

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700

www.CRAworld.com

Fax: (510) 420-9170

TRANSMITTAL

DATE:	April	27, 2012	REFERENCE No.:	240414
			PROJECT NAME:	540 Hegenberger Road, Oakland
To:	Jerry '	Wickham		
		eda County Environmental	Health	RECEIVED
		Harbor Bay Parkway, Suite 2		44 49 490 0040
		eda, California 94502-6577		11:43 am, Apr 30, 2012 Alameda County
				Environmental Health
Please find	d enclos	ed: Draft	⊠ Final	
		Originals	Other	
		Prints		
Sent via:		☐ Mail	Same Day Co	ourier
		Overnight Courier		oTracker and Alameda County FTP
QUAN	TITY		DESCRIP	TION
1		Subsurface Investigation	Report	
<u> </u>				
	Requeste		or Review and Comment	t
☐ For	Your Us	e		
		Ш		·
COMME				
If you have (510) 420-		questions regarding the cont	tent of this document,	please contact Peter Schaefer at
(310) 420-	3319.			<u> </u>
Copy to:		Denis Brown, Shell Oil Pro Victoria Du (property own 94621-1320	•	opy) .td., 540 Hegenberger Road, Oakland, CA
Complete	ed by:	Peter Schaefer	Signed: /	Idu Solf
Filing:	Corresp	ondence File	l	

Denis L. Brown Shell Oil Products US

HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.l.brown@shell.com

Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re:

Shell-branded Service Station 540 Hegenberger Road Oakland, California SAP Code 135694 Incident No. 98995752 ACEH Case No. RO0000223

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown

Senior Program Manager

SUBSURFACE INVESTIGATION REPORT

SHELL-BRANDED SERVICE STATION 540 HEGENBERGER ROAD OAKLAND, CALIFORNIA

SAP CODE

135694

INCIDENT NO.

98995752

AGENCY NO.

RO0000223

APRIL 27, 2012
REF. NO. 240414 (11)
This report is printed on recycled paper.

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

TABLE OF CONTENTS

			Page
EXEC	CUTIVE S	SUMMARY	i
1.0	INTRO	DUCTION	1
2.0	INVES	TIGATION ACTIVITIES	1
	2.1	PERMIT	
	2.2	FIELD DATES	1
	2.3	DRILLING COMPANY	
	2.4	CRA PERSONNEL	
	2.5	DRILLING METHOD	2
	2.6	NUMBER OF PROBES	2
	2.7	VAPOR PROBE MATERIALS	2
	2.8	PROBE DEPTHS	
	2.9	SOIL VAPOR SAMPLING PROCEDURE	
	2.10	SOIL VAPOR SAMPLING ANALYSES	
3.0	FINDI	NGS	3
	3.1	SOIL VAPOR	
	3.2	LEAK TESTING	
4.0	CONC	LUSIONS	4
5.0	RECON	MMENDATIONS	4

LIST OF FIGURES (Following Text)

FIGURE 1

VICINITY MAP

FIGURE 2

SOIL VAPOR CONCENTRATION MAP

LIST OF TABLES (Following Text)

TABLE 1

HISTORICAL SOIL VAPOR ANALYTICAL DATA

LIST OF APPENDICES

APPENDIX A

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC. - CERTIFIED ANALYTICAL REPORT

EXECUTIVE SUMMARY

- Two sub-slab soil vapor probes (SVP-4 and SVP-5) were installed.
- CRA collected soil vapor samples from the two new sub-slab soil vapor probes and the three existing sub-slab soil vapor probes. The soil vapor samples contained up to $13,000,000 \, \mu g/m^3 \, \text{TPHg}$ (SVP-3), $670 \, \mu g/m^3 \, \text{ethylbenzene}$ (SVP-3), $93 \, \mu g/m^3 \, \text{total}$ xylenes, and $75 \, \mu g/m^3 \, \text{TBA}$ (SVP-5). Benzene, toluene, MTBE, and naphthalene were not detected in the samples.
- All soil vapor COC concentrations in SVP-1, SVP-2, SVP-4, and SVP-5 were below ESLs, and all BTEX, MTBE, and naphthalene detections were below ESLs in SVP-3.
- The TPHg concentration exceeded the ESL in SVP-3. It should be noted that RWQCB ESL guidance advises that "TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g. BTEX, polynuclear aromatic hydrocarbons, oxidizers, etc.)." In this case, BTEX, MTBE, and naphthalene would be the appropriate related chemicals, and they were not detected at concentrations above ESLs.
- The laboratory reporting limits were above ESLs for benzene and naphthalene in SVP-3 due to the presence of other hydrocarbons in the soil vapor sample.
- We note that the area of the kiosk affected by concentrations of TPHg exceeding ESLs is limited to the southwest corner of the office/storeroom in the building.
- The source of the TPHg detection limited to SVP-3 is unknown.
- On behalf of Shell, CRA is currently investigating potential remediation or mitigation options to address the TPHg detection in SVP-3.

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to document the recent sub-slab soil vapor probe installation and sampling. The purpose of the investigation was to further assess the potential for soil gas migration to indoor air in the service station kiosk. CRA followed the scope of work and procedures presented in our August 29, 2011 work plan, which was approved by Alameda County Environmental Health (ACEH) in their September 27, 2011 letter. ACEH's December 19, 2011 electronic correspondence granted an extension to the due date for this report to March 23, 2012.

The subject site is an active Shell-branded service station located on the southeast corner of the Hegenberger Road and Edes Avenue intersection in a commercial area of Oakland, California (Figure 1). The site layout (Figure 2) includes one station building, two dispenser islands, four underground storage tanks, and a car wash.

A summary of previous work performed at the site and additional background information is presented in CRA's August 29, 2011 *Subsurface Investigation Work Plan* and is not repeated herein.

2.0 <u>INVESTIGATION ACTIVITIES</u>

2.1 PERMIT

Alameda County Public Works Agency did not require a permit for the sub-slab soil vapor probe installation.

2.2 FIELD DATES

January 9, 2012 (sub-slab soil vapor probe installation) and February 2, 2012 (sub-slab soil vapor probe sampling).

2.3 DRILLING COMPANY

Vapor Tech Services, Inc.

2.4 CRA PERSONNEL

Environmental scientist Cristina Arganbright directed the probe installation working under the supervision of California Professional Geologist Peter Schaefer.

2.5 DRILLING METHOD

Hammer drill.

2.6 NUMBER OF PROBES

CRA installed two sub-slab soil vapor probes (SVP-4 and SVP-5) as described below at the locations shown on Figure 2.

2.7 <u>VAPOR PROBE MATERIALS</u>

CRA cut stainless steel tubing to a length that allows each probe to float within the sidewalk thickness to avoid obstruction of the probe with base material. The tubing was approximately 1/4-inch diameter with stainless steel compression fittings. Each sub-slab soil vapor probe was placed in the borehole so that the top of the probe is flush with the floor. The top of each probe has a recessed stainless steel plug.

2.8 PROBE DEPTHS

6 inches below grade.

2.9 SOIL VAPOR SAMPLING PROCEDURE

On February 2, 2012, CRA sampled soil vapor probes SVP-1 through SVP-5. All soil vapor samples were collected using a lung box and Tedlar[®] bags.

CRA collected soil vapor samples using laboratory-supplied Tedlar[®] bags. During sampling, CRA connected the Teflon[®] tubing for each vapor probe to a lung box containing the Tedlar[®] bag, and the lung box chamber was connected to the vacuum pump. CRA then drew the sample into the Tedlar[®] bag by reducing the pressure in the lung box with the vacuum pump. Each sample was labeled, documented on a

chain-of-custody, and submitted to Calscience Environmental Laboratories, Inc. of Garden Grove, California for analysis within 72 hours.

To check the system for leaks, CRA placed a containment unit (or shroud) over the soil vapor probe surface casing and sampling manifold. Prior to soil vapor probe purging, CRA introduced helium into the containment unit to obtain a minimum 50 percent (%) helium content level. CRA confirmed the helium content within the containment unit using a helium meter. The helium meter readings are presented in Section 3.2. All samples were analyzed by the laboratory for helium, and CRA presents the results in Section 3.2 and on Table 1.

2.10 SOIL VAPOR SAMPLING ANALYSES

Soil vapor samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) by EPA Method TO-3 (modified); for benzene, toluene, ethylbenzene, and total xylenes (BTEX), methyl tertiary-butyl ether (MTBE), tertiary-butyl alcohol, and naphthalene by modified EPA Method 8260B; for oxygen and argon, carbon dioxide, and methane by ASTM D-1946; and for helium by ASTM D-1946 (M).

3.0 FINDINGS

3.1 <u>SOIL VAPOR</u>

The soil vapor chemical analytical data are summarized in Table 1, and TPHg and BTEX analytical results are presented on Figure 2. The laboratory analytical report is presented in Appendix A.

3.2 <u>LEAK TESTING</u>

CRA performed leak testing as described above, and up to 0.0124 percent by volume (%v) helium was detected in the samples. As shown in the following table, the detections are less than 10% of the concentration detected in the shroud, and the samples are considered valid.

		Helium	Helium	
		concentration in	detected in	Maximum acceptable helium
Probe ID	Date	sample (%v)	shroud (%v)	concentration in sample (%v)
SVP-1	2/2/12	0.0124	65	6.5
SVP-2	2/2/12	0.0106	64	6.4

Probe ID	Date	Helium concentration in sample (%v)	Helium detected in shroud (%v)	Maximum acceptable helium concentration in sample (%v)
SVP-3	2/2/12	0.0116	83	8.3
SVP-4	2/2/12	<0.0100	65	6.5
SVP-5	2/2/12	<0.0100	52	5.2

The laboratory analytical report for helium is presented in Appendix A, and CRA includes the results on Table 1.

4.0 CONCLUSIONS

All soil vapor chemical of concern concentrations were below San Francisco Bay Regional Water Quality Control Board's (RWQCB's) environmental screening levels (ESLs) for commercial land use¹, with the exception of 13,000,000 micrograms per cubic meter ($\mu g/m^3$) TPHg detected in SVP-3.

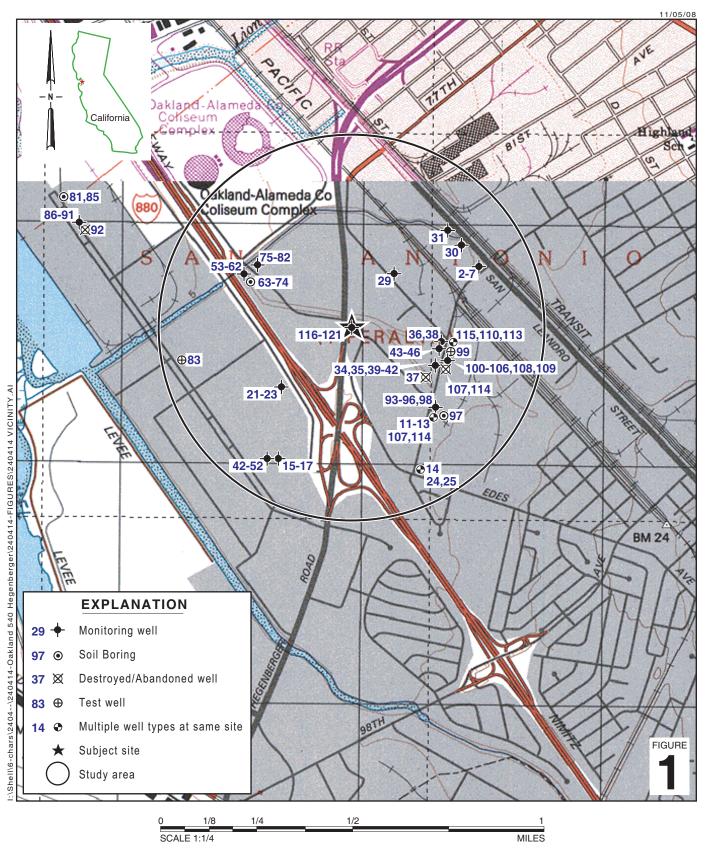
It should be noted that RWQCB ESL guidance advises that "TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g. BTEX, polynuclear aromatic hydrocarbons, oxidizers, etc.)." In this case, BTEX, MTBE, and naphthalene would be the appropriate related chemicals, and they were not detected at concentrations above ESLs. The laboratory reporting limits were above ESLs for benzene and naphthalene in SVP-3 due to the presence of other hydrocarbons in the soil vapor sample.

We note that the area of the kiosk affected by concentrations of TPHg exceeding ESLs is limited to the southwest corner of the office/storeroom in the building. Sub-slab probes SVP-4 and SVP-5 are located 8 and 12 feet from SVP-3, respectively, and samples from these probes collected during the February 2, 2012 sampling event did not contain TPHg, BTEX, or naphthalene concentrations which exceed ESLs. The source of the TPHg detection limited to SVP-3 is unknown.

5.0 **RECOMMENDATIONS**

On behalf of Shell, CRA is currently investigating potential remediation or mitigation options to address the TPHg detection in SVP-3.

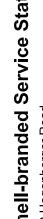
Screening for Environmental Concerns at Site With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, Interim Final – November 2007 [Revised May 2008]


All of which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Peter Schaefer, CEG, CHG

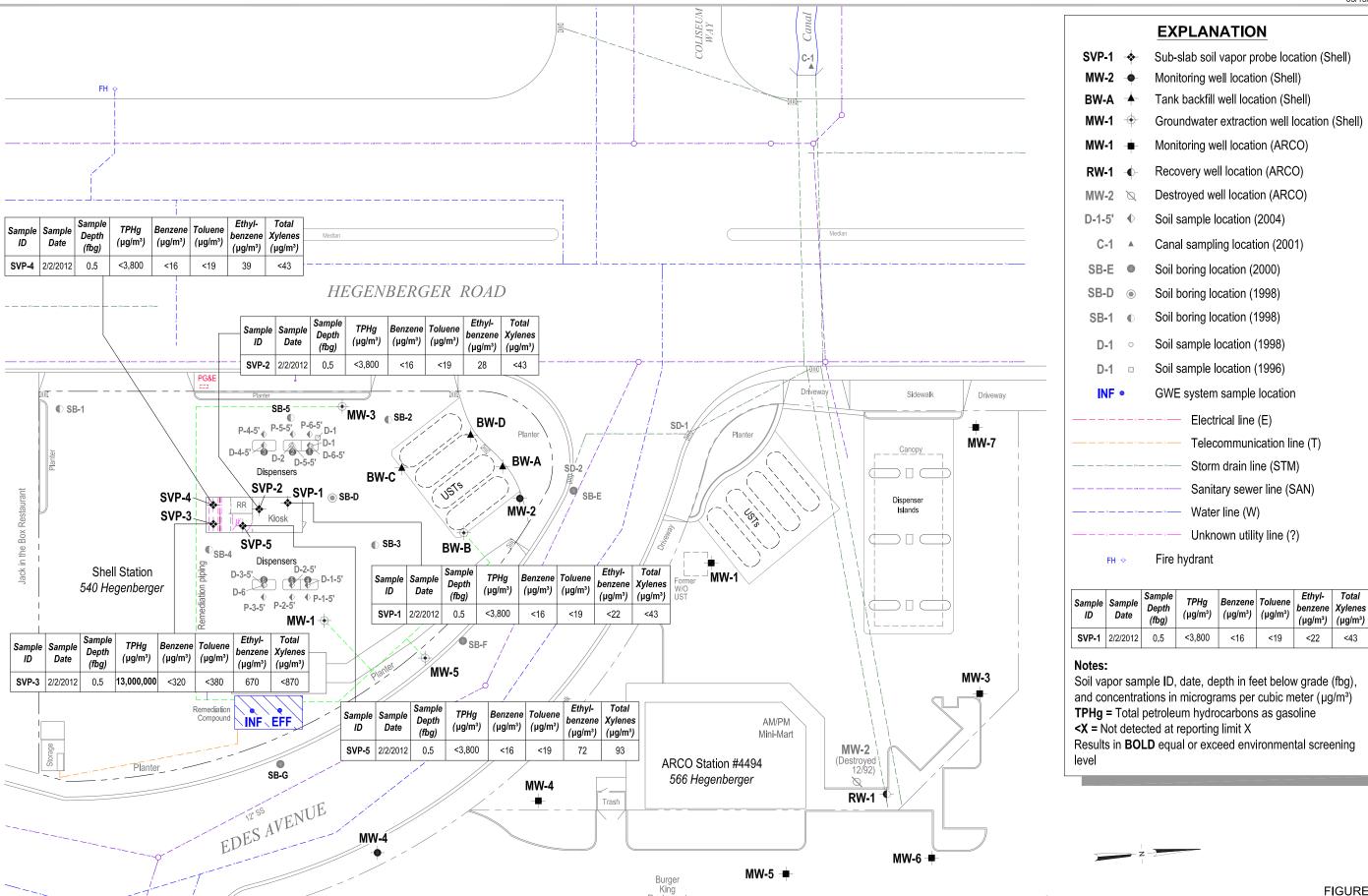
Aubrey K. Cool, PG

FIGURES


Shell-branded Service Station

540 Hegenberger Road Oakland, California

Vicinity Map



FIGURE

Scale (ft)

Restaurant

Laborers' International

Union

Days Inn

TABLE

HISTORICAL SOIL VAPOR ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 540 HEGENBERGER ROAD, OAKLAND, CALIFORNIA

Sample ID	Date	Depth (fbg)	TPHg (µg/m³)	Β (μg/m³)	Τ (μg/m³)	Ε (μg/m³)	Χ (μg/m³)	MTBE (μg/m³)	TBA (μg/m³)	Naphthalene (μg/m³)	Methane (%v)	Carbon Dioxide (%v)	Oxygen + Argon (%v)	Helium (%v)
SVP-1	3/9/2011	0.5	74,000	<16	<19	28	52	<36	<30	<52	< 0.500	8.59	10.2	2.31
SVP-1	3/31/2011	0.5	180,000	<16	<19	<22	<43	<36	<30	<52	< 0.500	12.7	2.92	< 0.0100
SVP-1	2/2/2012	0.5	<3,800	<16	<19	<22	<43	<36	<30	<52	< 0.500	10.5	7.60	0.0124
SVP-2	3/9/2011	0.5	14,000	<16	<19	40	140	<36	<30	<52	<0.500	3.19	16.8	4.70
SVP-2	3/31/2011	0.5	<7,000	<16	<19	<22	<43	<36	<30	<52	< 0.500	5.62	11.7	< 0.0100
SVP-2	2/2/2012	0.5	<3,800	<16	<19	28	<43	<36	<30	<52	< 0.500	5.67	13.6	0.0106
SVP-3	3/9/2011	0.5	11,000,000	<320	<380	640	1,400	<720	<610	<1,000	2.11	4.71	10.6	< 0.0100
SVP-3	3/31/2011	0.5	17,000,000	<320	<380	550	<870	<720	<610	<1,000	2.75	7.07	3.03	3.05
SVP-3	2/2/2012	0.5	13,000,000	<320	<380	670	<870	<720	<610	<1,000	3.62	8.25	4.83	0.0116
SVP-4	2/2/2012	0.5	<3,800	<16	<19	39	<43	<36	<30	<52	<0.500	10.3	4.24	<0.0100
SVP-5	2/2/2012	0.5	<3,800	<16	<19	72	93	<36	<i>7</i> 5	<52	<0.500	2.68	17.7	<0.0100
ESLs a			29,000	280	180,000	3,300	58,000	31,000	NA	240	NA	NA	NA	NA.

Notes:

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method TO-3M

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B (M)

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8260B (M)

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B (M)

Naphthalene analyzed by EPA Method 8260B (M)

Methane, carbon dioxide, and oxygen + argon analyzed by ASTM D-1946

Helium analyzed by ASTM D-1946 (M)

fbg = Feet below grade

μg/m³ =Micrograms per cubic meter

%v = Percent by volume

<x = Not detected at reporting limit x

HISTORICAL SOIL VAPOR ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 540 HEGENBERGER ROAD, OAKLAND, CALIFORNIA

ESL = Environmental screening level
NA = No applicable ESL
Results in **bold** exceed environmental screening level

a = San Francisco Bay Regional Water Quality Control Board (RWQCB) shallow soil gas screening level for evaluation of potential vapor intrusion concerns - commercial/industrial land use from RWQCB's Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, Interim Final - November 2007 (Revised May 2008).

APPENDIX A CALSCIENCE ENVIRONMENTAL LABORATORIES, INC. CERTIFIED ANALYTICAL REPORT

alscience

nvironmental

aboratories, Inc.

CALSCIENCE

WORK ORDER NUMBER: 12-02-0204

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For

Client: Conestoga-Rovers & Associates

Client Project Name: 540 Hegenberger Rd., Oakland, CA

Attention: Peter Schaefer

5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Yearth

Approved for release on 02/9/2012 by: Xuan Dang

Project Manager

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

ResultLink >

Email your PM)

Contents

Client Project Name: 540 Hegenberger Rd., Oakland, CA

Work Order Number: 12-02-0204

1	Case Narrative(s)	3
2	Detections Summary	4
3	Client Sample Data	5 5 6 7 9
4	Quality Control Sample Data	10 10 11
5	Glossary of Terms and Qualifiers	14
6	Chain of Custody/Sample Receipt Form	15

Case Narrative

Work Order # 12-02-0204 Modified EPA 8260 in Air

This method is used to determine the concentration of BTEX/Oxygenates/Naphthalene having a vapor pressure greater than 10⁻¹ torr at 25°C at standard pressure in an air matrix. The method is similar to EPA TO-15 and uses air standards for calibration. Method specifics are listed in the table below. A known volume of sample is directed from the container (Summa® canister or Tedlar™ bag) through a solid multi-module (glass beads, tenex, cryofocuser) concentrator. Following concentration, the VOCs are thermally desorbed onto a gas chromatographic column for separation and then detected on a mass selective detector.

Comparison of CalscienceTO-15(Modified) versus EPA 8260 (Modified) in Air

Requirement	Calscience TO-15(M)	Calscience EPA 8260(M) in Air
BFB Acceptance Criteria	SW846 Protocol	SW846 Protocol
Initial Calibration	Allowable % RSD for each Target Analyte <= 30%, 10% of analytes allowed <=40%	Allowable % RSD for each Target Analyte <= 30%, 10% of analytes allowed <= 40%
Initial Calibration Verification (ICV) - Second Source Standard (LCS)	Analytes contained in the LCS standard evaluated against historical control limits for the LCS	BTEX and MTBE only - <= 30%D
Daily Calibration Verification (CCV)	Full List Analysis: Allowable % Difference for each CCC analyte is <= 30%	BTEX and MTBE only - <= 30%D
	Target List Analysis: Allowable % Difference for each target analytes is <= 30%	
Daily Calibration Verification (CCV) - Internal Standard Area Response	Allowable +/- 50% (Range: 50% to 150%)	Allowable +/- 50% (Range: 50% to 150%)
Method Blank, Laboratory Control Sample and Sample - Internal Standard Area Response	Allowable +/- 50% of the mean area response of most recent Calibration Verification (Range: 50% to 150%)	Allowable +/- 50% of the mean area response of the most recent Calibration Verification (Range: 50% to 150%)
Surrogates	1,4-Bromoflurobenzene, 1,2-Dichloroethane-d4 and Toluene-d8 - % Recoveries based upon historical control limits +/-3S	1,4-Bromoflurobenzene, 1,2-Dichloroethane-d4 and Toluene-d8 - % Recoveries based upon historical control limits +/-3S

Client:

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Attn: Peter Schaefer

Work Order:

12-02-0204

Project name: 540 Hegenberger Rd., Oakland, CA

Received:

02/03/12 10:30

DETECTIONS SUMMARY

		7110110 001	VIIVI/AIX I		-	
Client Sample ID			Reporting			
Analyte	Result	Qualifiers	Limit	Units	Method	Extraction
SVP-1						
Carbon Dioxide	10.5		0.500	%v	ASTM D-1946	N/A
Oxygen + Argon	7.60		0.500	%v	ASTM D-1946	N/A
Helium	0.0124		0.0100	%v	ASTM D-1946 (M)	N/A
SVP-2						
Carbon Dioxide	5.67		0.500	%v	ASTM D-1946	N/A
Oxygen + Argon	13.6		0.500	%v	ASTM D-1946	N/A
Helium	0.0106		0.0100	%v	ASTM D-1946 (M)	N/A
Ethylbenzene	28		22	ug/m3	EPA 8260B (M)	N/A
SVP-3						
Methane	3.62		0.500	%v	ASTM D-1946	N/A
Carbon Dioxide	8.25		0.500	%v	ASTM D-1946	N/A
Oxygen + Argon	4.83		0.500	%v	ASTM D-1946	N/A
Helium	0.0116		0.0100	%v	ASTM D-1946 (M)	N/A
Ethylbenzene	670		430	ug/m3	EPA 8260B (M)	N/A
Gasoline Range Organics (C6-C12)	13000000		38000	ug/m3	ЕРА ТО-3М	N/A
SVP-4						
Carbon Dioxide	10.3		0.500	%v	ASTM D-1946	N/A
Oxygen + Argon	4.24		0.500	%v	ASTM D-1946	N/A
Ethylbenzene	39		22	ug/m3	EPA 8260B (M)	N/A
SVP-5						
Carbon Dioxide	2.68		0.500	%v	ASTM D-1946	N/A
Oxygen + Argon	17.7		0.500	%v	ASTM D-1946	N/A
Ethylbenzene	72		22	ug/m3	EPA 8260B (M)	N/A
Xylenes (total)	93		43	ug/m3	EPA 8260B (M)	N/A
Tert-Butyl Alcohol (TBA)	75		30	ug/m3	EPA 8260B (M)	N/A

Subcontracted analyses, if any, are not included in this summary.

*MDL is shown.

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

Units:

02/03/12 12-02-0204

N/A ASTM D-1946

STM D-1946 %v

Project: 540 Hegenberger Rd., Oakland, CA

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy		QC Batch ID
SVP-1			12-02-0)204-1-A	02/02/12 12:05	Air	GC 36	N/A	02/03 12:2		120203L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Methane Carbon Dioxide	ND 10.5	0.500 0.500	1 1		Oxygen + Argor	ר		7.60	0.500	1	
SVP-2			and the state of the)204-2-A	02/02/12 11:38	Air	GC 36	N/A	02/03 12:		120203L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Methane Carbon Dioxide	ND 5.67	0.500 0.500	1 1		Oxygen + Argor	า		13.6	0.500	1	
SVP-3			12-02-0)204-3-A	02/02/12 12:26	Air	GC 36	N/A	02/03 13:		120203L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Methane Carbon Dioxide	3.62 8.25	0.500 0.500	1 1		Oxygen + Argor	n		4.83	0.500	1	
SVP-4			12-02-0)204-4-A	02/02/12 12:55	Air.	GC 36	WA	02/03 13:		120203L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Methane Carbon Dioxide	ND 10.3	0.500 0.500	1		Oxygen + Argor	n		4.24	0.500	1	
SVP-5	10.3	0.500	12-02-0)204-5-A	02/02/12 10:48	Air	GC 36	N/A	02/03 15:	100	120203L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Methane	ND	0.500	1		Oxygen + Argor	n .		17.7	0.500	1	
Carbon Dioxide Method Blank	2.68	0.500	1 099-03	-002-1,485	NA .	Air	GC 36	N/A	02/03 11:		120203L01
Parameter Methane Carbon Dioxide	Result ND ND	<u>RL</u> 0.500 0.500	<u>DF</u> 1 1	Qual	<u>Parameter</u> Oxygen + Argor	n		Result ND	<u>RL</u> 0.500	<u>DF</u> 1	Qual

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

02/03/12

Work Order No:

12-02-0204

Preparation:

N/A

Method:

ASTM D-1946 (M)

Project: 540 Hegenberger Rd., Oakland, CA

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-1		12-02-0204-1-A	02/02/12 12:05	Air	GC 55	N/A	02/03/12 14:16	120203L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Helium	0.0124	0.0100	1		%v			
SVP-2		12-02-0204-2-A	02/02/12 11:38	Air	GC 55	WA	02/03/12 14:39	120203L01
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
lelium	0.0106	0.0100	1		%v			
SVP-3		12-02-0204-3-A	02/02/12 12:26	Air	GC 55	WA	02/03/12 15:08	120203L01
² arameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
lelium	0.0116	0.0100	1		%v			
SVP-4		12-02-0204-4-A	02/02/12 12:55	Air	GC 55	N/A	02/03/12 15:29	120203L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
lelium	ND	0.0100	1		%v			
SVP-5		12-02-0204-5-A	02/02/12 10:48	Air	GC 55	N/A	02/03/12 15:57	120203L01
² arameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
lelium	ND	0.0100	1		%v			
Method Blank		099-12-872-222	N/A	Air	GC 55	. NA ₃	02/03/12 13:42	120203L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Helium	ND	0.0100	1		%v			

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

Units:

02/03/12 12-02-0204

N/A

EPA 8260B (M) ug/m3

Project: 540 Hegenberger Rd., Oakland, CA

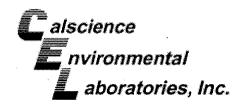
				_							
Client Sample Number			Li	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy		QC Batch ID
SVP-1	100 P. T. S. S. S.		12-02-	-0204-1-A	02/02/12 12:05	Air	GC/MS HH	N/A	02/03 17:3		120203L01
Parameter Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Benzene	ND	16	1		Methyl-t-Butyl	Ether (MT	BE)	ND	36	1	
Toluene	ND	19	1		Tert-Butyl Alco	,	,	ND	30	1	
Ethylbenzene	ND	22	1		Naphthalene	, ,		ND	52	1	
Xylenes (total)	ND	43	1		•						
Surrogates:	REC (%)	Control Limits	<u>Qu</u>	<u>al</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>ual</u>
1,4-Bromofluorobenzene	102	47-156			1,2-Dichloroet	hane-d4		100	47-156		
Toluene-d8	99	47-156			, ,						
SVP-2			12-02-	-0204-2-A	02/02/12 11:38	Air	GC/MS HH	NA	02/03 18:3		120203L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	16	1		Methyl-t-Butyl	Ether (MT	BE)	ND	36	1	
Toluene	ND	19	1		Tert-Butyl Alco			ND	30	1	
Ethylbenzene	28	22	1		Naphthalene	, ,		ND	52	1	
Xylenes (total)	ND	43	1								
Surrogates:	REC (%)	Control Limits	Qu	<u>al</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	ual
1,4-Bromofluorobenzene	101	47-156			1,2-Dichloroet	hane-d4		101	47-156		
Toluene-d8	99	47-156									
SVP-3	1		12-02-	-0204-3-A	02/02/12 12:26	Air	GC/MS HH	N/A	02/04 01:1		120203L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	<u>Qual</u>
Benzene	ND	320	20		Methyl-t-Butyl	Ether (MT	BE)	ND	720	20	
Toluene	ND	380	20		Tert-Butyl Alco			ND	610	20	
roldono	670	430	20		Naphthalene			ND	1000	20	
Ethylbenzene	670	.00									
Ethylbenzene	ND	870	20								
		870	20 <u>Qu</u>	ı <u>al</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	ual
Ethylbenzene Xylenes (total)	ND	870 Control		<u>al</u> 1,2,7	Surrogates: 1,2-Dichloroet	hane-d4		REC (%)		<u>C</u>	ual

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

02/03/12 12-02-0204

N/A EPA 8260B (M)

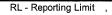

Units:

ug/m3

Project: 540 Hegenberger Rd., Oakland, CA

Page 2 of 2

	goa., oa	inciania,	<u> </u>							. 45	012
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy		QC Batch ID
SVP-4			12-02-0	204-4-A	02/02/12 12:55	Air	GC/MS HH	N/A	02/03 19:2		120203L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	<u>Qual</u>
Benzene	ND	16	1		Methyl-t-Butyl	Ether (MTI	3E)	ND	36	1	
Toluene	ND	19	1		Tert-Butyl Alco	,	/	ND	30	1	
Ethylbenzene	39	22	1		Naphthalene			ND	52	1	
Xylenes (total)	ND	43	1								
Surrogates:	REC (%)	Control Limits	Qua	<u>l</u>	Surrogates:			REC (%)	Control Limits	Q	<u>ual</u>
1,4-Bromofluorobenzene	101	47-156			1,2-Dichloroet	hane-d4		101	47-156		
Foluene-d8	93	47-156									
SVP-5			12-02-0)204-5-A	02/02/12 10:48	Air	GC/MS HH	N/A	02/03 20:1		120203L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	16	1		Methyl-t-Butyl	Ether (MTI	3E)	ND	36	1	
Toluene	ND	19	1		Tert-Butyl Alc	ohol (TBA)		75	30	1	
Ethylbenzene	72	22	1		Naphthalene			ND	52	1	
Kylenes (total)	93	43	1								
Surrogates:	<u>REC (%)</u>	Control Limits	Qua	<u>l</u>	Surrogates:			REC (%)	Control Limits	<u>Q</u>	<u>ual</u>
1,4-Bromofluorobenzene	99	47-156			1,2-Dichloroet	thane-d4		101	47-156		
Toluene-d8	99	47-156									
Method Blank		Lagran I	099-13	-041-772	N/A	Aìr	GC/MS HH	N/A	02/03 14:8		120203L01
Parameter	<u>Result</u>	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	RL	DF	<u>Qual</u>
Benzene	ND	16	1		Methyl-t-Butyl	Ether (MTI	3E)	ND	36	1	
Toluene	ND	19	1		Tert-Butyl Alc	ohol (TBA)		ND	30	1	
Ethylbenzene	ND	22	1		Naphthalene	,		ND	52	1	
Xylenes (total)	ND	43	1								
Surrogates:	<u>REC (%)</u>	Control Limits	Qua	<u>l</u>	Surrogates:			<u>REC (%)</u>	Control Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	102	47-156			1,2-Dichloroet	thane-d4		99	47-156		

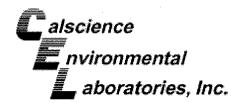


Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 02/03/12 12-02-0204 N/A EPA TO-3M

Project: 540 Hegenberger Rd., Oakland, CA

Project. 340 negenberger r	iu., Oakianu	, CA					ГС	ige i oi i
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-1		12-02-0204-1-A	02/02/12 12:05	Air	GC 19	N/A	02/03/12 14:10	120203L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			
SVP-2		12-02-0204-2-A	02/02/12 11:38	Air	GC 19	N/A	02/03/12 14:48	120203L01
Parameter Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			
SVP-3		12-02-0204-3-A	02/02/12 12:26	Air	GC 19	N/A	02/03/12 16:45	120203L01
Parameter_	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	13000000	38000	10		ug/m3			
SVP-4		12-02-0204-4-A	02/02/12 12:55	Air	GC 19	N/A	02/03/12 15:26	120203L01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			
SVP-5		12-02-0204-5-A	02/02/12 10:48	Air	GC 19	N/A	02/03/12 16:04	120203L01
Parameter Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			
Method Blank		099-14-431-37	N/A	Air	GC 19	N/A	02/03/12 13:15	120203L01
Parameter	Result	RL	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			

Quality Control - Duplicate



Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 02/03/12 12-02-0204 N/A EPA TO-3M

FAX: (714) 894-7501

Project: 540 Hegenberger Rd., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
SVP-3	Air	GC 19	N/A	02/03/12	120203D01
<u>Parameter</u>	Sample Conc	DUP Conc	RPD	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	12870000	12830000	0	0-20	

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 12-02-0204 N/A ASTM D-1946

Project: 540 Hegenberger Rd., Oakland, CA

Quality Control Sample ID	Matrix lı	nstrument	Date Prepared	Date Analyzed	l	LCS/LCSD Batch Number	
099-03-002-1,485	Air	GC 36	N/A	02/03/12		120203L01	
<u>Parameter</u>	SPIKE ADDED	LCS %REC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Methane	10.12	98	96	80-120	2	0-30	
Carbon Dioxide	10.07	104	102	80-120	2	0-30	
Carbon Monoxide	9.930	103	101	80-120	2	0-30	
Oxygen + Argon	3.500	93	91	80-120	2	0-30	
Nitrogen	10.02	90	88	80-120	2	0-30	

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 12-02-0204 N/A ASTM D-1946 (M)

Project: 540 Hegenberger Rd., Oakland, CA

Quality Control Sample ID	Matrix Ir	nstrument	Date Prepared	Date Analyzed		LCS/LCSD Batch Number	
099-12-872-222	Air	GC 55	N/A	02/03/12		120203L01	
Parameter	SPIKE ADDED	LCS %REC	LCSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Helium	1.000	99	99	80-120	0	0-30	
Hydrogen	1.000	95	95	80-120	0	0-30	

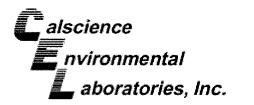
Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

N/A 12-02-0204 N/A EPA 8260B (M)

Project: 540 Hegenberger Rd., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate alyzed	LCS	S/LCSD Batch Number	
099-13-041-772	Air	GC/MS HH	N/A	02/0	3/12		120203L01	
<u>Parameter</u>	SPIKE ADDED	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	79.87	107	107	60-156	44-172	0	0-40	
Toluene	94.21	108	108	56-146	41-161	0	0-43	
Ethylbenzene	108.6	112	110	52-154	35-171	2	0-38	
Xylenes (total)	325.7	113	111	42-156	23-175	1	0-41	
Methyl-t-Butyl Ether (MTBE)	90.13	105	106	45-147	28-164	1	0-25	
Tert-Butyl Alcohol (TBA)	151.6	92	94	60-140	47-153	3	0-35	
Diisopropyl Ether (DIPE)	104.5	89	90	60-140	47-153	1	0-35	
Ethyl-t-Butyl Ether (ETBE)	104.5	99	100	60-140	47-153	1	0-35	
Tert-Amyl-Methyl Ether (TAME)	104.5	99	98	60-140	47-153	0	0-35	
Naphthalene	131.1	73	72	60-140	47-153	1	0-30	
Ethanol	188.4	75	82	47-137	7-137 32-152		0-35	
1,1-Difluoroethane	67.54	103	104	78-156	156 65-169		0-35	
Isopropanol	61.45	113	138	78-156	65-169	20	0-35	


Total number of LCS compounds: 13

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 12-02-0204

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
> .	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution.
	Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The
	associated method blank surrogate spike compound was in control and, therefore, the
_	sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out
	of control due to matrix interference. The associated LCS and/or LCSD was in control
4	and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD
5	was in control and, therefore, the sample data was reported without further clarification. The PDS/PDSD or PES/PESD associated with this batch of samples was out of control
9	due to a matrix interference effect. The associated batch LCS/LCSD was in control and,
	hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel
	standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of
	the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of
J	the specified standard but lighter hydrocarbons were also present (or detected). Analyte was detected at a concentration below the reporting limit and above the
J	laboratory method detection limit. Reported value is estimated.
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit
	range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter
	concentration in the sample exceeding the spike concentration by a factor of four or
	greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not
	corrected for % moisture. All QC results are reported on a wet weight basis.
	MPN - Most Probable Number

LAB (LOCATION))		S	hel	10	il F	rc	odu	uct	s (Cha	ain (Of (Cu	sto											
☑ CALSCIENCE ()		Plea	se Check	ie Check Appropriate Box: Print Bill To Contact Name: INCID					CIDE	ENT # (ENV SERVICES)						# APPLIES															
□ SPL ()	☐ ENV	. SERVICES			A RETAI			SHELL R	ETAIL	Pate	ar Sc	hae	fer :	2404	14						П					DATE: 2/12/2010					
XENCO ()	Пмот	TIVA SD&CM	[Mag	ONSUL	TANT		70	LUBES		***					*****) #		*****	*****					SAP#							
TEST AMERICA ()									==		- T					····	******		*****			******	*****		****** 	······· T	T	*****	PA	.GE:1 (of1
OTHER ()	☐ SHE	LL PIPELINE																		<u> </u>				CLOT	SAL ID N	<u></u>	oxdot				
SAMPLING COMPANY:				roe co									reet and			5 -1-1					CA				00102						
Conestoga-Rovers & Associates				CRA	w					540 EOF DE	Heg	enb	Plame. C	er Ro	Office Le	Oaki cetionk	and	P	HONE NO	i:	CA			E-MAIL:		2123				CONSULTANT PROJ	CT NO.:
ADDRESS: 5900 Hollis Street, Suite A, Emeryville, CA 94608										1								l.									^				
PROJECT CONTACT (Hardcopy or PDF Report to):										Bren	da C	arter ME(S) (F	CRA	A, Em	eryvi	lle			510-42	0-3343				snei	.em.e	orta	crawo	le Kete	use.	240414-95-11.03	TIT
TEAM .	eter Sch	E-MAIL:								Crist	ina A	rgan	brigh	nt														7			74IL
510-420-3319 1 510-420-9170			psch	aefer	@craw					-										BEO	IEST	ED A	NAI'	VSIS				ı	8000	A 48884 A	
TURNAROUND TIME (CALENDAR DAYS): ✓ STANDARD (14 DAY)		2 DAYS	24 HO	URS		□ R	ESULTS	NEERE	WEEKEN	L.,										KEG	1 1	EUA	IVAL	1313		_					
☐ LA - RWQCB REPORT FORMAT ☐ UST AGENCY:																ı														TEMPERATURE ON	RECEIPT C'
The second secon			☑ SHELL	CONT	RACT F	LATE AF	PLIES										TAME,										1 1				
SPECIAL INSTRUCTIONS OR NOTES :			STATE			MENT R	ATE AF	PLIES		g g							Ξ. Σ		(B)						l						
Copy final report to Shell.Lab.Billing@craworld.com			EDD N							(82	3					ا _ ا	<u>P</u>		(8260B)					1							
			RECEI	PT VE	RIFICAT	TON R	EQUEST	TED		C6-C12 (8260B)	(8015M)					9 8	E,														
Report results in μg/m³	SAMI	PLING		Т	PF	RESERV	ATIVE				و		_		ᆔ	BTEX + MTBE + TBA (8260 B)	ВТЕХ + 5 ОХYS (МТВЕ, ТВА, DIPE, ЕТВЕ) 82608							O2 + Argon ASTMD 1946	Helium ASTMD 1946 (M)	1					
				\vdash						TPH -GRO, Purgeable	Extractable		(9 B)		BTEX + MTBE (8260B)	¥	E E	Full VOC list (8260B)	널	۱_			9	₽	194	8					
									NO. OF	Ę	xtra	ŧ	Naphthalene (8260) E (8	<u>*</u>	, Se	(8)	Single Compound:	1,2-DCA (8260B)	_	Ethanol (8260B)	CH4 ASTMD 1946	AS	£	CO2 ASTIMD 1946				Container PID F	Pandinge
Field Sample Identification	DATE	TIME	MATRIX						CONT.	Ö,	0	TPHg (8015M)	dene		¥	Ĕ	5 03	SE	ĕ	(82	EDB (8260B)	(82	TMC	log.	AST	E				or Laboratory	
										φ		8) 6	븊		*	* *	+ (i	Š	e e	S	82	anol	t AS	¥	Ę	2 AS					
LAB USE		1 1.		HC1	HNO3	H2SO4	NONE	OTHER		E	тРН -ФКО,	Ē	S S		100	1	18 E	2	ŝ	1,2		뜶	츙	6	垩	8					
ONCY		3		1	1.000								Т											Ι	Ι	Ī.,					
1		120						l	١.	х			X			х		1 1					X	X	×	X					
I SVP-1	2/2/12	10	Vapor	╁	-			-	1_1_	-			-					\vdash			1		-	\vdash	<u> </u>	╁	1				
2 _{SVP-2}		135					1			х			х			х							x	X	Х	X	1				
	2/2/12	110	Vapor	<u> </u>	<u> </u>		_		1				-	-		_				 	-		_	-	<u> </u>	-	+-	<u> </u>	\vdash		
					l .					x			x			х							х	x	x	x					
3 _{SVP-3}	2/2/12	1224	Vapor	1					1	^			^																		
375-3	2212	,	Vapor	\vdash	\vdash		 	 																		Π					
13		اسميرا							l	×			×			X				1			×	×	×	×					
# svp-4	2/2/12	1255	Vapor	L	<u> </u>			ļ	4	_			ļ	_				\vdash			\vdash			<u> </u>	-	-	-	\vdash	-		
								1					x			х							x	x	x	x					
T	2000	1048	\/a=							X			^			^							<u> </u>	 	"	Ι "					
SVP-5	2/2/12	1	Vapor	1		 	 	\vdash	┝╌	\vdash	\vdash	_	1	\vdash		-					\Box						\Box				
																										1					
	 	 -		+	\vdash		+	-		†		-	\vdash			\vdash		\Box					ļ			T					
																								1							
				_	<u> </u>		_		ļ	-	_	<u> </u>	├	 	_		ļ. —				\vdash			├-	-	\vdash	+-	-			
							1							1																	
				\perp	\perp	<u></u>	L	<u> </u>		L	<u> </u>		L					\sqcup		ļ					1_	↓_	1		Щ		
				Π						1	1	l	1																		
		 		+	┼		\vdash	+	-	\vdash		├	+-	-		-		\vdash		\vdash	\vdash		\vdash		I^-	\vdash	1	\vdash	\vdash		
				1		L_	L	<u></u>		L						L.,	<u> </u>							<u></u>	ـــا	Щ		·	Time		
Relingbished by (Singature)			Received by. (S	(a(u)e)	1	$\overline{\ }$, .	,						_								Date:	2	1	, Î			ime:	111.00	
			1	لس	<u>`</u>	لم	_		\sim		-		1	1		(_	_								12	1	12	/		1400	
Relinguisted Signalure)	-\.	$\frac{1}{\Sigma}$	Received by: (Si	gnatorol				<u> </u>	(-)	<u> </u>				e	<u></u>								Date:		•				Time:		
12 -10 - 2	12/	77				<u>~</u> .		. 3	<i>,</i>			,		a										2,	/ კ	. /	12			10:3	2)
Consider (Signature)	<u>~~~</u>	230	Received by: (Si	onabire!		1/	ll	a/	-				- '			-							Date:			<u>'</u>	-		Time:		
Resignatore by: (Signature)	•		uj. (0))		J		•															1						l		

Package 1 of 1

LABEL INSTRUCTIONS:

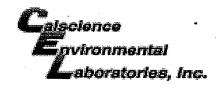
Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.


ADDITIONAL OPTIONS:

Send Label Via Email Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

(0204)

WORK ORDER #: 12-02-0 2 0 4

SAMPLE RECEIPT FORM

Box <u>/</u> of <u>/</u>

CLIENT: CRA	DATE:	02/03/12
TEMPERATURE: Thermometer ID: SC3 (Criteria: 0.0 °C – 6.0 °C, not frozen)	
Temperature°C - 0.3°C (CF) = °C	Blank	☐ Sample
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).		•
☐ Sample(s) outside temperature criteria but received on ice/chilled on same da	v of sampl	ina.
☐ Received at ambient temperature, placed on ice for transport by Co		
Ambient Temperature: ☑ Air □ Filter		Initial:
CUSTODY SEALS INTACT:		
☑Box □ □ No (Not Intact) □ Not Present	□ N/A	Initial:
□ Sample □ □ No (Not Intact) ☑ Not Present		Initial:ps
	Yes	No N/A
Chain-Of-Custody (COC) document(s) received with samples	_	
COC document(s) received complete		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		
Sampler's name indicated on COC	· /	
Sample container label(s) consistent with COC	_	
Sample container(s) intact and good condition	,	
Proper containers and sufficient volume for analyses requested	1	
Analyses received within holding time	•	
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours		
Proper preservation noted on COC or sample container		
☐ Unpreserved vials received for Volatiles analysis		/
Volatile analysis container(s) free of headspace		
Tedlar bag(s) free of condensation CONTAINER TYPE:		
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores	® □Terra	Cores® □
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB [□1AGB na₂ □1AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB	□1PB na □500PB
□250PB □250PBn □125PB □125PB z nna □100PJ □100PJ na ₂ □		
Air: Itediar® Isumma® Other: Image: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: E Preservative: h: HcL n: HNO3 naz:Na2S2O3 na: NaOH p: H3PO4 s: H3SO4 u: Ultra-pure znna: ZnAc2+Na	Envelope F	Reviewed by: ハルビ