PHASE II ENVIRONMENTAL SITE ASSESSMENT

Alameda County

OCT 2 8 2008

SHELL OIL PRODUCTS US, SAP #135693 630 HIGH STREET OAKLAND, CALIFORNIA

Environmental Health

DELTA PROJECT NO. CASHL-BADW-A-135693

Prepared for:

Shell Oil Products US 20945 S. Wilmington Ave. Carson, CA 90810

Prepared by:

Delta Consultants, Inc. 4640 SW Macadam Avenue, Suite 110 Portland, OR 97239 (503) 639-8098

September 30, 2008

TABLE OF CONTENTS

EXECUTIVE S	UMMARYi
1.0 INTRODUC	CTION1
1.1 General	1
•	and Scope1
	ns2
	und2
	GROUNDWATER ENVIRONMENTAL ASSESSMENT
	and Soil Sampling3
	oundwater Sampling3
-	ation Derived Waste4
	ory Analytical Results4
	Notification5
	OF FINDINGS5
4.0 REMARKS	6
FIGURES	
E. 4	O'ta Lacation Man
Figure 1	Site Location Map Site Plan
Figure 2	
Figure 3	Soil Concentration Map – TPH and Select VOCs
Figure 4	Groundwater Concentration Map – TPH and Select VOCs
TABLES	
IABLES	
Table 1	Summary of Soil Analytical Results - TPH and VOCs
Table 2	Summary of Groundwater Analytical Results - TPH and VOCs
10010 2	Community of Great assets of the system of t
APPENDICES	
Appendix A	Environmental Data Resources Well Survey Report
Appendix B	Boring Logs
Appendix C	Laboratory Reports and Chain of Custody Forms
Appendix D	Waste Inventory Form and/or Waste Disposal Manifests (if available at report time)
- -	•

PHASE II ENVIRONMENTAL SITE ASSESSMENT

SHELL OIL PRODUCTS US, SAP #135693 630 HIGH STREET OAKLAND, CALIFORNIA DELTA PROJECT NO. CASHL-BADW-A-135693

EXECUTIVE SUMMARY

Delta Consultants (Delta) on behalf of Shell Oil Products US has completed a Phase II Environmental Site Assessment (Phase II ESA) for Due Diligence at the Shell branded service station located at 630 High Street, Oakland, Alameda County, California (Site).

- Prepared a site-specific Health & Safety Plan prior to the initiation of field activities.
- Notified USA-North to have public utilities in the area of the Site clearly marked.
- Contracted with a private underground utility locating firm (Cruz Brothers), in addition to the public locates, to clear each soil boring location.
- Cleared each soil boring location to 5-feet below ground surface (bgs) using air-knifing and vacuum truck equipment.
- Advanced seven soil borings (B-1 through B-7) to maximum depths ranging from 15 to 20 feet bgs using direct push probe drilling methods and equipment on August 4 and 5, 2008.
- Collected representative soil samples from continuously cored boreholes for logging and characterization of soil types, field screening, and potential analytical laboratory testing.
- Conducted headspace screening of the soil samples for volatile organic compound (VOC) vapors
 using a portable photo-ionization detector (PID).
- Collected one soil sample from each soil boring, the location of which was selected by the following ordered criteria:
 - The sample interval exhibiting the highest PID reading, or
 - In the event that impacts are not observed, the sample interval directly above the soil/groundwater interface, or
 - In the event that groundwater is not encountered in the boring, the termination point of the boring.
- Collected a groundwater sample from each boring in which groundwater was encountered.
- Submitted all samples to CalScience Environmental Laboratories (CalScience) in Garden Grove,
 California to be analyzed for:
 - Total petroleum hydrocarbons as gasoline (TPH-G) using US Environmental Protection Agency (EPA) Method 8260B.

Phase II Environmental Site Assessment
Shell Oil Products US, SAP#135693
630 High Street
Oakland, California
Delta Project No. CASHL-BADW-A-135693

Page ii

 Select VOCs by EPA Method 8260B, including benzene, toluene, ethylbenzene, total xylenes (BTEX), methyl tert-butyl ether (MTBE), tertiary butyl alcohol (TBA), diisopropyl ether (DIPE), ethyl tert-butyl ether, (ETBE), tert amyl-butyl ether (TAME), and ethanol.

Because diesel was sold at the site at the time of the Phase II ESA samples also were analyzed for

Total petroleum hydrocarbons as diesel (TPH-D) using EPA Method 8015.

A summary of findings is as follows: All soil and groundwater analytical laboratory results were reviewed for detections of petroleum hydrocarbon constituents above the laboratory method reporting limits (MRLs) and compared to the California Regional Water Quality Control Board Environmental Screening Levels (ESLs)¹. For comparison purposes the following assumptions were used in selecting the ESLs:

- Residential land use,
- Shallow soil (less than 3 meters) or Deep Soil (greater than 3 meters) as appropriate, and;
- Groundwater is a current or potential source of drinking water.

The appropriate ESLs were obtained from Summary Table A and Summary Table C in the document Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater¹. Comparisons between the ESLs and laboratory results can be found in **Table 1** for soil samples and **Table 2** for groundwater samples.

- None of the soil samples collected and submitted for laboratory analysis during this investigation contained concentrations of any constituent in excess of the ESLs with the following exceptions. TPH-G were detected in excess of the ESL (83 milligrams per kilogram [mg/kg]) in soil samples B-1-13' (150 mg/kg) and B-5-13' (88 mg/kg). TPH-D were detected in excess of the ESL (83 mg/kg) in soil samples B-5-13' (160 mg/kg) and B-6-12' (510 mg/kg).
- None of the groundwater samples collected and submitted for laboratory analysis during this investigation contained concentrations of any constituent in excess of the ESLs with the following exceptions. TPH-G were detected in excess of the ESL (100 micrograms/liter [μg/L]) in the groundwater samples collected from borings B-1 (3,600 μg/L), B-6 (110,000 μg/L), and B-7 (2,000 μg/L). TPH-D were detected in excess of the ESL (100 μg/L) in the groundwater samples collected from borings B-1 (880 μg/L), B-2 (160 μg/L), B-6 (33,000 μg/L), and B-7 (740 μg/L).

¹ California Regional Water Quality Board, San Francisco Bay Region. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. Interim Final – November 2007, revised May 2008.

Phase II Environmental Site Assessment Shell Oil Products US, SAP#135693 630 High Street Oakland, California Delta Project No. CASHL-BADW-A-135693

Page iii

Benzene, ethylbenzene, and total xylenes were detected in excess of the ESLs (1 μ g/L, 30 μ g/L, and 20 μ g/L, respectively) in the groundwater sample collected from boring B-1 at concentrations of 27 μ g/L, 97 μ g/L, and 191.3 μ g/L, respectively. MTBE was detected in excess of the ESL (5 μ g/L) in the groundwater samples collected from borings B-1 (10 μ g/L), B-3 (6.2 μ g/L), and B-7 (6.4 μ g/L). TBA was detected in excess of the ESL (12 μ g/L) in the groundwater samples collected from borings B-2 (110 μ g/L) and B-7 (59 μ g/L).

- A release was not reported because concentrations of constituents detected during this Phase II
 ESA were generally consistent with historical concentrations detected at the Site.
- Water wells were not located within 1,000 feet of the site.

PHASE II ENVIRONMENTAL SITE ASSESSMENT

SHELL OIL PRODUCTS US, SAP #135693 630 HIGH STREET OAKLAND, CALIFORNIA DELTA PROJECT NO. CASHL-BADW-A-135693

1.0 INTRODUCTION

1.1 General

At the request of Shell Oil Products US (Shell), Delta Consultants (Delta) has conducted a Phase II Environmental Site Assessment (Phase II ESA) for Due Diligence at the Shell Retail Store located at 630 High Street, Oakland, Alameda County, California (Site). This Site is an active Shell service station.

1.2 Purpose and Scope

In order to establish a baseline of environmental conditions, Delta conducted this Phase II ESA to assess subsurface conditions and potential hydrocarbon impacts through implementation of the following scope of work:

- Prepared a site-specific Health & Safety Plan prior to the initiation of field activities.
- Notified USA-North to have public utilities in the area of the Site clearly marked.
- Contracted with a private underground utility locating firm (Cruz Brothers), in addition to the public locates, to clear each soil boring location.
- Cleared each soil boring location to 5-feet bgs using air-knifing and vacuum truck equipment.
- Advanced seven soil borings (B-1 through B-7) to maximum depths of between 15 and 20 feet bgs using direct push probe drilling methods and equipment on August 4 and 5, 2008. Borings were placed in the vicinity of the underground storage tank (UST) basin and in the vicinity of dispensers. The scope of work, as defined by Shell, limited drilling depth to 40 feet bgs around tank basins and 20 feet bgs near dispensers, or to the depth of first encountered groundwater or drilling refusal, whichever was encountered first.
- Collected representative soil samples from continuously cored boreholes for logging and characterization of soil types, field screening, and potential laboratory analysis.
- Conducted headspace screening of the soil samples for VOC vapors using a portable PID.
- Collected one soil sample from each soil boring, the location of which was selected by the following ordered criteria:
 - The sample interval exhibiting the highest PID reading, or
 - In the event that impacts are not observed, the sample interval directly above the soil/groundwater interface, or

- In the event that groundwater is not encountered in the boring, the termination point of the boring.
- Collected a groundwater sample from each boring in which groundwater was encountered.
- Submitted all samples to CalScience Environmental Laboratories (CalScience) in Garden Grove,
 California to be analyzed for:
 - Total petroleum hydrocarbons as gasoline (TPH-G) using US Environmental Protection Agency (EPA) Method 8260B.
 - o Select VOCs by EPA Method 8260B, including benzene, toluene, ethylbenzene, total xylenes (BTEX), methyl tert-butyl ether (MTBE), tertiary butyl alcohol (TBA), diisopropyl ether (DIPE), ethyl tert-butyl ether, (ETBE), tert amyl-butyl ether (TAME), and ethanol.

Because diesel was sold at the site at the time of the Phase II ESA samples also were analyzed for

- Total petroleum hydrocarbons as diesel (TPH-D) using EPA Method 8015.
- Evaluated and compiled field observations and laboratory analytical data into this report, documenting boring installations, soil and groundwater sampling, and analytical data.

1.3 Deviations

The following list summarizes deviations from the proposed scope of work and reason(s) for such deviation:

- The soil and groundwater samples were not analyzed for EDB or EDC.
- While advancing soil boring B-5, a drilling rod was intractably lodged into the borehole, and the boring was terminated at 15 feet bgs, prior to the proposed depth limitation. Subsequently a groundwater sample was not collected from B-5.

1.4 Background

The Site is an active retail gasoline station located in Oakland, California in Alameda County at 630 High Street (Figure 1). Above ground structures include a car wash building on the Site's southern corner and a canopy structure covering the store building and six dispenser islands in the northeast portion of the Site (Figure 2). The Site is primarily covered with asphalt and concrete pavement. The USTs are located within a common excavation between the canopy structure and the car wash building. Local access to the Site is gained from Jensen Street to the southwest, High Street to the northwest, and Oakport Street to the northeast.

Page 3

Water wells were not located within 1,000 feet of the Site. The EDR well survey report is included in Appendix A.

2.0 SOIL AND GROUNDWATER ENVIRONMENTAL ASSESSMENT

2.1 Drilling and Soil Sampling

Soil borings were advanced using a direct-push hydraulic drive point system to depths ranging from 15 to 20 feet bgs. Soil samples were collected continuously using a 5-foot macrocore sampler with a 1.5-inch inside diameter driven into undisturbed formation materials utilizing a hydraulic piston mechanism. The soils encountered were logged using the Unified Soil Classification System (USCS) and field screened using a PID by a Delta field technician working under the supervision of a California Professional Geologist. Field observations, including soil color, odor, and PID readings, were recorded on the soil boring logs, included as **Appendix B**.

One soil sample from the sample interval exhibiting the highest PID reading, or if no field indications of impacts were noted, the interval located directly above the soil/groundwater interface or at the termination point in each soil boring was submitted for laboratory analysis. Soil samples were either placed in laboratory prepared glass containers or the macrocore sample liner was cut into a 6-inch long section and sealed with Teflon tape and end caps. Soil samples were placed into ice-chilled coolers. Standard chain-of-custody (COC) protocol was followed for transporting soil samples to CalScience in Garden Grove, California. Soil analytical laboratory results are summarized in Table 1 and shown spatially in Figure 3. The soil sample analytical laboratory report and COC records are included in Appendix C.

All soil borings were backfilled with bentonite grout and the ground surfaces were repaired to approximate original conditions.

2.2 Grab Groundwater Sampling

Following borehole advancement, groundwater samples were collected utilizing Hydropunch sampling techniques. Hydropunch sampling utilizes a probe rod with a retractable stainless steel screen with a steel drop-off tip. The probe rods are advanced a minimum of two feet into the water table, at which point the tip is released. The drill rods are then retracted to expose the disposable screen. Groundwater was collected from the screened interval using a peristaltic pump and disposable polyethylene tubing. Groundwater samples were decanted directly into laboratory prepared sample containers and placed in an iced cooler for transport to CalScience following standard COC protocols. Groundwater analytical

laboratory results are summarized in **Table 2** and shown spatially in **Figure 4**. The analytical laboratory reports and COC records for the groundwater sampling event are included in **Appendix C**.

2.3 Investigation Derived Waste

All investigation derived waste generated during the investigation was stored in US Department of Transportation-approved 55-gallon drums for subsequent disposal following proper waste characterization. Decontamination wash water generated during the investigation was stored in a separate drum for subsequent recycling. Copies of waste disposal records are included as **Appendix D**, if they were available at the time this report was prepared.

2.4 Laboratory Analytical Results

All soil and groundwater analytical laboratory results were reviewed for detections of petroleum hydrocarbon constituents above the laboratory method reporting limits (MRLs) and compared to the California Regional Water Quality Control Board Environmental Screening Levels (ESLs)¹. For comparison purposes the following assumptions were used in selecting the ESLs:

- Residential land use,
- Shallow soil (less than 3 meters) or Deep Soil (greater than 3 meters) as appropriate, and;
- · Groundwater is a current or potential source of drinking water.

The appropriate ESLs were obtained from Summary Table A and Summary Table C in the document Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater¹. Comparisons between the ESLs and lab results can be found in **Table 1** for soil samples and **Table 2** for groundwater samples.

Soil analytical laboratory results are summarized in **Table 1**. Within the table, samples with concentrations that exceed the ESLs are bolded. The soil sample analytical laboratory report and COC records are included in **Appendix C**.

Groundwater analytical laboratory results are summarized in **Table 2**. Within the table, samples with concentrations that exceed the ESLs are bolded. The analytical laboratory reports and COC records for the groundwater event are included in **Appendix C**.

California Regional Water Quality Board, San Francisco Bay Region. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. Interim Final – November 2007, revised May 2008.

Page 5

2.5 Release Notification

A release was not reported because concentrations of constituents detected during this Phase II ESA were generally consistent with historical concentrations detected at the Site.

3.0 SUMMARY OF FINDINGS

Based on the scope of work performed, Delta presents the following summary of findings:

- Seven soil exploration borings (B-1 through B-7) were advanced on August 4 and 5, 2008, to a
 maximum depth of 20 feet bgs.
- All soil and groundwater laboratory results were reviewed for detections of petroleum constituents above the laboratory MRLs and compared to the California Regional Water Quality Control Board ESLs. Comparisons between the ESLs and lab results can be found in Tables 1 and 2.
- None of the soil samples collected and submitted for laboratory analysis during this investigation contained concentrations of any constituent in excess of the ESLs with the following exceptions. TPH-G were detected in excess of the ESL (83 milligrams per kilogram [mg/kg]) in soil samples B-1-13' (150 mg/kg) and B-5-13' (88 mg/kg). TPH-D were detected in excess of the ESL (83 mg/kg) in soil samples B-5-13' (160 mg/kg) and B-6-12' (510 mg/kg).
- None of the groundwater samples collected and submitted for laboratory analysis during this investigation contained concentrations of any constituent in excess of the ESLs with the following exceptions. TPH-G were detected in excess of the ESL (100 micrograms/liter [μg/L]) in the groundwater samples collected from borings B-1 (3,600 μg/L), B-6 (110,000 μg/L), and B-7 (2,000 μg/L). TPH-D were detected in excess of the ESL (100 μg/L) in the groundwater samples collected from borings B-1 (880 μg/L), B-2 (160 μg/L), B-6 (33,000 μg/L), and B-7 (740 μg/L). Benzene, ethylbenzene, and total xylenes were detected in excess of the ESLs (1 μg/L, 30 μg/L, and 20 μg/L, respectively) in the groundwater sample collected from boring B-1 at concentrations of 27 μg/L, 97 μg/L, and 191.3 μg/L, respectively. MTBE was detected in excess of the ESL (5 μg/L) in the groundwater samples collected from borings B-1 (10 μg/L), B-3 (6.2 μg/L), and B-7 (6.4 μg/L). TBA was detected in excess of the ESL (12 μg/L) in the groundwater samples collected from borings B-2 (110 μg/L) and B-7 (59 μg/L).
- A release was not reported because concentrations of constituents detected during this Phase II
 ESA were generally consistent with historical concentrations detected at the Site.
- Water wells were not located within 1,000 feet of the site.

Phase II Environmental Site Assessment Shell Oil Products US, SAP#135693 630 High Street Oakland, California Delta Project No. CASHL-BADW-A-135693

Page 6

4.0 REMARKS

The recommendations contained in this report represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report.

This report was prepared by DELTA CONSULTANTS

Chris Dowd Staff Scientist

Reviewed by:

Rich Garlow, P.G.

California Professional Geologist

Date: 09/30/2008

Date: 9/30/08

NO. 7472

GARLOW

CALLE

Projection: California State Plane Coordinate System, Zone 3, NAD83, U.S. Survey foot

Figure 1 SITE LOCATION MAP

Shell SAP 135693 630 High Street Oakland, California

Project No.	Prepared by	Drawn by
CASHLBADWA	LNH	LNH
Date 9/10/08	Reviewed by	Filenome 135693-SL

LEGEND

- UNDERGROUND STORAGE TANK (UST) AREA SOIL BORING
- O DISPENSER AREA SOIL BORING

Projection: California State Plane Coordinate System Zone 3, NAD83, U.S. Survey foot

Figure 2 SITE PLAN

Shell SAP 135693 630 High Street Oaldand, California

Project No.	Prepared by	Drewn by
CASHLBADWA	LNH	LMR
9/10/06	Hertered by	135893

LEGEND

- UNDERGROUND STORAGE YANK (UST) AREA SOIL BORING
- DISPENSER AREA SOIL BORING

5,	SAMPLE DEPTH (bgs)
B <0.005	D BENZENE (mg/kg)
T <0.005	O TOLUENE (mg/kg)
E <0.005	D ETHYL-BEXZINE (mg/kg)
X <0.005	
M <0.005	O MTBE (mg/kg)
TPH-G <0.5	
TPH-D N	GASOLINE RANGE ORGANICS (mg/kg
	DIESEL RANGE ORGANICS (mg/kg)

NA	NOT	ANALYZED
ND	NOT	DETECTED
NB	NOT	SAMPLED

mg/kg MILLIGRAMS PER KILOGRAM

<0.0060 LESS THAN METHOD REPORTING LIMIT (NOT DETECTED)

ITRE MICTIFYL TERT-BUTYL ETHER

bge BELOW GROUND SURFACE

Projection: California State Plane Coordinate System. Zone 3, NADS3, U.S. Survey foot

> Figure 3 SOIL CONCENTRATION MAP AUGUST 4, 2008

Shell SAP 135693 630 High Street Ookland, California

Project No. CASHLBADWA	Prepared by URI	LIMI
9/10/08	Reviewed by	135693

LEGEND

- UNDERGROUND STORAGE TANK (UST) AREA SOE, BORING
- O DISPENSER AREA SOIL BORING

8	< 0.50	BENZENE (ug/L)
T	<1.0	TOLUENE (ug/L)
E	<1.0	ETHYL-BENZENE (ug/L)
X	<1.0	TOTAL XYLENES (ug/L)
M	5.8	MTBE (Vg/L)
TPH-G	200	TOTAL PETROLEUM HYDROCARBONS
TPH-D	NA.	GASOLINE RANGE ORGANICS (ug/L)
		DIESEL RANGE ORGANICS (up/L)

NA NOT ANALYZED

NS NOT SAMPLED

ug/L MICROGRAMS PER LITER

<0.50 LESS THAN METHOD REPORTING LIMIT (NOT DETECTED)

dan (40) deleties)

REHTS LYTUB-THEN LYHEM

Projection: California State Plana Coordinate Byelom, Zone 3, NAD83, U.S. Survey foot

Figure 4 GROUNDWATER CONCENTRATION MAP AUGUST 4, 2008

Shell SAP 135693 630 High Street Oakland, California

Project No. CASHLEADWA	Prepared by LMH	Depart by
9/10/08	Reviewed by	Flanama 135693

Table 1 Summary of Soil Analytical Results - TPH & VOCs SAP No. 135893 630 High Street

Oakland, California

Sample Identification	Sample Depth (feet)	Sample Date	TPH-G (mg/kg)	TPH-D (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	EDB (mg/kg)	EDC (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	Ethanol (mg/kg)
B-1 13' 13 08/04/08 B-2 11' 11 08/05/08		150	28	< 0.12	< 0.12	< 0.12	< 0.24	NA NA	NA	< 0.12	< 1.2	< 0.25	< 0.25	< 0.25	< 12	
B-2 11'	11	08/05/08	< 0.50	< 5.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	NA	NA	< 0.0060	< 0.060	< 0.010	< 0.010	< 0.010	< 0.50
B-37"	7	08/05/08	< 0.50	< 5.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	NA.	NA	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.50
B-4 8'	8	08/05/08	< 0.50	< 5.0	< 0,0060	< 0.0050	< 0.0050	< 0.010	NA NA	NA	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.50
B-5 13'	13	08/04/08	88	160	< 0.12	< 0.12	< 0.12	< 0.24	NA.	NA .	< 0.12	< 1.2	< 0.25	< 0.25	< 0.25	< 12
B-6 12'	12	08/04/08	48	510	< 0.12	< 0.12	< 0.12	< 0.24	NA	NA	< 0.12	< 1.2	< 0.25	< 0.25	< 0.25	< 12
B-7 12'	12	08/04/08	6.5	10	< 0.0050	< 0.0050	0.0072	0.027	NA	NA	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.50
ESL ¹ : Shallow Soi Use, Groundwater Source of Drinkin	r is Current or Po	otential	83	83	0.044	2.9	2.3	2.3	0.00033	0.0045	0.023	0.075	NÂ	NA .	ŅA.	'NA
ESL ¹ : Deep Soils Groundwater is C Drinking Water (T		83	0.044	2.9	3.3	2.3	0.00033	0.0045	0.023	0.075	NA	NA	NA)	NA.		

Notes:

mg/kg = milligrams per kilogram

< = Not detected at concentration exceeding laboratory method reporting limit (MRL)</p>

VOC = Volatile organic compound

TPH-G = Total Petroleum Hydrocarbons as Gasoline TPH-D = Total Petroleum Hydrocarbons as Diesel

EDB = 1,2-dibromoethane

EDC = 1,2-dichioroethane

MTBE = Methyl tert-Butyl Ether

TBA = Tertiary Butyl Alcohol

DIPE = Disopropyl Ether

ETBE = Ethyl tert-Bulyl Ether TAME = Tert-Amyl Butyl Ether

NA = Not Analyzed, Not Available

VOC analysis by EPA Method 8260B

Gasoline-range hydrocarbons by EPA Method 8260B

Diesel-range hydrocarbons by EPA Method 8015B

ESL = Environmental Screening Level. Screening criteria referenced are from the Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, California Regional Water Quality Control Board, San Francisco Bay Region, Interim Final, November 2007, revised May 2008.

Table 2

Summary of Groundwater Analytical Results - TPH & VOCs SAP No. 135893

630 High Street

Oakland, California

Sample Identification Sample Date (feet Water (feet B-1 08/04/08 18.7 B-2 08/06/03 11.1 B-3 08/05/03 12.3 B-4 08/05/03 9.8		Depth to Water (feet)	TPH-G (µg/L)	TPH-D (pg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (µg/L)	EDC (µg/L)	MTBE (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	Ethanol (µg/L)
B-1	18.75	3,600	880	27	< 1.0	97	191.3	NA	NA NA	10	< 10	150	< 2.0	< 2.0	< 100	
		68	160	< 0.50	< 1.0	< 1.0	< 2.0	NA.	NA	4.0	110	< 2.0	< 2.0	< 2.0	< 100	
B-3 08/05/08 12.3		< 50	100	< 0.60	< 1.0	< 1.0	< 2.0	NA .	NA.	8.2	< 10	< 2.0	< 2.0	< 2.0	< 100	
B-4	08/05/08	9.8	< 50	55	< 0.60	< 1.0	< 1.0	< 2.0	NA	NA NA	1.3	< 10	< 2.0	< 2.0	< 2.0	< 100
B-8	08/04/08	10	110,000	33,000	< 0.50	< 1.0	1.1	< 2.0	NA	NA	< 1.0	< 10	< 2.0	< 2.0	< 2.0	< 100
B-7	08/04/08	10	2,000	740	< 0.60	< 1.0	< 1.0	1.0	NA	NA NA	8.4	59	< 2.0	< 2.0	< 2.0	< 100
Trip Blank			< 50	NA	< 0.50	< 1.0	< 1.0	< 2.0	NA.	NA NA	< 1.0	< 10	< 2.0	< 2.0	~ 2.0	< 100
ESL. ¹ : Shallow Soils (<3m), Residential Land Use, Groundwater is a Current or Potential Source of Drinking Water (Table A)			100-	100		40	30/	20)	0.05	0.5	.	12	_ NA	NA.	NA NA	NA .
ESL ¹ : Deep Soils Groundwater is a of Drinking Water	Current or Pote	ntial Source	180	100		40	30	20	0.05	- 0.5	.	12:	NA.	NA -	NA.	NA

Notes:

µg/L, = micrograms per liter

Not detected at concentration exceeding laboratory method reporting limit (MRL)

VOC = Volatile organic compound

TPH-G = Total Petroleum Hydrocarbons as Gasoline TPH-D = Total Petroleum Hydrocarbons as Diesel

EDB = 1,2-dibromoethane

EDC = 1,2-dichioroethane

MTBE = Methyl tert-Butyl Ether TBA = Terflary Butyl Alcohol

DIPE = Disopropyl Eiher ETBE = Ethyl tert-Butyl Ether

TAME = Tert-Armyl Butyl Ether

NA = Not Analyzed, Not Available

VOC analysis by EPA Method 8260B

Gasoline-range hydrocarbons by EPA Method 8260B Diesel-range hydrocarbons by EPA Method 8015B

¹ ESI. = Environmental Screening Level. Screening criteria referenced are from the Screening for Environmental Concerns at Sites with Conteminated Soil and Groundwater, California Regional Water Quality Control Board, San Francisco Bay Region, Interim Final, November 2007, revised May 2008.

APPENDIX A ENVIRONMENTAL DATA RESOURCES WELL SURVEY REPORT

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Hydric Status: Partially hydric Corrosion Potential - Uncoated Steel: Not Reported > 0 inches Depth to Bedrock Min: > 153 inches Depth to Watertable Min: No Layer Information available. LOCAL / REGIONAL WATER AGENCY RECORDS EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells. WELL SEARCH DISTANCE INFORMATION SEARCH DISTANCE (miles) DATABASE Federal USGS 0.189 Federal FRDS PWS 0.189 0.189 State Database FEDERAL USGS WELL INFORMATION LOCATION FROM TP MAP ID WELL ID No Wells Found FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION LOCATION FROM TP MAP ID WELL ID No PWS System Found Note: PWS System location is not always the same as well location. STATE DATABASE WELL INFORMATION LOCATION FROM TP MAP ID WELL ID No Wells Found

PHYSICAL SETTING SOURCE MAP - 02271121.3r

SITE NAME: 135693 ADDRESS: 630 HIGH ST

OAKLAND CA 94601 LAT/LONG: 37.7675 / 122.2213 CLIENT: Delta Consultants CONTACT: Gary E. Turgeon INQUIRY #: 02271121.3r DATE: July 17, 2008 9:38 am

Drilling Method and Diameter: Direct Push; 2.5" diameter

Drilling Company: Cascade Drilling

Drilled By:

Logged By: Marisol Ortiz

Boring: B-1

Depth (feet)	Samples	Recovery (%)	PID (ppm)	LITHOLOGIC DESCRIPTION	nscs	Graphic	Depth (feet)
				No recovery. Air Knifed to 5 feet below ground surface (bgs)			
2-							-2
-	Н						
4-	Н					1	-4
	H	10	4.0	Clay: Black, high plasticity, moist.	_	727	
6-		100	1.6			33	-6
		100	2.6			33	
8-		100	3.4	With some sand, odor.		33	-8
10-		90	0.0	Clay: Dark brown, with some sand and gravel, medium plasticity, odor.	CL	17	-10
	Ц	0		11.00	SP	11	
12-			16.8	12.0	7		- 12
14			20.9	Sand: Black, fine to medium with some clay, low plasticity, odor.	SC	==	
	1	100	50.5	Greenish-gray, medium to coarse with some clay, moist, odor.			-
14-		90	43.1	Light brown, medium to coarse with some clay and gravel.			14
	11	0		16.0	,		
16-	Н	25	5.8	Poorly graded sand: Light brown, medium to coarse.	SP		-15
		100	3.8	Clay: Light brown, high plasticity.	OH		0.00
18-	J	100	2.1			33	15
	1	80	2.4	Light brown, moist, high plasticity.		133	
20-		-	4.3	20.00	r	6	1

▼ Initial Water Level (18.75°)

SHELL FACILITY NO. 135693 630 High Street Oakland, California

Soil Boring Log B-1 FIGURE

Drilling Method and Diameter: Direct Push; 2.5" diameter

Drilling Company: Cascade

Drilled By:

Logged By: Marisol Ortiz

Boring: B-2

Depth (feet)	Samples	Recovery (X)	PID (ppm)	LITHOLOGIC DESCRIPTION	USCS	Graphic	Depth (feet)
			-	No recovery. Air Knifed to 5 feet below ground surface (bgs)			
2-							-2
4-					1.00*		-4
		25	5.5	Clay: Dark brown, with some sand, moist.	CL	1	
6-		100		Dark brown, medium plasticity.		1/	6
		100	6.0			1	
8-		100			2.00*	1	-8
		80	3.9	Poorly graded sand and gravel: Green, with some clay.	SP		-10
10-		0				==	-10
	M	75	5,8	Poorly graded sand: Dark brown, medium-coarse, with some gravel.			-12
12-		100		Poorly graded sand and gravel: Gray, moist.	5.00"		14
		100	4.1	Sand and Clay: Light brown.	SC SC	-5-5	
14-		80		Poorly graded sand: Light brown, coarse, moist.	SP		
	Н	0					16
16-		30	8.2	Poorly graded sand and gravel: Dark brown, medium to coarse.	200.7	-	10
		100		Clay: Light brown, high plasticity.	CH		18
18-		100	6.2				
-		0			0.00*		-

▼ Initial Water Level (11.10')

CASHL-BADW-A

09-11-2008 909-11-2008
CALIFORNIA 5 CEF 5 A.D.

3 SH5693-B2

SHELL FACILITY NO. 135693 630 High Street Oakland, California

Soil Boring Log B-2 FIGURE

Drilling Method and Diameter: Direct Push; 2.5" diameter

Drilling Company: Cascade Drilling

Drilled By:

Logged By: Marisol Ortiz

Boring: B-3

Depth (feet)	Samples	Recovery (%)	PID (ppm)	LITHOLOGIC DESCRIPTION	nscs	Graphic Log	Depth (feet)
				No recovery. Air Knifed to 5 feet below ground surface (bgs)			
2					h		-2
4-							-4
	Н	75	34.8	Clay: Black, dry, medium plasticity.	CL	7	
5-		100		Dark brown.		1	-6
		100	56.3	Light brown, with some sand, medium plasticity.		1	
8-		100		Light brown, with some sand and gravel, damp.		//	-8
-		80	44.2	Poorly graded sand and gravel: Light brown, with some clay, damp.	SP		
10-		0		11.0			-10
		50	28.9	Sand and Clay: Light brown, damp.	SC	==	
12-	¥	100	21.7	Poorly graded sand and gravel: Light brown, with some clay, medium plasticity, damp.	SP		-12
14-		80	****				-14
		0					
16-		177.2	30.2	Molst.			-18
		100		Clay: Light brown, with some sand, moist.	CL	7	
18-		100	28.1			11	-18
		80				//	
20 -				26.0	0.1		-20

▼ Initlal Water Level (12.30')

Ì	CASHL-	BADY	V-A
ł	09-11-2008	月09-1	-2008
ŧ	CALIFORNIA	T CRF	A.D.
1	# SH5693-E	33	

Drilling Method and Diameter: Direct Push; 2.5" diameter

Drilling Company: Cascade Drilling

Drilled By:

Logged By: Marisol Ortiz

Boring: B-4

Depth (feet)	Samples	Recovery (%)	PID (ppm)	LITHOLOGIC DESCRIPTION	USCS	Graphic	Depth (feet)
	Π			No recovery. Air Knifed to 5 feet below ground surface (bgs)			. "
							_2
2-							
							_
4-				3.0	o'		
		50	18.1	Clay: Black, high plasticity, moist.	CH		
5	T	100		Clay: Dark Brown, medium plasticity.	CI	1	- 0
	,	100	20.3	Light brown, with some sand.	1	1	
8-	I	100	40.7	Light brown, with some sand and gravel.		1/	-8
10-	Y	80	15.2		SP		10
	H	50	16.1	Clay: Dark brown, high plasticity.	CH O.	7//	
12-		100		Light brown, with some sand and gravel, high plasticity.	00		-12
	1	100	8.8	The state of the s	SP		
14-		80			+		- 14
		0					
16-		0					18
		75	30.3				
18-	1	100		With some clay, moist.			- 18
		85		Clay and Silt: Light brown, moist.	CL	1	
20-				30.0	d.I	1	-20

▼ Initial Water Level (9.80°)

SHELL FACILITY NO. 135693 630 High Street Oakland, California

Soil Boring Log
B-4

FIGURE

Drilling Method and Diameter: Direct Push; 2.5" diameter

Drilling Company: Cascade Drilling

Drilled By:

Logged By: Marisol Ortiz

Boring: B-5

Depth (feet)	Samples	Recovery (%)	PID (ppm)	LITHOLOGIC DESCRIPTION	USCS	Graphic Log	Depth (feet)
				No recovery. Air Knifed to 5 feet below ground surface (bgs)			
2-							-2
4-							-4
	Н	90	12.7	Clay: Black, high plasticity.	CH		
6-	Н	100	34.3	7,00			-6
	H	100	38.9	11/09	CL	1	
8-	Н	100	37.8			//	-8
-	Н	90	40.1	Gray.			10
10-	П	95	34.5	Poorly graded sand: Gray, fine-grained with some clay, odor.	SP		10
12-			30.0 22.7	TO THE RESERVE OF THE PROPERTY	СН		-12
	1	100	40.5	Clay: Greenish-gray, with some sand, medium plasticity	CL	//	
14-	11	100	75.2	Gray, with some sand, medium plasticity			14
16-				Boring terminated at 15 feet bgs. Refusal encountered due to maifunctioning rod. The rod could not be removed. Groundwater level was not measured.			16
18-	П						-18
	H						
20-						-	-20

▼ Initial Water Level (Not Measured)

SHELL FACILITY NO. 135693 630 High Street Oakland, California

Soil Boring Log B-5 FIGURE

Drilling Method and Diameter: Direct Push; 2.5" diameter

Drilling Company: Cascade Drilling

Drilled By:

Logged By: Marisol Ortiz

Boring: B-6

Depth (feet)	Samples	Recovery (%)	PID (ppm)	LITHOLOGIC DESCRIPTION	USCS	Graphic Log	Depth (feet)
				No recovery. Air Knifed to 5 feet below ground surface (bgs)			
2-							-2
4				5.0			-4
	Н	50	6.5	Clay: Black, high plasticity, dry.	OL	***	
6-		100	22.3			***	-6
		100	15.3	Dark gray.		₩	
8-	Н	100	15.6		CL	11	-8
		70	18.7	Clay: Dark gray, with some sand, damp.		1	
10-	*	0		No recovery.			10
		0		12.0	,		
12-	1	100	29.0	Poorly graded sand and gravel: Dark gray, coarse-grained, odor.	SP		-12
	П	100	19.2	11(0)	CL	11	
14-	П	70	4.2	Clay: Light brown, high plasticity, moist.	CH		-14
		0		No recovery.			
16-		15	130	Clay: Dark gray, with some sand, high plasticity, moist, odor.	CE	///	-16
il.		100	8.2	18.0			
18-		100	4.0	Clay: Light brown, with some sand, medium plasticity, moist.	CL	//	10
		80	2.3	Light brown, with some silt, medium plasticity, moist.	0,1	//	me.

▼ Initial Water Level (10.00')

Drilling Method and Diameter: Direct Push; 2.5" diameter

Drilling Company: Cascade Drilling

Drilled By:

Logged By: Marisol Ortiz

Boring: B-7

Depth (feet)	Samples	Recovery (%)	PID (ppm)	LITHOLOGIC DESCRIPTION	ovan	Graphic	Depth (feet)
2-							-2
4-					5.00"		-4
5-		0		No recovery.			-6
8-		15	22.3 16.3 7.7	Sand: Black, fine-grained, with some clay, low plasticity, dry, odor. Sand and Clay: Black, fine-grained, medium plasticity, dry, odor.	7.00°	C - Z - Z	-8
10-	*	0		No recovery.	11.00		-10
12	lone	1000	17.0 55.3	SCHOOL CONTRACTOR STANDARD CONTRACTOR DESCRIPTION OF STANDARD CONTRACTOR STANDARD CONT	12.00° S	1111	-12
14-		100	0.0	Clay: Light brown, high plasticity, moist, odor. Clay: Light brown, high plasticity, moist, odor.	13.00°	H	-14
16-							-16
18-							- 18 -
20-							-20

▼ Initial Water Level (10.00°)

CASHL-BADW-A

09-11-2008 909-11-2008
CALIFORNA CRY 2 A.D.
3 SH5693-87

SHELL FACILITY NO. 135693 630 High Street Oakland, California

Soil Boring Log B-7 FIGURE

APPENDIX C LABORATORY REPORTS AND CHAIN OF CUSTODY FORMS

August 25, 2008

Kevin McCarthy **Delta Environmental Consultants** 4640 SW Macadam Ave: Suite 110 Portland, OR 97239-4283

Calscience Work Order No.: 08-08-0858 Subject:

> 630 High Street, Oakland, CA Client Reference:

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/9/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Jessie Kim Project Manager

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283

Date Received: Work Order No: Preparation: Method:

08/09/08 08-08-0858 **EPA 3550B EPA 8015B**

Dago 1 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1 13'		08-08-0858-1-A	08/04/08 17:31	Solid	GC 43	08/13/08	08/13/08 04:50	080813B01
Comment(s): -The sample chro	omatographic patten	n for TPH does not me sample was based	natch the chrom	atographic	: pattern of the	specified st	andard. Qua	ıntitation
Parameter	Result	RL	DF	Qual	<u>Units</u>			
Diesel Range Organics	28	5.0	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	98	61-145						
B-2 11'		08-08-0858-2-A	08/05/08 08:48	Solid	GC 43	08/13/08	08/13/08 04:58	080813B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	104	61-145						
B-3 7'		08-08-0858-3-A	08/05/08 09:52	Solid	GC 43	08/13/08	08/13/08 05:06	080813B01
Parameter	Result	RL	<u>.</u> <u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	98	61-145						
B-4 8'		08-08-0858-4-A	08/05/08 11:40	Solid	GC 43	08/13/08	08/13/08 05:14	080813B01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	102	61-145						

RL - Reporting Limit

DF - Dilution Factor ,

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283

Date Received: Work Order No: Preparation: Method:

08/09/08 08-08-0858 **EPA 3550B EPA 8015B**

Page 2 of 2

Project: 630 High Street, C	Dakland, CA						Pε	ge 2 of 2
Client Sample Number	·	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-5 13'		08-08-0858-5-A	08/04/08 12:15	Solid	GC 43	08/13/08	08/13/08 05:22	080813B01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	160	5.0	1		. mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	101	61-145						
B-6 12'		08-08-0858-6 - A	08/04/08 13:35	Solid	GC 43	08/13/08	08/13/08 05:30	080813B01
<u>Parameter</u>	<u>Result</u>	RL.	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	510	5.0	1		mg/kg			•
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	107	61-145						
B-7 12'		08-08-0858-7-A	08/04/08 16:05	Solid	GC 43	08/13/08	08/13/08 05:41	080813B01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	10	5.0	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	100	61-145						
Method Blank		099-12-025-394	N/A	Solid	GC 43	08/13/08	08/13/08 02:04	080813B01
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	101	61-145			•			

DF - Dilution Factor ,

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283

Date Received: Work Order No: Preparation:

Method:

08/09/08 08-08-0858 EPA 3510C **EPA 8015B**

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1		08-08-0858-8-E	08/04/08 17:40	Aqueous	GC 27	08/11/08	08/13/08 06:41	080811B15
Comment(s): -The sample chro	omatographic patten	n for TPH does not m	atch the chro	matographic	pattern of the	specified st	tandard. Qua	antitation
Parameter	Result	RL	DF	Qual	units			
Diesel Range Organics	880	50	1		ug/L			
Surrogates;	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	129	68-140						
B-2		08-08-0858-9-E	08/05/08 08:40	Aqueous	GC 27	08/11/08	08/13/08 07:00	080811B15
<u>Parameter</u>	Result	<u>RL</u>	<u>D</u> F	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	160	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	120	68-140						
B-3		08-08-0858-10-D	08/05/08 09:47	Aqueous	GC 27	08/11/08	08/13/08 07:19	080811B15
<u>Parameter</u>	<u>Result</u>	RL	DF	Qual	<u>Units</u>			
Diesel Range Organics	100	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	115	68-140						
Method Blank		099-12-211-575	N/A	Aqueous	GC 27	08/11/08	08/13/08 01:00	080811B15
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	<u>Control Limits</u>		<u>Qual</u>				
Decachlorobiphenyl	106	68-140						

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110

4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283

Date Received:

08/09/08

Work Order No:

08-08-0858

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

ug/L

Project: 630 High Street, Oakland, CA

Page 1 of 2

Oliost Cample North as				b Sample	Date/Time	Matrix	Instrument	Date Prepared	Date/T Analy		QC Batch II
Client Sample Number				Number	Collected			Traparou			
B-1			08-08-0858-8-A		08/04/08 17:40	Aqueous	GC/MS R	08/11/08	08/12/08 08:53		080811L02
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
rpph	3600	50	1		Methyl-t-Butyl	Ether (MTB	Ξ)	10	1.0	1	
Benzene	27	0.50	1		Tert-Butyl Alc	•	•	ND	10	1	
Ethylbenzene	97	1.0	1		Diisopropyl Et	her (DIPE)		150	2.0	1	
Foluene	ND	1.0	1		Ethyl-t-Butyl E			ND	2.0	1	
/m-Xylene	190	1.0	1		Tert-Amyl-Me	thyl Ether (T	AME)	ND	2.0	1	
-Xylene	1.3	1.0	1		Ethanol	-		ND	100	1	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
,4-Bromofluorobenzene	99	70-130			1,4-Bromofluc	robenzene-T	PPH	103	70-130		
B-2			08-08-	0858-9-A	08/05/08 08:40	Aqueous	GC/MS R	08/11/08	08/12 09:2		080811L02
Name	D/#		- 55	Ovel	Danamatan			Result	RL.	DF	Qual
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		- 1				
PPH	66	50	1		Methyl-t-Butyl	•	=)	4.0	1.0	1	
enzene	ND	0.50	1		Tert-Butyl Alc	. ,		110	10	1	
thylbenzene	ND	1.0	1		Diisopropyl Et			ND	2.0	1	
oluene	ND	1.0	1		Ethyl-t-Butyl E			ND	2.0	1	
/m-Xylene	ND	1.0	1		Tert-Amyl-Me	tnyi Etner (i A	AME)	ND	2.0	1	
-Xylene	ND	1.0	1		Ethanol			ND	100	1	Ovel
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Quai</u>	Surrogates:			<u>REC (%)</u>	Control Limits		<u>Qual</u>
,4-Bromofluorobenzene	96	70-130			1,4-Bromofluo	robenzene-T	PPH	101	70-130		
B-3			08-08-	0858-10-B	08/05/08 09:47	Aqueous	GC/MS R	08/11/08	08/12 09:5		080811L02
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	<u>DE</u>	Qual
PPH	ND	50	1		Methyl-t-Butyl	Ether (MTBE	≣)	6.2	1.0	1	
enzene	ND	0.50	1		Tert-Butyl Alc		•	ND	10	1	
thylbenzene	ND	1.0	i		Diisopropyl Et			ND	2.0	1	
oluene	ND	1.0	i		Ethyl-t-Butyl E	•		ND	2.0	1	
/m-Xvlene	ND	1.0	1		Tert-Amyl-Me	, ,	AME)	ND	2.0	1	
-Xylene	ND	1.0	1		Ethanol	, , , , , , , , , , , , , , , , , , , ,	,	ND	100	1	
Surrogates:	REC.(%)	Control	•	Qual	Surrogates:			REC (%)	Control		Qual
- Control of Control o	1120,1707	Limits		<u> a,uu,</u>					Limits		

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110

Portland, OR 97239-4283

Date Received:

Work Order No:

Preparation:

Method: Units: 08-08-0858

EPA 5030B

08/09/08

LUFT GC/MS / EPA 8260B

ug/L

Project: 630 High Street, Oakland, CA

Page 2 of 2

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed		QC Batch II
Method Blank				-715-747	N/A	Aqueous	GC/MS R	08/11/08	08/12/ 02:2		080811L02
Parameter	Result	<u>RL</u>	DE	Qual	Parameter	*		Result	<u>RL</u>	<u>DF</u>	Qual
TPPH	ND	50	1		Methyl-t-Butyl	Ether (MTBI	≣)	ND	1.0	1	
Benzene	ND	0.50	1		Tert-Butyl Aice	ohol (TBA)		ND	10	1	
Ethylbenzene	ND	1.0	1		Diisopropyl Et	her (DIPE)		ND	2.0	1	
Toluene	ND	1.0	1		Ethyl-t-Butyl E	ther (ETBE)		ND	2.0	1	
p/m-Xvlene	ND	1.0	1		Tert-Amyl-Met	thyl Ether (T	AME)	ND	2.0	1	
o-Xylene	ND	1.0	1		Ethanol			ND	100	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
1,4-Bromofluorobenzene	98	70-130			1,4-Bromofluo	robenzene-T	PPH	103	70-130		

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Date Received: Work Order No: 08/09/08

Portland, OR 97239-4283

Preparation:

08-08-0858 EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

mg/kg

Project: 630 High Street, Oakland, CA

Page 1 of 3

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
B-1 13'			08-08-	0858-1-A	08/04/08 17:31	Solid	GC/MS WW	08/14/08	08 08/14/08 23:53		080814L02
Parameter Parameter	Result	RL.	<u>DF</u>	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
rpph	150	12	25		Methyl-t-Butyl E	Ether (MTE	BE)	ND	0.12	25	
Benzene	ND	0.12	25		Tert-Butyl Alco	hol (TBA)		ND	1.2	25	
Ethylbenzene	ND	0.12	25		Diisopropyl Eth	er (DIPE)		ND	0.25	25	
Foluene	ND	0.12	25		Ethyl-t-Butyl Et	her (ETBE	:)	ND	0.25	25	
/m-Xylene	ND	0.12	25		Tert-Amyl-Meth	nyl Ether (1	AME)	ND	0.25	25	
o-Xylene	ND	0.12	25		Ethanol			ND	12	25	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		!	REC (%)	<u>Control</u> <u>Limits</u>		Qual
I,4-Bromofluorobenzeпе	96	70-130			1,4-Bromofluor	obenzene	TPPH	97	70-130		
B-2 11'			08-08-	0858-2-A	08/05/08 08:48	Solid	GC/MS R	08/12/08	08/13/ 03:40		080812L02
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DF	Qual
rpph	ND	0.50	1	<u> </u>	Methyl-t-Butyl	=ther (MTF	RE)	ND	0.0050	1	
	ND	0.0050	1		Tert-Butyl Alco	•	<i></i>	ND	0.050	1	
Benzene Thurbanana	ND	0.0050	1		Diisopropyl Eth	` '		ND	0.010	1	
Ethylbenzene Foluene	ND	0.0050	1		Ethyl-t-Butyl Et		.	ND	0.010	1	
	NĐ	0.0050	1		Tert-Amyl-Meth	•	•	ND	0.010	1	
o/m-Xylene o-Xylene	ND	0.0050	1		Ethanol	iyi Edici (i	NWL	ND	0.50	1	
	REC (%)	Control	1	Qual	Surrogates:		ı	REC (%)	Control	•	Qual
<u>Surrogates:</u>	KEC [76]	Limits		<u>Quai</u>	<u>ourrogates.</u>			<u> </u>	Limits		
,4-Bromofluorobenzene	96	70-130			1,4-Bromofluor	obenzene	TPPH	101	70-130		
B-3 7'			08-08-	0858-3-A	08/05/08 09:52	Solid	GC/MS R	08/12/08	08/13/ 05:1	08 1	080812L02
Parameter	Result	RL	DF	Qual	Parameter	-		Result	<u>RL</u>	DF	Qual
PPH	ND	0.50	1		Methyl-t-Butyl i	-ther (MTF	3E)	ND	0.0050	1	
enzene	ND	0.0050	1		Tert-Butyl Alco		,	ND	0.050	1	
Ethylbenzene	ND	0.0050	1		Diisopropyl Eth			ND	0.010	1	
oluene	ND	0.0050	1		Ethyl-t-Butyl Et		3	ND	0.010	1	
oluene o/m-Xvlene	ND	0.0050	1		Tert-Amyl-Meth			ND	0.010	1	
-Xylene	ND	0.0050	1		Ethanol	., (1	·	ND	0.50	1	
Eurrogates:	REC (%)	Control.	'	Qual	Surrogates:		I	REC (%)	Control	•	Qual
		Limits		Scan	•		•		<u>Limits</u>		
I,4-Bromofluorobenzene	100	70-130			1,4-Bromofluor	obenzene-	I PPH	105	70-130		

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283 Date Received: Work Order No: Preparation: 08/09/08 08-08-0858 EPA 5030B

Method: Units: LUFT GC/MS / EPA 8260B

mg/kg

Project: 630 High Street, Oakland, CA

Page 2 of 3

Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
B-48'			08-08-0	858-4-A	08/05/08 11:40	Solid	GC/MS R	08/12/08	08/13/ 05:4		080812L02
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
reph	ND	0.50	1		Methyl-t-Butyl B	Ether (MTE	BE)	ND	0.0050	1	
Benzene	ND	0.0050	1		Tert-Butyl Alcol	hol (TBA)		ND	0.050	1	
Ethylbenzene	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
Foluene	ND	0.0050	1		Ethyl-t-Butyl Et			ND	0.010	1	
/m-Xylene	ND	0.0050	1		Tert-Amyl-Meth	ıyl Ether (Т	AME)	ND	0.010	1	
-Xvlene	ND	0.0050	1		Ethanol			ND	0.50	1	
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
I.4-Bromofluorobenzene	99	<u>Limits</u> 70-130			1,4-Bromofluor	obenzene-	TPPH	104	70-130		
B-5 13'			08-08-0	858-5-A	08/04/08 12:15	Solid	GC/MS W	V 08/14/08	08/14/ 23:25		080814L02
Parameter	Result	RL	DF	Qual	Parameter		-	Result	RL	DF	Qual
•				Guai	Methyl-t-Butyl B	Sthor (MTE	SE/	ND	0.12	25	
rppH Names and	88	12	25		Tert-Butyl Alco	•	<i>,</i>	ND	1.2	25	
Benzene	ND	0.12	25		Diisopropyl Eth			ND	0.25	25	
Ethylbenzene	ND	0.12	25		Ethyl-t-Butyl Et		3	ND	0.25	25	
Foluene	ND	0.12	25 25		Tert-Amyl-Meth		•	ND	0.25	25	
o/m-Xylene	ND ND	0.12	25 25		Ethanol	iàir mier (i	ANL)	ND	12	25	
p-Xylene		0.12	25	Ougl				REC (%)	Control	20	Qual
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			INEO TAIL	<u>Limits</u>		<u>26.555</u>
1,4-Bromofluorobenzene	99	70-130			1,4-Bromofluor	obenzene	TPPH	99	70-130		
B-6 12'			08-08-0	858-6-A	08/04/08 13:35	Solid	GC/MS WV	V 08/14/08	08/14/ 22:5		080814L02
	D lt	C'	DC	O!	Beremeter	_		Result	<u>RL</u>	DE	Qual
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		NEN			25	· · · · · · · · · · · · · · · · · · ·
Γ P PH	48	12	25		Methyl-t-Butyl 6	tner (Milit	s=)	ND	0.12 1.2	25 25	
Benzene	ND	0.12	25		Tert-Butyl Alco			ND ND	1.2 0.25	25 25	
Ethylbenzene	ND	0.12	25		Diisopropyl Eth		•			25 25	
Foluene	ND	0.12	25		Ethyl-t-Butyl Et			ND	0.25	25 25	
o/m-Xylene	ND	0.12	25		Tert-Amyl-Meth	ıyı Ether (ANE)	ND ND	0.25	25 25	
-Xylene	ND	0.12	25	. .	Ethanol				12 Control	25	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	<u>Control</u>		<u>Qual</u>
ourregates.	1100 (102	Limits							<u>Limits</u>		

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110

Portland, OR 97239-4283

Date Received:

08/09/08 08-08-0858

Work Order No: Preparation:

EPA 5030B

Method: Units:

LUFT GC/MS / EPA 8260B

mg/kg

Project: 630 High Street, Oakland, CA

Page 3 of 3

r rojecti ede riigir etre.	ot, ountain	, 											
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy		QC Batch II		
B-7 12'			08-08-0	0858-7-A	08/04/08 16:05	Solid	GC/MS R	08/12/08	08/13 06:1		080812L02		
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual		
(PPH	6.5	0.50	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.0050	1			
Benzene	ND	0.0050	1		Tert-Butyl Alco	ohol (TBA)		ND	0.050	1			
Ethylbenzene	0.0072	0.0050	1		Diisopropyl Eth	her (DIPE)		ND	0.010	1			
Foluene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE	:)	ND	0.010	1			
o/m-Xylene	0.014	0.0050	1		Tert-Amyl-Met	hyl Ether (1	TAME)	ND	0.010	1			
o-Xylene	0.013	0.0050	1		Ethanol	,		ND	0.50	1			
Surrogates:	REC (%)	Control	·	<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual		
I,4-Bromofluorobenzene	107	<u>Llmits</u> 70-130			1,4-Bromofluo	robenzene	ТРРН	106	70-130				
Method Blank			099-12	-717-166	N/A	Solid	GC/MS R	08/12/08	08/13 02 :4		080812L02		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DE</u>	Qual	<u>Parameter</u>			<u>Result</u>	RL.	<u>DF</u>	<u>Qual</u>		
TPPH .	ND	0.50	1		Methyl-t-Butyl		3E)	ND	0.0050	1			
3enzene	ND	0.0050	1		Tert-Butyl Alco	ohol (TBA)		ND	0.050	1			
Ethylbenzene	ND	0.0050	1		Diisopropyl Eth	her (DIPE)		ND	0,010	1			
Foluene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE	E)	ND	0.010	1			
o/m-Xylene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (1	ΓAME)	ND	0.010	1			
>-Xylene	ND	0.0050	1		Ethanol			ND	0.50	1			
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual		
,4-Bromofluorobenzene	100	70-130			1,4-Bromofluo	robenzene-	TPPH	105	70-130				
Method Blank			099-12	-717-168	N/A	Solid	GC/MS WV	V 08/14/08	08/14 18:0		080814L02		
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DE	Qual		
ГРРН	ND	12	25		Methyl-t-Butyl	Ether (MTE	3E)	ND	0.12	25			
Benzene	ND	0.12	25		Tert-Butvl Alco	• •		ND	1.2	25			
Ethylbenzene	ND	0.12	25			, ,		sopropyl Ether (DIPE)		ND	0.25	25	
Foluene	ND	0.12	25		Ethyl-t-Butyl Ether (ETB		2)	ND 0.25 25					
o/m-Xylene	ND	0.12	25		Tert-Amyl-Methyl Ether (TA		•	ND	0.25				
o-Xylene	ND	0.12	25		Ethanol			ND	12	25			
Surrog <u>ates:</u>	REC (%)	Control	23	Qual				REC (%)	Control		Qual		
	11 - 1701			<u>ornar</u>	<u>curogates.</u>		· · · · · · · · · · · · · · · · · · ·						
octrogates.		Limits							Limits				

aboratories, inc.

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283 Date Received: Work Order No: Preparation: Method: 08/09/08 08-08-0858 EPA 3550B EPA 8015B

Project 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
08-08-0667-1	Solid	GC 43	08/13/08	08/13/08	080813501
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD CI	Qualifiers
Diesel Range Organics	89	95	64-130	6 0-15	

RPD - Relative Percent Difference ,

aboratories, Inc.

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283

Date Received: Work Order No: Preparation:

Method:

08/09/08 08-08-0858 **EPA 5030B** LUFT GC/MS / EPA 8260B

Project 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-08-0665-1	Aqueou	IS GC/MS R	08/11/08		08/12/08	080811502
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	86	88	70-130	2	0-30	
Ethylbenzene	111	112	70-130	1	0-30	
Toluene	99	99	70-130	O	0-30	
p/m-Xylene	111	112	70-130	1	0-30	
o-Xylene	111	111	70-130	0	0-30	
Methyl-t-Butyl Ether (MTBE)	126	127	70-130	1	0-30	
Tert-Butyl Alcohol (TBA)	117	122	70-130	4	0-30	
Diisopropyl Ether (DIPE)	111	111	70-130	0	0-30	
Ethyl-t-Butyl Ether (ETBE)	116	118	70-130	2	0-30	
Tert-Amyl-Methyl Ether (TAME)	107	106	70-130	1	0-30	
Ethanol	76	87	70-130	14	0-30	

RPD - Relative Percent Difference,

CL - Control Limit

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283

Date Received: Work Order No: Preparation: Method:

08/09/08 08-08-0858 **EPA 5030B** LUFT GC/MS / EPA 8260B

Project 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
B-2 11'	Solid	GC/MS R	08/12/08		08/13/08	080812S02
Parameter	MS %REC	MSD %REC	%REC <u>CL</u>	RPD	RPD CL	. Qualifiers
<u>r arameter</u>	MO 707CEO	11105 / 11105	<u></u>			.
Benzene	83	84	70-130	1	0-30	
Ethylbenzene	108	110	70-130	4	0-30	
Toluene	99	101	70-130	1	0-30	
p/m-Xylene	106	110	70-130	4	0-30	
o-Xylene	112	112	70-130	٥	0-30	
Methyl-t-Butyl Ether (MTBE)	128	124	70-130	3	0-30	
Tert-Butyl Alcohol (TBA)	106	105	70-130	1	0-30	
Diisopropyl Ether (DIPE)	108	102	70-130	5	0-30	
Ethyl-t-Butyl Ether (ETBE)	121	114	70-130	6	0-30	
Tert-Amyl-Methyl Ether (TAME)	106	102	70-130	4	0-30	
Ethanol	0	39	70-130	200	0-30	3,4

Ethanol

aboratories, Inc.

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283 Date Received: Work Order No: Preparation: Method: 08/09/08 08-08-0858 EPA 5030B LUFT GC/MS / EPA 8260B

Project 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-08-0885-4	Solid	GC/MS WW	08/14/08		08/14/08	080814501
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	92	88	70-130	4	0-30	
Ethylbenzene	96	92	70-130	4	0-30	
Toluene	93	88	70-130	6	0-30	
p/m-Xylene	98	93	70-130	5	0-30	
o-Xylene	98	94	70-130	3	0-30	
Methyl-t-Butyl Ether (MTBE)	118	112	70-130	6	0-30	
Tert-Butyl Alcohol (TBA)	102	111	70-130	8	0-30	
Diisopropyl Ether (DIPE)	105	100	70-130	4	0-30	
Ethyl-t-Butyl Ether (ETBE)	107	102	70-130	5	0-30	
Tert-Amyl-Methyl Ether (TAME)	105	99	70-130	5	0-30	
Ethanol	12 4	106	70-130	16	0-30	

RPD - Relative Percent Difference , 7440 Lincoln

aboratories, Inc.

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283

Date Received: Work Order No: Preparation: Method:

N/A 08-08-0858 **EPA 3550B EPA 8015B**

Project: 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Instrum	Da ent <u>Pre</u> p		Da Anal		LCS/LCSD Bate Number	h
099-12-025-394	Solid	GC 43	08/1	3/08	08/13	/08	080813B01	100
<u>Parameter</u>	<u>LCS (</u>	<u>%REC</u> !	LCSD %REC	<u>%RE</u>	C CL	<u>RPD</u>	RPD CL	Qualifiers
Diesel Range Organics	86		84	75	-123	2	0-12	

RPD - Relative Percent Difference,

aboratories, Inc.

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283 Date Received: Work Order No: Preparation: Method: N/A 08-08-0858 EPA 3510C EPA 8015B

Project: 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Instrumen	Da Prepa		Da Anal		LCS/LCSD Batc Number	h
099-12-211-575	Aqueous	GC 27	08/11	1/08	08/13	3/08	080811B15	
<u>Parameter</u>	LCS S	6REC LC	SD %REC	%RE	C CL	<u>RPD</u>	RPD CL	Qualifiers
Diesel Range Organics	103	,	100		117	2	0-13	

MMM_

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283

Date Received: Work Order No: Preparation:

08-08-0858 **EPA 5030B**

N/A

Method:

LUFT GC/MS / EPA 8260B

Project: 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Numbe	
099-12-715-747	Aqueous	GC/MS R	08/11/08	08/1	2/08	0808111	.02
Parameter	LCS %REQ	LCSD %REC	%REC CL	ME CL	<u>RPD</u>	R <u>PD CL</u>	Qualifiers
TPPH	107	104	65-135	53-147	3	0-30	
Benzene	88	89	70-130	60-140	1	0-30	
Ethylbenzene	106	107	70-130	60-140	1	0-30	
Toluene	101	100	70-130	60-140	0	0-30	
p/m-Xylene	106	107	70-130	60-140	1	0-30	
o-Xylene	106	106	70-130	60-140	1	0-30	
Methyl-t-Butyl Ether (MTBE)	122	122	70-130	60-140	0	0-30	
Tert-Butyl Alcohol (TBA)	111	112	70-130	60-140	1	0-30	
Diisopropyl Ether (DIPE)	109	109	70-130	60-140	0	0-30	
Ethyl-t-Butyl Ether (ETBE)	118	116	70-130	60-140	2	0-30	
Tert-Amyl-Methyl Ether (TAME)	102	103	70-130	60-140 0		0-30	
Ethanol	92	101	70-130	60-140 9		0-30	

Total number of LCS compounds: 12 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283

Date Received: Work Order No: Preparation:

N/A 08-08-0858 **EPA 5030B**

Method:

LUFT GC/MS / EPA 8260B

Project: 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Numbe			
099-12-717-166	Solid	GC/MS R	08/12/08	08/1	3/08	080812L02			
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>		
TPPH	105	104	65-135	53-147	1	0-30			
Benzene	88	87	70-130	60-140	1	0-30			
Ethylbenzene	106	106	70-130	60-140	1	0-30			
Toluene	101	100	70-130	60-140	1	0-30			
p/m-Xylene	106	106	70-130	60-140	1	0-30			
o-Xylene	106	108	70-130	60-140	1	0-30			
Methyl-t-Butyl Ether (MTBE)	118	118	70-130	60-140	0	0-30			
Tert-Butyl Alcohol (TBA)	105	106	70-130	60-140	1	0-30			
Diisopropyl Ether (DIPE)	106	105	70-130	60-140	1	0-30			
Ethyl-t-Butyl Ether (ETBE)	113	109	70-130	60-140	4	0-30			
Tert-Amyl-Methyl Ether (TAME)	104	102	70-130	60-140	2	0-30			
Ethanol	88	88	70-130	60-140 0		0-30			

Total number of LCS compounds: 12 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283 Date Received: Work Order No:

N/A 08-08-0858

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Project: 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Numbe																							
099-12-717-168	Solid	GC/MS WW	08/14/08	08/1	4/08	080814L02																							
Parameter		1000 4/050	W D E O OI	ME CI	DDD	RPD CL	Qualifiers																						
	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>		Quamers																						
TPPH	85	90	65-135	53-147	5	0-30																							
Benzene	99	96	70-130	60-140	3	0-30																							
Ethylbenzene	104	103	70-130	60-140	1	0-30																							
Toluene	99	98	70-130	60-140	1	0-30																							
p/m-Xylene	107	104	70-130	60-140	3	0-30																							
o-Xylene	105	102	70-130	60-140	3	0-30																							
Methyl-t-Butyl Ether (MTBE)	109	108	70-130	60-140	1	0-30																							
Tert-Butyl Alcohol (TBA)	117	126	70-130	60-140	7	0-30																							
Diisopropyl Ether (DIPE)	103	98	70-130	60-140	5	0-30																							
Ethyl-t-Butyl Ether (ETBE)	104	99	70-130	60-140 5		60-140 5		60-140 5		60-140 5		60-140 5		60-140 5		60-140 5		60-140 5		60-140 5		60-140 5		60-140 5		60-140 5		0-30	
Tert-Amyl-Methyl Ether (TAME)	97	92	70-130	60-140 6		0-30																							
Ethanol	124	110	70-130	60-140 12		0-30																							

Total number of LCS compounds: 12

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Mhu_

Glossary of Terms and Qualifiers

Work Order Number: 08-08-0858

	
<u>Qualifier</u>	<u>Definition</u>
#	Analyte result was suppressed.
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
D	The analyte concentration was reported from analysis of the diluted sample.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
V	Relative percent difference out of control.
Χ	% Recovery and/or RPD out-of-range.

Work Order Number: 08-08-0858

Qualifier Definition

Z Analyte presence was not confirmed by second column or GC/MS analysis.

	LAB (LOCATION)				6			Sh	eli	Oil	Pr	od	luc	ts	Ch	air	n C	f C	ust	od	y R	ec	ord	l					
	SCIENCE (101014	Ple	ase Chec			:Box:		:::::	::Prì	ıt:Bili	To.	Cont	act i	Nam	ė. ::				:: ::I	NCID	ENT	# (EI	NV S	ERV	CES	·): [C	CHEC	K IF NO INCIDENT # APPLIES
□ SPL			IZ3 €N	V. SERVICES	0:	AVITON	ETAIL		SHELL RET	AIL											9		_	6		7			DAT	
	ICO (□ MK	TTVA SDACM		ONSULTA	INT		LUBES		10000			200	ه :	O #			1000					SAJ	ببسب		<u></u>		DAI	C
☐ OTH	T AMERICA (ELL PIPELINE	==	OTHER				ऱ,		<u> </u>	ilion T			¥.#.	3330 T	<u> </u>	<u> </u>	00000		3000	(COCO)				(400) 	3333	PAG	Ē: of
_	COMPANY:					Log cop		-		ᆜ	\$770 AT	DRESS:	Street	end Cit							8100	<u> 13</u>	5		9			—		
		ental Consultants					_				030	14	ral	, 3	h	eek	. 0	lal	Cla	nd		À								
AOORES	S:	5910 Rice Creek	Parkway, S	ulfe 100 St	. Paul MM 6:	6426					EOF DELIV	ERABLE	Televan	19, Согла	ny,Offic	e Locatio	n):	,	PH	WENO:	,			E-MAL	Ŀ					CONSULTANTPROJECTNO:
PROJECT	CONTACT (Hardcopy or PDF R				.,																			丄						
TELEPHO	NE:	FAX	Gary Tu	EMAL:					·		SAMPLE	-			,												Į		ASE O	
	651-697-5159 	651-639-9	173		gtur	деоп@с	eltaenv.c	com			Ma	كاس	ol	Q,	ŀή	2_												O	8-	0858
	AROUND TIME (CALEND NDARD (14 DAY)	AR DAYS); ☐ S DAYS ☐ 3 D.	LYS	2 DAYS	□ 24 H0	URS		RESULTS	NEEDED ON WE	KEND										RI	EQUE	STEC	ANA	LYSI	S					
Ĭ.	WQCB REPORT FORM	AT UST AGENCY					·										a	T				1					1		Τ.	EMPERATURE ON RECEIPT
S.D.	ECIAL INSTRUCTION	NS OF MOTES			☑ SHELL	CONTRA	CT RATE A	PPLIES			I		ŀ		6	ァ	EPA 260B	- }		1								- 1	- []	C. I
l ~.	EGINE MOTROOTI	ONG ON NOTES.					RSEMENT R	CATE API	PLIES		Ä				700	ş	6			1		1					- [
5 cx	tygenates are MTBE	, ETBE, TBA, TAME, DIP	E		☐ EDD N						sell Oxys 8260	_		3	0009	p270C-	8	- 1		1	ı		1	-			ı		L	
İ					RECEI	IPT VERIF	ICATION R	EQUEST	red		TPH-6/BTEX/Shell C ethanol by EPA 8250	TPH-D by 8015M	ß	Oif & Grease (1664)	CAM 17 Metals (6000/7000)	e)OSO	1,2 DCA and EDB by					1	1				Ī			
			SAI	APLING .		Щ	PRESERV	FVITA				2	Š	Leas	ž		ā							ĺ					Ī	
(M) (M) (M)	Field San	ple Identification	DATE	TIME	MATRIX				;	io. of cont.	1 3	7	Full list VOCs	(D)	M 17	S and	8					1	ľ							Container PiD Readings
OHLY						HCL H	NO3 H2SO4	NONE	OTHER		유성	투	Z	ō	85	¥ E	근	_						↓_	<u> </u>		_	4		or Laboratory Notes
	B-1 13	,	8/4/3		Suí	4-4	_			1	1	\ <u>\</u>	1_																	
Z	B-2 11		8/5/0	8 48	Soil			İ		1			1	'									ŀ	L					ŀ	
3	13-3 7	1	8/5/0	9:52	Soil	1			["]	į	1	1		Π																
4	B-4 8	· · ·	4/5/	211.40	Soil					ī	V	7~								\top				\top			\dashv			
5	2-5 13	3	8/4/0	7	50:1	1		+		1	-	1.	╁╌				7	寸	\dashv	╅	+	 -	\top	+-	\vdash	H	一	十	Ť	
É	B-6 18		8/1/3		Soil	 			\dagger	·		1		-		\vdash	十	-	-		╁	+		+			\dashv	+	Ŧ	
		<u>, </u>				1-1		+	+-+	<u>. </u>	1	#		\vdash	\vdash	Н	-	-		╁		+	+	+	╁	\vdash	+	+		
	4-7	<u> </u>	- I' .	s 16305		++	+	+	 	ا سر	<u> </u>	<u> </u>	 	├	<u> </u>	Н	\dashv	\dashv		╁	+	+	+	╁╴	╀	-		\dashv		
8	B-1		8/4/6	817:40	GW	11			1 1	5	1	7	1_	_				_	_	ᆜ-			1	_				\dashv		
9	B-2		8/9/6	8:40	GW	11	ļ			5	س	س س	1				,					1				,		.	ľ	
Ю	B-3			\$ 9.47	O 44	T				4	V	12	-						•											
	shed by: (Signature)		1013//	3 7] - 7 /	Received by: (\$	(gnatura)	7 -	<u></u>	11		1		ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ									Dal	16;	1			┿	Time:	· · · · · · · · · · · · · · · · · · ·
Γh	he all					41	1	Park.		2	105	/ -	*																	
Relinqui	shed by: (Signature)				Received by: (S	ignature)	1			21/	. <u> </u>	<u> </u>				•							Del	ls:				┪.	Time:	<u>-</u>
1 /	WO H		810	5/25		G-5Z	`										-													
Relisqui	ished by: (Signature)				Received by: (S	(gnalure)						-											Def	te:				十	Time:	
	GSO	•			/	N=	CEL																	<u>ን</u> ም-	-79	-O	Ç.		8:	45

WORK ORDER #: 08 - 0 8 - 8

Cooler ____ of ___

SAMPLE RECEIPT FORM

CLIENT: DECTA	DATE: 08-09-08
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature (For Air & Filter only).	LABORATORY (Other than Caiscience Courier): 4°C Temperature blank°C IR thermometer Ambient temperature (For Air & Filter only).
,°C Temperature blank.	Initial:
CUSTODY SEAL INTACT:	· · · · · · · · · · · · · · · · · · ·
Sample(s): Cooler: No (Not	Intact) : Not Present: Initial:
SAMPLE CONDITION:	Yes No N/A
Chain-Of-Custody document(s) received with samples Sampler's name indicated on COC	
Sample container label(s) consistent with custody papers	
Sample container(s) intact and good condition Correct containers and volume for analyses requested	
Proper preservation noted on sample label(s)	
VOA vial(s) free of headspace.	I I
Tedlar bag(s) free of condensation	Initial: TD
COMMENTS: (-8): SAHRE ID B-1: 1× 1L AMBER PRESERVE	D WITH HZSON SAMPLED ON 08-M-08 AT 18:30
	08-09-08
	and the second

August 25, 2008

Kevin McCarthy **Delta Environmental Consultants** 4640 SW Macadam Ave: Suite 110 Portland, OR 97239-4283

Calscience Work Order No.: 08-08-0859 Subject:

> 630 High Street, Oakland, CA Client Reference:

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/9/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Jessie Kim Project Manager

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283

Date Received: Work Order No: Preparation: Method:

08/09/08 08-08-0859 **EPA 3510C EPA 8015B**

Dogo 1 of 1

Project: 630 High Street, Oakla	nd, CA						Pa	ge 1 of 1
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4		08-08-0859-1-E	08/05/08 11:15	Aqueous	GC 27	08/11/08	08/14/08 12:34	080812B14
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	55	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	87	68-140						
B-6		08-08-0859-2-E	08/04/08 13:39	Aqueous	GC 27	08/11/08	08/13/08 11:40	080812B14
<u>Parameter</u>	Result	RL.	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	33000	500	10		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphen yl	113	68-140						
B-7		08-08-0859-3-E	08/04/08 16:10	Aqueous	GC 27	08/11/08	08/14/08 12:53	080812B14
Comment(s): -The sample chromatog	graphic patter	n for TPH does not m	atch the chro	matographic	pattern of the	e specified s	tandard. Qua	intitation
of the unknown hydroca Parameter	Result	e sampie was based (RL	DE	Qual	u. <u>Units</u>			
Diesel Range Organics	740	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	110	68-140						
Method Blank		099-12-211-577	N/A	Aqueous	GC 27	08/11/08	08/13/08 10:23	080812B14
Parameter Parameter	Result	RL	<u>DF</u>	<u>Quai</u>	<u>Units</u>			
Diesel Range Organics	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110

Portland, OR 97239-4283

Date Received:

Work Order No:

Preparation:

Method: Units: 08/09/08

08-08-0859

EPA 5030B LUFT GC/MS / EPA 8260B

ug/L

Project: 630 High Street, Oakland, CA

Page 1 of 3

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	instrument	Date Prepared	Date/Ti Analyz		QC Batch IE
B-4			08-08-	0859-1-C	08/05/08 11:15	Aqueous	GC/MSR	08/11/08	08/12/ 07:2	08 3	080811L02
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	<u>D</u> F	<u>Qual</u>
PPH .	ND	50	1		Methyl-t-Butyl	Ether (MTBI	Ξ)	1.3	1.0	1	
Benzene	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
Ethylbenzene	ND	1.0	1		Diisopropyl Et	her (DIPE)		ND	2.0	1	
Toluene	ND	1.0	1		Ethyl-t-Butyl E	ther (ETBE)		ND	2.0	1	
/m-Xylene	ND	1.0	1		Tert-Amyl-Me	thyl Ether (T/	AME)	ND	2.0	1	
-Xylene	ND	1.0	1		Ethanol	•		ND	100	1	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
,4-Bromofluorobenzene	102	70-130			1,4-Bromofluo	robenzene-T	PPH	107	70-130		
B-6			08-08-	0859-2-C	08/04/08 13:39	Aqueous	GC/MS R	08/11/08	08/12/ 07:5		080811L02
	- "				D		-	Docuit	<u>RL</u>	DF	Qual
<u>Parameter</u>	<u>Result</u>	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	•		<u>Quai</u>
TPPH	110000	5000	100		Methyl-t-Butyl		=)	ND	1.0	1	
Benzene	ND	0.50	1		Tert-Butyl Alc	, ,		ND	10	. 1	
Ethylbenzene	1.1		1		Diisopropyl Et			ND	2.0	1	
Coluene	ND	1.0	1		Ethyl-t-Butyl E			ND	2.0	1	
/m-Xylene	ND	1.0	1		Tert-Amyl-Me	thyl Ether (T	AME)	ND	2.0	1	
-Xylene	ND	1.0	1		Ethanol			ND	100	1	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
,4-Bromofluorobenzene	113	70-130			1,4-Bromofluc	robenzene-T	PPH	116	70-130		
B-7			08-08-	0859-3-C	08/04/08 16:10	Aqueous	GC/MS R	08/11/08	08/12/ 08:2		080811L02
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DE	Qual
PPH	2000	50	1		Methyl-t-Butyl	Ether (MTRI	E)	6.4	1.0	1	
enzene	ND	0.50	1		Tert-Butvl Alc	•	_,	59	10	1	
	ND	1.0	1		Diisopropyl Et			ND	2.0	1	
Ethylbenzene Fabrone	ND ND	1.0	1		Ethyl-t-Butyl E			ND	2.0	1	
oluene	มีป 1.0	1.0	1		Tert-Amyl-Me			ND	2.0	i	
o/m-Xylene	ND I.U	1.0	1		Ethanol	aryr Euror (17	· ····-/	ND	100	i	
-Xylene			1	Ouel				REC (%)	Control	•	Qual
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			T/01/01			
<u> anogaios.</u>		Limits							<u>Limits</u>		

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110

Date Received: Work Order No:

08/09/08 08-08-0859

Portland, OR 97239-4283

Preparation:

EPA 5030B

Method: Units:

LUFT GC/MS / EPA 8260B ug/L

Page 2 of 3

Project: 630 High Street, Oakland, CA

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz		QC Batch ID
Trip Blank				0859-4-D	08/05/08 00:00	Aqueous	GC/MS R	08/12/08	08/12/ 22:0		080812L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL.	DF	<u>Qual</u>
TPPH	ND	50	1		Methyl-t-Butyl	Ether (MTBI	Ξ)	ND	1.0	1	
Benzene	NÐ	0.50	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
Ethylbenzene	ND	1.0	1		Diisopropyl Et	her (DIPE)		ND	2.0	1	
Foluene	ND	1.0	1		Ethyl-t-Butyl E	ther (ETBE)		ND	2.0	1	
/m-Xylene	ND	1.0	1		Tert-Amyl-Me	thyl Ether (T/	AME)	NÐ	2.0	1	
-Xylene	ND	1.0	1		Ethanol			ND	100	1	
Surrogates:	REC (%)	Control_ Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
,4-Bromofluorobenzene	97	70-130			1,4-Bromofluc	robenzene-T	PPH	102	70-130		
Method Blank	-		099-12	-715-747	N/A	Aqueous	GC/MS R	08/11/08	08/12 02:2		080811L02
Parameter	Result	RL	DE	Qual	Parameter	-		Result	RL	DF	Qual
	<u>rtestir.</u> ND	50	1	<u> </u>	Methyl-t-Butyl	Ethor /MTRI	=1	ND	1.0	1	
TPPH					Tert-Butyl Alc	•	-/	ND	10	1	
Benzene	ND	0.50	1		Diisopropyl El			ND	2.0	1	
thylbenzene	ND	1.0	1		Ethyl-t-Butyl E			ND	2.0	1	
Foluene	ND	1.0	1					ND	2.0	1	
/m-Xylene	ND	1.0	1		Tert-Amyl-Me Ethanol	unyi Eunei (17	-ivie)	ND	100	1	
o-Xylene	ND	1.0	1	Ound				REC (%)	Control	'	Qual
Surrogates:	REC (%)	Control		Qual	Surrogates:			KEC (70)	Limits		<u>Gradi</u>
I.4-Bromofluorobenzene	98	<u>Limits</u> 70-130			1.4-Bromofluo	orobenzene-T	PPH	103	70-130		
Method Blank		10 105	099-12	-715-762	N/A	Aqueous	GC/MS R	08/12/08	08/12 14:0		080812L01
	Popult	RL		Qual	Parameter			Result	RL	DF	Qual
Parameter	Result			Zuai	Methyl-t-Butyl	Ethor (MTD)	=\	ND	1.0	1	
TPPH	ND	50	1		Tert-Butyl Alc		− <i>f</i>	ND	10	1	
Benzene	ND	0.50	1		Diisopropyl El			ND	2.0	1	
thylbenzene	ND	1.0	1					ND	2.0	1	
oluene	ND	1.0	1		Ethyl-t-Butyl E			ND	2.0	1	
/m-Xylene	ND	1.0	1		Tert-Amyl-Me	miyi⊏ulei (17	~ivi⊑)	ND	100	1	
-Xylene	ND	1.0	1	01	Ethanol			REC (%)	Control	'	Qual
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:	_		106	<u>Limits</u> 70-130		<u>wuan</u>
1,4-Bromofluorobenzene	101	70-130				probenzene-T					

DF - Dilution Factor , RL - Reporting Limit ,

Qual - Qualifiers

Deita Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283 Date Received: Work Order No:

08/09/08 08-08-0859

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Units:

ug/L

Project: 630 High Street, Oakland, CA

Page 3 of 3

Client Sample Number			-	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T d Analyz		QC Batch ID
Method Blank			099-12	-715-779	N/A	Aqueous	GC/MS R	08/15/08	08/15/ 13:3		080815L01
Parameter	Result	RL	DF	Qual	Parameter	-		Result	<u>RL</u>	<u>DF</u>	Qual
 TPPH	ND	50	1		Methyl-t-Butyl	Ether (MTB)	E)	ND	1.0	1	
Benzene	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)	•	ND	10	1	
Ethylbenzene	ND	1.0	1		Diisopropyl Et	her (DIPE)		ND	2.0	1	
Toluene	ND	1.0	1		Ethyl-t-Butyl E	ther (ETBE)		ND	2.0	1	
p/m-Xylene	ND	1.0	1		Tert-Amyl-Me	thyl Ether (T	AME)	ND	2.0	1	
p-Xylene	ND	1.0	1		Ethanol			ND	100	1	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
1,4-Bromofluorobenzene	101	70-130			1,4-Bromofluc	robenzen e -T	PPH	100	70-130		

Portland, OR 97239-4283

Quality Control - Spike/Spike Duplicate

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110

Date Received: Work Order No: Preparation: Method:

08/09/08 08-08-0859 **EPA 5030B** LUFT GC/MS / EPA 8260B

Project 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Matrix Instrument		Date Prepared		MS/MSD Batch Number	
08-08-0665-1	Aqueou	s GC/MSR	08/11/08		08/12/08	080811S02	
	110 W D = 0	1400 W DEO	WDEC CI	DDO	RPD CL	Qualifiers	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	<u>KPD CL</u>	Qualificis	
Benzene	86	88	70-130	2	0-30		
Ethylbenzene	111	112	70-130	1	0-30		
Toluene	99	99	70-130	0	0-30		
p/m-Xylene	111	112	70-130	1	0-30		
o-Xylene	111	111	70-130	0	0-30		
Methyl-t-Butyl Ether (MTBE)	126	127	70-130	1	0-30		
Tert-Butyl Alcohol (TBA)	117	122	70-130	4	0-30		
Diisopropyl Ether (DIPE)	111	111	70-130	0	0-30		
Ethyl-t-Butyl Ether (ETBE)	116	118	70-130	2	0-30		
Tert-Amyl-Methyl Ether (TAME)	107	106	70-130	1	0-30		
Ethanol	76	87	70-130	14	0-30		

aboratories, inc.

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283 Date Received: Work Order No: Preparation: Method: 08/09/08 08-08-0859 EPA 5030B LUFT GC/MS / EPA 8260B

Project 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-08-0905-1	Аqиеои	is GC/MSR	08/12/08		08/12/08	080812501
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	82	83	70-130	1	0-30	
Ethylbenzene	107	109	70-130	1	0-30	
Toluene	96	97	70-130	1	0-30	
p/m-Xylene	107	109	70-130	1	0-30	
o-Xylene	107	109	70-130	2	0-30	
Methyl-t-Butyl Ether (MTBE)	121	122	70-130	1	0-30	
Tert-Butyl Alcohol (TBA)	112	114	70-130	2	0-30	
Diisopropyl Ether (DIPE)	103	103	70-130	1	0-30	
Ethyl-t-Butyl Ether (ETBE)	114	116	70-130	2	0-30	
Tert-Amyl-Methyl Ether (TAME)	99	101	70-130	2	0-30	
Ethanol	86	89	70-130	3	0-30	

Diisopropyl Ether (DIPE)

Ethanol

Ethyl-t-Butyl Ether (ETBE)

Tert-Amyl-Methyl Ether (TAME)

Quality Control - Spike/Spike Duplicate

Method:

aboratories, inc.

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283 Date Received: Work Order No: Preparation: 08/09/08 08-08-0859 EPA 5030B LUFT GC/MS / EPA 8260B

Project 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-08-1137-1	Aqueous	GC/MS R	08/15/08		08/15/08	080815S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD_CL	Qualifiers
Benzene	89	91	70-130	2	0-30	
Ethylbenzene	106	109	70-130	3	0-30	
Toluene	98	100	70-130	3	0-30	
p/m-Xylene	106	109	70-130	3	0-30	
o-Xylene	106	110	70-130	3	0-30	
Methyl-t-Butyl Ether (MTBE)	110	110	70-130	0	0-30	
Tert-Butyl Alcohol (TBA)	100	111	70-130	10	0-30	

90

98

108

90

87

96

106

86

70-130

70-130

70-130

70-130

3

2

2

0-30

0-30

0-30

0-30

RPD - Relative Percent Difference , 7440 Lincoln

Portland, OR 97239-4283

Diesel Range Organics

Quality Control - LCS/LCS Duplicate

0-13

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110

Date Received: Work Order No: Preparation: Method:

75-117

N/A 08-08-0859 EPA 3510C EPA 8015B

Project: 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analy		LCS/LCSD Batch Number	1
099-12-211-577	Aqueous	GC 27	08/11/08	08/13/	08	080812B14	
<u>Parameter</u>	LCS %	6REC <u>LCSD</u>	%REC %F	REC CL	<u>RPD</u>	RPD CL	Qualifiers

105

110

Mulhan_

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283 Date Received: Work Order No: Preparation:

Method:

N/A 08-08-0859 EPA 5030B LUFT GC/MS / EPA 8260B

Project: 630 High Street, Oakland, CA

Quality Control Sample ID	ntrol Sample ID Matrix		Date Prepared_	Date Analyzed		LCS/LCSD Numbe	
099-12-715-747	Aqueous	GC/MS R	08/11/08	08/1	2/08	080811L	.02
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>	RPD CL	Qualifiers
TPPH	107	104	65-135	53-147	3	0-30	
Benzene	88	89	70-130	60-140	1	0-30	
Ethylbenzene	106	107	70-130	60-140	1	0-30	
Toluene	101	100	70-130	60-140	0	0-30	
p/m-Xylene	106	107	70-130	60-140	1	0-30	
o-Xylene	106	106	70-130	60-140	1	0-30	
Methyl-t-Butyl Ether (MTBE)	122	122	70-130	60-140	0	0-30	
Tert-Butyl Alcohol (TBA)	111	112	70-130	60-140	1	0-30	
Diisopropyl Ether (DIPE)	109	109	70-130	60-140	0	0-30	
Ethyl-t-Butyl Ether (ETBE)	118	116	70-130	60-140	2	0-30	
Tert-Amyl-Methyl Ether (TAME)	102	103	70-130	60-140	0	0-30	
Ethanol	92	101	70-130	60-140	9	0-30	

Total number of LCS compounds: 12

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283

Date Received: Work Order No:

08-08-0859 **EPA 5030B**

N/A

Method:

Preparation:

LUFT GC/MS / EPA 8260B

Project: 630 High Street, Oakland, CA

Quality Control Sample ID	ID Matrix		Date Prepared	Date Analyzed		LCS/LCSD Batch Number	
099-12-715-762	Aqueous	GC/MSR	08/12/08	08/12/08		080812L01	
Parameter	LOOMBEO	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
	LCS %REC 101	100	65-135	53-147	1	0-30	300
TPPH		86	70-130	60-140	Ó	0-30	
Benzene	86					0-30	
Eth yl benzen e	103	105	70-130	60-140	2		
Toluene	96	100	70-130	60-140	4	0-30	
p/m-Xylene	103	105	70-130	60-140	2	0-30	
o-Xylene	102	104	70-130	60-140	2	0-30	
Methyl-t-Butyl Ether (MTBE)	113	118	70-130	60-140	5	0-30	
Tert-Butyl Alcohol (TBA)	101	112	70-130	60-140	11	0-30	
Diisopropyl Ether (DIPE)	105	105	70-130	60-140	0	0-30	
Ethyl-t-Butyl Ether (ETBE)	113	110	70-130	60-140	3	0-30	
Tert-Amyl-Methyl Ether (TAME)	99	101	70-130	60-140	2	0-30	
Ethanol	89	100	70-130	60-140	12	0-30	

Total number of LCS compounds: 12 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Delta Environmental Consultants 4640 SW Macadam Ave; Suite 110 Portland, OR 97239-4283 Date Received: Work Order No:

N/A 08-08-0859

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Project: 630 High Street, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Numbe	
099-12-715-779	Aqueous	GC/MS R	08/15/08	08/1	5/08	080815L	.01
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>	RPD CL	Qualifiers
TPPH	107	110	65-135	53-147	3	0-30	
Benzene	95	91	70-130	60-140	4	0-30	
Ethylbenzene	106	110	70-130	60-140	3	0-30	
Toluene	101	102	70-130	60-140	1	0-30	
p/m-Xylene	106	110	7 0 -130	60-140	3	0-30	
o-Xylene	107	107	70-130	60-140	0	0-30	
Methyl-t-Butyl Ether (MTBE)	106	105	70-130	60-140	1	0-30	
Tert-Butyl Alcohol (TBA)	99	109	70-130	60-140	10	0-30	
Diisopropyl Ether (DIPE)	93	86	70-130	60-140	8	0-30	
Ethyl-t-Butyl Ether (ETBE)	99	93	70-130	60-140	7	0-30	
Tert-Amvi-Methyl Ether (TAME)	104	97	70-130	60-140	7	0-30	
Ethanol	89	91	70-130	60-140	2	0-30	

Total number of LCS compounds: 12

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD - Relative Percent Difference,

CL - Control Limit

Glossary of Terms and Qualifiers

Work Order Number: 08-08-0859

Qualifier	<u>Definition</u>											
#	Analyte result was suppressed.											
*	See applicable analysis comment.											
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.											
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.											
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.											
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.											
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.											
Α	Result is the average of all dilutions, as defined by the method.											
В	Analyte was present in the associated method blank.											
С	Analyte presence was not confirmed on primary column.											
D	The analyte concentration was reported from analysis of the diluted sample.											
Е	Concentration exceeds the calibration range.											
Н	Sample received and/or analyzed past the recommended holding time.											
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.											
ME	LCS Recovery Percentage is within LCS ME Control Limit range.											
N	Nontarget Analyte.											
ND	Parameter not detected at the indicated reporting limit.											
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.											
U	Undetected at the laboratory method detection limit.											
V	Relative percent difference out of control.											
X	% Recovery and/or RPD out-of-range.											

LAB (LOCATION) She				ell	Oil	Pro	odi	uci	ts (Ch	air	1 O	f C	HS.	tod	lv I	Rei	വ	rd											
☑ CALSCIENCE (se Chec	Ann	ronrigh	. e.c.			Print								939933	100000						542.1				<u> </u>	
□ \$PL			⊡ ew	, SERVICES	******	AOTIVA 6			SHELL RE	TAN		P.W.		CON	acti	Nam				10 w		NCIL	ENI) = (I	NV	SE	RVIC	JES)		IECK IF NO INCIDENT # APPLIES
☐ XENC	<u></u>			•••	==			_=			90000000000000000000000000000000000000	1004H000	000000	03/2000		and some		er George ger			14	1	7	(2 <u>7</u>	7	8	9	D/	ATE:
TEST AMERICA ()			CONSULTANT LUBES						PO#											SAP#										
OTHER (NE DOTHER					!					T			\top		Τ	Ti	13	F	6	Ţq	113	3	Т	7	AGE: of	
באפרעיים סטופיאי: Lue coce: Delta Environmental Consultants								SITE AD	DRESS:	Bireu	and City	<u>, (</u>	1.	/	10	lar	1	Stal	CF		GL	OBAL (D NO.;			 -				
ADDRESS: 5910 Rice Creek Parkway, Suite 100 St. Paul MN 55126									(2)	ERABLE	10 (b)	pl. 0000	Arry, Cist	7 Ion Cocar	sen);	<u>G</u>	AHO PHO	NE NO:		$\subseteq F$	<u> </u>	6-70	AL:					CONSULTANT PROJECT NO.		
PROJECT CONTACT (Haidcopy at PDF Report is):								BAMPLER	R NAME (S	S) (Print)	k:					ᆚ_									162mba					
Gary Turgeon						14				Эr	fi	2											18:595		on: - 0859					
	ROUND TIME (CALENDAR DARD (14 DAY)	DAYS):]5 Days		2 DAYS	RESULTS NEEDED 24 HOURS ON WEEKEI						<u> </u>		<u> </u>						RE	QUE	STE) AN	ALY	SIS	-,		3995	باين	1883年740年6月1日 開西田田田	
□ IA-I	RWQCB REPORT FORMAT	UST AGENCY:									_						_		Т	T		T	Т	Т	Т		T	Т	П	TEMPERATURE ON RECEIP
SPECIAL INSTRUCTIONS OR NOTES: STATE REIMBURSEMENT RATE APPLIES 5 oxygenates are MTBE, ETBE, TBA, TAME, DIPE RECEIPT VERIFICATION REQUESTED						TPH-G/BTEX/Shell Oxys and ethanol by EPA 8280	MSM	n	(1664)	CAM 17 Metals (6000/7000)	PMAs and creosote (6270C-sim)	1,2 DCA and EDB by EPA 260B].												C°					
			SAM	PLING			PRESERV	ATIVE			5,4	2 E	ğ	8	200	8		-				1					İ	1		
LAB USE OMLY	Field Sample	Identification	DATE	TIME	MATRIX	HC: H	NO3 H2SO4	NONE		IO. OF CONT.	PH-G/E	TPH-D by 8016M	Full list VOCs	Oil & Grease (1664)	AM 17	MAs and	,2 DCA													Container PID Readings or Leboratory Notes
	B- 4		8/5/08	11:45	GW		1235	10,12	OTTIER				-		Ť	٦	_	+	\dagger	╫	+		╁	+-	†	\dagger	十	╁	╀┪	
1	₿		4/5/0	इस्टिड														1	1			+	Ť			†-	╁	† -	\Box	· · · · · · · · · · · · · · · · · · ·
2 1	B-6		8	13:39	GW								7	П		\neg	\neg	\neg		T					┪	T	\uparrow	1	\Box	
2 3	B-7	<u> </u>			GW	\sqcap	1.				3,	ار ا				\dashv	+	\top	╁	╁	╅	+-	+-	+	+-	+	+	+	-	· · · · · · · · · · · · · · · · · · ·
	Temper		7.035	, , , ,								\ <u>-</u>	-		_	\neg		╁	+		╅	╁	\dagger	+	╁	╁	╁	+-	\vdash	
4	Trip BI	SLK				X			ı	4			1			寸	Ť	\top	t	┢	1	†	十	\top	十	+	\dagger	╁┈		
					· ·					+												1			1	T	1	1	H	
																		1		\vdash			T	T	✝	T	T	1		
						\prod									1			┪	1	┪	\dagger	\dagger	+	+	十	†	\dagger	\top	$\vdash \dashv$	
			ļ						─					H	_	\dashv		\dashv	╁	-	+	┼-	+	+	-	╁	+	\vdash	\vdash	
Fre	od by. (Signature)			<u> </u>	Received by (S	gnature)		!							ŧ					Щ,			 Da		Т.	Т.			Times	
ne	mil al 8/05/cs																													
Relinquished by: (Signature) Received by: (Signature)														_	<u> </u>					Da	q:					Time:				
2	Thits 8 lot ps GD																													
Nelinquishi	Received by: (Signature)																				Da	iu:			-		Tine:			
GSO 650 CR																					<u> sa</u>	- Oc	ī-(BC)	L	8:45			

TRK#: 105866924

Page 14 of 15

		$\overline{}$					
WORK ORDER #:	08 -		8 -	0	8	S	9
MOINT OUDERN		لــــــــا	لتتا				

Cooler ___ of __

SAMPLE RECEIPT FORM

CLIENT: DELTA ENVIRONIMENTAL	DATE: 08209-08
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature (For Air & Filter only).	LABORATORY (Other than Calscience Courier):
°C Temperature blank.	Initial:
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not In	ntact) : Not Present:,
SAMPLE CONDITION:	Yes No N/A
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

APPENDIX D

COPIES of WASTE DISPOSAL MANIFESTS

(as applicable and available)

THIS ATTACHMENT HAS BEEN LEFT BLANK INTENTIALLY. THE DOCUMENTS ASSOCIATED WITH THE DISPOSAL OF SOIL FOR THIS PHASE II ESA WERE NOT AVAILABLE AT THE TIME THE REPORT WAS WRITTEN.