Ultramar

Ultramar Inc. P.O. Box 466 525 W. Third Street Hanford, CA 93232-0466 (209) 582-0241

August 10, 1990

 Telecopy: 209-584-6113 Credit & Wholesale 209-583-3330 Administrative 209-583-3302 Information Services 209-583-3358 Accounting

Mr. Steven Ritchie Regional Water Quality Control Board San Francisco Bay Region 1111 Jackson Street, Room 6040 Oakland, California 94607

SUBJECT:

BEACON SERVICE STATION NO. 720, 1088 MARINA BLVD.,

SAN LEANDRO, CALIFORNIA

Dear Mr. Ritchie:

Enclosed for your review and files is a copy of DuPont Environmental Services Quarterly Groundwater Sampling Report for May 1990.

Please do not hesitate to call if you have any questions regarding this information.

Sincerely,

ULTRAMAR INC.

Terrence A. Fox

Environmental Specialist II

Tenen S. Fry

TAF/dch

Enclosure: DuPont Environmental Quarterly Groundwater Sampling Report

cc w/encl: Mr. Rafat A. Shahid, Chief

Hazardous Materials Divison

Alameda County Health Care Services

470 27th Street, Third Floor Oakland, California 94612

QUARTERLY GROUND-WATER SAMPLING REPORT

MAY 1990

FAST GAS STATION 1088 MARINA BOULEVARD SAN LEANDRO, CALIFORNIA

Jue 29, 1990

FOR

CONOCO INC.
600 NORTH DAIRY ASHFORD
TR 3056
HOUSTON, TEXAS 77079

PREPARED BY

DU PONT ENVIRONMENTAL SERVICES 7068 KOLL CENTER PARKWAY, SUITE 401 PLEASANTON, CALIFORNIA 94566

TABLE OF CONTENTS JOB NO. 1088-Q12-47 INTRODUCTION SUMMARY 1 LIST OF ILLUSTRATIONS FIGURE 1 - LOCATION MAP FIGURE 2 - GROUND-WATER GRADIENT MAP FIGURE 3 - ISOPLETH MAP OF BENZENE CONCENTRATIONS IN GROUND WATER LIST OF TABLES TABLE A - GROUND-WATER POTENTIOMETRIC ELEVATIONS TABLE B - SUMMARY OF GROUND-WATER ANALYTICAL RESULTS LIST OF APPENDICES APPENDIX A - GROUND-WATER SAMPLING PROCEDURES, LABORATORY TEST RESULTS, AND CHAIN-OF-CUSTODY FORMS APPENDIX B - GRAPHS ILLUSTRATING GROUND-WATER ANALYSES APPENDIX C - FIELD NOTES

Du Pont Environmental Services

Du Pont Environmental Services

June 29, 1990 Job No. 1088-Q12-47

Mr. Gregory P. Fletcher Conoco Inc. 600 North Dairy Ashford TR 3056 Houston, Texas 77079

SUBJECT: Quarterly Ground-Water Sampling Report

May 1990

Fast Gas Station

1088 Marina Boulevard San Leandro, California

Dear Mr. Fletcher:

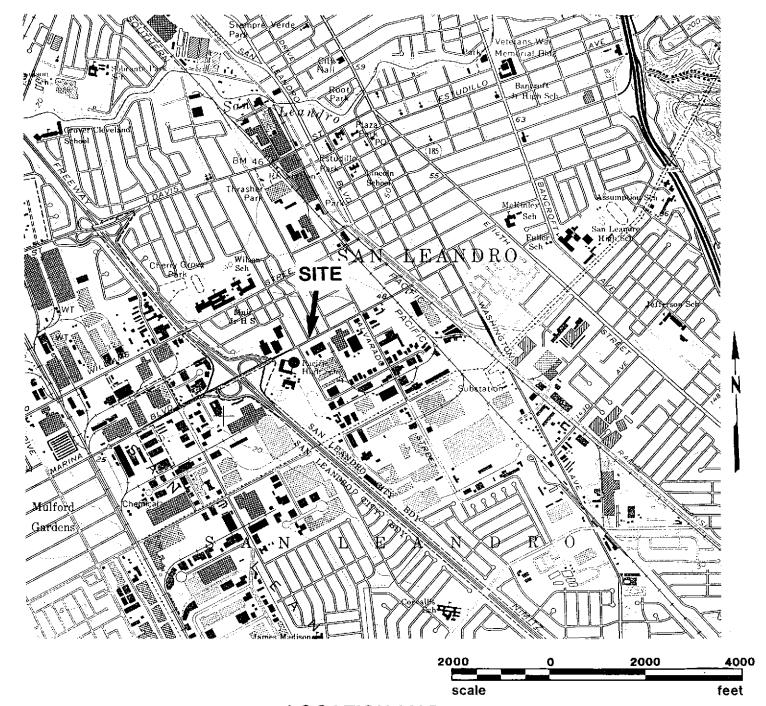
INTRODUCTION

This report presents the results of the quarterly ground-water sampling which was conducted at the Fast Gas Station, 1088 Marina Boulevard, San Leandro, California (see the Location Map, Figure 1), on May 18, 1990. The purpose of this sampling program is to monitor and evaluate the extent of hydrocarbon contamination in the ground water at the subject property.

SUMMARY

A summary of data regarding ground-water levels for the May 1990 quarter is presented in Table A. In general, ground-water levels have risen approximately 0.8 foot since the last quarterly sampling. The ground-water gradient for this quarter is directed towards the southwest at a magnitude of approximately 0.0025 (see the Ground-Water Gradient Map, Figure 2). Chemical analytical results indicate concentrations of petroleum hydrocarbons continue to be centered about MW-4 since the last quarter (see Table B and Appendix B). Figure 3 presents interpretive isopleths of benzene concentrations within the ground water for the site. This site is scheduled to be resampled during August 1990.

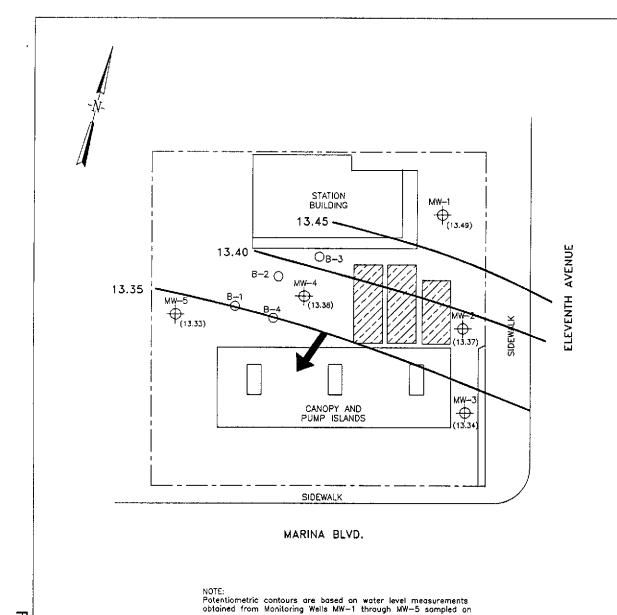
Respectfully submitted,


DU PONT ENVIRONMENTAL SERVICES

Marjorie Lane

Staff Geologist

David J. Blunt Registered Geologist


RG 4516

LOCATION MAP

Fast Gas Station 1088 Marina Boulevard San Leandro, California

BASE: A portion of the San Leandro USGS 7.5 minute quadrangle dated 1959 (photorevised 1980), at a scale of 1:24,000.

5-18-90

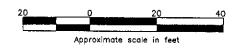
EXPLANATION

Property Limits

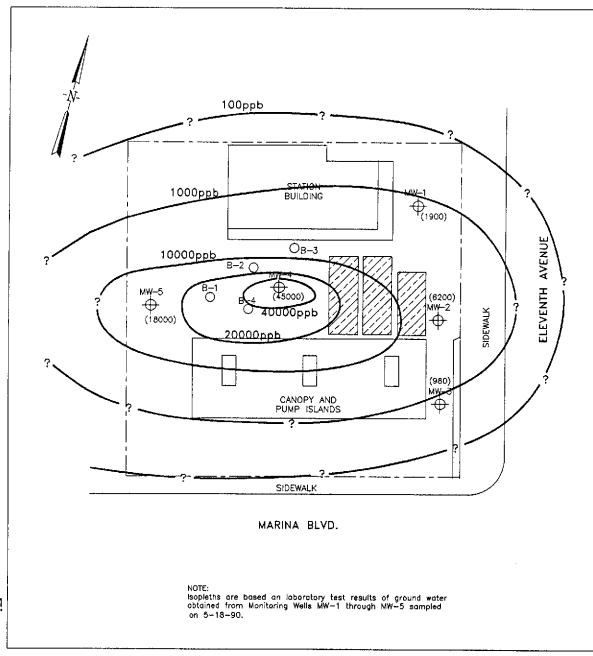
Monitoring Well with Ground—Water Elevations in Feet

B-4

Boring



Underground Fuel Storage Tanks


Potentiometric Surface Contour with Ground-Water Elevations in Feet

Approximate Ground—Water Gradient Direction

REV	ISIONS	\square GROU.	ND-WATE	CR GRADI	ENT MAP
BY	APPR	SCALE As Shown	DESIGNED BY	DRAWN BY ACC	DRAWING NO
BY	APPR	DATE 6-21-90	CHECKED	APPROVED	J08 N0 1088-Q12-47
BY	APPR		Fast Gas 1088 Marina San Leandro	Boulevard	
BY	APPR				

EXPLANATION

Property Limits

Monitoring Well with Benzene Concentration in Parts per Billion


Boring

Underground Fuel Storage Tanks

40000ppb

Isopleth of Benzene Concentration in Parts per Billion

	REV	ZNOIZN		ISOPLETH MAP OF BENZENE CONCENTRATIONS IN GROUND WATER								
H	BY	APPR	As Shown	DESIGNED BY	DRAWN 6Y ACC	DRAWING NO						
r	BY	APPR	DATE 6-21-90	CHECKED	APPROVED D	J08 N0 1088-Q12-47						
-	BY	APPR		Fast Gas Station 1088 Marina Boulevard San Leandro, California								
\vdash	BY BY	APPR APPR	Du Por	nt Enviro	nmental	Services						

TABLE A
GROUND-WATER POTENTIOMETRIC ELEVATIONS

	Fast Gas Station 1088 Marina Boulevard San Leandro, California								
WELL ID	DATE SAMPLED	TOP OF CASING ELEVATION (feet)	DEPTH TO GROUND WATER (feet)	GROUND WATER ELEVATION (feet)	ELEVATION CHANGE (feet)				
MW-1	23-Jun-87 06-Jul-87 06-Aug-87 04-Nov-87 02-Feb-88 02-May-88 21-Nov-88 14-Feb-89 02-May-89 10-Aug-89 08-Nov-89 20-Feb-90 18-May-90	29.89	14.79 14.93 14.22 15.74 13.99 14.99 13.03 15.86 14.77 16.35 16.46 15.58 16.40	15.10 14.96 15.67 14.15 15.90 14.90 16.86 14.03 15.12 13.54 13.43 14.31	0.82				
MW-2	23-Jun-87 06-Jul-87 06-Aug-87 04-Nov-87 02-Feb-88 02-May-88 21-Nov-88 14-Feb-89 02-May-89 10-Aug-89 08-Nov-89 20-Feb-90 18-May-90	29.57	14.51 14.63 14.95 15.45 13.74 14.63 12.99 15.66 14.56 16.22 16.19 15.34 16.20	15.06 14.94 14.62 14.12 15.83 14.94 16.58 13.91 15.01 13.35 13.38 14.23 13.37	0.86 ↑				
MW-3	23-Jun-87 06-Jul-87 06-Aug-87 04-Nov-87 02-Feb-88 02-May-88 21-Nov-88 14-Feb-89 02-May-89 10-Aug-89 08-Nov-89 20-Feb-90 18-May-90	29.13	14.13 14.24 14.52 15.09 13.37 14.22 13.01 15.22 14.16 15.61 15.75 14.95 15.79	15.00 14.89 14.61 14.04 15.76 14.91 16.12 13.91 14.97 13.52 13.38 14.18 13.34	0.84				
		1	1						

TABLE A
GROUND-WATER POTENTIOMETRIC ELEVATIONS

	Fast Gas Station 1088 Marina Boulevard San Leandro, California								
WELL ID	DATE SAMPLED	TOP OF CASING ELEVATION (feet)	DEPTH TO GROUND WATER (feet)	GROUND WATER ELEVATION (feet)	ELEVATION CHANGE (feet)				
MW-4	23-Jun-87 06-Jul-87 06-Aug-87 04-Nov-87 02-Feb-88 02-May-88 21-Nov-88 14-Feb-89 02-May-89 10-Aug-89 08-Nov-89 20-Feb-90 18-May-90	29.72	14.77 14.91 15.19 15.72 14.03 14.89 12.88 15.83 14.75 16.30 16.29 15.62 16.34	14.95 14.81 14.53 14.00 15.69 14.83 16.84 13.89 14.97 13.42 13.43 14.10	0.72				
MW-5	23-Jun-87 06-Jul-87 06-Aug-87 04-Nov-87 02-Feb-88 02-May-88 21-Nov-88 14-Feb-89 02-May-89 10-Aug-89 08-Nov-89 20-Feb-90 18-May-90	29.55	14.63 14.79 15.07 15.61 13.84 14.77 12.84 15.72 14.68 16.03 16.33 15.44 16.22	14.92 14.76 14.48 13.94 15.71 14.78 16.71 13.83 14.87 13.52 13.22 14.11 13.33	0.78				

NOTES:

1) All elevations surveyed to an arbitrary datum.

2) Elevations and depths are given in feet.

TABLE B
SUMMARY OF GROUND-WATER ANALYTICAL RESULTS

San Leandro, California									
			ETHYL						
WELL	DATE	BENZENE	BENZENE	TOLUENE	XYLENES	TPHg	COMMENTS		
ID .	SAMPLED	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ag/L)			
VIW-1	10 400 07	2 212	664.1	9 770	2 221	17 276			
MAA-1	16-Apr-87 23-Jun-87	2,313 1,887	664.1 466.7	3,770 2,141	3,331 1,652	17,276 26,027			
	06-Jul-87	778.2	133.2	943.7	422.1	3,938			
	06-Aug-87	1,270	288.7	1,576	873.7	6,079			
	04-Nov-87	1,700	720	4,000	2,200	15,000			
	02-Feb-88	1,500	230	1,700	740	14,000			
	02-May-88	3,500	4,900	700	2,700	33,000			
	21-Nov-88	2,200	2,800	560	2,200	15,000	Odor		
	14-Feb-89	1,700	340	1,700	1,500	12,000			
	02-May-89	1,500	510	2,400	2,400	18,000	Odor, Slight Sheel		
	10-Aug-89	1,400	360	1,500	1,600	10,000	Odor		
	08-Nov-89	920	190	470	360	7,200	Odor		
	20-Feb-90	810	270	540	800	3,300			
	18-May-90	1,900	560	500	1,600	5,600			
		-							
MW-2	16-Apr-87	3,131	1,067	4,239	4,608	17,920			
	23-Jun-87	2,188	1,047	2,622	4,699	49,354			
	06-Jul-87	1,575	457	1,729	1,702	8,676			
	06-Aug-87 04-Nov-87	2,623	702 900	3,722	2,882	14,376 19,000			
	04-N0V-87 02-Feb-88	2,200 6,200	1,000	4,100 6,500	3,500 4,000	54,000			
	02-May-88	6,800	7,100	1,300	5,400	53,000			
	21-Nov-88	7,500				,	Free Product		
	14-Feb-89	6,900	1,100	4,300	5,200	48,000	Film of Free Produ		
	02-May-89	6,100	2,100	8,800	16,000	110,000	Odor, Sheen		
	10-Aug-89	4,200	1,000	2,900	5,800	39,000	Odor, Sheen		
	08-Nov-89	3,700	740	1,500	2,200	45,000	Odor, Heavy Shee		
	20-Feb-90	5,000	1,600	8,200	11,000	60,000	•		
	18-May-90	6,200	1,300	1,900	610	19,000			
		,			-				
MW-3	16-Apr-87	1,371	472.3	2,438	2,617	9,967			
	23-Jun-87	646.2	320.9	822.9	1,280	16,824			
	06-Jul-87	340.3	116.5	384.2	420.2	3,395			
	06-Aug-87	441.9	118.2	436.3	417.3	3,107			
	04-Nov-87	320	74	280	250	2,600			
	02-Feb-88 02-May-88	2,200 1,600	500 840	2,300 450	2,300 1,700	44,000 14,000			
	02-мау-88 21-Nov-88	1,200	560	220	810	8,100			
	14-Feb-89	1,500	220	220	500	5,500	Odor		
	02-May-89	910	530	310	1,900	13,000	Odor		
	10-Aug-89	750	190	10	210	2,700	Odor		
	08-Nov-89	370	90	ND(20)	58	2,400	Odor		
	20-Feb-90	1,200	810	77	460	3,700	330,		
	18-May-90	980	330	ND(50)	250	2,300			
81088 (J.S. 10) (J.S. 61				Edde Stroding for Earlier Stee					

TABLE B

(continued)

SUMMARY OF GROUND-WATER ANALYTICAL RESULTS

	Fast Gas Station 1088 Marina Boulevard San Leandro, California										
			EH!Y								
WELL	DATE	BENZENE	BENZENE	TOLUENE	XYLENES	TPHq	COMMENTS				
ID	SAMPLED	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)					
MW-4	16-Apr-87	5,896	893.9	3,797	4.106	19,309					
MAA-4	10-Apr-67 23-Jun-87	4,030	850.0	1,842	3,254	31,429					
	06-Jul-87	2,710	308.2	1,247	1,312	8,117					
	06-Aug-87	3,992	447.9	1,589	1,611	10,464					
	04-Nov-87	9,500	2,800	17,000	11,000	55,000					
	02-Feb-88	11,000	1,400	7,400	6,200	47,000					
	02-May-88	9,200	6,100	1,300	6,400	58,000					
	21-Nov-88	5,700	3,100	1,600	7,600	48,000					
	14-Feb-89	8,700	900	2,500	3,800	29,000	Odor & Sheen				
	02-May-89	4,800	1,800	5,600	8,800	69,000	Odor, Slight Sheen				
				6,600	12,000	67,000	Odor, Slight Sheen				
	08-Nov-89	11,000	1,800 1,100	3,200	4,400	71,000	Odor, Slight Sheen				
	1 1 1			-	-		Odor, Silgin Sheen				
		8,100	930	4,500	3,500	19,000					
	18-May-90	45,000	5,000	12,000	27,000	100,009)				
·											
MW-5	16-Apr-87	2,267	921.2	3,277	4,536	17,733					
	23-Jun-87	2,239	516.8	953.9	1,587	19,555					
	06-Jul-87	1,335	313.7	799.2	923.9	5,631					
	06-Aug-87	1,890	576.8	881.2	93.4	6,450					
	04-Nov-87	1,300	270	500	640	4,600					
	02-Feb-88	3,100	550	1,500	1,400	24,000					
	02-May-88	4,400	1,200	490	1,500	17,000					
	21-Nov-88	5,600	870	590	2,200	19,000	0-4				
	14-Feb-89	4,300	410	810	1,300	13,000	Odor				
	02-May-89	2,900	690	1,500	3,200	24,000	Odor, Slight Sheen				
	10-Aug-89	6,700	860	2,300	4,700	36,000	Odor, Slight Sheen				
	08-Nov-89	5,300	460	860	600	30,000	Odor				
	20-Feb-90	1,700	120	220	370	3,400					
	18-May-90	18,000	1,500	2,000	5,600	24,000					
			NAME OF THE OWN OF THE OWN OF THE OWN OF THE OWN		0.2000						

- NOTES: 1) TPHg = Total Petroleum Hydrocarbons (as gasoline).
 2) Odor refers to petroleum hydrocarbon odor.

 - 3) All results are presented in parts per billion.
 - 4) Samples prior to February 1989 taken by Groundwater Technology, Inc.

APPENDIX A

GROUND-WATER SAMPLING PROCEDURES, LABORATORY TEST RESULTS, AND CHAIN-OF-CUSTODY FORMS

GROUND-WATER MONITORING AND SAMPLING PROCEDURES

Prior to sampling, the depth to water was measured in all monitoring wells using an electronic immersion probe. All measurements were read to the nearest 0.01 foot. If free product was present, the depth to free product and the depth to water were measured using an interface probe and an observation sample was collected with a clear teflon bailer for confirmation. No analytical samples were collected from monitoring wells containing more than 0.25 inch of free product.

The monitoring wells were sampled on May 18, 1990. Prior to purging, each well was checked with a clear teflon bailer in order to observe the possible presence of floating hydrocarbons. Purging was accomplished using a stainless steel or teflon bailer. The bailer was thoroughly cleaned prior to each sampling using a trisodium phosphate solution followed by a 10% methylalcohol solution, and then rinsed twice with potable water. The wells were purged prior to sampling until pH, conductivity, and temperature values stabilized. Generally, this resulted in the removal of approximately 3 to 5 well volumes of ground water from each well during the purging process. The water obtained from purging was placed in labeled 55-gallon drums and stored on-site. The bailer line was replaced after each sampling. Samples recovered from each well were decanted into two appropriately prepared and labeled 40-ml volatile organic analysis (VOA) bottles. A travel blank (numbered as MW-A) and a duplicate sample from MW-5 were also submitted for quality assurance. The sample bottles were immediately placed in an ice chest and maintained at 4 °C until delivery to a State of California licensed laboratory. Routine chain-of-custody procedures were employed.

LOG NO.: 8692
DATE SAMPLED: 5/18/90
DATE RECEIVED: 5/30/90
DATE REPORTED: 6/4/90

CUSTOMER:

Conoco, Inc.

REQUESTER:

Marjorie Lane

PROJECT:

No. 1088-Q12-47, San Leandro

	<u> </u>	Sample 1	ype:	Water		
	Mw	l-1	MW	1-2	Mh	1-3
<u>Units</u>	Concen- <u>tration</u>	Detection <u>Limit</u>	Concen- tration	Detection Limit	Concen- tration	Detection Limit
ug/l	5,600	400	19,000	400	2,300	200
ug/l	1,900	200	6,200	200	980	80
ug/l	500	100	1,900	100	< 50	50
ug/l	1,600	600	6,100	600	250	200
ug/l	560	200	1,300	200	330	80
	ug/l ug/l ug/l ug/l	Units Concentration ug/l 5,600 ug/l 1,900 ug/l 500 ug/l 1,600	Units MW-1 Concententation Detection Limit ug/l 5,600 400 ug/l 1,900 200 ug/l 500 100 ug/l 1,600 600	Units MW-1 Concentration Detection Limit Concentration ug/l 5,600 400 19,000 ug/l 1,900 200 6,200 ug/l 500 100 1,900 ug/l 1,600 600 6,100	Units MW-1 Concentration Detection Limit Concentration Detection Limit ug/l 5,600 400 19,000 400 ug/l 1,900 200 6,200 200 ug/l 500 100 1,900 100 ug/l 1,600 600 6,100 600	Units MW-1 Concentration Detection Limit Concentration Detection Limit Concentration Detection Concentration ug/l 5,600 400 19,000 400 2,300 ug/l 1,900 200 6,200 200 980 ug/l 500 100 1,900 100 < 50

-	·	<u>Sample</u>	Type: Wat	er	
Method and Constituent	<u>Units</u>	Concen- tration	-4 Detection Limit	MW Concen- tration	-5 Detection Limit
DHS Method:					
Total Petroleum Hydro- carbons as Gasoline	ug/l	100,000	400	24,000	200
Modified EPA Method 8020:					
Benzene	ug/1	45,000	200	18,000	80
Toluene	ug/l	12,000	100	2,000	50
Xylenes	ug/l	27,000	600	5,600	200
Ethylbenzene	ug/l	5,000	200	1,500	80

Trace Analysis Laboratory, Inc.

LOG NO.: 8692
DATE SAMPLED: 5/18/90
DATE RECEIVED: 5/18/90
DATE ANALYZED: 5/30/90
DATE REPORTED: 6/4/90
PAGE: Two

	Sample Type: Water							
Method and <u>Constituent</u>	<u>Units</u>	Concen- tration	-A Detection Limit	<u>Dupl</u> Concen- tration	icate Detection Limit			
DHS Method:								
Total Petroleum Hydro- carbons as Gasoline	ug/1	< 5	5	26,000	400			
Modified EPA Method 8020:								
Benzene	ug/1	< 0.6	0.6	21,000	100			
Toluene	ug/l	< 0.3	0.3	1,800	60			
Xylenes	ug/l	< 2	2	5,700	300			
Ethylbenzene	ug/l	< 0.5	0.5	1,600	100			

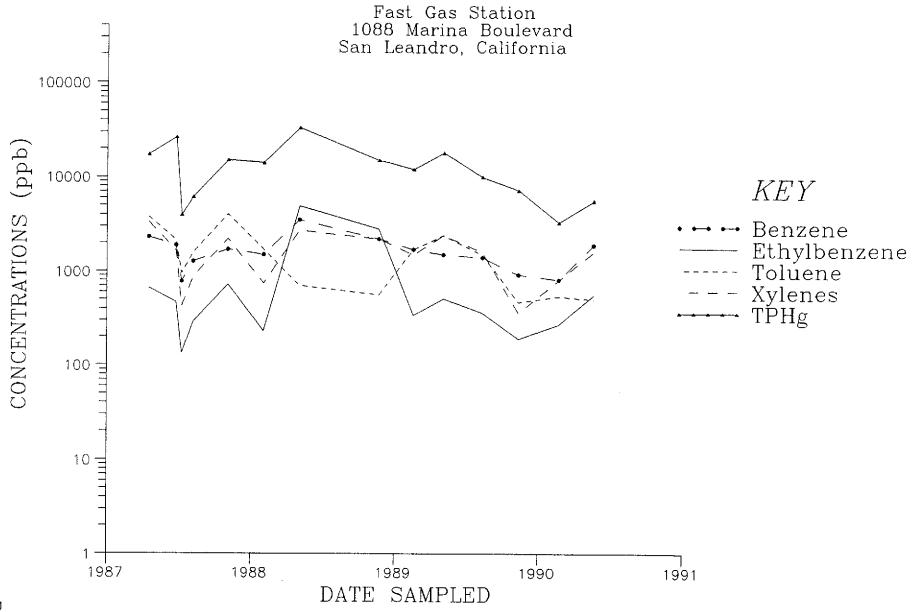
For samples MW-5 and Duplicate, the concentration of total petroleum hydrocarbons as gasoline is reported as less than the concentration of benzene. The total petroleum hydrocarbons as gasoline consists primarily of benzene. Benzene is compared directly to a benzene standard while compounds being measured for total petroleum hydrocarbons are compared to a wide range of hydrocarbons found in gasoline. This accounts for the apparent discrepancy.

Louis W. DuPuis

Quality Assurance/Quality Control Manager

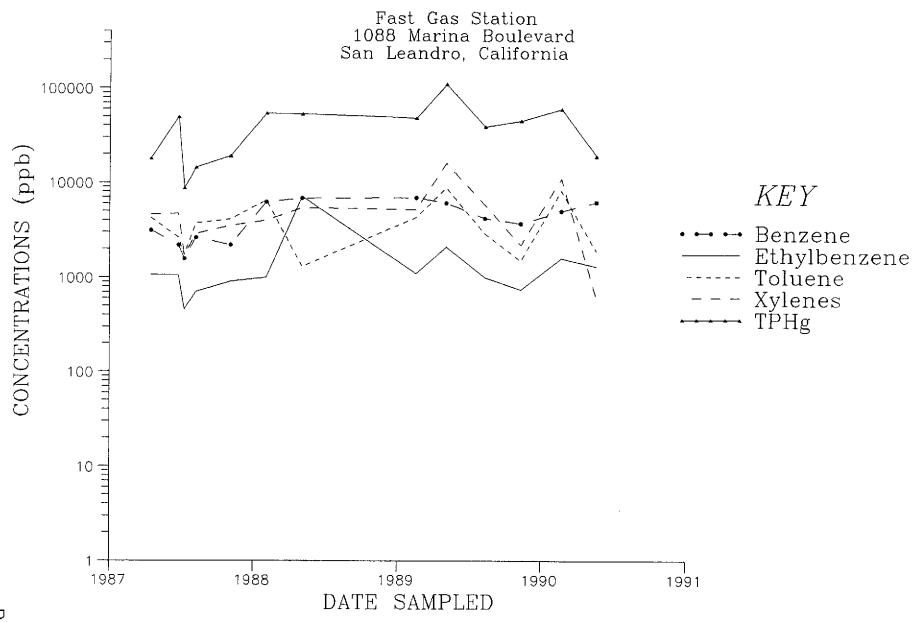
DU PONT ENVIRONMENTAL SERVICES 7068 Koll Center Parkway * Suite 401 * Pleasanton, California * (415) 462-7772

CHAIN-OF-CUSTODY/WORK ORDER


Testing Laboratory_	Trace Analysis Laboratory	Phone (4 15) 783-6960
Address	3423 Investment Boulevard, Unit 8	3
City, State, Zip	Hayward, California 94545	

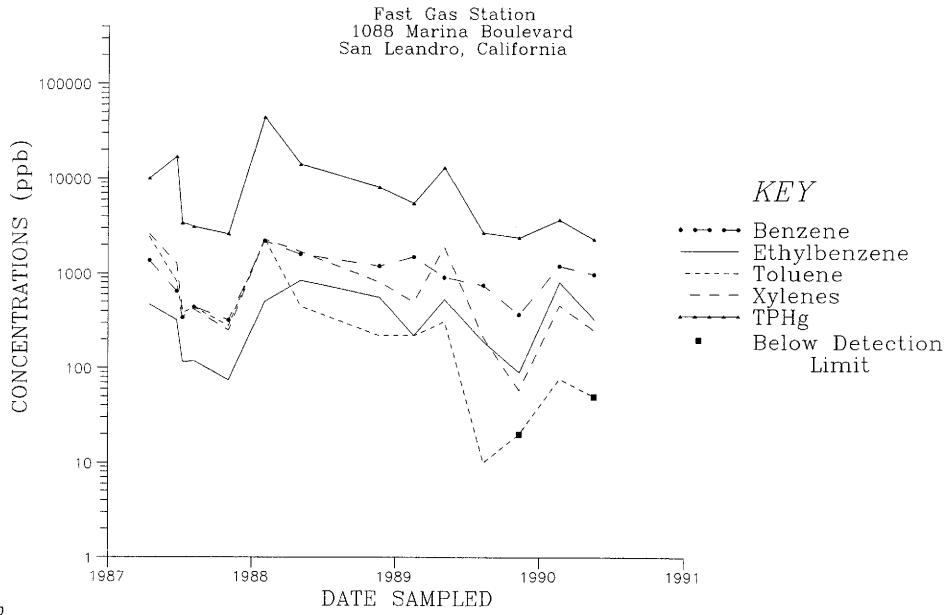
		СС, Дір																
PROJ	ECT	NAME	5	1011	n Leandr	0					To	0/5	//	S in	/		n*	
JOB	NUME	BER /	<i>o</i> පි	හි	-Q12-47	7	NO.		í	13	(0)	12		8				
					que		OF			ું/ ું/		20/	æ/	*	/	Di	EMARKS	
SAMF	LERS	S (Sig	nati	лге) Дэ	asset A-		CON-	1				12	R	7*/		1(1	LIVIAIN	
SAMPLE I.D.			COMP	GRAB	LOCATION MW=MonitonN	. Well			10%			No.		/ /	16	r'M.	al TF	17
Mus-	SIBA	d		سا	Mw-	j	2	V	600	-		1			VAL.	<u>· · · · · · · · · · · · · · · · · · · </u>		` 1
Mw. 2	!			i	MW-2		Q	2	·	V	1	-	,					
~3	SAL C.			V	MW-3		2	c	-	~		~						
Muy				L	MW-4	ſ	2	2,1		*2.	* 1	معن	•		•			
41,00	j			L	MW-5	-	8	ص	- L/	L	^ L		~					
MUMA	V			v	MW-A		2	6	4		3,00	diam'r.	,					
Duptical	1			V	Dyplica	rte.	2	U		V	Lon	Ł.	arpeter of the same					
					, , , , , , , , , , , , , , , , , , ,													
						-i												
															·-···			
	ļ									,		_						
								ļ										
					1													
RELINO	UISHE	D BY (Signo	ture		DATE		REC	ENEC		L CSid RACI	E/AA	AYY	sis Lai	BORAT	ORY	5/18/ga	TIME 3:15
REPRES	Section 1	e E	20	C)Y [=]	VV QS	11990	3:15 PM	BED ()/() RESE	W	100 A		MINI MINO	NT BLV D, CA 9	/D., UN /4545	8 III	-118/90	DV12
RELINO			Signo	ature	<u>-)</u> ;)	DATE	TIME					<u>n</u> Al gna∤	1177. 415)	783-69	60		DATE	TIME
REPRES			'Siana	ature	<u>. </u>	DATE	TIME		RESE ENE(DATE	TIME
	J. J ., (C	~ (J) \	olgin	, con c	~1			INCO	_ IV (_(וט כ	(3)	gnuŧ	ur e)					
REPRE	SENTIN	łG:						REP	RESE	nitu:	1 G:							

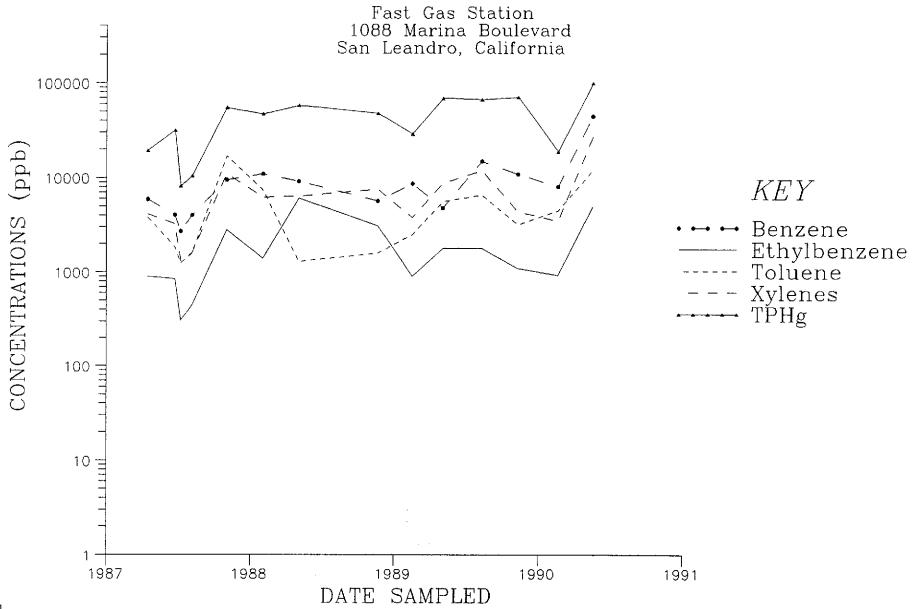
<u>APPENDIX B</u>


GRAPHS ILLUSTRATING GROUND-WATER ANALYSES

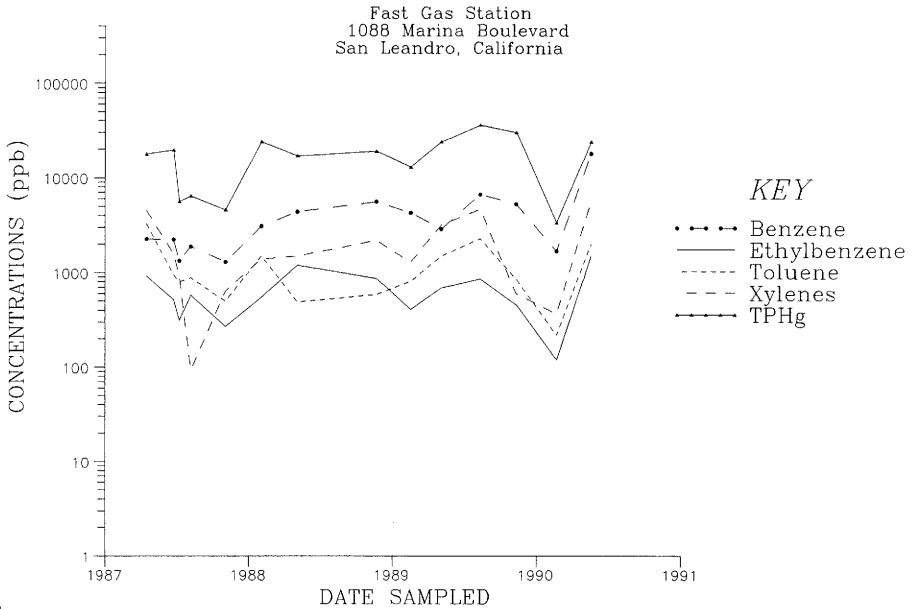
MONITORING WELL MW-1

В | 1


MONITORING WELL MW-2


B-2

NOTE: Laboratory detection limits may vary due to analytical procedures used.


MONITORING WELL MW-3

MONITORING WELL MW-4

MONITORING WELL MW-5

8-5

Du Pont Environmental Services

GROUND-WATER MONITORING WELL FIELD SAMPLING DATA SHEET

site: San Leandro

JOB# 1088-Q12-47 DATE: 5-18-90

WELL#	_MW-1
CASING DIAMETER	24
DEPTH TO WATER	16.40
TOTAL DEPTH	28.0
WELL VOLUME	1,9300
PURGE METHOD	hand bail

GALLONS PURGED	ρН	Conduc- tivity	Temp.
工		741	63.3
2	:	729	621
3		725	61.9
4		728	61-9
		·	

WELL#	MW-Z
CASING DIAMETER	2"
DEPTH TO WATER	16.20
TOTAL DEPTH	25.87
WELL VOLUME	1.60 gal
PURGE METHOD	hand bail

GALLONS PURGED	pH	Conduc- tivity	Temp.
\mathcal{I}	:	8-71	64-1
2.		846	62.6
3		841	6z.3
4		844	62.3

WELL#	MW-3
CASING DIAMETER	2"
DEPTH TO WATER	15.79
TOTAL DEPTH	24.7
WELL VOLUME	99 scl
PURGE METHOD	hard bail

GALLONS PURGED	рН	Conduc- tivity	Temp.
I	÷	687	64.6 62.4
Z		656 656	62.4
3		اکی	62.2
4		649	62.1
		-	
		ļ	

WELL#	4-w4
CASING DIAMETER	24
DEPTH TO WATER	16.34
TOTAL DEPTH	29.1
WELL VOLUME	1.79 Sal
PURGE METHOD	hand bail

GALLONS PURGED	рН	Conduc- tivity	Temp.
工~		1220	63.7
3		1120 1100	62.5
4		1110	62.2

Du Pont Environmental Services

GROUND-WATER MONITORING WELL FIELD SAMPLING DATA SHEET

SITE: San Leandro Jo	OB#1088-0	212-47	DATE: 5	-18-90	
WELL# MW-5 CASING DIAMETER 2" DEPTH TO WATER 16.22' TOTAL DEPTH 27.9' WELL VOLUME 1.95gaf PURGE METHOD hard bail		DEPTH T TOTA WELL	WELL # DIAMETER O WATER AL DEPTH VOLUME METHOD		
	Temp.	GALLONS		Conduc-	Temp.
	63.7	PURGED	рН	tivity	
	62.7		:		
1 _ 1 1	67.4				
	62.4				
	1 1			i	1
WELL#			WELL#		
CASING DIAMETER			WELL#		
CASING DIAMETER DEPTH TO WATER TOTAL DEPTH		DEPTH T	_		
CASING DIAMETER DEPTH TO WATER TOTAL DEPTH WELL VOLUME		DEPTH T TOTA WELL	DIAMETER O WATER AL DEPTH VOLUME		
CASING DIAMETER DEPTH TO WATER TOTAL DEPTH WELL VOLUME PURGE METHOD		DEPTH T TOTA WELL PURGE	OWATER O WATER AL DEPTH VOLUME METHOD		
CASING DIAMETER DEPTH TO WATER TOTAL DEPTH WELL VOLUME PURGE METHOD GALLONS PURGED pH tivity	Temp:	DEPTH T TOTA WELL	OWATER O WATER AL DEPTH VOLUME METHOD	Conduc-	Temp.
CASING DIAMETER DEPTH TO WATER TOTAL DEPTH WELL VOLUME PURGE METHOD GALLONS Conduc—	Temp:	DEPTH T TOTA WELL PURGE GALLONS	MAMETER O WATER AL DEPTH VOLUME METHOD	Conduc-tivity	Temp.
CASING DIAMETER DEPTH TO WATER TOTAL DEPTH WELL VOLUME PURGE METHOD GALLONS PURGED pH tivity	Temp:	DEPTH T TOTA WELL PURGE GALLONS	MAMETER O WATER AL DEPTH VOLUME METHOD	Conduc- tivity	Temp.
CASING DIAMETER DEPTH TO WATER TOTAL DEPTH WELL VOLUME PURGE METHOD GALLONS PURGED pH tivity	Temp.	DEPTH T TOTA WELL PURGE GALLONS	MAMETER O WATER AL DEPTH VOLUME METHOD	Conduc tivity	Temp.
CASING DIAMETER DEPTH TO WATER TOTAL DEPTH WELL VOLUME PURGE METHOD GALLONS PURGED pH tivity	Temp.	DEPTH T TOTA WELL PURGE GALLONS	MAMETER O WATER AL DEPTH VOLUME METHOD	Conduc- tivity	Тетр.
CASING DIAMETER DEPTH TO WATER TOTAL DEPTH WELL VOLUME PURGE METHOD GALLONS PURGED pH tivity	Temp:	DEPTH T TOTA WELL PURGE GALLONS	MAMETER O WATER AL DEPTH VOLUME METHOD	Conduc- tivity	Temp.
CASING DIAMETER DEPTH TO WATER TOTAL DEPTH WELL VOLUME PURGE METHOD GALLONS PURGED pH tivity	Temp:	DEPTH T TOTA WELL PURGE GALLONS	MAMETER O WATER AL DEPTH VOLUME METHOD	Conduc- tivity	Тетр.
CASING DIAMETER DEPTH TO WATER TOTAL DEPTH WELL VOLUME PURGE METHOD GALLONS PURGED pH tivity	Temp:	DEPTH T TOTA WELL PURGE GALLONS	MAMETER O WATER AL DEPTH VOLUME METHOD	Conduc- tivity	Тетр.