#3646

November 3, 1999

Barney Chan Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re:

Second Quarter 1999 Monitoring Report

Shell-branded Service Station 540 Hegenberger Road Oakland, California Incident #98995752

Cambria Project #241-0414-002

Dear Mr. Chan:

On behalf of Equiva Services LLC (Equiva), Cambria Environmental Technology, Inc. (Cambria) is submitting this ground water monitoring report in accordance with the reporting requirements of 23 CCR 2652d.

SECOND QUARTER 1999 ACTIVITIES

Ground Water Monitoring: Blaine Tech Services, Inc. (Blaine) of San Jose, California collected dissolved oxygen (DO) measurements, gauged water levels, sampled the monitoring wells using the non-purging method, and sampled the tank backfill wells after purging three casing volumes. Blaine calculated ground water elevations and compiled the analytical data. Cambria prepared a ground water elevation contour map (Figure 1). The Blaine report, presenting the laboratory report and including supporting field documents, is included as Attachment A.

Conduit Study, Receptor Survey and Monitoring Well Installation: Cambria is in the process of conducting an evaluation of preferential pathways prior to installing the downgradient monitoring well proposed in Cambria's Subsurface Investigation Work Plan dated February 25, 1999. Cambria conducted a sensitive receptor survey. Results of the receptor survey are tabulated in Table 1. Well locations and surface bodies of water are shown on Figure 2. The results of the conduit study and monitoring well installation details will be presented in a forthcoming report.

Interim Remedial Action: Due to the elevated concentrations of MTBE in site wells, Cambria has initiated weekly high vacuum ground water extraction from the four tank back fill wells (A through D), and monitoring wells MW-1 and MW-3. Approximately 21,400 gallons of ground water has been extracted from site wells since purging began on July 29, 1999. Weekly purge data is presented in Table 2.

Oakland, CA Sonoma, CA Portland, OR Seattle, WA

Cambria **Environmental** Technology, Inc.

1144 65th Street Suite B Oakland, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

ANTICIPATED THIRD QUARTER 1999 ACTIVITIES

Ground Water Monitoring: Blaine will collect DO measurements, gauge water levels, sample the monitoring wells using the non-purging method, and tabulate the data. Cambria will prepare a monitoring report.

Interim Remedial Action: As a means of source removal and contaminant migration control, Cambria will continue to coordinate weekly vacuum truck operations at the site.

maybe should determine the sauce & whether it's scill present.

We appreciate the opportunity to work with you on this project. Please call Darryk Ataide at (510) 420-3339 if you have any questions or comments.

Sincerely,

Cambria Environmental Technology, Inc

Darryk Ataide, REA I

Project Manager

Ailsa S. Le May, R.G.

Senior Geologist

Figure:

1 - Ground Water Elevation Contour Map

2 - Area Well Survey

Table: 1 - Well Survey

2 - Purge Data

Attachment: A - Blaine Ground Water Monitoring Report and Field Notes

cc: Karen Petryna, Equiva Services LLC, P.O. Box 6249, Carson, California 90749-6249

NO. 6717

g:\oak540\qm\2q99qm.doc

540 Hegenberger Road Oakland, California Incident #98995752

Ground Water Elevation Contour Map

Shell-branded Service Station

540 Hegenberger Road Oakland, California Incident #98995752

CAMBRIA

Area Well Survey

(1/2-Mile Radius)

Cambria

Table 1. Well Survey - Shell-branded Service Station - Incident# 98995752, 540 Hegenberger Road, Oakland, California

Well #	Well ID	Installation Date	Owner	Use	Completed	Screened	Sealed
W C11 #	(Soil Boring ID)	Instanation Date	Owner	USE	Depth (feet)	Interval	Interval
1	2S/3W 22N	02/06/91	Edes Avenue Senior Housing	UNK	15	N/A	N/A
2	2S/3W 22E7	12/14/89	Carolyn Ratcliff	MONIT	15	5- 14.5	0-4
3	2S/3W 22E7	12/13/89	Carolyn Ratcliff	MONIT	20	10- 19.5	0-8
4	2S/3W 22E7	12/15/89	Carolyn Rateliff	MONIT	18	8- 17.5	0-6
5	2S/3W 22E7	12/14/89	Carolyn Rateliff	MONIT	18	8- 17.5	0-6
6	2S/3W 22E7	12/13/89	Carolyn Ratcliff	MONIT	19.5	10- 19	0-8
7	2S/3W 22E7	12/14/89	Carolyn Rateliff	MONIT	19.5	10- 19	0-8
8	2S/3W 21Q08	09/13/92	Union Bank	MONIT	20	4- 19	0-4
9	2S/3W 21Q09	09/13/92	Union Bank	MONIT	16.5	4- 14	0- 4
10	2S/3W 21Q10	09/13/92	Union Bank	MONIT	20	5- 20	0-4
11	2S/3W 21R2	04/25/88	IMO Delaval, Inc.	MONIT	28	12-26.5	0- 10
21	2S/3W 21R16	03/11/89	IMO Delaval, Inc.	MONIT	26.5	15-25	0.5-15
13	2S/3W 21R17	03/12/89	IMO Delaval, Inc.	MONIT	27	15-25	0.5-15
14	2S/3W21	10/29/52	General Metals Corporation	IND	600	200-584	N/A
15	2S/3W21L05	09/10/92	Ryder Truck Rental Inc.	MONIT	13.5	3.5-13.0	0-3.5
16	2S/3W21L06	09/10/92	Ryder Truck Rental Inc.	MONIT	13.5	3.5-13.0	0-3.5
17	2S/3W21L07	09/14/92	Ryder Truck Rental Inc.	MONIT	13.5	3.5-13.0	0-3.5
18	2S/3W21M1	07/06/91	BOC Group	MONIT	21	7-17	0-7
19	2S/3W21K1	04/25/90	Motel 6	MONIT	30	5-30	0-5
20	2S/3W21L1	01/17/91	IMO Delaval, Inc.	N/A	32	2-30	0-20
21	2S/3W21L2	11/09/92	Superior Tile Company	MONIT	19	4-19	0.5-4
22	2S/3W21L3	11/09/92	Superior Tile Company	MONIT	15	4-14	0.5-4
23	2S/3W21L4	11/09/92	Superior Tile Company	MONIT	14	4-14	0.5-4
24	2S/3W21L4	11/09/92	Motel 6	MONIT	11.5	N/A	0-11.5
25	2S/3W21L4 ¹	11/09/92	Motel 6	MONIT	21.5	N/A	0-21.5

g/oak540/wellloc.xls 1 of 6

Table 1. Well Survey - Shell-branded Service Station - Incident# 98995752, 540 Hegenberger Road, Oakland, California

Well #	Well ID (Soil Boring ID)	Installation Date	Owner	Use	Completed Depth (feet)	Screened Interval	Sealed Interval
26	2S/3W21D1	08/16/90	Port of Oakland	MONIT	16	4-15	0-4
27	2S/3W21E1	08/16/90	Port of Oakland	MONIT	16	4-15	0-4
28	2S/3W21E2	08/16/90	Port of Oakland	MONIT	16	4-15	0-4
29	2S/3W21B1	09/30/93	Morris Properties	MONIT	20	5-20	0-5
30	2S/3W21A1	09/19/89	Monterey Mechanical	MONIT	25	9-25	0-9
31	2S/3W21A2	06/24/93	Mr. Nissan Saidan	MONIT	15	3-15	0-3
32	2S/3W21R	N/A	Stonehurst Nursery	REM	17	7-17	0-7
33	2S/3W21H11	02/19/92	Stephen Block	MONIT	17	7-17	0-7
34	2S/3W21H9	04/25/91	West Coast Wire Rope	MONIT	17.5	3-17.5	0-3
35	2S/3W21H10	04/25/91	West Coast Wire Rope	MONIT	20	3-20	0-3
36	2S/3W21H7	07/07/89	Ran Rob, Inc.	MONIT	16.5	5-16	0-5
37	2S/3W21H5	07/07/89*	Ran Rob, Inc.	DEST	36	N/A	N/A
38	2S/3W21H6	07/17/89	Ran Rob, Inc.	MONIT	36	26-36	0-26
39	2S/3W21G17	07/09/92	ARCO Products Company	MONIT	16.5	8-16.5	0-8
40	2S/3W21G15	07/10/92	ARCO Products Company	MONIT	15	9-15	0-9
41	2S/3W21G1	10/30/89	ARCO Products Company	MONIT	23	13-23	0-13
42	2S/3W21G2	06/07/89	ARCO Products Company	MONIT	21.5	14-18	0-14
43	2S/3W21H1	07/22/88	Lincoln Property co.	MONIT	16	6-16	0-6
44	2S/3W21H2	07/22/88	Lincoln Property co.	MONIT	13	5-10.5	0-4 & 10.5-13
45	2S/3W21H3	07/22/88	Lincoln Property co.	MONIT	16	6-16	0-5
46	2S/3W21H5	07/22/88	Lincoln Property co.	MONIT	18	8-18	0-6
47	2S/3W21D2	03/12/92	Ryder Truck Rental Inc.	MONIT	15	5-15	0-5
48	2S/3W21D3	03/13/92	Ryder Truck Rental Inc.	MONIT	14	4.5-14	0-4.5
49	2S/3W21D4	03/13/92	Ryder Truck Rental Inc.	MONIT	14.5	4.5-14.5	0-4.5
50	2S/3W21D5	04/28/92	Ryder Truck Rental Inc.	MONIT	15	5-15	0-5

g:\nak540\wellloc.xis 2 of 6

Table 1. Well Survey - Shell-branded Service Station - Incident# 98995752, 540 Hegenberger Road, Oakland, California

Well#	Well ID (Soil Boring ID)	Installation Date	Owner	Use	Completed Depth (feet)	Screened Interval	Sealed Interval
51	2S/3W21D6	04/28/92	Ryder Truck Rental Inc.	MONIT	15	5-15	0-5
52	2S/3W21D7	04/28/92	Ryder Truck Rental Inc.	MONIT	15	5-15	0-5
53	2S/3W21C2	09/21/89	Malibu Fun Center	MONIT	20	4-15	0-4
54	2S/3W21C4	09/20/89	Malibu Fun Center	MONIT	15	4-19	0-4
55	2S/3W21C3	09/20/89	Malibu Fun Center	MONIT	17	5-15	0-5 & 15-17
56	2S/3W21C1	09/20/89	Malibu Fun Center	MONIT	10.5	5-10.5	0-5
57	2S/3W21C5	06/12/90	Malibu Fun Center	MONIT	19.5	5-19.5	0-5
58	2S/3W21C6	06/12/90	Malibu Fun Center	MONIT	19	4-19	0-4
59	2S/3W21C7	06/12/90	Malibu Fun Center	MONIT	19.5	4.5-19.5	0-4.5
50	2S/3W21C8	06/13/90	Malibu Fun Center	MONIT	19.5	4.5-19.5	0-4.5
51	2S/3W21C9	06/13/90	Malibu Fun Center	MONIT	10	4.5-10	0-4.5
52	2S/3W21C10	06/13/90	Malibu Fun Center	MONIT	19	4-19	0-4
3	2S/3W21C (B6)	06/12/90	Malibu Fun Center	SB	10	N/A	0-10
54	2S/3W21C (B7).	06/12/90	Malibu Fun Center	SB	10	N/A	0-10
55	2S/3W21C (B8)	06/12/90	Malibu Fun Center	SB	10	N/A	0-10
56	2S/3W21C (B9)	06/12/90	Malibu Fun Center	SB	10	N/A	0-10
57	2S/3W21C (B10)	06/13/90	Malibu Fun Center	SB	5	N/A	0-7
8	2S/3W21C (B11)	06/13/90	Malibu Fun Center	SB	7	N/A	0-7
59	2S/3W21C (B12)	06/13/90	Malibu Fun Center	SB	7	N/A	0-7
0	2S/3W21C (B13)	06/13/90	Malibu Fun Center	SB	7	N/A	0-7
1	2S/3W21C (B14)	06/13/90	Malibu Fun Center	SB	7	N/A	0-7
2	2S/3W21C (B15)	06/13/90	Malibu Fun Center	SB	7	N/A	0-7
73	2S/3W21C (B16)	06/13/90	Malibu Fun Center	SB	7	N/A	0-7
74	2S/3W21C (B17)	06/13/90	Malibu Fun Center	SB	7	N/A	0-7
75	2S/3W21C1'1	08/28/91	Malibu Fun Center	MONIT	14	3.5-14	0-3.5

g:\oak540\wellloc.xls 3 of 6

Table 1. Well Survey - Shell-branded Service Station - Incident# 98995752, 540 Hegenberger Road, Oakland, California

Well #	Well ID (Soil Boring ID)	Installation Date	Owner	Use	Completed Depth (feet)	Screened Interval	Sealed Interval
					-		
76	2S/3W21C12	08/28/91	Malibu Fun Center	MONIT	21.5	4.5-20	0-4.5 & 20-21.5
77	2S/3W21C13	08/28/91	Malibu Fun Center	MONIT	20	5-20	0-5
78	2S/3W21C14	08/27/91	Malibu Fun Center	MONIT	20	4-20	0-4
79	2S/3W21C15	08/29/91	Malibu Fun Center	MONIT	19	4-19	0-4
80	2S/3W21C16	08/29/91	Malibu Fun Center	MONIT	18.5	3.5-18.5	0-3.5
81	2S/3W21C17	08/30/91	Malibu Fun Center	MONIT	18.5	3.5-18.5	0-3.5
82	2S/3W21C18	08/29/91	Malibu Fun Center	MONIT	21	6-21	0-6
83	2S/3W21E3	04/02/91	Travelers Companies	TEST	12.5	4-12.5	0-4
84	2S/3W21E (B1)	N/A	City of Oakland	SB	36.5	N/A	N/A
85	2S/3W21E (B2)	N/A	City of Oakland	SB	32.5	N/A	N/A
86	2S/3W21D9	02/12/92	Grand Auto Distribution Center	MONIT	18.5	4-18	0-4
87	2S/3W21D10	02/12/92	Grand Auto Distribution Center	MONIT	18.5	4-18	0-4
88	2S/3W21D11	02/13/92	Grand Auto Distribution Center	MONIT	19.5	5-19	0-5
89	2S/3W21D12	02/11/92	Grand Auto Distribution Center	MONIT	20	5.5-19.5	0-5.5
90	2S/3W21D13	02/14/92	Grand Auto Distribution Center	MONIT	34.5	20-34	0-20
91	2S/3W21D14	02/11/92	Grand Auto Distribution Center	MONIT	18.5	4-18	0-4
92	2S/3W21D8	02/13/92*	Grand Auto Distribution Center	DEST	N/A	N/A	N/A
93	2S/3W21J3	01/27/88	IMO Delaval	MONIT	23	8-23	0-8
94	2S/3W21J4	01/26/88	IMO Delaval	MONIT	30	15-30	0-15
95	2S/3W21J5	01/25/88	IMO Delaval	MONIT	36	26-36	0-26
96	2S/3W21J6	01/25/88	IMO Delaval	MONIT	30	20-30	0-20
97	2S/3W21J (SB1a)	N/A	IMO Delaval	SB	26.5	N/A	0-26.5
98	2S/3W21J35	11/19/89	IMO Delaval	MONIT	55	45-55	0-45
99	2S/3W21J20	04/21/89	IMO Delaval	TEST	27.5	22.5-27.5	0-22.5
100	2S/3W21J21	04/21/89	IMO Delaval	MONIT	39	14-39	0-14

Table 1. Well Survey - Shell-branded Service Station - Incident# 98995752, 540 Hegenberger Road, Oakland, California

Well#	Well ID (Soil Boring ID)	Installation Date	Owner	Use	Completed Depth (feet)	Screened Interval	Sealed Interval
101	2S/3W21J22	04/22/89	IMO Delaval	MONIT	23	13-23	0-13
102	2S/3W21J16	04/17/89	IMO Delaval	MONIT	22	12-22	0-12
103	2S/3W21J17	04/17/89	IMO Delaval	MONIT	24	14-24	14-Mar
104	2S/3W21J18	04/18/89	IMO Delaval	MONIT	32	12-32	12-Mar
105	2S/3W21J19	04/18/89	IMO Delaval	MONIT	21.5	12.5-17.5	2.5-12.5 & 17.5-21.5
106	2S/3W21J7	04/20/89	IMO Delaval	MONIT	30.5	15-30.5	0-15
107	2S/3W21J8	04/21/89*	IMO Delaval	DEST	34	N/A	N/A
108	2S/3W21J9	04/21/89	IMO Delaval	MONIT	32	17-32	0-17
109	2S/3W21J10	04/25/89	IMO Delaval	MONIT	34	19-34	0-19
110	2S/3W21N1	11/16/89	IMO Delaval	N/A	30	20-30	0-20
111	2S/3W21P2	11/16/89	IMO Delaval	N/A	29.5	19.5-29.5	19.5
112	2S/3W21Q1	11/20/89	IMO Delaval	N/A	46.5	43.5-46.5	0-43.5
113	2S/3W21H8	04/18/91	IMO Delaval	N/A	20	3-20	0-3
114	2S/3W21J1 .	08/14/79*	IMO Delaval	DEST	250	N/A	N/A
115	2S/3W21J2	06/16/76	Delaval Tirbine, Inc.	IND	430	130-240	0-130 & 240-430
116	2S/3W21Q2	02/05/91	Unocal Corporation	MONIT	13	2-13	0-2
117	2S/3W21Q3	02/05/91	Unocal Corporation	MONIT	15	3-15	0-3
118	2S/3W21Q4	02/05/91	Unocal Corporation	MONIT	14	2-14	0-2
119	2S/3W21Q5	08/21/92	Unocal Corporation	MONIT	13.5	2.5-13.5	0-2.5
120	2S/3W21Q6	08/21/92	Unocal Corporation	MONIT	13.5	2.5-13.5	0-2.5
121	2S/3W21Q7	08/21/92	Unocal Corporation	MONIT	13.5	2.5-13.5	0-2.5

g:\oak540\wellloc.xis 5 of 6

Table 1. Well Survey - Shell-branded Service Station - Incident# 98995752, 540 Hegenberger Road, Oakland, California

Well ID Well # (Soil Boring ID)	Installation Date	Owner	Use	Completed Depth (feet)	Screened Interval	Sealed Interval
Well ii (Boil Dolling ID)	Indianation Date		0.00	Dopin (1001)		211071 (31
Abbreviations:		Notes:				
UNK = Unknown		All well data was supplie	d by the California Department	of Water Resources		
MONIT = Monitoring Well		Wells 26, 27, and 28 are	not located on the half-mile we	all vicinity map		
ND = Industrial well		Wells 1 & 32: addresses	unknown			
REM = Remediation						
DEST = Destroyed well						
SB = Soil Borings						
DOM = Domestic well						
RR = Irrigation well						
TEST = Test well						
MUNI = Municipal supply well						
* = Well destruction date						
N/A = Not available						

Table 2. Purge Data - Shell-branded Service Station - Incident #98995752 - 540 Hegenberger Road, Oakland, California

		Volume	Total per well
Well ID	Date	(gals)	(gals)
		450	100
MW-1	07/29/99	150	100
	08/04/99	150	250
	08/11/99	15	265
	08/20/99	55	320
	08/30/99	218	538
MW-3	07/29/99	100	100
	08/04/99	100	200
	08/11/99	45	245
	08/20/99	55	300
	08/30/99	77	377
BW-A	0 7/ 2 9/99	400	100
	08/04/99	2,000	2,100
	08/11/99	2,437	4,537
	08/20/99	1,213	5,750
	08/30/99	2,673	8,423
	00/00/33	2,010	_,
BW-B	07/29/99	1,000	100
	08/04/99	800	900
	08/11/99	2,213	3,113
	08/20/99	1,213	4,326
	08/30/99	877	5,203
BW-C	07/29/99	300	100
	08/04/99	700	800
	08/11/99	0	800
	08/20/99	1,013	1,813
	08/30/99	375	2,188
BW-D	07/29/99	1,500	1,500
	08/04/99	250	1,750
	08/11/99	0	1,750
	08/20/99	1,213	2,963
	08/30/99	280	3,243
		Total to date	21,422

Abbreviations and Notes:

gals = Gallons

All purging performed by Advanced Cleanup Technologies, Inc. of Benecia, California

ATTACHMENT A

Blaine Ground Water Monitoring Report and Field Notes

1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1105 (408) 573-7771 FAX (408) 573-0555 PHONE

August 30, 1999

Karen Petryna Equiva Services LLC P.O. Box 6249 Carson, CA 90749-6249

> Second Quarter 1999 Groundwater Monitoring at Shell-branded Service Station 540 Hegenberger Road Oakland, CA

Monitoring performed on June 22 & 23, 1999

Groundwater Monitoring Report 990622-T-1

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, apprioriate calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Martinez Refining Company.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a forty hour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight hour refresher courses.

Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. In order to avoid compromising the objectivity necessary for the proper and disinterested performance of this work, Blaine Tech Services, Inc. concentrates on objective data collection and does not participate in the interpretation of analytical results, the definition of geological or hydrological conditions, the formulation of recommendations, or the marketing of remedial systems.

Please call if you have any questions.

Yours truly,

Deidre Kerwin Operations Manager

DK/ld

attachments: Cumulative Table of WELL CONCENTRATIONS

Certified Analytical Report

Field Data Sheets

Anni Kreml cc:

Cambria Environmental Technology, Inc. 1144 65th Street

Oakland, CA 94608-2411

WELL CONCENTRATIONS Shell-branded Service Station 540 Hegenberger Road Oakland, CA WIC #204-5508-5900

			:				MTBE	MTBE		Depth to	GW	DO
Well ID	Date	TPPH	В	Т	E	Х	8020	8260	TOC	Water	Elevation	Reading
1,1		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)
MW-1 (a)	8/26/98	2700	28	55	59	39	33,000	NA	10.54	7.91	2.63	1.8
MW-1 (b)	8/26/98	<1000	22	<10	<10	<10	17,000	NA	10.54	7.91	2.63	2.2
MW-1	12/28/98	<5000	<50.0	<50.0	<50.0	<50.0	153,000	33000	10.54	8.75	1.79	1.9
MW-1	3/29/99	<2000	<20.0	<20.0	<20.0	<20.0	693,000	NA	10.54	8.32	2.22	2.0
MW-1	6/22/99	20,000	<200	. ≮200	<200	₹200	150,000	NA.	10.54	9.05	1.49	1.7
MW-2 (a)	8/26/98	<250	3.2	<2.5	<2.5	<2.5	4000	NA	9.21	7.18	2.03	2.4
MW-2 (b)	8/26/98	<250	3.1	<2.5	<2.5	<2.5	4800	NA	9.21	7.18	2.03	2.7
MW-2 (D)(b)	8/26/98	<250	4.8	<2.5	<2.5	6.0	3300	NA	9.21	7.18	2.03	2.7
MW-2	12/28/98	<50.0	<0.500	<0.500	<0.500	<0.500	28.8	NA	9.21	7.34	1.87	2.1
MW-2	3/29/99	235	<0.500	<0.500	<0.500	3,4	101	NA	9.21	6.85_	2.36	2.0
, MW-2	6/22/99	<50	.<0.50₄	,,,≤0.50	<0.50	,,,<0.50⊪	√2.5 · · ·	NA JU	"J9,21 J	7.10	2.11	1.9
						,						
MW-3 (a)	8/26/98	2300	180	330	<0.50	420	44,000	NA	9.45	6.52	2.93	1.8
MW-3 (b)	8/26/98	<50	<0.50	<0.50	<0.50	<0.50	52,000	75,000	9.45	6.52	2.93	2.3
MW-3	12/28/98	<5000	139	<50.0	<50.0	<50.0	15,100	NA	9.45	6.73	2.72	1.7
MW-3	3/29/99	52500	5500	6900	1360	6250	508,000	630,000 (c)	9.45	6.21	3.24	2.1
MW-3	6/22/99	58000.,	6600,	9850°	1640	6950	-677,000	653,000	9.45,	7,00	2,45	1.3
	i .		ENTRE RIGHT FALSE.		ann			30 - 1115 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113		N FOR STEEL PROPERTY OF THE STEEL PROPERTY O	Illiatifficano Suevatifficasene	and and the second section of the second
A	6/22/99	318	<0.50	≮0.50	0.590	1.48	4,470	NA	intiNA:	4.71	NA	
- : - : - GU Bukitikhitik					- 18 (1900) - 18 (1900) 18 (1900)			I Directorate and the left of the		Turki Arakanini	elektrististikantenik turri da	
В	6/22/99	<250	<2.5	42. 5	≤2.5	1 1 1 2.5	8,600	za NA	BINA .	5.90	NA	1.2
	Electro	≮ 50	LA EA	-0 E0	i za ea	0.98	44 000	NA T	. NIA	5.91	NA*	1.6
in C	6/22/99	20U	トラインカイ	THE WAR	עפּיער	i naka	ייטטע,ובו	NA H		1. P. 7		
nijeka D ecik	£/00/66	ະຄາ ກ	en soo	en kna	en sno	laten kon	9 don 2	INCHANA COM	ΝΔ	4 7Q	- NALL	1-1 1-A
monthau K anakaiki	MAZINE I	700.0	1 -0.000		70.000	をいっている。	4,1991		HIRKON A MAJANIAN	pustri Masi		Paragraph Control of the Control of

WELL CONCENTRATIONS Shell-branded Service Station 540 Hegenberger Road Oakland, CA WIC #204-5508-5900

							MTBE	MTBE		Depth to	GW	DO
Well ID	Date	TPPH	В	Т	E	Х	8020	8260	TOC	Water	Elevation	Reading
		(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)						

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

BTEX = benzene, toluene, ethylbenzene, xylenes by EPA Method 8020

MTBE = methyl-tertiary-butyl ether

TOC = Top of Casing Elevation

GW = Groundwater

DO = Dissolved Oxygen

ppm = parts per million

ug/L = parts per billion

msl = Mean sea level

ft = Feet

<n = Below detection limit

D = Duplicate sample

Notes:

a = pre-purge

b = post purge

c = Lab confirmed MTBE by mistake.
MTBE value at MW-1 should have been confirmed instead.

July 13, 1999

Ann Pember Blaine Tech Services 1680 Rogers Avenue San Jose, CA 95112

RE: Equiva 540 Hegenberger Road, Oakland/M906807

Dear Ann Pember

Enclosed are the results of analyses for sample(s) received by the laboratory on June 24, 1999. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kayvan Kamyai Project Manager

CA ELAP Certificate Number 1210

Blaine Tech Services 1680 Rogers Avenue San Jose, CA 95112 Project: Equiva

Project Number: 540 Hegenberger Road, Oakland

Sampled: 6/23/99

Received: 6/24/99

Project Manager: Ann Pember

Reported: 7/1/99

ANALYTICAL REPORT FOR M906747

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
MW2	M906807-01	Water	6/23/99
MW1	M906807-02	Water	6/23/99
В	M906807-03	Water	6/23/99
c	M906807-04	Water	6/23/99

Sequoia Analytical

885 Jarvis Dr.

Morgan Hill, CA. 95037 Attention: Kayvan Kimyai Client Project ID: Sample Matrix:

M906807- Blaine Tech Services, Inc.

Sampled:

Jun 23, 1999

Analysis Method: First Sample #:

EPA 5030/8015 Mod./8020

Received: Reported: Jun 23, 1999 Jul 9, 1999

QC Batch Number:

GC070799

GC070799

906-2433

Water

GC070799

GC070799

802004A 802004A TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX / MTBE

Analyte	Reporting Limit μg/L	Sample I.D. 906-2433 MW-2	Sample I.D. 906-2434 MW-1	Sample I.D. 906-2435 B	Sample I.D. 906-2436 C	
Purgeable Hydrocarbons	50	N.D.	20,000	N.D.	N.D.	
Benzene	0.50	N.D.	N.D.	N.D.	N.D.	
Toluene	0.50	N.D.	N.D.	N.D.	N.D.	
Ethyl Benzene	0.50	N.D.	N.D.	N.D.	N.D.	
Total Xylenes	0.50	N.D.	N.D.	N.D.	0.98	
МТВЕ	2.5	N.D.	150,000	8,600	11,000	
Chromatogram Patt	tern:		Gasoline	7.7		
Quality Control Da	ta		· · · · · · · · · · · · · · · · · · ·			

Report Limit Multiplication Factor:	1.0	400	5.0	1.0
Date Analyzed:	7/7/99	7/7/99	7/7/99	7/7/99
Instrument Identification:	HP-4	HP-4	HP-4	HP-4
Surrogate Recovery, %: (QC Limits = 70-130%)	95	97	97	89

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Charlie Westwater Project Manager

Sequoia Analytical 885 Jarvis Dr.

Client Project ID:

M906807- Blaine Tech Services, Inc.

Matrix:

Liquid

Morgan Hill, CA. 95037 Attention: Kayvan Kimyai

QC Sample Group: 9062433-436

Reported:

Jul 9, 1999

QUALITY CONTROL DATA REPORT

Analyte:	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
QC Batch#:	GC070799	GC070799	GC070799	GC070799	
	802004A	802004A	802004A	802004A	
Analy. Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Prep. Method:	EPA 5030	EPA 5030	EPA 5030	EPA 5030	
Analyst:	J. Minkel	J. Minkel	J. Minkel	J. Minkel	
MS/MSD #:	9062433	9062433	9062433	9062433	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Prepared Date:	7/7/99	7/7/99	7/7/99	7/7/99	
Analyzed Date:	7/7/99	7/7/99	7/7/99	7/7/99	•
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	
Result:	22	19	20	67	
MS % Recovery:	110	95	100	112	
Dup. Result:	22	18	19	66	
MSD % Recov.:	110	90	95	110	
RPD:	0.0	5.4	5.1	1.5	•
RPD Limit:	0-20	0-20	0-20	0-20	
LCS #:	4LCS070799	4LCS070799	4LCS070799	4LCS070799	
Prepared Date:	7/7/99	7/7/99	7/7/99	7/7/99	
Analyzed Date:	7/7/99	7/7/99	7/7/99	7/7/99	
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4	
Conc. Spiked:	$20\mu\mathrm{g/L}$	20 μg/L	20 μg/L	$60\mu\mathrm{g/L}$	
LCS Result:	22	18	20	67	
LCS % Recov.:	110	90	100	112	

SEQUOIA ANALYTICAL, #1271

70-130

Charlie Westwater Project Manager

MS/MSD LCS

Control Limits

Please Note:

70-130

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

70-130

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

70-130

BLAINE SANJ		1680 RC	GERS AVEN	1UE	_						<u> </u>			γ	190681	7
· · · · = 	OSE, CA	NUFORM	NA 95112-1	105	ļ	CON	IDUCT	ANAL	YSIS	TO DE	TECT	1	AB SEQUE			
CHAIN OF CUSTODY GLIENT Equiva - Karen Pe 540 Hegenberger Oakland, CA	T6 etryna	PHONE	(408) 573-7 (408) 573-0	771	BTEX	0.	0	1	by 8260	EDB by 8010		A	LL ANALYSES MUS ET BY CALIFORNI EPA LIA OTHER PECIAL INSTRUCT Send invoic	ST MEET SPECI A DHS AND IONS e to Equiv	□RWQ	LOHS #
SAMPLE I.D.	S = SOIL W = H2O W = H2O	CO TOTAL	NTAINERS	C = COMPOSITE A	TPH - gas,	MTBE by 8020	by	TPH - diesel	Oxygenates	1,2-DCA & E		ADI	Send report	nt # 98 to Blaine Ann Pember STATUS	e Tech Se	
MWZ 6/23/29 915	M	3			×	عد		<u> </u>					C III O I III I I I I		CONDITION	LAB SAMPLE #
MW1 1 920	1	3	·		X	+									†	
1 8 925		3			X	×					_				+	
C * 930	4	3			¥	×										
						-								·		
SAMPLING DATE TIME COMPLETED 123 99	SAMPLI PERFOI	NG RMED B	<u> </u>									RESI NO L	ULTS NEEDED ATER THAN			<u> </u>
- Joleloll			DAT نی	E 1231		TIME	9:01		RECE	IVED	BY G	l	h		DATE (4/24/54	TIME 901
RELEASED BY The State of the St			DAT	24/6		TIME	0	Ì	RECE	IVED	BY	- .			DATE	TIME
RELEASED BY		-	DATE	<u> </u>		TIME		<u> </u>	RECE	IVED	BY 7,	1.			DATE	TIME
SHIPPED VIA		 .	DAT	E SEN1		TIME S	SENT	C	OOLE	R#		yr	ryen		6/24/	99

July 11, 1999

Ann Pember Blaine Tech Services 1680 Rogers Avenue San Jose, CA 95112

RE: Shell(2)/L906299

Dear Ann Pember:

Enclosed are the results of analyses for sample(s) received by the laboratory on June 23, 1999. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wayne Stevenson Project Manager

CA ELAP Certificate Number 1-2360

Blaine Tech Services 1680 Rogers Avenue San Jose, CA 95112

Project: Shell(2)

Project Number:

Project Manager:

Shell 540 Hegenberger, Oakland/990622-Ti

Sampled: Received:

6/22/99 6/23/99

Ann Pember

7/11/99 Reported:

ANALYTICAL REPORT FOR L906299

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
MW-3	L906299-02	Water	6/22/99
A	L906299-03	Water	6/22/99
D	L906299-06	Water	6/22/99

Blaine Tech Services	Project:	Shell(2)	Sampled:	6/22/99
1680 Rogers Avenue	Project Number:	Shell 540 Hegenberger, Oakland/990622-T1	Received:	6/23/99
San Jose, CA 95112	Project Manager:	Ann Pember	Reported:	7/11/99

Sample Description:

Laboratory Sample Number:

MW-3 L906299-02

	Batch	Date	Date	Specific Method/	Reporting			
Analyte	Number	Prepared	Analyzed	Surrogate Limits	<u>Limit</u>	Result	Units	Notes*
		Segue	nia Analytica	l - San Carlos				
Total Purgeable Hydrocarbons (C6-C1	2), BTEX an							
Purgeable Hydrocarbons as Gasoline	9070012	7/4/99	7/4/99		25000	58000	ug/I	I
Benzene	**	91	#		250	6600	Ħ	
Toluene	11	#1	#		250	9850	H	
Ethylbenzene	H	11	17		250	1640	**	
Xylenes (total)	Ħ	tt.	Ħ		250	6950	**	
Methyl tert-butyl ether	9070016	7/6/99	7/6/99		50000	677000	н	
Surrogate: a,a,a-Trifluorotoluene	9070012	7/4/99	7/4/99	70.0-130		90.5	%	
MTBE by EPA Method 8260A								
Methyl tert-butyl ether	9070063	7/16/99	7/16/99		10000	653000	ug/l	
Surrogate: 1,2-Dichloroethane-d4	"	"	II	76.0-114		105	%	

Blaine Tech Services Project: Shell(2) Sampled: 6/22/99
1680 Rogers Avenue Project Number: Shell 540 Hegenberger, Oakland/990622-T1 Received: 6/23/99
San Jose, CA 95112 Project Manager: Ann Pember Reported: 7/11/99

Sample Description:

Laboratory Sample Number:

A L906299-03

	Batch	Date	Date	Specific Method/	Reporting			
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
		Seque	ia Analytica	l - San Carlos				
Total Purgeable Hydrocarbons (C6-C1	2), BTEX an							
Purgeable Hydrocarbons as Gasoline	9070013	7/4/99	7/4/99		50.0	318	ug/l	1
Benzene	11	17	**		0.500	ND	Ħ	
Toluene	11	PT	#1		0.500	ND	**	
Ethylbenzene	11	11	11		0.500	0.590	9f	
Xylenes (total)	11	**	H		0.500	1.48	"	
Methyl tert-butyl ether	9040012	**	**		100	4470	**	
Surrogate: a,a,a-Trifluorotoluene	9070013	"	н	70.0-130		82.7	%	

Blaine Tech Services	Project:	Shell(2)	Sampled:	6/22/99
1680 Rogers Avenue	Project Number:	Shell 540 Hegenberger, Oakland/990622-T1	Received:	6/23/99
San Jose, CA 95112	Project Manager:	Ann Pember	Reported:	7/11/99

Sample Description:

Laboratory Sample Number:

D L906299-06

	Batch	Date	Date	Specific Method/	Reporting			
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
		Seque	oia Analytica	I - San Carlos				
Total Purgeable Hydrocarbons (C6-C	12), BTEX at	nd MTBE by	DHS LUFT					
Purgeable Hydrocarbons as Gasoline	9070013	7/4/99	7/4/99		50.0	ND	ug/l	
Benzene	ff	11	**		0.500	ND	11	
Toluene	10	11	н		0.500	ND	11	
Ethylbenzene	tt	#	**		0.500	ND	17	
Xylenes (total)	D	11	u .		0.500	ND	11	
Methyl tert-butyl ether	rę.	11	11		50.0	2190	D	
Surrogate: a,a,a-Trifluorotoluene	"	n .	n	70.0-130		79.7	%	

Blaine Tech Services	Project:	Shell(2)	Sampled:	6/22/99
1680 Rogers Avenue	Project Number:	Shell 540 Hegenberger, Oakland/990622-T1	Received:	6/23/99
San Jose, CA 95112	Project Manager:	Ann Pember	Reported:	7/11/99

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT/Quality Control Sequoia Analytical - San Carlos

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% N	Votes
Batch: 9070012	Data Drana	mode 7/4/00	•		Entras	tion Method: EP.	A ENZAR	(D/T)		
Blank	<u>Date Prepar</u> 9070012-BI		•		Extrac	tion Memod: Er	K SUSULI	17.7.1		
Purgeable Hydrocarbons as Gasoline	7/8/99	<u> </u>		ND	/I	50.0				
Benzene	110177			ND ND	ug/l "	0.500				
	77				It					
Toluene				ND	11	0.500				
Ethylbenzene				ND	"	0.500				
Xylenes (total)	**			ND	" H	0.500				
Methyl tert-butyl ether				ND		5.00				
Surrogate: a,a,a-Trifluorotoluene	**	10.0		8.37	H	70.0-130	83.7			
LCS	9070012-BS	<u>81</u>								
Purgeable Hydrocarbons as Gasoline	7/8/99	250		225	ug/l	70.0-130	90.0			
Surrogate: a,a,a-Trifluorotoluene	ri	10.0		8.05	"	70.0-130	80.5			
Matrix Spike	9070012-M	S1 L9	06294-03							
Purgeable Hydrocarbons as Gasoline	7/8/99	250	ND	210	ug/l	60.0-140	84.0			
Surrogate: a,a,a-Trifluorotoluene	н	10.0		8.04	"	70.0-130	80.4			
Matrix Spike Dup	9070012-M	SD1 L9	06294-03							
Purgeable Hydrocarbons as Gasoline	7/8/99	250	ND	213	ug/l	60.0-140	85.2	25.0	1.42	
Surrogate: a,a,a-Trifluorotoluene	#	10.0		7.70	"	70.0-130	77.0			
Batch: 9070013	Date Prepar	red: 7/4/99			Extrac	tion Method: EP	A 5030B	IP/Tì		
Blank	9070013-BL				LAHRE		20000	12.21		
Purgeable Hydrocarbons as Gasoline	7/4/99	<u> </u>		ND	ug/l	50.0				
Benzene	H H			ND	11	0.500				
Foluene	#			ND ND	11	0.500				
Ethylbenzene	11			ND ND	11	0.500				
Kylenes (total)	**			ND ND	11	0.500				
• •	**				*1	5.00				
Methyl tert-butyl ether Surrogate: a,a,a-Trifluorotoluene		10.0		ND 8.38		70.0-130	83.8			
	8086646									
<u>LCS</u>	9070013-BS	_				#0.0.120	0.00			
Purgeable Hydrocarbons as Gasoline	7/4/99	250		217	ug/l	70.0-130	86.8			
Surrogate: a,a,a-Trifluorotoluene	"	10.0		8.50		70.0-130	85.0			
Matrix Spike	9070013-M	<u>S1 L9</u>	06299-06							
Purgeable Hydrocarbons as Gasoline	7/4/99	250	ND	227	ug/l	60.0-140	90.8			
Surrogate: a,a,a-Trifluorotoluene	"	10.0		10.3	"	70.0-130	103			
Matrix Spike Dup	9070013-M	<u>SD1 L9</u>	06299-06							

Sequoia Analytical - San Carlos

*Refer to end of report for text of notes and definitions.

1551 Industrial Road San Carlos, CA 94070-4111 (650) 232-9600 FAX (650) 232-9612

70.0-130

91.0

Blaine Tech Services Project: Shell(2) Sampled: 6/22/99
1680 Rogers Avenue Project Number: Shell 540 Hegenberger, Oakland/990622-T1 Received: 6/23/99
San Jose, CA 95112 Project Manager: Ann Pember Reported: 7/11/99

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS-LURT/Quality Control Sequoia Analytical - San Carlos

-	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*

Matrix Spike Dup (continued) 9070013-MSD1 L906299-06
Surrogate: a,a,a-Trifluorotoluene 7/4/99 10.0 9.10 ug/l

*Refer to end of report for text of notes and definitions.

Blaine Tech Services	Project:	Shell(2)	Sampled:	6/22/99
1680 Rogers Avenue	Project Number:	Shell 540 Hegenberger, Oakland/990622-T1	Received:	6/23/99
San Jose, CA 95112	Project Manager:	Ann Pember	Reported:	7/11/99

MTBE by EPA Method 8260A/Quality Control Sequola Analytical - San Carlos

<u> </u>	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	<u>%</u>	Notes*
Batch: 9070063	Date Prepare	ed: 7/16/9	99		Extrac	tion Method: EPA	4 5030B	[P/T]		
Blank	9070063-BLI	<u>K1</u>	_							
Methyl tert-butyl ether	7/16/99			ND	ug/l	2.00				
Surrogate: 1,2-Dichloroethane-d4	II .	50.0		56.1	ti	76.0-114	112			
LCS	9070063-BS1	<u>[</u>								
Methyl tert-butyl ether	7/16/99	50.0		51.1	ug/l	70.0-130	102			
Surrogate: 1,2-Dichloroethane-d4	η	50.0		52.6	#	76.0-114	105			
Matrix Spike	9070063-MS	<u>1 L9</u>	907033-02							
Methyl tert-butyl ether	7/16/99	50.0	ND	83.4	ug/l	60.0-140	111			
Surrogate: 1,2-Dichloroethane-d4	ıt	50.0		55.2	"	76.0-114	110	,		
Matrix Spike Dup	9070063-MS	<u>D1 L9</u>	907033-02							
Methyl tert-butyl ether	7/16/99	50.0	ND	80.6	ug/l	60.0-140	105	25.0	5.56	
Surrogate: 1,2-Dichloroethane-d4	n	50.0		54.0	"	76.0-114	108			an ar mornin i an i

Sequoia Analytical - San Carlos

Blaine Tech Services	Project:	Shell(2)	Sampled:	6/22/99
1680 Rogers Avenue	Project Number:	Shell 540 Hegenberger, Oakland/990622-T1	Received:	6/23/99
San Jose, CA 95112	Project Manager:	Ann Pember	Reported:	7/11/99

Notes and Definitions

#	Note
1	Chromatogram Pattern: Unidentified Hydrocarbons C6-C12
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

BLAIN	 .	L, CALIFORN	MERS AVENL VA 95112-111 (408) 573-777	25	CO	NDUCT	ANALY	'SIS TO	DETECT	LAB SEDUOTA IDHS
ECH SERVIC	ES No.	PHONE	(408) 573-055	55						ALL ANALYSES MUST MEET SPECIFICATIONS AND DETECTION LIMITS SET BY CALIFORNIA DHS AND
HAIN OF CUSTODY	20.			٦]						☐ EPA ☐ RWQCB REGION
	190022-T	<u>`</u>					}	- 1		☐ UA
LIENT Foudes	- Karen Petr				1	-			8010	ОТНЕЯ
ΠE				CONTAINEHS	1			8260	₩	SPECIAL INSTRUCTIONS
540_Be	genberger Ro	ad		Š	BTEX			82	&	Send invoice to Equiva
Oakland	I, CA			ALL (1 0	9	[급]	Ď.		Incident # 98995752
1.9	06299	··· <u>-</u>			gas, B	8260	lese1	69	40	THETGERT #
		ATRIX CON	TAINERS	2	£ 6	P.	. A	nat	PCA	Send report to Blaine Tech Services
1	3. SOIL	ž Ž		COMPOSITE	' [₆₋₇		==	0xygenat	2	Attn: Ann Pember
MPLE I.D.	<u>*</u> دن	≥ TDTAL		0	HAT M	됩	TPH	ŏ		
4-4-	the are	10					10	+		ADD'L INFORMATION STATUS CONDITION LAB SAMPLE #
102	Orte			1 1			³ 1			Confirm highest
	950	1 3		<u></u>	+			土		hit of MIBE
1w3	945	3		\	¥		_	ļ		by 3260. 84
A	1020	3	}]	Y	У		7	1		
2	יפעו	12					AP	-		BBBB AV
C		2					-]_			
D	10/3	3	- J	-+-			18P			
	1053	Z	Y	 	ķ				1 1	Revised COC
	·		- 1							
					 				 - -	6/24/99(1)
	-			-				_		
LING DATE	TIME ISM									
PLETED (d22)9	17:2	VPUNG PFORMED BY	Y Mik	الدآن		•				RESULTS NEEDED
ASED BY			DATE	ווטוב	THE		. A F	DECTH	/ED 8Y	NO LATER THAN
'RED BY	<u> </u>			123/9	9	9:15	│	IEGEN	7 ED 81	DATE TIME 9/5
WED BI			DATE		TIME			TECEN	ÆD BY	
BY)n.e		15:-		7	_	(DATE TIME
			DATE		TIME		₽ F	RECEIV	ED BY	DATE TIME
	1		DATE	SENT	TIME	SENT	100	VI CC		062499
	1			,	"""	- C-11	100	OLER	= }	

WELL GAUGING DATA

Project #_	990622-Ti	Date	6/22/99	Client 204-5508-5900	-
Site <u>540</u>	Hagenberger	Orkland	, CA		

Well ID	Well Size (in.)	Sheen /		Thickness of Immiscible Liquid (ft.)			Depth to well bottom (ft.)	Survey Point: TOB or TOC	
MUI	2					9.05	24.25	TOL	
MW2	2					7.10	19.41		
Mw 3	2					4.00	19.36		
Α	12					471	12.10		
ß	4					590	4.38		
C	4					5.91	12.00		
D	12					4.78	12.38	٣	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
								,	
	100		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					-	
			1 1 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1			# # # # # # # # # # # # # # # # # # #	
	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		7 97 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					1 1 1 1 1 1 1 1 1 1	
				2 m m m m m m m m m m m m m m m m m m m	# # # # # # # # # # # # # # # # # # #	<u> </u>			
			**************************************		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	**************************************						··- <u>-</u> -		
				1					, -

Project #	99002	2-11	······································	Job# 204-5508-5900 Date: 6/22					
Sampler:	MT			Date: 6/22					
Well I.D.	: MWI			Well Diameter	: Ø 3 4	6 8			
Total We	ll Depth:	24.25		Depth to Water: 9.05					
Depth to	Free Produ	ıct:		Thickness of Free Product (feet):					
Reference	ed to:	€VQ	Grade	D.O. Meter (if	req'd):	(SP HACH			
Well Diameter Multiplier 2" 0.16 5" 1.02 3" 0.37 6" 1.47 4" 0.65 Other radius² * 0.163 Purge Method: Bailer Sampling Method: Bailer Middleburg Extraction Port Electric Submersible Other: Diff - Extraction Pump Other:									
X NO Purge = Gals. 1 Case Volume (Gals.) Specified Volumes Calculated Volume									
Time	Temp (°F)	pН	Cond.	Turbidity	Gals. Removed	Observations			
934	67.5	7.2	4715	30.1					
·									
Did well	lewater?	Yes	<u>(10)</u>	Gallons actuall	y evacuated: -	-			
Sampling	Time: 9	40		Sampling Date	: Wzz				
Sample I.	Sample I.D.: Mw Laboratory: Sequoia BC Other								
Analyzed	for TPH-	G BTEX	MTBB TPH-D	Other:					
D.O. (if re	eq'd):		Pre-purge?	i 1 mg/L	Post-purge:	mg/L			
O.R.P. (if	req'd):		Pre-purge:	${ m mV}$	Post-purge:	mV			

Project #:	44062	2-11		100 # 204 -9	2000	>100				
Sampler:	MT			Date: 6/22						
Well I.D.:	· Mwz			Well Diameter	·: @	3 4	6	8		
Total We	ll Depth:	19.41		Depth to Water: 710						
Depth to	Free Produ	ct:		Thickness of Free Product (feet):						
Reference	ed to:	(V)	Grade	D.O. Meter (if	req'd):	 	X (E)(HA	.CH	
Purge Metho	Elec	<u>n</u> (0.16 0.37 0.65 ole	5" 6" Other radi Sampling Method:		ailer tion Port				
	Other:								_	
	1 Case Volu	ıme (Gals.)	X Wo Purse Specified Vo	= Cal	culated Vo	Gals.				
Time	Temp (°F)	pН	Cond.	Turbidity	Gals. R	Removed	C)bserva	tions	
925	UB3	64	427	19.2						
									<u>-</u>	
				·						
Did well	dewater?	Yes 	©	Gallons actuall	y evacu	ıated:			÷	
Sampling	Time: 9	30		Sampling Date	: U ₂₂					
Sample I.	D.: Mwz			Laboratory:	Sequoia	> BC	Oth	er		
Analyzed	for: TPH-	G BTEX	MTBE TPH-D	Other:					<u>.</u>	
D.O. (if r	eq'd):		€re-purge:	1.9 mg/L	Po	st-purge:			mg/I	
O.R.P. (if	req'd):		Pre-purge:	mV	Ро	st-purge:			<u> </u>	

Sampler: IM Date: Well Diameter: 2 3 4 6 8										
Total Well Depth: Depth to Free Product: Thickness of Free Product (feet): Thicknes										
Depth to Free Product: Referenced to: Well Diameter 2" 0.16 5" 1.02 3" 0.37 6" 1.47 4" 0.65 Other radius 0.163 Purge Method: Bailer Middleburg Electric Submersible Extraction Pump Other: X 1 Case Volume (Gals.) Time Temp (°F) pH Cond.										
Referenced to: VC Grade D.O. Meter (if req'd): SD HACH										
Well Diameter Multiplier Well Diameter Multiplier										
Well Diameter Multiplier 2" 0.16 5" 1.02 3" 0.37 6" 1.47 4" 0.65 Other radius 0.163 Purge Method: Bailer Middleburg Electric Submersible Extraction Pump Other: X Do Parce = Gals. 1 Case Volume (Gals.) Time Temp (°F) pH Cond. Turbidity Gals. Removed Observation										
Time Temp (°F) pH Cond. Turbidity Gals. Removed Observation										
Outs. Removed Observation	1 Case Volume (Gals.) Specified Volumes Calculated Volume									
943 19.4 7.2 10154 38.6 -	ıs									
	· · · ·									
Did well dewater? Yes Gallons actually evacuated:	-									
Sampling Time: 945 Sampling Date: 422										
Sample I.D.: Mw 3 Laboratory: Sequoia BC Other										
Analyzed for: TPH-G BTEX MTBE SPH-D Other:										
D.O. (if req'd): Pre-purger 3 mg/L Post-purge:										
O.R.P. (if req'd): Pre-purge: mV 'Post-purge:	mg/ _L									

Project #	99062	2-11		Job# 204-5508-5900					
Sampler:	pit			Date: 4/22					
Well I.D.	: A			Well Diameter	: 2 3 4	6 8 1211			
Total We	ll Depth:	12.10		Depth to Water: 421					
Depth to	Free Produ	ıct:		Thickness of F	ree Product (fe	et):			
Reference	ed to:	EVE	Grade	D.O. Meter (if	req'd):	YSD HACH			
	Well Diamet 2" 3" 4"		<u>Multiplier</u> 0.16 0.37 0.65	Well Diameter 5" 6"	Multiplier 1.02 1.47	5 (37			
Purge Method: Bailer Sampling Method: Bailer Middleburg Extraction Port Extraction Pump Other:									
		3. 3 ume (Gals.)	X		99 Gals.				
Time	Temp (°F)	pН	Cond.	Turbidity	Gals. Removed	Observations			
1005	71.6	7.3	9360	19.9	44				
1010	70.3	7.3	8467	19.1	88				
1015	69.4	7.3	8487	13.3	izd				
Did well	dewater?	Yes	(9)	Gallons actuall	y evacuated: 1	30			
Sampling Time: 1020 Sampling Date: 6/22									
Sample I.	D.: A			Laboratory: .	Sequoia BC	Other			
Analyzed for. TPH-G BTEX MTBE TPH-D Other:									
D.O. (if re	eq'd):		Pre-purge	l i mg/L	Post-purge:	^{mg} /L			
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:	mV			

Project #:	99000	-Ti		Job# 204-5508-5900					
Sampler:	MT			Date: 4/21					
Well I.D.	: B			Well Diameter: 2 3 @ 6 8					
Total We	ll Depth: 4	9.89		Depth to Wate	er: <i>5,9</i> 0				
Depth to	Free Produ	ct:		Thickness of Free Product (feet):					
Reference	ed to:	eV2	Grade	D.O. Meter (i:	f req'd):	(S) HACH			
Purge Metho	Elec	Bailer Middleburg stric Submers straction Pum	0.16 0.37 0.65	Sampling Method	Multiplier 1.02 1.47 dius² * 0.163 Extraction Port				
	2.0 1 Case Volu	9	X 3 Specified Vo	=	7.9 Gais.				
Time	Temp (°F)	pН	Cond.	Turbidity	Gals. Removed	Observations			
1025	71.7	6.9	1013	12.10	3				
1024	71:0	UB	755	4.3	2				
1027	71.3	レハ	744	9.0	2				
Did well o	lewater?	Yes	©	Gallons actual	ly evacuated: 2	•			
Sampling	Time: 10	30		Sampling Date	e: 422				
Sample I.I	D.: B_	· · · · · · · · · · · · · · · · · · ·		Laboratory: (Seguoia BC	Other			
Analyzed	for: TPH-C	BTEX	MTBE TPH-D	Other:					
D.O. (if re	:q'd):		Pre-purge	1.2 ^{mg} /1	Post-purge:	mg/L			
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:	mV			

Project #:	99000	12-11		Job# 204-5308-5900					
Sampler:	MI			Date: 6/22					
Well I.D.	· C			Well Diameter: 2 3 \$\Phi\$ 6 8					
Total We	ll Depth: /	2.00		Depth to Wate	r: 5,97				
Depth to l	Free Produ	ıct:		Thickness of Free Product (feet):					
Reference	ed to:	evo	Grade	D.O. Meter (if	req'd):	HACH			
Well Diameter Multiplier 2" 0.16 5" 1.02 3" 0.37 6" 1.47 4" 0.65 Other radius * 0.163 Purge Method: Bailer Sampling Method: Bailer Middleburg Extraction Port Electric Submersible Other: Extraction Pump Other:									
A X 3 = 12 Gals. 1 Case Volume (Gals.) Specified Volumes Calculated Volume									
Time	Temp (°F)	pН	Cond.	Turbidity	Gals. Removed	Observations			
1057	71.3	ت.7	921	26.1	4				
1058	71.3	Len	773	19.3	8				
1059	71.8	le.le	770	12.8	IZ				
Did well o	dewater?	Yes (М	Gallons actuall	y evacuated: /2	<u></u>			
Sampling	Time:	05		Sampling Date	: 6/22				
Sample I.	D.: C			Laboratory:	Sequoia BC	Other			
Analyzed	for: APH-	G BTEX	MTBE TPH-D	Other:		_			
D.O. (if re	eq'd):		Pre-purge)	1.(0 mg/L	Post-purge:	mg _/ L			
O.R.P. (if	req'd):	 	Pre-purge:	(Post-purge:	mV			

Project #: 990622-71				Job# 204-5508-5900				
Sampler: MT				Date: 6/22				
Well I.D.: D				Well Diameter	r: 2 3 4	6 8	12_	
Total Well Depth: 12.3%				Depth to Water: 4.7%				
Depth to Free Product:				Thickness of Free Product (feet):				
Referenced to: QC Grade			Grade	D.O. Meter (if	req'd):	(SP	НАСН	
Well Diameter Multiplier 2" 0.16 5" 1.02 3" 0.37 6" 1.47 4" 0.65 Other radius 2* 0.163 5: 27 Purge Method: Bailer Sampling Method: Bailer Middleburg Extraction Port Extraction Pump Other:								
	1 Case Volume (Gals.) X 3 = 134.1 Gals. Calculated Volume Calculated Volume							
Time	Temp (°F)	pН	Cond.	Turbidity	Gals. Removed Observations			
1040	Tole	6.9	1224	12.8	45			
1045	70.9	6.2	976	10.0	90			
1050	760	6.9	912	9.3	135			
-								
Did well dewater? Yes Gallons actually evacuated: (35								
Sampling	Time: (b	63		Sampling Date	Sampling Date: 6/22			
Sample I.I	D.: D		·	Laboratory: 6	Sequoda BC	Other_		
Analyzed	for: (TPH-C	BTEX	MTBE) TPH-D	Other:			-	
D.O. (if req'd):			re-purge	1,4 mg/L	Post-purge:		$^{ m mg}/_{ m L}$	
O.R.P. (if req'd):			Pre-purge:	mV	Post-purge:		mV	