

March 20, 1995

Ms. Eva Chu Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, #250 Alameda, Ca 94502

Dear Ms. Chu,

Please find our First Quarter Report for 1996 conducted by Tank Protect Engineering. As of this last and final report all tanks are clear, with no contamination found.

We have fulfilled our obligations that were made at the meeting with your office and the B.P. Service Station to conduct testing on our property. As I stated before, no contamination was found we are closing up our site. We have paid thousands of dollars in fees to have this testing done, and we are considering this case closed as far as Groth Bros. involvement goes.

If you have any questions concerning this matter, please feel free to contact me at (510)447-3190.

Thank you,

Robin Groth-Hill

Controller/Corporate Secretary

Groth Bros. Oldsmobile

SE WAR SS PH SI 11

March 14, 1996

Mr. Richard Groth Groth Bros. Olds, Inc. 59 South L Street Livermore, CA 94550

Re: First Quarter Report, 1996, Groth Bros. Olds, Inc., 59 South L Street, Livermore, CA 94550

Dear Mr. Groth:

Tank Protect Engineering of Northern California, Inc. (TPE) is pleased to submit this quarterly letter report of environmental services conducted at the subject site. Previous work conducted at the site is summarized and work conducted during the subject quarter is presented in detail.

Work performed by TPE during second quarter, 1995:

- May 1, 1995 Measured depth-to-groundwater in groundwater monitoring well MW-1 and collected a groundwater sample from the well for analysis for total petroleum hydrocarbons as diesel and gasoline (TPHD and TPHG, respectively); for benzene, toluene, ethylbenzene and xylenes (BTEX); for oil and grease (O&G); for volatile organic compounds (VOC's) and for Ni, Pb, Zn, CD and Cr (METALS). Also, analyzed a trip blank sample (MW-2) for TPHG and BTEX.
- May 31, 1995 Submitted to the client a <u>Second Quarter Report</u>, 1995, Groth Bros. Olds. Inc., 59 South L street, Livermore, CA 94550.

Work performed by TPE during third quarter, 1995:

- August 2, 1995 Measured depth-to-groundwater in groundwater monitoring well MW-1 and collected a groundwater sample from the well for analysis for TPHD, TPHG, BTEX, MTBE, O&G, VOC's and METALS. Also, analyzed a trip blank sample (MW-2) for TPHG, BTEX, and MTBE.
- . September 6, 1995 Submitted to the client a <u>Third Quarter Report</u>, 1995, Groth Bros. Olds, Inc., 59 South L street, Livermore, CA 94550.
- September 22, 1995 In a letter to the client the Alameda County Health Care Services Agency (ACHCSA) allowed for the discontinuation of analysis for METALS during future sampling events (see attached letter).

Work performed by TPE during fourth quarter, 1995:

November 1, 1995 - Measured depth-to-groundwater in groundwater monitoring well MW-1 and collected a groundwater sample from the well for analysis for TPHD, TPHG, BTEX, MTBE, O&G, and VOC's. Also, analyzed a trip blank sample (MW-2) for TPHG, BTEX, and MTBE.

WORK PERFORMED BY TPE DURING FIRST QUARTER, 1996

- January 9, 1996 Submitted to the client a Fourth Quarter Report, 1995, Groth Bros. Olds, Inc., 59 South L street, Livermore, CA 94550.
- February 5, 1996 Measured depth-to-groundwater in groundwater monitoring well MW-1 and collected a groundwater sample from the well for analysis for TPHD, TPHG, BTEX, MTBE, O&G, and VOC's. Also, analyzed a trip blank sample (MW-2) for TPHG, BTEX, and MTBE.

Details of the above work are presented below.

Underground Storage Tank Unauthorized Release (Leak)/ Contamination Site Report

ACHCSA requested that a Underground Storage Tank Unauthorized Release (Leak)/Contamination Site Report be filed. Attached is a copy of the report.

Depth-To-Groundwater Measurement

On February 5, 1996 depth-to-groundwater was measured from top-of-casing (TOC) in well MW-1 to the nearest 0.01 foot using an electronic Solinst water level meter. A minimum of 3 repetitive measurements were made for each level determination to ensure accuracy.

Depth-to-groundwater was 23.64 feet.

Groundwater Sampling and Analytical Results

On February 5, 1996 a groundwater sample was collected from groundwater monitoring well MW-1. Before sampling, well MW-1 was purged of about 36 liters of groundwater with a dedicated polyethylene bailer and until the temperature, conductivity and pH of the water in the well had stabilized (see attached Record of Water Sampling). Water samples were collected in laboratory provided, sterilized, 1-liter glass bottles and 40-milliliter glass vials having Teflon-lined screw caps, and a 300-milliliter polyethylene bottle; measured for turbidity and labeled with project name, date and time collected, sample number and sampler name. The samples were immediately stored in an iced-cooler for transport to California State Department of Health Services (DHS) certified Trace Analysis Laboratory, Inc. located in Hayward, California accompanied by chain-of-custody documentation.

The groundwater sample was analyzed for TPHD and TPHG by the DHS Method; for BTEX and MTBE by the Modified United States Environmental Protection Agency

(EPA) Method 8020; for O&G by (EPA) Method 5520BF and for VOC's by EPA Method 8240. Trip blank sample, MW-2, was analyzed for TPHG, BTEX and MTBE.

The well was checked for floating product using a dedicated, disposable polyethylene bailer. No odor, sheen, or floating product was detected in the well.

Purge water is stored on site in 55-gallon drums labeled to show material stored, known or suspected chemical contaminant, date filled, expected removal date, company name, contact person and telephone number.

See attached protocols for TPE's sample handling, groundwater monitoring well sampling and quality assurance and quality control procedures.

Analytical results detected tetrachloroethene and O&G at concentrations of 210 parts per billion (ppb) and 10,000 ppb, respectively.

TPHG, BTEX and MTBE chemicals were nondectectable in trip blank sample, MW-2.

Analytical results are summarized in attached Table 1 and documented in the attached certified analytical reports and a chain-of-custody.

DISCUSSION AND RECOMMENDATIONS

O&G and tetrachloroethene were detected in well MW-1 at concentrations of 10,000 ppb and 210 ppb, respectively. TPE recommends continued quarterly groundwater sampling to monitor the trends of contaminate concentrations at the subject site.

The next sampling event is due on or about May 5, 1996.

An additional copy of this report has been included for your delivery to:

Ms. Eva Chu
Alameda County Health
Care Services Agency
Department of Environmental Health
1131 Harbor Bay Parkway, #250
Alameda, CA 94502

TPE recommends that this quarterly letter report be submitted with a cover letter from Groth Bros. Olds, Inc. signed by an authorized representative.

If you have any questions, please call TPE at (510) 429-8088.

Sincerely,

Lee N. Huckins

Registered Geologist

got on Farrowal

Jeff Farhoomand, M.S.

Principal Engineer

Expiration Date 5/31/97

	UNDERGROUND STORAGE TANK UNAUTH	IORIZE	D RELEASE (LE	AK) / CONTAMINATIO	ON SITE REPORT
EME	RGENCY HAS STATE OFFICE OF EMERGENCY SER' REPORT BEEN FILED ?	VICES	FOR LOCAL AGENCY	USE ONLY	
	YES X NO YES X	МО	THEREBY CERTIFY THAT	I HAVE DISTRIBUTED THIS INFOR IN THE INSTRUCTION SHEET ON T	MATION ACCORDING TO THE
REP	DRT DATE CASE #		DISTRIBUTION	WITH MOTAUCI ON SHEET ON T	TE BACK PAGE OF THIS FORM
0,	2 41 44 4 9 4 6 4		SIGNED		DATE
	NAME OF INDIVIDUAL FILING REPORT	PHONE		SIGNATURE	UAIE
В¥	Lee N. Huckins	(510) 429-8088	chee Hursi	m6
EO 8	REPRESENTING OWNER/OPERATOR REGIONAL		COMPANY OR AGENCY	NAME	
REPORTED	LOCAL AGENCY OTHER		Tank Protect	Engineering	
끭	ADDRESS	,	THIR TTOCCCC	LINETHECTINE	
	2821 street Whipple Roa	3	II-	ion Cinn	
ш	NAME STREET WILLDLIE KOR	<u>.a</u>	CITY UTI	TOU CITY	STATE CA 94587/P
RESPONSIBLE PARTY	Groth Brother's Olds Inc.	IKNOWN	W. Deskard	O + 1	1
PONSI	ADDRESS		Mr. Richard	Groen	(510) 447-3190
RES	59 street			T 4	
	FACILITY NAME (IF APPLICABLE)		OPERATOR	Livermore	STATE CA 94550 PHONE
z	Groth Brother's Olds Inc.		Mr. Richard	Croth	1
₽¥	ADDRESS		III. KICHAIU	GI OUI	510)447-3190
g	59 mar South Stro		7.2		1.7
SITE LOCATION	59 STREET South Stre	et	CITYLE1	vermore	Manneda 84550
<u></u>	LOCAL AGENCY AGENCY NAME		CONTACT PERSON		PHONE
ž s	Alameda County Health Care Services				1,
	REGIONAL BOARD	Agen	dy Eva Ch	<u>u</u>	(510) 567-6762 PHONE
IMPLEMENTING AGENCIES	San Francisco B D.			•	
	San Francisco Bay Region	NAME			1 (510) 286-1255
Ş G		NAME			QUANTITY LOST (GALLONS)
STA	(2)				▼ UNKNOWN
SUBSTANCES					UNKNOWN
	DATE DISCOVERED HOW DISCOVERED		ENTORY CONTROL	SUBSURFACE MONITORING	
ABATEMENT	1 40 4 1 5 5 9 40 V TANKTEST		IK REMOVAL	OTHER	NUISANCE CONDITIONS
MATE.	DATE DISCHARGE BEGAN	<u></u>		P DISCHARGE (CHECK ALL THAT	ADD VI
	LI LI LI XI UNKNOWN		REMOVE CONTEN		' <u></u> 1
DISCOVERY/	HAS DISCHARGE BEEN STOPPED ?		REPAIR TANK	CLOSE TANK & FILL IN	
Š	YES NO IF YES, DATE		REPLACE TANK	OTHER	DIOE OHANGE PROCEDURE
	SOURCE OF DISCUSDOF	V CAUSE(S)	Y		
SOURCE	TANK LEAK TO UNKNOWN		VERFILL	RUPTURE/FAILURE	SPILL
S &	PIPING LEAK OTHER		DAROSION T	UNKNOWN	OTHER
_		<u> </u>	N.		
CASE	UNDETERMINED SOIL ONLY X GROUND	MAIATEO	DOINIVING WATER	- MUSEL ON VICINATED WITH	HAVE ACTUALLY BEEN AFFECTED)
\vdash	CHECK ONE ONLY	TVALER	Difficulty that Ext	- CONTON CHELL IL MATER MEETS	HAVE ACTUALLY BEEN AFFECTED)
<u> </u>	NO ACTION TAKEN PRELIMINARY SITE AS	SESSMEN	T WORKPLAN SUBMITTED	POLLUTION CHA	RACTERIZATION
CURRENT	LEAK BEING CONFIRMED PRELIMINARY SITE AS			=	MONITORING IN PROGRESS
ಕ "	REMEDIATION PLAN CASE CLOSED (CLEAN		LETED OR UNNECESSARY		i
 	CHECK APPROPRIATE ACTION(S)				
₹ ਫ਼	(SEE BACK FOR DETAILS) CAP SITE (CD) CYCAVATE & TO		• ==	FREE PRODUCT (FP) REAT GROUNDWATER (GT)	ENHANCED BIO DEGRADATION (IT)
REMEDIAL	CONTAINMENT BARRIER (CB) NO ACTION REC			· · :=	REPLACE SUPPLY (RS)
HE 4	VACUUM EXTRACT (VE) NO ACTION REC	MOIUED (M	-y [] INEAIME	NT AT HOOKUP (HU)	VENT SOIL (VS)
-	Office (O1)			· · · · · · · · · · · · · · · · · · ·	
Z Z	·				
COMMENTS					
8				•	

TABLE 1
SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS
(ppb¹)

Sample ID Name	Date	TPHD	ТРНС	Methyl t- Butyl Ether	Benzene	Toluene	Ethyl- benzene	Xylenes	Oil & Grease
MW-1	05/01/95 ²	< 50	160	NA	< 0.50	< 0.50	< 0.50	<1.5	<5,000
	08/02/95 ³	110	160	<5.0	< 0.50	< 0.50	< 0.50	<1.5	<5,000
	11/01/95 ⁴	<50	110	<5.0	< 0.50	< 0.50	< 0.50	<1.5	<5,000
	02/05/96 ⁵	<50	< 50	< 5.0	< 0.50	< 0.50	< 0.50	<1.5	10,000
MW-2 ⁶	05/01/95	NA ⁷	<50	NA	< 0.50	< 0.50	< 0.50	<1.5	NA
	08/02/95	NA	< 50	< 5.0	< 0.50	< 0.50	< 0.50	<1.5	NA
	11/01/95	NA	< 50	< 5.0	< 0.50	< 0.50	< 0.50	<1.5	NA
	02/05/96	NA	<50	<5.0	< 0.50	< 0.50	< 0.50	<1.5	NA

¹ PARTS PER BILLION

² ALSO ANALYZED BY EPA METHOD 8240. TRICHLOROETHENE AND TETRACHLOROETHENE WERE DETECTED AT CONCENTRATIONS OF 5.4 ppb AND 210 ppb, RESPECTIVELY.

³ EPA METHOD 8240 DETECTED TETRACHLOROETHENE AT CONCENTRATIONS OF 150 ppb.

⁴ EPA METHOD 8240 DETECTED TETRACHLOROETHENE AT CONCENTRATIONS OF 300 ppb.

⁵ EPA METHOD 8240 DETECTED TETRACHLOROETHENE AT CONCENTRATIONS OF 210 ppb.

⁶ TRIP BLANK

⁷ NOT ANALYZED

RECORD OF WATER SAMPLING

in the company of the	Controller of the Controller o
PROJECT NO.: 354 DATE: 2/5/96	WELL NO.: MW-
PROJECT NAME: CONTINUE OCOS	WELL DIAMETER: 2"
PROJECT LOCATION: 55 5 . L ST. CIVER MORE	TOC ELEV:
SAMPLER: PS2	LOCK NO.:
ANALYSES: 7PHD DEG TPHGEBTEX 8240	1
WELL DEPTH (from construction detail):	
WELL DEPTH (measured): 43.32 SOFT BOTTOM?:	1 / 2 404 1 /
DEPTH TO WATER: 23.64 TIME: 0950	M 311
PRESSURE (circle one)?: YES OR	57.
IF YES, WAS PRESSURE (circle one) POSITIVE OR NEGATIVE?	107 4.
$o \sim 0$	
WATER VOLUME IN WELL: 3,15 gal	Tet St
[2-INCH CASING = 0.16GAL/FT] [4-INCH CASING = 0.65GAL/FT]	1
[6-INCH CASING = 1.47 GAL/FT] [1 GAL = 3.78 L]	
	LOCATION MAP
CALCULATED PURGE VOL. (GAL): 9.95 (L): 35.71 ACTUAL PURGE	VOI (CAL): 36 (1):
	HOD: Poly Bayley
, , , , , , , , , , , , , , , , , , , ,	10D: 10 19 100/ 00
FIELD MEASUREMENTS	

Time	Depth to Water (FT)	Vol (L)	Temp (Deg. F)	рН	EC	Clarity	Turbidity (NTU)	Remarks
1010		1	68.1	7.90	7.10	CLR		Niodnasheen
10/2		6	68.3	7,45	7.18	~		
1615		11	67.7		7.25	1		
108		16	67.6	7,05	7.26)		
7027		22	68.6	6.50	7.32			
103		28	70.6	6-91	7.34	~		
1033		33	76.5	6-89	7.31	DRN		
1036	Ł	36	71.8	6.88	7.34		·	\".
1045				,	Saug	67H	ew 2	F-3

SIGNATURE:	R	Dreenew	

WATER VOL. IN DRUM: 40 NEED NEW DRUM?: No

SAMPLE HANDLING PROCEDURES

Soil and groundwater samples will be packaged carefully to avoid breakage or contamination and will be delivered to the laboratory in an iced-cooler. The following sample packaging requirements will be followed.

- Sample bottle/sleeve lids will not be mixed. All sample lids will stay with the original containers and have custody seals affixed to them.
- . Samples will be secured in coolers to maintain custody, control temperature and prevent breakage during transportation to the laboratory.
- A chain-of-custody form will be completed for all samples and accompany the sample cooler to the laboratory.
- . Ice, blue ice or dry ice (dry ice will be used for preserving soil samples collected for the Alameda County Water District) will be used to cool samples during transport to the laboratory.
- Water samples will be cooled with crushed ice. In the Alameda County Water District, water samples will be buried in the crushed ice with a thermometer, and the laboratory will be requested to record thermometer temperature at the time of receipt.
- Each sample will be identified by affixing a pressure sensitive, gummed label or standardized tag on the container(s). This label will contain the site identification, sample identification number, date and time of sample collection and the collector's initials.
- . Soil samples collected in brass tubes will be preserved by covering the ends with Teflon tape and capping with plastic end-caps. The tubes will be labeled, sealed in quart size bags and placed in an iced-cooler for transport to the laboratory.

All groundwater sample containers will be precleaned and will be obtained from a State Department of Health Services certified analytical laboratory.

<u>Sample Control/Chain-of-Custody</u>: All field personnel will refer to this workplan to verify the methods to be employed during sample collection. All sample gathering activities will be recorded in the site file; all sample transfers will be documented in the chain-of-custody; samples will be identified with labels; all sample bottles will be custody-sealed. All information is to be recorded in waterproof ink. All TPE field personnel are personally responsible for sample collection and the care and custody of collected samples until the samples are transferred or properly dispatched.

The custody record will be completed by the field technician or professional who has been designated by the TPE project manager as being responsible for sample shipment to the appropriate laboratory. The custody record will include, among other things, the following information: site identification, name of person collecting the samples, date and time samples were collected, type of sampling conducted (composite/grab), location of sampling station, number and type of containers used and signature of the TPE person relinquishing samples to a non-TPE person with the date and time of transfer noted. The relinquishing individual will also put all the specific shipping data on the custody record.

Records will be maintained by a designated TPE field employee for each sample: site identification, sampling location, station number, date, time, sampler's name, designation of the sample as a grab or composite, notation of the type of sample (e.g., groundwater, soil boring, etc.), preservatives used, onsite measurement data and other observations or remarks.

GROUNDWATER MONITORING WELL SAMPLING PROCEDURES

Groundwater monitoring wells will not be sampled until at least 24 to 72 hours (according to local regulatory guidelines) after well development. Groundwater samples will be obtained using a bladder pump, clear Teflon bailer or dedicated polyethylene bailer. Prior to collecting samples, the sampling equipment will be thoroughly decontaminated to prevent introduction of contaminants into the well and to avoid cross-contamination. Monitoring wells will be sampled after 3 to 10 wetted casing volumes of groundwater have been evacuated and pH, electrical conductivity and temperature have stabilized as measured with a Hydac Digital Tester. If the well is emptied before 3 to 10 well volumes are removed, the sample will be taken when the water level in the well recovers to 80% or more of its initial water level.

When a water sample is collected, turbidity of the water will be measured and recorded with a digital turbidimeter. Degree of turbidity will be measured and recorded in nephelometric turbidity units (NTU).

TPE will also measure the thickness of any floating product in the monitoring wells using an interface probe or clear Teflon or polyethylene bailer. The floating product will be measured after well development but prior to the collection of groundwater samples. If floating product is present in the well, TPE will recommend to the client that product removal be commenced immediately and reported to the appropriate regulatory agency.

Unless specifically waived or changed by the local, prevailing regulatory agency, water samples will be handled and preserved according to the latest United States Environmental Protection Agency methods as described in the Federal Register (Volume 44, No. 233, Page 69544, Table II) for the type of analysis to be performed.

Development and/or purge water will be stored on site in labeled containers. The disposal of the containers and development and/or purge water is the responsibility of the client.

MEASUREMENTS

<u>Purged Water Parameter</u>: During purging, discharged water will be measured for the following parameters.

Parameter	Units of Measurement
pH	None
Electrical Conductivity	Micromhos
Temperature	Degrees F or C
Depth to Water	Feet/Hundredths
Volume of Water Discharged	Gallons
Turbidity	NTU

<u>Documentation:</u> All parameter measurements will be documented in writing on TPE development logs.

QUALITY ASSURANCE AND QUALITY CONTROL PROCEDURES

The overall objectives of the field sampling program include generation of reliable data that will support development of a remedial action plan. Sample quality will be checked by the use of proper sampling, handling and testing methods. Additional sample quality control methods may include the use of background samples, equipment rinsate samples and trip and field blanks. Chain-of-custody forms, use of a qualified laboratory, acceptable detection limits and proper sample preservation and holding times also provide assurance of accurate analytical data.

TPE will follow a quality assurance and quality control (QA/QC) program in the field to ensure that all samples collected and field measurements taken are representative of actual field and environmental conditions and that data obtained are accurate and reproducible. These activities and laboratory QA/QC procedures are described below.

<u>Field Samples</u>: Additional samples may be taken in the field to evaluate both sampling and analytical methods. Three basic categories of QA/QC samples that may be collected are trip blanks, field blanks and duplicate samples.

Trip blanks are a check for cross-contamination during sample collection, shipment, and laboratory analysis. They are water samples that remain with the collected samples during transportation and are analyzed along with the field samples to check for residual contamination. Analytically confirmed organic-free water will be used for organic parameters and deionized water for metal parameters. Blanks will be prepared by the laboratory supplying the sample containers. The blanks will be numbered, packaged and sealed in the same manner as the other samples. One trip blank will be used for sets greater than 20 samples. The trip blank is not to be opened by either the sample collectors or the handlers.

The field blank is a water sample that is taken into the field and is opened and exposed at the sampling point to detect contamination from air exposure. The water

sample is poured into appropriate containers to simulate actual sampling conditions. Contamination due to air exposure can vary considerably from site to site.

The laboratory will not be informed about the presence of trip and field blanks, and false identifying numbers will be put on the labels. Full documentation of these collection and decoy procedures will be made in the site log book.

Duplicate samples are identical sample pairs (collected in the same place and at the same time), placed in identical containers. For soils, adjacent sample liners will be analyzed. For the purpose of data reporting, one is arbitrarily designated the sample, and the other is designated as a duplicate sample. Both sets of results are reported to give an indication of the precision of sampling and analytical methods.

The laboratory's precision will be assessed without the laboratory's knowledge by labeling one of the duplicates with false identifying information. Data quality will be evaluated on the basis of the duplicate results.

Laboratory QA/QC: Execution of a strict QA/QC program is an essential ingredient in high-quality analytical results. By using accredited laboratory techniques and analytical procedures, estimates of the experimental values can be very close to the actual value of the environmental sample. The experimental value is monitored for its precision and accuracy by performing QC tests designed to measure the amount of random and systematic errors and to signal when correction of these errors is needed.

The QA/QC program describes methods for performing QC tests. These methods involve analyzing method blanks, calibration standards, check standards (both Environmental Protection Agency-certified independent and the United States standards), duplicates, replicates and sample spikes. Internal QC also requires adherence to written methods, procedural documentation and the observance of good laboratory practices.

LOG NUMBER: DATE SAMPLED:

6173 02/05/96

DATE RECEIVED: DATE EXTRACTED:

02/05/96 02/27/96

DATE ANALYZED:

02/27/96

DATE REPORTED:

03/11/96

CUSTOMER:

Tank Protect Engineering

REQUESTER:

Jeff Farhoomand

PROJECT:

No. 354-020596, Groth Bros., 59 South "L" Street, Livermore

Sample Type:

Water

Method and Constituent:

MW-1 Method Blank Concen-Reporting Concen-Reporting <u>Units</u> <u>tration</u> <u>Limit</u> <u>tration</u>

Standard Method 55208F:

Hydrocarbon

Oil and Grease

ug/1 10,000 5,000

ND

5,000

OC Summary:

% Recovery:

% RPD:

94 3.7

Truce Analysis Laboratory, Inc.

LOG NUMBER:

6173

DATE SAMPLED:

02/05/96

DATE RECEIVED: DATE EXTRACTED: 02/05/96 02/07/96

DATE ANALYZED: DATE REPORTED:

02/23/96

03/11/96

PAGE:

Two

Sample Type: Water

Method and Constituent:

Reporting Concen-Units tration Limit

Method Blank

Concen-Reporting <u>tration</u>

DHS Method:

Total Petroleum Hydrocarbons as Diesel

ug/1

ND

50

ND

50

QC Summary:

% Recovery:

86

% RPD:

的数据,这种是一种,是是是一种的一种,我们是一种,我们是一种,我们是一个一个,他们的一个一个一个一个一个,这一个对象的主义,他们是一个一个一个一个一个一个一个一

8.1

Trace Analysis Laboratory, Inc.

Constituent: Units tration Limit tra		Trace Analysis Laboratory, Inc.									
Method and Concent Reporting Concent Report Report Concent Report Report				DATE SA DATE RE DATE AN DATE RE	MPLED: CEIVED: IALYZED:	02/05/96 02/05/96 02/08/96 a 03/11/96	/05/96 /05/96 /08/96 and 02/15/96 /11/96				
Method and Constituent: Units Reporting tration Concent tration Reporting tration Concent tration Reporting tration Concent tration Report tration Limit Concent tration Report tration Concent tration Report tration				Sample	Type:	Water					
Method and Constituent: Concentration Concentration Concentration Concentration Concentration Concentration Reporting tration Concentration Report tration Limit Concentration Report tration Concentration Report tration Limit Limit <th< th=""><th></th><th></th><th>MW</th><th>I-1</th><th></th><th>W-2</th><th>Metho</th><th colspan="3"></th></th<>			MW	I-1		W-2	Metho				
DHS Method: Total Petroleum Hydrocarbons as Gasoline ug/l ND 50 ND 50 ND 50 EPA Method 8020 for: Methyl t-Butyl Ether ug/l ND 5.0 ND 5.0 ND 5.0 Benzene ug/l ND 0.50 ND 0.50 ND 0.50 Toluene ug/l ND 0.50 ND 0.50 ND 0.50 Ethylbenzene ug/l ND 0.50 ND 0.50 ND 0.50 Xylenes ug/l ND 1.5 ND 1.5 ND 1.5 OC Summary: 2 Recovery: 120, 108 % RPD: 4.6, 0.6	Method and Constituent:	<u>Units</u>	Concen-	Reporting	Concen-	Reporting	Concen-	Reportin <u>Limit</u>			
Total Petroleum Hydro- carbons as Gasoline ug/l ND 50 ND 50 ND 50 EPA Method 8020 for: Methyl t-Butyl Ether ug/l ND 5.0 ND 5.0 ND 5.0 Benzene ug/l ND 0.50 ND 0.50 ND 0.50 Toluene ug/l ND 0.50 ND 0.50 ND 0.50 Ethylbenzene ug/l ND 0.50 ND 0.50 ND 0.50 Xylenes ug/l ND 1.5 ND 1.5 ND 1.5 OC Summary: % Recovery: 120, 108 % RPD: 4.6, 0.6	DHS Method:										
EPA Method 8020 for: Methyl t-Butyl Ether ug/l ND 5.0 ND 5.0 ND 5.0 Benzene ug/l ND 0.50 ND 0.50 ND 0.50 Toluene ug/l ND 0.50 ND 0.50 ND 0.50 Ethylbenzene ug/l ND 0.50 ND 0.50 ND 0.50 Xylenes ug/l ND 1.5 ND 1.5 ND 1.5 OC Summary: % Recovery: 120, 108 % RPD: 4.6, 0.6	Total Petroleum Hydro- carbons as Gasoline	ug/1	ND	50	ND	50	ND	50			
Methyl t-Butyl Ether ug/l ND 5.0 ND 5.0 ND 5.0 Benzene ug/l ND 0.50 ND 0.50 ND 0.50 Toluene ug/l ND 0.50 ND 0.50 ND 0.50 Ethylbenzene ug/l ND 1.5 ND 1.5 ND 1.5 Xylenes ug/l ND 1.5 ND 1.5 ND 1.5 ©C Summary: 2 Recovery: 120, 108 % RPD: 4.6, 0.6	EPA Method 8020 for:										
Benzene ug/l ND 0.50 ND 0.50 ND 0.55 Toluene ug/l ND 0.50 ND 0.50 ND 0.55 Ethylbenzene ug/l ND 0.50 ND 0.50 ND 0.55 Xylenes ug/l ND 1.5 ND 1.5 ND 1.5 OC Summary: % Recovery: 120, 108 % RPD: 4.6, 0.6	Methyl t-Butyl Ether	ug/1	ND	5.0	ND	5.0	ND	5.0			
Toluene ug/l ND 0.50 ND 0.50 ND 0.55 Ethylbenzene ug/l ND 0.50 ND 0.50 ND 0.55 Xylenes ug/l ND 1.5 ND 1.5 ND 1.5 OC Summary: % Recovery: 120, 108 % RPD: 4.6, 0.6	Benzene	ug/1	ND	0.50	ND	0.50	ND	0.50			
Ethylbenzene ug/l ND 0.50 ND 0.50 ND 0.5 Xylenes ug/l ND 1.5 ND 1.5 ND 1.5 OC Summary: % Recovery: 120, 108 % RPD: 4.6, 0.6	Toluene	ug/l	ND	0.50	ND	0.50	ND	0.50			
Xylenes ug/l ND 1.5 ND 1.5 OC Summary: % Recovery: 120, 108 % RPD: 4.6, 0.6	Ethylbenzene	ug/1	ИĎ	0.50	ND	0.50	ND	0.50			
<u>OC Summary:</u> % Recovery: 120, 108 % RPD: 4.6, 0.6	Xylenes	ug/l	ND	1.5	ND	1.5	ND	1.5			
Concentrations reported as ND were not detected at or above the reporting limit.	% Recovery: 120, 108 % RPD: 4.6, 0	.6	re not de	tected at c	or above t	the reportin	g limit.				
	Concentrations reported a										
	Concentrations reported a										
	Concentrations reported a										
	Concentrations reported a										
	Concentrations reported :										
	Concentrations reported :				·						
	Concentrations reported a										
	Concentrations reported a										
	Concentrations reported :				·						
	Concentrations reported :				·						

OC Summary:

Trace Analysis Laboratory, Inc.

		Campla		
		<u> </u>	Туре:	Water
	M	W-1	Metho	d Blank
<u>Units</u>	Concentration	Reporting Limit	Concen- tration	ReportinLimit_
<u>VIII I CS</u>	LIACION	<u>b_{1111_b</u>	CIUCION	<u> </u>
ua/1	ND	5.0	ND	5.0
				5.0
				5.0
				10
				10
			ND	100
	ND	140	ND	140
ug/l	ND	100	ND	100
ug/l	ND	100	ND	100
ug/l	ND	10	ND	10
ug/l	ND	5.0	ND	5.0
ug/1	ND	5.0	ND	5.0
ug/1	ND	5.0	ND	5.0
ug/l	ND	5.0	ND	5.0
ug/l	ND	5.0	ND	5.0
ug/l	ND	100	ND	100
ug/1	ND	5.0	МD	5.0
ug/1	ON	5.0	MD	5.0
ug/l	ND	5.0	ND	5.0
ug/1	ND	5.0	ND	5.0
	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	ug/1 ND	ug/1 ND 5.0 ug/1 ND 5.0 ug/1 ND 5.0 ug/1 ND 10 ug/1 ND 10 ug/1 ND 100 ug/1 ND 140 ug/1 ND 100 ug/1 ND 100 ug/1 ND 100 ug/1 ND 5.0	ug/l ND 5.0 ND ug/l ND 5.0 ND ug/l ND 5.0 ND ug/l ND 10 ND ug/l ND 100 ND ug/l ND 140 ND ug/l ND 100 ND ug/l ND 100 ND ug/l ND 5.0 ND

Concentrations reported as ND were not detected at or above the reporting limit.

		·	LOG NUMBE DATE SAMP DATE RECE DATE ANAL DATE REPO PAGE:	LED: O IVED: O YZED: O RTED: O	173 12/05/96 12/05/96 12/13/96 13/11/96 11ve
· · · · · · · · · · · · · · · · · · ·			Sample Ty	pe: W	ater
Method and Constituent	<u>Units</u>	Concen- tration	W-1 Reporting Limit	Metho Concen- tration	<u>d Blank</u> Report <u>Limi</u>
EPA Method 8240 (Continued):	:				
Vinyl Acetate	ug/1	ND	50	ND	50
Bromodichloromethane	ug/1	ND	5.0	ND	5.0
1,2-Dichloropropane	ug/1	ND	5.0	ND	5.0
Cis-1 3-Dichloropropene	ug/l	ND	5.0	ND	5.0
Bromoacetone	ug/1	ND	100	ND	100
Trichloroethene	ug/1	ND	5.0	ND	5.0
Benzene	ug/l	ND	5.0	ND	5.
Chlorodibromomethane	ug/1	ND	5.0	ND	5.
1,1,2-Trichloroethane	ug/l	ND	5.0	ND	5.
Trans-1 3-Dichloropropene	ug/l	ND	5.0	ND	5.
1 2-Dibromoethane (EDB)	ug/1	ND	5.0	ND	5.
2-Chloroethylvinyl Ether	ug/l	ND	10	ND	10
Bromoform	u g/l	ND	5.0	ND	5.
1,1,1,2-Tetrachloroethane	u g/1	ND	5.0	ND	5.
4-Methyl-2-Pentanone (MIBK)	u g/ 1	ND	50	ND	50
2-Hexanone	ug/l	ND	50	ND	50
1,2,3-Trichloropropane	ug/l	ND	5.0	ND	5.
1,1,2,2-Tetracholorethane	ug/l	ND	5.0	ND	5.
Tetrachloroethene	ug/1	210	5.0	ND	5.
Toluene	ug/1	ND	5.0	ND	5.
Chlorobenzene	ug/l	ND	5.0	ND	5.
EthylBenzene	ug/1	ND	5.0	ИD	5.
1,1,2-Trichloroethane Trans-1 3-Dichloropropene 1 2-Dibromoethane (EDB) 2-Chloroethylvinyl Ether Bromoform 1,1,1,2-Tetrachloroethane 4-Methyl-2-Pentanone (MIBK) 2-Hexanone 1,2,3-Trichloropropane 1,1,2,2-Tetracholorethane Tetrachloroethene Toluene Chlorobenzene EthylBenzene Concentrations reported as 1	ND were	not dete	cted at or	above the	e repor

Trace Analysis Laboratory, Inc.

LOG NUMBER: 6173
DATE SAMPLED: 02/05/96
DATE RECEIVED: 02/05/96
DATE ANALYZED: 02/13/96
DATE REPORTED: 03/11/96

PAGE: Six

			<u>Sample Ty</u>	<u>pe: W</u>	ater
		M	W-1	Metho	d Blank
Method and <u>Constituent</u>	<u>Units</u>	Concen- tration	Reporting <u>Limit</u>	Concen- tration	Reporting <u>Limit</u>
EPA Method 8240 (Continued)	:				
1,2-Dibromo 3-Chloropropane	ug/l	ND	100	ND	100
Benzyl Chloride	ug/1	ND	100	ND	100
Styrene	ug/l	ND	5.0	ND	5.0
Xylenes	ug/1	ND	15	ND	15
1,3-Dichlorobenzene	ug/l	ND	5.0	ND	5.0
1,2-Dichlorobenzene	ug/1	NĐ	5.0	ND	5.0
1,4-Dichlorobenzene	ug/l	ND	5.0	ND	5.0
Surrogate % Recovery					
1,2-Dichloroethane-d4			49		47
Toluene-d8			81		71
4-Bromofluorobenzene			89		67

Concentrations reported as ND were not detected at or above the reporting limit.

Louis W. DuPuis

Quality Assurance/Quality Control Manager

TRACE ANALYSIS

G5107831512

15:54

93/69/56

(510) 429-8088 m (800) 523-8088 m Fox (510) 429-8089

TURNAROUND: 15 day

P.O. #: 00/202

6173

CHAIN OF CUSTODY,

PAGE		of	
------	--	----	--

	Z 053 MANGE. PLE ROM	~ 2.Ab	S AND T	THE B THE BUNK CESS	ADDRESS (205. (205. (105. (105.) (105.) (105.) (105.) (105.)	29-8088 LOCATION	(1) TYPE OF CON- TAINER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						REMARKS
nw-1	9/05	101/2		X			2 L Glue Y - You l	ارا		<u> </u>	1			0 & Governe Mithal 5520-F
mw-2	2/05	1041		X			240ml	4	4	4	$oldsymbol{\downarrow}$			
					-			H	-	+	1			
	_		-	-			<u> </u>	╂┤	\vdash	╁	╁			
<u>'</u>		 						H	Н	十	\dagger			
	-	-	 	 				T	H	+	†			
	 	 	-					П		+	1			
	┼──	 	<u> </u>							1	1			
Relinquin	\		asture)	26	18:00	Received	y : (Signa	ture	ľ	n				(Signsture) Date / Time Received by : (Signature)
Bellegulat	2 5,	(Sign	naturo)	/Day	o / Jiao	Received b	y : (Signa	ture	7 70	alino	di i sih	ed i	by :	; (Signature) / Pate / Time Received by : (Signature)
Rolinguish	od by	(Slgr	iaturë)	Dat	in / Time	Received for (Signature)					613			Romarks plu outs Hill exapt TPHD M Green T-1 ref. The

DATE: