SITE INVESTIGATION REPORT

FOR

HEGENBERGER MAINTENANCE STATION OAKLAND, CALIFORNIA

1/96

PREPARED FOR

CALTRANS DISTRICT 4 P.O. BOX 23660 OAKLAND, CALIFORNIA

PREPARED BY

GEOCON ENVIRONMENTAL CONSULTANTS SACRAMENTO, CALIFORNIA

CALTRANS CONTRACT NO. 53W202 TASK ORDER NO. 04-5T9000-01

GEOCON PROJECT NO. S8100-06-34

JANUARY 1996

GEOTECHNICAL ENGINEERING AND ENVIRONMENTAL SCIENCES

Project No. S8100-06-34 January 23, 1996

California Department of Transportation P.O. Box 23660 Oakland, California 94623

Attention:

Mr. Ronald Dong

Subject:

HEGENBERGER MAINTENANCE STATION

OAKLAND, CALIFORNIA CONTRACT NO. 53W202

TASK ORDER NO. 04-5T9000-01 SITE INVESTIGATION REPORT

Dear Mr. Dong:

In accordance with Caltrans Contract No. 53W202 and Task Order No. 04-5T9000-01, Geocon Environmental Consultants has performed environmental engineering services at the subject site. This report summarizes the services performed including the drilling and sampling of soil borings, the installation of groundwater monitoring wells, and the collection and chemical analysis of soil and groundwater samples.

If you have any questions concerning the contents of this site investigation report, or if we may be of further service, please contact the undersigned at your convenience.

Very truly yours,

GEOCON ENVIRONMENTAL CONSULTANTS

well Walk

Richard H. Walls, PE

Task Order Manager

Ian P. Moorhead Project Geologist

1- MLS

IPM/RHW:mc

(5) Addressee

TABLE OF CONTENTS

SITE INVESTIGATION REPORT

1.0	INTF	RODUCTION	1
	1.1	General Objectives	
	1.2	Project Location	1
	1.3	Previous Investigations	1
2.0	SCO	PE OF SERVICES	3
3.0	INVI	ESTIGATIVE METHODS	5
	3.1	Drilling and Soil Sample Collection	5
	3.2	Monitoring Well Construction	
	3.3	Well Survey	6
	3.4	Well Development and Groundwater Sampling	6
	3.5	Laboratory Analytical Methods	7
4.0	INVI	ESTIGATIVE RESULTS	8
	4.1	Site Geology	8
	4.2	Site Hydrogeology	8
	4.3	Soil Analytical Results	8
	4.4	Groundwater Analytical Results	8
5.0	DAT	A EVALUATION AND DISCUSSION	10
6.0	CON	CLUSIONS	11
7.0	REC	OMMENDATIONS	12
Figur	es:		
1.		Vicinity Map	
2.		Site Plan	
3.		Soil Boring and Well Locations	
4.		Cross Sections A - A'/B - B'	
5.		Groundwater Elevation Map - 10/11/95	
6.		Petroleum Hydrocarbons in Groundwater - 10/11/95	
<u>Table</u>	<u>:s</u> :		
I.		Summary of Soil Sample Analytical Data	
II.		Summary of Groundwater Elevation and Analytical Data	
Appe	ndices	:	
Ā.	ndices	Well Permit	
В.		Boring/Well Logs	
C.		Laboratory Reports and Chain-of-Custody Records - Soil Samples	
D.		Laboratory Reports and Chain-of-Custody Records - Groundwater Samples	

1.0 INTRODUCTION

1.1 General Objectives

The objective of this Task Order was to provide information regarding the vertical and lateral extent of petroleum hydrocarbon soil and groundwater impacts in the vicinity of former gasoline and diesel underground storage tanks (USTs) at the project site. The site investigation work completed by Geocon was performed in general accordance with the Site Investigation Workplan dated September 7, 1995. The work requested by Caltrans consisted of the drilling and construction of five groundwater monitoring wells and the drilling of six soil borings to evaluate the current site conditions relative to potential soil and groundwater hydrocarbon impacts.

1.2 Project Location

The project site consists of the former Caltrans Hegenberger Maintenance Station. The site was utilized as a maintenance facility by Caltrans and the facility operated gasoline and diesel USTs for the refueling of maintenance vehicles. The USTs and the associate piping and pump island were removed from the site in September 1994. The site is currently inactive and is being utilized as a vehicle storage area by the adjacent General Motors Corporation Truck Center facility.

The project site is located east of Route 880 at 555 Hegenberger Road, Oakland, California. The approximate site location is depicted on the Vicinity Map, Figure 1. The site boundaries and current site improvements are shown on the Site Plan, Figure 2.

1.3 Previous Investigations

Between September 19, 1994 and September 22, 1994, four underground storage tanks (USTs) and the associated product piping and pump island were removed from the site under the supervision of GHH Engineering Incorporated (GHH). The USTs consisted of two 2,000-gallon diesel USTs and two 6,500-gallon gasoline USTs. At the direction of the Alameda County Environmental Health Department, GHH collected eight soil samples (TE1 through TE8) from the UST excavation and two soil samples (PI1 and PI2) beneath the pump island. Analytical results from the UST removal soil sampling are summarized on Table 1.

The excavation soil samples (TE1 through TE8) were collected at depths ranging from 2.4 to 5.5 meters (8 to 18 feet) below ground surface (bgs). Total petroleum hydrocarbon as gasoline (TPHg) concentrations ranged from below test method detection limits to 480 milligrams per kilogram (mg/kg), with the highest concentration detected in sample TE8 at a depth of 2.4 meters (8 feet) bgs. Total petroleum hydrocarbon as diesel (TPHd) was detected in samples TE1 and TE3 at concentrations of 27 mg/kg and 11 mg/kg, respectively. Samples TE1 through TE8 all contained oil and grease (O&G) with

concentrations ranging from 70 mg/kg to 1,900 mg/kg. The highest O&G concentration was detected in sample TE1 at a depth of 2.4 meters (8 feet) bgs.

The pump island soil samples (PI1 and PI2) were collected at a depth of 1.2 meters (4 feet) bgs. Sample PI1, contained TPHd and O&G at concentrations of 380 mg/kg and 2,200 mg/kg, respectively.

Approximately 214 cubic meters (280 cubic yards) of stockpiled soil was transported for disposal to the BFI Vasco Road Landfill, a Class III facility, in Livermore, California.

2.0 SCOPE OF SERVICES

Outlined below is a summary of the scope of services performed by Geocon under Task Order 04-5T9000-01.

- A pre-work site visit was conducted on July 5, 1995, with the Caltrans contract
 manager, Mr. Ron Dong. At the pre-work site visit, the work areas were inspected
 and the Site Visit Checklist and Completion Schedule were discussed and signed by
 the Geocon project manager and the Caltrans contract manager.
- Obtained a well permit (Permit No. 95458) dated July 26, 1995 from the Alameda County Flood Control and Water Conservation District. A copy of the well permit is attached in Appendix A.
- Prepared a Health and Safety Plan dated September 11, 1995, to provide guidelines on the use of personal protective equipment (PPE) and the health and safety procedures to be implemented during the field activities.
- Contacted the local public utilities via Underground Service Alert (Ticket No. 206779), to attempt to delineate subsurface public utilities and conduits in proximity to the boring/well locations.
- Retained a licensed drilling subcontractor, West Hazmat Drilling, to drill six soil borings (BH1 through BH6) to depths of 6.1 meters (20 feet) bgs utilizing a truck-mounted drill rig equipped with 203.2-millimeter (eight-inch) diameter hollow-stem augers.
- Retained a subcontractor, West Hazmat Drilling, to drill five soil borings to be completed as groundwater monitoring wells (MW1 through MW5). The monitoring wells were advanced to a maximum depth of approximately 6.1 meters (20 feet) bgs utilizing a truck-mounted drill rig equipped with 254-millimeter (10-inch) diameter hollow stem augers.
- Submitted a minimum of two soil samples per boring/well to Sparger Technology, Incorporated (Sparger) for testing of TPHg and TPHd following EPA Test Method 8015 Modified, benzene, toluene, ethylbenzene and total xylenes (BTEX) following EPA Test Method 8020, O&G following EPA Test Method 5520F, and organolead.
- Developed the wells using a surge block to densify the sand pack prior to placement of the bentonite seal. The groundwater monitoring wells were developed by using an electric pump to withdraw groundwater and remove sediment that may have infiltrated the wells during construction.
- Surveyed the top of casing elevations for the groundwater monitoring wells relative

to an arbitrary onsite datum.

- Measured the depths to groundwater and collected groundwater samples from groundwater monitoring wells MW-1 through MW-5.
- Submitted five groundwater samples to Sparger for chemical analyses of TPHg, TPHd, and TPH as motor oil (TPHmo) following EPA Test Method 8015 Modified, BTEX following EPA Test Method 8020, and O&G following EPA Test Method 5520F.

3.0 INVESTIGATIVE METHODS

3.1 Drilling and Soil Sample Collection

Six soil borings (BH1 through BH6) were advanced to depths of 6.1 meters (20 feet) bgs in an attempt to define the vertical and lateral extent of petroleum hydrocarbon impacts to soil surrounding the former UST excavation. Boring BH1 was located within the former UST excavation and boring BH6 was located within the former pump island to aid in determining the maximum petroleum hydrocarbon concentrations in soil beneath the former UST excavation and pump island, respectively.

Five additional borings were advanced to 6.1 meters (20 feet) bgs and completed as groundwater monitoring wells (MW1 through MW5). The groundwater monitoring wells were installed in order to evaluate the groundwater flow direction and gradient, to assess the groundwater quality, and to attempt to define the lateral limits of potential groundwater impacts in the vicinity of the former USTs. The locations of the soil borings, groundwater monitoring wells, and the UST removal soil samples are depicted on Figure 3, Soil Boring and Well Locations.

Soil samples were collected at approximate 1.5 meter (five foot) vertical intervals utilizing a 50.8-mm (two-inch) diameter split spoon sampler equipped with 152.4-mm-long by 50.8-mm (six-inch-long by two-inch) diameter stainless steel sample tubes to facilitate sample handling and storage. The borings were logged under the supervision of a California Certified Engineering Geologist utilizing the Unified Soil Classification System. The sample tubes were capped, labeled and chilled pending transport to an analytical laboratory. Soil samples were field screened with a photo-ionization detector (PID) to obtain a qualitative indication of the presence of volatile organic compounds within the sample matrix. The soil sample locations and PID readings are recorded on the attached boring/well logs presented in Appendix B. Drill cuttings generated from the drilling operations were stored onsite in DOT 17-H 55-gallon drums pending the receipt of analytical data and subsequent disposal following regulatory protocol.

Quality assurance/quality control procedures provided during the field exploration activities included cleansing/rinsing of the sampling equipment and steam cleaning the augers between borings. Cleansing/rinsing of the sampling equipment was performed prior to the collection of each soil sample by washing the equipment with a trisodium phosphate solution followed by subsequent tap water and deionized water rinses.

3.2 Monitoring Well Construction

MW-1 through MW-5 were installed to a depth of approximately 6.1 meters (20 feet) bgs. The monitoring wells were constructed using 101.6-mm (four-inch) diameter Schedule 40 polyvinyl chloride (PVC) casing. The lower portion of the well was constructed using 4.6 meters (15 feet) of 0.5-mm (0.020-inch) slotted screen PVC casing placed between the

approximate depths of 1.5 to 6.1 meters (5 to 20 feet) bgs.

A filter pack consisting of No. 3 Monterey sand was placed around the screen from the bottom of the boring to an elevation of 0.3 meters (one foot) above the screen zone. A 0.6 meter (two foot) thick seal consisting of hydrated bentonite chips was placed above the filter pack. A 304.8-mm (twelve-inch) diameter, traffic-rated security wellhead cover set in a concrete pad was used to complete construction. Well construction details are recorded on the boring/well logs presented in Appendix B.

3.3 Well Survey

The location for the nearest City of Oakland benchmark was obtained from the Department of Public Works (DPW). Benchmark 1661A was to be located west of the site in a Pacific Gas and Electric (PG&E) right-of-way along the I-880 onramp, however, this benchmark could not be located. Therefore, the top of casing elevations were surveyed by a Geocon Registered Engineer relative to an onsite datum point of 100 feet. The well casing relative elevations are included on Table 2.

3.4 Well Development and Groundwater Sampling

The monitoring wells were developed using a surge block to densify the sand pack prior to placement of the bentonite seal. Pumping to remove sediment and groundwater was accomplished using a 50.8-mm (two-inch) diameter Grundfos electric submersible pump. A depth to groundwater measurement was obtained from each monitoring well prior to well purging. Groundwater depth measurements were obtained using a battery operated water level meter with measurements obtained from the top of each well casing.

Prior to groundwater collection, three to five well volumes of groundwater were purged to allow fresh formation water to infiltrate the wells. MW-5 was purged dry and was determined to be a slow recharging well, therefore, only two well volumes were purged. During purging, the Ph, temperature, and electrical conductivity of the groundwater was measured and the purging was considered adequate when these parameters stabilized to within ten percent.

Groundwater samples were collected utilizing disposable polyethylene bailers. The samples were placed in laboratory provided volatile organics analysis (VOA) vials and one-liter amber bottles, labeled, chilled, and delivered to a California certified hazardous waste testing laboratory, following standard chain-of-custody procedures. Well development and purged groundwater was placed in DOT 17-H 55-gallon drums and stored onsite pending the receipt of analytical data and subsequent disposal following regulatory protocol.

3.5 Laboratory Analytical Methods

Soil samples were submitted for the analyses of TPHg and TPHd following EPA Test

Method 8015 modified, BTEX following EPA Test Method 8020, O&G following EPA Test Method 5520F, and organolead. Groundwater samples were tested for TPHg, TPHd, and TPHmo following EPA Test Method 8015 modified, BTEX following EPA Test Method 8020, and O&G following EPA Test Method 5520F.

4.0 INVESTIGATIVE RESULTS

4.1 Site Geology

Soils encountered during the drilling operations consisted of fill material overlying silty clay and clay alluvial deposits that extend to depths of approximately 3.7 meters (12 feet) bgs which overly stratigraphic units of silty sands, clayey sands, and clayey gravels to the maximum depth drilled of 6.1 meters (20 feet) bgs. Generalized east-west and north-south trending geological cross sections A-A' and B-B', respectively, are presented as Figure 4. Copies of boring logs and well completion diagrams are included in Appendix B.

4.2 Site Hydrogeology

The depths to groundwater measured within the investigation area on October 11, 1995 ranged from 1.96 to 2.01 meters (6.42 to 6.88 feet) bgs. The groundwater flow direction was towards the north with a gradient of 0.007. A site plan depicting groundwater elevation contours and the groundwater flow direction and gradient is presented as Figure 5.

4.3 Soil Analytical Results

TPHg was detected in soil sample MW5-5 at a depth of 1.8 meters (6 feet) bgs with a concentration of 1.6 mg/kg. TPHg was not detected in any of the other soil samples collected during the investigation. TPHd noted as "weathered diesel" was detected at 1.8 and 3.4 meters (6 and 11 feet) bgs in BH6 at concentrations of 24 mg/kg and 16 mg/kg, respectively. TPHd was not reported in the other soil borings or well locations, however, four soil samples were reported to contain petroleum hydrocarbons in the motor oil range with concentrations of 58 mg/kg (BH3-5), 41 mg/kg (MW2-5), 7.5 mg/kg (MW4-10), and 20 mg/kg (MW5-5). O&G was detected in borings BH3, BH4, BH6, MW2, MW4 and MW5 at concentrations ranging from 55 mg/kg (BH4 at 3.0 meters [10 feet] bgs) to 80 mg/kg (BH6 at 1.5 meters [5 feet] bgs).

Soil analytical results for this investigation are summarized on Table I with TPHg, TPHd and O&G data depicted on Cross Sections A-A' and B-B' (Figure 4). Laboratory reports and chain-of-custody records are presented in Appendix C.

4.4 Groundwater Analytical Results

Groundwater samples were collected from the five new monitoring wells and were tested for TPHg, TPHd, TPHmo, BTEX, and O&G. Groundwater analytical data from this site investigation is summarized on Table II. Concentrations of petroleum hydrocarbons in groundwater are presented on Figure 6. Laboratory reports and chain-of-custody records are presented in Appendix D.

TPHd, TPHmo, and O&G were not detected above the test method detection limits in

groundwater during this investigation. TPHg, TPHd, TPHmo, and O&G were not detected above the test method detection limits in cross-gradient well MW-2.

TPHg and BTEX were detected in four monitoring wells (MW-1 and MW-3 through MW-5). TPHg concentrations ranged from 720 micrograms per liter (ug/L) in MW-1 to 1,300 ug/L in downgradient well MW-3. BTEX concentrations ranged from 1.0 ug/L to 660 ug/L benzene, below detection to 15 ug/L toluene, below detection to 4.7 ug/L ethylbenzene, and below detection to 6.1 ug/L total xylenes, respectively.

5.0 DATA EVALUATION AND DISCUSSION

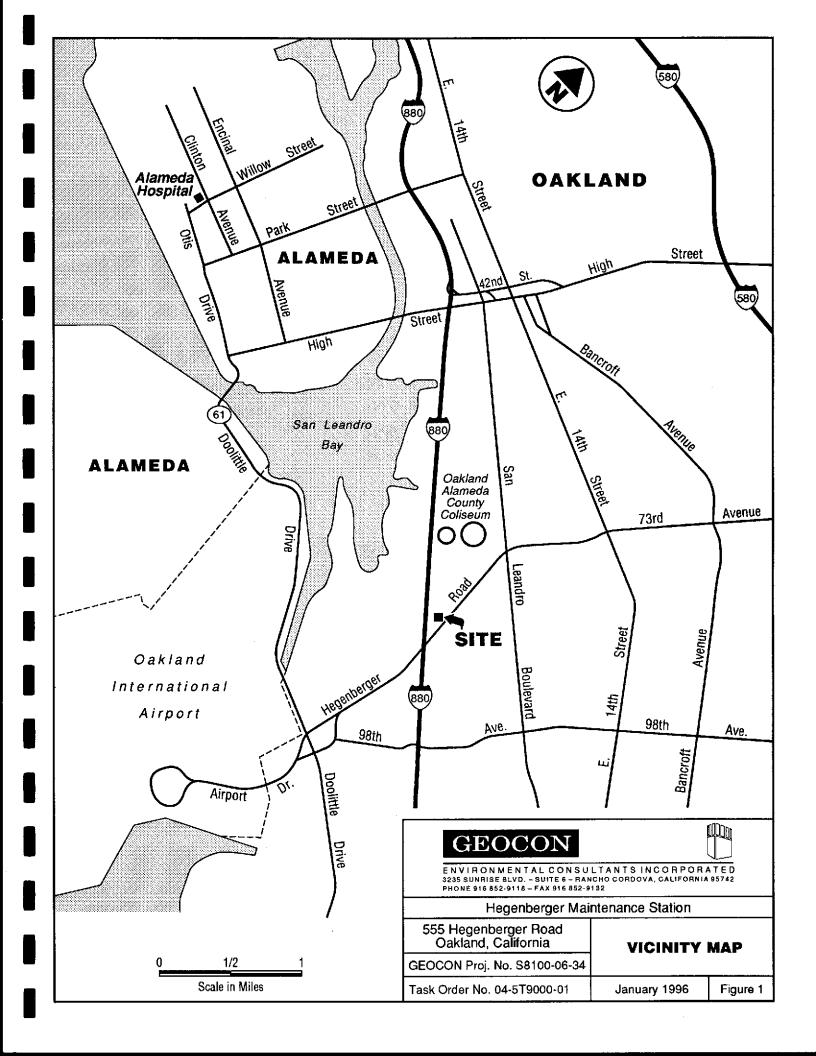
The initial soil samples collected beneath the former USTs and pump island contained petroleum hydrocarbons as O&G with maximum concentrations of 1,900 mg/kg beneath the former USTs and 2,200 mg/kg beneath the former pump island. The maximum concentrations of TPHg and TPHd detected beneath the former USTs or pump island were 480 mg/kg and 380 mg/kg, respectively. The absence of detectable TPHg and TPHd in all borings excluding MW5 and BH6 indicates that gasoline and diesel fuel impacted soil is limited to the immediate vicinity of the former excavation (UST and pump island) sidewalls and/or bases.

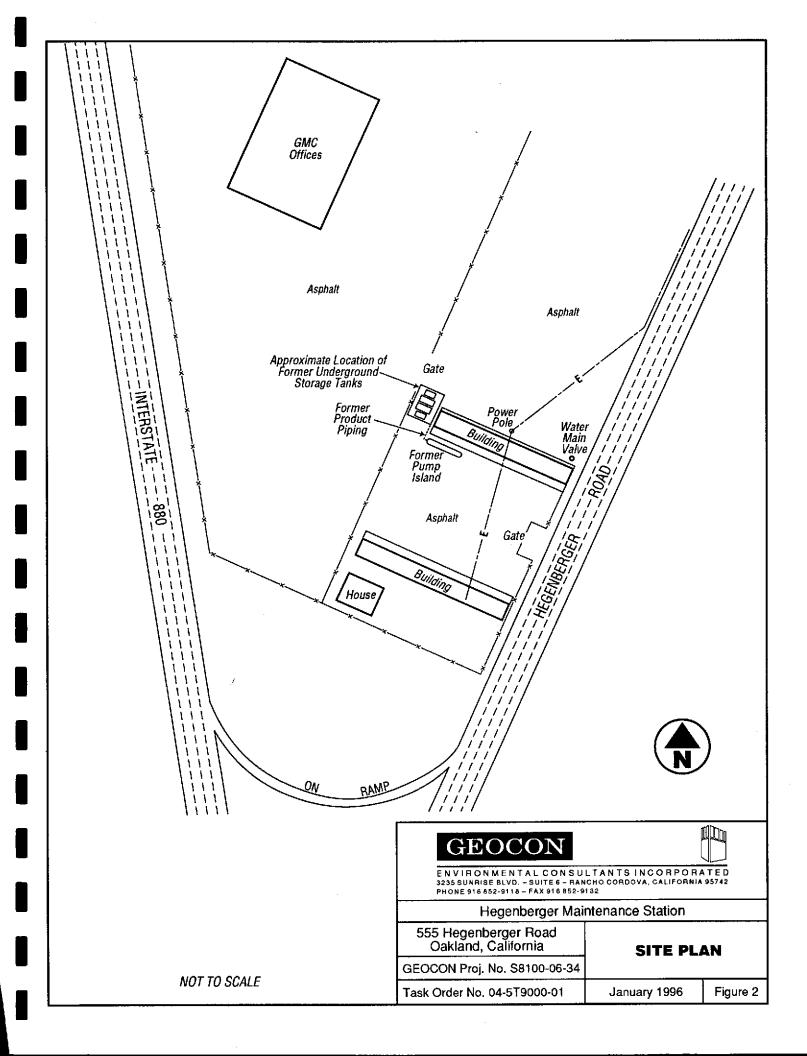
Test results from EPA Test Method 5520F reported O&G at soil concentrations ranging from 65 to 80 mg/kg. A review of the laboratory reports for the EPA 8015 analyses for TPHd indicates that motor oil range hydrocarbons were quantified in only three soil samples at concentrations ranging from 7.5 to 41 mg/kg. The differences in the range of hydrocarbon concentrations reported via each of these test methods suggests that the majority of the hydrocarbons in soil reported as O&G may be naturally occurring organics associated with the clay based alluvium beneath the site. The similarities in the magnitude of the O&G concentrations reported in soil also support this observation. A plume of motor oil range petroleum hydrocarbons in soil would normally be represented by a much wider range of concentrations with the impacts increasing in magnitude at locations closer toward the known source location. These characteristics do not exist for the O&G concentrations reported.

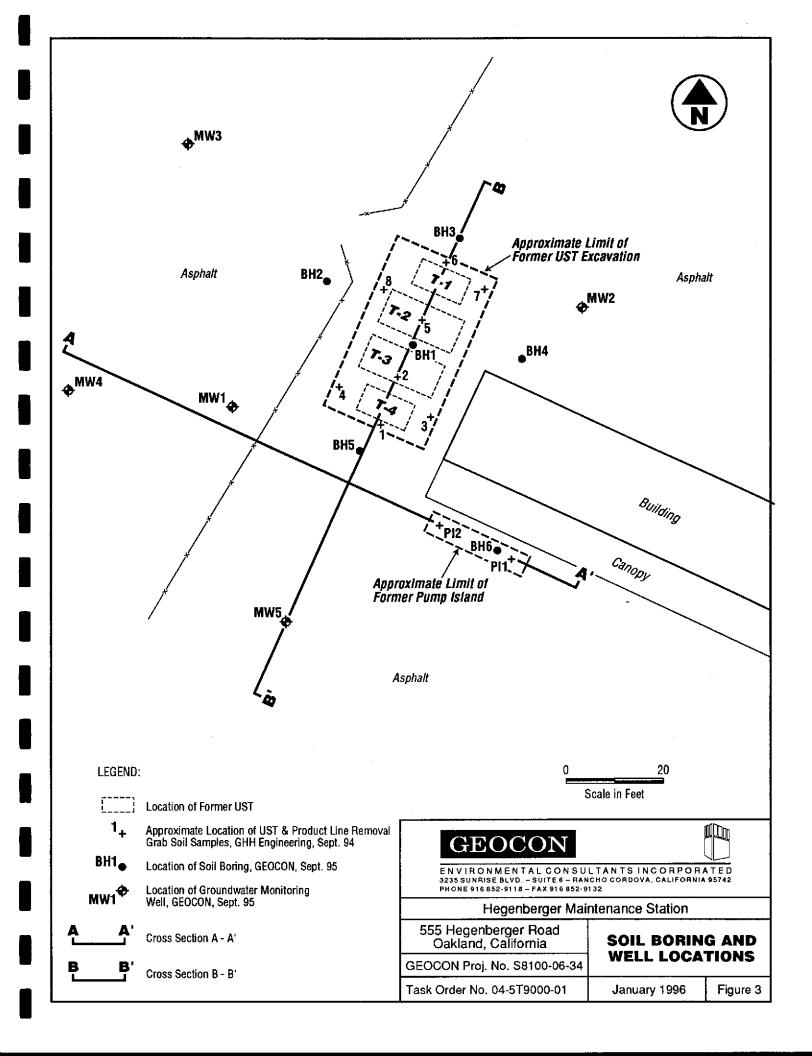
TPHg and BTEX were detected in groundwater sampled from wells MW1 and MW3 through MW-5. The highest detectable TPHg was reported in well MW3 at a concentration of 1,300 ug/L. The highest detectable benzene was reported in well MW1 at a concentration of 660 ug/L; however the reported TPHg concentration reported for MW1 was 720 ug/L which appears anomalously low given the reported benzene value for MW1. TPHg and benzene in groundwater is not delineated in the north, west and south directions leading away from the former USTs.

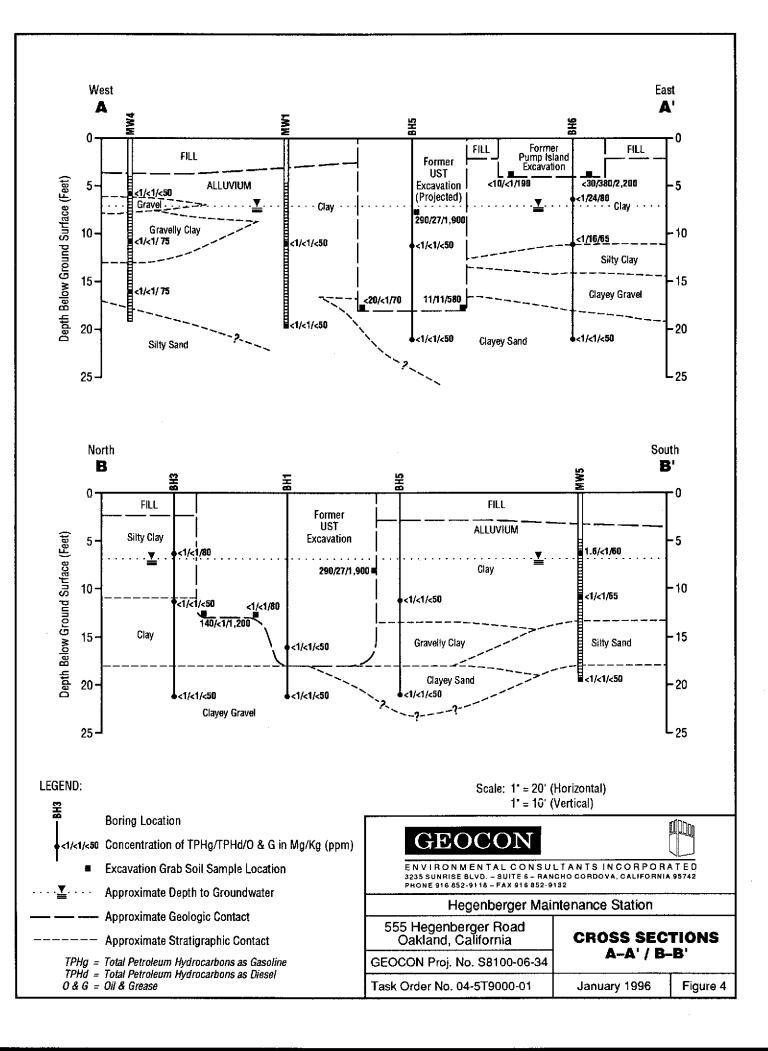
TPHd and O&G were not reported in groundwater at detection limits of 50 ug/L and 5,000 ug/L, respectively. In addition, motor oil range hydrocarbons were not reported in the TPHd analyses, further supporting the observation that the majority of the O&G reported in soil may be naturally occurring organic matter.

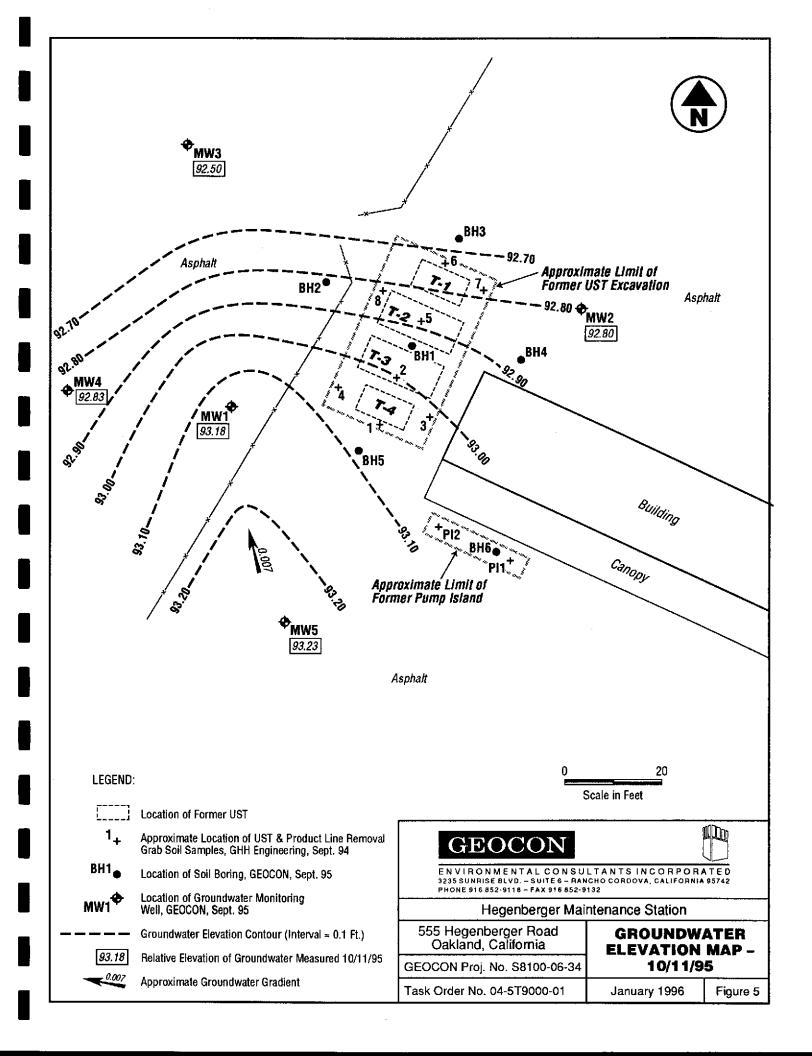
to Then pass thru shea sel leprearalgua


6.0 CONCLUSIONS


Utilizing the data acquired during the site investigation, a summary of the soil and groundwater conditions beneath the site as of October 1995 is presented below:


- Soil samples collected from native soil at the perimeter of the UST excavation indicated that releases of petroleum hydrocarbons into the surrounding soils had occurred. The initial UST removal soil samples contained TPHg and O&G at maximum concentrations of 480 mg/kg and 1,900 mg/kg, respectively.
- Soil analytical data obtained from the 11 borings drilled indicate that a limited amount of soil in the immediate vicinities of the former USTs and pump island is impacted with gasoline and motor oil range hydrocarbons.
- Evaluation of the distribution of the reported O&G concentrations in soil combined with a comparison of the O&G and TPHd analytical data suggests that the reported O&G may be naturally occurring organic matter.
- Groundwater exits beneath the project boundaries at a depth of approximately 2.05 meters (6.75 feet) bgs with a general flow direction towards the north-northwest at a gradient of 0.007.
- Groundwater quality data indicates that dissolved TPHg and benzene exist beneath the site at maximum reported concentrations of 1,300 ug/L TPHg and 660 ug/L benzene, respectively.
- Based on the absence of detectable TPHd and O&G in groundwater, it appears that the motor oil impacted soil that remains at the bases of the UST and pump island excavations have not affected groundwater quality beneath the site.
- The lateral limits of dissolved TPHg and benzene in groundwater have not been delineated in the north, west and south directions leading away from the former USTs.
- Additional investigation would be required to further delineate the lateral extent of TPHg and benzene impacted groundwater. The installation of four or five additional groundwater monitoring wells is recommended to attempt to establish the lateral extent of groundwater impacts.


7.0 RECOMMENDATIONS


Geocon recommends that additional site investigation be performed at the site to establish the lateral extent of TPHg and benzene impacts to groundwater. The installation of five additional groundwater monitoring wells is recommended to attempt to establish the lateral extent of hydrocarbon impacts to groundwater. It is also recommended that quarterly groundwater monitoring be performed to evaluate changes in the groundwater flow direction and changes in the distribution of dissolved TPHg in groundwater.

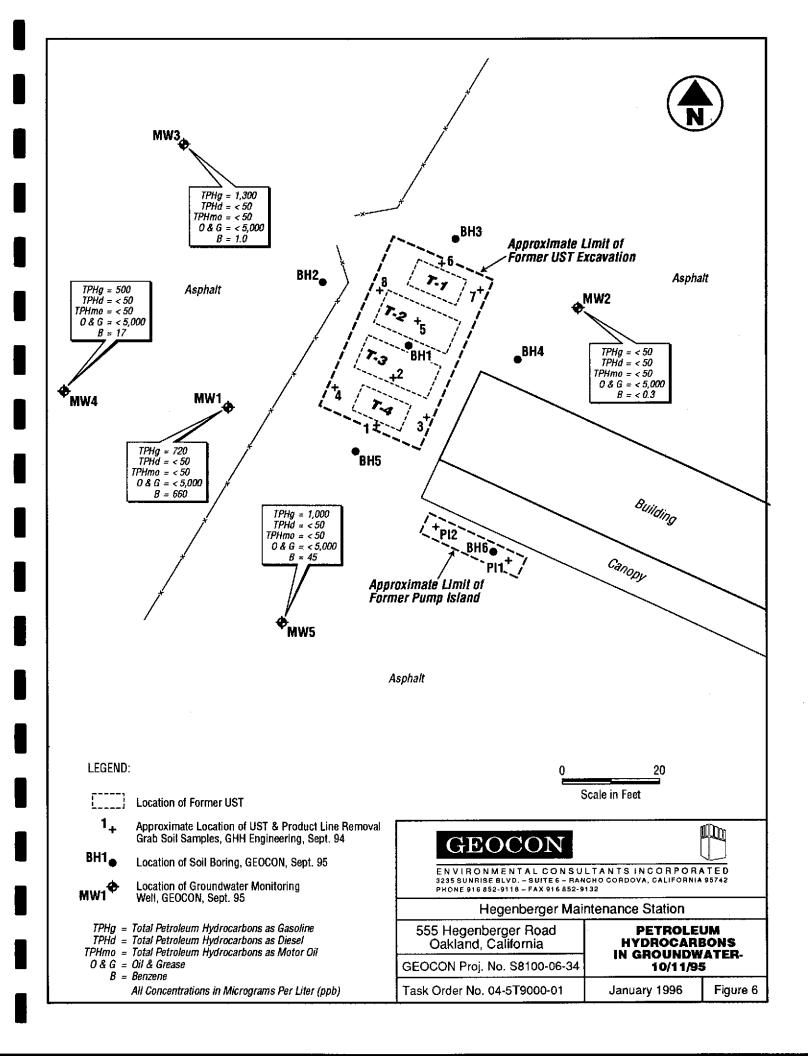


TABLE I SUMMARY OF SOIL ANALYTICAL LABORATORY RESULTS HEGENBERGER MAINTENANCE STATION OAKLAND, CALIFORNIA TASK ORDER NO. 04-5T9000-01 PAGE 1 OF 2

SAMPLE ID	DATE	DEPTH (feet)	TPHg (mg/kg)	TPHd (mg/kg)	O&G (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	LEAD (mg/kg)	ORGANIC LEAD (mg/kg)	COMMENTS
PI-1	09/22/94	4.0	<20	380	2,200	<0.10	<0.10	0.18	<0.10	13		PI
PI-2	09/22/94	4.0	<10	<1.0	190	0.076	<0.05	<0.05	<0.05	13		PI
TE-1 TE-2 TE-3 TE-4 TE-5 TE-6 TE-7 TE-8	09/22/94 09/22/94 09/22/94 09/22/94 09/22/94 09/22/94 09/22/94	8.0 18.0 18.0 18.0 13.0 13.0 8.0	290 <1.0 11 <20 <1.0 140 400 480	27 <1.0 11 <1.0 <1.0 <1.0 <1.0 <1.0	1,900 200 580 70 80 1,200 530	2.0 <0.005 0.03 <0.10 <0.005 0.13 0.83	<0.5 <0.005 0.014 <0.10 <0.005 <0.10 <0.50 0.51	0.74 <0.005 0.020 <0.10 <0.005 0.51 0.62 7.6	1.2 <0.005 0.022 <0.10 <0.005 0.30 1.2 8.7	18 12 8.8 7.6 9.5 11 14 8.9		UST/GHH UST/GHH UST/GHH UST/GHH UST/GHH UST/GHH UST/GHH
BH1-15	09/26/95	16.0	<1.0	<1.0	<50	<0.005	<0.005	0.006	0.021		<5.0	GEOCON
BH1-20	09/26/95	21.0	<1.0	<1.0	<50	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
BH2-10	09/26/95	11.0	<1.0	<1.0	<50	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
BH2-20	09/26/95	21.0	<1.0	<1.0	<50	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
ВНЗ-5 ВНЗ-10 ВНЗ-20	09/26/95 09/26/95 09/26/95	6.0 11.0 21.0	<1.0 <1.0 <1.0	<1.0 ^a <1.0 <1.0	80 <50 <50	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005		<5.0 <5.0	GEOCON GEOCON GEOCON
вн4-10	09/26/95	11.0	<1.0	<1.0	55	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
вн4-20	09/26/95	21.0	<1.0	<1.0	<50	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
вн5-10	09/26/95	11.0	<1.0	<1.0	<50	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
вн5-20	09/26/95	21.0	<1.0	<1.0	<50	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
BH6-5 BH6-10 BH6-20	09/26/95 09/26/95 09/26/95	6.0 11.0 21.0	<1.0 <1.0 <1.0	24 ^b 16 ^b <1.0	80 65 <50	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005		<5.0 <5.0	GEOCON GEOCON GEOCON
MW1-10	09/27/95	11.0	<1.0	<1.0	<50	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
MW1-20	09/27/95	19.5	<1.0	<1.0	< 5 0	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
MW2-5	09/27/95	6.0	<1.0	<1.0 ^c	75	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
MW2-20	09/27/95	21.0	<1.0	<1.0	<50	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
MW3-8 MW3-10 MW3-20	09/27/95 09/27/95 09/27/95	7.5 11.0 21.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<50 <50 <50	0.012 <0.005 0.030	<0.005 <0.005 0.028	<0.005 <0.005 0.030	<0.005 <0.005 0.058		<5.0 <5.0	GEOCON GEOCON GEOCON

TABLE I SUMMARY OF SOIL ANALYTICAL LABORATORY RESULTS **HEGENBERGER MAINTENANCE STATION** OAKLAND, CALIFORNIA TASK ORDER NO. 04-5T9000-01

PAGE 1 OF 2

SAMPLE ID	DATE	DEPTH (feet)	TPHg (mg/kg)	TPHd (mg/kg)	O&G (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	LEAD (mg/kg)	ORGANIC LEAD (mg/kg)	COMMENTS
MW4-5	09/27/95	5.5	<1.0	<1.0,	<50	<0.005	<0.005	<0.005	<0.005			GEOCON
MW4 - 10	09/27/95	11.0	<1.0	<1.0 ⁰	75	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
MW4 - 15	09/27/95	16.0	<1.0	<1.0	75	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
MW5-5	09/27/95	6.0	1.6	<1.0 ^e	60	<0.005	0.020	0.028	0.088			GEOCON
MW5 - 10	09/27/95	11.0	<1.0	<1.0	65	<0.005	<0.005	<0.005	<0.005		<5.0	GEOCON
MW5-20	09/27/95	19.5	<1.0	<1.0	<50	<0,005	<0.005	<0.005	<0.005		<5.0	GEOCON

Notes: mg/kg = milligrams per kilogram

TPHg = total petroleum hydrocarbons as gasoline TPHd = total petroleum hydrocarbons as diesel

O&G = oil and grease

BTEX = benzene, toluene, ethylbenzene and total xylenes < = less than laboratory method detection limit

--- = not tested

PI = pump island sample

UST/GHH = UST excavation sample collected by GHH Engineering

a = total petroleum hydrocarbons as motor oil (TPHmo) detected at a concentration of 58 mg/kg

b = weathered TPHd

C = TPHmo detected at a concentration of 41 mg/kg

d = TPHmo detected at a concentration of 7.5 mg/kg

e = TPHmo detected at a concentration of 20 mg/kg

TABLE II SUMMARY OF GROUNDWATER ELEVATION AND ANALYTICAL LABORATORY RESULTS HEGENBERGER MAINTENANCE STATION OAKLAND, CALIFORNIA

TASK ORDER NO. 04-5T9000-01 PAGE 1 OF 1

SAMPLE ID	DATE	TOC ELEVATION	GROUNDWATER DEPTH	GROUNDWATER ELEVATION	TPHg (ug/l)	TPHd (ug/l)	TPHmo (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	0&G (ug/l)
MW- 1	10/11/95	99.73	6.55	93.18	720	<50	<50	(660)	13	4.7	2.8	<5,000
MW-2	10/11/95	99.68	6.88	92.80	<50	<50	<50	<0.3	<0.3	<0.3	<0.3	<5,000
MW-3	10/11/95	98.92	6.42	92.50	1,300 ¹	<50	<50	1.0	<0.3	<0.3	<0.3	<5,000
MW-4	10/11/95	99.46	6.63	92.83	500	<50	< 50	17	1.1	<0.3	0.48	<5,000
MW-5	10/11/95	99.91	6.68	93.23	1,000	<50	<50	45	15	1.9	6.1	<5,000

Notes: TOC = top of casing elevation referenced to arbitrary onsite datum

depths measured in feet

depths measured in feet
ug/l = micrograms per liter
TPHg = total petroleum hydrocarbon as gasoline
TPHd = total petroleum hydrocarbon as diesel
TPHmo = total petroleum hydrocarbon as motor oil
BTEX = benzene, toluene, ethylbenzene and total xylenes

Q&G = oil and grease

T = laboratory report notation "weathered gas detected"

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

5997 PARKSIDE DRIVE

PLEASANTON, CALIFORNIA 94588-5127 🍦 Pricta (510) 484-2660 Fax (510) 462-3914

26 July 1995

Mr. Richard Walls Geocon Environmental 3235 Sunrise Boulevard Rancho Cordova, CA 95742

Dear Mr. Walls:

Enclosed is drilling permit 95458 for a monitoring well construction project at 555 Hegenberger Road in Oakland for Caltrans.

Please note that permit condition A-2 requires that a Well Construction Report be submitted after completion of the work. The report should include drilling and completion logs, location sketch, and permit number. Please submit the original of your completion report. We will forward your submittal to the California Department of Water Resources.

If you have any questions, please contact Wyman Hong at extension 235 or me at extension 233.

Very truly yours,

Craig A. Mayfield

Water Resources Engineer III

WH:ab Enc.

PESODICE OF THE PROPERTY OF TH

ZONE: YATER AGENCY

5997 PARKSIDE DRIVE

APPLICANTS Ruliand Walls DOIS 7/12/95

PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2600 FAX (510) 462-3914

Atta: Lyman Hon

91992

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
DOCATION OF PROJECT 555 Happy berger Ri.	PERMIT NUMBER 95458 LOCATION NUMBER
APPLICANT AMB CEDCON ENVIRONMENTAL Address 3255 SUNCE Blud Voice 914 852 9132 Address 2255 SUNCE Blud Voice 914 852 9118 TYPE OF PROJECT Well Construction Cathodia Protection Cathodia Protection Water Supply Monitoring PROPOSED WATER SUPPLY WELL USE	PERMIT CONDITIONS O-286-5631 Circled Permit Requirements Apply A. GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well Projects, or drilling logs and location aketch for geotechnical projects. 3. Permit is void if project not begun within 90 days of approval date. B. WATER WELLS, INCLUDING PIEZOMETERS 1. Minimum surface seal thickness is two inches of cement grout placed by tremie. 2. Minimum seal depth is 50 feet for municipal and industrial wells
Domestic Industrial Other Lunicipal Irrigation DRILLING METHOD: Lud Rotary Air Rotary Auger Sable Other DRILLER'S LICENSE NO. 553-198	or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremted cement grout shall be used in place of compacted cuttings.
WELL PROJECTS Orlli Hole Diameter 10 in. Maximum Casing Diameter 4 in. Depth 30 ft. Surface Seal Depth 5 ft. Number 5	D. CATHODIC. Fill hale above anode zone with concrete placed by tremis. E. WELL DESTRUCTION. See attached.
Number of Borings Maximum Hole Diameter in Depth tt. ESTIMATED STARTING DATE ESTIMATED COMPLETION DATE 872795	Approved Wyman Hong Date 26 Jul 9
hereby agree to comply with all requirements of this permit and Alameda. County Ordinance No. 73-68.	Wyman Hong

PROJE	CT NO	. S8100-	-06 <u>-34</u>	·		·······				
	F.	щ	λgo	BORING/WELL !	NOBH1		T			
	ENETRA RESIST BLUS/F	SAMPLE NO.	ITHOLOGY	DATE DRILLED 9/26/95	WATER LEVEL (ATD)17.0'	VELL	PID MEADSPACE			
<u> </u>	PEN PEN	ζζ	<u> </u>	EQUIPMENT MOBIL	LE B-57 HSA DRILLER HAZMAT	CONSTRUCTION	(PPM)			
				so	OIL DESCRIPTION					
			40	√3" ASPHALT		000000				
- ı -	1			Sandy Gravel base m	aterial					
2 -				FILL Stiff, moist, yellow-t	brown, Gravelly CLAY (CL)					
'			1/2/							
- 4 -	1		200							
- 5 -	 					<i>-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>				
- 6 -	·		1/2			-\/////////////////////////////////////	1			
L 7 -						4//////////////////////////////////				
L _e _			186			<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>				
ſ°.			188	,						
9 -	1		6/01	·						
- 10 -	1	BH1-	H. 59	-No sample			1 -			
- 11 -	-	10 1140	1/2/			<i>-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>				
- 12 -		1140	10 Je			<i>-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>				
- 13 -	_		12°/	<u> </u>						
			1/2	-Becomes gray, stron	ig odor		1			
14 -	1			Stiff your moist are	ny, Silty CLAY, trace gravel (CL)					
15 -	30	BHI-		Silli, very moist, gra	ly, Sifty CLAT, frace graver (CL)	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	2			
16 -	}	15 1145			•	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>				
- 17 -		1145		▼		- <i>-\\\\\\\\\</i>				
- 18 -	 		0.00	graded GRAVEL (G	fine grained, rounded, poorly P)					
- 19 -		•	19/	ALLUVIUM	Classes Size to cooper	<i>- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>				
- 20 -] !	ĺ	10/6	Very dense, wet, pro GRAVEL (fine to co	own, Clayey, fine to coarse parse gravel with clay matrix)					
	75	BH1-	8/6/	(GC)			<1			
21 -	1	20 1155	1.77				4			
- 22 -	1	ļ		BORING TER	RMINATED AT 21.5 FEET	+				
- 23 -	∮					†				
- 24 -						+				
Figure	A-1, l	og of Bo	oring B	 Н 1			HBGR			
	G ELEVA	<u> </u>			QUANTITY OF FILTER MATERIAL:					
-		YPE OF C	CASING:		WELL SEAL & INTERVAL:		····			
	G INTERV				WELL SEAL QUANTITY:	#				
WELL:	SCREEN:				ANNULUS SEAL/INTERVAL: Cement Bent. 0-21.5 ft.					
SCREE	N INTER	VAL:			ADDITIVES:					

WELL DEPTH:

ENGINEER/GEOLOGIST: IAN MOORHEAD

WELL COVER:

FILTERPACK/INTERVAL:

PROJE	CT NO.	S8100-	-06-34			_	
DEPTH PEET	PENETRAT. RESIST. BLAS/FT.	SAMPLE NO.	ITHOLOGY	BORING/WELL I	VO. BH 2 WATER LEVEL (ATD)8.0'		PID HEADSPACE
	[절문공	ζ	5	EQUIPMENT MOBIL	LE B-67 HSA DRILLER HAZMAT	CONSTRUCTION	(PPH)
				SO	IL DESCRIPTION		
			2702	∖3" ASPHALT		000000	
- 1	1	•		Sandy GRAVEL base	e material		:
- 2 -				ALLUVIUM Stiff, moist, black, cl (CL)	lay, medium to high plasticity		
_				Oil staining - strong	odor		
4 -							
- 5 - - 6 -	95	BH2- 5					1252
7 -		1515	9/6/	Very dense wet black	ck, Clayey, fine to coarse		
			0//	GRAVEL (GC)	ck, Clayey, time to coarse		
- 8 -	1		1.7.9	¥Strong odor			
- 9 -	1		1997				
- 10 -	29	ВН2-	19/1			-//////////////////////////////////////	88
- 11 -		10		Stiff wet dark brow	n to black, CLAY, medium to		
- 12 -		1520		high plasticity (CL)	a to oldox, ozata, modioni to	- (////////////////////////////////////	
- 13 -			W/				
			$\mathbb{Y}/$		•		
- 14 -	1		1//	Madium danca wat	olive-brown, Clayey, fine grained		
- 15 -	34	BH2-		SAND (SC)	onve-blown, Clayey, time gramed		19.5
- 16 -	1	15 1525		Very weak odor			
- 17 -	-	1525	1927			-(/////////////////////////////////////	
- 18 -	4		1//2				
- 19 -					ated, olive brown, Silty SAND,		
				trace gravel (SM)			
20 -	27	BH2-					1.0
- 21 -		20 1530	$i^{1}i$				
- 22 -	1			BORING TEF	RMINATED AT 21.5 FEET	-	ļ
- 23 -	┨]			-	ŀ
- 24 -	4					-{	
	<u> </u>						
Figure	e A-2, 1	og of Bo	oring B	H 2			HBGR
	G ELEVA				QUANTITY OF FILTER MATERIAL:		
		YPE OF (CASING:		WELL SEAL & INTERVAL:		
	G INTER' SCREEN:				WELL SEAL QUANTITY: ANNULUS SEAL/INTERVAL: Cement Be	ont 0~21 5 f	
	n inter				ADDITIVES:	nt, U-41,J l	••
SOUR	Watelf er	7 AU.			250 074 1 6 7 MM1		

WELL COVER:

FILTERPACK/INTERVAL:

WELL DEPTH:

ENGINEER/GEOLOGIST: IAN MOORHEAD

SOIL DESCRIPTION SOIL DESCRIPTION SOIL DESCRIPTION Solf DESCRIPTION Analy GRAVEL base material ALI, UVISIN Silf, Well, Silty CLAY, strong odor, trace gravel (CL) Oil staining - Strong odor - 5 - 16 BH3- 1335 - 8 - 9 - 10 22 BH3- 10 1340 - Higher gravel content (10-20%) - Becomes wet - Higher gravel content (10-20%) - Becomes wet - Higher gravel content (10-20%) - Casho Bh3- 1340 Silff, wet, gray to olive brown, mottled, CLAY, moderate odor (CL) Silff, wet, gray to olive brown, mottled, CLAY, moderate odor (CL) - Very weak odor - Very	PROJE	CT NO.	S8100-	-06-34			
SOIL DESCRIPTION Soil DESCRIP	 	:нт. :т. :т.	Щ	OGY	BORING/WELL NO. BH 3	-	<u> </u>
SOIL DESCRIPTION Soil DESCRIP		SIS IS	E S	펖	DATE DRILLED 9/26/95 WATER LEVEL (ATD) 9.0'		HEADSPACE
3° ASPHALT 2 - 3 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 5 - 16 BH3-6 - 5 - 16 BH3-7 - 7 - 8 - 9 - 9 - 10 - 10 1340		A 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모	łs .	1	EQUIPMENT MOBILE B-57 HSA DRILLER HAZMAT	CONSTRUCTION	(PPM)
Sandy GRAVEL base material ALLUVIUM Stiff, moist, black, Silty CLAY, strong odor, trace gravel (CL) Oil staining - Strong odor - 10					SOIL DESCRIPTION		
ALLUVIUM Stiff, moist, black, Silty CLAY, strong odor, trace gravel (CL) Oil staining - Strong odor -Higher gravel content (10-20%) -Higher gravel content (1				30.00	3" ASPHALT	000000	
Stiff, meit, gravel content (10-20%) - Higher gravel content (10-20%) - Higher gravel content (10-20%) - Higher gravel content (10-20%) - Becomes wet - Avery weak odor - Very weak odor - Very weak odor - Very weak odor - Very weak odor - Degraved (CL) - Very weak odor - Degraved (CL) - Higher gravel content (10-20%) - Becomes wet - Avery weak odor - Degraved (CL) - Higher gravel content (10-20%) - Becomes wet - Avery weak odor - Degraved (CL) - Very weak odor - Degraved (CL) - Oil staining - Strong odor - Higher gravel content (10-20%) - Becomes wet - Degraved (CL) - Degra	 - 1						
Strong odor	- 2 -						
10	- 3 -				gravel (CL)		
-Higher gravel content (10-20%) -Becomes wet -II - II - II - II - II - II - II - I	L 4 _				Oil staining - Strong odor		
-Higher gravel content (10-20%) -Becomes wet -II - II - II - II - II - II - II - I	_						
-Higher gravel content (10-20%) -Becomes wet	- 5 -	16	ВН3-		·		400
-Higher gravel content (10-20%) -Becomes wet -Higher gravel content (10-20%) -Becomes wet -Higher gravel content (10-20%) -Becomes wet 74 Stiff, wet, gray to olive brown, mottled, CLAY, moderate odor (CL) -Very weak odor -17 -18 -19 -20 -8 -19 -20 -8 -19 -20 -21 -22 -23 -24 -BH319 -20 -BORING TERMINATED AT 21.5 FEET -BORING TERMINATED AT 21.5 FEET -BORING TERMINATED AT 21.5 FEET -BORING INTERVAL: -WELL SCALE A INTERVAL: -WELL SCALE A INTERVAL: -WELL SCALE A INTERVAL: -WELL GOVER: -BORING TERMINATED AT 21.5 ftBORING INTERVAL: -BORING INTERVAL: -BORING INTERVAL: -BORING SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OF TEREON LOCATION AND	- 6 -		5 1335		•	<i>\\\\\\\\</i>	
- Higher gravel content (10-20%) - BH3-	- 7 -		.555				
- Higher gravel content (10-20%) - BH3-	L 8 -						
Till and the second state of the second state		Į l			-Higher gravel content (10-20%)		
Stiff, wet, gray to olive brown, mottled, CLAY, 13 - 14 - 15 - 17 BH3 16 - 15 1345 16 - 17 - 18 - 19 - 20	- 9 -				= -Becomes wet		
Stiff, wet, gray to olive brown, mottled, CLAY, moderate odor (CL) Stiff, wet, gray to olive brown, mottled, CLAY, moderate odor (CL) Stiff, wet, gray to olive brown, mottled, CLAY, moderate odor (CL) Stiff, wet, gray to olive brown, mottled, CLAY, moderate odor (CL)	- 10 -	22	внз-		•		74
Stiff, wet, gray to onve brown, motited, CLAT, moderate odor (CL) 13 - 14 - 15 - 16 - 17 BH3 - 19 - 20 - 20 - 21 - 21 - 22 - 23 - 24 - Figure A-3, log of Boring BH 3 CASING ELVATION: DIAMETER & TYPE OF CASING: CASINO INTERVAL: WELL SCREEN: SCREEN INTERVAL: WELL COVER: WELL GOVER: WELL GOVER: WELL DEPTH: ENGINEER/GEOLOGIST: IAN MOORIEAD NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND	- 11 -		10	232		<i>-{////////////////////////////////////</i>	
Tis - 14 - 15 - 17 BH3 - 16 - 15 1345	- 12 -		1340	$\mathbb{N}/2$		- /////////////////////////////////////	
The second state of the se	ł]		IY/J	moderate odor (CL)		
- 15 - 17 BH3- 15 1345	L 13 -]		//			
- 16 - 17 15 1345 -Very weak odor - 17 - 18 - 19 - 18 Loose, saturated, brown, Clayey, fine to coarse GRAVEL (gravel with clay matrix) (GC) - 20 - 8 BH3 - 20 1350 BORING TERMINATED AT 21.5 FEET - 23 - 24 - 24 - 24 BORING TERMINATED AT 21.5 FEET - 24 - 24 BORING TERMINATED AT 21.5 FEET - 25 BORING TERMINATED AT 21.5 FEET - 26 BOR	- 14 -	1		///	•		
- 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19	- 15	17	BH3-				26
Loose, saturated, brown, Clayey, fine to coarse GRAVEL (gravel with clay matrix) (GC) BORING TERMINATED AT 21.5 FEET Figure A-3, log of Boring BH 3 CASING ELEVATION: DIAMETER & TYPE OF CASING: CASING INTERVAL: WELL SCREEN: SCREEN INTERVAL: WELL SCREEN: SCREEN INTERVAL: WELL COVER: FILTERPACK/INTERVAL: WELL GO OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND	- 16 -	1	15		-Vary weak odor		
Loose, saturated, brown, Clayey, fine to coarse GRAVEL (gravel with clay matrix) (GC) BH3- 21- 23- 24- BH3- 20 1350 BORING TERMINATED AT 21.5 FEET BORING TERMINATED AT 21.5 FEET GRAVEL (gravel with clay matrix) (GC) BORING TERMINATED AT 21.5 FEET BORING TERMINATED AT 21.5 FEET GRAVEL (gravel with clay matrix) (GC) BORING TERMINATED AT 21.5 FEET GRAVEL (gravel with clay matrix) (GC) BORING TERMINATED AT 21.5 FEET GUANTITY OF FILTER MATERIAL: WELL SEAL & INTERVAL: WELL SEAL & INTERVAL: WELL SEAL (QUANTITY: ANDULUS SEAL/INTERVAL: WELL COVER: FILTERPACK/INTERVAL: WELL COVER: FILTERPACK/INTERVAL: MOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND			1345		- very weak odor		
Loose, saturated, brown, Clayey, fine to coarse GRAVEL (gravel with clay matrix) (GC) 8 BH3- 20 1350 BORING TERMINATED AT 21.5 FEET BORING TERMINATED AT 21.5 FEET Figure A-3, log of Boring BH 3 CASING ELEVATION: DIAMETER & TYPE OF CASING: CASING INTERVAL: WELL SCREEN: SCREEN INTERVAL: WELL SCREEN: SCREEN INTERVAL: WELL COVER: FILTERPACK/INTERVAL: WELL GO OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND							
GRAVEL (gravel with clay matrix) (GC) 8 BH3- 21 - 22 - 23 - 24 - BORING TERMINATED AT 21.5 FEET Figure A-3, log of Boring BH 3 CASING ELEVATION: DIAMETER & TYPE OF CASING: CASING INTERVAL: WELL SCREEN: SCREEN INTERVAL: WELL SCREEN: SCREEN INTERVAL: WELL COVER: WELL COVER: FILTERPACK/INTERVAL: WELL GO OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND	F 18 -			9/1	Tone managed brown Clauser Sine to conseq		
BH3-20 1350 BORING TERMINATED AT 21.5 FEET BUBGR CASING ELEVATION: DIAMETER & TYPE OF CASING: CASING INTERVAL: WELL SEAL & INTERVAL: WELL SEAL QUANTITY: ANNULUS SEAL/INTERVAL: WELL SEAL AUDITIVES: WELL COVER: WELL COVER: WELL DEPTH: ENGINEER/GEOLOGIST: IAN MOORHEAD NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND	- 19 -						
Figure A-3, log of Boring BH 3 CASING ELEVATION: DIAMETER & TYPE OF CASING: CASING INTERVAL: WELL SCREEN: WELL SCREEN: SCREEN INTERVAL: WELL COVER: FILTERPACK/INTERVAL: WELL GOOF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND	- 20 -		פוומ	1/19			٥
BORING TERMINATED AT 21.5 FEET - 23 24 - BORING TERMINATED AT 21.5 FEET Figure A-3, log of Boring BH 3 CASING ELEVATION: DIAMETER & TYPE OF CASING: CASING INTERVAL: WELL SEAL & INTERVAL: WELL SEAL QUANTITY: WELL SEAL QUANTITY: ANNULUS SEAL/INTERVAL: Cement Bent. 0-21.5 ft. ADDITIVES: WELL COVER: FILTERPACK/INTERVAL: NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND	21 -	°	20	167			"
Figure A-3, log of Boring BH 3 CASING ELEVATION: DIAMETER & TYPE OF CASING: CASING INTERVAL: WELL SCREEN: WELL SCREEN: SCREEN INTERVAL: WELL COVER: WELL COVER: WELL COVER: FILTERPACK/INTERVAL: NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND			1350	1			
Figure A-3, log of Boring BH 3 CASING ELEVATION: DIAMETER & TYPE OF CASING: CASING INTERVAL: WELL SCREEN: WELL SCREEN: ANNULUS SEAL/INTERVAL: WELL SCREEN INTERVAL: WELL COVER: WELL DEPTH: FILTERPACK/INTERVAL: NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND]			BORING TERMINATED AT 21.5 FEET		
Figure A-3, log of Boring BH 3 CASING ELEVATION: DIAMETER & TYPE OF CASING: CASING INTERVAL: WELL SEAL & INTERVAL: WELL SEAL ALINTERVAL: WELL SEAL ALINTERVAL: WELL SEAL ALINTERVAL: WELL SEAL ALINTERVAL: ANNULUS SEAL/INTERVAL: WELL COVER: WELL DEPTH: FILTERPACK/INTERVAL: NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND	- 23 -					7	
CASING ELEVATION: DIAMETER & TYPE OF CASING: CASING INTERVAL: WELL SEAL & INTERVAL: WELL SEAL QUANTITY: ANNULUS SEAL/INTERVAL: Cement Bent, 0-21.5 ft. ADDITIVES: WELL COVER: WELL DEPTH: ENGINEER/GEOLOGIST: IAN MOORHEAD NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND	- 24 -					1	
CASING ELEVATION: DIAMETER & TYPE OF CASING: CASING INTERVAL: WELL SEAL & INTERVAL: WELL SEAL QUANTITY: ANNULUS SEAL/INTERVAL: Cement Bent, 0-21.5 ft. ADDITIVES: WELL COVER: WELL DEPTH: ENGINEER/GEOLOGIST: IAN MOORHEAD NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND	L	L					4000
DIAMETER & TYPE OF CASING: CASING INTERVAL: WELL SEAL & INTERVAL: WELL SEAL QUANTITY: ANNULUS SEAL/INTERVAL: Cement Bent, 0-21.5 ft. ADDITIVES: WELL COVER: WELL COVER: FILTERPACK/INTERVAL: NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND		<u>-</u>		oring B			MBGK
CASING INTERVAL: WELL SCREEN: SCREEN INTERVAL: WELL COVER: WELL COVER: FILTERPACK/INTERVAL: NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND							
WELL SCREEN: SCREEN INTERVAL: WELL COVER: WELL COVER: FILTERPACK/INTERVAL: NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND				ASING:		LIII 31.111111111111111111111111111111111	
SCREEN INTERVAL: WELL COVER: WELL DEPTH: FILTERPACK/INTERVAL: NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND						nt. 0-21 5 f	
WELL COVER: FILTERPACK/INTERVAL: NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND	 					0-21.0 1	• • • • • • • • • • • • • • • • • • • •
FILTERPACK/INTERVAL: ENGINEER/GEOLOGIST: IAN MOORHEAD NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND			- 4				
NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND			NTERVA	 L:		IEAD	
AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.	NOTE: TI	E LOG OF	SUBSURFA	ACE CONDI	ITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCA	TION AND	

PROJE	CT NO.	S8100-	06-34			_			
Ŧ _	AT.	Щ	OGY	BORING/WELL N	OBH_4	-	 1		
	PENETRA RESIST. BLMS/FT	SAMPLE NO.	ITHOLOGY	DATE DRILLED 9/26/95	WATER LEVEL (ATD)10.0'	WELL	PID HEADSPACE		
	PEN BC	IS	רבו	EQUIPMENT MOBIL	E B-57 HSA DRILLER HAZMAT	CONSTRUCTION	(PPH)		
				SOI	IL DESCRIPTION				
				3" ASPHALT		000000			
- 1 - 2 - 3 -				FILL Coarse angular GRAV	VEL, with sand matrix (GP)				
- 4 - - 5 - - 6 -	8	BH4- 5 1420		ALLUVIUM Stiff, moist, black, Cl medium to high plast Strong odor	LAY, trace silt, trace gravel, icity (CL)		22		
- 7 - - 8 - - 9 -									
10 -	22	BH4-		₹-Becomes wet			1,0		
- 11 -	}	10 1425		-Weak odor	•				
- 12 -	1	1 123			•				
- 13 - - 14 - - 15 -	43	ВН4-		Dense, wet, yellow-b GRAVEL (fine to coa (GC)	rown, Clayey, fine to coarse arse gravel with clay matrix)		<1		
- 16 - - 17 -	43	15 1430			·				
- 18 - - 19 - - 20 -	63	BH4- 20		Very dense, saturated coarse GRAVEL, tracgravel)	, brown, poorly graded, fine to ce silt, clay (GP) (>50% fine		<1		
- 22 -		1435		BORING TER	MINATED AT 21.5 FEET				
- 23 - - 24 -						-			
			Щ			<u> </u>	HBGR		
		og of Bo	oring B	H 4	Contraction of the particular and the particular an		NOGR		
	G ELEVA	TION: YPE OF (CASING.		QUANTITY OF FILTER MATERIAL: WELL SEAL & INTERVAL:				
 	G INTER		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		WELL SEAL QUANTITY:				
 	SCREEN:				ANNULUS SEAL/INTERVAL: Cement Be	nt. 0-21.5 f	t.		
	N INTER				ADDITIVES:				
	COVER:				WELL DEPTH:				
		NTERVA	.:		ENGINEER/GEOLOGIST: IAN MOORI	IEAD			

PROJE	CT NO.	S8100-	-06-34			
돈 뉴	3. F.	y .	ITHOLOGY	BORING/WELL NOBH_5]	
	PENETRAT RESIST. BLUS/FT.	SAMPLE NO.	로	DATE DRILLED 9/26/95 WATER LEVEL (ATD) 18.0'	WELL	PID HEADSPACE
	진짜필	.	5	EQUIPMENT MOBILE B-67 HSA DRILLER HAZMAT	CONSTRUCTION	(PPH)
				SOIL DESCRIPTION		
				3" ASPHALT	000000	
 	1			Sandy GRAVEL base material		
- 2 -	-{		//	ALLUVIUM Stiff, moist, black, CLAY, trace gravel, strong odor		
- 3 -	4			(CL)		
L 4 -]		\mathbb{Z}			
]]						
5 -	24	BH5~		Processor block and many problem		513
6 -	1	5 1045		-Becomes black and gray, mottled	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	
- 7 -	1		$\mathbb{K}/2$	-Higher gravel content (10%)	<i>\\\\\\\\</i>	
- 8 -	ļ		$\mathbb{K}/2$	-		
- 9 -						
_	1		//	Stiff, very moist, gray, CLAY, moderate odor (CL)		
- 10 -	21	BH5-				22
- 11 -	-	10 1050				
- 12 -	┨ .	1000	V/		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	
- 13 -	1					
- 14 -						
	l		0	Stiff, very moist, yellow-brown, fine to coarse Gravelly CLAY (CL)		
- 15 -	55	BH5-		orationy contribution		2.5
- 16	1	15 1058	26	•		
- 17 -	┨	1050		<u>, </u>		
- 18 -	1		[6/	<u> </u>		
			17.55	Dense, wet, yellow-brown, Clayey, fine to coarse		
- 19 -			12	SAND (>50% fine sand) trace gravel (SC)		
- 20 -	49	ВН5-				<1
- 21 -	1	20 1105				
- 22 -	-	1.05		BORING TERMINATED AT 21.5 FEET	-	
- 23 -	1			BORING TERMINATED AT 21.3 TEET	_	
	j					
- 24 -		ļ				
Figure	A-5, 1	og of Bo	oring B	Н 5		HBGR
CASING	G ELEVA	TION:		QUANTITY OF FILTER MATERIAL:		
DIAME	TER & T	YPE OF C	CASING:	WELL SEAL & INTERVAL:		
CASING	G INTER	VAL:		WELL SEAL QUANTITY:		
WELL	SCREEN:			ANNULUS SEAL/INTERVAL: Cement Be	nt. 0-21.5 f	t
	N INTER	VAL:		ADDITIVES:		
	COVER:		<u> </u>	WELL DEPTH:	er er	
FILTER	RPACK/[]	NTERVAI	ن ـ	engineer/geologist: IAN MOORI	ILAD	

FILTERPACK/INTERVAL:

ENGINEER/GEOLOGIST: IAN MOORHEAD

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND
AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

PROJE	CT NO.	S8100	-06-34			_	
DEPTH TN FEET	PENETRAT. RESIST. BLAS/FT.	SAMPLE NO.	ITHOLOGY		WATER LEVEL (ATD) 8.0'	- WELL CONSTRUCTION	PID HEADSPACE (PPH)
	2				LE B-67 HSA DRILLER HAZMAT	_	
			#60.F0	SC 3" ASPHALT	OIL DESCRIPTION	- 000000	
- 1 - - 2 - - 3 - - 4 -				Sandy GRAVEL base FILL SOIL Stiff, moist, black, g plasticity, strong odo	ravelly CLAY, medium high		
- 5 - - 6 - - 7 - - 8 -	11	BH6- 5 0938		ALLUVIUM Stiff, moist, black, C (CL) -Oil staining, strong	CLAY, medium high plasticity odor	-	6
- 9 - - 10 - - 11 - - 12 -	31	BH6- 10 0945		-Becomes wet Stiff, saturated, gray odor (CL)	, Silty CLAY, trace gravel, strong		4
- 13 - - 14 - - 15 - - 16 - - 17 -		BH6- 15 1000		Stiff, saturated, dark coarse GRAVEL (gra	yellow-brown, Clayey, fine to avel with clay matrix) weak odor		<1
- 18 - - 19 - - 20 - - 21 -	65	BH6- 20 1005		SAND, trace gravel (matrix) (SC)	I, brown, Clayey, fine to coarse fine to coarse SAND with clay		<1
- 22 - - 23 - - 24 -				BORING TE	RMINATED AT 21.5 FEET		
Figure	A-6, l	og of B	oring B	Н 6			HBGR
	G ELEVA	•			QUANTITY OF FILTER MATERIAL:		
		YPE OF (CASING:		WELL SEAL & INTERVAL:		
	GINTER				WELL SEAL QUANTITY:	0 21 6 6	
 	SCREEN: N INTER			·	ANNULUS SEAL/INTERVAL: Cement Be	nt. U-21.5 I	<u>. </u>
—	COVER:	TAD:			WELL DEPTH:		

FILTERPACK/INTERVAL:

ENGINEER/GEOLOGIST: IAN MOORHEAD

:	PROJE	CT NO.	S8100-	06-34			
	DEPTH IN FEET	TRAT. EST. ÆT.	SAMPLE NO.	ITHOLOGY	BORING/WELL NO. MW 1		PIO
		E EST	SAMPI.	H.	DATE DRILLED 9/27/95 WATER LEVEL (ATD) 13.0'	WELL CONSTRUCTION	HEADSPACE (PPM)
		ᄶᇆᇷ			EQUIPMENT MOBILE B-57 DRILLER HAZMAT	-	
					SOIL DESCRIPTION		
	_				3" ASPHALT		
	- 1 -		;	2/0/	FILL SOIL Sandy GRAVEL base material	0 0	
	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$			10/0	Medium dense, moist, brown, Clayey, fine to coarse GRAVEL (GC)	\bowtie	
	,				ALLUVIUM	\bowtie	ĺ
	- 4 -				Stiff, moist, black, CLAY, 10% gravel, medium		
	- 5 -	40	MWI-		plasticity, oil staining, strong odor (CL)		1356
	- 6 -		5		•		
	- 7 -		1015		-		
	- 8 -			//			
	- 9 -				-		
	- 10 -	13	MW1-		-		22
	- 11 -		10 1025		-Becomes very moist, rootlets, very weak odor		
	- 12 -		1025	\mathbb{Z}	-		
	- 13 -				¥		
				V/	Stiff wet olive brown brown mottled CLAY, medium		
	- 14 -			VA	Stiff, wet, olive brown, brown mottled CLAY, medium to high plasticity, trace weathered gravel clasts (CL)		
	- 15 -	18	MW1-		-		<i< td=""></i<>
	- 16 -		15 1035		-		
	- 17 -		1033	Γ/λ	-		
	- 18 -				-		
	- 19 -	21			· -		<l< td=""></l<>
	- 20 -		MWI-			118 11/11/11	
	- 21 -		20 1050		BORING TERMINATED AT 20 FEET		
	- 22 -				_		
	- 23 -				_]	
]	
	- 24 -				·]	
- 1				J			

Figure A-7, log of Boring MW 1

HBGR

CASING ELEVATION:	QUANTITY OF FILTER MATERIAL: 8 - 1001b Bags
DIAMETER & TYPE OF CASING: 4" Dia. PVC	WELL SEAL & INTERVAL: Bentonite Chips 2-4.0 ft.
CASING INTERVAL: 0 - 4.5 ft.	WELL SEAL QUANTITY: 1.0 - 50lb Bag
WELL SCREEN: 0.02"	ANNULUS SEAL/INTERVAL: Cement Bent. 0-2.0 ft.
SCREEN INTERVAL: 4.5 to 19.5 ft.	ADDITIVES: None
WELL COVER: 12" Traffic Rated Cover	WELL DEPTH: 19.5 ft.
FILTERPACK/INTERVAL: #3 Sand 4.0 to 19.5 ft.	ENGINEER/GEOLOGIST: IAN MOORHEAD

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

PRC)JECT	NO.	S8100-	-06 - 34

PROJE	CT NO	. S8100-	·06-34			
F L	TRAT. IST.	Ŀ	ITHOLOGY	BORING/WELL NO. MW 2	_	1
HEPTH FEET	FNS 3	SAMPLE NO.	뒫	DATE DRILLED 9/27/95 WATER LEVEL (ATD) 13.6'	WELL	PID HEADSPACE
	PENET REST BLAS	S	5	EQUIPMENT MOBILE B-57 DRILLER HAZMAT	CONSTRUCTION	(PPH)
				SOIL DESCRIPTION		
			43.62	3" ASPHALT	_ 0 0	
1 -	-			Sandy GRAVEL base material	0 0	
2 -				ALLUVIUM Stiff, moist, black, CLAY, trace of fine to coarse		4
- 3 -	1			GRAVEL, strong odor (CL)	-₩ ₩	<u>;</u>
- 4 -	_				- ₩ ₩	1
- 5 -		NAWA				
- 6 -	13	MW2- 5				8
		1600				
L .						
- 8 -				-Becomes dark gray		
- 9 -	1					
10 -	15	MW2-		•	1	.{-
- 11 -	1	10 1605		-No recovery		
12 -	1	1000			+ =	
- 13 -	1				-	
- 14 -	4		Í Í	Dense, wet, olive brown and orange brown, Silty		
- 15 -	1			SAND, very weak odor (SM)		
- 16 -	35	MW2- 15				
		1615		•		1
17 -						
18 -	1			Dense, saturated, brown, medium coarse SAND trace		1.
- 19 -	32	MW2- 20		silt (SP)		<1
- 20 -	1	20 1625				1
- 21 -	1			BORING TERMINATED AT 20 FEET	-	
- 22 -	-				-	
- 23 -]				4	
- 24 -						
24						

Figure A-8, log of Boring MW 2

HBGR

CASING ELEVATION:	QUANTITY OF FILTER MATERIAL: 6.5 - 1001b Bags		
DIAMETER & TYPE OF CASING: 4" DIA. PVC	WELL SEAL & INTERVAL: Bentonite Chips 2-4.0 ft.		
CASING INTERVAL: 0 - 5.0 ft.	WELL SEAL QUANTITY: 1.0 - 501b Bag		
WELL SCREEN: 0.02"	ANNULUS SEAL/INTERVAL: Cement Bent. 0-2.0 ft.		
SCREEN INTERVAL: 5 to 20 ft.	ADDITIVES: None		
WELL COVER: 12" Traffic Rated Cover	WELL DEPTH: 20 ft.		
FILTERPACK/INTERVAL: #3 Sand 4.0 to 20 ft.	ENGINEER/GEOLOGIST: IAN MOORHEAD		

PROJE	CT NO	S8100-	06-34		-		
= _	F-T-	E	OGY	BORING/WELL NO. MW.3.			ı
DEPTH IN FEET	SIS	SAMPLE NO.	ITHOLOGY	DATE DRILLED 9/27/95 WATER LEVEL (ATD) 13.0'	_	WELL	PID HEADSPACE
"	PER SE	ठ	1	EQUIPMENT MOBILE B-67 DRILLER HAZMAT	CONS	TRUCTION	(PPH)
				SOIL DESCRIPTION			
			######################################	3" ASPHALT	-	• .	
- 1			R-POR	Sandy GRAVEL base material	1.0	"	
- 2 -	}			ALLUVIUM	∞		
- 3 -				Stiff, moist, black CLAY, medium plasticity, moderate odor (CL)	$\cancel{8}$		
[\otimes		
T 4 -							
- 5 -	40	MW3-	1//		1: :		
F 6 -	•	5 1400		-No recovery	1		
- 7 -		1		-Trace fine to coarse gravel	1		6
- 8 -		MW3-		- Trace time to coarse graver			
		1406	Y/		1.;		
- 9 -				·			
10 -	16	MW3-		-			5.5
- 11 -		10		-Weak odor			
- 12 -	ļ	1414		-			
- 13 -				¥			
			1-1-1-	Medium dense, wet, light olive brown, Silty SAND			
- 14 -]			(SM)]		
- 15	12	MW3-		•			<1
- 16 -	1	15		-	-		
- 17 -	ļ	1425]	· · · .	.		
- 18 -			1.1.1				
1				Medium dense, saturated, gray, fine grained SAND, trace silt (SP)			
19 -				trace sin (Si)	1/2	用 ル	
- 20 -	18	MW3-		-	10	8370	<1
- 21 -		20		-	1/1/2	111.85	
- 22 -		1430		BORING TERMINATED 21.5 FEET			
- 23 -				BUKING TERMINATED 21.3 FEET			
23							

Figure A-9, log of Boring MW 3

HBGR

QUANTITY OF FILTER MATERIAL: 7 - 1001b Bags
WELL SEAL & INTERVAL: Bentonite Chips 2-4.0 ft.
WELL SEAL QUANTITY: 1.0 - 50lb Bag
ANNULUS SEAL/INTERVAL: Cement Bent. 0-2.0 ft.
ADDITIVES: None
WELL DEPTH: 19.5 ft.
ENGINEER/GEOLOGIST: IAN MOORHEAD

PROJE	CT NO	. S8100-	06-34		_	
DEPTH IN FEET	PENETRAT. RESIST. BLWS/FT.	SAMPLE NO.	тногосу	BORING/WELL NO. MW 4 DATE DRILLED 9/27/95 WATER LEVEL (ATD) 13.0' EQUIPMENT MOBILE B-57 DRILLER HAZMAT	WELL CONSTRUCTION	PID HEADSPACI (PPM)
	<u> </u>			SOIL DESCRIPTION	_	
- 1 - - 2 - - 3 - - 4 -				3" ASPHALT FILL SOIL Medium dense, moist, brown, Clayey, fine to coarse subangular gravel ALLUVIUM Stiff, very moist, orange-brown and gray, mottled		
- 5 - - 6 - - 7 - - 8 -	50/6"	MW4- 5 0805	6000	CLAY, medium-high plasticity (CL) Dense, wet, gray-black, Clayey, fine to coarse GRAVEL, strong odor (gravel with clay matrix) (GC)		<1
- 10 - - 11 - - 12 - - 13 -	23	MW4- 10 0816		Stiff, wet, black, gravelly CLAY, strong odor (CL)		26
- 14 - - 15 - - 16 - - 17 -	25	MW4- 15 0824		Stiff, wet dark olive-brown CLAY, medium to high plasticity, trace of gravel, pinhole structures, very weak odor (CL)		د ا
- 18 - - 19 - - 20 - - 21 -	14	MW4- 20 0832		Medium dense, saturated, brown, Silty SAND, trace clay (SM) -Very poor recovery (slough) BORING TERMINATED AT 21.5 FEET		-
- 23 - - 24 -						

Figure A-10, log of Boring MW 4

HBGR

CASING ELEVATION:	QUANTITY OF FILTER MATERIAL: 7 - 1001b Bags		
DIAMETER & TYPE OF CASING: 4" Dia. PVC	WELL SEAL & INTERVAL: Bentonite Chips 2-3.5 ft.		
CASING INTERVAL: 0 - 4.0 ft.	WELL SEAL QUANTITY: 1.0 - 50lb Bag		
WELL SCREEN: 0.02"	ANNULUS SEAL/INTERVAL: Cement Bent. 0-2.0 ft.		
SCREEN INTERVAL: 4.0 to 19.0 ft.	ADDITIVES: None		
WELL COVER: 12" Traffic Rated Cover	WELL DEPTH: 19.0 ft.		
FILTERPACK/INTERVAL: #3 Sand 3.5 to 19.0 ft.	ENGINEER/GEOLOGIST: JAN MOORHEAD		

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

p	RO	JECT	NO	581	ሰበ-ሰ	16-34
I			17.	and I	UU-L	/C] = _] ~#

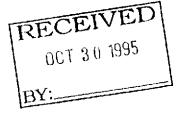

<u> </u>	RAT ST.	삘 .	ITHOLOGY	BORING/WELL NO. MW 5			
	E SS S	SAMPLE NO.	덮	DATE DRILLED 9/27/95 WATER LEVEL (ATD) 18.0'	WELL		PID HEADSPA
<u> </u>	PENETRAI RESIST. BLAIS/FT	3	5	EQUIPMENT MOBILE B-57 DRILLER HAZMA	CONSTRUC	TION	(PPH)
				SOIL DESCRIPTION			
				2" ASPHALT	/ o	•	
1 7				`, FILL Sandy GRAVEL base material	,	0	
2 -			1/2	Stiff, moist, black, fine to coarse gravelly CLAY,	- 	\otimes	
3 -			194	strong odor (CL)	<u>~</u> ₩	❈	
4 -				ALLUVIUM Stiff, moist, black, CLAY, medium high plasticity,	- 	XX	
5 -				trace gravel, strong odor (CL)	4		
6 -	12	MW5-					-
<u> </u>		0915					
7 7							
8 -							
9 -					-		
10 -	12	14305		-Becomes olive-brown, higher gravel content (10%)			<1
11 -	12	MW5- 10		very weak odor			<1
I		0918					
12 -							
13] : 🗏		
14 -				Medium dense, very moist, olive brown and yellow			
15 -	27	MW5-		brown, Silty SAND (SM)			<1
16 -	21	15			-		
17 -		0925					
18 -			1//	Medium dense, wet, brown, Clayey, Sandy GRAVEL			
19 -	27	MW5- 20		(Sandy gravel with clay matrix) (GC)	1. 🗏		
20 -		20 0933	فار مر				<1
21 -				BORING TERMINATED AT 20 FEET	4	i	
22 -					4		
23 -							
24 -					7		

Figure A-11, log of Boring MW 5

HBGR

CASING ELEVATION:	QUANTITY OF FILTER MATERIAL: 6-3/4 - 100lb Bags
DIAMETER & TYPE OF CASING: 4" Dia. PVC	WELL SEAL & INTERVAL: Bentonite Chips 2-4.0 ft.
CASING INTERVAL: 0 - 5.0 ft.	WELL SEAL QUANTITY: 1.0 - 501b Bag
WELL SCREEN: 0.02"	ANNULUS SEAL/INTERVAL: Cement Bent. 0-2.0 ft.
SCREEN INTERVAL: 5.0 to 20.0 ft.	ADDITIVES: None
WELL COVER: 12" Traffic Rated Cover	WELL DEPTH: 20.0 ft.
FILTERPACK/INTERVAL: #3 Sand 4.0 to 20.0 ft.	ENGINEER/GEOLOGIST: JAN MOORHEAD

October 25, 1995

Mr. Rick Walls Geocon Environmental 3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742

Dear Mr. Walls:

Enclosed is the report for the twenty seven (27) soil samples. The samples were received at Sparger Technology Analytical Lab on September 28, 1995.

The samples were received in twenty seven (27) brass tubes. The samples were transported and received under documented chain of custody and stored at four (4) degrees C until analysis was performed.

The report consists of the following sections:

I. Sample Description

II. Analysis Request

III. Quality Control Report

IV. Analysis Results

No problems were encountered with the analysis of your samples.

If you have questions, please feel free to call.

Sincerely,

R. L. James

Principal Chemist

Sample Description

See attached Samples Description Information.

The samples were received under chain-of-custody.

II Analysis Request

The following analytical tests were requested:

Lab ID	Your ID	Analysis Description
ST95-09-1767A	BH6-5	TPHgas & BTEX
ST95-09-1768A	BH6-5	TPHdiesel
ST95-09-1769A	BH6-5	Total Oil & Grease
ST95-09-1770A	BH6-10	TPHgas & BTEX
ST95-09-1771A	BH6-10	TPHdiesel
ST95-09-1772A	BH6-10	Total Oil & Grease
ST95-09-1773A	BH6-10	Organic Lead
ST95-09-1775A	BH6-20	TPHgas & BTEX
ST95-09-1776A	BH6-20	TPHdiesel
ST95-09-1777A	BH6-20	Total Oil & Grease
ST95-09-1778A	BH6-20	Organic Lead
ST95-09-1780A	BH5-10	TPHgas & BTEX
ST95-09-1781A	BH5-10	TPHdiesel
ST95-09-1782A	BH5-10	Total Oil & Grease
ST95-09-1783A	BH5-10	Organic Lead
ST95-09-1785A	BH5-20	TPHgas & BTEX
ST95-09-1786A	BH5-20	TPHdiesel
ST95-09-1787A	BH5-20	Total Oil & Grease
ST95-09-1788A	BH5-20	Organic Lead
ST95-09-1789A	BH1-15	TPHgas & BTEX
ST95-09-1790A	BH1-15	TPHdiesel
ST95-09-1791A	BH1-15	Total Oil & Grease
ST95-09-1792A	BH1-15	Organic Lead
ST95-09-1793A	BH1-20	TPHgas & BTEX
ST95-09-1794A	BH1-20	TPHdiesel
ST95-09-1795A	BH1-20	Total Oil & Grease
ST95-09-1796A	BH1-20	Organic Lead

Lab ID	Your ID	Analysis Description
ST95-09-1797A	BH3-5	TPHgas & BTEX
ST95-09-1798A	BH3-5	TPHdiesel
ST95-09-1799A	BH3-5	Total Oil & Grease
ST95-09-1800A	BH3-10	TPHgas & BTEX
ST95-09-1801A	BH3-10	TPHdiesel
ST95-09-1802A	BH3-10	Total Oil & Grease
ST95-09-1803A	BH3-10	Organic Lead
ST95-09-1805A	BH3-20	TPHgas & BTEX
ST95-09-1806A	BH3-20	TPHdiesel
ST95-09-1807A	BH3-20	Total Oil & Grease
ST95-09-1808A	BH3-20	Organic Lead
ST95-09-1810A	BH4-10	TPHgas & BTEX
ST95-09-1811A	BH4-10	TPHdiesel
ST95-09-1812A	BH4-10	Total Oil & Grease
ST95-09-1813A	BH4-10	Organic Lead
ST95-09-1815A	BH4-20	TPHgas & BTEX
ST95-09-1816A	BH4-20	TPHdiesel
ST95-09-1817A	BH4-20	Total Oil & Grease
ST95-09-1818A	BH4-20	Organic Lead
ST95-09-1820A	BH2-10	TPHgas & BTEX
ST95-09-1821A	BH2-10	TPHdiesel
ST95-09-1822A	BH2-10	Total Oil & Grease
ST95-09-1823A	BH2-10	Organic Lead
ST95-09-1825A	BH2-20	TPHgas & BTEX
ST95-09-1826A	BH2-20	TPHdiesel
ST95-09-1827A	BH2-20	Total Oil & Grease
ST95-09-1828A	BH2-20	Organic Lead
ST95-09-1829A	MW4-5	TPHgas & BTEX
ST95-09-1830A	MW4-5	TPHdiesel
ST95-09-1831A	MW4-5	Total Oil & Grease
ST95-09-1832A	MW4-10	TPHgas & BTEX
ST95-09-18 33A	MW4-10	TPHdiesel
ST95-09-1834A	MW4-10	Total Oil & Grease
ST95-09-1835A	MW4-10	Organic Lead
ST95-09-1836A	MW4-15	TPHgas & BTEX
ST95-09-1837A	MW4-15	TPHdiesel
ST95-09-1838A	MW4-15	Total Oil & Grease
ST95-09-1839A	MW4-15	Organic Lead

Lab ID	Your ID	Analysis Description
ST95-09-1842A	MW1-10	TPHgas & BTEX
ST95-09-1843A	MW1-10	TPHdiesel
ST95-09-1844A	MW1-10	Total Oil & Grease
ST95-09-1845A	MW1-10	Organic Lead
ST95-09-1847A	MW1-20	TPHgas & BTEX
ST95-09-1848A	MW1-20	TPHdiesel
ST95-09-1849A	MW1-20	Total Oil & Grease
ST95-09-1850A	MW1-20	Organic Lead
ST95-09-1851A	MW3-8	TPHgas & BTEX
ST95-09-1852A	MW3-8	TPHdiesel
ST95-09-1853A	MW3-8	Total Oil & Grease
ST95-09-1854A	MW3-10	TPHgas & BTEX
ST95-09-1855A	MW3-10	TPHdiesel
ST95-09-1856A	MW3-10	Total Oil & Grease
ST95-09-1857A	MW3-10	Organic Lead
ST95-09-1859A	MW3-20	TPHgas & BTEX
ST95-09-1860A	MW3-20	TPHdiesel
ST95-09-1861A	MW3-20	Total Oil & Grease
ST95-09-1862A	MW3-20	Organic Lead
ST95-09-1863A	MW2-5	TPHgas & BTEX
ST95-09-1864A	MW2-5	TPHdiesel
ST95-09-1865A	MW2-5	Total Oil & Grease
ST95-09-1866A	MW2-5	Organic Lead
ST95-09-1868A	MW2-20	TPHgas & BTEX
ST95-09-1869A	MW2-20	TPHdiesel
ST95-09-1870A	MW2-20	Total Oil & Grease
ST95-09-1871A	MW2-20	Organic Lead
ST95-09-1872A	MW5-5	TPHgas & BTEX
ST95-09-1873A	MW5-5	TPHdiesel
ST95-09-1874A	MW5-5	Total Oil & Grease
ST95-09-1875A	MW5-10	TPHgas & BTEX
ST95-09-1876A	MW5-10	TPHdiesel
ST95-09-1877A	MW5-10	Total Oil & Grease
ST95-09-1878A	MW5-10	Organic Lead
ST95-09-1880A	MW5-20	TPHgas & BTEX
ST95-09-1881A	MW5-20	TPHdiesel
ST95-09-1882A	MW5-20	Total Oil & Grease
ST95-09-1883A	MW5-20	Organic Lead

III Quality Control

- A. <u>Project Specific QC</u>. No project specific QC (i.e., spikes and/or duplicates) was requested.
- B. <u>Method Blank Results</u>. A method blank is a laboratory-generated sample which assesses the degree to which laboratory operations and procedures cause false-positive analytical results for your sample.

No target parameters were detected in the method blank associated with your sample at the reporting limit levels noted on the data sheets in the Analytical Results section.

- C. <u>Laboratory Control Spike</u>. A Laboratory Control Spike (LCS) is a sample which is spiked with known analyte concentrations, and analyzed at approximately 10% of the sample load in order to establish method-specific control limits. The LCS results associated with your samples are on the attached Laboratory Control Spike and Laboratory Control Spike Duplicate Analysis Report.
- D. Matrix Spike Results. A Matrix Spike is a sample which is spiked with known analyte concentrations, and analyzed at approximately 10% of the sample load in order to establish method-specific control limits. The Matrix Spike results associated with your samples are on the attached Matrix Spike and Matrix Spike Duplicate Analysis Report.

Accuracy is measured by Percent Recovery as in:

% recovery = $(measured concentration) \times 100$ (actual concentration)

IV Analysis Results

Results are on the attached data sheets.

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Date Analyzed:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6

Date Analyzed: Oct 4, 1995

TPHgas & BTEX TPHdiesel

Rancho Cordova, CA 95742

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Oct 3, 1995

Client ID:

Project #:

BH6-5

LAB ID:

ST95-09-1767A TPHgas & BTEX

ST95-09-1768A TPHdiesel

Matrix:

Soil

Dilution:

1: 1

	Detection			
Name	Amount	Limit	Units	
Benzene	ND	0.005	mg/kg	
Toluene	ND	0.005	mg/kg	
Ethylbenzene	ND	0.005	mg/kg	
Xylenes	ND	0.005	mg/kg	
TPHgas	ND	1.0	mg/kg	
TPHdiesel	24 *	1.0	mg/kg	
Surrogate % Recovery of Trifluorotoluene =	99%			

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

* Weathered TPHdiesel.

R. L. James, Principal Chemist

Oct 10, 1995

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Sep 29, 1995 Date Analyzed: Oct 3, 1995 TPHgas & BTEX TPHdiesel

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH6-10

LAB ID:

ST95-09-1770A TPHgas & BTEX

ST95-09-1771A TPHdiesel

Matrix:

Soil

Dilution:

1: 1

111211111	Diagon, C.					
		Detection				
Name	Amount	Limit	Units			
Benzene	ND	0.005	mg/kg			
Toluene	ND	0.005	mg/kg			
Ethylbenzene	ND	0.005	mg/kg			
Xylenes	ND	0.005	mg/kg			
TPHgas	ND	1.0	mg/kg			
TPHdiesel	16 *	1.0	mg/kg			
Surrogate % Recovery of Trifluorotoluene =	73%					

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND • Not Detected. Compound(s) may be present at concentrations below the detection limit

* Weathered TPHdiesel.

R. L. James, Principal Chemist

Oct 10, 1995

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY.

(Certification No. 1614)

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Date Analyzed: Oct 4, 1995

Sep 29, 1995

TPHgas & BTEX TPHdiesel

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

Project #:

BH6-20

LAB ID:

ST95-09-1775A TPHgas & BTEX

ST95-09-1776A TPHdiesel

Matrix:	Soil	Dilution: 1:	1	
Name		Amount	Detection Limit	Units
Benzene		ND	0.005	mg/kg
Toluene		ND	0.005	mg/kg
Ethylbenzer	ne	ND	0.005	mg/kg
Xylenes		ND	0.005	mg/kg
TPHgas		ND	1.0	mg/kg
TPHdiese	I	ND	1.0	mg/kg
Surrogate %	Recovery of Trifluorotoluene =	76%		

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 10, 1995

Date

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received: Date Analyzed:

Date Analyzed:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Sep 29, 1995 Oct 4, 1995

TPHgas & BTEX TPHdiesel

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH5-10

LAB ID:

ST95-09-1780A TPHgas & BTEX

ST95-09-1781A TPHdiesel

Matrix:

Soil

Dilution:

1

1:

	Detection				
Name	Amount	Limit	Units		
Benzene	ND	0.005	mg/kg		
Toluene	ND	0.005	mg/kg		
Ethylbenzene	ND	0.005	mg/kg		
Xylenes	ND	0.005	mg/kg		
TPHgas	ND	1.0	mg/kg		
TPHdiesel	ND	1.0	mg/kg		
Surrogate % Recovery of Trifluorotoluene =	73%				

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct 10, 1995

Date

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742

Date Analyzed: Sep 29, 1995 Date Analyzed: Oct 4, 1995

TPHgas & BTEX **TPHdiesel**

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

Project #:

BH5-20

LAB ID:

ST95-09-1785A TPHgas & BTEX

ST95-09-1786A TPHdiesel

Matrix:

Soil

Dilution:

1:

1

Name	Amount	Detection Limit	Units	
Benzene	ND	0.005		
			mg/kg	
Toluene	ND	0.005	mg/kg	
Ethylbenzene	ND	0.005	mg/kg	
Xylenes	ND	0.005	mg/kg	
TPHgas	ND	1.0	mg/kg	
TPHdiesel	ND	1.0	mg/kg	
Surrogate % Recovery of Trifluorotoluene =	86%			

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct 10, 1995

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY

(Certification No. 1614)

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Date Received:

Date Analyzed:

Date Analyzed:

Sep 26, 1995 Sep 28, 1995

Oct 2, 1995 Oct 4, 1995 TPHgas & BTEX **TPHdiesel**

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

Project #:

BH1-15

LAB ID:

ST95-09-1789A TPHgas & BTEX

ST95-09-1790A TPHdiesel

Matrix:

Soil

Dilution:

Wattik.	Dilution, 1.				
	Detection				
Name	Amount	Limit	Units		
Benzene	ND	0.005	mg/kg		
Toluene	ND	0.005	mg/kg		
Ethylbenzene	0.006	0.005	mg/kg		
Xylenes	0.021	0.005	mg/kg		
TPHgas	ND	1.0	mg/kg		
TPHdiesel	ND	1.0	mg/kg		
Surrogate % Recovery of Triffuorotoluene =	77%				

ppb = parts per billion = ug/kg = tnicrograms per kilogram

ppm= parts per million = mg/kg = miligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct 10, 1995

Date

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Oct 2, 1995 Date Analyzed: Oct 4, 1995

TPHgas & BTEX TPHdiesel

Project #:

\$8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH1-20

LAB ID:

ST95-09-1793A TPHgas & BTEX

ST95-09-1794A TPHdiesel

Matrix:

Soil

Dilution:

1

1:

Name	Amount	Limit	Units
Benzene	ND	0.005	mg/kg
Toluene	ND	0.005	mg/kg
Ethylbenzene	ND	0.005	mg/kg
Xylenes	ND	0.005	mg/kg
TPHgas	ND	1.0	mg/kg
TPHdiesel	ND	1.0	mg/kg
Surrogate % Recovery of Trifluorotoluene =	59% *		

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND . Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct 10, 1995

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY

(Certification No. 1614)

^{*} Low surrogate recovery due to matrix effect.

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Oct 4, 1995 Date Analyzed: Oct 4, 1995 TPHgas & BTEX **TPHdiesel**

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

Project #:

BH3-5

LAB ID:

ST95-09-1797A TPHgas & BTEX

ST95-09-1798A TPHdiesel

Matrix:	Soil	Dilution: 1:	1	
Name		Amount	Detection Limit	Units
Benzene		ND	0.005	mg/kg
Toluene		ND	0.005	mg/kg
Ethylbenzene		ND	0.005	mg/kg
Xylenes		ND	0.005	mg/kg
TPHgas		ND	1.0	mg/kg
TPHdiesel		ND *	1.0	mg/kg
Surrogate % R	ecovery of Trifluorotoluene =	59% **		

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

- * TPHmotor oil was found to be present at 58 ppm.
- ** Low surrogate recovery due to matrix effect.

R. L. James, Principal Chemist

Oct 10, 1995

Date

8020/8015 Modified Analysis Report

Attention:

Project #:

Client ID:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Date Received:

Sep 28, 1995 Date Analyzed:

Date Analyzed:

1:

Oct 2, 1995 Oct 4, 1995

Sep 26, 1995

TPHgas & BTEX **TPHdiesel**

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

BH3-10

LAB ID:

ST95-09-1800A TPHgas & BTEX

ST95-09-1801A TPHdiesel

Matrix:

Soil

Dilution:

	Detection			
Name	Amount	Detection Limit	Units	
Benzene	ND	0.005	mg/kg	
Toluene	ND	0.005	mg/kg	
Ethylbenzene	ND	0.005	mg/kg	
Xylenes	ND	0.005	mg/kg	
TPHgas	ND	1.0	mg/kg	
TPHdiesel	ND	1.0	mg/kg	
Surrogate % Recovery of Trifluorotoluene =	57% *			

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

NO = Not Detected. Compound(s) may be present at concentrations below the detection limit.

Low surrogate recovery due to matrix effect.

R. L. James, Principal Chemist

Oct 10, 1995

Date

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received: Date Analyzed:

Date Analyzed:

Sep 28, 1995

Oct 2, 1995

TPHgas & BTEX

TPHdiesel

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742

\$8100-06-34 (CT53W202)

Project Name:

1:

Hegenberger

Oct 4, 1995

Client ID:

Project #:

BH3-20

LAB ID:

ST95-09-1805A TPHgas & BTEX

ST95-09-1806A TPHdiesel

Matrix:

Soil

Dilution:

1

Name	Amount	Limit	Units
Benzene	ND	0.005	mg/kg
Toluene	ND	0.005	mg/kg
Ethylbenzene	ND	0.005	mg/kg
Xylenes	ND	0.005	mg/kg
TPHgas	ND	1.0	mg/kg
TPHdiesel	ND	1.0	mg/kg
Surrogate % Recovery of Trifluorotoluene =	67% *		

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

NO = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 10, 1995

Date

^{*} Low surrogate recovery due to matrix effect.

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Oct 2, 1995 Date Analyzed: Oct 4, 1995 TPHgas & BTEX
TPHdiesel

nai

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

Project #:

BH4-10

LAB ID:

ST95-09-1810A TPHgas & BTEX

ST95-09-1811A TPHdiesel

Matrix:

Soil

Dilution:

1:

1

Name	Amount	Limit	Units
Benzene	ND	0.005	mg/kg
Toluene	ND	0.005	mg/kg
Ethylbenzene	ND	0.005	mg/kg
Xylenes	ND	0.005	mg/kg
TPHgas	ND	1.0	mg/kg
TPHdiesel	ND	1.0	mg/kg
Surrogate % Recovery of Trifluorotoluene =	65% *		

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 10, 1995 Date

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY

(Certification No. 1614)

^{*} Low surrogate recovery due to matrix effect.

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

TPHgas & BTEX

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Date Analyzed: Oct 4, 1995 Oct 4, 1995

TPHdiesel

Project #:

\$8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH4-20

LAB ID:

\$T95-09-1815A TPHgas & BTEX

ST95-09-1816A TPHdiesel

Matrix:

Soil

Dilution: 1:

Detection

	Detection		
Name	Amount	Limit	Units
Benzene	ND	0.005	mg/kg
Toluene	ND	0.005	mg/kg
Ethylbenzene	ND	0.005	mg/kg
Xylenes	ND	0.005	mg/kg
TPHgas	ND	1.0	mg/kg
TPHdiesel	ND	1.0	mg/kg
Surrogate % Recovery of Trifluorotoluene =	95%		

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND • Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct 10, 1995

Analytical Laboratory DMsIon Mobile Laboratory DMsIon Scientific DMsIon

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Date Analyzed: Oct 3, 1995 Oct 4, 1995 TPHgas & BTEX TPHdiesel

Project #:

\$8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH2-10

LAB ID:

ST95-09-1820A TPHgas & BTEX

ST95-09-1821A TPHdiesel

Matrix:

Soil

Dilution:

. .

Matin. Con	Dialion. 1.			
	Detection			
Name	Amount	Limit	Units	
Benzene	ND	0.005	mg/kg	
Toluene	ND	0.005	mg/kg	
Ethylbenzene	ND	0.005	mg/kg	
Xylenes	ND	0.005	mg/kg	
TPHgas	ND	1.0	mg/kg	
TPHdiesel	ND	1.0	mg/kg	
Surrogate % Recovery of Trifluorotoluene =	40% *			

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 10, 1995

Date

^{*} Low surrogate recovery due to matrix effect.

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742

Date Analyzed: Date Analyzed:

Amount

ND

ND

ND

ND

ND

ND

96%

Oct 3, 1995 Oct 4, 1995 TPHgas & BTEX TPHdiesel

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

Project #:

BH2-20

LAB ID:

ST95-09-1825A TPHgas & BTEX

ST95-09-1826A TPHdiesel

Matrix:

Name

Benzene

Toluene

Ethylbenzene

Xylenes

TPHgas

TPHdiesel

Soil

Dilution:

1:

Detection	1 1 = ia o	
Limit	Units	
0.005	mg/kg	
1.0	mg/kg	
1.0	mg/kg	

ppb = parts per billion = ug/kg = micrograms per kilogram

Surrogate % Recovery of Trifluorotoluene =

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 10, 1995

Date

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742

Date Analyzed: Date Analyzed: Oct 3, 1995 Oct 4, 1995 TPHgas & BTEX **TPHdiesel**

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW4-5

LAB ID:

ST95-09-1829A TPHgas & BTEX

ST95-09-1830A TPHdiesel

Matrix:

Soil

Dilution:

1: 1

	Detection		
Name	Amount	Limit	Units
Benzene	ND	0.005	mg/kg
Toluene	ND	0.005	mg/kg
Ethylbenzene	ND	0.005	mg/kg
Xylenes	ND	0.005	mg/kg
TPHgas	ND	1.0	mg/kg
TPHdiesel	ND	1.0	mg/kg
Surrogate % Recovery of Trifluorotoluene =	89%		

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = miligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 10, 1995

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

Date Received:

Date Analyzed:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 3, 1995 Oct 4, 1995

TPHgas & BTEX **TPHdiesel**

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW4-10

LAB ID:

ST95-09-1832A TPHgas & BTEX

ST95-09-1833A TPHdiesel

Matrix:	Soil	Dilution: 1:	1	
Name		Amount	Detection Limit	Units
Benzene		ND	0.005	mg/kg
Toluene		ND	0.005	mg/kg
Ethylbenzene		ND	0.005	mg/kg
Xylenes		ND	0.005	mg/kg
TPHgas		ND	1.0	mg/kg
TPHdiesel		ND *	1.0	mg/kg
Surrogate % F	Recovery of Trifluorotoluene =	60% **		

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

* TPHmotor oil was found to be present at 7.5 ppm.

** Low surrogate recovery due to matrix effect.

R. L. James, Principal Chemist

Oct 10, 1995 Date

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY

(Certification No. 5614)

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

Date Sampled:

Date Analyzed:

Sep 27, 1995

Date Received: Date Analyzed: Sep 28, 1995

Oct 3, 1995 Oct 4, 1995

TPHgas & BTEX TPHdiesel

\$8100-06-34 (CT53W202)

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Project Name:

Hegenberger

Client ID:

Project #:

MW4-15

LAB ID:

ST95-09-1836A TPHgas & BTEX

ST95-09-1837A TPHdiesel

Matrix:

Soil

Dilution:

1:

1

Name	Amount	Detection Limit	Units_
Benzene	ND	0.005	mg/kg
Toluene	ND	0.005	mg/kg
Ethylbenzene	ND	0.005	mg/kg
Xylenes	ND	0.005	mg/kg
TPHgas	ND	1.0	mg/kg
TPHdiesel	ND	1.0	mg/kg
Surrogate % Recovery of Trifluorotoluene =	79%		

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 11, 1995

Date

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Received:

Date Analyzed:

Sep 28, 1995

Date Analyzed:

Oct 3, 1995 Oct 4, 1995

TPHgas & BTEX

TPHdiesel

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW1-10

LAB ID:

ST95-09-1842A TPHgas & BTEX

ST95-09-1843A TPHdiesel

Matrix:

Soil

Dilution:

1:

1

	Detection		
Name	Amount	Limit	Units
Benzene	ND	0.005	mg/kg
Toluene	ND	0.005	mg/kg
Ethylbenzene	ND	0.005	mg/kg
Xylenes	ND	0.005	mg/kg
TPHgas	ND	1.0	mg/kg
TPHdiesel	ND	1.0	mg/kg
Surrogate % Recovery of Trifluorotoluene =	54% *		

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 10, 1995

Date

^{*} Low surrogate recovery due to matrix effect.

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

Date Received: Sep 28

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Oct 3, 1995 Date Analyzed: Oct 4, 1995

TPHgas & BTEX TPHdiesel

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW1-20

LAB ID:

ST95-09-1847A TPHgas & BTEX

ST95-09-1848A TPHdiesel

Matrix:

Soil

Dilution:

1: 1

Name	Detection Amount Limit Units					
Harris	Amount	Littiit	OTHIS			
Benzene	ND	0.005	mg/kg			
Toluene	ND	0.005	mg/kg			
Ethylbenzene	ND	0.005	mg/kg			
Xylenes	ND	0.005	mg/kg			
TPHgas	ND	1.0	mg/kg			
TPHdiesel	ND	1.0	mg/kg			
Surrogate % Recovery of Trifluorotoluene =	67% *					

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 10, 1995 Date

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA

DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY

(Certification No. 1614)

^{*} Low surrogate recovery due to matrix effect.

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled: Date Received: Sep 27, 1995

Geocon Environmental 3235 Sunrise Blvd., Suite 6

Sep 28, 1995

Rancho Cordova, CA 95742

Date Analyzed: Date Analyzed:

Oct 3, 1995 Oct 4, 1995 TPHgas & BTEX **TPH**diesel

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW3-8

LAB ID:

ST95-09-1851A TPHgas & BTEX

ST95-09-1852A TPHdiesel

Matrix:

Soil

Dilution: 1:

	Detection					
Name	Amount	Limit	Units			
Benzene	0.012	0.005	mg/kg			
Toluene	ND	0.005	mg/kg			
Ethylbenzene	ND	0.005	mg/kg			
Xylenes	ND	0.005	mg/kg			
TPHgas	ND	1.0	mg/kg			
TPHdiesel	ND	1.0	mg/kg			
Surrogate % Recovery of Trifluorotoluene =	48% *		•			

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 10, 1995

Date

Low surrogate recovery due to matrix effect.

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Date Received:

Sep 28, 1995 Oct 3, 1995 Date Analyzed:

1:

Oct 4, 1995 Date Analyzed:

TPHgas & BTEX

TPHdiesel

Project #:

\$8100-06-34 (CT53W202)

Project Name:

Hegenberger

Sep 27, 1995

Client ID:

MW3-10

LAB ID:

ST95-09-1854A TPHgas & BTEX

ST95-09-1855A TPHdiesel

Matrix:

Soil

Dilution:

	Detection				
Name	Amount	Limit	Units		
Benzene	ND	0.005	mg/kg		
Toluene	ND	0.005	mg/kg		
Ethylbenzene	ND	0.005	mg/kg		
Xylenes	ND	0.005	mg/kg		
TPHgas	ND	1.0	mg/kg		
TPHdiesel	ND	1.0	mg/kg		
Surrogate % Recovery of Trifluorotoluene =	46% *				

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

* Low surrogate recovery due to matrix effect.

R. L. James, Principal Chemist

Oct 10, 1995

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Date Analyzed: Oct 4, 1995

Oct 3, 1995

TPHgas & BTEX **TPHdiesel**

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW3-20

LAB ID:

ST95-09-1859A TPHgas & BTEX

ST95-09-1860A TPHdiesel

Matrix:

Name

Benzene

Toluene

Ethylbenzene

Xylenes

TPHgas

TPHdiesel

Soil

Dilution:

1

1:

Amount

0.030

0.028

0.030

0.058

ND

ND

79%

Detection Limit	Units
0.005	mg/kg
1.0	mg/kg
1.0	mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram

Surrogate % Recovery of Trifluorotoluene =

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct 10, 1995 Date

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Oct 3, 1995 Date Analyzed: Oct 4, 1995

1:

TPHgas & BTEX TPHdiesel

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW2-5

LAB ID:

ST95-09-1863A TPHgas & BTEX

ST95-09-1864A TPHdiesel

Matrix:

Soil

Dilution:

.

	Detection					
Name	Amount	Limit	Units			
Benzene	ND	0.005	mg/kg			
Toluene	ND	0.005	mg/kg			
Ethylbenzene	ND	0.005	mg/kg			
Xylenes	ND	0.005	mg/kg			
TPHgas	ND	1.0	mg/kg			
TPHdiesel	ND *	1.0	mg/kg			
Surrogate % Recovery of Trifluorotoluene =	59% **					

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm+ parts per million = mg/kg = miligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

- * TPHmotor oll was found to be present at 41 ppm.
- ** Low surrogate recovery due to matrix effect.

R. L. James, Principal Chemist

Oct 10, 1995

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY

(Certification No. 1814)

Analytical Laboratory DMslon Mobile Laboratory DMslon Scientific DMslon

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

Date Received: Date Analyzed:

Date Analyzed:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Oct 4, 1995 Oct 6, 1995

TPHgas & BTEX TPHdiesel

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW2-20

LAB ID:

ST95-09-1868A TPHgas & BTEX

ST95-09-1869A TPHdiesel

Matrix:

Soil

Dilution: 1:

	Detection					
Name	Amount	Limit	Units			
Benzene	ND	0.005	mg/kg			
Toluene	ND	0.005	mg/kg			
Ethylbenzene	ND	0.005	mg/kg			
Xylenes	ND	0.005	mg/kg			
TPHgas	ND	1.0	mg/kg			
TPHdiesel	ND	1.0	mg/kg			
Surrogate % Recovery of Trifluorotoluene =	88%					

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 10, 1995

Date

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 28, 1995

Geocon Environmental

Date Received: Sep 28,

Sep 28, 1995

3235 Sunrise Blvd., Suite 6

Date Analyzed: Oct 4, 1995

TPHgas & BTEX

Rancho Cordova, CA 95742

Date Analyzed:

Oct 6, 1995

TPHdiesel

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

ST95-09-1872A TPHgas & BTEX

ST95-09-1873A TPHdiesel

Client ID: Matrix:

Soil

MW5-5

LAB ID: Dilution:

1:

1

		•	
		Detection	
Name	Amount	Limit	Units
Benzene	ND	0.005	mg/kg
Toluene	0.020	0.005	mg/kg
Ethylbenzene	0.028	0.005	mg/kg
Xylenes	0.088	0.005	mg/kg
TPHgas	1.6	1.0	mg/kg
TPHdiesel	ND •	1.0	mg/kg
Surrogate % Recovery of Trifluorotoluene =	58% **		

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

- * TPHmotor oil was found to be present at 20 ppm.
- ** Low surrogate recovery due to matrix effect.

A. L. James, Principal Chemist

Oct 10, 1995 Date

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY.

(Certification No. 1614)

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Date Received:

Date Analyzed:

Date Analyzed: Oct 6, 1995

Sep 28, 1995 Oct 5, 1995 TPHgas & BTEX

TPHdiesel

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Sep 28, 1995

Client ID:

MW5-10

LAB ID:

ST95-09-1875A TPHgas & BTEX

ST95-09-1876A TPHdiesel

Matrix:

Soil

Dilution: 1: 1

	Detection					
Name	Amount	Limit	Units			
Benzene	ND	0.005	mg/kg			
Toluene	ND	0.005	mg/kg			
Ethylbenzene	ND	0.005	mg/kg			
Xylenes	ND	0.005	mg/kg			
TPHgas	ND	1.0	mg/kg			
TPHdiesel	ND	1.0	mg/kg			
Surrogate % Recovery of Trifluorotoluene =	91%					

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct 10, 1995

8020/8015 Modified Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Date Received:

Date Analyzed: Date Analyzed: Sep 28, 1995 Sep 28, 1995

Oct 3, 1995

TPHgas & BTEX

Oct 6, 1995

TPHdiesel

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW5-20

LAB ID:

ST95-09-1880A TPHgas & BTEX

ST95-09-1881A TPHdiesel

Matrix:

Soil

Dilution:

1:

	Detection				
Name	Amount	Limit	Units		
Benzene	ND	0.005	mg/kg		
Toluene	ND	0.005	mg/kg		
Ethylbenzene	ND	0.005	mg/kg		
Xylenes	ND	0.005	mg/kg		
TPHgas	ND	1.0	mg/kg		
TPHdiesel	ND	1.0	mg/kg		
Surrogate % Recovery of Trifluorotoluene =	62% *				

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 10, 1995

Date

^{*} Low surrogate recovery due to matrix effect.

8020 Modified Matrix Spike (MS) & Matrix Spike Duplicate (MSD) BTEX Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled: Sep 28, 1995

Date Received:

Sep 28, 1995

Date Analyzed:

Oct 3, 1995

Project ID:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MS/MSD

LAB ID:

ST95-09-1875A MS

ST95-09-1875A MSD

Matrix:

Soil

Dilution:

Conc. Spike Added	Sample Result	MS Result	MSD Result	Units	MS % Recovery	MSD % Recovery	% RPD Recovery
30 ppb	ND	22	26	ug/kg	73%	87%	17%
30 ppb	ND	20	25	ug/kg	67%	83%	22%
30 ppb	ND	22	26	ug/kg	73%	87%	17%
30 ррв	ND	22	25	ug/kg	73%	83%	13%
ecovery of Trifly	iorotolueni	a —	62%	MS	73%	MSD	
	30 ppb 30 ppb 30 ppb 30 ppb 30 ppb	Spike Added Result 30 ppb ND 30 ppb ND 30 ppb ND 30 ppb ND 30 ppb ND	Spike Added Result Result 30 ppb ND 22 30 ppb ND 20 30 ppb ND 22	Spike Added Result Result Result 30 ppb ND 22 26 30 ppb ND 20 25 30 ppb ND 22 26 30 ppb ND 22 25 30 ppb ND 22 25	Spike Added Result Result Result Units 30 ppb ND 22 26 ug/kg 30 ppb ND 20 25 ug/kg 30 ppb ND 22 26 ug/kg 30 ppb ND 22 25 ug/kg	Spike Added Result Result Result Units Recovery 30 ppb ND 22 26 ug/kg 73% 30 ppb ND 20 25 ug/kg 67% 30 ppb ND 22 26 ug/kg 73% 30 ppb ND 22 25 ug/kg 73%	Spike Added Result Result Result Units Recovery Recovery 30 ppb ND 22 26 ug/kg 73% 87% 30 ppb ND 20 25 ug/kg 67% 83% 30 ppb ND 22 26 ug/kg 73% 87% 30 ppb ND 22 25 ug/kg 73% 83%

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g = micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 10, 1995

DATE

8020 Modified Laboratory Control Spike (LCS) & Laboratory Control Spike Duplicate (LCSD) BTEX Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Sep 28, 1995

Date Received: Date Analyzed:

Sep 28, 1995 Oct 3, 1995

Project ID:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

LCS/LCSD

LAB ID:

ST95-10-003 LCS

ST95-10-003 LCSD

Matrix:

Soil

Dilution:

Name	Conc. Spike Added	Sample Result	LCS Result	LCSD Result	Units	LCS % Recovery	LCSD % Recovery	% RPD Recovery
Benzene	30 ppb	ND	33	28	ug/kg	110%	93%	16%
Toluene	30 ppb	ND	32	28	ug/kg	107%	93%	13%
Ethylbenzene	30 ppb	ND	33	26	ug/kg	110%	87%	24%
Xylenes	30 ppb	ND	33	28	ug/kg	110%	93%	16%
Surrogate % R	88%	LCS	100%	6 LCSD				

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parta per million = ug/g = micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 10, 1995

Date Reported

8015 Modified Matrix Spike (MS) & Matrix Spike Duplicate (MSD) **TPHdiesel Analysis Report**

Attention:

Mr. Rick Walls

Date Sampled:

Sep 28, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 3, 1995

Project ID:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MS/MSD

LAB ID:

ST95-09-1794A MS ST95-09-1794A MSD

Matrix:

Soil

Dilution:

Name	Conc. Spike Added	Sample Result	MS Result	MSD Result	Units	MS % Recovery	MSD % Recovery	% RPD Recovery
TPHdiesel	15 ppm	ND	14	14	mg/kg	93%	93%	0%

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH6-5

LAB ID:

ST95-09-1769A

Matrix:

Soil

Dilution:

1

1:

Name		Reporting	
	Amount	Limit	Units
Oil & Grease	80	50	mg/kg

ppb # parts per billion # ug/kg # microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Sep 26, 1995

Date Received:

Sep 28, 1995

Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH6-10

LAB ID:

ST95-09-1772A

Matrix:

Soil

Dilution:

1:

Name	Amount	Reporting Limit	Units
Oil & Grease	65	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH6-20

LAB ID:

ST95-09-1777A

Matrix:

Soil

Dilution:

1

1:

		Reporting	
<u>Name</u>	Amount	Limit	Units
Oil & Grease	ND	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligrain per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH5-10

LAB ID:

ST95-09-1782A

Matrix:

Soil

Dilution:

.

1:

Name	Amount	Reporting Limit	Units
Oil & Grease	ND	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH5-20

LAB ID:

ST95-09-1787A

Matrix:

Soil

Dilution:

1:

Name	Amount	Reporting Limit	Units
Oil & Grease	ND	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

NO = Not Detected | Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hagenberger

Client ID:

BH1-15

LAB ID:

ST95-09-1791A

Matrix:

Soil

Dilution:

1:

		Reporting		
Name	Amount	Limit	Units	_
Oil & Grease	ND	50	mg/kg	

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kitogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH1-20

LAB ID:

ST95-09-1795A

Matrix:

Soil

Dilution:

1

1:

Name	Amount	Reporting Limit	Units
Oil & Grease	ND	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per grain

ppm= parts per million = ing/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH3-5

LAB ID:

ST95-09-1799A

Matrix:

Soil

Dilution:

1:

Name		Reporting	
	Amount	Limit	Units
Oil & Grease	80	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742

Oct 5, 1995 Date Analyzed:

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH3-10

LAB ID:

ST95-09-1802A

Matrix:

Soil

Dilution:

1:

		Reporting	
Name	Amount	Limit	Units
Oil & Grease	ND	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per grain

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected | Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH3-20

LAB ID:

ST95-09-1807A

Matrix:

Soil

Dilution:

1:

Name		Reporting	
	Amount	Limit	Units
Oil & Grease	ND	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH4-10

LAB ID:

ST95-09-1812A

Matrix:

Soil

Dilution:

1:

Reporting Name **Amount** Limit Units Oil & Grease 50 55 mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Delected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Project #:

Client ID:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742

S8100-06-34 (CT53W202)

Project Name:

BH4-20

Matrix:

Soil

Date Sampled:

Date Received:

Date Analyzed:

Sep 26, 1995

Sep 28, 1995

Oct 5, 1995

Hegenberger

LAB ID:

ST95-09-1817A

Dilution:

1

1:

		Reporting	porting	
Name	Amount	Limit	Units	
Oil & Grease	ND	50	mg/kg	

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH2-10

LAB ID:

ST95-09-1822A

Matrix:

Soil

Dilution:

1

1:

Name	Amount	Reporting Limit	Units
Oil & Grease	ND	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received: Date Analyzed: Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

BH2-20

LAB ID:

ST95-09-1827A

Matrix:

Soil

Dilution:

1

1:

Mara	A	Reporting		
Name	Amount	Limit	Units	
Oil & Grease	ND	50	mg/kg	

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW4-5

LAB ID:

ST95-09-1831A

Matrix:

Soil

Dilution:

1

1:

Name	Amount	Reporting Limit	Units	
Oil & Grease	ND	50	mg/kg	

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection land.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW4-10

LAB ID:

ST95-09-1834A

Matrix:

Soil

Dilution:

1

1:

		Reporting	
Name	Amount	Limit	Units
Oil & Grease	75	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parls per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Sep 27, 1995

Date Received:

Sep 28, 1995

Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW4-15

LAB ID:

ST95-09-1838A

Matrix:

Soil

Dilution:

1

1:

Name	Amount	Reporting Limit	Units
Oil & Grease	75	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg # milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

Date Received: Date Analyzed:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW1-10

LAB ID:

ST95-09-1844A

Matrix:

Soil

Dilution:

1

1:

		Reporting		
Name	Amount	Limit	Units	
Oil & Grease	ND	50	mg/kg	

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection lamb

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW1-20

LAB ID:

ST95-09-1849A

Matrix:

Soil

Dilution:

1

1

Mana		Reporting	
Name	Amount	Limit	Units
Oil & Grease	ND	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Sep 27, 1995

Date Received:

Sep 28, 1995

Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW3-8

LAB ID:

ST95-09-1853A

Matrix:

Soil

Dilution:

1:

1

Name	Amount	Reporting Limit	Units
Oil & Grease	ND	50	mg/kg

ppb = parts per billion = ug/kg < microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW3-10

LAB ID:

ST95-09-1856A

Matrix:

Soil

Dilution:

1:

1

		Reporting		
Name	Amount	Limit	Units	_
Oil & Grease	ND	50	mg/kg	

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million ≃ ug/g ≃ microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

Date Received: Date Analyzed:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW3-20

LAB ID:

ST95-09-1861A

Matrix:

Soil

Dilution:

1

1:

Name			
	Amount	Limit	Units
Oil & Grease	ND	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Sep 27, 1995

Date Received: Date Analyzed: Sep 28, 1995 Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW2-5

LAB ID:

ST95-09-1865A

Matrix:

Soil

Dilution:

1:

1

		Reporting	
Name	Amount	Limit	Units
Oil & Grease	75	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kitogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 27, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: O

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW2-50

LAB ID:

ST95-09-1870A

Matrix:

Soil

Dilution:

1:

1

L.	•	Reporting	41.5
Name	Amount	Limit	Units
Oil & Grease	ND	50	mg/kg

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limits

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 28, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW5-5

LAB ID:

ST95-09-1874A

Matrix:

Soil

Dilution:

1:

1

		Reporting		
Name_	Amount	Limit	Units	
01100		50		
Oil & Grease	60	50	mg/kg	

ppb = parts per billion = ug/kg = microgram per kitogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 28, 1995

Geocon Environmental

Date Received: Date Analyzed: Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW5-10

LAB ID:

ST95-09-1877A

Matrix:

Soil

Dilution:

1

1:

 Name
 Amount
 Reporting Limit
 Units

 Oil & Grease
 65
 50
 mg/kg

ppb = perts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Sep 28, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Oct 5, 1995

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MW5-20

LAB ID:

ST95-09-1882A

Matrix:

Soil

Dilution:

1

1:

Name	Amount	Reporting Limit	Units	
Oil & Grease	ND	50	mg/kg	

ppb = parts per billion = ug/kg = microgram per kilogram

ppm= parts per million = ug/g = microgram per gram

ppm= parts per million = mg/kg = milligram per kilogram

ND = Not Detected | Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 10, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742

Project #: S8100-06-34 (CT53W202)

Project Name:

Date Sampled:

Date Received:

Date Analyzed:

Hegenberger

Sep 26, 1995

Sep 28, 1995

Oct 4, 1995

Client ID: BH6-10

LAB ID:

ST95-09-1773A

Matrix:

Soil

Dilution:

	Reporting			
Name	Amount	Limit	Units	
Organic Lead	ND	5.0	mg/kg	

ppb = parts per billion = ug/kg = micrograms per kilogram ppm= parts per million = ug/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Sampled:

Date Received: Date Analyzed: Sep 26, 1995 Sep 28, 1995

Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: BH6-20

LAB ID:

ST95-09-1778A

Matrix:

Soil

Dilution:

Reporting Name Amount Limit Units Organic Lead ND 5.0 mg/kg

ppb = parts per bilion = ug/kg = micrograms per kilogram ppm= parts per million = ug/g= micrograms per gram

NO = Not Detected. Compound(s) may be present at concentrations below the reporting limit

A. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Sampled:

Sep 26, 1995

Date Received:

Sep 28, 1995

Date Analyzed:

Oct 4, 1995

Project #: \$8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: BH5-10

LAB ID:

ST95-09-1783A

Matrix:

Name

Organic Lead

Soil

Dilution:

Reporting Limit Units 5.0 mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = vg/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit

Amount

ND

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental 3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Sep 26, 1995

Date Received:

Sep 28, 1995

Date Analyzed: Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: BH5-20

LAB ID:

ST95-09-1788A

Matrix:

Name

Organic Lead

Soil

Dilution:

Reporting Amount Limit Units 5.0 mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit.

ND

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental 3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Sep 26, 1995

Date Received:

Sep 28, 1995

Date Analyzed:

Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: BH1-15

LAB ID:

ST95-09-1792A

Matrix:

Name

Organic Lead

Soil

Dilution:

Reporting Limit Units 5.0 mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g= micrograms per gram
ND = Not Detected. Compound(s) may be present at concentrations below the reporting limits

Amount

ND

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental 3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Date Received:

Sep 26, 1995 Sep 28, 1995

Date Analyzed:

Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: BH1-20

LAB ID:

ST95-09-1796A

Matrix:

Soil

Dilution:

	Reporting		
Name	Amount	Limit	Units
Organic Lead	ND	5.0	mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Sampled:

Sep 26, 1995

Date Received:

Sep 28, 1995

Date Analyzed:

Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: BH3-10

LAB ID:

ST95-09-1803A

Matrix:

Soil

Dilution:

,		Reporting	
Name	Amount	Limit	Units
Organic Lead	ND	5.0	mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram
ppm= parts per million = ug/g= micrograms per gram
ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Sampled: Date Received: Sep 26, 1995 Sep 28, 1995

Date Analyzed:

Oct 4, 1995

Project #: \$8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: BH3-20

LAB ID:

ST95-09-1808A

Matrix:

Soil

Dilution:

Name	Amount	Limit	Units
Organic Lead	ND	5.0	mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram ppm= parts per million = ug/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit.

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Sampled:

Sep 26, 1995

Date Received: Date Analyzed:

Sep 28, 1995 Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: BH4-10

LAB ID:

ST95-09-1813A

Matrix:

Soil

Dilution:

		Reporting	ng	
Name	Amount	Limit	Units	
Organic Lead	ND	5.0	mg/kg	

ppb = parts per billion = ug/kg = micrograms per kilogram ppm= parts per million = ug/g= micrograms per gram
ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Sep 26, 1995

Date Received: Date Analyzed:

Sep 28, 1995

Oct 4, 1995

Project #: \$8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: BH4-20

LAB ID:

ST95-09-1818A

Matrix:

Soil

Dilution:

Reporting Name Amount Limit Units Organic Lead ND 5.0 mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram ppm= parts per million = ug/g= micrograms per gram ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit.

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Sampled:

Sep 26, 1995

Date Received:

Sep 28, 1995

Date Analyzed:

Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: BH2-10

LAB ID:

ST95-09-1823A

Matrix:

Soil

Dilution:

Reporting Units Name **Amount** Limit 5.0 Organic Lead ND mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram ppm= parts per million = ug/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit.

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742

Project #: S8100-06-34 (CT53W202) -

Client ID: BH2-20

Matrix: Soil Date Sampled:

Date Received:

Date Analyzed:

Sep 26, 1995

Sep 28, 1995

Oct 4, 1995

Project Name:

Hegenberger

ST95-09-1828A

Dilution:

LAB ID:

Name	Amount	Reporting Limit	Units
Organic Lead	ND	5.0	mg/kg

ppb = parts par billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g= micrograms per gram

NO = Not Detected. Compound(s) may be present at concentrations below the reporting limit

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Sampled:

Sep 27, 1995

Date Received: Date Analyzed: Sep 28, 1995

Di

Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: MW4-10

LAB ID:

ST95-09-1835A

Matrix:

Soil

Dilution:

Name Amount Reporting
Limit Units

Organic Lead ND 5.0 mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit

R. L. James, Principal Chemist

Oct 4, 1995 Date Reported

Data Hepone

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Project #: S8100-06-34 (CT53W202)

Client ID: MW4-15

Matrix: Soil Date Sampled:

Date Received:

Date Analyzed:

Sep 28, 1995 Oct 4, 1995

Sep 27, 1995

Hegenberger

Project Name:

LAB ID:

ST95-09-1839A

Dilution:

Reporting Name Amount Limit Units Organic Lead ND 5.0 mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram ppm= parts per million = ug/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Date Received: Date Analyzed:

Sep 27, 1995

Sep 28, 1995 Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: MW1-10

LAB ID:

ST95-09-1845A

Matrix:

Soil

Dilution:

		Reporting	•
Name	Amount	Limit	Units
Organic Lead	ND	5.0	mg/kg

ppb = parts per bitkon = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit.

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742

Project #: S8100-06-34 (CT53W202)

Client ID: MW1-20

Matrix: Soil Date Sampled:

Date Received:

Date Analyzed:

Sep 27, 1995

Sep 28, 1995

Oct 4, 1995

Project Name:

Hegenberger

ST95-09-1850A

Dilution:

LAB ID:

Name	Amount	Reporting Limit	Units
Organic Lead	ND	5.0	mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram ppm= parts per million = ug/g= micrograms per gram
ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Sampled:

Sep 27, 1995

Date Received: Date Analyzed:

Sep 28, 1995 Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: MW3-10

LAB ID:

ST95-09-1857A

Matrix:

Soil

Dilution:

		Reporting	
Name	Amount	Limit	Units
Organic Lead	ND	5.0	mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram ppm= parts per million = ug/g= micrograms per gram

ND = Not Delected. Compound(s) may be present at concentrations below the reporting limit.

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Sep 27, 1995

Date Received:

Sep 28, 1995

Date Analyzed:

Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: MW3-20

LAB ID:

ST95-09-1862A

Matrix:

Soil

Dilution:

		Reporting	
Name	Amount	Limit	Units
Organic Lead	ND	5.0	mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram ppm= parts per million = ug/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit.

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental 3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Sep 27, 1995 Sep 28, 1995

Date Received: Date Analyzed:

Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: MW2-5

LAB ID:

ST95-09-1866A

Matrix:

Soil

Dilution:

		Reporting	
Name	Amount	Limit	Units
Organic Lead	ND	5.0	mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit.

R. L. James, Principal Chemist

Oct 4, 1995
Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental 3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Sep 27, 1995

Date Received:

Sep 28, 1995

Date Analyzed:

Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: MW2-20

LAB ID:

ST95-09-1871A

Matrix:

Name

Soil

Dilution:

Reporting Limit Units

Organic Lead

ND

Amount

5.0

mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit.

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental

Project #: S8100-06-34 (CT53W202)

3235 Sunrise Blvd., Suite 6

Date Sampled:

Sep 28, 1995

Date Received: Date Analyzed: Sep 28, 1995 Oct 4, 1995

Rancho Cordova, CA 95742

Project Name:

Hegenberger

Client ID: MW5-10

LAB ID:

ST95-09-1878A

Matrix:

Soil

Dilution:

		Reporting	
Name	Amount	Limit	Units
Organic Lead	ND	5.0	mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit.

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead DOHS LUFT Analysis Report

Attention: Mr. Rick Walls

Geocon Environmental 3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Sep 28, 1995

Date Received: Date Analyzed:

Sep 28, 1995

Oct 4, 1995

Project #: S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID: MW5-20

LAB ID:

ST95-09-1883A

Matrix:

Name

Organic Lead

Soil

Dilution:

Reporting Limit Units 5.0 mg/kg

ppb = parts per billion = ug/kg = micrograms per kilogram ppm= parts per million = ug/g= micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the reporting limit.

Amount

ND

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

Organic Lead LUFT Method Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

Attention:

Mr. Rick Walls

Date Sampled:

Sep 26, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 4, 1995

Project ID:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

MS/MSD

LAB ID:

ST95-09-1773A MS

ST95-09-1773A MSD

Matrix:

Soil

Dilution:

Name	Conc. Spike Added	Sample Result	MS	MSD	Units	MS % Recovery	MSD % Recovery	% RPD Recovery
Organic Lead	25 ppm	ND	26	26	mg/kg	104%	104%	0%

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g = micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct. 4, 1995

Date Reported

Organic Lead LUFT Method Laboratory Control Spike (LCS) and **Laboratory Control Spike Duplicate (LCSD)**

Attention:

Mr. Rick Walls

Date Sampled:

Sep 28, 1995

Geocon Environmental

Date Received:

Sep 28, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed:

Oct 4, 1995

Project ID:

S8100-06-34 (CT53W202)

Project Name:

Hegenberger

Client ID:

LCS/LCSD

LAB ID:

ST95-10-004 LCS ST95-10-004 LCSD

Matrix:

Soil

Dilution:

Name	Conc. Spike Added	LCS	LCSD	Units	LCS % Recovery	LCSD % Recovery	% RPD Recovery
Organic Lead	25 ppm	26	26	mg/kg	104%	104%	0%

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g = micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 4, 1995

Date Reported

SP	ARGI TEC	HNC	DLOG	Υ, Ι	NC). 				•)										io		RE	CC	H	5			ì		•	الله الرابع الرابع		``	<u>, </u>
Ana	ılytical Labora	atory							Pho	ne: (9	916)	362-8	947		,	C.	0.0	C. I	No.	. 1	.1.	15	4									4	, 5	57	\mathcal{G}	;
	Fite Circle, #112 Sac			27					F	AX: (9	16)	362-0	947			Pag	ge_	L.		f	<u> </u>					5	STA	L In	voic	e,Ni	umb	ег:	N.		./	
Com	pany: GEOCOI	N					Pho	ne:	8	52-	91	18				İ							A	NA	LYS	IS R	EQI	UES	·Τ	7						
Projec	t Manager: Rick	Wal	1s	•			F/	۸٧-	8	52-	91	32	4 ₹ [™] }		≱1 .′ (=5, =	DE	ΜΔΙ	SKS	e c	CA	上丁	RA	<u>ک</u>	<u> </u>	53	40	202	2_		Sai	mole	or'e f	Vam	<u>. </u>		i
	t Address:			Billing	Nan	ne & A			60	2+0	ek	R.	c.k	4304	uls	7.	TA	9-	876	x t	40	95)	ı	4	Or	90.	1	ock	,		بر 4س		10111	٥.		
. 3	235 sunris		vđ. #	6					OR	I	O,	M	D DA	HEI	AΔ	2.	17	D <i>H</i> 1	عنده	ul	<i>-</i> 90 '∧'	o) 6) (/# n_	۸۱.		1		(09	72)				t E A	-A	:	
R	ancho Cord	ova,	CA 9	574	12				43	H .	Any	O.	کے ز	par	ے د	3.		PH	22.	201	07	6,1	(-)		.ll	Nic	ne	i Çn	me	"	700	' ~_ '		~		
Projec	d Name:					Proje	ct/ lo	h#·	-		٧					ł									·K		κ)K	⊢ _v	/FTC	STLO	<u> </u>			
riojec	t Name: Hegenbe	ergé	r			Proje	0000	5	81	00-	-06	-34	1			Co	oler	Tem	np.				°C					<u> </u>	113				-/-	l		
Projec	t Location:		*				P.C									Sample Condition															TC	LP		l		İ
1 10,00		land	, CA						3W	202	: –	Ca	11t	rai										10												
					Preservative . TCLP																			To	tal	***										
		San	pling		Co	ntair	ner	•	!	Jsed			M	atrix																				TAT		
																	45	115)					,												(342)	
						<u> </u> 											VTPHgay (602/8020/8015)(96/95)	ol/Kerosene(8015)			8				8		}				Zu)				(72hr / 48hr / 24hr / 12hr)	
			l	ł													15)	989			205/	٠.			4	. 		1			Z				24	
	<u>-</u> · · · /									İ							86	Ke	4		98)/				6	4	2				9			i	8hr/	
																E	800	5	82		tick tick	3.3	2		252	표	0				ا ت				11/4	rsh.
								_	•			*			3	(602/8020)503.	8	T T	502		Pes	ğ	524.	525	986	Ę	`			_	g			į	(724	P P
ļ				_	ş	풀	stic	Chill	/ICE	.					DEPTH	88	6	Ē	9	8	88	8	240/	270/	Gre	80	(\$\displays			etal	tals			į	ces	eke
				Š	Slea	ğ	L P	7	SS I						[905	[[[8	828	98/8	98/8	24/8	25/8	S S	olar) - -		3	7	₩			ard D	Services	yw
	SAMPLE ID	0-4-	Time	40 mL VOA	Brass Sleeve	L amber bottle	250 mL Plastic	Other:	-ICI/HN03/ICE	None	Olher	Water	Sol	Air	Other:	втех	(<u>ŭ</u>	PHdlese/TPHmotor	EPA 601/8010/502.2/504	EPA 602/8020	EPA 608/8080 (Pesticides)/505/508	EPA 608/8080 (PCB'S)	EPA 624/8240/524.2	EPA 625/8270/525	Total Oll & Grease (5520)	Non-Polar O & G/TRPH (418.1)	Organic Lead	ᅙ	404	CAM-17 Metals	CAM-5 Metals (Cd.	ead		Standard	Rush	Holiday/Weekend Rush
NO. 1		9/24	0933	•	X	4	Š.	9	x	2	2	5	S	×	6	<u> </u>	1 4	V	l W	l W	<u>u</u>	ш	11J	Ш	¥	Z	0/	<u> </u>	 , 	Ü	Ö	<u>ر تا</u>		X	<u>«</u>	エ
2	BH6-10	1166	0945	\vdash	^			1		\dashv	^		<u>^</u>		11	┢		Y	╁						~		X		\vdash	H		H		<u> </u>	\vdash	H
3	BH6-15		1000		\vdash								\vdash		16	-	_	1	-	 					_				3			Н		+		H
4	BH6-20		1005								+		1		21		X	X							X		X		42					+		
5	BH5-5		1045	 							\top				Ç	† -				-							_		3	П				十		
6	BH5-10		10.50.								1				11		×	X							X		メ		1324					\top		
7	BH5-15		1058												16													-	(3)					1		
В	BH5-2		1/05					\sqcap		1	1		1		21	 	X	X	İ						χ		X							1		
9	8H1-1615	31/2								ļ			1.		16			X	•		ļ				X.		X	,						1.		
10	B41-70	V	1155		٧			Ψ			V		Y		21		X.	1							Ĺ		入	-						4		
Reling	guished by:					Rec	eive	d by:	A	2						Rei	ingu	shed	d by:							Rec	eive	d by:	:							
Date:	4	Time:	1410			Date	e:_	9/2	8/4	+-1	Tim	e: /	4:	10,	P*1*	Dat	e:	1				Tim	e :			Dat	e:						Time	e:		

SPA	ARGE TEC	HNC	LOG	Υ, Ι	NC																JS			RE	C	R	J-	}				ر. اد		ニ	P	,
Ana	alytical Labora	atory							Pho	ne: (9	916) :	362-8	947			C.	0.0	2. 1	١o.	1	11	5	b										ند	, , ,	, 	,
	Fite Circle, #112 Sac	-	, CA 95 <u>82</u>	7					F	AX: (9	916) :	362-0	947			Pag	je _	<u> </u>	_ 0	<u>f</u>	5									<u>e Νι</u>	umb	<u>ег:</u>	``.			
Com	pany: Geocoi	n.	 -				Pho	ne:		852	-9	118	} .	,									Α	NAI	YS	SR	EQI	JES	<u>T</u>							
Projec	t Manager: Rick	Wal:	ls				FA	AX:		852	-9	132	?			RE	MAI	RKS	: : \$	u	٦	9	Ì							Sar	nple	r's l	Vam	e:		
	t Address: 3235 Sunr Rancho Co:	ise !	Blvd.	#€	5	ne & A								٠						-		,		A		No	ne	So	me		AW 100		EA.	۵		
Oroina	nt Name: /	·	···		-	Proje	ct/.lo	in#·						_										Ö		O		1	K	W	/ET(S	STL	2)			
Projec	t Name: Hegen	berg	er			Proje		"SE	310	0-0)6 <i>-</i>	34				Co	oler	Tem	p.				°C	-												
Projec	ct Location: Oakl		C N				P.C	D.#:	53	พวก	12	_ c	:a1	tra	ns	Sar	nple	Co	nditi	on										9 9	TC	LP	<u>.</u>			,
0,0	Vaki	amu,	CA													рΗ									٠.									ĺ		
									Pres	serva	ıtive						,					TC	LP				,				To	tal				
		San	pling		Co	ntair	ner			Jsed	1		M	atrix		<u> </u>	1	3	<u> </u>	<u> </u>															TAT	
Ž.	SAMPLE ID	Date	Time	40 mL VOA	Brass Sleeve	1 L amber bottle	250 mL Plastic	Other:	HCI/HNO3/ICE	None	Other: All	Water	Soil	Air	Other: Apt	BTEX (602/8020)503.1	RIEXTPHgas (602/8020/8015 99/95)	TPHdiasaMPHmotor oliverosene(8015)	EPA 601/8010/502.2/504	EPA 602/8020	EPA 608/8080 (Pesticides)/505/508	EPA 608/8080 (PCB'S)	EPA 624/8240/524.2	EPA 625/8270/525	Total Oil & Greasa (5520) 4 59	Non-Polar O & G/TRPH (418.1)	Organic Lead) . #92	RCI	406	CAM-17 Metals	CAM-5 Metals (Cd, Cr, Pb. Ni, Zn)	Lead		Standard	Rush Services (72hr / 48hr / 24hr / 12hr)	Holiday/Weekend Rush
1	BH3-5	9/26	A35		X						X		X		6		X	X							X		<u> </u>							<u>*</u>		
2	BH3-10		1340		1						1_		1	<u> </u>	//		X	X							X		X				<u> </u>	<u> </u>		1	<u> </u>	<u> </u>
3	B#3-15		1345	<u> </u>	Ц	<u> </u>	<u> </u>		<u> </u>					ļ	16	二												_	Ø	<u> </u>		<u> </u>	<u> </u>	\coprod	<u> </u>	
4	BH3-20		1350	ļ	11	<u> </u>									24		X	X	ļ	<u> </u>		<u> </u>			X		X		-	ــــ	ļ	<u> </u>	<u> </u>	#-		<u> </u>
5	BH4-5		1420	<u> </u>		ļ		-	ļ			ļ			5	匚			 	-	-								Ø	⊢	-	↓ _	ـــ	╀	 	
6	BH4-10		1425	ĭ	 	!		<u> </u>	<u> </u>		1	<u> </u>			//	↓_	X	<u> </u>	-	<u> </u>	<u> </u>				X	<u> </u>	X		 _	├-	 	├—	├	₩	-	<u> </u>
7	544-15		1430	7		!		<u>i</u> —	 			<u> </u>	-	-	16	<u> </u>	1		1			<u> </u>							@	├		\vdash	\vdash	₩	-	1
8	BH4-20		1435	¥		1		-	<u> </u>	ļ <u>-</u>		_][<u> </u>	2.,		ኦ	X	<u> </u>	-		1			X		7		_	 	1	<u> </u>	-	₩	1	
9	BH2-5	-	1515	↓_	1		!	<u> </u>	<u> </u>		.	-	V	-	5	-	-	1		1							,	T	3	 	1	-		-		
10 Reim	B42-10 iguished by: - 22 K	I	1520	<u> </u>	¥		OIVO	d by			!	<u> </u>	<u> </u>	!	<u> </u>	Rel	ingu		d by:		1	<u> </u>	<u>i</u>		٨		ceive	d by	:						<u> </u>	
Date	01-0101									15	Tim	ne: [4-	10		Da	te:					Tirr	ie:			Dat	te:						Tim	1e:		

SPA	ARGE TEC	HNC	DLOG	Υ, Ι	NC). 				• •						4	AH							RE	CC)R)	•					, -			,
Ana	ılytical Labor	atory							Pho	ne: (9	916) 3	62-8	947			C.	0.0). N	۷o.	1	.1,	L5	7									1	, 5	57	B ,	
	Fite Circle, #112 Sac		, CA 9582	7					F	4X: (9	16) 3	62-0	947			Pa	ge _	3	_ 0	f	<u>5</u>					S	TAL	_ Inv	voic	e Nı	umb	er:	``			
Com	pany: GEOC	ON					Pho	ne:	1	352	-91	18	A., .		- , - 4								A	NA	YS	S R	EQL	JES	T	,						
Projec	t Manager: Rick		ls				F	AX:		352						RE	MAF	RKS		iu	1	J _A	1							Sar	nple	r's N	۷am	e:		
	t Address: 3235 Sun Rancho C	rise	Blvd	. #	6	ne & A 42	Addre	ess:														1		Α	<u> </u>	No	ne	So	me	1	No) つべ	HE	ΆÀ		
Projec	t Name:					Proje	ct/Jo	b#:																0		0			K	V	/ET(8	STL(2)			
•	Hegen	berge	er					\$8	10	0-0	6-3	34				Со	oler	Tem	p.				°C													
Projec	t Location: Oak 1	kland, CA PO#: Caltrans - 53W202 Sample C										Со	nditi	on											TC	LP										
		Kiana, Ca										рΗ							٠.																	
	,	1							Pres	erva	tive						1	\sim	1			TC	LP						;		Tot	tal				
		San	pling		Co	ntair	ner	ì	- (jsed	_	ì	Ma	atrix		<u> </u>	\bigcirc	<u>ঙ</u>									-							<u> </u>	TAT	
NO.	SAMPLE ID	Date	Time	40 mL VOA	Brass Sleeve	1 L amber bottle	250 mL Plastic	Other:	HCI/HNO3/ICE	None	Other: 🐉 : :	Water	Soil	Air	Other: Deale	BTEX (602/8020)503.1	ALEXTPH985/1602/8020/8015) (90/9)	TPHdieseyTPHmotor oll/kerosene(8015)	EPA 601/8010/502.2/504	EPA 602/8020	EPA 608/8080 (Pesticides)/505/508	EPA 608/8080 (PCB'S)	EPA 624/8240/524.2	EPA 625/8270/525	Total Oil & Grease (5520) (PP)	Non-Polar O & G/TRPH (418.1)	Organic Lead) (92)	RCI	70704	CAM-17 Metals -	CAM-5 Metals (Cd, Cr, Pb, Ni, Zn)	Lead	•	Slandard	Rush Services (72hr / 48hr / 24hr / 12hr)	Holiday/Weekend Rush
1	BH2-15	9/26	1525		X						X		X		16													1	8					X		
2	BH2-20	9/26	/530		X						ᄊ		Ľ		21		X	X							X		X							X.		
3					_							_					_			<u> </u>				_						7.01.				*		
4	MW4-5	9/27	0105		ᅕ						X		X		5.5	<u> </u>	1	X		<u> </u>		<u> </u>			X				Ø	9/হ	195					
5	MW4-10	 	0816	<u> </u>	1						11		+		11	ļ	X	X	<u> </u>			_			Χ		X		<u> </u>				<u> </u>	- -		
6_	MW4-15	_	0824								$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		_		16	<u> </u>	X	×				<u> </u>			X		X								,	
7	MW4-20		0832	1							$+\!\!\!\!+\!\!\!\!\!+$		_ _		2,	_	-}-	+	IM	9 -	×-	95-							\otimes		\vdash			-	,	
8	MW1-5	 	1015		- -						+		+		Ç	 													Ø		<u> </u>					
9	MU1-10	+	1025	4	+						\dashv		-}-		11	├	X	X	-			<u> </u>			Α.		X		_	ļ			 	₩		
10 Reliq	MUI-15 guishedby:	<u> </u>	<u>/035</u> 	<u> </u>	<u> </u>	j	eive	d by:			V		¥		16	Rei	ınguı	shec	by:		-		7			Rec	erve	d by:	(X)	L			<u></u>			
	9-28-95	Time:	1410			Date: 9/28/17 Time: 14-10																Tim	e:			Date	9:						Tim	 е:		

SP	ARGER TEC	HNO	OLOG	Υ, 7	NC															JS			RE	C)R	5						, 1 		0	`
Ana	alytical Labora	atory						Ph	one: (916)	362-8	3947			C.	0.0	۱ ٍ. د	٧o.	1	1.	L 5	8									ļ	ί 5, `	57	ď,	,
	Fite Circle, #112 Sac	_		27		÷			FAX: (947			Paç	ge_	4	_ 0	f	<u> </u>					5	TA	_ Inv	voic	e Nu	umb	er:	N .		.′	
Com	pany: 6E000	ب				1	hone:	۶.	52-	91	18											A	NA	YS	SR	EQI	JES	T							
Proje	ct Manager: Ruc	5 W	olls				FAX:	8	·52	- 9	1/3	2			RE	MAF	RKS	: {	iee	130	3 1								1			Nam			
Repo	rt Address: 35 SVwRiSi	: B	vd. ±	Billing ≠6	Nam	e & Ac	dress:														•								1	Αu	» N	100	RH	EΑZ	,
Ro	who brolov	a, C.	A 95	74	2										<u> </u>						į		A	li .	No	ne	So	me	1						
Proje	ct Name: //-	<u> </u>				Proiec	/Jab#:								i								Ó			K		K	W	/ET(STL	<u>C)</u>	\Box		-
	ct Name: Hegen ct Location: Oak Can	rper	gen			Projec		58	700	- 6	- 6	34	4		Cod	oler	Tem	p.				ů													
Proie	ct Location:		•				P.O.#:								Sar	mple	Со	nditi	on	·						- 1.			- 7	TC	LP				
, -	Ook Can	d	CA	-					534	V 2	02				рΗ						,					:		: 1						-	
								Pre	serva	ative								,			тс	LP							<u> </u>	To	tal				
		San	npling		Со	ntaine	er		Used	<u> </u>		Ma	atrix				3													ļ	<u> </u>			TAT	
NO.	SAMPLE ID	Date	Time	40 mL VOA	Brass Sleeve	1 L amber bottle	250 mL Plastic Other:	HCI/HNO3/ICE	None	Olher: CHIC	Water	Soil	Air	Other: Uchth	BTEX (602/8020)503.1	STEXTPH983 (602/8020/8015) (96/3	PHdiesayTPHmotor oil/kerosene(8015)	EPA 601/8010/502.2/504	EPA 602/8020	EPA 608/8080 (Pesticides)/505/508	EPA 608/8080 (PCB'S)	EPA 624/8240/524.2	EPA 625/8270/525	Total Oil & Grease 5520) (8%)	Non-Polar O & G/TRPH (418.1)	Organic Lead (92)	RCI	HOLD	CAM-17 Metals	CAM-5 Metals (Cd, Cr, Pb, Ni, Zn)	Lead		Standard	Rush Services (72hr / 48hr / 24hı / 12hr)	Holiday/Weekend Rush
1	}		1000		X		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			X		X		195		X	1	_		Ī			-	X		×							X		
2	MW3-8	1	1406		1					1		ı		7. 5		X	X							X											
3	4W3-10		1414											//		X	Y				,			X		X									
4	MW3-15		1425											16		_				-								(X)			<u></u>				
5	MW3-20		1430							Ш			1	2/		X								X		X									
6	MWZ-5	V	1600		V					V		V		6		X	X							X		X		B	I.	no k	-		V		
7 -	462-10-1	9/27	1605	_						<u> </u>	_	<u></u>	-	-	<u> </u>					<u> </u>	_								<u> </u> "						<u> </u>
8	MW2-15	9/27	1615		ኦ					X		X		14		- X	*		M	9-	۲۵ -	95	•	×		X		(\mathbf{x})					X		
9	MWZ- 20	9/27	1625		X		<u> </u>		<u> </u>	X	<u></u>	¥		21		×	X						<u> </u>	乂		<u> </u>		-			<u> </u>		X		
10					_		<u>- i </u>		<u> </u>		<u> </u>		!- .	1	_	-	-	<u> </u>	-	Ĭ		1							-		<u></u>	<u> </u>	-1€-		-
Relin	huished					Rece	ived b	1							Rei	ingui	shec	i by:	···		,		,,		Rec	eive	d by	:							
Date	9-28-95	Time:	1410	1		Date	9	/28/	行士	Tim	ne: /	4-	10		Dat	e:					Tim	le :			Dat	e:						Tim	e:		

SP	ARGER TEC	HNC	OLOG	Υ, Ι	INC).										ŀ								RE	C)R	D	•		i I		•	; ! L 1	■ ` -7-1	٠ ر	``
Ana	alytical Labora	atory							Phor	ne: (9	16) 3	362-8	947			C.	0.0	C. 1	٧o.	1	.1:	16	1									,	, 23	78	,	;
	Fite Circle, #112 Sac		, CA 9582	27					FA	X: (9	16) 3	362-0	947			Pag	ge _	<u>5</u>	_ 0	f	5					5	STA	L In	voic	e N	umb	er:	1		<u>./</u>	
Corr	npany: GE040	\sim					Phor			52-														NA	YS	IS A	EQ	UES	iT.							
	ct Manager: Ric 5	W							8	52.	- 4	13	· () · Z. *	4 13	1 314	RE	MAF	RKS		Sec	- 1	39	ı.							Sar	mple	er's N	Vamo	e:		
Repo	nt Address: .ろら SUNRISE	Bh	oc #	Billing 6	y Nan	ne & A	\ddre:	SS:																						Is	200	Mo	DE A	cA	δ	ļ
	ancho lordo				7 42	2										_					-			A	11	No	ne	So	me	-						ļ
Proie	ct Name: //	1 .				Proie	ct/Job	D#:					,											o			K	1)K	V	/ET(STLO	5)			
, .	ct Name: Hegen	serg	ır			Proje		5	8/0)O –	06	- 34	ć.			Cod	oler	Tem	p.				°C			_					_					
Proje	ct Location:	* * *							Co.							Sar	mple	Co	nditi	on				,							TC	LP				
	ct Location: Oct Conc	1, 6	14							34		_		_		рΗ						-	٠													
ı							•		Prese	ervat	ive						,		,			TC	LP				,				To	tal				
		San	pling	<u> </u>	Co	ntair	ner	_	U	sed	_		Ma	atrix				3,			ļ														TAT	
NO.	SAMPLE ID	Date	Time	40 mL VOA	Brass Sleeve	1 L amber bottle	250 mL Plastic	Other:	HCIVHNO3ACE	None	Other:	Water	Soil	Air	Other:	BTEX (602/8020)503.1	EXTPHGAS (602/8020/8015) (93/9)	PHdiesey TPH motor oil/kerosene (8015)	EPA 601/8010/502.2/504	EPA 602/8020	EPA 608/8080 (Pesticides)/505/508	EPA 608/8080 (PCB'S)	EPA 624/8240/524.2	EPA 625/8270/525	Total Oil & Grease(5520) (89)	Non-Polar O & G/TRPH (418.1)	Organic Leady (92)	٠.	thelat	CAM-17 Metals	CAM-5 Metals (Cd, Cr, Pb, Ni, Zn)	Lead		Standard	Rush Services (72hr / 48hr / 24hr / 12hr)	Holiday/Weekend Rush
1	MU5-5	1/28	0915		X						X		X		6		X	X					_		X		9							X		
2	MW5-10		0918												//		X	χ							X		X							X		
3	MUS-15		0925	L							Ш				16		<u> </u>												Ø					X		
4	MW5-20	¥	<u>ó933</u>		1			_			≰		V		۶ (۱		X	X	<u> </u>						X		У							X	\perp	
5								_									<u> </u>			-															\dashv	
6								\exists	_	_								<u> </u>									<u> </u>	-							\perp	
7			<u> </u>	 				_			\dashv							_																		
8			 	<u> </u>	 			_	_	_	=						-										<u> </u>									
9					-			_							<u>:</u>			-										<u> </u>					_			
10			<u> </u>	<u> </u>	<u> </u>	10.					二		Ţ	ŧ	•					į						_	<u> </u>	1.								
Heir	iguished by:					Hec	eivec			· · · · · · · · · · · · · · · · · · ·			1			Heli	ingui	snec	т ру :							Hec	eive	a by:	:					·····		
Date	9/28/95	Time:	1410)		Date	a:	4/2	8A3	r .	Time	e: K	4.	10		Dat	о.					Tim	æ.			Dat	a-						Time	a.		

November 2, 1995

Mr. Rick Walls Geocon Environmental 3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742

Dear Mr. Walls:

Enclosed is the report for the five (5) water samples. The samples were received at Sparger Technology Analytical Lab on October 12, 1995.

The samples were received in fifteen (15) 40 mL VOA vials and fifteen (15) 1 L amber bottles. The samples were transported and received under documented chain of custody and stored at four (4) degrees C until analysis was performed.

The report consists of the following sections:

- I. Sample Description
- II. Analysis Request
- III. Quality Control Report
- IV. Analysis Results

No problems were encountered with the analysis of your samples.

If you have questions, please feel free to call.

Sincerely,

R. L. James

Principal Chemist

I Sample Description

See attached Samples Description Information.

The samples were received under chain-of-custody.

II Analysis Request

The following analytical tests were requested:

<u>Lab ID</u>	Your ID	Analysis Description
ST95-10-758A	MW-5	TPHgas & BTEX
ST95-10-759A	MW-5	TPHdiesel/motor oil
ST95-10-760A	MW-5	Total Oil & Grease
ST95-10-761A	MW-3	TPHgas & BTEX
ST95-10-762A	MW-3	TPHdiesel/motor oil
ST95-10-763A	MW-3	Total Oil & Grease
ST95-10-764A	MW-2	TPHgas & BTEX
ST95-10-765A	MW-2	TPHdiesel/motor oil
ST95-10-766A	MW-2	Total Oil & Grease
ST95-10-767A	MW-4	TPHgas & BTEX
ST95-10-768A	MW-4	TPHdiesel/motor oil
ST95-10-769A	MW-4	Total Oil & Grease
ST95-10-770A	MW-1	TPHgas & BTEX
ST95-10-771A	MW-1	TPHdiesel/motor oil
ST95-10-772A	MW-1	Total Oil & Grease

III Quality Control

- A. <u>Project Specific QC.</u> No project specific QC (i.e., spikes and/or duplicates) was requested.
- B. <u>Method Blank Results</u>. A method blank is a laboratory-generated sample which assesses the degree to which laboratory operations and procedures cause false-positive analytical results for your sample.

No target parameters were detected in the method blank associated with your sample at the reporting limit levels noted on the data sheets in the Analytical Results section.

- C. <u>Laboratory Control Spike</u>. A Laboratory Control Spike (LCS) is a sample which is spiked with known analyte concentrations, and analyzed at approximately 10% of the sample load in order to establish method-specific control limits. The LCS results associated with your samples are on the attached Laboratory Control Spike and Laboratory Control Spike Duplicate Analysis Report.
- Matrix Spike Results. A Matrix Spike is a sample which is spiked with known analyte concentrations, and analyzed at approximately 10% of the sample load in order to establish method-specific control limits. The Matrix Spike results associated with your samples are on the attached Matrix Spike and Matrix Spike Duplicate Analysis Report.

Accuracy is measured by Percent Recovery as in:

% recovery = (measured concentration) x 100 (actual concentration)

IV Analysis Results

Results are on the attached data sheets.

8020/8015/5520 F. Modified Analysis Report

Attention: Mr. Rick Walls

Date Sampled:

Oct 11, 1995

Geocon Environmental

Date Received:

Oct 12, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Date Analyzed:

Oct 17, 1995 Oct 17, 1995 **TPHgas & BTEX** TPHdiesel/motor oil

Date Analyzed:

Oct 16, 1995

Oil & Grease

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hagenberger

Client ID:

MW-5

LAB ID:

ST95-10-758A ST95-10-759A **TPHgas & BTEX** TPHdiesel/motor oil

LAB ID: LAB ID:

ST95-10-760A

Oil & Grease

Matrix:

Water

Dilution:

Name	Amount	Detection Limit	Units
Benzene	45	0.3	ug/L
Toluene	15	0.3	ug/L
Ethylbenzene	1.9	0.3	ug/L
Xylenes	6.1	0.3	ug/L
TPHgas	1000	50	ug/L
TPHdiesel	ND	50	ug/L
TPHmotor oil	ND	50	ug/L
Oil & Grease	ND	5000	ug/L
Surrogate % Recovery of	Trifluorotoluene =	125%	

ppb = parts per billion = ug/L = micrograms per Liter

ppm= parts per million = ug/mL = micrograms per millilater

ND = Not Delected. Compound(s) may be present at concentrations below the detection limit,

R. L. James, Principal Chemist

Oct 23, 1995

Date

8020/8015/5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled: Oct 11, 1995

Date Received: Oct 12, 1995

Date Analyzed: Oct 17, 1995 Date Analyzed: Oct 17, 1995

Date Analyzed: Oct 16, 1995 TPHgas & BTEX TPHdiesel/motor oil

Oil & Grease

Project #:

Client ID:

S8100-06-34 (CT53W202)

Project Name:

Hagenberger

LAB ID:

ST95-10-761A ST95-10-762A TPHgas & BTEX TPHdiesel/motor oil

LAB ID: LAB ID:

ST95-10-763A

Oil & Grease

Matrix:

Water

MW-3

Dilution:

Name	Amount	Detection Limit	Units
Benzene	1.0	0.3	ug/L
Toluene	ND	0.3	ug/L
Ethylbenzene	ND	0.3	ug/L
Xylenes	ND	0.3	ug/L.
TPHgas	1300 *	50	ug/L
TPHdiesel	ND	50	ug/L
TPHmotor oil	ND	50	ug/L
Oil & Grease	ND	5000	ug/L.
Surrogate % Recovery of Tr	ifluorotoluene =	107%	

ppb = parts per billion = ug/L = micrograms per Liter

ppm= parts per million = ug/mL = micrograms per milliliter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

* Weathered gas detected.

R. L. James, Principal Chemist

Oct 23, 1995

Date

8020/8015/5520 F. Modified Analysis Report

Attention: Mr. Rick Walls

Date Sampled: Od

Oct 11, 1995

Geocon Environmental

Date Received: Oct 12, 1995

TPHgas & BTEX

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742 Date Analyzed: Oct 18, 1995 Date Analyzed: Oct 17, 1995

TPHdiesel/motor oil

Date Analyzed:

l: Oct 16, 1995

Oil & Grease

Project #:

S8100-06-34 (CT53W202)

Project Name:

Hagenberger

Client ID:

MW-2

LAB ID:

ST95-10-764A

TPHgas & BTEX

LAB ID: LAB ID: ST95-10-765A ST95-10-766A

TPHdiesel/motor oil Oil & Grease

Matrix:

Water

Dilution:

Name	Amount	Detection Limit	Units
Benzene	ND	0.3	ug/L
Toluene	ND	0.3	ug/L
Ethylbenzene	ND	0.3	ug/L
Xylenes	ND	0.3	ug/L
TPHgas	ND	50	ug/L
TPHdiesel	ND	50	ug/L
TPHmotor oil	ND	50	ug/L
Oil & Grease	ND	5000	ug/L
Surrogate % Recovery of Tr	îfluorotoluene =	112%	

ppb = parts per billion = ug/L = micrograms per Lifer

ppm= parts per million = ug/mt. = micrograms per millititer

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 23, 1995

Date

8020/8015/5520 F. Modified Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled: Oct 11, 1995

Date Received: Oct 12, 1995 Date Analyzed:

Oct 18, 1995 Date Analyzed: Oct 17, 1995

Date Analyzed: Oct 16, 1995 TPHgas & BTEX TPHdiesel/motor oil

Oil & Grease

Project #:

Client ID:

\$8100-06-34 (CT53W202)

Project Name:

Hagenberger

ST95-10-767A

TPHgas & BTEX TPHdiesel/motor oil

LAB ID: LAB ID:

LAB ID:

ST95-10-768A ST95-10-769A

Oil & Grease

Matrix:

Water

MW-4

Dilution:

		Detection	
Name Name	Amount	Limit	Units '
Benzene	17	0.3	ug/L
Toluene	1.1	0.3	ug/L
Ethylbenzene	ND	0.3	ug/L
Xylenes	0.48	0.3	ug/L
TPHgas	500	50	ug/L
TPHdiesel	ND	50	ug/L
TPHmotor oil	ND	50	ug/L
Oil & Grease	ND	5000	ug/L
Surrogate % Recovery of Tri	fluorotoluene =	97%	

ppb = parts per billion = ug/L = micrograms per Liter

ppm= parts per million = ug/mL = micrograms per milliliter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct 23, 1995

Date

8020/8015/5520 F. Modified Analysis Report

Attention:	Mr. Rick Walls Geocon Environmental 3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742	Date Sampled: Date Received: Date Analyzed: Date Analyzed: Date Analyzed:	Oct 11, 1995 Oct 12, 1995 Oct 18, 1995 Oct 17, 1995 Oct 16, 1995	TPHgas & BTEX TPHdiesel/motor oil Oil & Grease
Project #:	S8100-06-34 (CT53W202)	Project Name:	Hagenberger	
Client ID:	MW-1	LAB ID: LAB ID: LAB ID:	ST95-10-770A ST95-10-771A ST95-10-772A	TPHgas & BTEX TPHdiesel/motor oil Oil & Grease
Matrix:	Water	Dilution:	1:10	TPHgas & BT
Name_	Amount		Detection Limit	Units
Benzene	660		3.0	ug/L
Toluene	13		3.0	ug/L
Ethylbenzene	4.7		0.3	ug/L
Xylenes	2.8		0.3	ug/L
TPHgas	720		500	սց/Լ
TPHdiesel	ND		50	ug/L
TPHmotor oil	ND		50	ug/L
Oil & Grease	ND		5000	ug/l.
Surrogate % F	ecovery of Trifluorotoluene =	115%	6	•

ppb = parts per billion = ug/L = micrograms per Liter

ppm= parts per million = ug/mL = micrograms per milliliter ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

Oct 23, 1995

Date

R. L. James, Principal Chemist

8020 Modified Matrix Spike (MS) & Matrix Spike Duplicate (MSD) **BTEX Analysis Report**

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Date Received: Date Analyzed:

Oct 11, 1995 Oct 12, 1995

Oct 18, 1995

Project ID:

S8100-06-34 (CT53W202)

Project Name:

Hagenberger

Client ID:

MS/MSD (Batch)

LAB ID:

ST95-10-795A MS

ST95-10-795A MSD

Matrix:

Water

Dilution:

Name	Conc. Spike Added	Sample Result	MS Result	MSD Result	Units	MS % Recovery	MSD % Recovery	% RPD Recovery
Benzene	30 ppb	ND	29	35	ug/L	97%	117%	19%
Toluene	3 0 ppb	ND	27	32	ug/L	90%	107%	17%
Ethylbenzene	30 ppb	ND	31	34	ug/L	103%	113%	9%
Xylenes	3 0 ppb	ND	31	34	ug/L	103%	113%	9%

Surrogate % Recovery of Trifluorotoluene =

95% MS

107% MSD

ppb = parts per billion = ug/L = micrograms per liter

ppm= parts per million = ug/ml = micrograms per milliliter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct 23, 1995

Date

8020 Modified Laboratory Control Spike (LCS) & Laboratory Control Spike Duplicate (LCSD) BTEX Analysis Report

Attention:

Mr. Rick Walls

Geocon Environmental

3235 Sunrise Blvd., Suite 6

Rancho Cordova, CA 95742

Date Sampled:

Oct 11, 1995

Date Received:

Oct 12, 1995

Date Analyzed:

Oct 18, 1995

Project ID:

S8100-06-34 (CT53W202)

Project Name:

Hagenberger

Client ID:

LCS/LCSD

LAB ID:

ST95-10-018 LCS

ST95-10-018 LCSD

Matrix:

Water

Dilution:

Name	Conc. Spike Added	Sample Result	LCS Result	LCSD Result	Units	LCS % Recovery	LCSD % Recovery	% RPD Recovery
Benzene	30 ppb	ND	34	33	ug/L	113%	110%	3%
Toluene	30 ppb	ND	29	28	ug/L	97%	93%	4%
Ethylbenzene	30 ppb	ND	34	34	ug/L	113%	113%	0%
Xylenes	30 ppb	ND	34	33	ug/L	113%	110%	3%
Surrogate % E	lecovery of Trifl	uozotokuon	0 –	91%	1.00	9 00/	LCSD	

ppb = parts per billion = ug/L = micrograms per Liter

ppm= parls per million = ug/mL = micrograms per milliter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Oct 23, 1995 Date Reported

8015 Modified Laboratory Control Spike (LCS) & Laboratory Control Spike Duplicate (LCSD) TPHdiesel Analysis Report

Attention:

Mr. Rick Walls

Date Sampled:

Oct 11, 1995

Geocon Environmental

Date Received:

Oct 12, 1995

3235 Sunrise Blvd., Suite 6 Rancho Cordova, CA 95742

Date Analyzed: Oct 1

Oct 16, 1995

Project ID:

S8100-06-34 (CT53W202)

Project Name:

Hagenberger

Client ID:

LCS/LCSD

LAB ID:

ST95-10-016 LCS

ST95-10-016 LCSD

Matrix:

Water

Dilution:

Name	Conc. Spike Added	Sample Result	LCS Result	LCSD Result	Units	LCS % Recovery	LCSD % Recovery	% RPD Recovery
TPHdiesel	600 ppb	ND	563	590	ug/L	94%	98%	5%

ppb = parts per billion = ug/L = micrograms per Liter ppm= parts per million = ug/g = micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Oct 23, 1995

Date Reported

U	AFIGERIE	JHN	JE00	37,	7 //	C:									t	HA	TIN	of	Ţ	บร	Ю	bγ	R	t	OF	7	1								
An	alytical Labor	atory	,						Phon	e: (916	362	-8947	7				C .									_						į 5	66	G.	1
-	Fite Circle, #112 Sac		o, CA 958	327					FA:	X: (916) 362	-0947	7		Pa	ige_		<u> </u>	of _							STA	L In	voic	e N	uml	рег:	``		//	,
	npany: しゃつしょ							ne: F							L							- 1	ANA	LYS		_									
Proje	ort Address:	kh	6115				F.	AX: F	5 2	- 5/3	ر.			er P	•		RKS	3 ? - •			· -								Sa	mple	er's l	Vam	 ک		
Керх	DIT ADDRESS;	BIVE). #c	Billin 5	g Na	me & .	Addre	:22											ے	75	3	ó	روم	L					2)~	29	Wi	Vamo	-	E /	
Ra	ort Name: Hagen	٦, /	2	9 —	- ,,					1.					L																				
Proje	ect Name: //	,		<u> </u>	170	Proje		- M	· ·			717		-				•					Α		ì	ne	1	me	<u>L</u>						
ا انام	Hagen	berg	er			Proje	ec/10	b#:5	8/0	0-0	٠.	37			Co	oler	Tem					°C	0	<u>K</u>	С	<u> </u>	Ç)K	N	/ET(STLO)			
2	ct Location:	<u>.</u>					P.C).#:							-		e Co	<u> </u>	ion		<u> </u>		ļ						├	TC	LP	—			
	OAKLA	٠۵,	टन					5	<u>ع بر</u>) Z 0	2_				рН						1	-				-		•	 		<u></u> 1	-			
								F	rese	rvative	9										TC	LP								To	tal	\neg			
		San	npling I	-	Co	ontair	ner	_	Us	ed	ļ	М	atrix	•		<u> </u>		<u> </u>															1	AT	
				40 mL VOA	Brass Sleeve	L amber bottle	250 mL Plastic . 1	Other:	JAHNOSIICE & SC	Other:	ler		The state of the s	Ør;	BTEX (602/8020)503.1	BTEX/TPHgas (602/8020/8015) (92/9)	PHdiese TPHmotor girkerosene (8015)	EPA 601/8010/502.2/504	EPA 602/8020	EPA 608/8080 (Pesticides)/505/508	EPA 608/8080 (PCB'S)	EPA 624/8240/524.2	EPA 625/8270/525	Total Oil & Grease (5520) YCEA114P	Non-Polar O & G/TRPH (418.1)	Organic Lead		466	CAM-17 Metats	CAM-5 Metals (Cd, Cr, Pb, Ni, Zn)			ard	Services (72hr / 48hr / 24hr / 12hr)	-toliday/Weekend Rush
NO.	SAMPLE ID	Date		3	<u> </u>	3	125	ō (<u> </u>	Water	Soil	Ϋ́	Other	8	E,	© /	E P	H.	EP/	EP	EP	EP.	Tota	န	ő	ټ	Y	Q A	Š	Lead		Slan	Hush th	₹o¥
2	MW-5 MW-3	10.1	1240	3	-	3		-K	\vdash		\bigvee	-	<u> </u>			\sim	$\langle \rangle$	-						X								_[X		
3	MW-2)	1335	3		3		-K	\geq		₩	-				\Leftrightarrow	\Diamond			-				\aleph						\dashv					_
4	mw-4		1435	3		3		- 15	7	-	₩	\vdash	 			\Diamond	\Rightarrow						-	\diamondsuit	-					\dashv	-	-{	` }⊢	-	
5	MW-1	1	1,55	3		3		- 15	ो	1	欠				 	\bigtriangledown	\overline{X}						k	$\overline{\mathbf{x}}$	+				-			一片	5	-	\dashv
6	Trip Blank	7						1;	κĪ	1	X					4				_				-				X		-	_	\dashv	<u> </u>	-	
7																							-	\dashv			}	$\frac{\mathcal{A}}{ }$	\dashv		-	\dashv	+		
8							İ		-							1						1					4		\rightarrow	-		\dashv	+		\dashv
9							- 1		-	1														+	!				-+		-+		- !		\dashv
10	(<u> </u>			T			$\neg \uparrow$,						-			-										-
Refind	gáished by:	/arto	S			Rece	eived	by:	a	Sel	Topla	ore.			Reli		ahed	by/	7	ئے۔۔۔ مرسر	Ĺ		0	\dashv	Rec	eivec	by:	R							\dashv
	7		1950			!	19	U/7)	_	Tim	e:	153 153	0		Date	e:	10	(/	2 -	95	rime	e:/ 7	24	3		: (,,,	(2	À	7		Time	12:	<u> </u>	3