

May 10, 2005 BEI Job No. 202016

Mr. Robert Schultz
Alameda County Health Care Services Agency
Environmental Protection Division
1131 Harbor Bay Parkway, Suite 250
Alameda, CA 94502-6577

RECEIVED

ENVIRONMENTAL HEALIN JULILIES

Subject:

Additional Site Investigation Data Transmittal

Dolan Trust Property 6393 Scarlett Court Dublin, California ACHCSA Site # 4322

Dear Mr. Schultz:

Blymyer Engineers, Inc. is pleased to forward the attached additional data that has been generated at the subject site (Figures 1 and 2) in response to the Alameda County Health Care Services Agency (ACHCSA) letter dated November 15, 2004, and the subsequent workplan approval contained in the ACHCSA January 24, 2005 letter. This data transmittal is consistent with dynamic investigation procedures referenced in the January 2005 letter. Due to the very short period of time remaining prior to property transaction closure, and the consequent need to keep the project progressing forward, full reporting is proposed for a later date.

Background

For the most recent compendium of background information, please refer to the First Quarter 2005 Groundwater Monitoring Event, dated April 11, 2005.

Soil Bore Installation

On February 18, 2005, Blymyer Engineers mobilized to the site to install two dual-tube direct-push soil bores in an attempt to collect the approved soil and groundwater samples. As a precursor to the mobilization, a conduit survey was conducted. Due to poor soil recovery from soil bores SB-J and SB-K on that date, an additional mobilization to the site was required. After notifying, and obtaining approval from the ACHCSA, a Cone Penetrometer Test (CPT) direct-push rig was mobilized to the site on March 28, 2005, and two CPT soil bores were installed. Copies of logs for soil bores SB-J and SB-K, and CPT bores CPT-1 and CPT-2 are attached to this letter. Bore locations have been noted on Figure 2.

Mr. Robert Schultz May 10, 2005 Page 2

Soil bores SB-J and SB-K were positioned through or very near the former UST basin in an attempt to determine the presumed worst-case vertical extent for soil and groundwater contamination. Soil bore CPT-1 was positioned in close proximity to the former UST basin in order to examine deeper strata at essentially the same approximate location as bores SB-J and SB-K. Bore CPT-2 was positioned in the approximate downgradient direction; however, site operations and physical constraints limited the positioning.

Based on the analytical data, the vertical extent of impacted soil appears to have been delineated (Table IV). Although attempts were made to eliminate potential cross-contamination during the collection of grab groundwater samples, moderate concentrations of fuel hydrocarbon compounds were detected in deeper discrete grab groundwater samples (Table IIB). Based on these data, it appears that one or more additional groundwater monitoring wells will be required to more fully investigate and delineate the vertical and lateral extent of impacted groundwater beneath the site. It is noted that the deeper grab groundwater sample obtained from bore CPT-1 contains a higher concentration of fuel hydrocarbon compounds than the shallower sample. Therefore, an investigation below the 50 foot maximum explored depth may be required. This should be determined based on the groundwater analytical data generated from a deeper well (MW-7), where representative groundwater samples can be collected and groundwater contaminant trends can be evaluated.

The most appropriate location for well MW-7 is in the vicinity of the former UST basin such that it can definitively determine the vertical extent of impacted groundwater. However, currently anticipated remedial activities incorporate remedial overexcavation of the release location in order to remove significantly impacted soil and groundwater that remains at that location. Due to the strong probability that a well in close proximity to the anticipated excavation would be destroyed by excavation, Blymyer Engineers proposes that well MW-7 be positioned approximately 25 feet downgradient (south) from the southern perimeter of the former UST basin. The southerly flow direction is documented for deeper water-bearing zones at the adjacent Busick-Gearing site, as well as in the rose diagram of flow vectors for shallower water-bearing zones at the subject site (Figure 3). The rose diagram excluded wells MW-5 and MW-6 from flow and gradient calculations due to a much shallower screened interval in these two wells, and due to the significant use of water in the concrete batch process. Copies of all previous bore and well logs are also attached to this data transmittal. Table B-1 provides a tabulation of well construction information.

Soil bore CPT-2, located in the approximate downgradient direction, appears to indicate that the lateral extent of groundwater contamination may have essentially been defined during CPT bore installation.

The timeline which will be observed between the Dolan Estate and the property purchaser, Dublin Honda, is as follows:

• April 30, 2005:

Tenants vacated

• May 15, 2005:

Power off

• May 16 to 18, 2005:

Destroy two water supply wells under Zone 7 permit

• June 1, 2005:

Release of funds; begin building demolition, including pavement

removal

• July 15, 2005:

End building demolition period; begin site remediation period

• August 1, 2005:

Start of substantial remediation period

• January 1, 2006:

Close of escrow; end of substantial site remediation period

• January 2, 2006:

Beginning of monitoring period

Other Site Activities

On April 13, 2005, CSS Environmental Services was present at the site to survey the horizontal position and vertical elevation of the six groundwater monitoring wells for entry into the GeoTracker database. Uploading into GeoTracker should occur within the next several weeks.

In the near future, Blymyer Engineers will be generating a revised Corrective Action Plan (CAP) as requested in the November 15, 2004 document. Most additional data requested in the November 15, 2004 letter will be incorporated into the CAP.

If you should have any questions, please call Mark Detterman at (510) 521-3773.

Sincerely,

Mark E. Detterman, C.E.G. 1788

Senior Geologist

Somer Sociogist

Michael S. Lewis

Vice President, Technical Services

Enclosures:

Figure 1:

Site Location Map

Figure 2:

Soil Bore and Monitoring Well Location Plan

Figure 3:

Rose Diagram of Groundwater Flow Vectors

Table IIB:

Summary of Miscellaneous Groundwater Sample Hydrocarbon

Analytical Results

Table IV:

Summary of Soil Sample Hydrocarbon Analytical Results

Table B-1:

Summary of Groundwater Well Construction Details

Recent Bore Logs:

SB-J, SB-K, CPT-1, and CPT-2

Previous Bore and Well Logs

cc.

Mr. Michael Fitzpatrick, Trustee, Estate of Michael Dolan

Peter MacDonald, Esq.

Table IIB, Summary of Miscellaneous Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

		l e	63	25:Searten Cau	rt, Dublin, Californ	<u> </u>						
Sample ID	Date		A Method 8015 g/L)	EPA Method 8020								
				$(\mu extbf{g/L})$								
		TPH as Gasoline	TPH as Diesel	Benzene	Benzene Toluene		Total Xylenes	MTBE				
D1	10/3/90	22,000	NA	250	<30	750	880	NA				
D3	10/3/90	-110.000	NA	600	200	800 = 3	1,000 📜	NA				
D4	10/3/90	 15;000	NA	1,300 ± 1	<30	700	1,000	NA				
D5	10/3/90	420	NA	2.4	<0.3	14 × 14	4.2	NA				
D6	10/3/90	=- 320,000	NA	4,000	4,400	3,700	10,000	NA				
B-1	11/4/92				Free Prod	uct						
B-2	11/4/92		,		Free Prod	uct						
B-3	11/4/92	NA	NA NA NA NA NA									
B-4	11/4/92		Free Product									
B-5	11/4/92	<50	NA	<0.3	<0.3	<0.3	<0.3	NA				
B-6	11/4/92	<50	NA	<0.3	<0.3	<0.3	<0.3	NA				

Table IIB, Summary of Miscellaneous Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Searlett Court, Dublin, California

1			9.3)	; 3 ; 31 ; 31 ; 1 (5) 1 (5) (1) (1	rt, Dublin, Californ	19	Co. Co. Co.				
Sample ID	Date		A Method 8015 g/L)	EPA Method 8020							
			<i>6-)</i>			(μg/L)					
		TPH as Gasoline	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE			
B-7	11/4/92	<50	NA	<0.3	<0.3	<0.3	<0.3	NA			
B-8	11/4/92				Free Prod	uct					
B-9	11/4/92	170	NA	1.7	<0.3	2.4	1.4	NA			
B-10	11/4/92	7,800	NA	48	19	190 +	150	NA			
B-11	11/14/92	<50	NA	<0.3	<0.3	<0.3	<0.3	NA			
B-12	11/14/92	<50	NA	<0.3	<0.3	<0.3	<0.3	NA			
B-13	12/10/92	<50	NA	<0.3	<0.3	<0.3	<0.3	NA			
SB-K-4W	2/18/05	74;000 Ab	47,000 to the	9,100	840	4,200 Total	11,000	NA			
SB-K-19.5W	2/18/05	5,600 **	2,400 Fas	210.	140	160	550 <u>550</u>	NA			
CPT1-34W	3/28/05	1504	<50	ochocomy.P oc engage. H pdp.co	6.5	and select and appearing	or the second se	NA			
CPT1-40W	3/28/05	320.4	61 ^d	A STATE OF THE STA	23	13 15	Major and Major	NA			

Table IIB, Summary of Miscellaneous Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals

6393 Scarlett Court, Dublin, California

Sample ID	Date	Modified EPA Method 8015 (μg/L)		EPA Method 8020 (μg/L)							
		TPH as Gasoline	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE			
CPT2-23W	CPT2-23W 3/28/05		<50	<0.5	<0.5	<0.5	<0.5	NA			
CPT2-35W 3/28/05		<50	60 d	<0.5	<0.5	<0.5	<0.5	NA			
ESL: Grour NOT a Cu Potential S	RWQCB Groundwater ESL: Groundwater IS NOT a Current or Potential Source of Drinking Water (Table B)		640	46	130	290	13	1,800			
RWQCB Groundwater ESL: Groundwater IS a Current or Potential Source of Drinking Water (Table A)		100	100	1.0	40	3.0	13	5.0			

Table IIB, Summary of Miscellaneous Groundwater Sample Hydrocarbon Analytical Results, continued

Notes: $\mu g/L$ = Micrograms per liter

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl *tert*-butyl ether

NA = Not analyzed

< x = Less than the analytical detection limit (x)

EPA = Environmental Protection Agency

N/A = Not applicable

Laboratory note indicates an unmodified or weakly modified gasoline pattern.

b = Laboratory note indicates a lighter than water immiscible sheen / product is present.

^c = Laboratory note indicates diesel range compounds are significant; no recognizable pattern.

d = Laboratory note indicates gasoline range compounds are significant.

^e = Laboratory note indicates oil range compounds are significant.

Bold results indicate detectable analyte concentrations.

Shaded results indicate analyte concentrations above the respective RWQCB ESL value (Groundwater IS Current or Potential Source of Drinking Water).

Table IV, Summary of Soil Sample Hydrocarbon Analytical Results

Sample ID	Depth (ft)	Date	Modified 8	EPA Method 8015 ng/Kg)	EPA Method 8020 or 8021B (mg/Kg)						
			TPH as Gas	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE		
East of 600 gal tank	7	2/5/90	#740	1,100 * **	14 14 14 14 14 14 14 14 14 14 14 14 14 1	35	23	110	NA		
Dirt pile (composite)		2/6/90	1,700	2,000 e/2	15	78	37	210	NA		
D1-10*	11.0	10/3/90	0.60	NA	<0.005	<0.005	<0.005	<0.005	NA		
MW1-4A	11.0	11/22/91	<1	NA	<0.003	<0.003	<0.003	<0.003	NA		
MW2-4A	11.0	11/22/91	G140	NA	1.7	F. 3.6.	2.6	**************************************	NA		
MW3-4A	11.0	11/22/91	<1	NA	<0.003	0.005	<0.003	<0.003	NA		
MW4-2A	11.0	11/22/91	<1	NA	<0.003	0.006	0.005	<0.003	NA		
B-1	5.0	11/3/92	23	NA	. 1. О.13	0.033	1.4	0.038	NA		
B-1	10.0	11/3/92	36	NA	71 0 09s	0.030	0.69	17,000	NA		
B-2	5.0	11/3/92	34	NA	0.28	1.4	0.63		NA		
B-2	10.0	11/3/92	40	NA	1.3	0.63	0.98	4.8	NA		

Table IV, Summary of Soil Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

Sample ID	Depth (ft)	Date	8	EPA Method 3015 g/Kg)	EPA Method 8020 or 8021B (mg/Kg)						
			TPH as Gas	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE		
B-3	5.0	11/3/92	<1	NA	<0.003	0.004	<0.003	0.008	NA		
В-3	10.0	11/3/92	42	NA		0.13	0.86	4.7	NA		
B-4	5.0	11/3/92	470	NA	2.3	8.6	6.6	38	NA		
B-4	10.0	11/3/92	23	NA	0.89	0.22	0.47	2.3 eff	NA		
SB-A-3.5	3.5	9/16/03	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.05		
SB-B-7.5	7.5	9/16/03	5.9 ª	1.4 b	0.024	0.17	0.098	0.019	<0.05		
SB-B-17	17	9/16/03	49 ª	10 b	0.022	0.17	0.30	0.67	<0.05		
SB-C-8.5	8.5	9/16/03	150 3	32 b c d	inggangangan pagangan <mark>g l</mark> anggan	1.2	2.4		<0.50		
SB-C-18	18	9/16/03	640	180 %	agincadullunion 99 ang	71			<2.5		
SB-D-10	10	9/16/03	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.05		
SB-D-13	13	9/16/03	5.2 *	2.9 b d	0.014	0.040	0.088	0.046	<0.05		

Table IV, Summary of Soil Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

Sample ID	Depth (ft)	Date	Modified 8	EPA Method 3015 g/Kg)	EPA Method 8020 or 8021B (mg/Kg)					
			TPH as Gas	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ	
SB-E-13.5	13.5	9/16/03	1.7 ª	2.6 ° d	<0.005	0.036	<0.005	<0.005	<0.05	
SB-F-17.75	17.75	9/16/03	210 *	62 ^{b c}	0.27	0.56	2.1	1,0	<5.0	
SB-G-8	8	9/16/03	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.05	
SB-H-12	12	9/16/03	65 *	12 b c d	<0.025	0.64	0.37	0.11	<0.25	
SB-I-3.5	3.5	9/16/03	2,600 *	1,500 b c	3.1	3.4	14/10/14/51/14/15/24	20	<10	
SB-I-8.25	8.25	9/16/03	1,600	260 bc	19 19 19 19 19 19 19 19 19 19 19 19 19 1	45	33	110	<10	
SB-I-13.5	13.5	9/16/03	430*	1102.54	\mathbb{H}_{1}	14	8.7	35	<10	
SB-J-7.5	7.5	2/18/05	550 1	33 b c	2.8	0.83	10 85 - 40 H	adiabah arawata 13 - Alf 3 - Kanasan Mangaran - Kanasan	NA	
SB-K-9	9.0	2/18/05	100 m (100 m) 110 m (100 m)	8.8 b c	12 4.8 T	1.7	2.3	8.6	NA	
SB-K-19.5	19.5	2/18/05	130 *	4.4 b c	0.48	1.2	1.6	6.2	NA	

Table IV, Summary of Soil Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Segriett Court, Dublin, California

and the second s				6393 Scarlett C	var ej ezaving	Camoi ma	and the state of t			
Sample ID	Depth (ft)	Date	8	EPA Method 3015 g/Kg)	EPA Method 8020 or 8021B (mg/Kg)					
			TPH as Gas	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	
CPT1-23.5	23.5	3/28/05	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	NA	
CPT1-29.5	29.5	3/28/05	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	NA	
CPT1-41.5	41.5	3/28/05	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	NA	
CPT2-8.0	8.0	3/28/05	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	NA	
CPT2-28	28	3/28/05	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	NA	
CPT2-43	43	3/28/05	<1.0	<1.0	<0.005	< 0.005	< 0.005	<0.005	NA	

Table IV, Summary of Soil Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

Sample ID	Sample ID Depth Date (ft)		Modified EPA Method 8015 (mg/Kg)		EPA Method 8020 or 8021B (mg/Kg)					
			TPH as Gas	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	
ll .	iallow Soils	(<3m); Potential	100	100	0.044	2.9	3.3	1.5	0.023	
RWQCB ESL Commercial / Industrial Land Use; Deep Soils (>3m); Groundwater IS Current or Potential Source of Drinking Water (Table B)			100	100	0.044	2.9	3.3	1.5	0.023	
RWQCB ESL Commercial / Industrial Land Use; Shallow Soils (<3m); Groundwater IS NOT a Current or Potential Source of Drinking Water (Table B)			400	500	0.38	9.3	13	1.5	5.6	
RWQCB ESL Commercial / Industrial Land Use; Deep Soils (>3m); Groundwater IS NOT a Current or Potential Source of Drinking Water (Table D-2)		400	500	0.5	9.3	13	1.5	5.6		

Table IV, Summary of Soil Sample Hydrocarbon Analytical Results, continued

Notes: ft = feet

mg/Kg = Milligrams per kilogram

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl *tert-*butyl ether

NA = Not analyzed

< x = Less than the analytical detection limit (x)

* = Depth mismarked in field.

EPA = Environmental Protection Agency

Laboratory note indicates an unmodified or weakly modified gasoline pattern.

b = Laboratory note indicates gasoline range compounds are significant.

^c = Laboratory note indicates diesel range compounds are significant, with no recognizable pattern.

d = Laboratory note indicates oil range compounds are significant.

Bold results indicate detectable analyte concentrations.

Shaded results indicate analyte concentrations above the respective *commercial* RWQCB ESL value, (Groundwater IS Current or Potential Source of Drinking Water).

Table B-1; Summary of Groundwater Well Construction Details BEI Job No. 202016, Dolan Rentals

=6393 Scarleft Court. Dublin: California

Well Number	Installation Date	Bore Depth	Well Completion	Screen Interval	Casing Diameter /	Measured Depth March 23, 2005	DTW March 23, 2005	Consultant
		(feet, bgs)	Depth (feet, bgs)	(feet, bgs)	Slot Size (inches)	(feet, bgs)	(feet, bgs)	
MW-1	11/22/91	20	20	5 - 20	2 / 0.020	19.34	1.14	PES
MW-2	11/21/91	20	20	5 - 20	2 / 0.020	19.76	1.83	PES
MW-3	11/21/91	20	20	5 - 20	2 / 0.020	18.41	1.83	PES
MW-4	11/21/91	20	20	5 - 20	2 / 0.020	18.64	1.93	PES
MW-5	2/23/95	10	10	3 - 10	2 / 0.020	9.83	2.39	PES
MW-6	3/14/95	10	10	3 - 10	2 / 0.020	9.90	3.40	PES

Notes:

bgs = Below grade surface

PES = PES Environmental, Inc.

Soil Bore Log: SB-J

Dolan Property	
6393 Scarlett Court, Dublin, CA	١

Job Number: Date Drilled:

202016

Drilling Equipment Sample Method

Dual-Walled Probe : Dual-Walled Probe

Logged By Drilling Company : February 18, 2005 : Mark Detterman : Gregg Drilling

Soil Bore Diameter Total Drilled Depth : 1.25 inch : 20.0 feet

						: Gregg Drilling : Chris / Marco			
Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	· · ·		uscs	GRAPHIC	(Grouted upon completion)
0				[6 inches (raised) concrete slab.		GR		
1- 2- 3-					No recovery 0.5 to 4 feet (Trace medium gray to dark gray to course grained; (UST backfill))	CLEAN SAND; medium)	SP		•
4-				<u> </u>	Medium gray to dark gray; CLEA course grained; UST backfill; soft	N SAND; medium to	-		
5 6-		107			wurse granieu, UST Dackiiii; SOF	i, wei	SP		
7-		231			Dark to medium grey SILTY CLA	V: wet: odor		//	
8		231		SB-J-7.5			CL	4	
					with caliche nodules; 1/8 inch rou	unded pebbles	CL		
10-					No recovery 9 to 14 feet.				
11-									
12-									
13-									
14-					Medium greenish-gray SILTY CL				\bowtie
15-						•	CL		
16-		238			No Recovery 16 to 19 feet	·			
17-									
18-				1					
19-				<u> </u>	Medium to dark greenish-gray SI	LTY CLAY; wet	CL		
20-					Bore Terminated at 20 feet.			لنمسنب	

•
BLYMYER
ENGINEERS, INC.
Dolan Property 6393 Scartett Court, Dublin, CA

Soil Bore Log: SB-K

	6393 (Dolar Scarlett	n Prop Court	erty , Dublin,	CA Date Driller Logged By Drilling Cor	d:	: 202016 : February 18, 2005 : Mark Detterman : Gregg Drilling : Chris / Marco	San Soil	Drilling Equipment : Dual-Walled Pro Sample Method : Dual-Walled Pro Soil Bore Diameter : 1.25 inch Total Drilled Depth : 36 feet	
Depth in Feet	Blow Count	PID	Sample Recovery	Sample No.	Sample Recovery Collected Retained Analyzed Unrecovered	SCR	Water Level ▼ 4.0 feet □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	uscs	GRAPHIC	(Grouted upon completion
0- 1- 2- 3-					2 inches asphalt. Medium gray to greenifine grained sand; san	ish-gray	y SILTY CLAY; with 20% easing at 2 ft bgs.	CL		
4 5 6		575		SR-K-AW	Medium gray CLAYEY odor; wet Medium gray SILTY C		r; fine to medium grained;	sc		
7- 8- 9- 10-		499 296		SB-K-9				CL		
11- 12- 13- 14- 15- 16-		446			Light brown color mott SILTY CLAY; wet	 ling with	hin medium greenish-gray	CL		
17- 18- 19- 20- 21- 22- 23-		22		\$B-K-19.	Medium greenish-gray wet. No Recovery	CLAY!	EY SAND; medium grained;	sc		
24- 25- 26- 27- 28- 29- 30-		82		And and a second	Brown SILTY CLAY; w No Recovery; soft	 vet		CI		
31 32 33 34 35		22			Brown SILTY CLAY; w No Recovery; firmer	rith nati	ive organic carbon flecks	cı		
36- 37- 38-			IH)	<u> </u>	Light brown SILTY SA course gravel; wet. Bore Terminated at 36		urse grained, with 20%	SP	11711111	

flak. Popth: 50.20 (ft) SBT: Soil Behavior Type (Robertson 1990)

Ampth Inc.: UL164 (1:)

510 337 9335

CUENT Dolan Rental Company
LOCATION 6393 Scarlett Court, Dublin, CA
LOE NUMBER 102.01.001
GEOLOGIST/ENGINEER D. Trumbly
DRILL RIG CME-75

DIAMETER OF HOLE 7.25 inches
TOTAL DEPTH OF HOLE 20.0 feet

TOP OF CASING ELEVATION 0.25 feet below ground surface

DATE STARTED
DATE COMPLETED

11/22/91 11/22/91 4

PUATE 7.25 inches DIAMETER OF HOLE CLIENT **Dolan Flental Company** TOTAL DEPTH OF HOLE 20.0 feet LOCATION \$393 Souriett Court, Dublin, CA TOP OF CASING ELEVATION 0.25 feet below ground surface JOS NUMBER 102.01.001 11/21/91 GEOLOGIST/ENGINEER D. Trumbly DATE STARTED 11/21/91 **CME-75** DATE COMPLETED DRILL PIG

510 337 9335

7.25 inches CLIENT DIAMETER OF HOLE Dolan Rental Company TOTAL DEPTH OF HOLE 20.0 feet LOCATION 6393 Scarlet Court, Dublin, CA TOP OF CASING ELEVATION 0.25 feet below ground surface JOB NUMBER 102.01.001 11/21/91 DATE STARTED GEOLOGIST/ENGINEER D. Trumbly DATE COMPLETED 11/21/91 DRILL RIG **CME-75**

CLIENT	Dolan Rental Company	DIAMETER OF HOLE	7.25 inches	PLATE
LOCATION	6393 Scarlett Court, Dublin, CA	(C) Not then It I am a second	20.0 feet	
JOS NUMBER	102.01.001	TOP OF CASING ELEVATION	£ 0.25 feet below ground surface	7
GEOLOGIST/ENG	INEER D. Trumbly	DATE STARTED	11/21/91	
DRILLRIG	CME-75	DATE COMPLETED	11/21/91	_

Log of Boring B-1 Dublin Rock and Ready Mix Dublin, California

A-2

construction 102.01.002

DIMMETER OF HOLE TOTAL DEPTH OF HOLE ORILL RIG

9.0° Hand Augered

×x 5/93

Salah Mu

102.01.002 ... DET, 1801. PL DUMETER OF HOLE TOTAL DEPTH OF HOLE ORBLE RIG

9.0" Hand Augered

× 3/95

Log of Boring 8—3 Dublin Rock and Ready Mix Dublin, California A-4

(102.01.002 (0000 F00040 DET, MOL FL DIMMETER OF HOLE TOTAL DEPTH OF HOLE ORILL INC

9.0° Hand Augered

∍a 3/93

CAMED ONLY

Dublin Rock and Ready Mix Dublin, California

102.01.002 ME DET, MKH. PL DIAMETER OF HOLE TOTAL DEPTH OF HOLE DRILL RIC

9.0° Hond Augered

5/93

Log of Boring B-5 Dublin Rock and Ready Mix Dublin, California A-6

Engineering & Environmental Services

Dublin, California

AN RUMA 102.01,002 iis DET. MICH, PL OVAMETER OF HOLE TOTAL DEPTH OF HOLE

9.0* Hand Augeres

3/93 مس

Log of Boring B-7Dublin Rock and Ready Mix Dublin, California

8-A

JOHN STREET, PL

DIAMETER OF HOLE TOTAL DEPTH OF HOLE SMILL RIG

9,0" Hond Augered

<u> 3/93</u>

Engineering & Environmental Services

Dublin, California

CHARLER OF HOLE TOTAL DEPTH OF HOLE CHILL RIG 102.01.002 9.0" Hand Augered m DET, WICH, PL

Dublin Rock and Ready Mix Dublin, California

102.01.002 m DET, WICH, PL DIAMETER OF HOLE ORNLL RIG

9.0 Hand Augered

Log of Boring B-10

Dublin Rock and Ready Mix

Dublin, California

A-11

COMMUNICATION OF THE SHEET SHE

SAMETER OF HOLE TOTAL DEPTH OF HOLE SRILL RIG

9.0° Hand Augered

×= 3/93

740 0007

Log of Boring B-11 Dublin Rock and Ready Mix Dublin, California

A-12

construer 102.01.002 cream resource DET, MRH, PL CHAMETER OF HOLE SOTAL DEPTH OF HOLE ORBIL RIG

9.0" Hand Augered

×x 3/93

640 PL

Dublin Rock and Ready Mix Dublin, California

102.01.002 ... OET, MICH. PL CHAMETER OF HOLE "OTAL DEPTH OF HOLE ORBL. MIC

9.0" Hand Augered

Log of Boring B—13 Dublin Rock and Ready Mix Dublin, California A-14

THE PLANT SHEET SH

DAMETER OF HOLE TOTAL DEPTH OF HOLE ORILL RIG

9.0' Hand Augered

me 3/93

E-100 COM