PROTECTION

99 JUL 16 PM 2: 47

July 14, 1999

Mr. Larry Seto Alameda County Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 Chevron Products Company 6001 Bollinger Canyon Road Building L, Room 1080 PO Box 6004 San Ramon, CA 94583-0904

Philip R. Briggs
Project Manager
Site Assessment & Remediation
Phone 925 842-9136
Fax 925 842-8370

Re: Chevron Service Station #9-0338

5500 Telegraph Avenue, Oakland, California

Dear Mr. Seto:

Enclosed is the Monitoring Well Replacement and Installation Report, dated July 1, 1999 that was prepared by our consultant Gettler-Ryan Inc., for the above noted site. This work was performed to further evaluate dissolved MtBE concentrations beneath the site and to replace two on-site groundwater-monitoring wells.

Two new borings were drilled to a depth of 21.5 feet below grade with soil samples collected approximately every five feet. Each boring was then converted into 2-inch diameter groundwater monitoring wells. Wells C-1 and C-2 were drilled out to remove the casing, sand pack and annular seal material. New groundwater wells C-1A and C-2A were constructed in borings C-1 and C-2 at depths of 19.5 and 20.5 feet respectively. No soil samples were collected from these two borings.

Groundwater was encountered in borings C-4 and C-5 at a depth of approximately 13 feet below grade, with water depth stabilizing at 13 feet and 8.5 feet below grade respectively. Groundwater depth for wells C-1A and C-2A was respectively at 8 and 9.5 feet below grade.

The soil and water samples were analyzed for the TPH-g, BTEX and MtBE constituents. Three soil samples taken from the two borings were below method detection limits for all of the constituents. One soil sample in well C-5 at 11 feet below grade, detected TPH-g, benzene, xylenes and MtBE in concentrations of 1.3 ppm, 0.017 ppm 0.012 ppm and 0.10 ppm respectively. In addition, soil samples collected from boring MW-4, at 6 feet (unsaturated) and at 16 feet (saturated) were analyzed for bulk density, porosity and fraction organic carbon. These analytical results are noted under Table 3.

July 14, 199 Mr. Larry Seto Chevron Service Station #9-0338 Page 2

TPH-g and BTEX constituents were below method detection limits in wells C-2A and C-4, while all constituents were detected in the groundwater samples collected from wells C-1A and C-5, with the highest benzene and MtBE concentrations detected in well C-5.

Groundwater beneath the central portion of the site has appears to have been slightly impacted be MtBE but has not been impacted be TPH-g or BTEX constituents. The lateral extent of hydrocarbon impacted groundwater has not been delineated downgradient of the site

Chevron will begin quarterly monitoring at the site. The next sampling event is scheduled in August.

If you have any questions or comments call me at (925) 842-9136.

Sincerely,

CHEVRON PRODUCTS COMPANY

their & Sung

Philip R. Briggs

Site Assessment and Remediation Project Manager

Enclosure

Cc. Mr. Bill Scudder, Chevron

CIA CZA

0-4/65

MONITORING WELL REPLACEMENT AND INSTALLATION REPORT

for Chevron Service Station #9-0338 5500 Telegraph Avenue Oakland, California

Report No. 346456.02-2

Prepared for:

Mr. Phil Briggs
Chevron Products Company
P.O. Box 6004
San Ramon, California 94583

Prepared by:

Gettler-Ryan Inc. 6747 Sierra Court, Suite G Dublin, California 94568

> Barbara Sieminski Project Geologist

> > R.G. 6676

₩ No. 6676

Greg A. Gurss
Project Manager

July 1, 1999

TABLE OF CONTENTS

1.0 INTROL	DUCTION		• • • • • • • •		. 1
	ESCRIPTION				
2.1 G	Seneral				
2.2	seology and Hydrogeology				
2.3 Pr	revious Environmental Work		• • • • • • • •		. 1
		*			
3.0 FIELD V	WORK			· • • • • • •	. 2
3.1 E	Orilling Activities				. 2
	Vellhead Survey				
	Vell Development and Sampling				
	aboratory Analysis				
	rs				
4.1 S	ubsurface Condition				. 3
	oil Analytical Results				
	roundwater Analytical Results				
	USIONS				
6.0 REFERE	ENCES				. 5
			,		
	TABLES				
		÷	•	V.	
Table 1:	Summary of Well Destruction Activities				
Table 1:	Water Level Data and Groundwater Anal	ytical Result	S		
Table 2:	Soil Analytical Results			•	
			•		
	FIGURES				
			,		
Figure 1.	Vicinity Map				
Figure 2.	Potentiometric Map				
			•		
	APPENDICES				
A A .	West-Diss. Assessed Later				
Appendix A:	Work Plan Approval Letter				
Appendix B:	GR Field Methods and Procedures	f California V	Wall Carre	l_4: D	
Appendix C:	Drilling Permit, Boring Logs and State of	i Camorina '	wen comp	tetion Kepc	rts
Appendix E:	Well Development and Sampling Field D	ata Chaata	. *		
Appendix E:	Well Development and Sampling Field D		Decemb		
Appendix F:	Laboratory Analytical Reports and Chain-	-or-Custody	kecords		

MONITORING WELL REPLACEMENT AND INSTALLATION REPORT

for

Chevron Service Station #9-0338 5500 Telegraph Avenue Oakland, California

Report No. 346456.02-2

1.0 INTRODUCTION

This report summarizes the results of a well replacement and installation performed at Chevron Station #9-0338, located at 5500 Telegraph Avenue in Oakland, California. The work was performed by Gettler-Ryan Inc (GR) at the request of Chevron Products Company (Chevron) to further evaluate dissolved methyl tertiary butyl ether (MtBE) concentrations beneath the subject site and to replace two on-site groundwater monitoring wells. The scope of work included: preparing a site specific health and safety plan; obtaining the required well drilling permit; drilling two on-site soil borings and installing groundwater monitoring wells (C-4 and C-5) in these borings; drilling out two on-site groundwater monitoring wells (C-1 and C-2) and installing two new wells (C-1A and C-2A) in the existing holes; surveying wellhead elevations; developing and sampling the wells; collecting and submitting soil and groundwater samples for chemical analysis; arranging for Chevron's contractor to dispose of the waste materials; and preparing a report documenting the work. This work was proposed in GR Report No. 346456.02-1, Work Plan for Monitoring Well Installation, dated January 28, 1999, and Addendum to Work Plan dated March 22, 1999, which were approved by the Alameda County Health Care Services Agency (ACHCSA) in their letters to Chevron dated February 3, 1999, and March 25, 1999, respectively (Appendix A).

2.0 SITE DESCRIPTION

2.1 General

The subject site is an active service station located on the northeastern corner of the intersection of Telegraph Avenue and 55th Street in Oakland, California (Figure 1). Aboveground facilities consist of a station building and six dispenser islands. Two gasoline underground storage tanks (USTs) share a common pit near the northern site boundary. Pertinent site features are shown on Figure 2.

2.2 Geology and Hydrogeology

The subject site is located on the East Bay Plane, approximately 2 miles east of San Francisco Bay and 2 miles north of Lake Merritt. The local topography is relatively flat at an elevation of approximately 125 feet above mean sea level. As mapped by E. J. Helley and others (1979), soil in the site vicinity consists of Late Pleistocene alluvium consisting of weekly consolidated slightly weathered poorly sorted irregularly interbedded clay, silt, sand and gravel. The nearest surface water is Glen Echo Creek located

approximately 1 mile southeast of the site. Based on the historical quarterly monitoring data, the shallow groundwater beneath the site flows to the southwest.

2.3 Previous Environmental Work

Three on-site groundwater monitoring wells (C-1 through C-3) were installed at the site in 1989. Between November 1989 and November 1993, the wells were monitored and samples on quarterly to annual basis. Monitoring and sampling of wells C-1 through C-3 was discontinued in 1994 and then was resumed in June 1998. Petroleum hydrocarbons (up to 280 parts per billion [ppb] of total petroleum hydrocarbons as gasoline [TPHg] and up to 0.9 ppb of benzene) were detected sporadically in well C-1 and on one occasion in well C-3. Petroleum hydrocarbons were never detected in well C-2.

To accommodate the proposed new station construction, well C-3 was destroyed on June 30, 1998. Following destruction of well C-3, GR collected a grab groundwater sample from the UST backfill well. TPHg or benzene were not detected in this sample, but MtBE was detected at the concentration of 15,000 ppb.

On July 22, 1998, GR removed three 10,000-gallon single-wall fiberglass gasoline USTs, one 1,000-gallon fiberglass waste oil UST, associated product lines and dispenser islands, three hydraulic hoists, and an oil/water separator. Six compliance samples were collected from the gasoline UST pit sidewalls at the soil/groundwater interface (approximately 9 feet below ground surface [bgs]). TPHg were not detected in any of the sidewall samples. Benzene was detected in one sample at a concentration of 0.013 parts per million (ppm). MtBE was detected in all six samples at concentrations ranging from 3.3 to 6.8 ppm.

Five soil samples were collected beneath the product lines at depths between 3.5 and 4 feet bgs. TPHg, benzene or MtBE were not detected in any of these samples. Lead was detected in two of the five samples at concentrations of 1.0 ppm and 2,8 ppm.

One soil sample was collected beneath the waste oil UST at a depth of 9 feet bgs. TPHg, benzene, MtBE, total petroleum hydrocarbons as diesel (TPHd), volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) or lead were not detected in this sample. However, total oil and grease (TOG) was detected in this sample at a concentration of 130 ppm.

Compliance soil samples were collected from beneath the three hydraulic hoists and oil/water separator at depths of 9 feet bgs. Soil sample collected beneath the oil/water separator contained 1.6 ppm TPHg, 2,000 ppm TPHd, 2,600 ppm TOG, and 2,800 ppm of total petroleum hydrocarbons as hydraulic oil (TPHho). TPHho were not detected beneath the other two hydraulic hoists.

Approximately 1,500 gallons of groundwater were pumped out from the new UST excavation during installation activities. On August 7, 1998, this water was transported by Integrated Wastestream Management (IWM) to the McKittrick Treatment, Storage, and disposal facility in McKittrick, California.

3.0 FIELD WORK

Field work was conducted in accordance with GR's Field Methods and Procedures (Appendix B) and the Site Safety Plan dated May 6, 1999. A well destruction and installation permit (#99WR173) was obtained from the Alameda County Public Works Agency, an underground utility locator was contracted to clear boring locations, and Underground Service Alert was notified prior to drilling at the site. Copies of the permit and State of California Well Completion Report are included in Appendix C.

3.1 Drilling Activities

On May 15, 1999, a GR geologist observed Bay Area Exploration, Inc. (C57 #522125) install two new on-site groundwater monitoring wells (C-4 and C-5) and replace two existing on-site groundwater monitoring wells (C-1 and C-2 with C-1A and C-2A, respectively) at the locations shown on Figure 2. Drilling was performed using 8-inch hollow-stem augers driven by a truck-mounted CME-55 drill rig.

Well borings C-4 and C-5 were drilled to 21.5 feet bgs. Soil samples were collected from the borings approximately every 5 feet. The GR geologist prepared logs of the borings and screened the soil samples in the field for the presence of volatile organic compounds. Screening data are presented on the boring logs (Appendix C).

Wells C-1 and C-2 were drilled out to 31 feet bgs (1 to 1.5 feet past the installed depth) to remove the casing, sand pack and annular seal material. Upon completion of drilling, bentonite was placed in the borings from the total depth to approximately 19.5 and 20.5 feet bgs, respectively. Then, groundwater monitoring wells C-1A and C-2A were constructed in borings C-1 and C-2, respectively. Well destruction activities are summarized in Table 1, and well construction details are described below.

Groundwater monitoring wells C-1A, C-2A, C-4 and C-5 were constructed using 15 feet of two-inch diameter, 0.020-inch machine-slotted Schedule 40 PVC screen. Lonestar #3 graded sand was placed in each well across the entire screen interval and extended approximately 0.5 to 1.5 feet above the top of the screen. Each well was then sealed with 1 foot of hydrated bentonite chips followed by neat cement. Well construction details are presented on the boring logs in Appendix C.

Drill cuttings were placed on and covered with plastic sheeting and stored on-site pending disposal. After completion of drilling, four samples for disposal characterization were collected from the drill cuttings and submitted to the laboratory for compositing and analysis as sample SP (A-D). On May 25, 1999, the drill cuttings were removed from the site and transported to the BFI Landfill in Livermore by Integrated Wastestream Management (IWM).

3.2 Wellhead Survey

On June 9, 1999, wells C-1A,C-2A, C-4 and C-5 were surveyed relative to mean sea level by Virgil Chavez, a California licensed land surveyor (#6323). Horizontal coordinates were obtained at the same

time. A copy of the survey report is included in Appendix D, and the survey data is summarized in Table 2.

3.3 Well Development and Sampling

On May 27, 1999, groundwater monitoring wells C-1A, C-2A, C-4 and C-5 were developed by GR personnel using a vented surge block and hand-bailing. Depth to water was measured in the wells prior to development. Groundwater samples were collected from the wells upon completion of well development. Water purged during well development and sampling was transported to McKittrick Waste Management by IWM. Groundwater monitoring data are presented in Table 2, and copies of the GR Well Development and Sampling Field Data Sheets are included in Appendix E.

3.4 Laboratory Analysis

Soil and groundwater samples were analyzed by Sequoia Analytical in Walnut Creek, California (ELAP #1271). Soil samples collected from borings C-4 and C-5 at 6 and 11 feet bgs and groundwater samples collected from the wells were analyzed for TPHg, benzene, toluene, ethylbenzene and xylenes (BTEX), and methyl tertiary butyl ether (MtBE) by Environmental Protection Agency (EPA) Methods 8015/8020. The highest MtBE concentration which was detected in the groundwater sample collected from well C-5 was confirmed by EPA Method 8260. Soil samples collected from boring C-4 at 6 feet bgs (unsaturated sample) and at 16 feet bgs (saturated sample) were analyzed for fraction organic carbon by Watley-Black Method and bulk density, porosity and moisture content (unsaturated sample only) by method API RP-40. The composite sample from the drill cuttings was analyzed for TPHg and BTEX. Copies of the laboratory analytical reports and chain-of-custody records are included in Appendix F.

4.0 RESULTS

4.1 Subsurface Conditions

Soil encountered in borings C-4 and C-5 consisted predominantly of clay and clayey gravel to the total depth explored of 21.5 feet bgs. A clayey gravel layer was encountered within clay layers at a depth of approximately 10.5 and 13 feet bgs and extended to approximate depths of 18 and 21 feet bgs in borings C-4 and C-5, respectively. Groundwater was encountered in this layer at a depth of approximately 13 feet bgs and stabilized at depths of 12.8 and 8.6 in the borings C-4 and C-5, respectively. Detailed descriptions of the subsurface materials encountered during drilling are presented on the boring logs in Appendix C. Based on groundwater monitoring data collected on May 27, 1999, shallow groundwater beneath the site appears to flow to the south at an approximate gradient of 0.03 (Figure 2).

4.2 Soil Analytical Results

TPHg (1.3 ppm), benzene (0.017 ppm) and MtBE (0.10 ppm) were detected in soil sample collected from boring C-5 at 11 feet bgs (capillary fringe zone). TPHg, benzene or MtBE were not detected in the sample collected from boring C-5 feet bgs or in the samples collected from boring C-4.

The laboratory analytical results for the unsaturated soil sample collected from boring C-4 at 6 feet bgs indicated dry density of 1.85 gram per cubic centimeter (gm/cc), natural density of 2.15 gm/cc, matrix density of 2.64 gm/cc, porosity of 29.8% and moisture content of 13%. The results for the saturated sample collected from boring C-4 at 16 feet bgs indicated dry density up to 1.66 gm/cc, natural density up to 2.01 gm/cc, matrix density up to 2.57 gm/cc, and porosity up to 35.6%. Fraction organic carbon for the samples collected from boring C-4 at 6 and 16 feet bgs was reported at 0.39% and 0.12%, respectively.

The composite stockpile sample did not contain petroleum hydrocarbons. Soil chemical analytical data are summarized in Table 3.

4.3 Groundwater Analytical Results

Groundwater samples collected from wells C-1A and C-5 contained TPHg (9,100 ppb and 2,800 ppb, respectively), benzene (40 ppb and 350 ppb, respectively) and MtBE (35 ppb and 2,500 ppb, respectively). Groundwater samples collected from wells C-2A and C-4 did not contain TPHg or benzene, however, MtBE was detected in these samples at the concentration of 44 ppb. Groundwater analytical data are summarized in Table 1.

5.0 CONCLUSIONS

Analytical results from soil samples collected and analyzed during this investigation indicate that soil within the capillary fringe in the vicinity of well C-5 has been slightly impacted by TPHg (1.3 ppm), benzene (0.017 ppm) and MtBE (0.10 ppm). Soil in the vicinity of well C-4 has not been impacted by petroleum hydrocarbons.

Shallow groundwater beneath the western portion of the subject site has been impacted by gasoline hydrocarbons. The highest TPHg concentration in groundwater (9,100 ppb) is present in the vicinity of the southwestern dispenser island (near well C-1A), but the highest concentrations of benzene (350 ppb) and MtBE (2,500 ppb) are present in the vicinity of the UST complex (near well C-5). Groundwater beneath the central portion of the site (vicinity of wells C-2A and C-4) has been slightly impacted by MtBE but has not been impacted by TPHg or benzene. The lateral extent of hydrocarbon impacted groundwater has not been delineated downgradient of the subject site.

6.0 REFERENCES

E. J. Helley and others, 1979, Flatland Deposits of the San Francisco Bay Region, California: U.S. Geological Survey Professional Paper 943.

Gettler-Ryan Inc., August 12, 1998, Groundwater Monitoring & Sampling Report, Chevron Service Station #9-0338, 5500 Telegraph Avenue, Oakland, California, Report No. 6456.80.

Gettler-Ryan Inc., January 28, 1999, Work Plan for Monitoring Well Installation at Chevron Service Station #9-0338, 5500 Telegraph Avenue, Oakland, California, Report No. 346456.02-1.

Gettler-Ryan Inc., March 22, 1999, Addendum to Work Plan for Monitoring Well Installation at Chevron Service Station #9-0338, 5500 Telegraph Avenue, Oakland, California, Report No. 346456.02.

Gettler-Ryan Inc., May 6, 1999, Site Safety Plan for Chevron Service Station #9-0338, 5500 Telegraph Avenue, Oakland, California, Job No. 346456.02.

Table 1. Summary of Well Destruction Activities - Chevron Service Station #9-0338, 5500 Telegraph Avenue, Oakland, California.

Well ID	Well	Well	Installed	Well Depth	Depth to Water	Drilled-out
	Destruction	Diameter	Well Depth	on 05/12/99	on 05/12/99	Depth
	Date	(inches)	(feet)	(feet)	(feet)	(feet)
C-1	05/12/99	2	30.0	29.2	8.22	31.0 ¹
C-2	05/12/99	2	28.5	29.5	9.42	31.0 ²

EXPLANATION:

Well was drilled out with 8-inch diameter hollow stem augers then the boring was backfilled with bentonite to 19.5 feet bgs and groundwater monitoring well C-1A was installed in the boring.

Well was drilled out with 8-inch diameter hollow stem augers then the boring was backfilled with bentonite to 20.5 feet bgs and groundwater monitoring well C-2A was installed in the boring.

Table 2. Water Level Data and Groundwater Analytical Results - Chevron Service Station #9-0338, 5500 Telegraph Avenue, Oakland, California.

/ell ID/ OC (feet)	Date	DTW (feet)	GWE (msl)	Product Thickness (feet)	TPHg <	Benzene	Toluene ppb-	Ethylbenzene	Xylenes	MtBE >
-1A/ 23.27	05/27/99	7.34	115.93	0	9,100	40	25	560	1,900	35
-2A/ 25.89	05/27/99	6.36	119.53	0	< 50	<0.50	< 0.50	< 0.50	<0.50	44
4/ 25.40	05/27/99	10.06	115.34	0	< 50	< 0.50	< 0.050	< 0.50	< 0.50	44 -
-5/ 24.15	05/27/99	6.61	117.54	0	2,800	350	73	32	280	2,200/2,5001
B-LB	05/27/99	_	-	_	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.5

EXPLANATION:

DTW - Depth to water

TOC - Top of casing elevation

GWE - Groundwater elevation

TPHg - Total Petroleum Hydrocarbons as gasoline

MtBE - Methyl t-Butyl Ether

TB-LB - Trip blank

msl - Measurements referenced relative to mean sea level

ppb - Parts per billion

- - Not analyzed/Not applicable

1 = MtBE result by EPA Method 8260

ANALYTICAL METHODS:

TPHg, benzene, toluene, ethylbenzene, xylenes – EPA Methods 5030/8015Mod/8020 MtBE – EPA Methods 8020 and 8260

ANALYTICAL LABORATORY:

Sequoia Analytical (ELAP #1271)

NOTES:

Wells C-1A, C-2A, C-4 and C-5 were surveyed on June 9, 1999, by Virgil Chavez of Vallejo, California (PLS 6323).

Table 3. Soil Analytical Results - Chevron Service Station #9-0338, 5500 Telegraph Avenue, Oakland, California.

								Fraction		Bulk Den	sity	24.41	Moisture
Depth	Date (ft)				Ethylbenzene	Xylenes	MtBE	Organic Carbon	Dry gm/cc	Natural	Matrix	Porosity or	Content
		*						- 70	_ KILD CC	gribce	gnoce	76	%
6	05/12/99	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050	0.39	1.85	2.15	2.64	29.8	13
11	05/12/99	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050	_	_				
16	05/12/99	***						0.12	1.66	2.01	2.57	35.6	_
6	05/12/99	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050	_	_		_	_	
11	05/12/99	1.3	0.017	< 0.0050	< 0.0050	0.012	0.10	-		-	-		_
	05/12/99	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050			_	_		_	
	11 16 6 11	6 05/12/99 11 05/12/99 16 05/12/99 6 05/12/99 11 05/12/99	(ft) < 6 05/12/99 <1.0 11 05/12/99 <1.0 16 05/12/99 6 05/12/99 <1.0 11 05/12/99 1.3	(ft) <	(ft) < 6 05/12/99 < 1.0	(ft) <	6 05/12/99 < 1.0 < 0.0050 < 0.0050 < 0.0050 < 0.0050 11 05/12/99 < 1.0	(ft) Ppm 6 05/12/99 11 05/12/99 16 05/12/99 16 05/12/99 17 05/12/99 18 05/12/99 19 05/12/99 10 05/12/99 11 05/12/99 12 05/12/99 13 0.017 14 05/12/99 15 05/12/99 16 05/12/99 17 0.0050 18 0.0050 19 0.0050 10 0.0050 10 0.0050 10 0.0050 11 0.0050 12 0.0050 13 0.017 15 0.0050 16 0.0050 17 0.0050 18 0.0050 19 0.0050 10 0.0050 10 0.0050 10 0.0050 10 0.0050 10 0.0050 10 0.0050 10 0.0050 10 0.0050 10 0.0050 10 0.0050 10 0.	Depth Date (ft) TPHg Benzene Toluene Ethylbenzene Xylenes MtBE Organic Carbon %	Depth Date (ft) TPHg Benzene Toluene Ethylbenzene Xylenes MtBE Organic Carbon Dry gm/cc	Depth Date (ft) TPHg Benzene Toluene Ethylbenzene Xylenes MtBE Organic Carbon gm/cc gm/cc gm/cc	Depth Date (ft) Component TPHg Benzene Toluene Ethylbenzene Xylenes MtBE Organic Carbon Dry Matural Matrix mat	Depth Date (ft) TPHg Benzene Toluene Ethylbenzene Xylenes MtBE Organic Carbon gm/cc gm/c

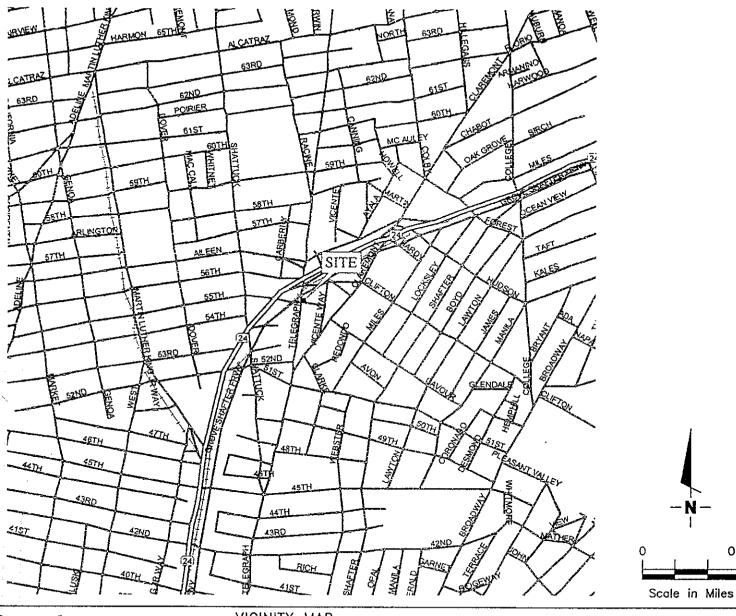
EXPLANATION:

TPHg - Total Petroleum Hydrocarbons as gasoline

MtBE - Methyl t-Butyl Ether

ft - Feet

ppm - Parts per million


gm/cc - gram per cubic centimeter
- Not analyzed/not applicable

ANALYTICAL METHODS:

TPHg, benzene, toluene, ethylbenzene, xylenes, MtBE = EPA Methods 5030/8015Mod/8020 Porosity, densities - Method API RP-40

ANALYTICAL LABORATORY:

Sequoia Analytical (ELAP #1271)

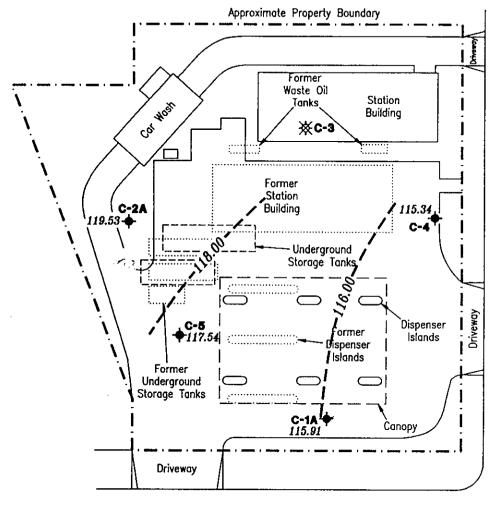
Source: Street Alios USA, Delorme (1995).

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568 (925) 551-7555

VICINITY MAP
Chevron Service Station No. 9-0338
5500 Telegraph Avenue
Oakland, California

DATE

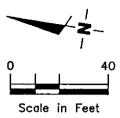

REVISED DATE

JOB NUMBER 346456

REVIEWED BY

FIGURE

0.25


EXPLANATION:

- Groundwater Monitoring Well
- ★ Destroyed Groundwater Monitoring Well
- 119.53 Groundwater Elevation Measured In Feet Referenced To Mean Sea Level
- Groundwater Elevation Contour, Dashed Where Inferred

Approximate Groundwater Flow Direction At A Gradient Of 0.03 Ft./Ft.

Note: Wells C-1A and C-2A were installed in locations of drilled-out wells C-1 and C-2

Source: Figure Modified From Drawing Provided By Chevron.

TELEGRAPH AVENUE

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568 (925) 551-7555

POTENTIOMETRIC MAP Chevron Service Station No. 9-0338 5500 Telegraph Avenue Oakland, California

55TH STREET

May 27, 1999

DATE

2

FIGURE

JOB NUMBER 346456.02 REVIEWED BY

REVISED DATE

ALAMEDA COUNTY

HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

February 3, 1999

ENVIRONMENTAL HEALTH SERVICES 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 (510) 337-9335 (FAX)

Mr. Phil Briggs Chevron Products Company P.O. Box 6004 San Ramon, CA 94583

> RE. Chevron, 5500 Telegraph Avenue, Oakland, CA

Dear Mr. Briggs:

I have reviewed your Work Plan For Monitoring Well Installation dated January 28, 1999 that was prepared by Gettler-Ryan Inc. This workplan to install two additional wells is acceptable with the understanding that existing monitoring wells C-1 and C-2 can be used to determine gradient direction. These two existing monitoring wells must be properly screened, and constructed in accordance to California Well Standard, California Department of Water Resources.

If you have any questions, please contact me at (510) 567-6774.

Sincersty.

Larry Seto

Cc:

Todd A. Del Frate, Gettler-Ryan, 3164 Gold Camp Drive, Suite 240,

Rancho Cordova, CA 95670 Leroy Griffin, City of Oakland Fire Department

Files

ALAMEDA COUNTY

HEALTH CARE SERVICES

AGENCY DAVID J. KEARS, Agency Director

P.R.B.

P.R.B.

\$ико . **99** ДО 9-0338

March 25, 1999

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION (LOP) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 667-6700 FAX (510) 337-9335

Mr. Phil Briggs Chevron Products Company P.O. Box 6004 San Ramon, CA 94583

RE: Chevron, 5500 Telegraph Avenue, Oakland, CA

Dear Mr. Briggs:

I have reviewed the Addendum to Work Plan For Monitoring Well Installation dated March 22, 1999 and Well Construction Details for Monitoring Wells C-1A, C-2A, C-4 and C-5 dated March 25, 1999 prepared by Gettler-Ryan. The well locations and well design are acceptable.

If you have any further questions, please contact me at (510) 567-6774.

Sincerely,

Larry Seto

Sr. Hazardous Materials Specialist

Poet-It" Fax Note 7871	Oute 4-1-99 pages /
TO GRAGE GINSS	From 4
Co. Dopt. Garrier Phone N	CHESTIEON
	Phone #
FAX # 916 631-13-7	ex f

GETTLER - RYAN FIELD METHODS AND PROCEDURES

Site Safety Plan

Field work performed by Gettler-Ryan, Inc. (GR) is conducted in accordance with GR's Health and Safety Plan and the Site Safety Plan. GR personnel and subcontractors who perform work at the site are briefed on the of these plans contents prior to initiating site work. The GR geologist or engineer at the site when the work is performed acts as the Site Safety Officer. GR utilizes a photoionization detector (PID) to monitor ambient conditions as part of the Health and Safety Plan.

Collection of Soil Samples

Exploratory soil borings are drilled by a California-licensed well driller. A GR geologist is present to observe the drilling, collect soil samples for description, physical testing, and chemical analysis, and prepare a log of the exploratory soil boring. Soil samples are collected from the exploratory soil boring with a split-barrel sampler or other appropriate sampling device fitted with clean brass or stainless steel liners. The sampling device is driven approximately 18 inches with a 140-pound hammer falling 30 inches. The number of blows required to advance the sampler each successive 6 inches is recorded on the boring log. The encountered soil is described using the Unified Soil Classification System (ASTM 2488-84) and the Munsell Soil Color Chart.

After removal from the sampling device, soil samples for chemical analysis are covered on both ends with teflon sheeting or aluminum foil, capped, labeled, and placed in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Samples are selected for chemical analysis based on:

- a. depth relative to underground storage tanks and existing ground surface
- b. depth relative to known or suspected groundwater
- c. presence or absence of contaminant migration pathways
- d. presence or absence of discoloration or staining
- e. presence or absence of obvious gasoline hydrocarbon odors
- f. presence or absence of organic vapors detected by headspace analysis

Field Screening of Soil Samples

A PID is used to perform head-space analysis in the field for the presence of organic vapors from the soil sample. This test procedure involves removing some soil from one of the sample tubes not retained for chemical analysis and immediately covering the end of the tube with a plastic cap. The PID probe is inserted into the headspace inside the tube through a hole in the plastic cap. Head-space screening results are recorded on the boring log. Head-space screening procedures are performed and results recorded as reconnaissance data. GR does not consider field screening techniques to be verification of the presence or absence of hydrocarbons.

Stockpile Sampling

Stockpile samples consist of four individual sample liners collected from each 100 cubic yards (yd³) of stockpiled soil material. Four arbitrary points on the stockpiled material are chosen, and discrete soil sample is collected at each of these points. Each discrete stockpile sample is collected by removing the upper 3 to 6 inches of soil, and then driving the stainless steel or brass tube into the stockpiled material with a wooden mallet or hand driven soil sampling device. The sample tubes are then covered on both ends with teflon sheeting or aluminum foil, capped, labeled, placed in the cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected

G-R Field Methods and Procedures

soil samples to the analytical laboratory. Stockpiled soils are covered with plastic sheeting after completion of sampling.

Construction of Monitoring Wells

Monitoring wells are constructed in the exploratory borings with Schedule 40 polyvinyl Chloride (PVC) casing. All joints are thread-joined; no glues, cements, or solvents are used in well construction. The screened interval is constructed of machine-slotted PVC well screen which generally extends from the total well depth to a point above the groundwater. An appropriately-sized sorted sand is placed in the annular space adjacent to the entire screened interval. A bentonite transition seal is placed in the annular space above the sand, and the remaining annular space is sealed with neat cement or cement grout.

Wellheads are protected with water-resistant traffic rated vault boxes placed flush with the ground surface. The top of the well casing is sealed with a locking cap. A lock is placed on the well cap to prevent vandalism and unintentional introduction of materials into the well.

Storing and Sampling of Drill Cuttings

Drill cuttings are stockpiled on plastic sheeting or stored in drums depending on site conditions and regulatory requirements. Stockpile samples are collected and analyzed on the basis of one composite sample per 50 cubic yards of soil. Stockpile samples are composed of four discrete soil samples, each collected from an arbitrary location on the stockpile. The four discrete samples are then composited in the laboratory prior to analysis.

Each discrete stockpile sample is collected by removing the upper 3 to 6 inches of soil, and then driving the stainless or brass sample tube into the stockpiled material with a hand, mallet, or drive sampler. The sample tubes are then covered on both ends with teflon sheeting or aluminum foil, capped, labeled, and placed in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Stockpiled soils are covered with plastic sheeting after completion of sampling.

Wellhead Survey

The top of the newly-installed well casing is surveyed by a California-licensed Land Surveyor to mean sea level (MSL).

Well Development

The purpose of well development is to improve hydraulic communication between the well and surrounding aquifer. Prior to development, each well is monitored for the presence of separate-phase hydrocarbons and the depth-to-water is recorded. Wells are then developed by alternately surging the well with the bailer, then purging the well with a pump to remove accumulated sediments and draw groundwater into the well. Development continues until the groundwater parameters (temperature, pH, and conductivity) have stabilized.

Groundwater Monitoring and Sampling

Decontamination Procedures

All physical parameter measuring and sampling equipment are decontaminated prior to sample collection using Alconox or equivalent detergent followed by steam cleaning with deionized water. During field sampling, equipment placed in a well are decontaminated before purging or sampling the next well by cleaning with Alconox or equivalent detergent followed by steam cleaning with deionized water.

Water-Level Measurements

Prior to sampling each well, the static water level is measured using an electric sounder and/or calibrated portable oil-water interface probe. Both static water-level and separate-phase product thickness are measured to the nearest ± 0.01 foot. The presence of separate-phase product is confirmed using a clean, acrylic or polyvinylchloride (PVC) bailer, measured to the nearest ± 0.01 foot with a decimal scale tape. The monofilament line used to lower the bailer is replaced between borings with new line to preclude the possibility of cross-contamination. Field observations (e.g. product color, turbidity, water color, odors, etc.) are noted. Water-levels are measured in wells with known or suspected lowest dissolved chemical concentrations to the highest dissolved concentrations.

Sample Collection and Labeling

A temporary PVC screen is installed in the boring to facilitate a grab groundwater sample collection. Samples of groundwater are collected from the surface of the water in each well or boring using the teflon bailer or a pump. The water samples are then gently poured into laboratory-cleaned containers and sealed with teflon-lined caps, and inspected for air bubbles to check for headspace. The samples are then labeled by an adhesive label, noted in permanent ink, and promptly placed in an ice storage. A Chain-of-Custody Record is initiated and updated throughout handling of the samples, and accompanies the samples to the laboratory certified by the State of California for analyses requested.

re eserve en religió que que mumo pod

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION

951 TURNER COURT, SUITE 100, RAYWARD, CA 94545-2651

PHONE (\$10) 670-5575 AMBREAS CONFREY FAX (\$10) 670-5261 (\$10) 670-8148 ALYTHICAN

DRILLING PERMIT APPLICATION

for applicant to complete	FOR OFFICE USE
LOCATION OF PROJECT CHEEN STATES 4-0338	94 WR173
THE THEORY MALE	PERMIT NUMBER
Adulati, Co.	WELL NUMBER
California Coordinates Squreeft. Accuracy #th	PERMIT CONDITIONS
CCN	. Prout Coll Dittoria
A7N	Circled Permit Requirements Apply
CUENT	A. CEPERLI
Name Cucien Propos Conses	. Appermit application should be submitted so to to
Asides 20 600 700 7500 770 175 185 185 185 185 185 185 185 185 185 18	Strive at the ACFIVA effice five days prior to
City	grapuses electing date.
APPLICANT	3. Surrait to ACPWA within 60 days efter completion of
Name Gerrace - Zand -	permissed work the original Department of Water
7(18) 600 Care M. 370 111 (96) 691-1317	Resources Water Well Ordiers Report or equivalent to
Address Thank (Ps) Car- Pato	well projects, or drilling logs and incation sketch for souteenless projects.
CIT LONG CULTURE ZIP 15570.	Samula is moid if project not begun within 30 days of
	approval date.
TYTE OF PROJECT	B. WATER SCOPEY WELLS
Well Construction Gentechnical Investigation	Ministrum surface seal thickness is two inches of
Cathodic Protection C , General	MATSS sections group placed by tremite.
Weier Supply Conformation C	Z. Minimum sent deput; is 50 feet for municipal and
Montioning 5 Well Destruction (2 wells)	industrial walls or 20 feet for domestic and unigation
(Gland CD)	wells values a leaser deady is specially approved.
MICHOSED ATTEX SCALES ASSET	C. Groundwater Monitoring Wells
New Demattie C Replacement Domestic	Inchibing riesometers .
Municipal C Imigration C	Lightedman surface real thickness is two inches as
Industrial 3 Other O	smant grout placed by dennie.
BBM Live Command	2. Minimum seal depth for monitoring wells is the
DRILLING HIETHOD: Mul Renry 0 Air Charty 5 Auges 19	daximum depth procticable or 20 feet.
Cable of Other	D. GEOTECHNICAL
6 May 2	Baciatil bore hole with compacts I cuttings at heavy
ORILLER'S LICENSO NO. \$220.25	bestonic and upper two ices with compacted meterial.
District Vaccinso No. 3202	in Brest of imoun or suspected concerningtion, vemica
WELL PROJECTS	saints Disecting to sould at bette their thorus transmission of CATAOLETAN
Drill Hate Diagreter Diagreter Diagret	
Casing Diameter 2 in Droth 25 R	Fill hals above anose zone with constate placed by som F. WELL DESTRUCTION
Burface Seat Death 1.0 ft Numer 1	Sor munched.
GEOTECHNICAL PROJECTS (C-IA C-ZA, C-4 and C-5)	C. SPECIAL CONDITIONS
1 / 2/	•
Number of Berings Maximum Hela Diameter in Description	•
Hela Otameter in. Joych ii.	
ESTIMATED STARTING DATE ASSESSED 13, 1999 11/44/19	MIII, JII II 44-24-41
SETIMATED COMPLETION DATE THE MANY	APPROVED YMMUTTANA DATE
I hereby agree is comply with all requirements of this permit and	Sales 174/44 69
Alamada County Ordinance No. 73-68.	The same of the same of
	for
APPLICANT'S - ACC - TO A	2 / · · · · · · · · · · · · · · · · · ·
SIGNATURE TOOK G. DEATE 2-3-89	ROBERT HALE IN (-)
7	WINE,
•	ROBERT HALE MIN (-12-97
	, V

** TOTAL PROE 02 **

	MAJOR DIVIS	SIONS		TYPICAL NAMES
.Ye		CLEAN GRAVELS WITH UTTLE	GW	WELL GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
). 200 SIE	GRAVELS	OR NO FINES	GP	POORLY GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
D SOILS	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	GRAVELS WITH	GM	SILTY GRAVELS, SILTY GRAVELS WITH SAND
COARSE-GRAINED SOILS MORE THAN HALF IS COARSER THAN NO, 200 SIEVE		OVER 15% FINES	GC	CLAYEY GRAVELS, CLAYEY GRAVELS WITH SAND
OARSE HALF IS C		CLEAN SANDS WITH LITTLE	sw	WELL GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
C IE THAN	SANDS	OR NO FINES	SP	POORLY GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
MOR	COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE SIZE	SANDS WITH	SM	SILTY SANDS WITH OR WITHOUT GRAVEL
		OVER 15% FINES	sc	CLAYEY SANDS WITH OR WITHOUT GRAVEL
SIEVE			ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTS WITH SANDS AND GRAVELS
ILS V NO. 200	SILTS AN LIQUID LIMIT		CL.	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS
INED SO VER THA			OL	ORGANIC SILTS OR CLAYS OF LOW PLASTICITY
FINE-GRAINED SOILS MORE THAN HALF IS FINER THAN NO. 200 SIEVE			МН	INORGANIC SILTS, MICACEOUS OR DIATOMACIOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS
FI HANH:	SILTS AN LIQUID LIMIT GRE	ID CLAYS EATER THAN 50%	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
MORE			он.	ORGANIC SILTS OR CLAYS OF MEDIUM TO HIGH PLASTICITY
	HIGHLY ORG	BANIC SOILS	PT.	PEAT AND OTHER HIGHLY ORGANIC SOILS

- No Soil Sample Recovered - "Undisturbed" Sample LL - Liquid Limit (%) - Bulk or Classification Sample Ы - Plastic Index (%) - First Encountered Ground Water Level PID - Volatile Vapors in ppm - Plezometric Ground Water Level - Particle Size Analysis Soil Color according to Munsell Soil Color Charts (1975 Edition) 2.5 YR 6/2 - Sample drive hammer weight - 140 pounds falling 30 inches. Blows required to drive Penetration sampler 1 foot are indicated on the logs 5 GY 5/2 - GSA Rock Color Chart

Unified Soil Classification - ASTM D 2488-85 and Key to Test Data

		Get	tier-	Ryan	, Inc.	•	Log of Bori	ng C-4
PRO	JECT:	Che	vron SS	#9-033	38		LOCATION: 5500 Telegraph Ave.	nue, Oakland, CA.
GR I	PROJE	CT NO).: <i>346</i>	456.02			SURFACE ELEVATION: 125.40ft.	
DAT	ESTA	RTE): 05/12	2/99			WL (ft. bgs): 13.0 DATE: 05/12/99	TIME: 10:20
			D: <i>05/12</i>				WL (ft. bgs): 12.8 DATE: 05/12/99	TIME: 17:15
DRI	LLING	METH	IOD: <i>8 i</i>	in. Hollo	w Stem A	uger	TOTAL DEPTH: 21.5 Feet	
DRI	LLING	COMP		ay Area	Explora	tion Inc.	GEOLOGIST: Barbara Sieminski	
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	SOIL CLASS	GE	DLOGIC DESCRIPTION	WELL DIAGRAM
						PAVEMENT - Con	crete over baserock	7 5 0
5-	0	6	C4~6		CL	I moist, medium stif) – very dark brown (10YR 2/2), f, low plasticity; 40% clay, 30% silt, e sand, trace fine gravel.	Schedule 40-2 Sche
10-	0	19	C4-11		GC/CL	l 6/6), moist, mediu	(GC/CL) – brownish yellow (10YR n dense, 50% subrounded fine to % clay, 10% fine to coarse sand.	2" machine statted PVC (0.02 inch)
15	0	14	C4-16		GC/SC	brown (10YR 5/4)	wITH SAND (GC/SC) — yellowish , saturated, medium dense; 40% o coarse gravel, 30% clay, 30% fine	
20-	0	16	C4-21		CL-ML	brownish yellow (ML) - pale olive (5Y 6/3) mottled OYR 6/6), moist, very stiff, low y, 40% silt, 10% fine sand.	Cap IIIIIII
25-							p equivalent standard penetration	-
30-			346456					-

	(3et	tler-R	lyε	n, i	Inc.		Log of Boring C-5
PRO	JECT:	Che	vron SS #	19-0	338			LOCATION: 5500 Telegraph Avenue, Oakland, CA.
GR P	ROJEC	T NO	.: 3464	56.0)2			SURFACE ELEVATION: 124.15ft. MSL
DAT	E STA	RTED	: 05/12/	99				WL (ft. bgs): 13.0 DATE: 05/12/99 TIME: 11:20
DAT	E FINI	SHEC): <i>05/12/</i>	/99				WL (ft. bgs): 8.6 DATE: 05/12/99 TIME: 17:15
DRIL	LING	METH	00: <i>8 in</i>	. Ho	llow S	tem Au	iger	TOTAL DEPTH: 21.5 Feet
DRIL	LING	COMP	ANY: <i>Ba</i>	y Ai	ea E.	xplorat	ion Inc.	GEOLOGIST: Barbara Sieminski
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION WELL DIAGRAM
							PAVEMENT - Cor	ncrete over baserock
5-				-		CL	CLAY (CL) — bla low to medium pla	ck (10YR 2/1), moist, medium stiff, asticity; 90% clay, 10% fine sand.
	0	7	C5-6			CL		L) - brown (10YR 5/3), moist, medium ty; 60% clay, 40% fine to coarse gravel.
10-	11	11	C5-11			CL/GC	5/4) mottled gre low plasticity; 45	L) - brown (10YR 5/3), moist, medium ty; 60% clay, 40% fine to coarse gravel. (CL/GC) - yellowish brown (10YR enish gray (5GY 5/1), damp, stiff, 1% clay, 40% subrounded fine to 1% fine to coarse sand. WITH SAND (GC/SC) - yellowish 3), saturated, medium dense; 30-50% to coarse gravel, 30-40% fine to
15—	0	18	C5-16			GC/SC	brown (10YR 5/6	10 000,00 3,0,0,00 100 100 10
20— - - -	0	21	C5-21			CL-ML	│ \ brownish yellow	-ML) - pale olive (5Y 6/3) mottled (10YR 8/6), moist, very stiff, low lay, 40% silt, 10% fine sand.
25— - - -				-			Bottom of boring (* = converted blows/ft.)	g at 21.5 feet. to equivalent standard penetration
30- - -								
35 <u> </u>				-	-			

	(3et	tler–F	lya	an,	Inc.		Log of Boring	g C-1A
PRO	JECT:	Che	vron SS #	¥9-0	7338			LOCATION: 5500 Telegraph Avenu	ie, Oakland, CA.
GR F	ROJEC	T NO	.: 3464	56.0	02			SURFACE ELEVATION: 123.27ft. M.	SL
DAT	E STA	RTED	: 05/12/	99				WL (ft. bgs): DATE:	TIME:
DAT	E FINI	SHE): <i>05/12,</i>	/99				WL (ft. bgs); 8.2 DATE: 05/12/99	TIME: 17:20
DRIL	LING	METH	OD: 8 in	. Но	llow S	Stem Au	ıger	TOTAL DEPTH: 19.5 Feet	
DRIL	LING	COMP	ANY: <i>Ba</i>	y Al	rea E	xplorat	ion Inc.	GEOLOGIST: Barbara Sieminski	
DEPTH feet	PIO (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	WELL DIAGRAM
10-15-20-30-							was drilled out to		Cap School PVC Co. 2 inch PVC School PVC Scho
-							Bottom of boring	at 31.0 feet.	-
35 <u> </u>	A.U. 1645		240450						-

Gettler-Ry	/an, Inc.	Log of Boring	g C-2A
PROJECT: Chevron SS #9	-0338	LOCATION: 5500 Telegraph Avenu	ue, Oakland, CA.
GR PROJECT NO.: 346456	6.02	SURFACE ELEVATION: 125.89ft. M	
DATE STARTED: 05/12/98	9	WL (ft. bgs): DATE:	TIME:
DATE FINISHED: 05/12/9	9	WL (ft. bgs): 9.4 DATE: 05/12/99	TIME: 17:20
DRILLING METHOD: 8 in. F	Hollow Stem Auger	TOTAL DEPTH: 20.0 Feet	
DRILLING COMPANY: Bay	Area Exploration Inc.	GEOLOGIST: Barbara Sieminski	· · · · · · · · · · · · · · · · · · ·
PID (ppm) BLOWS/FT. * SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
10- 15- 20- 25- 35-	Not samp was drille with bendinstalled	oled. Well C-2A replaced well C-2. Well C-2 and out to 31 feet. The boring was backfilled tonite to 20 feet bgs, then well C-2A was in the hole.	Cap Cap Stated PVC (0.02 inch) Cap Cap

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

MONITORING WELL OBSERVATION SUMMARY SHEET

00 TEL	#9-0338 EGRAPH D, CA Depth to Water 7.34 6.36 10.06 6.61	AVE. DATE: TIME: Product Thickness	TOB or TOC TOC TOC TOC	Comments Volume Purso 12 gallor 13 gallor 10 gallor 14 gallor
Otal epth (FT.) .45 0.50 7.50	Depth to Water 7.34 6.36 10.06	Product Thickness	TOB or TOC TOC TOC	Comments Volume Puro 12 gallor 13 gallor
epth (FT.) .45 0.50 9.50	Water 7.34 6.36 10.06	Thickness Ø	TOC TOC TOC	Volume Puris 12 gallo 13 gallo
0.50 9.50	6.36		TOC TOC	13 gello

FIELD DATA SHEET

Facility CH	COPWO #	-0338	Job#:	3461	456	.02
Address: 55	TOO TELEG	RAPH AVE	Date:	5/27	199	
City: OA	KLAND		Sampler:	HAIG	KEV0	RK
Well ID	C-IA	Well Condition	on: <u>0 K</u>)		
Well Diameter	<u> </u>	Hydrocarbon Thickness:	Ø Ft.	Amount Ba	(2	5
Total Depth	. 19.45 tt.	Volume	2" = 0.17	3" = 0.38		(gal.) F" = 0.66
Depth to Water	7.34 1	Factor (VF)		1.50		3.00
	12.11 x	VF 0.17 = 2.04	/ ² X 3 (case volume) =	= Estimated Pur	ge Volume: _	(gal.)
Purge	Disposable Bailer	Sa	ımpling			
Equipment:	Stack	EC	· · · .	isposable Bai ailer	ler \	
	Suction \ Grundfos			ressure Bailer rab Sample	•	
	Other:				-	
Starting Time:	15:15		Conditions:	CLOUD		
Sampling Time:	18:15		olor: SILT			
Purging Flow Ra		<u>apm.</u> Sediment	t Description:			
- Did well de-wate	er? N-()	If ves:	Time:	Volum	10°	lant 1
Did well de-wate			Time:	Volum	ne:	(gal.)
Time V	or? DO	If yes; Conductivity μ mhos/cm	Time: Temperature •C	D.O. (mg/L)	ORP (mV)	Alkalinity
Time V	olume pH	Conductivity	Temperature	D.O.	ORP	
Time V	Volume pH (gal.) 2 9,18 4,73	Conductivity µmhos/cm 9 10 697	Temperature	D.O.	ORP	Alkalinity
Time v 15:18	Volume pH (gal.) 2 9.18 4 8.73 6 8.60	Conductivity μ mhos/cm 9 1 0 6 9 7 6 8 0	Temperature -C 26.2 24.8 25.1	D.O.	ORP	Alkalinity
Time V 15:18 15:23 15:30 15:47	Volume pH (gal.) 2 9.18 4 8.73 6 8.60 7.5 8.69	Conductivity µmhos/cm 9 10 697	Temperature 26.2 24.8 25.1 23.9	D.O.	ORP	Alkalinity
Time v 15:18	Volume pH (gal.) 2 9.18 4 8.73 6 8.60	Conductivity μ mhos/cm 9 1 0 6 9 7 6 8 0 7 1 2	Temperature -C 26.2 24.8 25.1	D.O.	ORP	Alkalinity
Time V 15:18 15:23 15:30 15:47	Volume (gal.) 2 9.18 4 8.73 6 8.60 7.5 8.69 9 8.57	Conductivity μ mhos/cm 9 1 0 6 9 7 6 8 0 7 1 2	Temperature \$\frac{26.2}{24.8}\$ \$25.1 \$23.7 \$24.4 \$24.9	D.O.	ORP	Alkalinity
Time V 15:18 15:23 15:30 15:47	Volume pH (gal.) 2 9.18 4 8.73 6 8.60 7.5 8.69 9 8.57 0 8.53	Conductivity µmhos/cm 9 1 0 6 9 7 6 8 0 7 1 2 7 1 8 7 0 9	Temperature 26.2 24.8 25.1 23.7 24.4	D.O.	ORP	Alkalinity
Time V 15:18 15:23 15:30 15:47	Volume pH (gal.) 2 9.18 4 8.73 6 8.60 7.5 8.69 9 8.57 0 8.53	Conductivity	Temperature \$\frac{26.2}{24.8}\$ \$25.1 \$23.7 \$24.4 \$24.9	D.O.	ORP	Alkalinity
Time V 15:18 15:23 15:30 15:47	Volume pH (gal.) 2 9.18 4 8.73 6 8.60 7.5 8.69 9 8.57 0 8.53	Conductivity	Temperature \$\frac{26.2}{24.8}\$ \$25.1 \$23.7 \$24.4 \$24.9	D.O.	ORP	Alkalinity
Time V 15:18 15:23 15:30 15:47	Volume pH (gal.) 2 9.18 4 8.73 6 8.60 7.5 8.69 9 8.57 0 8.53	Conductivity	Temperature 26.2 24.8 25.1 23.7 24.4 24.3	D.O.	ORP	Alkalinity
Time V 15:18 15:23 15:30 15:47 16:00 17:34 17:38	Volume pH (gal.) 2 9.18 4 8.73 6 8.60 7.5 8.69 9 8.57 10 8.53 11 8.50 2 8.51	Conductivity	Temperature 26.2 24.8 25.1 23.7 24.4 24.3 FORMATION TYPE LABOR	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
Time V 15:18 15:23 15:30 15:47 16:00 17:34 17:38	Volume pH (gal.) 2 9.18 4 8.73 6 8.60 7.5 8.69 9 8.57 10 8.53 11 8.50 2 8.51	Conductivity	Temperature % 26.2 24.8 25.1 23.7 24.4 2 24.3 24.3 EFORMATION TYPE LABOR	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
Time V 15:18 15:23 15:30 15:47 16:00 17:34 17:38	Volume pH (gal.) 2 9.18 4 8.73 6 8.60 7.5 8.69 9 8.57 10 8.53 11 8.50 2 8.51	Conductivity	Temperature 26.2 24.8 25.1 23.7 24.4 24.3 FORMATION TYPE LABOR	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
Time V 15:18 15:23 15:30 15:47 16:00 17:34 17:38	Volume pH (gal.) 2 9.18 4 8.73 6 8.60 7.5 8.69 9 8.57 10 8.53 11 8.50 2 8.51 (#) - CONTAINER F	Conductivity	Temperature 26.2 24.8 25.1 23.7 24.4 24.3 IFORMATION TYPE LABOR	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)

FIELD DATA SHEET

Facility <u>CH</u>	EVRON #	9-0338	Job#:	346	456	02
Address: 55	TOO TELES	RAPH AVE			27/19	99
	KLAND			er: _ HA (IDAK
						- 101
Well ID	C-2A	_ Well Cond	ition:	οK		
Well Diameter	2 ir	Hydrocarb Thickness		Amount		(gal.)
Total Depth	20.50	- Volume	2" = 0.17	3" = 0	.38	4" = 0.66
Depth to Water	6.36	Factor (VF) 	6" = 1.50	12" = 5.80	
	14.14 ×	VF 0.17 = 2.1	X 3 (case vol	ume) = Estimated	Purge Volume:	(qal.)
Purge Equipment:]	Disposable Bailer Bailer Stack Suction Grundfos Other:		Sampling Equipment: Oti	Disposable Bailer Pressure Ba Grab Sampl	iler e	
Starting Time: Sampling Time: Purging Flow Rat	12:25 18:28 e: 0:25-0:49	Water		- TY	Odor:	
Did well de-water		If yes;	•	Vol		(qal.)
Time Vo	r? <u>NO</u> plume pH	If yes; Conductivity	Time:	Vol	ume:	-
Time Vo	olume pH	Conductivity	Time:	Vol	ume:	(gal.) Alkalinity (ppm)
Time Vo	olume pH	Conductivity µmhos/cm	Temperatu	Volume D.O. (mg/L)	ume:	Alkalinity
Time V.	olume pH gal.) 2 8.85	Conductivity μmhos/cm 2290 2160 2230	Time:	Volume D.O. (mg/L)	ume:	Alkalinity
Time V.	Plume pH gal.) 2 8.85 4 8.66 7 8.66 7 8.66	Conductivity µmhos/cm 2290 2160 2230 2190	Temperatus C 25.1 24.3 23.8 23.4	Volume D.O. (mg/L)	ume:	Alkalinity
Time Vol. 12:29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	olume pH gal.) 8.85 7.5 8.66 7.5 8.66 7.5 8.66	Conductivity μmhos/cm 2290 2160 2230	Time:	Volume D.O. (mg/L)	ume:	Alkalinity
Time Vol. 12:29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	olume pH gal.) 8.85 1.5 8.66 8.58	Conductivity µmhos/cm 2290 2160 2230 2190 2150 2130 2100	Time:	Volume D.O. (mg/L)	ume:	Alkalinity
Time Vol. 12:29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	olume pH gal.) 8.85 7.5 8.66 7.5 8.66 7.5 8.66	Conductivity µmhos/cm 2290 2160 2230 2190 2150 2130 2100	Time:	Volume D.O. (mg/L)	ume:	Alkalinity
Time Vol. 12:29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	olume pH gal.) 8.85 8.66 8.66 8.66 8.66 8.67 8.67 8.67 8.67 8.67 8.67 8.67	Conductivity µmhos/cm 2290 2160 2230 2190 2150 2130 2100	Time:	Volume D.O. (mg/L)	ume:	Alkalinity
Time Vol. 12:29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	olume pH gal.) 8.85 8.66 8.66 8.66 8.66 8.67 8.67 8.67 8.67 8.67 8.67 8.67	Conductivity µmhos/cm 2290 2160 2230 2190 2150 2130 2100 2000 2000	Time: Temperature 25.1 24.9 23.4 23.9 23.9 23.5 23.5 23.5 23.0 23.2	D.O. (mg/L)	ume:	Alkalinity
Time Vol. 12:29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	olume pH 8.85 1 8.66 1 8.66 1 8.66 1 8.66 1 8.66 1 8.66 1 8.66 1 8.56 1 8.56 1 8.56 1 8.56 1 8.56 1 8.56 1 8.56 1 8.56 1 8.56 1 8.56	Conductivity	Time: Temperature 25.1 24.3 23.8 23.9 23.9 23.9 23.9 23.0 23.0	D.O. (mg/L)	ume:	Alkalinity (ppm)
Time Vol. 29 2 29 29 29 29 29 29 29 29 29 29 29 2	olume pH gal.) 8.85 8.66 8.66 8.66 8.66 8.66 8.5 8.5	Conductivity	Time: Temperature 25.1 24.2 23.8 23.4 23.9 23.5 23.3 23.0 23.0 23.0	Volume D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
Time V. (12:29 2) 21:36 12:48 5 12:48 16:54 80 13:39 11:36 17:36 1	olume pH gal.) 8.85 8.66 8.66 8.66 8.66 8.66 8.5 8.5	Conductivity	Time: Temperature 25.1 24.2 23.8 23.4 23.9 23.5 23.3 23.0 23.0 23.0	Volume D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)

9/97-fieldat.fm

FIELD DATA SHEET

Facility Ch	+EVRO	N#9.	-0338	Job#:	346	456.	02
Address: 5	500 Ti	ELEGAF	PH AVE.	Date:	5/27	/1999	
City: OA				Sampler:		KEVO	RK_
Well ID		-4	Well Condit	ion: <u>o</u> K			
Well Diameter		<u>in.</u>	Hydrocarbo Thickness:	\sim	Amount Ba		5
Total Depth	19	,50 _{ft.}	Volume	2" = 0.17	(product/wat 3" = 0.38		(gal.) " = 0.66
Depth to Wate	er <u>10</u>	.06 ft.	Factor (VF)		1.50	12" = 5.80	0.00
	_9	.44 × v	F 0.17 = 1.60	X 3 (case volume)	= Estimated Pur	rge Volume: _	(gal.)
Purge Equipment:	Dispo Bailer Stack Suction Grund Other	on lfos		ÉB P G	isposable Bai ailer ressure Bailer rab Sample		
Starting Time: Sampling Time Purging Flow I Did well de-wa	e: <u>18</u> Rate: 0. <u>2</u>		Water C	r Conditions: _Color: _SILTY nt Description: _ Time: _12.1_		Odor:	(gal.)
Time	Volume (gal.)	pН	Conductivity µmhos/cm	Temperature •C	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
11:54 11:59 12:04 12:11 13:52 14:15 14:56	1.5 3.5 5 6 7 8	7.51 7.94 8.29 8.18 8.15 8.11 8.12	1480 1260 1160 1130 1090 1100 1180	19.8 19.4 22.2 21.9 21.6 21.8			
			LABORATORY I				
SAMPLE ID	(#) - CO		FRIG. PRESERV		RATORY	ANALY B/BTEX	
<u> </u>						,, v · - \ ,	MIDE
							
			OW RECO				

9/97-fieldat.hm

Virgil Chavez Land Surveying

312 Georgia Street, Suite 200 Vallejo, California 94590-5907 (707) 553-2476 • Fax (707) 553-8698

June 11, 1999 Project No. 1704-08

Barbara Sieminski Gettler-Ryan, Inc. 6747 Sierra Ct., Suite J Dublin, Ca. 94568

Subject: Monitoring Well Survey

Chevron Service Station # 9-0338

5500 Telegraph Ave.

Oakland, Ca.

Dear Barbara:

This is to confirm that we have proceeded at your request to survey the monitoring wells at the above referenced location. The survey was performed on June 9, 1999. Measurements were taken at notches on the top of casing. The benchmark for the survey was a cut "x" in the sidewalk on 55th Street in front of the station, and is based on City datum. The second table is for top of casing locations, using the face of the new building as reference line, beginning at the southwest corner of the building.

Benchmark Elev. = 120.90 feet.

Well No.	Rim Elevation	TOC Elevation
C - 1A	123.46′	123.27′
C - 2A	126.12'	125.89'
C - 4	125.64'	125.40'
C - 5	124.39′	124.15′
Well No.	Station	Offset
C - 1A	0+45.27	-115.14(Lt.)
C - 2A	1+29.25	- 33.61(Lt.)
C - 4	0+01.35	- 31.36(Lt.)
C - 5	1+07.61	- 81.96(Lt.)
SWC Bldg.	0+00.00	0.00
Face of Bldg.		0.00


No. 6323

Eur 12-31-02

MO F CALIFORNIA

Sincerely,

rirgil D Chavez, PLS 6323

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954 San Carlos, CA 94070-4111

(925) 988-9600 (916) 921-9600 (707) 792-1865 (650) 232-9600

(650) 364-9600

FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342 FAX (650) 232-9612

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J Dublin, CA 94568

Sample Matrix: Analysis Method: Attention: Barbara Sieminski

Client Project ID: Chevron #9-0338, Oakland Soil

EPA 5030/8015 Mod./8020

SP051799

905-0897

Sampled: Received: Reported: May 12, 1999 May 13, 1999 Jun 9, 1999

QC Batch Number:

SP051799

First Sample #:

SP051799

SP051799

SP051799

8020EXA 8020EXA 8020EXA 8020EXA TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX / MTBE

Analyte	Reporting Limit mg/Kg	Sample I.D. 905-0897 C4-6	Sample I.D. 905-0898 C4-11	Sample I.D. 905-0899 C4-16	Sample I.D. 905-0900 C5-6	Sample I.D. 905-0901 C5-11	
Purgeable Hydrocarbons	1.0	N.D.	N.D.	N.D.	N.D.	1.3	
Benzene	0.0050	N.D.	N.D.	N.D.	N.D.	0.017	
Toluene	0.0050	N.D.	N.D.	N.D.	N.D.	N.D.	
Ethyl Benzene	0.0050	N.D.	N.D.	N.D.	N.D.	N.D.	
Total Xylenes	0.0050	N.D.	N.D.	N.D.	N.D.	0.012	
MTBE	0.050	N.D.	N.D.	N.D.	N.D.	0.10	
Chromatogram Pat	Chromatogram Pattern:						
Quality Control Da	ıta						
Report Limit Multip	lication Factor:	1.0	1.0	1.0	1.0	1.0	.,,,,,,
Date Analyzed:		5/17/99	5/17/99	5/17/99	5/17/99	5/17/99	
Instrument Identific	ation:	HP-5	HP-5	HP-5	HP-5	HP-5	
Surrogate Recovery, %: (QC Limits = 40-140%)		97	103	102	126	134	

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Julianine Geogley

Udianne Fegley **Project Manager**

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J Dublin, CA 94568

Attention: Barbara Sieminski

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 1455 McDowell Blvd. North, Ste. D 1551 Industrial Road

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(925) 988-9600 (916) 921-9600 7(707) 792-1865 1(650) 232-9600

(650) 364-9600

FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342 FAX (650) 232-9612

Chevron #9-0338, Oakland Client Project ID: Soil

Sample Descript: Analysis for:

Percent Moisture First Sample #: 905-0897

JUN 18 1999

Sampled: May 12, 1999 Received: May 13, 1999

Analyzed: May 26, 1999 Reported: Jun 9, 1999

GEITLER-RYAN **Percent Moisture**

JENERAL CONTRACTORS

LABORATORY ANALYSIS FOR:

Sample Number	Sample Description	Detection Limit %	Sample Result %
905-0897	C4-6	0.00010	13

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

√ulianne Fegley Project Manager

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J Dublin, CA 94568

Attention: Barbara Sieminski

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 1455 McDowell Blvd. North, Ste. D 1551 Industrial Road

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954 San Carlos, CA 94070-4111 Chevron #9-0338, Oakland

(650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865 (650) 232-9600

FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342 FAX (650) 232-9612

Client Project ID: Sample Descript:

First Sample #:

Soil Analysis for:

Fraction Organic Carbon

905-0897

Sampled: May 12, 1999 Received: May 13, 1999

Analyzed: May 17, 1999 Reported: Jun 9, 1999

LABORATORY ANALYSIS FOR:

Fraction Organic Carbon

Sample Number	Sample Description	Detection Limit %	Sample Result %
905-0897	C4-6	0.020	0.39
905-0899	C4-16	0.020	0.12

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, Morgan Hill

Julianne Fegley Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954 San Carlos, CA 94070-4111

(650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865 (650) 232-9600

FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342 FAX (650) 232-9612

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J

Matrix:

Client Project ID: Chevron #9-0338, Oakland Solid

Reported:

Jun 9, 1999

Dublin, CA 94568

Attention: Barbara Sieminski

QC Sample Group: 9050897-901

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	C. Westwater	C. Westwater	C. Westwater	C. Westwater	
MS/MSD					
Batch#:	9050854	9050854	9050854	9050854	
Date Prepared:	5/17/99	5/17/99	5/17/99	5/17/99	
Date Analyzed:	5/17/99	5/17/99	5/17/99	5/17/99	
Instrument I.D.#:	HP-5	HP-5	HP-5	HP-5	
Conc. Spiked:	0.80 mg/kg	0.80 mg/kg	0.80 mg/kg	2.4 mg/kg	
Matrix Spike					
% Recovery:	94	96	98	100	
Matrix Spike					
Duplicate % Recovery:	98	100	101	104	
Relative %					
Difference:	3.9	3.8	3.8	4.1	
LCS Batch#:	5LCS051799	5LCS051799	5LCS051799	5LCS051799	
Date Prepared:	5/17/99	5/17/99	5/17/99	5/17/99	
Date Analyzed:	5/17/99	5/17/99	5/17/99	5/17/99	
Impahusus and I D. II.	-, -,	5 ,, 5 5	0, / 55	3/11/33	

% Recovery Control Limits:	50-150	50-150	50-150	50-150		
LCS % Recovery:	115	116	119	117		
Date Prepared: Date Analyzed: Instrument I.D.#:	5/17/99 5/17/99 HP-5	5/17/99 5/17/99 HP-5	5/17/99 5/17/99 HP-5	5/17/99 5/17/99 HP-5		

SEQUOIA ANALYTICAL, #1271

Julianne Fegley Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954 San Carlos, CA 94070-4111 (650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865 (650) 232-9600 FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342 FAX (650) 232-9612

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J Dublin, CA 94568

Attention: Barbara Sieminski

Client Project ID: Matrix:

Chevron #9-0338, Oakland

Solid

QC Sample Group: 9050897-901

Reported:

Jun 9, 1999

QUALITY CONTROL DATA REPORT

Analyte: Percent Fraction Organic Moisture Carbon Analy. Method: EPA 160.3 EPA 415.1 Prep. Method: **EPA 160.3** EPA 415.1

Analyst:

M. Burns

Morgan Hill

Duplicate

Sample #:

9051464

M905255-01

Prepared Date: Analyzed Date: 5/26/99

5/17/99

Instrument I.D.#:

5/26/99 Manual

5/17/99

Sample

Concentration:

38%

0.39 %

Dup. Sample

Concentration:

38%

0.39 %

RPD: **RPD Limit:**

0.0 0-20

0.0 0-15

SEQUOIA ANALYTICAL, #1271 & Morgan Hill

Julianne Fegley **Project Manager**

** RPD=Relative % Difference

Sequoia Analytical

(Walnut Creek)

Gettler-Ryan, Inc. Chevron 9-0338 C.L. File No.: 57111-99103 Work Order: 9905268

Sample	SA Client ID	Sample		Sample Density	mple Density		Description
No.		Date	Dry Buik g/cc	Natural Bulk g/cc	Matrix g/cc	Porosity %	•
9050897 9050899	C4- 6 C4-16	12-May-99 12-May-99	1.85 1.66	2.15 2.01	2.64 2.57		Gray clayey vf-vcgr sandy silt w/f.gravel Gray vf-vcgr sandy v silty clayey gravel

Grain and pore volumes were determined using Boyle's Law methods as per API RP-40. Total porosity, bulk and grain densities were calculated as per API RP-40.

Sub-Chain Of Custody

equ o	ia Anal	lytica
104 N.	Wiget	Lane

Valnut Creek, California 94598

510) 988-9600 FAX: (510) 988-9673

Subcontracted To:

CORE LAB

Report To: Julianne

Tumaround Time: STD DAY

Due Date:

STD

CORE LABORATORIES BAKERSFIELD

PHONE

ë

805

Date: 5/14/99

Nork Order #: 9905268

Gettler-Ryan, Inc.

Project: Cheyron #9-0338

Method of Shipment:

UPS

Sample No.	Cilent I.D.	Collect Date	Collect Time	Matrix	Number of Containers	Analysis	B
	C4-6	5/12/99	- 	soil	1 \ 1	Bulk Density	
90 50197 90 5019 7	C4-6	5/12/99		lica	1 / 1	Porosity	:
	C4-16	5/12/99		soit	1 \ .	Bulk Density	
90 5019 9 8 05019 9	C4-16	5/12/99		lios	1 > 1	Porosity	
SUCCESS							

Notes:

CLF# 99103

	20
	1999
1	03:09PM P3
•	

Relinquished Br. KIMUC Jumen 517 99 15:00	Received By: HOC. Cabba	Date: 5-18-59	Time: <u> A M</u>
Relinquished (1)	Received By:	Date:	Time:
Relinquished for the second se	Received By:	Date:	Time:

∐ Yes Fax copy of Lab Report and COC to Chevron Contact: No Chain-of-Custody-Record Chevron Facility Number 9-0338 Chevron Contact (Name) Phil Briggs
(Phone) (925) 842-9136 Facility Address 5500 Tellgraph Ave, Oakland Consultant Project Number 346456.02 Chevron U.S.A. Inc. P.O. BOX 5004 Laboratory Name Sevusia

Laboratory Release Number 9144488 CH3315/268#332 Consultant Home Gettler - Ryan yn San Ramon, CA 94583 Address 6747 Sigra CA Ste. G. Dullin, CA 94568 FAX (415)842-9591 Samples Collected by (Hame) Barbara Sieminst. Project Contact (Name) Barbara Sieminski Collection Date 05/12/99
Signature Dispression (Phone) (925)551-7555 (Fax Number) (925)551-7888 (8020 + 104 CAS //11/3E Ar Charcool Analyses To Be Performed 3 Grab Composite Xecrete Puryeable Halocarbons (8010) 11 900 Remarks C4-6 110:05 9050897 4-11 10:10 9050898 C4-16 9050899 10:20 X C4-21 10:30 C5-6 11:10 9050900 C5-11 11:15 9050901 C5-16 11:20 (5-21 11:30 hold Relinquished By (Signature) Organization Date/Time Received By (Signature) Organization Date/Time 5/13/29 G-R Turn Around Time (Circle Choloe) + Peunh Barborex 05//3/99 1300 24 Hrs. Relinguished By (Signature) Date/Time 5/3/99 prganization Received By (Signature) Organization Date/Time 48 Hre. 5 Doys Relinquished By (Signature) Organization Date/Time Realeved For Laboratory By (Signature) 10 Days As Contracted Rmald C. armen

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954 San Carlos, CA 94070-4111

(650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865 (650) 232-9600 FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342 FAX (650) 232-9612

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J Dublin, CA 94568

Attention: Barbara Sieminski

Client Project ID: Sample Matrix: Analysis Method:

First Sample #:

Chevron #9-0338, Oakland

Soil EPA 5030/8015 Mod./8020

905-0793

Sampled: May 12, 1999 Received: May 13, 1999

Reported: May 17, 1999

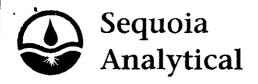
TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 905-0793 SP (A-D)	
Purgeable Hydrocarbons	1.0	N.D.	
Benzene	0.0050	N.D.	
Toluene	0.0050	N.D.	
Ethyl Benzene	0.0050	N.D.	
Total Xylenes	0.0050	N.D.	
Chromatogram Patt	ern:		

Quality Control Data

Report Limit Multiplication Factor: 1.0

Date Analyzed: 5/14/99


Instrument Identification: HP-5

Surrogate Recovery, %: 101
(QC Limits = 40-140%)

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Uulanne Fegley Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954 San Carlos, CA 94070-4111

(650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865 (650) 232-9600 FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342 FAX (650) 232-9612

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J Dublin, CA 94568

Client Project ID: Matrix:

Chevron #9-0338, Oakland Solid

Attention: Barbara Sieminski

QC Sample Group: 905-0793

Reported:

May 17, 1999

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes
			Benzene	. 13. 12. 12. 4
Method: Analyst:	EPA 8020 C. Westwater	EPA 8020 C. Westwater	EPA 8020 C. Westwater	EPA 8020 C. Westwater
MS/MSD				
Batch#:	9050685	9050685	9050685	9050685
Date Prepared:	5/14/99	5/14/99	5/14/99	5/14/99
Date Analyzed: Instrument I.D.#:	5/14/99 HP-5	5/14/99 HP-5	5/14/99 HP-5	5/14/99 HP-5
Conc. Spiked:	0.80 mg/kg	0.80 mg/kg	0.80 mg/kg	2.4 mg/kg
Matrix Spike % Recovery:	109	111	113	117
Matrix Spike Duplicate %				·
Recovery:	105	108	108	113
Relative %				
Difference:	3.5	3.4	4.5	3.6

LCS Batch#:	5LCS051499	5LCS051499	5LCS051499	5LCS051499		
Date Prepared: Date Analyzed: Instrument I.D.#:	5/14/99 5/14/99 HP-5	5/14/99 5/14/99 HP-5	5/14/99 5/14/99 HP-5	5/14/99 5/14/99 HP-5		
LCS % Recovery:	99	100	96	100		
% Recovery Control Limits:	50-150	50-150	50-150	50-150		

SEQUOIA ANALYTICAL, #1271

ulianne Fegley Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Fax copy of Lab Report and COC to Chevron Contact: Chain-of-Custody-Record Chevron Facility Number 9-0338
Facility Address 5500 Telegraph Ave, Oakland
Consultant Project Number 346456.02 Chevron Contact (Name) Phil Briggs
(Phone) (925) 842 19136
Laboratory Name Sequerice (
Laboratory Release Number 9144488 Chevron U.S.A. Inc. P.O. BOX 5004 Consultant Name Gettler-Ryan Inc.

Address 6747 Sierra Cf, Ste 6, Dublin, CA94568

Project Contact (Name) Darbara Sierninski San Ramon, CA 94583 FAX (415)842-9591 Samples Collected by (Name) Darbara Sieminski Collection Date 05/12/99
Signature 95 12 min Di (Phone) (925)551-7555 (Fax Number) (925)551-7888 Analyses To Be Performed Purgeable Helocarbons (8010)
Purgeable Aromatics (8020)
Purgeable Organics (8240)
Extractable Organics (8270) BTEX + TPH GAS (8020 + 8015) TPH Dissel (8015) Off and Greate (5520) Remarks 55-A7 & 17:00 X Yes 9050793 51-B/ S 17:01 A-D X 17:04 17:06 Relinquished By (Signature) Organization Date/Time Received By (Signature) Organization Date/Time, 5/13/99 Berbora Alewish Turn Around Time (Circle Cholce) 05//3/99 in, c. Relinguished By (Signature) Organization 1200 24 Hrs. Date/Time 5/13/99 1400 Organization Received By (Signature) Date/Time 48 Hrt. 5 Days Relinquished By (Signature) Organization 10 Dove Date/11me Realeved For Laboratory By (Signature) Date/Time 51/3/99 As Contracted Ronald Junson

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954 San Carlos, CA 94070-4111 (650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865 (650) 232-9600

Sample

FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342 FAX (650) 232-9612

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J Dublin, CA 94568

Attention: Barbara Sieminski

Reporting

Client Project ID: Sample Matrix: Analysis Method:

First Sample #:

Sample

Chevron #9-0338, Oakland Water

Sample

Sample

Water EPA 5030/8015 Mod./8020

906-0261

Sample

Sampled: May 27, 1999 Received: May 28, 1999

Reported: May 28, 1999 Reported: Jun 17, 1999

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX / MTBE

Analyte	Limit μg/L	906-0261 C-1A	906-0262 C-2A	I.D. 906-0263 C-4	Sample I.D. 906-0264 C-5	Sample I.D. 906-0265 TB-LB	
Purgeable Hydrocarbons	50	9,100	N.D.	N.D.	2,800	N.D.	-
Benzene	0.50	40	N.D.	N.D.	350	N.D.	
Toluene	0.50	25	N.D.	N.D.	73	N.D.	
Ethyl Benzene	0.50	560	N.D.	N.D.	32	N.D.	
Total Xylenes	0.50	1,900	N.D.	N.D.	280	N.D.	
MTBE	2.5	35	44	44	2,200	N.D.	
Chromatogram Patt	ern:	Gasoline			Gasoline	•	
Quality Control Dat	a						
Report Limit Multipli	cation Factor:	10	1.0	1.0	5.0	1.0]
Date Analyzed:		6/2/99	6/2/99	6/2/99	6/2/99	6/2/99	
Instrument Identifica	tion:	HP-5	HP-5	HP-5	HP-5	HP-5	
Surrogate Recovery, (QC Limits = 70-130	. %: %)	91	102	/ 88	85	90	

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Julianne Fegley Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954 San Carlos, CA 94070-4111

(650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865 (650) 232-9600

FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342 FAX (650) 232-9612

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J Dublin, CA 94568 Attention: Barbara Sieminski

Client Project ID: Sample Descript: Analysis Method:

Lab Number:

Chevron #9-0338, Oakland Water, C-5 *

EPA 8260 906-0264

Sampled: May 27, 1999 Received: May 28, 1999 Analyzed: Jun 15, 1999 Reported: Jun 17, 1999

MTBE by EPA 8260

Analyte

Detection Limit μg/L

Sample Results μg/L

Methyl t-Butyl Ether (MTBE).....

200

2,500

Surrogates Dibromofluoromethane......50

Control Limit %

% Recovery

97

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL, #1271

Julianne Fegley Project Manager Please Note:

* Analyzed past holding time 6/16/99.

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954 San Carlos, CA 94070-4111

(925) 988-9600 (916) 921-9600 (707) 792-1865 (650) 232-9600

(650) 364-9600

FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342 FAX (650) 232-9612

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J Dublin, CA 94568

Client Project ID: Matrix:

Chevron #9-0338, Oakland

Liquid

Attention: Barbara Sieminski

QC Sample Group: 9060261-265

Reported:

Jun 17, 1999

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene			
74772112	Toldene Emyl		Ethyl	Xylenes	мтве
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 8260
Analyst:	D. Newcomb	D. Newcomb	D. Newcamb	·	N. Nelson
34C /34CD					
MS/MSD Batch#:					
batcn#;	9052170	9052170 .	9052170	9052170	9061156
Date Prepared:	6/2/99	6/2/99	6/2/99	6/2/99	
Date Analyzed:	6/2/99	6/2/99	6/2/99	6/2/99	6/14/99
Instrument I.D.#:	HP-5	HP-5	HP-5	0/2/99 HP-5	6/14/99
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	GC/MS-2
		,-3, -	20 A9/ E	00 μg/ L	50 μg/L
Matrix Spike					
% Recovery:	95	95	95	97	66
Matrix Cailes					5 0
Matrix Spike Duplicate %					
Recovery:					
necovery:	105	105	100	105	68
Relative %					
Difference:	10	10	5.1	8.3	
		.0	5.1	8.3	3.0
LCS Batch#:	5LCS060299	5LCS060299	5LCS060299	El Cononon	
		420000200	300000299	5LCS060299	LCS061599
Date Prepared:	6/2/99	6/2/99	6/2/99	6/2/99	01.070
Date Analyzed:	6/2/99	6/2/99	6/2/99	6/2/99	6/15/99
Instrument I.D.#:	HP-5	HP-5	HP-5	0/2/99 HP-5	6/15/99
		_	0	711-5	GC/MS-2
LCS %					
Recovery:	100	95	95	100	94
% D oonyare		 			.
% Recovery Control Limits:	70-130	~~			
John Of Ellinto.	70-130	70-130	70-130	70-130	70-130

SEQUQIA ANALYTICAL, #1271

Julianne Fegléy

Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

TOX CO	py of	Lat	- Kej	port	and	COC to	Chi	oriot	1 (c	nta	UL. I	J No)			Ü	hai	1)-0)1 <u>—</u>	Ciis	lody-Recon
) 		Che	vran Fee.	My Hum	<u>~</u> 9:	- 033	8 <u> – </u>	OA	KL	NE	D		hevren	Contact	(Name	<u>P</u>	Hi	L	3 R I	GG	Sangos.
Chevron U.	S.A. Inc.		Feel	My Addin	····	5500	_IE	LE	S-136	JPH.	AY				Chan)					2111611
P.O. BOX		Ceru	curent P cultant N	reject ik kome	PET	3464 TLEA	<u>- 8</u>	1 A N	11	١٠,	((2)	37 '					علا	σн	- /-	$\overline{M}_{\mathbf{b}}$	HLYTICAL
Sen Rumen, 6 FAX (415)84		1 .	Address_	671	<u> </u>	> ierra_	C+	<u>5</u>	tin	<u>e J</u>					see Hum ed by (I			46			ORK
(1)00	2 3031	1	Project C	antest D	lame)	BARB	AR	A S	SIE	MIN	SK1	ı,	ellection	Dufe_	5	127	· / i	990	1	ν Λ/ Λ Λ	VIII
		<u> </u>	_	(7	hone)	25)551	1525."	. Humbe	15	51~	881	8 s	Tenalus e		1000	la	D	Vo			X
		_	Analyses To Be Parformed											7							
	2	Ę	₹6	Constant of the state of the st		. §		_		}	E	¥	2	ŋ		R					
1	Semple Marra	3	₹ 0	888	1		3	STEX + TPH CUS (8020 + 801S)		8	1	Pureable Arometic (8020)	ē	δ	\ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>	20					
₹ \$		*	3	000				++	In	8	Parechie Hab	ž.	o \$≘	1	CACAPAZAMI (CACAPAZAMI (CACAPAZAMI	띪			1		
\$	<u> </u>	A LEGIS	gal ga≽	2	Ĕ	Small	الا بع بع	P S	15.8 15.00	Of and Ora (5520)	1	500	題	(8270)	163	1					
CIA						110/		<u> </u>			<u> </u>	<u> </u>			16 5	Σ	<u> </u>	ļ	1	 	Remarks
C-IA		4	W		18:15		YES			I	060		<u> </u>	ļ	ļ	1	<u> </u>	-	_	<u> </u>	PLEASE
C-2A		4	<u>W</u>		18:20		YES				060	ļ	 _	ļ		1]	<u> </u>		<u> </u>	CONFIRM
C-5		#	W		18:40		403	4			060			ļ	ļ	/]	<u> </u>			THE
		4	W	6	18:5	HU	AE?				060;			<u> </u>		V				.	HIGHEST
TB-LB			W	6		Hel	YES	1	 :	9	060	265		ļ	ļ	1	ļ	 	-		MTBE
				<u> </u>	, ,			ļ			 				 		 	 	<u> </u>	↓	RESULT
					i									 			ļ. _—		.		BY EPA
-						<u>'</u>											ļ	ļ	ļ	·	8260.
						<u>-</u> -										<u> </u>	ļ	 -	<u> </u>	ļ	
					,		-									- · · · •					
															ļ		ļ	<u> </u>		<u> </u>	
														· 	ļ		ļ	<u> </u>	<u> </u>		
		_			<u></u>											•		 	<u> </u>	ļ	
Hybrana A		\mathcal{A}	/	entle-				<u></u>	(9)							<u> </u>		<u> </u>	<u></u>	<u></u>	
HOOLY	Organization Or																				
IN THE BY S	mature)	N. TV	Organ	stretton		ste//Ime	Rece	fred By		шгө)	 		ankalia		- '	<u> 28 </u>					l Hru. I Hru.
Gel Leunen Leguori 5/28 18:00							Days														
Tity who by (8)	Sugna)		Cryan	kallon	1	rts/Ilme	Rosis	Resirved For Laboratory By (Signature)					Date/Time S/28/99 As Contraded				· 1				
With the second		Kemide gemen 19:00																			