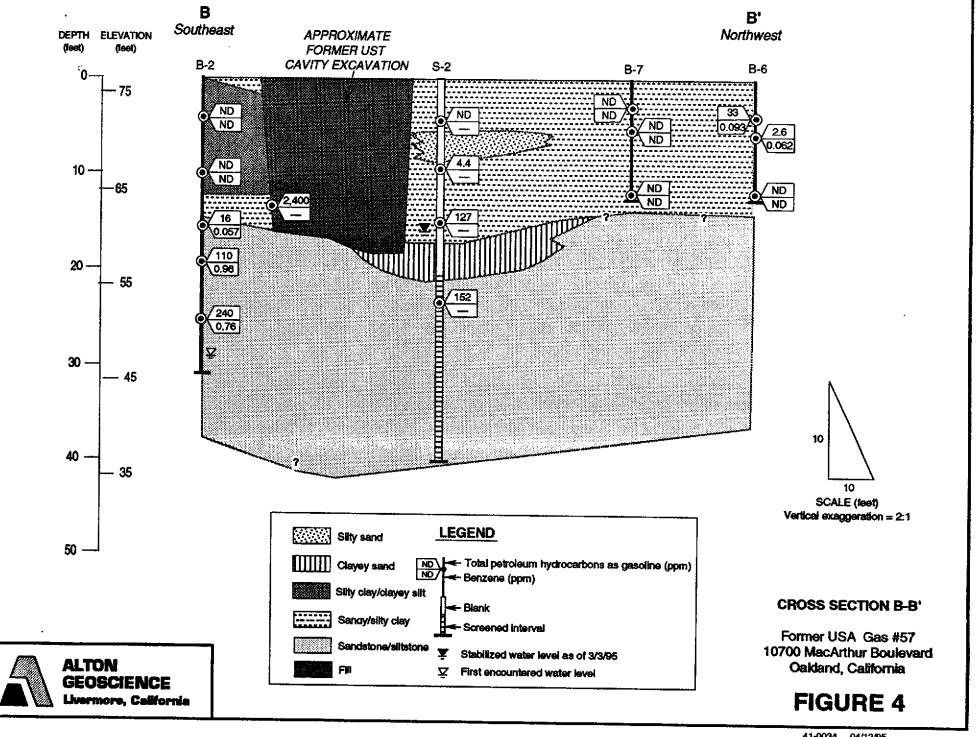

VICINITY MAP

Former USA Gas #57 10700 MacArthur Boulevard Oakland, California


FIGURE 1


Project No. 41-0034





Former USA Gas #57 10700 MacArthur Boulevard Oakland, California

FIGURE 2

MONITORING WELL INSTALLATION

Monitoring wells are constructed of 4-inch-diameter, flush-threaded Schedule 40 PVC blank and screened (0.020-inch slot size) casing. Where possible, the screened interval will extend at least 10 feet above, and 10 to 20 feet below, the top of the groundwater table. The annular space surrounding the screened casing is backfilled with Sri Supreme # 8 sand (filter pack) to approximately 2 feet above the top of the screened section.

Recovery wells are constructed of 6-inch diameter flush-threaded Schedule 40 PVC blank and screened (0.030-inch slot size) casing. Where possible, the screened interval will extend at least 10 feet above, and 10 to 20 feet below, the top of the groundwater table. The annular space surrounding the screened casing is backfilled with medium aquarium sand (filter pack) to approximately 2 feet above the top of the screened section.

Vapor Extraction wells are constructed of 4-inch diameter flush-threaded Schedule 40 PVC blank and screened (0.030-inch slot size) casing. The annular space surrounding the screened casing is backfilled with medium aquarium sand (filter pack) to approximately 1 feet above the top of the screened section.

During monitoring and recovery well construction, the filter pack is completed by surging with a rig-mounted surge block. A 2 to 3 foot thick bentonite annular seal is placed above the filter pack. The remaining annular space is grouted with Portland cement and/or bentonite grout to the surface. Utility access boxes are installed slightly above grade. Locking, watertight caps are installed to prevent unauthorized access to the well, and limit infiltration of surface fluids.

FLUID LEVEL MONITORING

Fluid levels are monitored in the wells using an electronic interface probe with conductance sensors. The presence of liquid-phase hydrocarbons is verified using a hydrocarbon-reactive paste. The depth to liquid-phase hydrocarbons and water is measured relative to the well box top or top of casing. Well box or casing elevations are surveyed to within 0.02 foot relative to a county or city bench mark.

GROUNDWATER PURGING AND SAMPLING

Groundwater monitoring wells are purged and sampled in accordance with standard regulatory protocol. Typically, monitoring wells that contain no liquid-phase hydrocarbons are purged of groundwater prior to sampling so that fluids sampled are representative of fluids within the formation. Temperature, pH, and specific conductance are typically measured after each well casing volume has been removed. Purging is considered complete when these parameters vary less than 10% from the previous readings, or when four casing volumes of fluid have been removed. Samples are collected without further purging if the well does not recharge within 2 hours to 80% of its volume before purging. The purged water is either pumped directly into a licensed vacuum truck or temporarily stored in labeled drums prior to transport to an appropriate treatment or recycling facility. If an automatic recovery system (ARS) is operating at the site, purged water may be pumped into the ARS for treatment.

Groundwater samples are collected by lowering a 1.5-inch-diameter, bottom-fill, disposable polyethylene bailer just below the static water level in the well. The samples are carefully transferred from the check-valve-equipped bailer to 1-liter and 40-milliliter glass containers. The sample containers are filled to zero headspace and fitted with Teflon-sealed caps. Each sample is labeled with the project number, well number, sample date, and sampler's initials. Samples remain chilled at approximately 4°C prior to analysis by a state-certified laboratory.

CHAIN OF CUSTODY PROTOCOL

Chain of custody protocol is followed for all soil and groundwater samples selected for laboratory analysis. The chain of custody form(s) accompanies the samples from the sampling locality to the laboratory, providing a continuous record of possession prior to analysis.

DECONTAMINATION

Drilling and Soil Sampling

Drilling equipment is decontaminated by steam cleaning before being brought onsite. The augers are also steam cleaned before each new boring is commenced. Prior to use, the sampler and sampling tubes are brush-scrubbed in a Liqui-nox and potable water solution and rinsed twice in clean potable water. Sampling equipment and tubes are also decontaminated before each sample is collected to avoid cross-contamination between borings.

Groundwater Sampling

Purging and sampling equipment that could contact well fluids is either dedicated to a particular well or cleaned prior to each use in a Liqui-nox solution followed by two tap water rinses.

UNIFIED SOIL CLASSIFICATION SYSTEM

	MAJOR DIVIS	SIONS		TYPICAL NAMES
	GRAVELS	CLEAN GRAVELS WITH UTTLE OR NO FINES	GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
S A		CITIE ON NO FINES	GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES
SOII GER 1	COARSE FRACTION IS LARGER THAN No. 4 SIEVE SIZE	GRAVELS WITH OVER	GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES
COARSE-GRAINED SOILS MORE THAN HALF IS LARGER THAN No. 200 SIEVE		12% FINES	GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES
E-GR	CANDO	CLEAN SANDS WITH	sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
ARSI ETHAN	SANDS MORE THAN HALF	LITTLE OR NO FINES	SP	POORLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
O.N.O.	COARSE FRACTION IS SMALLER THAN No. 4 SIEVE SIZE	SANDS WITH OVER	SM	SILTY SANDS, SAND-SILT MIXTURES
		12% FINES	sc	CLAYEY SANDS, SAND-CLAY MIXTURES
S THAN	011 70 444		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
SOIL	SILTS ANI		CL	INORGANIC CLAYS OF LOW- TO MEDIUM-PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
INED IS SM O SIEV			OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
-GRA N HALI No. 20	-W		мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
FINE-GRAINED SOILS MORE THAN HALF IS SMALLER THAN No. 200 SIEVE	SILTS ANE	· -	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
M OF	Edvic Civil Gri	-ATER HIMEOV	ОН	ORGANIC CLAYS OF MEDIUM- TO HIGH-PLASTICITY, ORGANIC SILTS
	HIGHLY ORG	ANIC SOILS	Pt	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

SYMBOLS AND NOTES

SAMPLE INTERVAL

SAMPLE NOT RECOVERED

BENTONITE

CONCRETE

GROUT

FILTER SAND PACK

STATIC WATER LEVEL

WATER LEVEL ENCOUNTERED WHEN DRILLING

ppm = parts per million (mg/kg)
ppb = parts per billion (µg/kg)


ND = not detected at detection limits stated in official laboratory reports

CGI = combustible gas Indicator OVA = organic vapor analyzer PID = photoionization detector LEL = lower explosive limit

TPH = total petroleum hycrocarbons

TRPH = total recoverable petroleum hydrocarbons

NA = not applicable

KEY TO BORING LOG

PR	OJE	CT N	0.:	41-0	0034	DATE DRILLED	TE DRILLED: 2/28/95					
	~	ATIC			\ Gas #57	LOGGED BY:			May			
				1070	00 MacArthur Boulevard	APPROVED BY:		***************************************	aten, RG	 -		
					land, California	DRILLING CO.:			and Drilling			
			T	T 6	DRILLING METHOD: 10-inch diameter Hollo			T				
gg		F		(e)	SAMPLER TYPE: California Modified Co		ł		LAJE-1	ł		
S PE	Ē	8	_щ	_ š	TOTAL DEPTH: 44.0 feet DEPTH TO WATE			ПТНОСОВУ	WELI CONSTRU			
BLOWS PER 6 INCHES	SAMPLER TYPE: California Modified Split-Spoon TOTAL DEPTH: 44.0 feet DEPTH TO WATER: DESCRIPTION								DETA			
<u> </u>	٥	F	े	5 8		SOSU	5					
				E°	Hand-augered to 5 feet.				O-Uti	lity box with king cap		
				<u> </u>	4 inches of Asphalt.		1		\equiv	• •		
			L	F					4			
7,8,10	115	ND	Ш	Ė.	CLAYEY SILT: yellowish brown, soft, damp, very fine-gr	rained.	ML		-			
			Г	E°			İ		5	_		
				E						Inch- ameter VC casing		
			ĺ	F						*** Coasting		
		}	\vdash	F ₁₀	Olive, moist.				_			
5,7,8	20	1.9		Ļ ",					10-			
	1,,,,,		\vdash						_ _	,		
	10% LEL	240			GRAVELLY SAND: yellowish brown, damp, well graded,	with clay.	GC		Y	3/3/95		
13,24,50 for 4°				15					- Ne	eat		
	LEL	110	图	F		· 			- C	ement		
5 for 5"	500		X	-	SANDSTONE: brownish yellow, very friable, dry, fine-gre	all and collection	ŀ			ĺ		
i _	50	•		Εl				`::	-			
11 00 50	Ì		\square	20	SILTSTONE: dark yellowish brown, very friable, dry, with	sand.	ŀ		20			
11,22,50 for 4"	100	3.0	W	-			- {		- Be			
			\square	ΕΙ	Soft, interbedded with fractured, very hard, damp sandsto	one.	ŀ			•		
50 for 6"	10	ND	Δ	_			-		<u> E</u> JE			
50 for 6"	25		X	25		į		:]	25-1			
_		Ì		-			ŀ			nah-		
	20		Ш		Dry.		E			meter C casing		
15,17,19	50	ND	Ш	-			ŀ		0.0	20-inch iting		
			M	-30	_		ļ	$ \cdot $	»-JEBL-			
-	٥		Ш	Ξ [Damp.	1	-			Water level		
_ :	15		W	-			ŀ			after 20 hours		
	13		M	- [- {			,		
	15	ļ	Ш	- 35 -	With increased clay content in siltstone, mottled dark gree	n and vellowish	•	: : 3	San			
	٥			_ [vicinity contains in situations, motiled daily green vicinity. We have a second of the	ii and yollowish			到翻			
50 for 6°	100	ND .	╁	- [noist.		ł		二国			
. •		.,,,	从	- - 40		1	· [
	ALT	ON	L.J	*				4	0			
	GEO	SCIE			LOG OF EXPLORATORY	BORING			E-WM			
	Livern	nore, C	alito	'nie					PAGE 1 OF 2			
									11-0034/MW-3 03/17/6	95		

1	PROJECT NO.: 41-0034 LOCATION: USA Gas #57						DATE DRILLED: 2/28/95					
-	LC	OCA	TION	<u>v:</u>			LOGGED BY:		A. Le	May	-	
-		-				0 MacArthur Boulevard	APPROVED BY:			aten, RG		
Ŀ					Oaki	and, California	DRILLING CO.: Bayland Drilling					
BLOWS PER	6 INCHES	CGI (ppm)	TPH-G (ppm)	SAMPLE	DEPTH (feet below grade)	DRILLING METHOD: 10-inch diameter Holles SAMPLER TYPE: California Modified Sp TOTAL DEPTH: 44.0 feet DEPTH TO WAT DESCRIPTION	olit-Spoon	nscs	. ГПНОГОВУ	CONST	/ELL RUCTION ETAIL	
					45					11 1 1 1 1 1 1 1 1 1	₩ End cap	
	ALTON GEOSCIENCE Livermore, California					LOG OF EXPLORATOR	Y BORING			MW- PAGE 2 0		

PR	OJEC	OT NO) .:	41-0	034	DATE DRILLED	:	2/28/	96
	LOC	ATIO	N:	USA	\ Gas #57	LOGGED BY:		A. Le	
 				1070	00 MacArthur Boulevard	APPROVED BY			iten, RG
				Oak	land, California	DRILLING CO.:			nd Drilling
BLOWS PER 6 INCHES	CGI (ppm)	TPHG (ppm)	SAMPLE	DEPTH (feet below grade)	DRILLING METHOD: 8-Inch diameter Holio SAMPLER TYPE: California Modified Sp TOTAL DEPTH: 46.0 feet DEPTH TO WAT DESCRIPTION	olit-Spoon	USCS	ГТНОГОВУ	WELL CONSTRUCTION DETAIL
7,11,8	0	ND			Hand-augered to 4 feet. 6 inches of Concrete. SILTY CLAY: dark gray brown, soft, damp.		CL		0— ———————————————————————————————————
6,7,11	75	44		10	CLAYEY SILT: dark yellowish brown, soft, damp, few si pebbles.	mail	ML		10-
6,11,15	70% LEL	540	×	15	GRAVELLY SAND: mottled dark yellow brown and gree clay.	n, loose, damp, with	вс		15 Nead Cerment
21,37,42	350	ND	 X	- - - - - - - 20	From approximately 17 feet to bottom of hole: Interbedd slitstone. SANDSTONE: light olive brown, very fractured and friat carbonate infill in fractures. SILTY CLAY (weathered bedrock): dark grayish brown, a	ole with calclum			20-1
47 for 12*	5% LEL	3.9	X	25 	Light olive brown, wet, with gravel. SANDSTONE: light olive brown, very fractured and friab carbonate infill in fractures.	ole with calcium			25
15,29,26	5% LEL	ND		-30	SILTY CLAY (weathered bedrock): light olive brown, soft GRAVELLY SAND (weathered bedrock): dark yellowish	Ī		3	30
12,15,19	175	ND	 	- - 35 -	interbedded with slity clay.			3	15
41,27,35	175	ND	Ī	-40				4	
		ON ISCIE nore, C			LOG OF EXPLORATOR	Y BORING			B-1 PAGE 1 OF 2
									41-0034/8-1 03/17/95

	PRO	PROJECT NO.: 41-0034					DATE DRILLED: 2/28/95				
		LOCA	TIOI			Gas #57	LOGGED BY:	/	A. Le	Мау	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
						0 MacArthur Boulevard	APPROVED BY:	•	И. Ke	aten, RG	
					Oaki	and, California	DRILLING CO.:	E	Bayla	and Drilling	
ope office	BLOWS PER 6 INCHES	CGI (ppm)	TPH-G (ppm)	SAMPLE	DEPTH (feet below grade)	DRILLING METHOD: 8-inch diameter Hollo SAMPLER TYPE: California Modified Sp TOTAL DEPTH: 46.0 feet DEPTH TO WAT	olit-Spoon	uscs	LITHOLOGY	CONST	/ELL RUCTION ETAIL
	<u> </u>	-	DESCRIPTION							40	
2 41	7,30 for 4"	40	4		45	GRAVELLY CLAY (weathered bedrock): dark yellowish well graded, with sand and pebbles to 1/4 inch.	i brown, saturated,			45	Σ
					- - - - - - 50			ML		111113711	
					- - - - - - - -					55	
					- -60 -					8 11111111	
					- -65 -					111111	
					- - -70					70-	
					- 75					75	
					-80					11 11 11 11 11 11 11 11 11 11 11 11 11	
Å	ALTON GEOSCIENCE Livermore, Celifornia				LOG OF EXPLODATORY ROPING				. 	B-1 PAGE 2 C	

41-0034/8-1 03/17/95

	PR	OJEC	OT NO).:	41-0	0034	DATE DRILLED:		3/1/9	<u> </u>	
		LOC	ATIO	N:		Gas #57	LOGGED BY:			May	
					1070	00 MacArthur Boulevard	APPROVED BY:	-		aten, RG	
1	•				Oak	land, California	DRILLING CO.:			ind Drilling	
	BLOWS PER 6 INCHES	CGI (ppm)	TPH-G (ppm)	SAMPLE	DEPTH (feet below grade)	v-Stem Auger lit-Spoon R: 29.0 feet	SOSN	глногоах	CONST	VELL TRUCTION ETAIL	
	1,12,17 1, 16 ,21	60 80	ND ND		5	Hand-augered to 5 feet. 4 inches of Asphalt. CLAYEY SILT: dark yellowish brown, soft, damp, fine-gra At approximately 10 feet depth includes small pebbles ar brown and green.	·	ML		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
2	1,27,31	5% LEL	16		- 15 J	SANDY CLAY: dark yellowish brown, damp, fine-grained. SANDSTONE: brownish yellow, fractured, damp, fine-gra	lined, with clay.	CL		15 1 1 1	- Neat Cement Grout
	,10,16	325 60 150% LEL	110 240		-	SANDY CLAY (weathered bedrock): dark yellowish brown fine-grained. SANDSTONE: brownish yellow, fractured, fine-grained, we staining. Interbedded with sandy clay. SANDY CLAY (weathered bedrock) to 25 feet, then fracture	rith green			20-1131-11-11-11-11-11-11-11-11-11-11-11-1	
6,		LEL off scale			- 30 - 30 35 	GRAVELLY SAND (weathered bedrock): very dark grayisi saturated, well graded,	h brown, loose,				▼
Á			SCIE			LOG OF EXPLORATORY	BORING			B-2)
_		Livern	nore, C	alifor	nia					PAGE 1 C)F 1

PRO	PROJECT NO.: 41-0034					DATE DRILLED: 3/1/95				
	LOC	ATIO	V :	***	Gas #57	LOGGED BY:		A. Le	May	
	<u></u>				0 MacArthur Boulevard	APPROVED BY:		M. K	aten, RG	
				Oakl	and, California	DRILLING CO.:		Bayla	and Drilling)
BLOWS PER 6 INCHES	CGI (ppm)	TPH-G (ppm)	SAMPLE	DEPTH (feet below grade)	DRILLING METHOD: 8-inch diameter Holio SAMPLER TYPE: California Modified Sp. TOTAL DEPTH: 21.0 feet DEPTH TO WAT DESCRIPTION	olit-Spoon	nscs	LITHOLOGY	CONST	VELL TRUCTION ETAIL
5,7,10 8,10,8	0	ND	X	0 	Hand-augered to 5 feet. 4 inches Asphalt. CLAYEY SILT: brown, soft, damp, fine-grained, with sa pebbles. SANDY CLAY: very dark grayish brown, soft, damp, with a moderate amount of silt.		ML		0	
28,39,43 27,46,23	15	10		- 20	SANDSTONE: light yellowish brown, friable, very fractul thick layer of sandy clay at 15 feet. Interbedded with gravelly clay. GRAVELLY CLAY (weathered bedrock): dark olive brow with large pebbles to 0.5-inch diameter.				16 1 1 1 1 1 1 1 1 1	K− Neat Cernent Grout
				- 30					** 25 38 35 35 35 37 11 11 11 11 11 11 11 11 11 11 11 11 11	
	ALTON GEOSCIENCE Livermore, California				LOG OF EXPLORATOR	Y BORING			B-3 PAGE 1 (

PRO	DJEC	TNC).;	41-0	034	DATE DRILLED		3/2/9	5	**************************************
	LOCA	ATIO	V:	USA	Gas #57	LOGGED BY:		A. Le		
					00 MacArthur Boulevard	APPROVED BY:	: 1	M. Ka	ten, RG	·
				Oakl	and, California	DRILLING CO.:		Bayla	nd Drilling	}
BLOWS PER 6 INCHES	CGI (ppm)	TPH-G (ppm)	SAMPLE	DEPTH (feet below grade)	DRILLING METHOD: 8-inch diameter Hollow SAMPLER TYPE: California Modified Sp TOTAL DEPTH: 12.0 feet DEPTH TO WATI	lit-Spoon	USCS	ПТНОГОВУ	CONS	VELL FRUCTION ETAIL
5,7,13 7,7,8 6,15,15	5 15	ND ND ND		- 10 - 15 - 20 - 35	Hand-augered to 4 feet. 6 inches Concrete SANDY CLAY: olive brown, soft, saturated from surface of pebbles. SAND: dark yellowish brown, loose, saturated, mediumsand, poorly graded. SANDY CLAY: olive brown, medium soft, moist, with smpebbles.	to coarse-grained	CL SP CL			Neal Cerment Grout
	ALTO	N		- 40		1 -		41	111111	
	GEOS	CIEN ore, Ce			LOG OF EXPLORATORY	BORING			B-4 PAGE 1 C	i i

PROJECT NO.:	41-0034	DATE DI	DATE DRILLED: 3/2/95						
LOCATION:	USA Gas #57	LOGGE	BY:	A. Le May					
	10700 MacArthur Boulevard	APPROV	ED BY:	M. Katen, RG					
	Oakland, California	DRILLING	g co.:	Bayland Drillir	ng				
BLOWS PER 6 INCHES CGI (ppm) TPH-G (ppm) SAMPLE									
_ 0	Hand-augered to 4 feet. Inches Concrete. SANDY CLAY: olive brown, veen. Moist, with silt. 10 20 25 30 35	ry soft, damp, with small pebbles.	CL	0.1.1.1.1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.	- Neat Cement Groul				
ALTON GEOSCIENCE Livermore, Califor	LOG OF EXP	PLORATORY BOR	ING	PAGE 1	OF 1				

PROJECT NO.: 41	-0034	DATE DRILLED:	3/2/95							
LOCATION: US	6A Gas #57	LOGGED BY:	A. Le	· · · · · · · · · · · · · · · · · · ·						
10	700 MacArthur Boulevard	APPROVED BY:		ten, RG						
O8	kland, California	DRILLING CO.:		nd Drilling						
2,2,5 60 33			CL 2							
ALTON GEOSCIENCE Livermore, California	LOG OF EXPLORATORY	Y BORING		B-6 PAGE 1 OF 1						

55	~										
		TNC		41-0		DATE DRILLED:					
-	LUCI	ATIO	и:			LOGGED BY:		Le May			
						APPROVED BY:		Katen, RG			
		,		Oaki	and, California	DRILLING CO.:	Ba	yland Drilling	1		
}				8	DRILLING METHOD: 8-inch diameter Hollow-	Stem Auger					
E		Ē		(grade)	SAMPLER TYPE: California Modified Call		;	-	VELL		
S ES	Ed	<u>S</u>	Ä	F	TOTAL DEPTH: 12.0 feet DEPTH TO WATER			S CONST	[RUCTIO		
BLOWS PER 6 INCHES	CG! (ppm)	TPH-G (ppm)	SAMPLE	DEPTH (feet below	DESCRIPTION		ജ	CONST	ETAIL		
	+-	 	۳		DESCRIPTION		3 :		7		
				E٥	Hand-augered to 5 feet.			o -			
]	130	l	L	<u> </u>	6 inches Concrete.			\exists			
2,2,5	1	ND		-	SANDY CLAY: dark olive gray, very soft, damp, with sift an pebbles.	nd occasional		_			
	60		H	F . ;	A1455-A-1-16-4-4-		CL				
2,7,11	10	ND	Ш	5	At 4.5 feet depth, dark brown, harder, increased silt conter	nt.		5-1	- Neat		
				-					Cement Grout		
				_							
2,13,21	10	NE	П	10	Dark olive gray, medium hard, damp, with sit.	į		/ 10- -			
		ND	Ш	-	At 11.5 feet depth, dark brown, hard.						
				-				7 3 -			
			[-		1		4			
				— 15 -			- }	15			
				_		!	ŀ	1 =			
			ļ	_			ł	13			
			Ē	-		1] =			
			ļ	-20				20-			
			Ē	- 1				-			
			ŀ	_				1 🖪			
			Ė	-				13			
	ľ	- 1	ŧ	- 25				25—			
			ţ	- 1		ļ	İ				
		ı	þ	- 1							
l				-				I = I			
f			E	-30				30-			
		ľ	þ	- J		ĺ					
ļ			E	<u> </u>		ŀ		-			
ĺ			F	_							
		1	E	- 35				35			
			E	-			İ	1 - 1			
j]	þ	_				-			
1	-	1	E	_]	Ì	🚽			
			<u></u> }=	- 40		ľ	1	40-3			
	ALTO						\top	1 1 1	-		
		BCIEI Iore, Ci			LOG OF EXPLORATORY	BORING		B-7			
	Livermore, California				alifornia 2000 I EXT EXTENTION DOMING			PAGE 1 OF 1			
								41-0034/B-7 (JS/21/95		

	PRC	JEC	TNC) <u>.:</u>	41-0	034	DATE DRILLED: 3/2/95				
	L	_OC/	ATIO	V:	USA	Gas #57	LOGGED BY:		A. Le	May	· · · · · · · · · · · · · · · · · · ·
.					1070	00 MacArthur Boulevard	APPROVED BY	: 1	M. Κε	iten, RG	
Ŀ					Oak	and, California	DRILLING CO.:	1	Bayla	nd Drilling	1
BLOWS PER	DRILLING METHOD: 8-inch diameter Hollow-Stem Auger SAMPLER TYPE: California Modified Split-Spoon TOTAL DEPTH: 12.0 feet DEPTH TO WATER: DESCRIPTION									CONS	VELL FRUCTION ETAIL
	4,7 3,5	90 95	17 ND		5	Hand-augered to 4 feet. 6 inches Concrete. SANDY CLAY: dark olive gray, very soft, damp. CLAYEY SAND: dark olive gray, very soft, damp, with spebbles. GRAVELLY CLAY: dark olive gray, very soft, saturated.		CL SC CL		0	← Neat Cement Grout
17,2	3,22	25	2.0		- 10 - 15 - 20 - 25 - 30 - 35	SILTY CLAY: dark yellowish brown, hard, damp, with rewith sand.	are small pebbles,		3		
	ALTON GEOSCIENCE Livermore, California					LOG OF EXPLORATORY	BORING			B-8 PAGE 1 (
										41-0034/B-8 0	3/21/05

APPENDIX B

ANALYTICAL METHODS, OFFICIAL LABORATORY REPORTS, AND CHAIN OF CUSTODY RECORDS

ANALYTICAL METHODS

All analyses were performed by a state-certified laboratory in accordance with the following methods:

Sample Analysis - Soil & Water

Total Petroleum Hydrocarbons as Gasoline (TPH-G) using EPA Method 8015 Modified for gasoline

Total Petroleum Hydrocarbons as Diesel (TPH-D) using EPA Method 8015 Modified for diesel

Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) using EPA Method 8020

OFFICIAL LABORATORY REPORTS AND QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) REPORTS

Official laboratory and QA/QC reports are provided by the state-certified laboratory performing the analyses. The QA/QC reports for samples from each group of analyses completed for a single gas chromatograph calibration are provided.

CHAIN OF CUSTODY PROTOCOL

Chain of Custody protocol was followed for all samples selected for laboratory analysis. The Chain of Custody form(s) accompanies the samples from the sampling locality to the laboratory, providing a continuous record of possession prior to analysis.

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520

Redwood City, CA 94063 \$19 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) \$64-9600 (510) 686-9600 (916) 911-9600

ne din basas

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Ailsa LeMay

Client Project ID: USA Gas #57

Sample Matrix:

Soll Analysis Method: EPA 5030/8015/8020

First Sample #: 503-0193 Sampled:

Feb 28, 1995

Received: Mar 3, 1995 Reported: Mar 16, 1995

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 503-0193 B-1 (5.5)	Sample I.D. 503-0194 B-1 (9.5)	Sample I.D. 503-0195 B-1 (13.0)	Sample I.D. 503-0196 B-1 (20.0)	Sample I.D. 503-0197 B-1 (25.0)	Sample I.D. 503-0198 B-1 (31.0)
Purgeable Hydrocarbons	1.0	N.D.	44	540	N.D.	3.9	N.D.
Benzene	0.0050	N.D.	0.12	2.6	0.012	0.048	N.D.
Toluene	0.0050	N.D.	N.D.	10	0.016	0.14	0.011
Ethyl Benzene	0.0050	N.D.	0.14	7.5	N.D.	0.062	0.0057
Total Xylenes	0.0050	N.D.	0.40	48	0.029	0.37	0.045
Chromatogram Patt	ern:		Gasoline	Gasoling	AR 31 199	35	-•
Quality Control Dat	a						
Report Limit Multiplic	cation Factor:	1.0	10	ETT	4 6		

Report Limit Multiplication Factor: 1.0 10 50 1.0 1.0 1.0 1.0 Date Analyzed: 3/6/95 3/6/95 3/7/95 3/6/95 3/							
Instrument Identification: HP-4 HP-2 HP-4 HP-4 HP-4 HP-2 Surrogate Recovery, %: 95 104 88 07 05	Report Limit Multiplication Factor:	1.0	10		1.0	1.0	1.0
Surrogate Recovery, %: 95 104 98 07 05	Date Analyzed:	3/6/95	3/6/95	3/7/95	3/6/95	3/6/95	3/6/95
Surrogate Recovery, %: 95 104 88 97 86 95 (QC Limits = 70-130%)	Instrument Identification:	HP-4	HP-2	HP-4	HP-4	HP-4	HP-2
	Surrogate Recovery, %: (QC Limits = 70-130%)	95	104	88	97	86	95

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Kevin Van Slambrook Project Manager

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9283 FAX (510) 988-9678 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Alisa LeMay Client Project ID: Sample Matrix: Analysis Method:

USA Gas #57 Soll

Analysis Method: EPA 5030/8015/8020 First Sample #: 503-0199

Sampled: Received:

2/28 - 3/1/95

Received: Mar 3, 1995 Reported: Mar 16, 1995

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 503-0199 B-1 (35.0)	Sample I.D. 503-0200 B-1 (40.5)	Sample I.D. 503-0201 B-2 (5.0)	Sample I.D. 503-0202 B-2 (10.5)	Sample I.D. 503-0203 B-2 (16.0)	Sample I.D. 503-0204 B-2 (21.0)
Purgeable Hydrocarbons	1.0	N.D.	N.D.	N.D.	N.D.	16	110
Benzene	0.0050	0.014	N.D.	N.D.	N.D.	0.057	0.96
Toluene	0.0050	0.018	N.D.	N.D.	N.D.	0.028	0.41
Ethyl Benzene	0.0050	0.012	N.D.	N.D.	N.D.	0.029	0.33
Total Xylenes	0.0050	0.079	N.D.	N.D.	N.D.	1.2	1.5
Chromatogram Patt	ern:	••				Gasoline	Gasoline

Quality Control Data

1.0	1.0	1.0	1.0	1.0	25
3/6/95	3/7/95	3/6/95	3/6/95	3/6/95	3/6/95
HP-2	HP-4	HP-2	HP-4	HP-4	HP-4
97	92	95	94	92	92
	3/6/95 HP-2	3/6/95 3/7/95 HP-2 HP-4	3/6/95 3/7/95 3/6/95 HP-2 HP-4 HP-2	3/6/95 3/7/95 3/6/95 3/6/95 HP-2 HP-4 HP-2 HP-4	3/6/95 3/7/95 3/6/95 3/6/95 3/6/95 HP-2 HP-4 HP-2 HP-4 HP-4

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Kevin Van Slambrook Project Manager

5030193.ALT <2>

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8 Sacramento, CA 95884

Redwood City, CA 94063 Concord CA 94520

(415) 364-9600 (510) 686-9600 (916) 921-9600

20 AH 8 8 THE 20 B CO 449 LEPTON BEST AND BEST BEST BEST OF THE PARTY.

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Ailsa LeMay

Client Project ID: Sample Matrix: Analysis Method:

First Sample #:

USA Gas #57 Soil

EPA 5030/8015/8020 502-0205

Sampled: Received:

Mar 1-2, 1995 Mar 3, 1995

Reported: Mar 16, 1995

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 502-0205 B-2 (26.0)	Sample I.D. 502-0206 B-3 (11.0)	Sample I.D. 502-0207 B-3 (15.5)	Sample I.D. 502-0208 B-3 (20.5)	Sample I.D. 502-0209 B-4 (3.0)	Sample I.D. 502-0210 B-4 (6.0)
Purgeable Hydrocarbons	1.0	240	N.D.	10	15	N.D.	N.D.
Benzene	0.0050	0.76	N.D.	0.044	0.041	N.D.	N.D.
Toluene	0.0050	1.4	N.D.	0.11	0.37	N.D.	N.D.
Ethyl Benzene	0.0050	0.85	N.D.	0.079	0.15	N.D.	N.D.
Total Xylenes	0.0050	1.9	N.D.	0.63	1.1	N.D.	N.D.
Chromatogram Patt	ern:	Gasolin e		Gasoline	Gasoline	•-	••

Quality Control Data

Report Limit Multiplication Factor:	10	1.0	2.5	2.0	1.0	1.0
Date Analyzed:	3/7/95	3/6/95	3/6/95	3/8/95	3/6/95	3/6/95
Instrument Identification:	HP-4	HP-4	HP-4	HP-2	HP-2	HP-2
Surrogate Recovery, %: (QC Limits = 70-130%)	110	89	86	107	100	102

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Project Manager

5030193.ALT <3>

680 Chesapeake Drive 404 N. Wiget Lane #19 Striker Avenue, Suite #

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (\$10) 988-9600 (916) 921-9600

FAX (415) 364-9238 FAX (510) 988-9673 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Ailsa LeMay

Client Project ID: Sample Matrix:

First Sample #:

USA Gas #57 Soll

EPA 5030/8015/8020

Analysis Method: 503-0211

Mar 2, 1995 Sampled: Received:

Mar 3, 1995 Reported: Mar 16, 1995

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 503-0211 B-4 (12.0)	Sample I.D. 503-0212 B-5 (5.5)	Sample I.D. 503-0213 B-5 (12.0)	Sample I.D. 503-0214 B-6 (4.0)	Sample i.D. 503-0215 B-6 (5.5)	Sample I.D. 503-0216 B-6 (12.0)
Purgeable Hydrocarbons	1.0	N.D.	N.D.	N.D.	33	2.6	N.D.
Benzene	0.0050	N.D.	N.D.	N.D.	0.093	0.062	N.D.
Toluene	0.0050	N.D.	N.D.	N.D.	0.065	N.D.	N.D.
Ethyl Benzene	0.0050	N.D.	N.D.	N.D.	0.33	0.030	N.D.
Total Xylenes	0.0050	N.D.	N.D.	N.D.	2.0	0.047	0.022
Chromatogram Patt	ern:	••			Gasoline	Gasoline	••

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	5.0	1.0	1.0
Date Analyzed:	3/7/95	3/7/95	3/7/95	3/8/95	3/7/95	3/7/95
Instrument Identification:	HP-4	HP-4	HP-4	HP-2	HP-2	HP-2
Surrogate Recovery, %: (QC Limits = 70-130%)	94	89	91	92	100	101

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

\$EQUOIA ANALYTICAL, #1271

Kevin Van Slambrook **Project Manager**

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600

NEAR LUMING A TURBERSHIP BUT A SAMERER A

FAX (419) \$64-9298 FAX (510) 686-9689 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Allsa LeMay Client Project ID: Sample Matrix: Analysis Method:

USA Gas #57 Soil

Analysis Method: EPA 5030/8015/8020 First Sample #: 503-0217

Sampled:

Mar 2, 1995

Received: Mar 3, 1995 Reported: Mar 16, 1995

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 503-0217 B-7 (3.5)	Sample I.D. 503-0218 B-7 (5.0)	Sample I.D. 503-0219 B-7 (12.0)	Sample I.D. 503-0220 B-8 (3.0)	Sample I.D. 503-0221 B-8 (5.5)	Sample I.D. 503-0222 B-8 (12.0)
Purgeable Hydrocarbons	1.0	N.D.	N.D.	N.D.	17	N.D.	2.0
Benzene	0.0050	N.D.	N.D.	N.D.	0.012	0.019	0.042
Toluene	0.0050	N.D.	N.D.	N.D.	0.021	N.D.	N.D.
Ethyl Benzene	0.0050	N.D.	N.D.	N.D.	0.12	0.050	N.D.
Total Xylenes	0.0050	N.D.	N.D.	N.D.	0.16	N.D.	0.016
Chromatogram Patt	tern:		••	••	Gasoline	••	Gasoline

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	2.0	1.0	1.0
Date Analyzed:	3/7/95	3/7/95	3/7/95	3/7/95	3/7/95	3/7/95
Instrument identification:	HP-4	HP-2	HP-2	HP-2	HP-4	HP-2
Surrogate Recovery, %: (QC Limits = 70-130%)	91	103	104	114	74	104

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Kevin Van Slambrook Project Manager

5030193.ALT <5>

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Alisa LeMay

Client Project ID: Sample Matrix: Analysis Method:

First Sample #:

USA Gas #57 Soil

EPA 5030/8015/8020 503-0223 Sampled: Received:

Feb 28, 1995 Mar 3, 1995

Reported: Mar 16, 1995

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 503-0223 MW-3 (5.5)	Sample I.D. 503-0224 MW-3 (11.5)	Sample I.D. 503-0225 MW-3 (13.5)	Sample I.D. 503-0226 MW-3 (15.5)	Sample I.D. 503-0227 MW-3 (21.5)	Sample I.D. 503-0228 MW-3 (24.5)
Purgeable Hydrocarbons	1.0	N.D.	1.9	240	110	3.0	N.D.
Benzene	0.0050	N.D.	0.026	0.41	0.37	0.26	0.030
Toluene	0.0050	N.D.	0.011	0.64	3.8	0.24	0.0069
Ethyl Benzene	0.0050	N.D.	0.0061	2.0	1.5	0.059	0.0056
Total Xylenes	0.0050	N.D.	0.019	5.4	10	0.50	0.016
Chromatogram Patte	ern:		Gasoline	Gasoline	Gasoline	Gasoline	

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	50	50	1.0	1.0	
Date Analyzed:	3/7/95	3/7/95	3/7/95	3/7/95	3/7/95	3/7/95	
Instrument Identification:	HP-4	HP-2	HP-4	HP-4	HP-4	HP-2	
Surrogate Recovery, %: (QC Limits = 70-130%)	93	95	89	100	92	96	

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

690 Chesapoake Drive 1900 Bates Avenue, Suite L

Redwood City, CA 94063 Concord, CA 94520 \$19 Striker Avenue, Suite \$ Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (\$10) 686-9689 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Alisa LeMay Client Project ID: Sample Matrix:

First Sample #:

USA Gas #57 Soil

Analysis Method: EPA 5030/8015/8020 503-0229

Sampled:

Feb 28, 1995

Received: Reported:

Mar 3, 1995 Mar 16, 1995

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 503-0229 MW-3 (29.5)	Sample I.D. 503-0230 MW-3 (39.5)	
Purgeable Hydrocarbons	1.0	N.D.	N.D.	
Benzene	0.0050	N.D.	N.D.	
Toluene	0.0050	0.0054	N.D.	
Ethyl Benzene	0.0050	N.D.	N.D.	
Total Xylenes	0.0050	0.0092	N.D.	•
Chromatogram Patto	ern:	••		

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	
Date Analyzed:	3/7/95	3/7/95	
Instrument Identification:	HP-2	HP-4	
Surrogate Recovery, %: (QC Limits = 70-130%)	95	92	

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

680 Chesapeake Drive 1900 Setes Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Ailsa LeMay

Client Project ID: Sample Matrix: Analysis Method:

First Sample #:

USA Gas #57 Soil

EPA 3550/8015 503-0195

Sampled:

2/28 - 3/2/96

Received: Mar 3, 1995 Reported: Mar 16, 1995

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit mg/kg	Sample I.D. 503-0195 B-1 (13.0)	Sample I.D. 503-0200 B-1 (40.5)	Sample I.D. 503-0205 B-2 (26.0)	Sample I.D. 503-0208 B-3 (20.5)	Sample I.D. 503-0211 B-4 (12.0)	Sample I.D. 503-0213 B-5 (12.0)
Extractable Hydrocarbons	1.0	55	N.D.	22	1.3	N.D.	N.D.
Chromatogram Pat	ttern:	Unidentified Hydrocarbons C9-C24	••	Unidentified Hydrocarbons C9-C24	Unidentified Hydrocarbons C9-C24		••

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	1.0	1.0	1.0	
Date Extracted:	3/8/95	3/8/95	3/8/95	3/8/95	3/8/95	3/8/95	
Date Analyzed:	3/10/95	3/10/95	3/10/95	3/10/95	3/10/95	3/10/95	
Instrument Identification:	GCHP-5A	GCHP-5B	GCHP-5B	GCHP-5B	GCHP-5B	GCHP-5B	

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1210

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Alisa LeMay

Client Project ID: Sample Matrix: Analysis Method:

USA Gas #57 Soll

EPA 3550/8015 First Sample #: 503-0214

Sampled:

2/28 - 3/2/95

Received: Mar 3, 1995 Reported: Mar 16, 1995

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit mg/kg	Sample I.D. 503-0214 B-6 (4.0)	Sample I.D. 503-0217 B-7 (3.5)	\$ample I.D. 503-0221 B-8 (5.5)	Sample I.D. 503-0225 MW-3 (13.5)	
Extractable Hydrocarbons	1.0	5.3	N.D.	N.D.	12	
Chromatogram Pat	tern:	Unidentified Hydrocarbons C9-C24			Unidentified Hydrocarbons C9-C24	

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	1.0	
Date Extracted:	3/8/95	3/8/95	3/8/95	3/8/95	
Date Analyzed:	3/10/95	3/10/95	3/10/95	3/10/95	
Instrument Identification:	GCHP-5B	GCHP-5B	GCHP-5B	GCHP-5B	

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

\$EQUOIA ANALYTICAL, #1210

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9213 FAX (510) 988-9673 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Allsa LeMay

Client Project ID: USA Gas #57

Matrix: Solid

QC Sample Group: 5030193-230

Reported: I

Mar 16, 1995

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	Discord	
<u> </u>		Oldono	•	Aylernes	Diesei	
			Benzene			
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 8015 Mod.	
Analyst:	A. Tuzon	A. Tuzon	A. Tuzon	A. Tuzon	N. Herrera	
			70 / 42011	74 102011	M. Hollela	
MS/MSD						
Batch#:	5030181	5030181	5030181	5030181	9503518-4	
					2000310-4	
Date Prepared:	3/7/95	3/7/95	3/7/95	3/7/95	3/8/95	
Date Analyzed:	3/7/95	3/7/95	3/7/95	3/7/95	3/9/95	
Instrument I.D.#;	HP-2	HP-2	HP-2	HP-2	GCHP-5B	
Conc. Spiked:	0.40 mg/kg	0.40 mg/kg	0.40 mg/kg	1.2 mg/kg	15 mg/k g	
Administration of the					J, V	
Matrix Spike						
% Recovery:	95	95	103	100	87	
Matrix Calles						
Matrix Spike						
Duplicate %						1
Recovery:	95	95	100	98	93	
Relative %						
Difference:	0.0					
Dillerence.	0.0	0.0	3.0	2.0	7.4	

LCS Batch#:	1LCS030795	1LCS030795	1LCS030795	1LCS030795	BLK030895		
Date Prepared: Date Analyzed: Instrument I.D.#:	3/7/95 3/7/95 HP-2	3/7/95 3/7/95 HP-2	3/7/95 3/7/95 HP-2	3/7/95 3/7/95 HP-2	3/8/95 3/9/95 GCHP-5A		
LCS % Recovery:	97	97	101	101	87		
% Recovery Control Limits:	55-145	47-149	47-155	56-140	38-122		

SEQUOIA ANALYTICAL, #1210

Kevin Van Slambrook Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Q	680 Chesapeake Drive - Reduced City, Ca. Acces.	
E)	680 Chesapeake Drive • Redwood City, CA 94063 • (415) 364-9600	FAX (415) 364-9233
	**************************************	FAY (916) 921 0100
X	1900 Bates Ave., Suite LM • Concord, CA 94520 • (510) 686-9600	FAY (510) 696 0690

Company Name: A	LION	EOS	CIE	120		Projec									FAX (510) 686-968	9
Address: 30 A	Wordh	ergh	A	NP.		Billing .			lifferen	77 <u> </u>	61	5	<u># 3</u>	<u> </u>		_
City: Livermo		77			94550											
Telephone: 510						P.O. #:	1/	17/	080	-		······				_ _
Report To: 4/5a	LeMay	Samoler	1.1	150	May								-			<u> </u>
	king Days	3 Working 2 Working 24 Hours	Days	☐ 2 - 8 H	tours Dr	inking ' aste W	Water	RILL	A (Stand		Analy:			ed ed	C Level D	Pink · Client
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Sequoia's		- - - - - - - - - -		Υ/	//	//	//	/ /	//	/ /	
1.B-1 (5.5)	2-28-95		1	Steat tube	Sample # 5030193	Ϋ́	Y'			\leftarrow	\leftarrow	_	_	4	Comments	
2.B-1 (9.5)				1	รถจกสฺวฺ4	+'-	 	-								Sequoia
3.B-1 (13.0)	3 H 2				5030195	X	X	 		<u> </u>						
4.B-1 (20.0)					5020196	X										Yellow
5. B-1 (25.0)					5030197	X										_
6. B-1 (3/.0)					5020198	X									.3	\dashv
7. B-1 (35.0)					5030199	X							-			\dashv
8.6-1 (40.5)	7 1 14				5030200	Х	X									Sequoia
2B-1 (46.a)	1	1	1	V		MA					1		_		hold	1 .
10.	1	7				W-7-									Note	White
Relinquished By:	11	ly	Date:	3-3-93	Time: 7720	Rece	ived E	By:				Da	<u> </u>		T :	_
Relinquished By:			Date:		Time:		ived E			· ·		Da			Time:	-
Relinquished By:			Date:		Time:	Rece	l l ((y Lab	j(1.00	(4)(1,			3/45	Time! /2 ()	\dashv

	SEQUOIA	ANALYTICAL F CUSTODY
V	CHAIN O	F CUSTODY

	680 Chesapeake Drive • Redwood City, CA 94063 • (415) 364-9600	EAY (415) 264 0022
	819 West Striker Ave. • Sacramento, CA 95834 • (916) 921-9600	FAA (415) 364-9233
M	1900 Bates Ave., Suite LM - Concord, CA 94520 - (510) 686-9600	FAX (916) 921-0100
\sim	1500 bales Ave., Suite LM - Concord, CA 94520 - (510) 686-0600	FAY (510) spe ocon

Company Name:	CION C	ED	5C1	EN	CE	Project	Name:	12	51	61	5#	57	
COURSE: 50/	Line	d bor	אנד	Av		Billing A	\ddress	(if differ				·	
cay. Livern	Love State:	CAI	<u>'</u>	Zip Code	94550								
Telephone: 510	606 915	Ø Č	FAX #	5106	069260	P.O. #:	4/7	1/8/8	7	·			
Report To: AT/Sa	Le May	Sample	r: 🛮 🗸	1/sa	La Mari	QC Dat	a: 🔏 Le	vel A (St	andard)	O Leve	i R	Q Level	C D Level D
Turnaround (2) 10 W	orking Days	3 Workin	g Days	Q 2-81	lours 🖸 Dr	inking V	Vater	14			es Requ		J G Level D
		2 Working 24 Hours			□ Wa Ø Ott	aste Wa her	# N V		//	7		//	
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Sequoia's Sample #		(PH-6)		//	//		//	Comments
B-2(5.0)	31-95	Soil	1	steel tube	5030201	_		$\overline{}$					Comments
B-2 (10.5)					5030202	X							
B-2 (16.0)					5030203	Χ			1-				
B-2-(21.0)					5020204	X							
0-2 (26.0)					2030502	X	X						;
B-2 (31.0)	V	1		1		My.							hild
B.3 (5.5°)	1 57 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.4				4							HOLD
6-3 [11.0)	特別は最	23			2030506	X							
B-3 (15.5)			\perp		20:30504	X							
B-3 (20.5)	00			1	2030508	X	X						.:
Relinquished By:	Vill	~1	Date:	7-3-75	Time: 1730	Rece	ived By:				Date:		Time:
Relinquished By:		<u> </u>	Date:		Time:	Rece	ived By:			<u>-</u>	Data		Time:
Relinquished By:	/		Date:		Time:	Bece	ved By	d 1/- ()	Meur	UL		101:	Time: 17.2 ()

Samples on Ice? @ Yes @ No Method of Shipment_

0	680 Chesaneake Drive - Boduned Otto Care Care	
$\overline{\Box}$	680 Chesapeake Drive • Redwood City, CA 94063 • (415) 364-9600	FAX (415) 364-9233
_	MISTITUS CONTROL AVA - NOCIOMANIA CA ACAAA AAAA	
M	1900 Bates Ave., Suite LM • Concord, CA 94520 • (510) 686-9600	FAX (510) 686-0680

					r 1300 04103	710.,	Suite (-IVI - CA	oncora	, CA S	4520 •	(510)6	86-9600	FAX (510) 686-9	eso.
Company Name: A	LTON G	EOS	118	NEE	 		t Nam								
Address: 30 A	Londle	anh	A	ve				ss (if o	lifferen	Z	28		57		
City: Lovermo	re State:	00	4	Zip Code	e: 94550					·/· .					
	606 918	70	FAX#		069260			7/	00	 _	<u> </u>	····			
Report To: Ailso	7	Samolo	r: 1		/ 4/										
Turnaround 10 W				02-8		QC Da	ta: 💢	Level	A (Stand	dard)	Leve	В	☐ Level	C D Level D	
Time: 🔲 7 Wor	rking Days 📋	2 Workin	g Days	U 2-8	/ I		Water		//		Analys	es Req	uested		
Q 5 Wor		24 Hours			M Or	aste W her		BIE	7 . /		//			///	
Client	Date/Time	Matrix	# of	Cont.	Sequoia's		OH do	14	//	/ ,	/ /	//			
Sample I.D.	Sampled	Desc.	Cont.	Туре	Sample #	/	1//	PH					//	Commen	te
1B-4 (3.0)	3-2-75	Soil	/	steel type.	5030209	X									
28-4/6.0)	1	1]	1	2030510	X	Klin					- -			
3.84 (12.0)					5030211	↓ ′~		 							
B.5 (4.0)	1 1				JAN. A. P.	1.4	 ^	 							
B-5 (5.5)						菱	 	ļ						place Hol	26 3
					5030212	X					ĺ	ĺ			
B-5 (12.0)	2 850 - 480 - 1400	#	gide o		2030513	ΙX	X								
1.66 (4.0)		34 (S.4.4.)			5020214	X	V			<u>_</u>					
.0-6 (5.5)					5030215		/								
B-6 (12.0)		1,		- ,-	 	 •••	 								Secuoia
		-v -	J		5030216	<u> </u>	<u> </u>								
0.	$ \rho$ A														
Relinquished By:	Pala	1	Date:	3-3-91	Time: /7do	Boo	il wad D	·							
Relinquished By:			Date:	~ * * * \$	1							Date		Time:	
Relinquished By:			1		Time:		eived B	<u> </u>		1		Date		Time:	_
removisied by:			Date:		Time:	Rece	ived B	y Lab:	E (<u> </u>	વાપ	Date	13195	Time: 1/2/	
Samples Bosshard		_										1 - 4.0		Time.	

	680 Chesapeake Drive - Redwood City, CA 04000	
	680 Chesapeake Drive - Redwood City, CA 94063 - (415) 364-9660 FA	X (415) 364-9233
	940 000 000 000 000 000 000 000 000 000	
>~	C 1900 Bates Ave., Suite LM • Concord, CA 94520 • (510) 686-9600 FA	((510) 686 oceo

Company Name:	LION	GEO	5C.	IE)	VCE			t Name							FAX (510)	·
TUNESS: 30 A	Madbe	-sh	An	re		· · · · · · · · · · · · · · · · · · ·	Billing	Addre	ss (if (differen	4 ر t):	<u> </u>	#	<u> </u>		
Mnorm	me s	itate: <i>C</i>	A		Zip Cod	e: 9 4556										
elephone: \$10	506 970	50	FA	XX #:	510 %	06 9760	B 0 #	. 4	12	188					 	
opull 10: Ad Co	I. Ma	ا ا	mler.	رياد	150	la Mari		/د	•							
ransmormed 19 10 M	orking Days,	□ 3 Wo	rking C	ays	☐ 2 - 8	Hours /	riekios	Motor	Level	A (Stanc	tard)			Level	C D	evel D
		W 2 110	WII AND D	ays		0 1	Manes 14				- 5	Inalyse	s Requ	ested	, ,	
Client Wo	rking Days	□ 24 Ho				X I (Other	_/	10/	\d\/			//	/ /	//,	
Sample I.D.	Date/Time Sampled			f of ont.	Cont. Type	Sequoia	s /	104	10h/	/ /	//				/ /	
B-7 (3.5)	 _		71,	<u> </u>	Steel	Sample		Y.	<u> </u>	/ ,					∕ 00	mments
	, , ,	יסב	4/		tube	503021	7 <u>X</u>	X							All	•
B-7 (5:0)				1]	502021	8 %							+-	1 71	10
1-7/12.0)						503021	9 🗴	 	 	┝╌┤		 -			ley_	Turn
18 (3.0)				1		503022		 -	 			 - -			 	
28 (5.5)				╂╌╂				1	 							
8-8 (120)				 		503022		$\perp \lambda$	<u> </u>							
7				\vdash		203055	X									
59-1													_	- 	1/2-20	11.10
SP-2		¥ 3							-					 -	piense	Mold
50-3			11	_		 	- 	 	 						please	- Hold
SP-2 SP-3 SP-4		7	╂┪		-}	 	- 	ļ				_ _			please	Hold
	A,	/	1		V										please please please please	West
Relinquished By:	1/11	1/1	Г	ate:	3-3-4	Time: 17.1	Tra-									
 Relinquished By:		7/	í _			1	1				** ******		Date:	·- ,	Time:	
		/ -	L	Date:		Time:		ived B					Date:		Time:	
Relinquished By:			<u> </u>	ate:		Time:	Rece	ived R	1/3/3	1 th	160	411	3,	3/15	Time: 1 /	20

	680 Chesapeake Drive • Redwood City, CA 94063 • (415) 364-9600	
	819 West Striker Ave a Socrements CA 2522	FAX (415) 364-9233
X	819 West Striker Ave. • Sacramento, CA 95834 • (916) 921-9600	FAX (916) 921-0100
/~	1900 Bates Ave., Suite LM • Concord, CA 94520 • (510) 686-9600	FAX (510) 686-9689

Page _ of _

Company Name:	LTON	6 EC	SCI	ENC	<u>E</u>	Projec	t Name	e: <i>U</i>	SA	6	AS	#	57			
Address: 30/4	hindle	engl		Suc		Billing	Addre	ss (if c	differe	nt):						
City: Livermy	ze State	: Oc	A	Zip Code	: 94550								 -			_
Telephone: 5 (o	606 91	50	FAX#:	510	6069260	P.O. #	: L	1/7	18	8		 -	 _		-	
Report To: A	a La Mo	Sampl	er: A	1/0-	(- H	QC Da	ıta XI	lovel	A 10m							
Turnaround X 10 Wo	17	2 AAOIKI	ng Days	□ 2-8	Hours D Dr	inking	Water		J	KURITU)			queste	vel C	C Level C	<u>) </u>
	king Days [2 Worki 24 Hour	ng Days		(<i>/</i> ⊃ w	aste W		1070	2	7	/ /	/ /	Quester	" –	77	
Client	Date/Time	Matrix	s # of	Cont.	∑ ⊘ ₁	her	PH		NZ		/.	/	/ ,	/,		
Sample I.D.	Sampled	Desc.	Cont.	Туре	Sequoia's Sample #		(4//								Commen	
1. NUJ-3 (5.5)	2-2898	Soil	1	the	5030223	1	1		1	Υ	- 1				Committee	
2.HN-3(11.5)				1	5030224	//	 	 		┼						
MW-3 (13.5)	· :		┼─┼─		5030225	$\perp \triangle$	1,	 -	 	 						
VW-3 (155)		+	┼╌┼┈			//`	$\perp X_{\perp}$	ļ	<u> </u>	<u> </u>						
MW-3 (15.5)		 - 	 		2030556	 '										
5. MW-3 (21.3)		-			5030227	X	L_	}								
. MW-3(24.5)					2030558	X						7				
MW-3 (29.5)					2030559	X			<u> </u>					┰┼		
MW-3(29.5) MW-3 (29.5) MW-3(39.5)			1		5030230	×	+			-	╂╼╌╂		 -			
						1	 			<u> </u>						
0.		7			 		 	<u> </u>							 	
	$-\Omega L$	/	1	<u></u>												
Relinquished By:	1/4/		Date:	3-3-95	Time: [7.20	Rec	eived E	By:			-	Dai		h	ime:	
Relinquished By:		$ \angle $	Date:		Time:	Bece	eived B	lv.	·			-				
Relinquished By:		/	Date:		· · · · · ·		ived B		2. (10	1861	Dat			ime:	
re Samples Received i		/			Time	Hece	eived B	y Lab			10(1	` Da	ite?	<u> </u>	ime:	

680 Chesapeake Drive 404 N. Wiget Lane #19 Striker Avenue, Suite &

Redwood City, CA 94069 Walnut Creek, CA 94598 Sacramento, CA 95884

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (\$10) 988-9673 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Allsa LeMay

Client Project ID: Sample Matrix: Analysis Method:

First Sample #:

USA Gas #57 Water

EPA 5030/8015/8020 503-0307

Sampled: Received: Mar 3, 1995 Mar 6, 1995

Reported: Mar 22, 1995

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 503-0307 MW-3	Sample I.D. 503-0308 S1	Sample I.D. 503-0309 S2	
Purgeable Hydrocarbons	50	2,500	910	24,000	
Benzene	0.50	540	260	1,900	
Toluene	0.50	92	7.6	440	
Ethyl Benzene	0.50	36	16	600	
Total Xylenes	0.50	200	14	2,500	MAD 9 3 4005
Chromatogram Patt	ern:	Gasoline	Gasoline	Gasoline	MAR 3 1 1995

Quality Control Data

Report Limit Multiplication Factor:	10	10	20
Date Analyzed:	3/11/95	3/11/95	3/9/95
Instrument Identification:	HP-1	HP-1	HP-1
Surrogate Recovery, %: (QC Limits = 70-130%)	82	75	107

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #2000

Kevin Van Slambrook **Project Manager**

. .

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Secremento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

4-25-36-5-3

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Allsa LeMay

Client Project ID: Sample Matrix: Analysis Method:

First Sample #:

USA Gas #57 Water

EPA 3510/3520/8015

503-0307

Sampled: Received: Mar 3, 1995 Mar 6, 1995

015 Reported: Mar 22, 1995

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 503-0307 MW-3	Sample I.D. 503-0308 S1	Sample I.D. 503-0309 S2	
Extractable Hydrocarbons	50	1,600	5,900	6,000	
Chromatogram Patt	ern:	Discrete Peaks and Unidentified Hydrocarbons C9-C24	Unidentified Hydrocarbons C9-C24	Unidentified Hydrocarbons C9-C24	

Quality Control Data

Report Limit Multiplication Factor:	1.0	10	4.0
Date Extracted:	3/13/95	3/13/95	3/13/95
Date Analyzed:	3/15/95	3/18/95	3/16/95
Instrument Identification:	GCHP-4A	GCHP-5B	GCHP-5A

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

ŞEQUOIA ANALYTICAL, #1210

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite \$

Redwood City, CA 94063 Walnut Creek, CA 94596 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 PAX (415) 364-9283 FAX (510) 988-9678 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Alisa LeMay

Client Project ID: Matrix: USA Gas #57 Liquid

QC Sample Group: 5030307-09

Reported:

Mar 22, 1995

QUALITY CONTROL DATA REPORT

Method: EPA 8020 PA 9030 PA 9030 <t< th=""><th>S</th></t<>	S
Analyst: N. Zahedi N. Zah	
Analyst: N. Zahedi N. Zahedi <t< th=""><th>20</th></t<>	20
Batch#: 5030074 50300074 50300074 5030074 5030074 5030074 5030074 5030074 5030074 5030074 5030074 <th></th>	
Batch#: 5030074 50300074 50300074 5030074 5030074 5030074 5030074 5030074 5030074 5030074 5030074 <td></td>	
Date Analyzed: 3/9/95	4
Date Analyzed: 3/9/95 3/9/95 3/9/95 3/9/95 3/9/95 3/9/95 3/9/95 3/9/95 3/9/95 3/9/95 3/9/95 3/9/95 3/9/95 3/9/95 3/9/95 3/9/96 3/9/95	
nstrument I.D.#: HP-1 HP-1 HP-1 HP-1 HP-1 Conc. Spiked: 10 μg/L 10 μg/L 10 μg/L 30 μg/ Matrix Spike % Recovery: 101 93 104 106 Matrix Spike Duplicate %	
Conc. Spiked: 10 µg/L 10 µg/L 10 µg/L 30 µg/ Matrix Spike % Recovery: 101 93 104 106 Matrix Spike Duplicate %	i
Matrix Spike % Recovery: 101 93 104 106 Matrix Spike Duplicate %	
% Recovery: 101 93 104 106 Matrix Spike Duplicate %	-
% Recovery: 101 93 104 106 Matrix Spike Duplicate %	
Matrix Spike Duplicate %	
Duplicate %	
Duplicate %	
Recovery: 94 80 101 00	
Recovery: 94 80 101 99	
Relative %	
Difference: 7.2 15 2.9 6.8	

LCS Batch#:	LC\$030995	LCS030995	LCS030995	LCS030995		
Date Prepared: Date Analyzed: Instrument I.D.#:	3/9/95 3/9/95 HP-1	3/9/95 3/9/95 HP-1	3/9/95 3/9/95 HP-1	3/9/95 3/9/95 HP-1		
LCS % Recovery:	102	103	105	108		
% Recovery Control Limits:	71-133	72-128	72-130	71-120	 	

SEQUOIA ANALYTICAL, #2000

Kevin Van Slambrook Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

680 Chesspeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Redwood City, CA 94063 Walnut Creek, CA 94598 Secremento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Allsa LeMay

Client Project ID: USA Gas #57

Matrix: Liquid

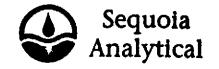
QC Sample Group: 5030307-09

Reported: N

Mar 22, 1995

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl Benzene	Xylenes	
Method: Analyst:	EPA 8020 N. Zahedi	EPA 8020 N. Zahedi	EPA 8020 N. Zahedi	EPA 8020 N. Zahedi	
MS/MSD Batch#:	LCS031195	LCS031195	LCS031195	LCS031195	
Date Prepared: Date Analyzed: Instrument I.D.#: Conc. Spiked:	3/11/95 3/11/95 HP-1 10 <i>µ</i> g/L	3/11/95 3/11/95 HP-1 10 µg/L	3/11/95 3/11/95 HP-1 10 µg/L	3/11/95 3/11/95 HP-1 30 µg/L	
Matrix Spike % Recovery:	108	109	113	114	
Matrix Spike Duplicate % Recovery:	100	101	102	106	
Relative % Difference:	7.7	7.6	10	7.3	


LCS Batch#:	LCS031195	LCS031195	LCS031195	LCS031195		
Date Prepared: Date Analyzed: Instrument I.D.#:	3/11/95 3/11/95 HP-1	3/11/95 3/11/95 HP-1	3/11/95 3/11/95 HP-1	3/11 /95 3/11 /95 HP-1		
LCS % Recovery:	108	109	113	114		
% Recovery Control Limits:	71-133	72-128	72-130	71-120	· · · · · · · · · · · · · · · · · · ·	
						

\$EQUOIA ANALYTICAL, #2000

Kevin Van Slambrook Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

5030307.ALT <4>

680 Chesapeake Drive 404 N. Wiget Lane \$19 Striker Avenue, Suite \$

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95884

(510) 988-9600 (916) 921-9600

PAX (415) 864-9298 FAX (510) 948-9673 FAX (916) 921-0100

Alton Geosclence 30-A Lindbergh Ave. Livermore, CA 94550

Attention: Alisa LeMay

Client Project ID: USA Gas #57 Matrix:

Liquid

QC Sample Group: 5030307-09

Reported:

Mar 22, 1995

QUALITY CONTROL DATA REPORT

ANALYTE	Diesel	
	EPA	
Method:	8015 Mod.	
Analyst:	B. Ali	

MS/MSD

Batch#:

BLK031395

Date Prepared: Date Analyzed: Instrument I.D.#:

3/13/95 3/14/95 GCHP-4A

Conc. Spiked:

600 µg/L

Matrix Spike

% Recovery: 73

Matrix Spike **Duplicate %**

> Recovery: 80

Relative %

Difference:

8.7

LCS Batch#:

Date Prepared:

Date Analyzed: Instrument I.D.#:

LCS % Recovery:

% Recovery

Control Limits:

38-122

SEQUOIA ANALYTICAL, #1210

Kevin Van Slambrook Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

	680 Chesapeake Drive - Dadamad au	
0	680 Chesapeake Drive • Redwood City, CA 94063 • (415) 364-9600	FAX (415) 364-0222
Κ'n	819 West Striker Ave. • Sacramento, CA 95834 • (916) 921-9600 1900 Bates Ave., Suite LM • Concord, CA 04500 (516)	FAX (916) 921-0100
\sim	1900 Bates Ave., Suite LM • Concord, CA 94520 • (510) 686-9600	FAY (510) 521-0100

Telephone: 570 Report To: Ailsa	6069		FAX#	51060	94550	P.O. #	: 4	171	87	· 			
umaround 🔁 10 V	Working Days	Sample 3 Workii	er: //a	12.8H		QC Da	ta: 🕽 Lev	el A (Stan	dard) 🖸 Le	vel B	☐ Level	C Die	vel D
7me: 🖒 7w ⊡ 5 w	onding Days	J 2 Workii	ng Days	₩ 2.0M	ours L	rinking Vaste W	Water	(equested		voi D
Client	Date/Time	24 Hour	s # of	Cost	> × c	ther		VV/		//	///		7
Sample I.D.	Sampled	Desc.	Cont.	Cont. Type	Sequoia's Sample #		(4), (4)	Y/	///	//	///	/ /-	
MW-3	3/3 2:30	1120	3	VOA 16 Ambre		TV	YY	-	\leftarrow	/_	//	/	ments
SI	3/3 12:50	1 .	1	1		10	 				030303		
52	3/3 2:00					X	X			 -	มรถรถ		
		4-	1	1-1-	-	X	X	_		5)30309	<i>y</i>	
						-							
						ļ		-					
		10 4.1417				 							
					·							-	
													
	' '												
													
Relinquished By:	Mand The	il	Date:	3695 T	ime: 940	Recei	ved By:						
lelinquished By:c	Dudit	د	•	3/48 11	75.		ved By: /	XIU,	118/12	Dat	o: 3/6/95	Time: 7	40

RON ARCHER

CIVIL ENGINEER INC.

CONSULTING . PLANNING . DESIGN . SURVEYING

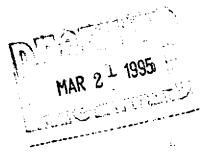
4133 Mohr Ave., Sulte E • Pleasanton, CA 94566 (510) 462-9372

MARCH 15, 1995

JOB NO 2258

ELEVATIONS OF EXISTING MONITORING WELLS AT THE FORMER U.S.A. GASOLINE CORPORATION STATION NO. 57 LOCATED AT 10700 MACARTHUR BOULEVARD, CITY OF OAKLAND, ALAMEDA COUNTY, CALIFORNIA.

FOR: ALTON GEOSCIENCE


BENCHMARK: #106

A FOUND CUT "T" AT THE BACK OF SIDEWALK INTERSECTION OF THE NORTHWESTERLY CORNER OF INTERSECTION OF DURANT AVENUE AND FOOTHILL BOULEVARD ELEVATION TAKEN AS 79.392 M.S.L. (N.G.V.D.).

MONITORING WELL DATA TABLE

WELL DESIGNATION	TOP OF CASING ELEVATION	TOP OF BOX ELEVATION
S-1	74.74 (IRON COLLAR)	75.07
S-2	76.86	77.36
MW-3	76.30	76.72
		weather the party of the second

NOTE: ELEVATION TAKEN ON THE IRON COLLAR ON S1 WAS NEXT TO THE LOCKING RING.

