

GETTLER - RYAN INC. 01-08-03A08:44 RCVD

TRANSMITTAL

July 17, 2001 G-R #180061

TO:

Mr. David B. De Witt

Tosco Marketing Company

2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

CC:

Mr. David Vossler

Gettler-Ryan Inc.

Petaluma, California

FROM:

Deanna L. Harding

Project Coordinator

Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 RE:

Tosco (Unocal) Service Station #5325

3220 Lakeshore Avenue

Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES DATED DESCRIPTION

1 July 13, 2001 Groundwater Monitoring and Sampling Report Second Quarter - Event of June 6, 2001

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by *July 31, 2001*, this report will be distributed to the following:

cc: Alameda County Health Care Services, 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Enclosure

from wells, MTBE still elected

trans/5325-DBD

GETTLER-RYAN INC.

July 13, 2001 G-R Job #180061

Mr. David B. De Witt Tosco Marketing Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE: Second Quarter Event of June 6, 2001

Groundwater Monitoring & Sampling Report Tosco (Unocal) Service Station #5325 3220 Lakeshore Avenue Oakland, California

Dear Mr. De Witt:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in any wells. Static water level data and groundwater elevations are summarized in Table 1. Dissolved Oxygen Concentrations are summarized in Table 4. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by Standard Operating Procedure Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1, 2 and 3. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

Sincerely,

Deanna L. Harding Project Coordinator

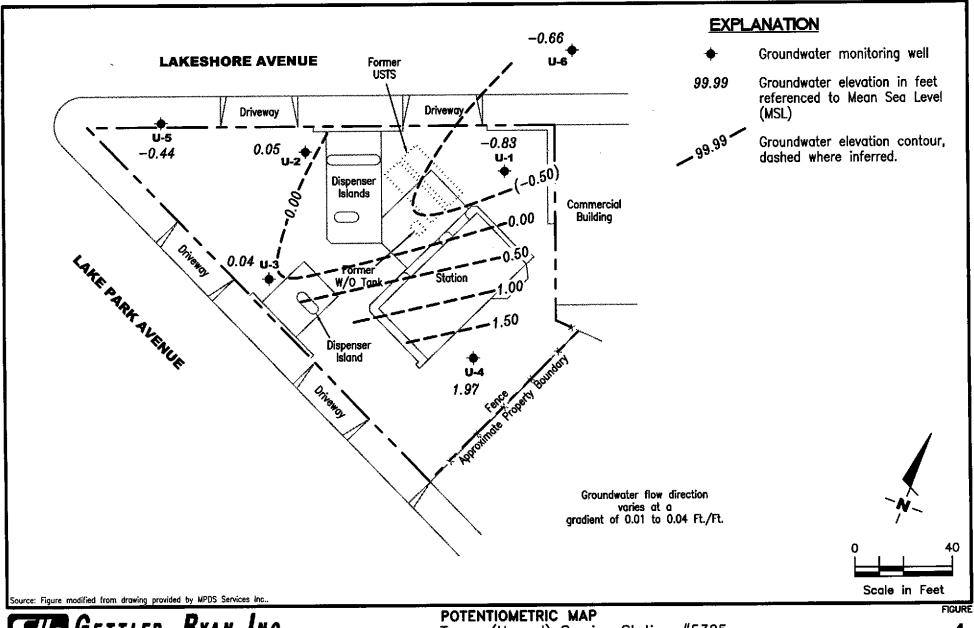
Hagop Kevork

P.E. No. C55734

Figure 1: Potention

Figure 1: Potentiometric Map Figure 2: Concentration Map

Table 1: Groundwater Monitoring Data and Analytical Results
Table 2: Groundwater Analytical Results – Oxygenate Compounds


Table 3: Groundwater Analytical Results
Table 4: Dissolved Oxygen Concentrations

Attachments: Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

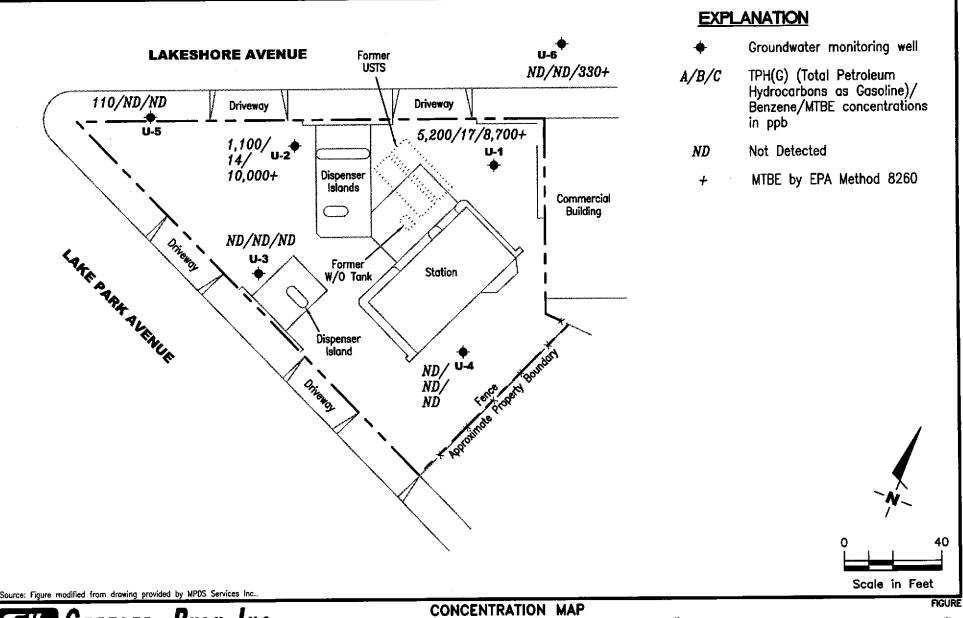
Chain of Custody Document and Laboratory Analytical Reports

5325.qml

6747 Sierra Ct., Suite J Dublin, CA 94568 (925) 551-7555

REVIEWED BY

Tosco (Unocal) Service Station #5325 3220 Lakeshore Avenue


Oakland, California

DATE REVISED DATE June 6, 2001

FILE NAME: P:\ENVIRO\TOSCO\5325\Q01-5325.DWG | Layout Tob: Pot2

PROJECT NUMBER

180061

CONCENTRATION MAP
Tosco (Unocal) Service Station #5325
3220 Lakeshore Avenue

Oakland, California

PROJECT NUMBER REVIEWED BY 180061

DATE June 6, 2001 REVISED DATE

2

Table 1
Groundwater Monitoring Data and Analytical Results

					Product			2			A AMOUNT P
WELL ID/	DATE	DTW	S.I.	GWE	Thickness	TPH-G	В	T	E	X	MTBE (ppb)
TOC*		(ft.)	(ft. bgs)	(ft.)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(рро)
U-1	08/10/90		5.0-20.0			690	38	75	8.6	130	
0-1	01/07/91		210 2070			250	22	16	4.2	17	
	04/01/91					160	13	8.6	1.0	15	
	07/03/91					140	21	4.3	0.36	17	
	10/09/91					ND	ND	ND	ND	ND	
	02/12/92					250	ND	ND	ND	ND	
	05/05/92					230	1.2	ND	ND	ND	
	06/11/92					1,000	80	1.4	6.7	41	
	08/20/92					400 ¹	1.0	ND	ND	0.6	
	02/22/93					34,000	1,400	5,500	910	7,300	
	05/07/93					8,700	600	240	650	3,300	
	08/08/93					4,900 ²	7 9	ND	832	270	
5.32	11/16/93	8.61		-3.29	0.00	690^{3}	ND	ND	ND	ND	
5.52	02/16/94	8.54		-3.22	0.00	6,800 ⁴	ND	ND	ND	ND	
8.46	06/22/94	8.39		0.07	0.00	200	ND	ND	5.9	21	
6.40	09/22/94	8.66		-0.20	0.00	$6,100^3$	ND	ND	ND	ND	
	12/24/94	8.04		0.42	0.00	50,000	2,500	9,700	2,400	17,000	
	03/25/95	7.72		1.02**	0.37	•	· ·	RESENCE OF F	REE PRODUCT		
	06/21/95	9.30		-0.69**	0.20			RESENCE OF F			
	09/19/95	9.29		-0.53**	0.40	NOT SAMPLED	DUE TO THE F	RESENCE OF F	REE PRODUCT		
	12/19/95	8.98		-0.50**	0.03			PRESENCE OF F			
	03/18/96	8.25		0.21	0.00	27,000	ND	2,300	1,400	11,000	4,900
	06/27/96	7.92		0.54	<0.01	120,000	540	4,300	2,600	26,000	ND
	09/26/96	9.10		-0.62**	0.02	*	DUE TO THE	PRESENCE OF F	REE PRODUCT		
	12/09/96	6.88		1.60**	0.03			PRESENCE OF F			
	03/14/97	9.02		-0.15**	0.55	NOT SAMPLEI	DUE TO THE	PRESENCE OF F	REE PRODUCT		
	06/30/97	8.41		0.07**	0.02			PRESENCE OF F			
	09/19/97	8.56		-0.08**	0.02			PRESENCE OF F			
	12/12/97	8.58		-0.11**	0.01			PRESENCE OF F			
	03/03/98 ¹⁷	8.23		0.26**	0.04			PRESENCE OF F			
	05/05/98 ¹⁷	8.23		0.09	Sheen	52,000	ND ⁷	900	1,800	13,000	ND ⁷

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/ TOC*	DATE	DTW (ft.)	S.1. (ft. bgs)	GWE (ft.)	Product Thickness (ft.)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
					G,	1,000,0008	ND^7	2,600	13,000	83,000	4,800
U-1	09/30/98 ¹⁷	8.94	5.0-20.0	-0.48	Sheen		ND ⁷		8,600	71,000	5,700
(cont)	12/28/98 ¹⁷	8.57		-0.11	< 0.01	1,100,0009		1,600			5,700
	03/2 2/ 99 ¹⁷	8.18		0.28	Sheen	130,000	470	1,100	2,000	28,000	3,500/2,100 ¹⁰
	06/09/99	9.37		-0.91	0.00	40,000	230	640	590	13,000	5,500/2,100 6,890/6,690 ¹⁰
	09/08/99 ¹⁷	9.53		-1.07	0.00	55,00011	217	202	745	14,300	•
	12/07/99 ¹⁷	9.67		-1.21	0.00	41,200 ¹³	89.3	ND ⁷	385	6,930	15,800/14,700 ¹²
	03/13/00 ¹⁷	8.44		0.02	0.00	48,000	490	610	2,400	10,000	22,000/23,000 ¹⁰
	06/21/00 ¹⁷	9.45		-0.99	0.00	37,00011	200	ND ⁷	1,200	7,200	15,000/20,000 ¹⁰
	09/27/0017	9.29		-0.83	0.00	15,00011	92	ND ⁷	540	2,800	74,000/83,000 ¹⁵
	12/12/00 ¹⁷	9.37		-0.91	0.00	50,000 ¹⁶	ND ⁷	ND^7	250	1,900	12,000/15,000 ¹²
	03/07/0117	8.45		0.01	0.00	$6,220^{13}$	29.8	10.4	96.3	638	11,200/11,800 ¹⁰
	06/06/01 ¹⁷	9.29		-0.83	0.00	5,200 ¹³	17	ND ⁷	69	420	6,500/8,70012
U-2	08/10/90	m.e-	5.0-20.0			780	27	46	15	130	
U-2	01/07/91		3.0-20.0		**	1,900	67	5.8	58	69	
						1,700	250	89	34	190	
	04/01/91						150	25	3.1	290	
	07/03/91					2,100		ND	ND	11	<u></u>
	10/09/91					230	7.1			0.4	
	02/12/92					410	1.9	ND	0.36	290	
	05/05/92					1,600	120	52	6.2		
	06/11/92					620	17	2.1	ND	37	
	08/20/92		•			700	28	6.5	1.3	4.6	
	02/22/93					3,400	2,400	2,100	1,200	5,800	••
	05/07/93					17,000	1,800	660	1,700	4,000	
	08/08/93			**		5,600 ²	420	ND	410	670	
4.53	11/16/93	8.17		-3.64	0.00	510 ³	ND	ND	ND	ND	
	02/16/94	7.73		-3.20	0.00	980 ⁴	49	13	2.7	40	
7.62	06/22/94	7.60		0.02	0.00	31,000	2,200	62	1,500	3,500	
	09/22/94	7.93		-0.31	0.00	8,500 ³	29	ND	ND	ND	
	12/24/94	7.27		0.35	0.00	32,000	1,500	890	1,300	5,000	

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/ TOC*	DATE	DTW (ft.)	S.I. (ft. bgs)	GWE	Product Thickness (ft.)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)						
100		0.65	0														
U-2	03/25/95	7.01	5.0-20.0	0.61	0.00	170,000	1,900	21,000	4,800	33,000							
(cont)	06/21/95	6.98		0.64	0.00	16,000	2,100	ND	1,800	1,700							
()	09/19/95	7.70		-0.08	0.00	3,000	610	ND	78	240	5						
-	12/19/95	7.30		0.32	0.00	1,600	140	55	52	270	6						
	03/18/96	6.45		1.17	0.00	12,000	2,200	ND	1,200	2,200	22,000						
	06/27/96	7.41		0.21	0.00	28,000	3,400	ND	2,800	3,100	3,000						
	09/26/96	7.90		-0.28	0.00	5,900	750	ND	ND	ND	18,000						
	12/09/96	6.76		0.86	0.00	13,000	5,100	290	980	370	2,700						
	03/14/97	7.12		0.52**	0.03			RESENCE OF F									
	06/30/97	6.19		1.43	< 0.01	NOT SAMPLED											
	09/19/97	7.31		0.31	< 0.01	NOT SAMPLED	DUE TO THE F	PRESENCE OF FI	REE PRODUCT								
	12/12/97	6.75		0.88**	< 0.01	NOT SAMPLED	DUE TO THE F	PRESENCE OF FI	REE PRODUCT								
	03/03/98	6.36		1.26	Sheen	80,000	3,000	1,100	820	16,000	16,000						
	06/15/98	6.51		1,11	Sheen	48,000	1,800	330	470	7,900	20,000						
	09/30/98	7.17		0.45	Sheen	60,000	1,300	ND^7	500	9,700	19,000						
	12/28/98	7.06		0.56	0.00	63,000	590	160	320	5,600	16,000						
	03/22/99	6.82		0.80	0.00	28,000	1,100	ND^7	360	2,900	25,000						
	06/09/99	7.51		0.11	0.00	21,000	110	190	310	2,600	7,900/7,800						
	09/08/99	8.16		-0.54	0.00	23,30011	477	138	286	4,110	16,400/15,30						
	12/07/99	8.31		-0.69	0.00	4,840 ¹³	17.2	ND^7	ND ⁷	157	14,900/15,60						
	03/13/00	6.69		0.93	0.00	11,00011	380	160	ND^7	2,100	22,000/26,00						
	06/21/00	7.67		-0.05	0.00	9,10011	22	ND ⁷	ND ⁷	800	16,000/22,00						
	09/27/00	7.44		0.18	0.00	2,90011	43	ND ⁷	ND ⁷	39	20,000/26,00						
	12/12/00	7.51								0.11	0.00	3,60011	17	ND ⁷	ND^7	87	8,000/7,800
	03/07/01	7.15		0.47	0.00	1,670 ¹³	51.0	ND ⁷	7.20	19.5	5,930/7,900						
	06/06/01	7.57		0.05	0.00	1,100 ¹¹	14	ND^7	9.3	35	9,200/10,000						

Table 1 Groundwater Monitoring Data and Analytical Results

					Product					2.0	<u> </u>
WELL ID/	DATE	DTW	S.I.	GWE	Thickness	TPH-G	В	Т	E	X	MTBE
TOC*		(ft.)	(ft. bgs)	(ft.)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
rı a	00/10/00		£ 0.20.0			ND	ND	ND	ND	ND	
U-3	08/10/90		5.0-20.0			ND ND	ND ND	ND ND	ND	1.8	
	01/07/91						1.0	2.9	0.53	5.4	
	04/01/91					ND				ND	
	07/03/91					ND	ND	ND	ND		
	10/09/91					ND	ND	ND	ND	ND	
	02/12/92				~-	ND	ND	ND	ND	ND	
	05/05/92					ND	ND	ND	ND	ND	
	06/11/92					ND	ND	ND	ND	ND	
	08/20/92	**				ND	ND	ND	ND	ND	
	02/22/93					ND	ND	ND	ND	ND	
	05/07/93	••				ND	ND	ND	ND	ND	
	08/08/93					210	5.0	9.7	0.7	4.1	
7.86	11/16/93	11.82		-3.96	0.00	ND	ND	ND	ND	ND	
	02/16/94	11.62		-3.76	0.00	ND	ND	ND	ND	ND	
10.98	06/22/94	11.64		-0.66	0.00	ND	ND	ND	ND	ND	
	09/22/94	11.76		-0.78	0.00	ND	ND	ND	ND	ND	
	12/24/94	11.28		-0.30	0.00	ND	ND	ND	ND	ND	
	03/25/95	10.96		0.02	0.00	ND	ND	ND	ND	ND	
	06/21/95	11.37		-0.39	0.00	ND	ND	ND	ND	ND	
	09/19/95	11.55		-0.57	0.00	ND	ND	ND	ND	ND	5
	12/19/95	11.45		-0.47	0.00	ND	ND	ND	ND	ND	
	03/18/96	11.10		-0.12	0.00	ND	ND	ND	ND	ND	
	06/27/96	11.16		-0.18	0.00	440	49	50	51	140	50
	09/26/96	11.55		-0.57	0.00	ND	ND	ND	ND	ND	ND
	12/09/96	10.12		0.86	0.00	ND	ND	ND	ND	ND	29
	03/14/97	10.87		0.11	0.00	ND	ND	ND	ND	ND	ND
	06/30/97	11.08		-0.10	0.00	ND	ND	ND	ND	ND	ND
	09/19/97	11.05		-0.07	0.00	ND	ND	ND	ND	ND	ND
	12/12/97	10.58		0.40	0.00	ND	ND	ND	ND	ND	ND
	03/03/98	9.84		1.14	0.00	ND	ND	ND	ND	ND	ND
	06/15/98	10.56		0.42	0.00	ND	ND	ND	ND	ND	ND

Table 1
Groundwater Monitoring Data and Analytical Results
Tosco (Unocal) Service Station #5325

WELL ID/	DATE	DTW	S.I.	GWE	Product Thickness (ft.)	TPH-G	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
TOC*		(fi.)	(ft. bgs)	(ft.)	(16)	(рро)	(ppa)	(0)00)	(рри)	(рүс)	(Ppo)
U-3	09/30/98	11.12	5.0-20.0	-0.14	0.00	ND	ND	ND	ND	ND	ND
(cont)	12/28/98	10.96	5.0 20.0	0.02	0.00	ND	ND	ND	ND	ND	ND
(com)	03/22/99	9.46		1.52	0.00	ND	ND	ND	ND	ND	ND
	06/09/99	11.01		-0.03	0.00	ND	ND	ND	ND	ND	ND
	09/08/99	11.31		-0.33	0.00	ND	ND	ND	ND	ND	ND
	12/07/99	11.26		-0.28	0.00	ND	ND	ND	ND	ND	ND
	03/13/00	8.28		2.70	0.00	ND	ND	ND	ND	ND	ND
	06/21/00	11.12		-0.14	0.00	ND	ND	ND	ND	ND	ND
	09/27/00	11.07		-0.09	0.00	ND	ND	ND	ND	ND	ND
	12/12/00	10.94		0.04	0.00	ND	ND	ND	ND	ND	ND
	03/07/01	8.32		2.66	0.00	ND	ND	ND	ND	ND	ND
	06/06/01	10.94		0.04	0.00	ND	ND	ND	ND	ND	ND
U-4											
11.15	06/22/94	10.16	5.0-20.0	0.99	0.00	ND	ND	ND	ND	ND	
	09/22/94	10.79		0.36	0.00	ND	0.78	1.3	ND	1.4	
	12/24/94	9.81		1.34	0.00	ND	ND	ND	ND	ND	
	03/25/95	9.51		1.64	0.00	ND	ND	ND	ND	ND	
	06/21/95	9.54		1.61	0.00	ND	ND	ND	ND	ND	
	09/19/95	10.17		0.98	0.00	ND	ND	ND	ND	ND	
	12/19/95	9.98		1.17	0.00	ND	ND	ND	ND	ND	
	03/18/96	9.66		1.49	0.00	ND	ND	ND	ND	ND	
	06/27/96	9.74		1.41	0.00	ND	ND	ND	ND	ND	ND
	09/26/96	10.14		1.01	0.00	ND	ND	ND	ND	ND	ND
	12/09/96	8.67		2.48	0.00	ND	ND	ND	ND	ND	33
	03/14/97	9.35		1.80	0.00	ND	ND	ND	ND	ND	ND
	06/30/97	9.89		1.26	0.00	ND	ND	ND	ND	ND	ND
	09/19/97	9.96		1.19	0.00	ND	ND	ND	ND	ND	ND
	12/12/97	8.56		2.59	0.00	ND	ND	ND _	ND	ND	ND
	03/03/98	7.85		3.30	0.00	ND	ND	ND	ND	ND	ND

Table 1Groundwater Monitoring Data and Analytical Results

					Product						سيبيس إ
WELL ID/	DATE	DTW	S.I.	GWE	Thickness	TPH-G	В	T	E	X	MTBE
FOC*		(ft.)	(ft. bgs)	(ft.)	(ft.)	(ррв)	(ppb)	(ррв)	(ppb)	(ppb)	(ppb)
U-4	06/15/98	9.08	5.0-20.0	2.07	0.00	ND	ND	ND	ND	ND	ND
(cont)	09/30/98	9.75	3.0-20.0	1.40	0.00	ND	ND	ND	ND	ND	ND
(COIII)	12/28/98	9.75		1.56	0.00	ND	ND	ND	ND	ND	ND
	03/22/99	8.34		2.81	0.00	ND	ND	ND	ND	ND	ND
	05/22/99	9.39		1.76	0.00	ND	ND	ND	ND	ND	ND
	09/08/99	9.90		1.75	0.00	ND	ND	ND	ND	ND	ND
	12/07/99	10.05		1.10	0.00	ND	ND	ND	ND	ND	ND
	03/13/00	7.24		3.91	0.00	ND	ND	ND	ND	ND	ND
	05/15/00	9.48		1.67	0.00	ND	ND	ND	ND	ND	ND
	09/27/00	9.42		1.73	0.00	ND	ND	ND	ND	ND	ND
	12/12/00	9.50		1.65	0.00	ND	ND	ND	ND	ND	ND
	03/07/01	6.88		4.27	0.00	ND	ND	ND	ND	ND	ND
	06/06/01	9.18		1.97	0.00	ND	ND	ND	ND	ND	ND
U-5 6.98	06/22/94	6.83	5.0-20.0	0.15	0.00	210	7.1	13	4.5	26	
0.90	09/22/94	6.90	3.0-20.0	0.13	0.00	170	8.4	10	8.5	18	
	12/24/94	6.43		0.55	0.00	8,700	560	70	670	430	
	03/25/95	6.35		0.63	0.00	44,000	390	960	1,500	7,600	
	06/21/95	7.11		-0.13	0.00	400	2 .3	ND	9.1	3.5	
	09/19/95	6.99		-0.01	0.00	850	14	7.1	13	66	5
	12/19/95	7.17		-0.19	0.00	ND	ND	ND	ND	ND	
	03/18/96	6.65		0.33	0.00	100	0.67	0.5	0.51	5.4	••
	06/27/96	6.49		0.49	0.00	16,000	280	150	1,400	4,600	530
	09/26/96	7.13		-0.15	0.00	ND	ND	0.57	ND	0.96	ND
	12/09/96	5.90		1.08	0.00	1,300	29	46	ND	140	97
	03/14/97	6.99		-0.01	0.00	ND	ND	ND	ND	ND	14
	06/30/97	7.08		-0.10	0.00	4,200	74	51	180	980	270
	09/19/97	6.78		0.20	0.00	6,300	160	13	370	1000	480
	12/12/97	6.94		0.04	0.00	60	1.3	ND	1.6	2.1	47

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW (ft.)	S.I. (ft. bgs)	GWE	Product Thickness (ft.)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
	<u> </u>							_			
U-5	03/03/98	6.50	5.0-20.0	0.48	0.00	1,700	29	ND ⁷	150	190	330
(cont)	06/15/98	6.85		0.13	0.00	1,500	32	ND ⁷	91	83	330
	09/30/98	7.31		-0.33	0.00	1,700	44	ND ⁷	39	150	60
	12/28/98	7.25		-0.27	0.00	1,400	59	ND^7	13	27	150
	03/22/99	6.86		0.12	0.00	780	8.9	ND	0.76	4.5	350
	06/09/99	7.28		-0.30	0.00	1,000	ND^7	ND^7	10	35	280/350 ¹⁰
	09/08/99	7.52		-0.54	0.00	2,620 ¹¹	26.2	ND^7	32.2	157	280/23912
	12/07/99	7.67		-0.69	0.00	94911	9.26	ND^7	11.2	22.7	235/301 ¹²
	03/13/00	6.73		0.25	0.00	88014	12	1.0	5.6	8.7	46/37 ¹⁰
	06/21/00	7.39		-0.41	0.00	70011	4.0	ND	0.99	4.0	120/140 ¹⁰
	09/27/00	7.45		-0.47	0.00	40011	1.9	ND	ND	1.5	160/250 ¹⁵
	12/12/00	7.68		-0.70	0.00	770 ¹¹	3.2	ND^7	ND ⁷	ND^7	27/13 ¹²
	03/07/01	6.83		0.15	0.00	62313	5.15	ND	ND	0.669	35.7/43.4 ¹⁰
	06/06/01	7.42		-0.44	0.00	110 ¹³	ND	ND	ND	ND	ND
U-6											
7.14	06/22/94	7.14	5.0-24.0	0.00	0.00	ND	ND	ND	ND	ND	
	09/22/94	7.34		-0.20	0.00	130	1.3	0.8	ND	0.73	
	12/24/94	6.67		0.47	0.00	6,900	500	59	600	380	
	03/25/95	6.29		0.85	0.00	47,000	450	1,300	1,700	8,200	
	06/21/95	7.60		-0.46	0.00	ND	ND	ND	ND	ND	
	09/19/95	7.70		-0.56	0.00	ND	ND	ND	ND	ND	5
	12/19/95	7.75		-0.61	0.00	210	2.5	1.0	2.9	17	
	03/18/96	6.86		0.28	0.00	ND	ND	ND	ND	ND	
	06/27/96	6.52		0.62	0.00	ND	ND	ND	ND	ND	510
	09/26/96	7.62		-0.48	0.00	ND	ND	ND	ND	ND	1,400
	12/09/96	5.88		1.26	0.00	1,200	29	48	6.4	140	58
	03/14/97	7.30		-0.16	0.00	ND	ND	ND	ND	ND	1,500
	06/30/97	7.35		-0.21	0.00	ND	ND	ND	ND	ND	990
	09/19/97	7.25		-0.11	0.00	ND	ND	ND	ND	ND	1,400

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/ TOC*	DATE	DTW (ft.)	S.I. (ft. bgs)	GWE (ft.)	Product Thickness (ft.)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
TOC.		<i>y.,</i>	y a ugsy	UP9	0.07	VENT .	(PP+)				20000000000000000000000000000000000000
U-6	12/12/97	7.29	5.0-24.0	-0.15	0.00	ND	ND	ND	ND	ND	680
(cont)	03/03/98	7.00		0.14	0.00	ND	ND	ND	ND	ND	1,600
` ,	06/15/98	7.18		-0.04	0.00	ND^7	ND^7	ND^7	ND^7	ND^7	1,000
	09/30/98	7.90		-0.76	0.00	ND	ND	ND	ND	ND	1,200
	12/28/98	7.79		-0.65	0.00	ND ⁷	ND^7	ND^7	ND^7	ND^7	730
	03/22/99	7.47		-0.33	0.00	ND	ND	ND	ND	ND	1,800
	06/09/99	7.73	•	-0.59	0.00	ND ⁷	ND^7	ND^7	ND^7	${ m ND}^7$	1,000/850 ¹⁰
	09/08/99	7.95		-0.81	0.00	ND	ND	ND	ND	ND	851/1,040 ¹⁰
	12/07/99	8.10		-0.96	0.00	ND	ND	ND	ND	ND	1,140/1,150 ¹
	03/13/00	6.95		0.19	0.00	ND	ND	ND	ND	ND	560/670 ¹⁰
	06/21/00	7.84		-0.70	0.00	ND	ND	ND	ND	ND	400/590 ¹⁰
	09/27/00	7.68		-0.54	0.00	ND	ND	ND	ND	ND	2,500/2,800
	12/12/00	7.74		-0.60	0.00	ND	ND	ND	ND	ND	590/580 ¹²
	03/0701	7.27		-0.13	0.00	ND	ND	ND	ND	ND	310/321 ¹²
	06/06/01	7.80		-0.66	0.00	ND	ND	ND	ND	ND	250/330 ¹²
Trip Blank											
TB-LB	03/03/98				+-	ND	ND	ND	ND	ND	ND
	06/15/98					ND	ND	ND	ND	ND	ND
	09/30/98					ND	ND	1.7	ND	2.2	ND
	12/28/98					ND	ND	0.71	ND	0.72	9.5
	03/22/99					ND	ND	ND	ND	ND	ND
	06/09/99					ND	ND	ND	ND	ND	ND
	09/08/99					ND	ND	ND	ND	ND	ND
	12/07/99				16 mg	ND	ND	0.762	ND	ND	ND
	03/13/00					ND	ND	ND	ND	ND	ND

Table 1

Groundwater Monitoring Data and Analytical Results

WELL ID/ TOC*	DATE	DTW (ft.)	S.I. (ft. bgs)	GWE (ft.)	Product Thickness (ft.)	TPH-G <i>(ppb)</i>	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
TB-LB	06/21/00					ND	ND	ND	ND	ND	ND
(cont)	09/27/00					ND	ND	ND	ND	ND	ND
(Cont)	12/12/00					ND	ND	ND	ND	ND	ND
	03/07/01					ND	ND	ND	ND	ND	ND
	06/06/01	••				ND	ND	ND	ND	ND	ND

Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #5325 3220 Lakeshore Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to March 3, 1998, were compiled from reports prepared by MPDS Services, Inc.

TOC = Top of Casing

B = Benzene

(ppb) = Parts per billion

(ft.) = Feet

T = Toluene

ND = Not Detected

DTW = Depth to Water

E = Ethylbenzene

-- = Not Measured/Not Analyzed

S.I. = Screen Interval

X = Xylenes

(ft. bgs) = Feet Below Ground Surface

MTBE = Methyl tertiary butyl ether

GWE = Groundwater Elevation

TPH-G = Total Petroleum Hydrocarbons as Gasoline

- * TOC elevations are surveyed relative to City of Oakland Benchmark, at the northeasterly corner of Weller and Cheney Avenue
 (Elevation = 9.055 feet, city datum; add 3.00' to U.S.G.S. datum). Prior to November 16, 1993, the DTW measurements were taken from the well cover.
- ** Groundwater elevation corrected due to the presence of free product; correction factor = [(TOC-DTW)+(Product Thickness x 0.75)].
- The positive result for gasoline does not appear to have a typical gasoline pattern.
- The concentration reported as gasoline is primarily due to the presence of a combination of gasoline and a discrete peak not indicative of gasoline.
- 3 Laboratory report indicates the hydrocarbons detected did not appear to be gasoline
- Laboratory report indicates the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.
- 5 Laboratory has potentially identified the presence of MTBE at reportable levels in the groundwater sample collected from this well.
- 6 Laboratory has identified the presence of MTBE at a level above or equal to the taste and odor threshold of 40 ppb in the sample collected from this well.
- Detection limit raised. Refer to analytical reports.
- 8 Laboratory report indicates unidentified hydrocarbons C6-C12.
- Laboratory report indicates gasoline and unidentified hydrocarbons >C8.
- MTBE by EPA Method 8260.
- 11 Laboratory report indicates gasoline C6-C12.
- 12 MTBE by EPA Method 8260 analyzed past the recommended holding time.
- Laboratory report indicates weathered gasoline C6-C12.
- Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons <C6.</p>
- Laboratory report indicates sample was originally analyzed within holding time. Re-analysis for confirmation or dilution was performed past the recommended holding time.
- Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons >C10.
- Skimmer present in well.

Table 2
Groundwater Analytical Results - Oxygenate Compounds

WELL ID	DATE	ETHANOL (ppb)	TBA (ppb)	MTBE (ppb)	DIPE (ppb)	ETBE (ppb)	TAME (ppb)	1,2-DCA (ppb)	EDB (ppb)
U-1	09/27/00 ¹	***	ND^2	83,000	ND^2	ND^2	ND^2	ND^2	ND^2
	12/12/00			15,000 ³					
	03/07/01	ND^2	ND^2	11,800	ND^2	ND^2	ND^2	ND^2	ND^2
	06/06/01 ³	ND^2	ND ²	8,700	ND ²	ND^2	ND^2	ND^2	ND^2
U-2	09/27/00			26,000 ¹					
~ -	12/12/00			7,800 ³		·			
	03/07/01	ND^2	ND^2	7,900	ND^2	ND^2	ND^2	ND^2	ND^2
	06/06/01 ³	ND ²	ND^2	10,000	ND^2	ND^2	ND ²	ND^2	ND^2
U-5	09/27/00			250¹					
0-5	12/12/00	- -		13 ³					
	03/07/01	ND	ND	43.4	ND	ND	ND	ND	ND
U-6	09/27/00			2,800 ¹					
0-0	12/12/00			580 ³					
	03/07/01 ³	ND^2	ND^2	321	ND^2	ND^2	ND^2	ND^2	ND^2
	06/06/01 ³	ND^2	ND ²	330	ND^2	ND^2	ND^2	ND^2	ND^2

Groundwater Analytical Results - Oxygenate Compounds

Tosco (Unocal) Service Station #5325 3220 Lakeshore Avenue Oakland, California

EXPLANATIONS:

ANALYTICAL METHOD:

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

(ppb) = Parts per billion

ND = Not Detected

EPA Method 8260 for Oxygenate Compounds

Laboratory report indicates sample was originally analyzed within holding time. Re-analysis for confirmation or dilution was performed past the recommended holding time.

² Detection limit raised. Refer to analytical reports.

³ Laboratory report indicates sample was analyzed outside the EPA recommended holding time.

Table 3 Groundwater Analytical Results

			Oakianu, Camonna		
		Ferrous Iron	Nitrate as NO3	Phosphate as PO4	Redox Potential mV ²
WELL ID	DATE	(ррт)	(ppm)	(ppm)	
U-1	06/15/98	39	ND	ND	382^{2}
0-1	09/30/98	17	ND	ND	366 ²
	12/28/98	4.3	6.3	28	298 ²
	03/22/99	4.9	ND	3.5	320^{3}
	06/09/99	1.2	ND	ND	260^{3}
	09/08/99	1.80	ND ¹	ND^1	85 ³
	12/07/99	5.70	ND^{t}	17.0	40 4 ³
	03/13/00	8.0	0.18	ND	² 117/262 ³
	06/21/00	9.3	ND ¹	ND^1	148 ²
	09/27/00	2.8	ND^1	18.4	119 ²
	12/12/00	0.49	ND	16.0	131 ²
	03/07/01	0.483	2.64	6.89	125 ²
	06/06/01	1.04	ND	2.7	141 ²
	00,00,01			•	
~	02/02/02	25	ND	ND	369 ²
U-2	03/03/98	25	ND ND	ND	341 ²
	06/15/98	42	ND	ND	354 ²
	09/30/98	25	ND ND	ND ND	276 ²
	12/28/98	28	ND ND	2.3	320 ³
	03/22/99	0.68	ND ND	ND	290 ³
	06/09/99	0.50	ND ¹	ND ¹	235^{3}
	09/08/99	1.90	ND ¹	ND ¹	389 ³
	12/07/99	0.250	0.31	ND	² 121/184 ³
	03/13/00	4.3	ND ¹	ND ¹	136 ²
	06/21/00	0.26	ND ¹	10.5	142 ²
	09/27/00	0.64 2.7	ND ¹	ND ¹	155 ²
	12/12/00 03/07/01	0.677	2.24	3.02	148 ²
	06/06/01	0.80 ⁴	ND	2.8	163 ²
		0.00	ND	2.0	
	0.410.010.00	• 4	21	0.86	190 ³
U-3	06/30/97	1.4	21 19	ND	75 ³
	09/19/97	0.57		0.85	390 ³
	12/12/97	1.9	23 36	ND	358 ²
	03/03/98	0.013	33	ND ND	318 ²
	06/15/98	0.16	31	ND	295 ²
	09/30/98	0.040	29	ND ND	281 ²
	12/28/98	ND	30	0.14	310 ³
	03/22/99	0.015	26	1.2	350 ³
	06/09/99	ND	32.9	ND ^I	417 ³
	09/08/99	ND 0.0520	32.9 27.9	ND ¹	437 ³
	12/07/99	0.0520	33	ND	² 226/307 ³
	03/13/00	0.15	33	HD	===:-

Table 3 Groundwater Analytical Results

			Oakianu, Camonna		
WELL ID	DATE	Ferrous Iron (ppm)	Nitrate as NO3 (ppm)	Phosphate as PO4 (ppm)	Redox Potential mV^{I}
				2.000	
U-3	06/21/00	0.20	32	ND	225 ²
(cont)	09/27/00	ND	34	15.7	211 ²
	12/12/00	ND	31	ND ⁱ	246 ²
	03/07/01	ND	36.5	0.443	251 ²
	06/06/01	ND^4	8.0	0.18	214 ²
U-4	06/30/97	0.13	35	0.52	200 ³
U-4	09/19/97	0.15	3 0	ND	45 ³
		0.55	31	0.73	380 ³
	12/12/97		3.2	ND	284 ²
	03/03/98	0.018	33	ND ND	256 ²
	06/15/98	0.14		ND ND	276 ²
	09/30/98	0.049	31	ND ND	280^{2}
	12/28/98	0.36	31	0.14	320 ³
	03/22/99	ND	30		340 ³
•	06/09/99	ND	35	0.91 ND ¹	391 ³
	09/08/99	ND	24	ND ¹	478 ³
	12/07/99	ND	27.7		² 219/244 ³
	03/13/00	ND	33	ND	219/244 248 ²
	06/21/00	0.034	32	ND ¹	198 ²
	09/27/00	ND	28	ND ¹	210 ²
	12/12/00	ND	30	ND	
	03/07/01	ND	33.9	0.226	2332
	06/06/01	ND⁴	7.4	0.21	248²
U-5	06/30/97	16	ND	ND	160 ³
	09/19/97	0.22	ND	ND	63 ³
	12/12/97	6.7	ND	ND	400 ³
	03/03/98	18	3.1	ND	345 ²
	06/15/98	17	ND	ND	333 ²
	09/30/98	17	ND	ND	318^{2}
	12/28/98	17	6.6	ND	305 ²
	03/22/99	0.12	ND	2.4	340^{3}
	06/09/99	0.23	ND	ND	320^{3}
	09/08/99	2.10	ND^{i}	ND^{t}	335 ³
	12/07/99	0.310	ND^1	ND ¹	408^{3}
	03/13/00	0.33	0.16	ND	² 111/264 ³
	06/21/00	0.15	ND^1	ND^1	159 ²
	09/27/00	0.33	ND ¹	ND^1	136 ²
	12/12/00	0.086	ND^1	ND^1	122 ²
	03/07/01	1.07	3.02	4.00	141 ²
	06/06/01	ND ⁴	ND	1.2	112 ²

Table 3 Groundwater Analytical Results

Tosco (Unocal) Service Station #5325 3220 Lakeshore Avenue Oakland, California

		Ferrous Iron	Nitrate as NO3	Phosphate as PO4 (ppm)	Redox Potential mV ²
WELL ID	DATE	(ppm)	(ррт)	(1/1/1/1/	
U-6	06/30/97	88	0.80	ND	190 ³
Q-0	09/19/97	2.9	1.80	ND	ND^3
	12/12/97	51	ND	ND	380^{3}
	03/03/98	60	3.5	ND	327 ²
	05/05/98	590	4.8	ND	315^{2}
		33	ND	ND	345 ²
	09/30/98	83	7.2	ND	297^{2}
	12/28/98		ND	0.98	330^{3}
	03/22/99	2.1	0.20	ND	320 ³
	06/09/99	0.47		ND ¹	305 ³
	09/08/99	0.140	5.59 ND ¹	ND ¹	443 ³
	12/07/99	0.260		ND	² 68/222 ³
	03/13/00	0.79	0.26	ND ¹	159 ²
	06/21/00	1.9	ND ¹	ND ¹	170 ²
	09/27/00	2.6	ND ¹		178 ²
	12/12/00	ND	2.7	ND ¹	
	03/07/01	2.52	3.11	37.0	1172
	06/06/01	0.474	0.15	0.70	97 ²

EXPLANATIONS:

Groundwater analytical results prior to March 3, 1998, were compiled from reports prepared by MPDS Services, Inc.

(ppm) = Parts per million

ND = Not Detected

mV = millivolts

-- = Not Analyzed

Detection limit raised. Refer to analytical reports.

Field measurement.

³ Analyzed by laboratory.

Due to the transfer of samples from one laboratory to another laboratory; the sample was received beyond the EPA recommended holding time.

Dissolved Oxygen Concentrations

WELL ID	DATE	Before Purge (mg/L)
U-1	12/07/99	1.36
	06/21/00	1.53
	09/27/00	1.63
	12/12/00	1.48
	03/07/01	1.91
	06/06/01	1.77
***	12/07/00	2.28
U-2	12/07/99	1.96
	06/21/00	2.12
	09/27/00	2.35
	12/12/00	2.21
	03/07/01 06/06/01	2.67
	00/00/01	
U-3	06/30/97	4.1
	09/19/97	4.2
	12/12/97	2.97
	03/03/98	2.63
	06/15/98	2.93
	09/30/98	3.11
	12/28/98	3.59
	03/22/99	4.02
	06/09/99	3.70
	09/08/99	3.96
	12/07/99	4.21
	06/21/00	4.27
	09/27/00	4.67
	12/12/00	4.79
	03/07/01	5.16
	06/06/01	4,79
U-4	06/30/97	5.4
	09/19/97	5.1
	12/12/97	3.11
	03/03/98	2.94
	06/15/98	3.08
	09/30/98	4.05
	12/28/98	4.57
	03/22/99	4,26
	06/09/99	3.61
	09/08/99	3.75
	07(00(77	

Dissolved Oxygen Concentrations

WELL ID	DATE	Before Purge (mg/L)
		14.701 <i>-7</i> 2
15.4	12/07/99	4.03
U-4	06/21/00	4.89
(cont)	09/27/00	5.09
	12/12/00	4.86
	03/07/01	4.97
	06/06/01	5.12
U-5	06/30/97	3.4
	09/19/97	0.6
	12/12/97	1.75
	03/03/98	2.36
	06/15/98	2.55
	09/30/98	1.93
,	12/28/98	1.64
	03/22/99	1.99
	06/09/99	2.10
	09/08/99	2.21
	12/07/99	2.66
	06/21/00	3.42
	09/27/00	3.85
	12/12/00	3.53
	03/07/01	2.98
	06/06/01	2.67
	0.410.40 -	0.30
U-6	06/30/97	0.30
	09/19/97	2.70
	12/12/97	2.70
	03/03/98	2.48
	06/15/98	3.06
	09/30/98	3.42
	12/28/98	3.88
	03/22/99	3.29
	06/09/99 09/08/99	3.12
	12/07/99	3.44
	06/21/00	3.27
	09/27/00	3.49
	12/12/00	3.06
	03/07/01	2.85
	06/06/01	2.46
	VVI GAI AT	

Dissolved Oxygen Concentrations

Tosco (Unocal) Service Station #5325 3220 Lakeshore Avenue Oakland, California

EXPLANATIONS:

Dissolved oxygen concentrations prior to March 3, 1998, were compiled from reports prepared by MPDS Services, Inc.

(mg/L) = milligrams per liter

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

Client/ Facility # 53	25		Job#:	18006	
	20 Lakeshere	Ave.	Date:	6-6-01	
City: Oak			Sampi	er: Toe	
City.					
Well ID	U-1	Well	Condition:	0, k.	<u> </u>
Well Diameter	3 _{in}	•	carbon O	Amount B	
Total Depth	19.68 #	Volu			8 4" = 0.66 12" = 5.80
Depth to Water	9.29	<u></u>	or (VF)	6" = 1.50	
	10.39 x	1F 0.38	_3.44 × 3 (case ·	volume) = Estimated F	rurge Volume: 13 lgal1
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	· ·	Sampling Equipment:	Qisposable B Bailer Pressure Bail Grab Sample Other:	er
Starting Time: Sampling Time: Purging Flow Ra Did well de-wate	te:	<u>.</u>	Weather Condition Water Color: Sediment Descrip If yes; Time:	tion: Volu	me:(gal.)
Time 10.13 - 10.22 - 10.22 -	Volume pH (gal.) 4 6.95 9 6.90	ματί 	inctivity 10° Temp hos/cm x 1 10 7/ 02 7/	(mg):) 	ORP Alkalinity (ppm)
			RATORY INFORM	ATION LABORATORY	ANALYSES .
SAMPLE ID	(#) - CONTAINER	REFRIG.	PRESERV. TYPE	Sequ	TPHG, BTEX, MTBE
<u>U- 1</u>	340¥	Υ	HCL	11	Ferrous From .
	1 plastic	(/ -			a Nitrate
-					phosphate
	NEW TO 1	brug	in skim	me(+	
COMMENTS:	NOTI	70 40	IN SPIN	VV.1 C	
	· · · · · · · · · · · · · · · · · · ·		•		

Client/ Facility #_53	25		J	ob#:	18006	[
Address: 32	20 Lakesher	e Ave.		ate:	6-6-01	<u> </u>	
City: Oak	land		s	ampler:	Toc		
Well ID	U-2	Wei	l Condition:		,k,		
Well Diameter	3 _{in}	-	rocarbon	a .	Amount Ba	7	.
Total Depth	19.60 #		kness:	in in in in			(gal.) = 0.66
Depth to Water	7.57 #		ctor (VF)		= 1.50	12" = 5.80	
	12.03 x	vf Ø.38	= <u>4.57</u> x3	(case volume	a) = Estimated Pu	irge Volume: _	14 (gal)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	_	Sampl Equip	nent:	Qisposable Be Bailer Pressure Baile Grab Sample	er .	y
	10:00 4:00 (10 te:		Weather Cor Water Color: Sediment De If yes; Time	scription:		Odor:	9 P S
Time \	Volume pH (gal.)	Con	ductivity (⁽²⁾)	Temperature •Ç	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
9:43	4.5 7.10	2.	61	71-6	2.67	163	
9:45	9 7.14		62	720			·
9:47 1	14 7:11		<u> </u>	722			
							
		LABOI	RATORY INFO	RMATION		·	
SAMPLE ID	(#) - CONTAINER	REFRIG.	PRESERV. TY		ABORATORY	ANAL	
U-2	3404	Y	HCL		eq.	TPHG, BT	
	1 plastic	- (/			• • • • • • • • • • • • • • • • • • • •	Nitrat	
		· · · · · · · · · · · · · · · · · · ·				phospha	
	<u></u>			- 4 , .		_ ' 	
COMMENTS: _	· - <u>-</u> .	·		····-···		· · ·	
			.**	-	·	1.7	

Client/ Facility #_53			Job#:	18006	
Address: 32	20 Lakeshere	Ave.	Date:	6-6-0	<u> </u>
City: Oak	land		Sample	er: Joe	
Well ID	<u>U-3</u>	Well C	Condition:	0, k.	
Well Diameter	3 _{in}	•	carbon d	Amount l	
Total Depth	19.36 #	Volu	me 2" = 0.1		1
Depth to Water	10.94	Facto	or (VF)	6" = 1.50	12" = 5.80
	8.42 x	/F <u>0.38</u>	3.20 x 3 (case v	olume) = Estimated	Purge Volume: (O lost)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	_	Sampling Equipment:	Oisposable Bailer Pressure Ba Grab Sampl	iler
Starting Time: Sampling Time: Purging Flow Rate Did well de-wate	7:15 A.m (7:11 te:	<u>s</u>) ,	Weather Condition Water Color: Sediment Descript If yes; Time:	tion:	Odor: NONE
	Volume pH (gal.) 3. \ 7. 97 7. \ 7. \ 5. 7 10 \ 7. \ 49	μπα <u>10 ·</u> _/0 ·	13 3 70. 3 3 71. 4 2 71	8 4.7°	
SAMPLE ID	(#) - CONTAINER	LABOR REFRIG.	ATORY INFORMA	TION LABORATORY	ANALYSES
U - 3	3404	Υ	HCL	Sequ	TPHG, BTEX, MTBE
	1 plastic	"		11	Ferrous From
					a Nitrate
				1	[phosphate
COMMENTS:					
	·				

Client/ Facility #_ 53	325		Job#:	18006	
Address: 32	20 Lakesher	Ave.	Date:	6-6-0	<u> </u>
City: Oak	land		Samp	ler: Toc	
Well ID	U-4	Well	Condition:	O.K.	
Well Diameter		•	ocarbon	Amount I	PT-
Total Depth	20.15		kness:	<u></u>	
Depth to Water	9.18 4	1	tor (VF)	6" = 1.50	12" = 5.80
	<u>[0.97</u> x	VF <u>0.66</u>	7.24 × 3 (case)	volume) = Estimated l	Purge Volume: 22 (gal.)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:		Sampling Equipment:	Qisposable & Bailer Pressure Bai Grab Sample Other:	ler
Starting Time: Sampling Time: Purging Flow Ra Did well de-wate		<u>s</u> 8)	Weather Condition Water Color: Sediment Descript If yes; Time:	tion:	Odor 1048
7:35 7:37 7:40	Volume pH (gal.) 7.5 7.60 7.40 7.35	μπί <u>8</u> 9.	luctivity Temperature Temp	(mg/L) 5.12	ORP Alkalinity (ppm)
SAMPLE ID	(#) - CONTAINER	LABOF	RATORY INFORMA	TION	ANALYSES
U- 4	3 YOA	Y	HCL	Seq.	TPHG, BTEX, MTBE
	1 plastic	11	· ·	11	Ferrous From
					d Nitrate
					1 phosphate
COMMENTS: .			, , , , , , , , , , , , , , , , , , , ,		

Facility # 5325 Address: 3220 City: Oakla Well ID Well Diameter Total Depth	o Lakeshere	Ave . Well Co	Date: Sample	<u>6-6-01</u> er: <u>Joc</u>		
Well ID _	U-5 4 in	Weli Co		er: <u>Бе</u>		
Well Diameter _	U-5 4 in	Well Co				
	4 in		ndition: ——	0, k.		
Total Depth		Hydroca Thickne	4 4	Amount B	77	(nal.)
Depth to Water	7.42	Volume Factor (2° = 0.1			66
Purge	12.63 x v	f <u>0 · 66</u> = 1	Sampling		rurge Volume: 2	<u> </u>
Equipment:	Bailer Stack Suction Grundfos	-	Equipment:	Qisposable B Bailer Pressure Bail Grab Sample	er	2 :
	Other:	-	(Other:	_	
Starting Time: Sampling Time: Purging Flow Rate: Did well de-water?		_26) Wa	eather Condition ater Color: diment Descript yes; Time:	ion:	Odor: Son	-4(gsl.)
	7.07 7.15 7.20	Conduct µmhos/ \$\int \cdot \	· - ·	$\frac{G}{G} = \frac{2 \cdot G7}{2 \cdot G7}$	(mV)	(ppm)
SAMPLE ID	(#) - CONTAINER		TORY INFORMA	TION LABORATORY	ANALYSE	 5
U-5	ZYOA	Y .	HCL .	Seq.	TPHG, BTEX	
	1 plastic	"		11	d Nitrate	- 40
 	4			` <u> </u>	phosphate	
<u> </u>					Cincipality	
COMMENTS:						

Total Depth 23.78 ft. Depth to Water 2"=0.17 3"=0.38 4"=0.66 15.98 X VF 0.17 = 2.72 X 3 (case volume) = Estimated Purge Volume: 8 10	Client/ Facility # <u>53</u>	25		Job#	: 18000	; <u> </u>
Well ID Well Diameter Well Diameter Total Depth Depth to Water Depth to Water Disposable Bailer Equipment: Bailer Stack Successory Grandfos Other: Starting Time: Starting Time:	Address: 32	20 Lakeshore	Ave.	Date:	6-6-0	
Well Diameter In. Hydrocarbon Thickness: John	City: <u>00 t</u>	land		Samp	oler: Toe	
Total Depth 2 2 78 ft. Thickness: in. (product/weter):	Well ID	<u>U-6</u>	Well	Condition:	O.E.	
Total Depth	Well Diameter	in.	•	7		7
Purge Disposable Bailer Sampling Equipment: Stack Suchop Grundfos Other: Starting Time: 8.16 Weather Conditions: 10 June 1 June	Total Depth	23.78 n				
Purge Disposable Bailer Equipment: Disposable Bailer Stack Suction Grandfos Other: Oth	Depth to Water	7.30 4	Fac	zor (VF)	6" = 1.50	12" = 5.80
Sampling Time: 8-48 A M (1-48) Purging Flow Rate: 1 gpm Sediment Description: Volume: V	_	Disposable Bailer Bailer Stack Suction Grundfos	vf <u>0.17</u>	Sampling	: Qisposable Bailer Pressure Ba Grab Sampl	Bailer /
SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES U-6 3 YO A Y HCL Seq. TPHG, BTEX, MT I plastic (1) - (1) Ferrous From A Nitrate Phosphate	Purging Flow Rate	volume pH (gal.)	Con	Sediment Description of the Se	ption: Void	ORP Alkalinity (mV) (ppm)
SAMPLE ID (11) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES U-B 3 YO A Y HCL Seq. TPHG. BTEX, MT I plastic (1) - (1) Ferrous From a Nitrate phosphate:	8:26	8.5 7.3/				
SAMPLE ID (11) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES U-6 3404 Y HCL Seq. TPHG. BTEX, MT I plastic // Ferrous From a Nitrate phosphate.			LABO	RATORY INFORM	ATION	
1 plastic 11 — 11 Ferrous From a Nitrate phosphate	SAMPLEID		REFRIG.	PRESERV. TYPE	LABORATORY	
o Nitrate phosphate	U-6	 		HCL		
phosphate.		1 Plastic	((1	
COMMENTS:		1		<u>.1</u>		
	COMMENTS: .		<u> </u>		· · · · · · · · · · · · · · · · · · ·	

Chain-of-Custody-Record Mr. Dave De Witt. (925) 277-2384 Foolity Number (Tosco) # 5325 Contact (Nome) Foolity Address 3220 Lakeshore Ave. Oakland Loborotory Name Sequoia Analytical Consultant Project Number 180061.85 Consultant Name Gettler-Ryan Inc. (G-R Inc.) Laboratory Release Number ... Samples Collected by (Name) JOE AJEMIAN Address 6747 Sierra Court, Suite J. Dublin, CA 94568 Torce Marketing Company Collection Date 6-6-0 2000 Cross Canyon PL, Ste. 400 San Parnon, Galitornia 84663 Project Contact (Name) Deanna L. Harding
(Phone) 100-551-7555 (Fox Number) 100-551-7888 Signature DO NOT BILL Analyses To Be Performed Air Charcool TB-LB ANALYSIS Run 8260-60xy's Persoble Holocarbon (8010) Extractable Organics (8270) Puryeable Organica (8240) 11 +1,2 DCA 4 EDB ON ALL 8020 111 TPH Dissol (8015) mtbe hits. 0 U D Remarks (J-HCL VOA W 01 TB-LB 10:55 10:00 1 7715 " 7:58 1, 1 , Bualucis. 1 11 1 9:16 8:48 1 Date/Dime (550) Turn Around Time (Circle Choice) Received By (Signature) Organization Date/Time 15:50 Relinquished by (Signature) Organization 24 Hre. 6-6-0 G-R Inc. 48 Hre. Date/Time Received By (Signature) Organization Date/Time Relinquished By (Signature) Organization 5 Days 10 Doys Date/Time As Contracted Realeved For Laboratory By (Signature) Date/Time Relinquished By (Signature) Organization

RECEIVED

UII 02 7/01

GETTLEK-KYAN INC.

June 28, 2001

Deanna Harding Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J Dublin, CA 94568 RE: Tosco(1) / L106026

Enclosed are the results of analyses for samples received by the laboratory on 06/06/01. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Latonya Pelt Project Manager

CA ELAP Certificate Number 2360

onya K. Pelt

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco #5325, Oakland, CA

Project Manager: Deanna Harding

Reported: 06/28/01 15:21

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TB-LB	L106026-01	Water	06/06/01 00:00	06/06/01 15:50
U-1	L106026-02	Water	06/06/01 10:35	06/06/01 15:50
U-2	L106026-03	Water	06/06/01 10:00	06/06/01 15:50
U-3	L106026-04	Water	06/06/01 07:15	06/06/01 15:50
U-4	L106026-05	Water	06/06/01 07:58	06/06/01 15:50
U-5	L106026-06	Water	06/06/01 09:26	06/06/01 15:50
U-6	L106026-07	Water	06/06/01 08:48	06/06/01 15:50
~ ~				

6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Tosco(1)

Project Number: Tosco #5325, Oakland, CA

Project Manager: Deanna Harding

Reported: 06/28/01 15:21

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8020

Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-LB (L106026-01) Water Sample	ed: 06/06/01 00:00	Received: (06/06/01	15:50					
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l	1	1060072	06/18/01	06/18/01	DHS LUFT	
Benzene	ND	0.50	77	**	*	r	Ħ	11	
Toluene	ND	0.50	77	**	#	n	#	п	
Ethylbenzene	ND	0.50	#	#		"	#	u	
Xylenes (total)	ND	0.50	n	11	u	н	n	н	
Methyl tert-butyl ether	ND	5.0	n	"	11	H	H	н	
Surrogate: a,a,a-Trifluorotoluene		74.9 %	70-	130	,,	н	π	н	
U-1 (L106026-02) Water Sampled:	06/06/01 10:35 Re	eceived: 06/0	6/01 15:	50					
Purgeable Hydrocarbons as Gasoline	5200	1000	ug/l	20	1060072	06/18/01	06/18/01	DHS LUFT	P-02
Benzene	17	10	ir	Ħ	#	•	**	#1	
Toluene	ND	10	•	n	я	•		H	
Ethylbenzene	69	10	**		#	*		н	
Xylenes (total)	420	10	•		#		*	π .	
Methyl tert-butyl ether	6500	100		н	π	*	H	#	
Surrogate: a,a,a-Trifluorotoluene		113 %	70-	130	"	"	<i>n</i>	и	
U-2 (L106026-03) Water Sampled:	06/06/01 10:00 R	eceived: 06/0	6/01 15::	50					
Purgeable Hydrocarbons as Gasoline	1100	500	ug/l	10	1060072	06/18/01	06/18/01	DHS LUFT	P-01
Веплепе	14	5.0	*	**	17	Ħ	₩	n	
Toluene	ND	5.0	11	•	*	,,,	#	17	
Ethylbenzene	9.3	5.0	#	**	. "	Ħ	•	H .	
Xylenes (total)	35	5.0	•	Ħ	*	n	**	. 10	
Methyl tert-butyl ether	9200	250	Ħ	50		#	06/19/01	n	M-04
Surrogate: a,a,a-Trifluorotoluene		106 %	70-	130	#	н	06/18/01	"	

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco #5325, Oakland, CA

Project Manager: Deanna Harding

Reported: 06/28/01 15:21

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8020

Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzod	Method	Notes
U-3 (L106026-04) Water Sa	ampled: 06/06/01 07:15	Received: 06/0	6/01 15:	50		·			
Purgeable Hydrocarbons as Ga	soline ND	50	ug/l	1	1060072	06/18/01	06/19/01	DHS LUFT	
Benzene	ND	0.50	H	**	**	n		•	
Toluene	ND	0.50		#	π	11	**	**	
Ethylbenzene	ND	0.50	#	11	Ħ	₩.		11	
Xylenes (total)	ND	0.50	*		H	**	#	н	
Methyl tert-butyl ether	ND	5.0	н	tt	H	11		**	
Surrogate: a,a,a-Trifluorotolu	ene	104 %	70-	130	'n		"	Ħ	
U-4 (L106026-05) Water Sa	ampled: 06/06/01 07:58	Received: 06/0	6/01 15::	50				,	
Purgeable Hydrocarbons as Ga	asoline ND	50	ug/l	1	1060072	06/18/01	06/18/01	DHS LUFT	
Benzene	ND	0.50	#	*	Ħ		H	π	
Toluene	ND	0.50	н	11	n	*	•	**	
Ethylbenzene	ND	0.50	н	11	n	11	**	Ħ	
Xylenes (total)	ND	0.50			H	11	ŧ	11	
Methyl tert-butyl ether	ND	5.0	7	Ħ		"		n	
Surrogate: a,a,a-Trifluorotolu	ene	119 %	70-	130	"	H	"	и	
U-5 (L106026-06) Water S:	ampled: 06/06/01 09:26	Received: 06/0	6/01 15:	50					
Purgeable Hydrocarbons as	Gasoline 110	50	ug/l	1	1060077	06/19/01	06/19/01	DHS LUFT	P-02
Benzene	ND	0.50	ī	11	n	••	Ħ		
Toluene	ND	0.50	*	u	n	11	n	*	
Ethylbenzene	ND	0.50		и	w	н	•	n	
Xylenes (total)	ND	0.50	#	#		**	•	**	
Methyl tert-butyl ether	ND	5.0	n	н	. 11	. "		ri .	
Surrogate: a,a,a-Trifluorotolu	iene	98.4 %	70-	-130	#	"	"	н	

Project: Tosco(1)

6747 Sierra Court, Suite J

Project Number: Tosco #5325, Oakland, CA

Dublin CA, 94568

Project Manager: Deanna Harding

Reported: 06/28/01 15:21

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8020 Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-6 (L106026-07) Water Sample	d: 06/06/01 08:48	Received: 06/0	06/01 15:50)				•	
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l	1	1060077	06/19/01	06/19/01	DHS LUFT	
Benzene	ND	0.50	,	11	Ħ	Ħ	Ħ	n	
Toluene	ND	0.50		n	Ħ	n	**	•	
Ethylbenzene	ND	0.50	tt	11		n	n	ir	
Xylenes (total)	ND	0.50	n	н		n	π	H	
Methyl tert-butyl ether	250	5.0	Ħ	#	н		н	н .	
Surrogate: a,a,a-Trifluorotoluene		97.5 %	70-13	30	ıı	"	"	π	

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco #5325, Oakland, CA

Project Manager: Deanna Harding

Reported: 06/28/01 15:21

Volatile Organic 8 Oxygenated Compounds by EPA Method 8260B

Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-1 (L106026-02) Water	Sampled: 06/06/01 10:35	Received: 06/0	6/01 15:	:50					HT-04
Ethanol	ND	50000	ug/l	50	1060123	06/27/01	06/27/01	EPA 8260B	
1,2-Dibromoethane	ND	100	**	**	**	17	77		
1,2-Dichloroethane	ND	100	Ħ	n	**	n	Ħ	n	
Di-isopropyl ether	ND	100		n	π.	н	li .	н	
Ethyl tert-butyl ether	ND	100		R	"	Ħ	**	Ħ	
Methyl tert-butyl ether	8700	100		**	Ħ	**	11	**	
Tert-amyl methyl ether	ND	100	#	•	Ħ	Ħ	77	"	
Tert-butyl alcohol	ND	5000	n	**	Ħ	. #	N	*	
Surrogate: 1,2-Dichloroeth	ane_d4	95.8 %	76	-114	n	"	**	π	
Surrogate: Toluene-d8	unc-w+	106 %		-110	m	н	#	m	
	Sampled: 06/06/01 10:00								HT-04
Ethanol	ND	62000	ug/l	62.5	1060123	06/27/01	06/27/01	EPA 8260B	
1,2-Dibromoethane	ND ND	120		#	Ħ	н	Ħ	n	
1,2-Dichloroethane	ND	120	Ħ	н	H	н	H	n	
Di-isopropyl ether	ND	120	n	**	"	n		n	
Ethyl tert-butyl ether	ND	120	n	n	*	n	п	-	
Methyl tert-butyl ether	10000	120	H	п	*	n	Ħ		
Tert-amyl methyl ether	ND	120	•	•	н		.tt	Ħ	
Tert-butyl alcohol	ND		**	**	•	т .	**	н	
Surrogate: 1,2-Dichloroeti		95.8 %	76	5-114	"	*	Ħ	77	
Surrogate: T,2-Dichloroell Surrogate: Toluene-d8	rune-u 4	101 %		8-110	,,	n	n	n	
_									HT-04
U-6 (L106026-07) Water	Sampled: 06/06/01 08:48	Received: 06/0	06/01 15	5:50					111-0-
Ethanol	ND	1700	ug/l	1.67	1060123	06/27/01	06/27/01	EPA 8260B	
1,2-Dibromoethane	ND	3.3	**	#1	ħ	#1	# '		•
1,2-Dichloroethane	ND	3.3	Ħ	n	Ħ	Ħ	11	н	
Di-isopropyl ether	ND	3.3	Ħ	n	"	Ħ	n	#	
Ethyl tert-butyl ether	ND	3.3		#	•	H	Ħ	"	
Methyl tert-butyl ether	330	3.3	-	**	•	m	**	н	
Tert-amyl methyl ether	ND	3.3	*		Ħ	*	Ħ	•	
Tert-butyl alcohol	ND	170		7	"	#	Ħ	**	
Surrogate: 1,2-Dichloroet	hane_d4	97.2 %	70	6-114	"	"	"	*	
Surrogate: Toluene-d8	nucro w r	106 %		8-110	#	*	. "	"	

Project: Tosco(1)

6747 Sierra Court, Suite J Dublin CA, 94568 Project Number: Tosco #5325, Oakland, CA

Project Manager: Deanna Harding

Reported: 06/28/01 15:21

Conventional Chemistry Parameters by APHA/EPA Methods

Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-1 (L106026-02) Water	Sampled: 06/06/01 10:35	Received: 06/0	6/01 15:50						
Ferrous Iron	1.0	0.10	mg/l	1	1060226	06/07/01	06/07/01	SM 3500 Fe D#4	HT-01
Nitrate as N	ND	0.050	Ħ	Ħ	1060215	06/07/01	06/07/01	EPA 353.2	
Nitrate/Nitrite as N	ND	0.050	ĸ	π	1060214	- н	-	Ħ	
Orthophosphate as P	2.7	0.050	"	и	1060228	06/07/01	06/07/01	EPA 365.2	
U-2 (L106026-03) Water	Sampled: 06/06/01 10:00	Received: 06/0	06/01 15:50						
Ferrous Iron	0.80	0.10	mg/l	1	1060226	06/07/01	06/07/01	SM 3500 Fe D#4	HT-01
Nitrate as N	ND	0.050	*	II.	1060215	06/07/01	06/07/01	EPA 353.2	
Nitrate/Nitrite as N	ND	0.050		**	1060214	Ħ	**	н	
Orthophosphate as P	2.8	0.050	*	Ħ	1060228	06/07/01	06/07/01	EPA 365.2	
U-3 (L106026-04) Water	Sampled: 06/06/01 07:15	Received: 06/0	6/01 15:50						
Ferrous Iron	ND	0.10	mg/l	1	1060226	06/07/01	06/07/01	SM 3500 Fe D#4	HT-01
Nitrate as N	8.0	0.050	"	n	1060215	06/07/01	06/07/01	EPA 353.2	
Nitrite as N	ND	0.050	ч		H	н	Ti.	10	
Nitrate/Nitrite as N	8.0	0.25	11	5	1060214	n	н	n	
Orthophosphate as P	0.18	0.050	#	1	1060228	06/07/01	06/07/01	EPA 365.2	
U-4 (L106026-05) Water	Sampled: 06/06/01 07:58	Received: 06/6	06/01 15:50						
Ferrous Iron	ND	0.10	mg/l	1	1060226	06/07/01	06/07/01	SM 3500 Fe D#4	HT-01
Nitrate as N	7.4	0.050	n	n	1060215	06/07/01	06/07/01	EPA 353.2	
Nitrite as N	ND	0.050		"	w	n			
Nitrate/Nitrite as N	7.4	0.25	•	5	1060214	Ħ	n	Ħ	
Orthophosphate as P	0.21	0.050	-	1	1060228	06/07/01	06/07/01	EPA 365.2	

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco #5325, Oakland, CA

Reported: 06/28/01 15:21

Project Manager: Deanna Harding

Conventional Chemistry Parameters by APHA/EPA Methods

Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
U-5 (L106026-06) Water	Sampled: 06/06/01 09:26	Received: 06/0	6/01 15:5	0					
Ferrous Iron	ND	0.10	mg/l	1	1060226	06/07/01	06/07/01	SM 3500 Fe D#4	HT-01
Nitrate as N	ND	0.050	*	**	1060215	06/07/01	06/07/01	EPA 353.2	
With atternation as N	ND ND	0.050	11		1060214	**	"	11	
Orthophosphate as P	1.2	0.050	н	n	1060228	06/07/01	06/07/01	EPA 365.2	
U-6 (L106026-07) Water	Sampled: 06/06/01 08:48	Received: 06/0	06/01 15:5	50 <u> </u>			<u>.</u>		
Ferrous Iron	0.47	0.10	mg/l	1	1060226	06/07/01	06/07/01	SM 3500 Fe D#4	HT-0
NitN	0.15	0.050	н	n	1060215	06/07/01	06/07/01	EPA 353.2	
Nitrate as N				"	н	. **	•		
	0.15		11	**	1060214		#	*	
Nitrate/Nitrite as N Orthophosphate as P	0.70	11111	н	4	1060228	06/07/01	06/07/01	EPA 365.2	

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco #5325, Oakland, CA Project Manager: Deanna Harding

Spike

Reported:

RPD

%REC

06/28/01 15:21

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8020 - Quality Control Sequoia Analytical - San Carlos

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1060072 - EPA 5030B (P/T)										
Blank (1060072-BLK1)				Prepared	& Analyze	:d: 06/18/	'01			
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l	•						
Benzene	ND	0.50	Ħ							
Toluene	ND	0.50	P							
Ethylbenzene	ND	0.50	17							
Xylenes (total)	ND	0.50	n							
Methyl tert-butyl ether	ND	5.0	n							
Surrogate: a,a,a-Trifluorotoluene	9.12		n	10.0		91.2	70-130			
LCS (1060072-BS1)				Prepared	& Analyze	ed: 06/18/	01			
Benzene	8.44	0.50	ug/l	10.0		84.4	70-130			
Toluene	8.17	0.50	*	10,0		81.7	70-130			
Ethylbenzene	8.27	0.50	**	10.0		82.7	70-130			
Xylenes (total)	24.4	0.50	**	30.0		81.3	70-130			
Surrogate: a,a,a-Trifluorotoluene	9.14		м	10.0		91.4	70-130			,
LCS (1060072-BS2)				Prepared	& Analyze	ed: 06/18/	01		•	
Purgeable Hydrocarbons as Gasoline	260	50	ug/l	250		104	70-130			
Surrogate: a,a,a-Trifluorotoluene	10.1		"	10.0		101	70-130			
Matrix Spike (1060072-MS1)	Sour	ce: L10602	6-05	Prepared:	06/18/01	Analyze	d: 06/19/01			
Purgeable Hydrocarbons as Gasoline	264	50	ug/l	250	ND	106	60-140			
Surrogate: a,a,a-Trifluorotoluene	11.1		п	10.0		111	70-130			
Matrix Spike Dup (1060072-MSD1)	Sour	ce: L10602	6-05	Prepared:	06/18/01	Analyze	d: 06/19/01			
Purgeable Hydrocarbons as Gasoline	269	50	ug/l	250	ND	108	60-140	1.88	25	
Surrogate: a,a,a-Trifluorotoluene	11.4		"	10.0	-	114	70-130			

6747 Sierra Court, Suite J

Project: Tosco(1)

Project Number: Tosco #5325, Oakland, CA

Reported: 06/28/01 15:21

Dublin CA, 94568 Project Manager: Deanna Harding

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8020 - Quality Control Sequoia Analytical - San Carlos

 -		Reporting	** *:	Spike	Source	%REC	%REC Limits	RPD	RPD Limit	Notes
nalyte	Result	Limit	Units	Level	Result	7eREC	Films	KID .	- Lillia	110863
Batch 1060077 - EPA 5030B (P/T)										
Blank (1060077-BLK1)				Prepared of	& Analyze	d: 06/19/0	01			
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l							
Benzene	ND	0.50	R							
oluene	ND	0.50	-							
thylbenzene	ND	0.50	**							
ylenes (total)	ND	0.50	Ħ							
lethyl tert-butyl ether	ND	5.0	#							_
urrogate: a,a,a-Trifluorotoluene	9.29	<u></u> .	"	10.0		92.9	70-130			
.CS (1060077-BS1)				Prepared	& Analyze	d: 06/19/				
Benzene	8.56	0.50	ug/l	10.0		85.6	70-130			
'oluene	8.36	0.50	**	10.0		83.6	70-130			
thylbenzene	8.37	0.50	н	10.0		83.7	70-130			
(ylenes (total)	25.5	0.50	n	30.0		85.0	70-130			
urrogate: a,a,a-Trifluorotoluene	9.50		л	10.0		95.0	70-130			
.CS (1060077-BS2)				Prepared	& Analyz	d: 06/19/	01			
turgeable Hydrocarbons as Gasoline	267	50	ug/l	250		107	70-130			
iurrogate: a,a,a-Trifluorotoluene	11.3		#	10.0		113	70-130			
Matrix Spike (1060077-MS1)	Sou	arce: L10603	5-05	Prepared	& Analyz	ed: 06/19/	01			
Benzene	8.53	0.50	ug/l	10.0	ND	85.3	60-140			
oluene	8.41	0.50	н	10.0	ND	84.1	60-140			
Ethylbenzene	8.49	0.50	**	10.0	ND	84.9	60-140			
Kylenes (total)	25.6	0.50	-	30.0	ND	85.3	60-140			
urrogate: a,a,a-Trifluorotoluene	9.67		"	10.0		96.7	70-130			
Matrix Spike Dup (1060077-MSD1)	Sor	urce: L10603	5-05	Prepared	& Analyz	ed: 06/19/	01			
Benzene	8.50	0.50	ug/l	10.0	ND	85.0	60-140	0.352	25	
Foluene	8.40	0.50	н	10.0	ND	84.0	60-140	0.119	25	
thylbenzene	8.38	0.50	-	10.0	ND	83.8	60-140	1.30	25	
(ylenes (total)	25.4	0.50	•	30.0	ND	84.7	60-140	0.784	25	
Surrogate: a,a,a-Trifluorotoluene	10.2		,	10.0		102	70-130			
<u> </u>										

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco #5325, Oakland, CA Project Manager: Deanna Harding Reported:

RPD

%REC

06/28/01 15:21

Volatile Organic 8 Oxygenated Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - San Carlos

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1060123 - EPA 5030B [P/T]	-	<u></u>								.,.
Blank (1060123-BLK1)				Prepared:	06/27/01	Analyzed	: 06/28/01			
Ethanol	ND	1000	ug/l							
1,2-Dibromoethane	ND	2.0	41							
1,2-Dichloroethane	ND	2.0	17							
Di-isopropyl ether	ND	2.0	**							
Ethyl tert-butyl ether	ND	2.0	***							
Methyl tert-butyl ether	ND	2.0	Ħ							
Tert-amyl methyl ether	ND	2.0								
Tert-butyl alcohol	ND	100	**							
Surrogate: 1,2-Dichloroethane-d4	0.00		"	50.0			76-114			
Surrogate: Toluene-d8	0.00		"	50.0			88-110			
Blank (1060123-BLK2)				Prepared	& Analyz	ed: 06/27/	01			
Ethanol	ND	1000	ug/l							
1,2-Dibromoethane	ND	2.0	11							
1,2-Dichloroethane	ND	2.0	**							
Di-isopropyl ether	ND	2.0	-							
Ethyl tert-butyl ether	ND	2.0	**							
Methyl tert-butyl ether	ND	2.0	11							
Tert-amyl methyl ether	ND	2.0	#							
Tert-butyl alcohol	ND	100	**							
Surrogate: 1,2-Dichloroethane-d4	47.8		п	50.0		95.6	76-114			
Surrogate: Toluene-d8	53.1		~	50.0		106	88-110			
LCS (1060123-BS1)				Prepared	06/27/01	Analyze	1: 06/28/01			
Methyl tert-butyl ether	ND	2.0	ug/l	50.0			70-130			
Surrogate: 1,2-Dichloroethane-d4	0.00		n	50.0	•		76-114			
Surrogate: Toluene-d8	0.00		н	50.0			88-110			

Project: Tosco(1)

6747 Sierra Court, Suite J Dublin CA, 94568 Project Number: Tosco #5325, Oakland, CA

Project Manager: Deanna Harding

Reported: 06/28/01 15:21

Volatile Organic 8 Oxygenated Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - San Carlos

		Reporting		Spike	Source	%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1060123 - EPA 5030B [P/T]						··-·				
LCS (1060123-BS2)		_		Prepared	& Analyz	ed: 06/27/0	01			
Methyl tert-butyl ether	47.1	2.0	ug/l	50.0	· · · · · ·	94.2	70-130			
Surrogate: 1,2-Dichloroethane-d4	47.0		п	50.0		94.0	76-114			
Surrogate: Toluene-d8	53.6		"	50.0		107	88-110			
Matrix Spike (1060123-MS1)	Sou	rce: L10615	1-05	Prepared:	06/27/01	Analyzed	: 06/28/01			
Methyl tert-butyl ether	ND	2.0	ug/l	50.0	ND		60-140			
Surrogate: 1,2-Dichloroethane-d4	0.00		"	50.0			76-114	•		
Surrogate: Toluene-d8	0.00		"	50.0			88-110			
Matrix Spike Dup (1060123-MSD1)	Sou	rce: L10615	1-05	Prepared:	06/27/01	Analyzed	: 06/28/01			
Methyl tert-butyl ether	ND	2.0	ug/l	50.0	ND		60-140		25	
Surrogate: 1,2-Dichloroethane-d4	0.00	•	#	50.0			76-114			
Surrogate: Toluene-d8	0.00		*	50.0			88-110			

Project: Tosco(1)

6747 Sierra Court, Suite J

Project Number: Tosco #5325, Oakland, CA

Reported:

Dublin CA, 94568

Project Manager: Deanna Harding

06/28/01 15:21

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Petaluma

		Reporting		Spike	Source	A/DEC	%REC	R₽ Ď	RPD Limit	Notes
Analyte	Result	<u>Limit</u>	Units	Level	Result	%REC	Limits	M.D.	- Little	710165
Batch 1060214 - General Preparation										
Blank (1060214-BLK1)				Prepared &	k Analyz	ed: 06/07/0	01			·
Nitrate/Nitrite as N	ND	0.050	mg/l							
LCS (1060214-BS1)				Prepared &	& Analyz	ed: 06/07/			_ 	
Nitrate/Nitrite as N	4.62	0.050	mg/l	4.00		11 6	80-120			
Matrix Spike (1060214-MS1)	Sou	rce: L10602	6-05	Prepared &	& Analyz					
Nitrate/Nitrite as N	17.9	0.050	mg/l	10.0	7.4	105	75-125			
Matrix Spike Dup (1060214-MSD1)	Sou	rce: L10602	6-05	Prepared d					20	
Nitrate/Nitrite as N	17.7	0.050	mg/l	10.0	7.4	103	75-125	1.12	20	
Batch 1060215 - General Preparation Blank (1060215-BLK1)				Prepared o	& Analyz	ed: 06/07/	01			
Nitrite as N	ND	0.050	mg/l							
LCS (1060215-BS1)					& Analyz	zed: 06/07/		 -		
Nitrite as N	4.54	0.050	mg/l	4.00		114	80-120			
Matrix Spike (1060215-MS1)	Sou	ırce: L10602	6-05	Prepared	& Analyz	zed: 06/07/	01			
Nitrite as N	4.08	0.050	mg/l	4.00	ND	102	75-125			
Matrix Spike Dup (1060215-MSD1)	Soi	urce: L10602				zed: 06/07/		9.16	- 20	
Nitrite as N	3.76	0.050	mg/l	4.00	ND	94.0	75-125	8.16	20	
Batch 1060226 - General Preparation		,								
Blank (1060226-BLK1)				Prepared	& Analy	zed: 06/07.	/01			
Ferrous Iron	ND	0.10	mg/l							

6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Tosco(1)

Project Number: Tosco #5325, Oakland, CA

Project Manager: Deanna Harding

Reported:

06/28/01 15:21

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Petaluma

6REC 	Limits 01 80-120	RPD	Limit	Notes		
			 -	·····		
106	80-120					
6/07/0	01					
110	75-125					
Prepared & Analyzed: 06/07/01						
7.2	75-125	11.9	20			
6/07/0	01					
6/07/0	01					
115	80-120					
6/07/0	01					
102	75-125					
6/07/0	01					
90.1	75-125	8.94	20			
0	06/07/0 97.2 06/07/0 06/07/0 115 06/07/0 102	06/07/01 97.2 75-125 06/07/01 115 80-120 06/07/01 102 75-125 06/07/01	110 75-125 06/07/01 97.2 75-125 11.9 06/07/01 115 80-120 06/07/01 102 75-125 06/07/01	110 75-125 06/07/01 97.2 75-125 11.9 20 06/07/01 115 80-120 06/07/01 102 75-125		

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Tosco(1)

Project Number: Tosco #5325, Oakland, CA

Reported:

Project Manager: Deanna Harding

06/28/01 15:21

Notes and Definitions

HT-01 This sample was received beyond the EPA recommended holding time. The results may still be useful for their intended purpose.

HT-04 This sample was analyzed beyond the EPA recommended holding time. The results may still be useful for their intended purpose.

M-04 MTBE was reported from second analysis.

P-01 Chromatogram Pattern: Gasoline C6-C12

P-02 Chromatogram Pattern: Weathered Gasoline C6-C12

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference