ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

ALEX BRISCOE, Director

August 27, 2010

ENVIRONMENTAL HEALTH DEPARTMENT **ENVIRONMENTAL PROTECTION** 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Estate of Michael Dolan Mr. Michael Fitzpatrick, Trustee 3215 Deer Park Drive Walnut Creek, CA 94598

Subject: Fuel Leak Case No. RO0000210 and GeoTracker Global ID T0600101601, Dublin Rock &

Ready Mix, 6393 Scarlett Court, Dublin, CA 94568

Dear Mr. Fitzpatrick:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25299.37[h]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Environmental Health (ACEH) is required to use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed.

SITE INVESTIGATION AND CLEANUP SUMMARY

Please be advised that the following conditions exist at the site:

Residual groundwater contamination consisting of 860 µg/LTPH-g, 2.2 µg/L benzene, and 5.4 µg/L MTBE remains at the site.

If you have any questions, please call Paresh Khatri at (510) 777-2478. Thank you.

Sincerely

Donna L. Drogos, P.E.

Division Chief

Enclosures: 1. Remedial Action Completion Certificate

2. Case Closure Summary

CC:

Ms. Cherie McCaulou (w/enc) SF- Regional Water Quality Control Board 1515 Clay Street, Suite 1400

Oakland, CA 94612

Closure Unit (w/enc) State Water Resources Control Board **UST Cleanup Fund** P.O. Box 944212

Sacramento, CA 94244-2120

Paresh Khatri (w/orig enc), D. Drogos (w/enc), T. Le-Khan (w/enc)

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

DEPARTMENT OF ENVIRONMENTAL HEALTH
OFFICE OF THE DIRECTOR
1131 HARBOR BAY PARKWAY
ALAMEDA, CA 94502
(510) 567-6777
FAX (510) 337-9135

ALEX BRISCOE, Agency Director

August 27, 2010

Estate of Michael Dolan Mr. Michael Fitzpatrick, Trustee 3215 Deer Park Drive Walnut Creek, CA 94598

REMEDIAL ACTION COMPLETION CERTIFICATE

Subject: Fuel Leak Case No. RO0000210 and GeoTracker Global ID T0600101601, Dublin Rock &

Ready Mix, 6393 Scarlett Court, Dublin, CA 94568

Dear Mr. Fitzpatrick:

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

This notice is issued pursuant to subdivision (h) of Section 25299.37 of the Health and Safety Code.

Please contact our office if you have any questions regarding this matter.

Sincerely,

Ariu Levi Director

Alameda County Environmental Health

CASE CLOSURE SUMMARY LEAKING UNDERGROUND FUEL STORAGE TANK - LOCAL OVERSIGHT PROGRAM

I. AGENCY INFORMATION

Date: May 7, 2010

Agency Name: Alameda County Environmental Health	Address: 1131 Harbor Bay Parkway
City/State/Zip: Alameda, CA 94502-6577	Phone: (510) 777-2478
Responsible Staff Person: Paresh Khatri	Title: Hazardous Materials Specialist

II. CASE INFORMATION

Site Facility Name: Dublin Rock	& Ready Mix				
Site Facility Address: 6393 Scarl	ett Court, Dublin, California 94588				
RB Case No.: 01-1730	Local Case No.: 4322 LOP Case No.: RO0000210				
URF Filing Date: 07/01/2003	Global ID No.: T0600101601 APN: 941-550-14-2				
Responsible Parties	Addresses	Addresses			
M. P. Dolan Trust Michael Fitzpatrick, Trustee	P.O. Box 31654, Walnut Creek, CA				

Tank I.D. No	Size in Gallons	Contents	Closed In Place/Removed?	Date
1	1 x 600-gallon	Gasoline/Diesel	Removed	02/05/1990
				pak yan alah
w==	****	er be er		,
		gas pal dada	a w =	
	Piping		Removed	01/07/2003

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Site characterization complete? Yes	Date	Date Approved By Oversight Agency:					
Monitoring wells installed? Yes		Number: 9	Proper screened interval? Yes				
Highest GW Depth Below Ground Surface: bgs	1.0 ft	Lowest Depth: 6.68 ft bgs	Flow Direction: Southwesterly				

Summary of Production Wells in Vicinity: The subject site is located within the physical boundary of the groundwater supply basin, but is at a distance of approximately 6,600 feet (1.25 miles) from the "Main Basin", as defined by Zone 7 (Blymyer e-mail communication, September 18, 2008). Thus the subject site overlies a marginal portion of the basin. Within this portion of the basin, groundwater is believed to migrate horizontally through shallow aquifers to the Main Basin, where groundwater migrates vertically to the deeper supply aquifers tapped by municipal supply wells managed by Zone 7. Both areas of the basin are defined by lithology; the marginal area being generally defined by finer grained deposits (silts and clays) than the "Main Basin". The closest supply well to the site is at a distance of approximately 9,000 feet (1.70 miles) and is within the "Main Basin."

Blymyer Engineers oversaw the permitted destruction of two old water production wells between May 16 and May 24, 2005. According to the Alameda County Flood Control and Water Conservation District, Zone 7 (Zone 7), both wells appear to have dated from the 1940s or 1950s. Well "3S/1E 6F 1", located on the subject parcel, was constructed of 8-inch diameter steel casing and was 95 feet in total depth. Well "3S/1E 6F 2" was located on the adjacent parcel, also owned by Dolan Properties, and was constructed of 13-inch-diameter riveted steel casing and was 38 feet in total depth. The locations of the wells are identified as triangles on Figure 15 and analytical results are summarized on Table 13.

Based on the limited extent of the hydrocarbon plume documented by the groundwater monitoring analytical results, no water wells, deeper drinking water aquifers, surface water or other sensitive receptors are likely to be impacted.

Are drinking water wells affected? No	Aquifer Name: Livermore Valley Groundwater Basin					
Is surface water affected? No	Nearest SW Name: Unnamed drainage canal located 0.25 miles to the west.					
Off-Site Beneficial Use Impacts (Addresses/	Locations): None					
Reports on file? Yes	Where are reports filed? Alameda County Environmental Health & SWRCB GeoTracker website.					

	TREATMENT	AND DISPOSAL OF AFFECTED MATERIAL	
Material	Amount (Include Units)	Action (Treatment or Disposal w/Destination)	Date
Tank	One 600-gallon	Disposal to H & H Environmental Services, 220 China Basin St., San Francisco, CA 94107	02/05/1990
Piping	Not reported	Not reported	gas bes man
Free Product	None reported		way yare of the
Soil	2,370 yds ³	Keller Canyon Landfill 901 Bailey Road Pittsburg, CA	11/29/2005
Groundwater	23,000 gallons	Sanitary Sewer	12/2005

MAXIMUM DOCUMENTED CONTAMINANT CONCENTRATIONS BEFORE AND AFTER CLEANUP

(Please see Attachments for additional information on contaminant locations and concentrations)

	Soil (ppm)	Water (ppb)		
Contaminant	Before	After	Before	After	
TPH (Gas)	2,600 (SB-1, 3.5 ft bgs, 09/16/2003)	38 ¹ (MW-7, 16", 7/5/2005)	320,000 (#D6, 10/3/1990)	860 (MW-4, 12/08/2008)	
TPH (Diesel/Kerosene)	1,500 (SB-1, 3.5 ft bgs, 09/16/2003)	<42 ¹ (MW-7, 16", 7/5/2005)	170,000 (MW-2, 11/27/1991)	. 84 ⁶ (MW-4, 09/27/2007)	
TPH (Motor Oil)/TOG	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	
Benzene	19 (SB-1-8.25, 9/16/2003)	<0.005 ¹ (All over-excavation samples, 12/8/2005)	24,000 (MW-2, 11/27/1991)	2.2 (MW-4, 12/08/2008)	
Toluene	45 (SB-1-8.25, 9/16/2003)	0.62 ¹ (MW-7, 16", 7/5/2006)	15,000 (MW-2, 09/30/1992)	16 (MW-4, 12/08/2008)	
Ethylbenzene	33 (SB-1-8.25, 9/16/2003)	0.078 ¹ (MW-7, 16", 7/5/2005)	4,300 (MW-2, 4/7/1994)	<0.5 (MW-4, 12/08/2008)	
Xylenes	110 (East of 600 gal tank, 7.0 ft bgs, 02/05/1990)	0.056 ¹ (MW-7, 16", 7/5/2005)	21,000 (MW-2, 4/7/1994)	0.83 (MW-4, 12/08/2008)	
MTBE (EPA 8020/EPA 8260)	<2.5 ⁵ (SB-C-18, 18 ft bgs, 09/16/2003)	<0.005 ^{1,4} (SWB-20, 20 ft bgs, 02/18/2005)	480 ³ (MW-2, 02/05/1997)	57 ² (MW-5, 03/20/2007)	
Heavy Metals (Lead only)	7.6 (SB-1-8.5, 8.5 ft bgs, 09/16/2003)	8.9 (SWB-20, 20 ft bgs, 12/08/2005)	Not Analyzed	Not Analyzed	
EDB	<0.005 (SB-J-7.5, 7.5 ft bgs, 02/18/2005)	<0.005 (SB-J-7.5, 7.5 ft bgs, 02/18/2005)	Not Analyzed	<5.0 (MW-2, 3/23/2005)	
EDC	<0.005 (SB-J-7.5, 7.5 ft bgs, 02/18/2005)	<0.005 (S8-J-7.5, 7.5 ft bgs, 02/18/2005)	Not Analyzed	5.4 (MW-2, 3/23/2005)	
Other (8240/8260)	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	

¹ Soil sample collected below the UST. DTW ranges between 1 to 6.68 ft bgs. Therefore, soil sample may be saturated and may not be representative of vadoze zone soil conditions.

Site History and Description of Corrective Actions:

The former Dublin Rock & Ready Mix site is located at 6393 Scarlett Court across from the Daugherty Road off-ramp off of westbound Interstate 580 in Dublin, California (see **Figure 1**). The southern portion of the site is currently utilized a parking lot, to the north is an automobile dealership, and the immediately adjacent properties are currently zoned commercial. However, for contaminant risk comparison purposes, the residual contamination has been compared to future residential land-use scenario. The general terrain in the Site vicinity is flat and groundwater studies conducted onsite have verified that the groundwater flow direction is towards the southwest.

On February 2, 1990, one 600-gallon underground storage tank (UST) reported to store diesel fuel, but may have stored gasoline in the past as well, was removed from the site. Soil sample analytical results detected TPH-d, TPH-g, and benzene at concentrations of 1,100 mg/kg, 740 mg/kg, and 14 mg/kg, respectively. A "grab" groundwater sample (bottom of Excav. @ 7') collected from the tank pit detected TPH-d, TPH-g, and benzene at concentrations of 49,000 μ g/L, 88,000 μ g/L, and 22,000 μ g/L, respectively. Soil sample and groundwater analytical results are summarized on **Tables 1 and 2**, respectively.

Other VOCs analyzed (groundwater µg/L after cleanup): 57 MtBE, <10 TBA, <1.0 DIPE, <1.0 ETBE, <1.0 TAME, <0.5 EDB, 5.4 EDC, <50 EtOH

³ Other VOCs analyzed (groundwater μg/L before cleanup): 480 MtBE, NA TBA, NA DIPE, NA ETBE, NA TAME, <0.5 EDB. <0.5. NA EtOH

Other VOCs (Soil mg/kg after cleanup): <0.025 TBA, <0.005 DIPE, <0.005 ETBE, <0.005 TAME, <0.25 EtOH,

⁵ Other VOCs (Soil mg/kg before cleanup): NA MtBE, NA TBA, NA TAME, < NA DIPE, NA EtOH

⁶ TPH-d with silica gel cleanup

NA - Not Analyzed

On October 3, 1990, Kenneth R. Henneman, Water Resources Consultant, installed five borings on-site. "Grab" groundwater sample analytical results detected significantly elevated concentrations of TPH-g and benzene as high as 320,000 µg/L and 4,000 µg/L, respectively. Boring logs were not included in the report. Groundwater sample analytical results are summarized on **Table 2** and boring locations are illustrated on **Figure 2**.

To further delineate the soil and groundwater contamination at the site, PES Environmental installed four borings between November 21 to 27, 1991, which were converted to groundwater monitoring wells MW-1 through MW-4, with screened intervals from 5 to 20 feet bgs. Soil and groundwater sample analytical results are summarized on **Tables 1** and 3, respectively and monitoring well construction details are summarized on **Table 4**. Monitoring well locations are illustrated on **Figure 3**.

Beginning in September through December 1992, PES installed an additional 13 borings to assess soil and groundwater conditions at the site. Soil samples for chemical analysis were collected from borings B-1 through B-4. Groundwater samples were collected from all borings except boring B-1 through B-4, and B-8, due to the presence of free product. Concentrations of TPH-g and benzene were detected as high as 470 mg/kg and 2.3 mg/kg, respectively in a soil sample collected at 5 feet bgs from boring B-4. "Grab" groundwater sample analytical results collected from boring B10 detected TPH-g and benzene at 7,800 µg/L and 48 µg/L, respectively. Soil and "grab" groundwater sample analytical results are summarized on **Tables 1 and 2**, respectively and sampling locations are illustrated on **Figures 4 and 5**.

This phase of investigation defined the extent of the soil and groundwater contamination at the site. The reports indicate that the groundwater plume did not appear to extend offsite. However, a thin free-phase layer was identified immediately adjacent to the former UST pit, and at a location approximately 40 feet to the east. Additional wells were proposed to fill the existing data gaps and to monitor the lateral extent of impacted groundwater and free-phase petroleum hydrocarbons. As a result, PES Environmental installed monitoring wells MW-5 and MW-6 in March 1995 with screened intervals from 3 to 10 feet bgs. No soil samples appear to have been collected from these two wells. Groundwater sample analytical results did not detect contaminants above the analytical detection limits. Soil and groundwater sample analytical results are summarized on **Tables 1 and 3**, respectively, and monitoring well locations are illustrated on **Figures 6 through 10**.

Groundwater monitoring was conducted at the site until 1997. ACEH sent correspondence on June 29, 1998, August 21, 1998, January 31, 2000, and a second Notice of Violation on December 10, 2001 requesting quarterly groundwater monitoring at the site. In June 2002, quarterly groundwater monitoring resumed at the site. On September 16, 2003, Blymyer Engineers installed nine borings (SB-A through SB-I) to assess current site conditions. The investigation confirmed that elevated concentrations of TPH-g (2,600 mg/kg) and benzene (19 mg/kg) remain in soil at the site.

September 13, 2003, nine Geoprobe soil bores were installed at the site to augment existing soil data. The data indicated that the lateral and vertical extent of impacted soil at the site had been adequately delineated to relatively low concentrations, which assisted evaluating the feasibility of excavation (i.e. calculating volumes of soil proposed to be excavated).

On April 6, 2004, a remediation plan detailing over-excavation and construction dewatering, as the principal method of remedial action was submitted. Introduction of ORC into the resulting excavation as an additional measure of insurance, should residual contamination be intentionally or unintentionally left in place, was also proposed.

On February 18, 2005, Blymyer Engineers mobilized to the site to install two to three dual-tube direct-push soil bores in an attempt to collect the approved soil and groundwater samples. As a precursor to the mobilization, a conduit survey was conducted. However, due to poor soil recovery an additional mobilization to the site was required. A Cone Penetrometer Test (CPT) direct-push rig was mobilized to the site on March 28, 2005.

Blymyer Engineers oversaw the permitted decommissioning of two old water production wells between May 16 and May 24, 2005. According to Zone 7, both wells appear to have dated from the 1940s or 1950s. Well "3S/1E 6F 1", located on the subject parcel was constructed of 8-inch-diameter steel casing and was 95 feet in total depth. Well "3S/1E 6F 2" was located on the adjacent parcel, also owned by Dolan Properties, and was constructed of 13-inch diameter riveted steel casing and was 38 feet in total depth. The locations of the wells are identified as triangles on Figure 15 and analytical results are summarized on Table 13.

On July 5 and July 8, 2005, Blymyer Engineers oversaw the installation of down-gradient groundwater monitoring well MW-7. The well was installed into a deeper water-bearing zone beneath the site due to the detection of hydrocarbon contamination in groundwater in both CPT bores at depths of approximately 30 to 40 feet bgs. A conductor casing was installed to a depth of 30 feet in order to exclude upper water-bearing zones, and to prevent cross-contamination of deeper water-bearing zones. A 2-inch-diameter PVC casing was installed through the conductor casing and the well was screened between 30 and 40 feet bgs.

Remedial excavation began on November 29, 2005, with the initial installation of a slide-rail shoring system in the area for excavation. Between December 1, and December 8, 2005, monitoring well MW-2 was decommissioned and Marcor

Remediation, Inc. (Marcor) excavated and stockpiled 2,370 cubic yards (3,054.65 tons) of impacted soil from an area approximately 50 by 50 feet, by 20 to 21 feet in depth. Concurrent excavation dewatering was attempted, but due to the load of suspended fine particles, could not keep up with groundwater infiltration. Extracted groundwater was plumbed through a bag filter to remove the sediment load, and then through two 2,000-pound granular activated carbon (GAC) vessels into a 20,000-gallon temporary aboveground storage tank. Prior to discharge to the sanitary sewer a groundwater sample was collected under observation of the Dublin-San Ramon Services District personnel. Four confirmation soil samples from the excavation bottom were collected from locations in close proximity to previously documented worstcase soil concentrations and sample analytical results did not detect concentrations above the laboratory detection limit for all analytes. The excavation was backfilled with imported crushed rock and locally derived recycled asphaltic baserock. Two backfill wells (MW-8 and MW-9) were constructed during backfill operations at the request of the ACEH to obtain post-remedial analytical data from tank basin area. MW-9 is located in the general vicinity of the decommissioned monitoring well MW-2. ORC was applied in slurry form to the crushed rock as it was placed into the excavation. On December 21 and 22, 2005, twenty-six ORC injection bores were pushed to approximately 21 feet bgs, and an ORC slurry was injected into the bores in areas surrounding the backfilled excavation in order to address residual contamination outside the area of excavation. The soil stockpiles were sampled concurrently with remedial excavation, and the soil was loaded, transported, and disposed at Keller Canyon Landfill in Pittsburg, California, between December 29, 2005, and January 4, 2006. On January 11, 2006, the property was sold by the Dolan Trust to Ken Harvey Honda, and site redevelopment planning was initiated for a car dealership. All analytical data generated during the remedial activities at the site has been tabulated on Tables XI through XIII.

Due to site reconstruction and the resulting grade changes the remaining wells at the site were raised or lowered, and new well boxes were installed, to conform to the new grade at the site between February 20 and March 9, 2007. On March 19, 2007, the wells were resurveyed by CSS Environmental to GeoTracker standards.

On September 5, 2007, after groundwater monitoring and sampling for the third quarter 2007 groundwater monitoring event, fifteen 1.75-inch diameter ORC Advanced socks were installed in 2-inch diameter well MW-4, and fifteen 3-inch diameter ORC Advanced socks were installed in each of the 4-inch diameter wells, MW-8 and MW-9. The socks were installed to help stimulate bacterial activity in the vicinity of the wells.

Approximately one quarter (three months) after the removal of the ORC socks, the first post-ORC socks remediation groundwater sampling occurred on September 2, 2008. Please note that the second quarter 2008 groundwater monitoring event consisted only in the removal of the ORC socks and groundwater sampling was conducted during the third quarter 2008 on September 2, 2008, approximately 3 months after the removal of the ORC socks. In general groundwater concentrations in perimeter wells MW-1, MW-3, MW-5, MW-6, and deep well MW-7 were non-detect. However, MTBE was detected and increased slightly in monitoring well MW-5, increasing above the ESL. Concentrations in former tank basin wells MW-8 and MW-9 essentially stabilized, with slight increases or decreases, all below their respective drinking water ESLs. The concentration of TPH-g in down-gradient well MW-4 increased slightly from 180 to 810 µg/L, but remained in the same order of magnitude. The concentration of benzene and toluene also increased in well MW-4 over previous data. Benzene was detected in a groundwater sample collected from MW-4 at a concentration of 2.1 μg/L, slightly above the drinking water ESL of 1.0 μg/L. Please note once again that all analytical results are in the same order of magnitude as previously detected during the installation of the ORC socks. An additional round of groundwater monitoring was conducted to verify whether concentrations of contaminants have stabilized. The final groundwater monitoring event (the second quarterly event following the removal of the ORC socks) was conducted on December 8, 2008. Only plume core wells MW-4, MW-8, and MW-9 were analyzed for hydrocarbons during the event. Concentrations in each well essentially stabilized. All wells yielded non-detect concentrations of TPH as diesel with silica gel cleanup. In monitoring wells MW-8 and MW-9, benzene concentrations increased slightly over the drinking water ESL of 1.0 µg/L, while in well MW-4 benzene concentrations remained slightly over the ESL. In monitoring well MW-8 TPH-g remained below the drinking water ESL of 100 µg/L and also decreased, while in well MW-9 TPH-g increased slightly above the ESL. In well MW-4 TPH as gasoline was essentially stable, but did increase slightly from 810 to 860 μg/L. Since the source(s) has been removed, it is expected that water quality objectives will be achieved within a reasonable time.

IV. CLOSURE

Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan? Yes

Does completed corrective action protect potential beneficial uses per the Regional Board Basin Plan? Yes

Does corrective action protect public health for current land use? Alameda County Environmental Health staff does not make specific determinations concerning public health risk. However, based upon the information available in our files to date, it does not appear that the release would present a significant risk to human health based upon current land use and conditions.

Site Management Requirements: Case closure for this fuel leak site is granted for the current commercial land use only. If a change in land use to any residential or other conservative land use scenario is proposed at this site, Alameda County Environmental Health (AECH) must be notified as required by Government Code Section 65850.2.2. ACEH will re-evaluate the case upon receipt of approved development/construction plans.

Excavation or construction activities in areas of residual contamination require planning and implementation of appropriate health and safety procedures by the responsible party (or current property owner/developer) prior to and during excavation and construction activities.

Should corrective action be reviewed if land use changes? Yes.

Was a deed restriction or deed notification filed? No

Date Recorded: --

Monitoring Wells Decommissioned: No

Number Decommissioned: 1

Number Retained: 8

List Enforcement Actions Taken: None

List Enforcement Actions Rescinded: --

V. ADDITIONAL COMMENTS, DATA, ETC.

Considerations and/or Variances:

None

Conclusion:

Alameda County Environmental Health staff believe that the levels of residual contamination do not pose a significant threat to water resources, public health and safety, and the environmental under the current commercial land use based upon the information available in our files to date. No further investigation or cleanup for the fuel leak case is necessary unless a change in land use to any residential or other conservative land use scenario occurs at the site. ACEH staff recommend case closure for the site.

VI. LOCAL AGENCY REPRESENTATIVE DATA

Prepared by: Paresh Khatri	Title: Hazardous Materials Specialist				
Signature: AMX het	Date: May 7, 2010				
Approved by: Donna L. Drogos, P.E.	Title: Division Chief				
Signature:	Date: 05/11/10				

This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions.

Khatri, Paresh, Env. Health

From:

Cherie MCcaulou [CMccaulou@waterboards.ca.gov]

Sent:

Tuesday, May 18, 2010 11:14 AM

To: Cc: Khatri, Paresh, Env. Health Drogos, Donna, Env. Health

Subject:

Re: RO0000210; Dublin Rock & Ready Mix (T0600101601)

Paresh - Thanks for the notification. We have no objection to ACEH's recommendation for case closure of RO0000210.

Sincerely,

Cherie McCaulou
Engineering Geologist
San Francisco Bay Regional Water Quality Control Board cmccaulou@waterboards.ca.gov
510-622-2342

```
>>> "Khatri, Paresh, Env. Health" <<u>paresh.khatri@acgov.org</u>> 5/13/2010 >>> 9:51 AM >>>
```

Hello Cherie,

Attached is a closure summary for RO0000210; Dublin Rock & Ready Mix located at 6393 Scarlett Court in Dublin to comply with the RWQCB's 30-day review period. If no comments from the RWQCB are received within the 30-day review period, ACEH's will proceed with case closure.

Sincerely,

Paresh C. Khatri Hazardous Materials Specialist Alameda County Environmental Health Local Oversight Program 1131 Harbor Bay Parkway Alameda, CA 94502-6577

Phone: (510) 777-2478 Fax: (510) 337-9335

E-mail: Paresh.Khatri@acgov.org

http://www.acgov.org/aceh/lop/lop.htm

Confidentiality Notice: This e-mail message, including any attachments, is for the sole use of intended recipient(s) and may contain confidential and protected information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply e-mail and destroy all copies of the original message.

VII. REGIONAL BOARD NOTIFICATION

Regional Board Staff Name: Cherie McCaulou	Title: Engineering Geologist
Notification Date:	×

VIII. MONITORING WELL DECOMMISSIONING

Date Requested by ACEH: 5/20/2010 Date of Well Decommissioning Report: 7/29/2010								
All Monitoring Wells Decommissioned: \(\(\mathbb{e}\)	Number Decommissioned: &	Number Retained: Ø						
Reason Wells Retained:								
Additional requirements for submittal of groundwa	ater data from retained wells: None							
ACEH Concurrence - Signature: Ruethat Date: 8/27/10								

Attachments:

1. Site Figures 1 through 13

2. Analytical Tables for Soil & Groundwater (Tables 1 through 12)

3. Monitoring Well Construction Details and Boring Logs (18 pages)

This document and the related CASE CLOSURE LETTER & REMEDIAL ACTION COMPLETION CERTIFICATE shall be retained by the lead agency as part of the official site file.

PES Environmental, Inc. Engineering & Environmental Services Site Map
Dublin Rock & Ready Mix
6393 Scarlett Court
Dublin, California

Figure 3

JOB NUMBER 102.01.001 REVIEWED BY

DATE 1/92

REVISED DATE

REVISED DATE

Sample Locations and Chemical Analysis
Results for Seil-Sample's
Dublin Rock & Ready Mix

Eigus

6393 Scarlett Court Dublin, California Figure 4

JOB NUMBER 102.01.002 REVIEWED BY

DATE 2/93 REVISED DATE

REVISED DATE

Sample Locations and Chemical Analysis
Results for Groundwater Samples
Dublin Bock & Ready Mix

Dublin Rock & Ready Mix 6393 Scarlett Court Dublin, California

Figure 5

JOB NUMBER 102.01.002 REVIEWED BY

DATE 2/93 REVISED DATE

REVISED DATE

ZONE 7 WATER AGENCY 100 NORTH CANYONS PARKWAY LIVERMORE, CA 94551

WELL LOCATION MAP

SCALE: 1"= 500 ft

DATE: 5/30/08

6393 Scarlett Court

FIGURE 5

Sample ID	Depth (ft)	Date	Soil Type (USCS)	Metho	dified EPA EPA Method 8015 (mg/Kg)		EPA Method 8020 or 8021B (mg/Kg)			
				TPH as Gas	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
East of 600 gal tank	7	2/5/90	N/A	740	1,100 ª	14	35	23	110	NA
Dirt pile (composite)		2/6/90	N/A	1,700	2,000 ^{a, b}	15	78	37	210	NA
D1-10*	11.0	10/3/90	N/A	0.60	NA	<0.005	<0.005	<0.005	<0.005	NA
MW1-4A	11.0	11/22/91	CL/CH	<1	NA	<0.003	<0.003	<0.003	< 0.003	NA
MW2-4A	11.0	11/22/91	CH (w/Sa)	140	NA	1.7	3.6	2.6	14	NA
MW3-4A	15.0	11/22/91	CL/CH (w/Sa)	<1	NA	<0.003	0.005	<0.003	<0.003	NA
MW4-2A	11.0	11/22/91	CL/CH	<1	NA	< 0.003	0.006	0.005	<0.003	NA
B-1	5.0	11/3/92	CL	23	NA	0.13	0.033	1.4	0.038	NA
B-1	10.0	11/3/92	CL	36	NA	0.095	0.030	0.69	1.7	NA
B-2	5.0	11/3/92	CL	34	NA	0.28	1.4	0.63	4.1	NA
B-2	10.0	11/3/92	CL	40	NA	1.3	0.63	0.98	4.8	NA

Sample ID	Depth (ft)	Date	Soil Type (USCS)	Modified EPA Method 8015 (mg/Kg)			EPA Method 8020 or 8021B (mg/Kg)				
				TPH as Gas	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	
В-3	5.0	11/3/92	SP	<1	NA	<0.003	0.004	<0.003	0.008	NA	
B-3	10.0	11/3/92	CL	42	NA	1.1	0.13	0.86	4.7	NA	
B-4	5.0	11/3/92	CL/CH	470	NA	2.3	8.6	6.6	38	NA	
B-4	10.0	11/3/92	CL	23	NA	0.89	0.22	0.47	2.3	NA	
SB-A-3.5	3.5	9/16/03	SC	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.05	
SB-B-7.5	7.5	9/16/03	CL	5.9 ^a	1.4 ^b	0.024	0.17	0.098	0.019	<0.05	
SB-B-17	17	9/16/03	SM	49 ^a	10 ^b	0.022	0.17	0.30	0.67	<0.05	
SB-C-8.5	8.5	9/16/03	SM	150 *	32 b c d	3.1	1.2	2.4	11	<0.50	
SB-C-18	18	9/16/03	SM	640 ²	180 ^{b c d}	9.9	7.1	11	42	<2.5	
SB-D-10	10	9/16/03	CL	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.05	
SB-D-13	13	9/16/03	SM	5.2 a	2.9 b d	0.014	0.040	0.088	0.046	<0.05	
SB-E-13.5	13.5	9/16/03	SM	1.7 a	2.6 ^{c d}	<0.005	0.036	<0.005	<0.005	<0.05	
SB-F-17.75	17.75	9/16/03	CL/SM	210 ª	62 ^{b c}	0.27	0.56	2.1	1.0	<5.0	

	Na William	representation and the		6393	3 Scarlett C	ourt, Dublin, C	amornia		1885 1888 1888 1888 1888 1888 1888		
Sample ID	Depth (ft)	Date	Soil Type (USCS)	Modifie Methoo (mg/	d 8015	EPA Method 8020 or 8021B (mg/Kg)					
			(0505)	TPH as Gas	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	
SB-G-8	8	9/16/03	CL	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.05	
SB-H-12	12	9/16/03	CL	65 a	12 b c d	<0.025	0.64	0.37	0.11	<0.25	
SB-I-3.5	3.5	9/16/03	SP	2,600 *	1,500 ^{b c}	3.1	3.4	51	20	<10	
SB-I-8.25	8.25	9/16/03	CL/SM	1,600 a	260 ^{b c}	19	45	33	110	<10	
SB-I-13.5	13.5	9/16/03	SM	430 °	110 ^{b c d}	11	14	8.7	35	<10	
SB-J-7.5	7.5	2/18/05	CL	550 a	33 ^{b c}	2.8	0.83	8.5	13	NA	
SB-K-9	9.0	2/18/05	CL	130 a	8.8 b c	4.8	1.7	2.3	8.6	NA	
SB-K-19.5	19.5	2/18/05	CL/SM	130 a	4.4 b c	0.48	1.2	1.6	6.2	NA	
CPT1-23.5	23.5	3/28/05	ML	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	NA	
	29.5	3/28/05	ML	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	NA	
CPT1-29.5		3/28/05	ML	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	NA	
CPT1-41.5	41.5	3/28/05	CL	<1.0	<1.0	<0.005	<0.005	< 0.005	<0.005	NA	
CPT2-8.0	8.0	3/28/05	CL	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	NA	
CPT2-28	28	3/20/03						_1			

EPA Method 8020 or 8021B Modified EPA Soil Depth Date Sample ID Method 8015 Type (ft) (mg/Kg) (mg/Kg) (USCS) **MTBE** Total Xylenes Ethylbenzene Toluene TPH as Benzene TPH as Diesel Gas NA < 0.005 < 0.005 < 0.005 < 0.005 <1.0 <1.0 SM 3/28/05 CPT2-43 43 < 0.50 0.056 0.078 0.62 4.2 c, e < 0.050 38 f 7/5/05 CL 16 MW7-16 < 0.05 < 0.005 < 0.005 < 0.005 <1.0 < 0.005 CL <1.0 7/5/05 MW7-21 21 0.023 2.3 3.3 2.9 0.044 100 RWQCB ESL Commercial / Industrial Land Use; 100 (<3m); Groundwater IS Current or Potential Source of Drinking Water; Table A Shallow Soils (<3m) or Table C Deep Soils (>3m)

Notes: TPH NA <x< th=""><th>ft = = =</th><th>= feet Total Petroleum Hydrocarbons Not analyzed Less than the analytical detection limit (x)</th><th>mg/Kg MTBE N/A *</th><th>==</th><th>Milligrams per kilogram Methyl tert-butyl ether Not available Depth mismarked in field.</th></x<>	ft = = =	= feet Total Petroleum Hydrocarbons Not analyzed Less than the analytical detection limit (x)	mg/Kg MTBE N/A *	==	Milligrams per kilogram Methyl tert-butyl ether Not available Depth mismarked in field.
EPA		Environmental Protection Agency	م محمد ما	ified and	roline nattern
a		Laboratory note indicates an unmodified or wea	кту шос	illien gas	offic pattern.
b	==	Laboratory note indicates gasoline range compo	unds are	signific	ant.
c		Laboratory note indicates diesel range compoun	ds are s	ignifican	t, with no recognizable pattern.
d		Laboratory note indicates oil range compounds	are sign	iticant.	
e	===	Laboratory note indicates a stoddard solvent/mi	nerai sp	irit pattei	rn.
f		Laboratory note indicates that there is no recogn	nizable p	attern.	

Bold results indicate detectable analyte concentrations.

Shaded results indicate analyte concentrations above the appropriate RWQCB ESL value.

Table 2

Summary of Grab or Depth-Discrete Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

Sample ID	Date	Modified EPA Method 8015 EPA Method 8020							
ounipre x		l .	g/L)			(• g/L)			
		TPH as Gasoline	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	
D1	10/3/90	22,000	NA	250	<30	750	880	NA	
D3	10/3/90	110,000	NA	600	200	800	1,000	NA	
D4	10/3/90	15,000	NA	1,300	<30	700	1,000	NA	
D5	10/3/90	420	NA	2.4	<0.3	14	4.2	NA	
D6	10/3/90	320,000	NA	4,000	4,400	3,700	10,000	NA	
B-1	11/4/92				Free Prod	uct			
B-2	11/4/92				Free Prod	uct	.		
B-3	11/4/92	NA	NA	NA	NA	NA	NA NA	NA	
B-4	11/4/92				Free Prod	uct	<u></u>		
B-5	11/4/92	<50	NA	<0.3	<0.3	<0.3	<0.3	NA	
B-6	11/4/92	<50	NA	<0.3	<0.3	<0.3	<0.3	NA	
B-7	11/4/92	<50	NA	<0.3	<0.3	<0.3	<0.3	NA	
B-8	11/4/92				Free Prod	luct			
B-9	11/4/92	170	NA	1.7	<0.3	2.4	1.4	NA	

Table IX, Summary of Grab or Depth-Discrete Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

Sample ID	Date		A Method 8015 g/L)	EPA Method 8020 (• g/L)						
		TPH as Gasoline	TPH as Diesel	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE		
B-10	11/4/92	7,800	NA	48	19	190	150	NA		
B-11	11/14/92	<50	NA	<0.3	<0.3	<0.3	<0.3	NA		
B-12	11/14/92	<50	NA	<0.3	<0.3	<0.3	<0.3	NA		
B-13	12/10/92	<50	NA	<0.3	<0.3	<0.3	<0.3	NA		
SB-K-4W	2/18/05	74,000 ^{a b}	47,000 ^{6ca}	9,100	840	4,200	11,000	NA		
SB-K-19.5W	2/18/05	5,600 ^{2 b}	2,400 ^{ed e}	210	140	160	550	NA		
CPT1-34W	3/28/05	150 a	<50	11	6.5	5.3	17	NA		
CPT1-40W	3/28/05	320 ª	61 ^d	33	23	15	46	NA		
CPT2-23W	3/28/05	<50	<50	<0.5	<0.5	<0.5	<0.5	NA		
CPT2-35W	3/28/05	<50	60 ^d	<0.5	<0.5	<0.5	<0.5	NA		
RWQCB Gr ESL: Ground Current or Pot of Drinkin Commercial Land Use (Ta	roundwater dwater IS a ential Source ag Water; / Industrial	100	100	1.0	40	30	20	5.0		

Table IX, Summary of Grab or Depth-Discrete Groundwater Sample Hydrocarbon Analytical Results

```
Micrograms per liter
Notes: \cdot g/L =
                       Total Petroleum Hydrocarbons
       TPH =
                       Methyl tert-butyl ether
        MTBE =
                       Not analyzed
        NA
                       Less than the analytical detection limit (x)
        <x
                       Environmental Protection Agency
        EPA
                       Not applicable
        N/A
                       Laboratory note indicates an unmodified or weakly modified gasoline pattern.
                       Laboratory note indicates a lighter than water immiscible sheen / product is present.
                       Laboratory note indicates diesel range compounds are significant; no recognizable pattern.
                       Laboratory note indicates gasoline range compounds are significant.
                       Laboratory note indicates oil range compounds are significant.
```

Bold results indicate detectable analyte concentrations.

Shaded results indicate analyte concentrations above the respective RWQCB ESL value (Groundwater IS Current or Potential Source of Drinking Water).

		Modified E	PA Metho (μg/L)	d 8015	EPA Method 8020 or 8021B (μg/L)					
Well ID	Sample Date	TPH as Gasoline	TPH as Diesel	TPH as Diesel with Silica Gel Cleanup	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ	
RWQCB ESLs; Table F-1a: Groundwater Screening Levels (groundwater IS a current or potential drinking water resource)		100	100	100	1	40	30	-20	5	
MW-1	11/27/1991	<50	NA	NA	<0.3	<0.3	<0.3	<0.3	NA	
141 44 - 1	9/30/1992	<50	NA NA	NA	<0.3	<0.3	<0.3	<0.3	NA	
	4/7/1994	<50	NA	NA	<0.5	<0.5	<0.5	<0.5	NA	
	8/12/1994	<50	NA	NA	1.3	1	<0.3	<2	NA	
	11/29/1994	<50	NA	NA	<0.5	<0.5	<0.5	<2	NA	
	3/21/1995	<50	NA	NA	<0.5	<0.5	<0.5	<2	NA	
	5/22/1995	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA	
	8/24/1995	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA	
	2/12/1996	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA	
	6/6/02*	NA	NA	NA	NA	NA	NA	NA	NA	
	9/23/2002	NA	NA	NA	NA	NA	NA	NA	NA	
	12/13/2002	NA	NA	NA	NA	NA	NA	NA	NA	
	12/14/2004	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	
	3/23/2005	NA	NA	NA	NA	NA	NA	NA.	NA	
	6/22/2005	NA	NA	NA	NA	NA	NA	NA	NA	
	9/6/2005	NA	NA	NA	NA	NA	NA	NA	NA	
	3/2/2006	62 k	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	
	6/1/2006	NA	NA	NA	NA	NA	NA	NA	NA	
	9/28/2006	78 ^k	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	
	3/20/2007	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
	6/15/2007	NS	NS	NS	NS	NS	NS	NS	NS	
	9/27/2007	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
	12/18/2007	NS	NS	NS	NS	NS	NS	NS	NS	
	3/4/2008	NS	NS	NS	NS	NS	NS	NS	NS	
	9/2/2008	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
	12/8/2008	NS	NS	NS	NS	NS	NS	NS	NS	

		Modified El	PA Method	1 8015			Method 8020 o	or 8021B	
		(μg/L)				(μg/L)		
Well ID	Sample Date	TPH as Gasoline	TPH as Diesel	TPH as Diesel with Silica Gel Cleanup	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
Ground Levels (current or	ESLs; Table F-1a: Iwater Screening (groundwater IS a r potential drinking ter resource)	100	100	100	1	40	30	20	5
MW-2	11/27/1991	NA	170,000	NA	24,000	13,000	3,500	16,000	NA
	9/30/1992	NA	120,000	NA	24,000	15,000	3,800	17,000	NA
	4/7/1994	NA	120,000	NA	21,000	14,000	4,300	21,000	NA
	8/12/1994	NA	140,000	NA	17,000	10,000	4,300	18,000	NA
	11/29/1994	NA	90,000	NA	17,000	7,500	3,400	15,000	NA
	3/21/1995	NA	83,000	NA	17,000	8,000	3,800	17,000	NA
	5/22/1995	NA	82,000	NA	14,000	6,000	4,000	16,000	NA
	8/24/1995	NA	86,000	NA	13,000	8,100	3,700	16,000	NA
	2/12/1996	NA	78,000	NA	15,000	8,100	4,200	18,000	NA
	2/5/1997	NA	58,000	NA	11,000	6,900	3,500	15,000	480
	8/6/1997	NA	66,000	NA	7,000	9,200	3,500	16,000	<500
	6/6/02*	NA	25,000°	NA	2,900	50	2,700	2,200	<250
	9/23/2002	4,300°	14,000 b	NA	2,700	81	2,100	1,800	<250
	12/13/2002	4,000 °	26,900	NA	1,120	91	1,480	2,370	197 d
	12/14/2004	7,600 ^{f, g}	21,000 e	NA	1,700	120	1,600	2,400	<60
	3/23/2005	15,000 f, g, i	27,000 es	NA	1,400	170	1,700	2,500	<170
	6/22/2005	1,200 ^g	5,800°	NA	53	46	570	58	<50
	9/6/2005	4,900 ^{f, g, j}	14,000°	NA	1,000	40	1,500	680	<100
	3/2/2006	NS	NS	NS	NS	NS	NS	NS	NS
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS
	9/28/2006	NS	NS	NS	NS	NS	NS	NS	NS
	3/20/2007	NS	NS	NS	NS	NS	NS	NS	NS
	6/15/2007	NS	NS	NS	NS	NS	NS	NS	NS
	9/27/2007	NS	NS	NS	NS	NS	NS	NS	NS
	12/18/2007	NS	NS	NS	NS	NS	NS	NS	NS
	3/4/2008	NS	NS	NS	NS	NS	NS	NS	NS
	9/2/2008	NS	NS	NS	NS	· NS	NS	NS	NS
	12/8/2008	NS	NS	NS	NS	NS	NS	NS	NS

	And the second s	6393 S	carlett C	ourt, Dul	lin, Cali	ornia					
		Modified E	PA Metho μg/L)	d 8015	EPA Method 8020 or 8021B (μg/L)						
Well ID	Sample Date	TPH as Gasoline	TPH as Diesel	TPH as Diesel with Silica Gel Cleanup		Toluene	Ethylbenzene	Total Xylenes	MTBE		
Ground Levels (current or	ESLs; Table F-1a: water Screening groundwater IS a potential drinking ter resource)	100	100	1.00	1	40	30	20	5		
MW-3	11/27/1991	NA	<50	NA	<0.3	<0.3	<0.3	<0.3	NA		
11211	9/30/1992	NA	<50	NA	<0.3	<0.3	<0.3	<0.3	NA		
	4/7/1994	NA	<50	NA	2.5	5.5	0.9	5.1	NA		
	8/12/1994	NA	<50	NA	<0.5	<0.5	<0.3	<2	NA		
	11/29/1994	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA		
	3/21/1995	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA		
·	5/22/1995	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA		
	8/24/1995	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA		
	2/12/1996	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA		
	2/5/1997	NA	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0		
	6/6/02*	NA	NA	NA	NA	NA	NA	NA	NA		
	9/23/2002	NA	NA	NA	NA	NA	NA	NA	NA		
	12/13/2002	NA	NA	NA	NA	NA	NA	NA	NA		
	12/14/2004	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0		
	3/23/2005	NA	NA	NA	NA	NA	NA	NA	NA		
1	6/22/2005	NA	NA	NA	NA	NA	NA	NA NA	NA		
	9/6/2005	NA	NA	NA	NA	NA		NA_	NA		
	3/2/2006	<50	<50	NA	<0.5	5 <0	5 <0.5	<0.5	<5.0		
	6/1/2006	NA	NA	NA	NA	. NA		NA_	NA		
	9/27/2006	<50	<50	NA	<0.:	5 <0.	5 <0.5	<0.5	<5.0		
	3/20/2007	<50	NA	<50	<0.5	5 <0.		<0.5	<5.0		
	6/15/2007	<50	NA	<50	<0.			<0.5	<5.0		
	9/27/2007	<50	NA	. <5() <0.			<0.5	<5.0		
	12/18/2007	NS	NS	NS	NS	NS NS		NS	NS NS		
	3/4/2008	NS	NS	NS	NS			NS -0.5	NS (5.0		
	9/2/2008	<50	NA	<50				<0.5			
	12/8/2008	NS	NS	NS NS	NS NS	S N	S NS	NS	NS		

		Modified E	PA Metho	v pasitionessa (1990).	EPA Method 8020 or 8021B (μg/L)					
Well ID	Sample Date	TPH as Gasoline	TPH as Diesel	TPH as Diesel with Silica Gel Cleanup	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ	
Ground Levels (current or	ESLs; Table F-1a: water Screening groundwater IS a potential drinking er resource)	100	100	100		40	30	20	5	
MW-4	11/27/1991	NA	11,000	NA	100	0.7	250	330	NA	
	9/30/1992	NA	380	NA	3.5	2.4	8.9	3.4	NA	
	4/7/1994	NA	1,100	NA	61	5.5	17	12	NA	
	8/12/1994	NA	1,000	NA	3	1	8	4	NA	
	11/29/1994	NA	1,100	NA	2	<0.5	10	6	NA	
	3/21/1995	NA	1,400	· NA	200	5	66	18	NA	
	5/22/1995	NA	1,200	NA	60	1	12	8	NA	
	8/24/1995	NA	400	NA	1	<0.5	1	<2	NA	
	2/12/1996	NA	1,500	NA	130	<0.5	120	51	NA	
	2/5/1997	NA	1,200	NA	250	4.9	94	12	16	
	8/6/1997	NA	330	NA	1.5	<0.5	<0.5	<0.5	<5.0	
	6/6/02*	NA	<50	NA	1.7	<0.5	<0.5	<0.5	<2.5	
	9/23/2002	<48	<50	NA.	<0.5	1.3	<0.5	<0.5	<2.5	
	12/13/2002	86°	<50	NA	<0.5	<0.5	<0.5	<1.5	<0.5	
	12/14/2004	<50	95 ^h	NA	2.6	<0.5	<0.5	<0.5	<5.0	
	3/23/2005	<50	120 h	NA	<0.5	5	<0.5	<0.5	<5.0	
	6/22/2005	<50	180°	NA	1.7	7.5	<0.5	<0.5	<5.0	
	9/6/2005	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	
	3/2/2006	1,600°	220 ^g	NA	47	4.1	1.6	19	<20	
	6/1/2006	1,000 ^e	250 ^{f, g}	NA	22	2.8	3.9	0.59	<5.0	
	9/27/2006	1,400 °	220 ^{f, g}	NA	8.5	7.3	2.4	<0.5	<15	
	3/20/2007	630 ^{e, h}	130 ^{f, g}	77 ^g	4.8	12	<0.5	<0.5	<5.0	
	6/15/2007	440, e, h	NA	<50	2.1	7.8	<0.5	<0.5	<5.0	
	9/27/2007	450 ^{-e, h}	NA	84 ^g	2.4	6.2	<0.5	<0.5	<5.0	
	12/18/2007	330 ^e	NA	<50	1,4	7.1	<0.5	<0.5	<35	
	3/4/2008	180 ^e	NA	<50	0.60	3.7	<0.5	<0.5	<5.0	
	9/2/2008	810°	NA	<50	2.1	13	<0.5	<0.5	<5.0	
	12/8/2008	860°	NA	<50	2.2	16	<0.5	0.83	<5.0	

Table III, Summary of Groundwater Sample Hydrocarbon Analytical Results BEL Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

		Modified E	PA Metho μg/L)	d 8015		EPA N	1ethod 8020 c (μg/L)	or 8021B	
Well ID	Sample Date	TPH as Gasoline	TPH as Diesel	TPH as Diesel with Silica Gel Cleanup		Toluene	Ethylbenzene	Total Xylenes	MTBE
Ground Levels (current or	ESLs; Table F-1a: lwater Screening groundwater IS a r potential drinking ter resource)	100	100	100		40	30	20	5
MW-5	3/21/1995	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA
	5/22/1995	NA .	<50	NA	<0.5	<0.5	<0.5	<2	NA
	8/24/1995	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA
	2/12/1996	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA
	2/5/1997	NA	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0
	6/6/02*	NA	NA	NA	NA	NA	NA	NA	NA
	9/23/2002	310°	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5
	12/13/2002	97 °	<50	NA	<0.5	<0.5	<0.5	<1.5	0.720 d
	12/14/2004	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	12
	3/23/2005	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	23
	6/22/2005	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	31
	9/6/2005	<50	<50	NA	<0.5	<0.5		<0.5	32
	3/2/2006	<50	<50	NA	<0.5	<0.5		<0.5	30
	6/1/2006	<50	<50	NA	<0.5	<0.5		<0.5	44
	9/28/2006	<50	<50	NA	<0.5	<0.5		<0.5	48
	3/20/2007	<50	NA	<50	<0.5			<0.5	54
	6/15/2007	<50	NA	<50	<0.5			<0.5	38
	9/27/2007	<50	NA	<50	<0.5			<0.5	36
	12/18/2007	NS	NS	NS	NS	NS		NS	NS
	3/4/2008	<50	NĄ	<50	<0.5	<0.5		<0.5	<5.0
	9/2/2008	<50	NA	<50	<0.5			<0.5	23
	12/8/2008	NS	NS	NS	NS	NS	NS_	NS	NS

Table III, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

		Modified El	carlett Ci PA Metho			THE PARTY OF THE P	1ethod 8020 c	or 8021B	
		(μg/L)				(μg/L)		
Well ID	Sample Date	TPH as Gasoline	TPH as Diesel	TPH as Diesel with Silica Gel Cleanup	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
Ground Levels (current of	ESLs; Table F-1a: Iwater Screening (groundwater IS a r potential drinking tter resource)	100	100	.100	1	40	30.	20	5
MW-6	3/21/1995	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA
	5/22/1995	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA
	8/24/1995	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA
	2/12/1996	NA	<50	NA	<0.5	<0.5	<0.5	<2	NA NA
	2/5/1997	NA	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0
	6/6/02*	NA	NA.	NA	NA	NA	NA	NA	NA
	9/23/2002	NA	NA	NA	NA	NA	NA	NA	NA
	12/13/2002	NA	NA	NA	NA	NA	NA	NA	NA
	12/14/2004	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0
	3/23/2005	. NA	NA	NA	NA	NA	NA	NA	NA
	6/22/2005	NA	NA	NA	NA	NA	NA	NA	NA
	9/6/2005	NA	NA	NA	NA	NA	NA	NA	NA
	3/2/2006	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0
	6/1/2006	50 °	<50	NA	0.84	<0.5	<0.5	<0.5	<5.0
	9/27/2006	<50	61 ^f	NA	<0.5	<0.5	<0.5	<0.5	<5.0
	3/20/2007	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	6/15/2007	<50	NA	<50	<0.5	<0.5	< 0.5	<0.5	<5.0
	9/27/2007	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	12/18/2007	NS	NS	NS	NS	NS	NS	NS	NS
	3/4/2008	NS	NS	NS	NS	NS	NS	NS	NS
	9/2/2008	<50	NA	<50	<0.	5 <0.	5 <0.5	<0.5	<5.
	12/8/2008	NS	NS	NS	NS	NS	NS	NS	NS

Table III, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

		Modified El	PA Metho μg/L)	d 8015		EPA N	Method 8020 c (μg/L)	or 8021B	
Well ID	Sample Date	TPH as Gasoline	TPH as Diesel	TPH as Diesel with Silica Gel Cleanup	Benzene	Toluene	Ethylbenzene	Total Xylenes 20	MTBE
Ground Levels (current or	ESLs; Table F-1a: lwater Screening groundwater IS a potential drinking ter resource)	100	100	100	1	40	30	20	5
MW-7	7/18/2005	<50	<50	NA	<0.5	<0.5	<0.5	<u> </u>	<5.0
	9/6/2005	<50	<50	NA	0.7	<0.5	1.2	 	<5.0
	3/2/2006	<50	<50	NA	<0.5	<0.5	<0.5	<u> </u>	<5.0
	6/1/2006	<50	<50	NA	<0.5	<0.5	<0.5		<5.0
	9/27/2006	<50	<50	NA	<0.5	<0.5	<0.5		<5.0
	3/20/2007	<50	NA	<50	<0.5	<0.5	<0.5	<u> </u>	<5.0
	6/15/2007	<50	NA	<50	<0.5	<0.5	<0.5		<5.0
	9/27/2007	<50	NA	<50	<0.5	<0.5	<0.5		<5.0
	12/18/2007	NS	NS	NS	NS	NS	NS		NS
	3/4/2008	NS	NS	NS	NS	NS	NS		NS
	9/2/2008	<50	NA	<50	<0.5	<0.5	<0.5		<5.0
	12/8/2008	NS	NS	NS	NS	NS	NS	NS	NS
MW-8	3/2/2006	590°	550 ^{f g}	NA	6.2	2.7	0.67	21	<5.0
	6/1/2006	97 ^k	250 ^{I, j}	NA	<0.5	<0.5	<0.5	1.1	<5.0
	9/28/2006	150 °	300 ^{f, g, j}	NA	3	1.2	1.1	7.2	<5.0
	3/20/2007	140°	440 ^{f, g}	61 ^g	1.2	0.68		2.5	<5.0
	6/15/2007	140°	NA	98 ^g	1.6	0.81		2.8	<5.0
	9/27/2007	140 °	NA	53 ^g	0.66	0.55	<0.5	2.3	<5.0
	12/18/2007	96 ^e	NA	94 ^{f, g}	ŢĴ	<0.5	0.77	2.1	<5.0
	3/4/2008	95°	NA	<50	1.1	<0.5	0.61	1.3	<5.0
	9/2/2008	86 °	NA	<50	0.68	<0.5	<0.5	1.3	<5.0
	12/8/2008	76 ^e	NA	<50	1.1	<0.5	5 2	2.2	<5.0

Table III, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

Secretary and Control of Control		Modified E	PA Metho (μg/L)	od 8015	EPA Method 8020 or 8021B (μg/L)					
Well ID	Sample Date	TPH as Gasoline	TPH as Diesel	TPH as Diesel with Silica Gel Cleanup	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ	
RWQCB ESLs; Table F-1a: Groundwater Screening Levels (groundwater IS a current or potential drinking water resource)		100	100	100	1	40	30	20	5	
MW-9	3/2/2006	280°	430 ^{f g}	NA	2.6	0.96	1	10	<5.0	
	6/1/2006	680 ^k	180 ^{f, j}	NA	0.85	<0.5	1.9	3.9	<5.0	
	9/28/2006	150 °	530 ^{f, g, j}	NA	0.95	0.69	0.87	6.7	<5.0	
	3/20/2007	120°	NA	<50	0.88	0.70	<0.5	1.8	<5.0	
	6/15/2007	120 °	NA	62 ^g	1.3	0.84	1.1	3	<5.0	
	9/27/2007	180 °	NA	92 ^g	1.2	0.61	1.7	2.1	<5.0	
	12/18/2007	130 °	NA	97 ^{f, g}	1.5	0.58	1.1	1.9	<5.0	
	3/4/2008	91 ^e	NA	<50	2.0	<0.5	1.1	1.9	<5.0	
	9/2/2008	93 °	NA	<50	0.68	<0.5	1.2	3.0	<5.0	
	12/8/2008	110°	NA	<50	1.4	<0.5	2.0	2.2	<5.0	

Table III, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California EPA Method 8020 or 8021B Modified EPA Method 8015 $(\mu g/L)$ $(\mu g/L)$ TPH as Sample Date Well ID Diesel Total TPH **TPH** with **MTBE** Benzene Toluene Ethylbenzene **Xylenes** Silica as Gasoline | as Diesel Gel Cleanup RWOCB ESLs; Table F-1a: Groundwater Screening 5 20 1 40 30 100 100 100 Levels (groundwater IS a current or potential drinking water resource)

Notes:

ug/L = micrograms per liter

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl tert - Butyl Ether

RWQCB = California Regional Water Quality Control Board, San Francisco Bay Region

ESL = Environmental Screening Level

ND = Not Detected (method reporting limit not known)

NA = Not Analyzed

NS = Not Sampled

 $\langle x \rangle$ = Analyte not detected at reporting limit x

* = Initial data set collected under direction of Blymyer Engineers, Inc.

a = Laboratory note indicates the result is an unidentified hydrocarbon within

the C6 to C10 range.

b = Laboratory note indicates the result is gasoline within the C6 to C10 range.

c = Laboratory note indicates the result is a hydrocarbon within the diesel range but that it does not represent the pattern of the requested fuel.

d = MTBE analysis by EPA Method 8260B yielded a non-detectable concentration at a detection

e = Laboratory note indicates that unmodified or weakly modified gasoline is significant.

f = Laboratory note indicates that diesel range compounds are significant, with no recognizable pattern.

g = Laboratory note indicates that gasoline range compounds are significant.

h = Laboratory note indicates that no recognizable pattern is present.

i = Laboratory note indicates that a lighter than water immiscible sheen / product is present.

j = Laboratory note indicates that oil range compounds are significant.

k = Laboratory note indicates one to a few isolated non-target peaks are present.

Bold results indicate detectable analyte concentrations.

Note: Shaded cell indicates that detected concentration exceeds ESL

Table 4 Summary of Groundwater Well Construction Details BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California											
Well Number	Installation Date	Bore Depth (feet, bgs)	Well Completion Depth (feet, bgs)	Screen Interval (feet, bgs)	Casing Diameter / Slot Size (inches)	Measured Depth ² (feet, bgs)	DTW ² (feet, bgs)	Consultant			
MW-1	11/22/91	20	20	5 - 20	2 / 0.020	19.34	1.14	PES			
MW-2	11/21/91	20	20	5 - 20	2 / 0.020	19.76	1.83	PES			
MW-3	11/21/91	20	20	5 - 20	2 / 0.020	18.41	1.83	PES			
MW-4	11/21/91	20	20	5 - 20	2 / 0.020	18.64	1.93	PES			
MW-5	2/23/95	10	10	3 - 10	2 / 0.020	9.83	2.39	PES			
MW-6	3/14/95	10	10	5 - 10	2 / 0.020	9.90	3.40	PES			
MW-7	7/8/05	40	40	30 - 40	2 / 0.010	42.60 ¹	6.351	BEI			
MW-8	12/12/05	20	20	5 - 20	4 / 0.020	20.02	1.54	BEI			
MW-9	12/12/05	20	20	5 - 20	4 / 0.020	19.84	1.44	BEI			

Notes:

Below grade surface bgs

Depth to water DTW =

PES Environmental, Inc. PES Blymyer Engineers, Inc. BEI

Above grade completion (approximately 2.6 feet)
Wells MW-1 through MW-7 measured March 23, 2005; wells MW-7 and MW-8 measured March 2, 2006 2

	The second section of the second section sec	Field Meter	Field Meter	Field Test Kit	Field Meter	Field Meter
Well ID	Sample Date	Dissoved Oxygen	Oxidation Reduction Potential	Ferrous Iron	Field Temperature	Field pH
		(mg/L)	(mV)	(Fe 2+)	(°C or °F)	pH units
MW-1	12/14/2004	0.2 / 2.0	224 / 160	0.1	18.8	6.9
	3/23/2005	5.1 / 0.2	105 / 102	0.0	17.3	6.9
	6/22/2005	0.51 / 0.28	-208.2 / -137.4	0.3	19.6	6.7
	3/2/2006	0.53 / 0.38	441.3 / 448.7	0.0	17.4	6.8
	6/1/2006	NS	NS	NS	NS	NS
	9/28/2006	0.74 / 0.45	-11.9 / -129.5	<0.2	22.6	6.8
	3/20/2007	0.2	88	0	65.9	7.0
	6/15/2007	NS	NS	NS	NS	NS
	9/27/2007	1.6	245.0	0.81	23.1	7.24
	12/18/2007	NS	NS	NS	NS	NS
	3/4/2008	NS	NS	NS	NS	NS
	9/2/2008	0.15	78	0.0	19.7	7.0
	12/8/2008	NS	NS	NS	NS	NS
MW-2	12/14/2004	0.3 / 2.0	-160 / -148	1.4	18.4	6.9
	3/23/2005	0.1 / 0.1	-133 / -145	2.0	16.6	7.0
	6/22/2005	0.55 / 0.11	-208.5 / -229.6	1.0	22.6	7.0
	3/2/2006	NS	NS	NS	NS	NS
	6/1/2006	NS	NS	NS	NS	NS
	9/28/2006	NS	NS	NS	NS	NS
	3/20/2007	NS	NS	NS	NS	NS
	6/15/2007	NS	NS	NS	NS	NS
	9/27/2007	NS	NS	NS	NS	NS
	12/18/2007	NS	NS	NS	NS	NS
	3/4/2008	NS	NS	NS	NS	NS
	9/2/2008	NS	NS	NS	NS	NS
MANAGE I	12/8/2008	NS	NS	NS	NS	NS

		Field Meter Dissoved	Field Meter Oxidation	Field Test Kit	Field Meter Field	Field Meter Field pH
Well ID	Sample Date	Oxygen (mg/L)	Reduction Potential (mV)	(Fe 2+)	Temperature	pH units
MW-3	12/14/2004	0.3 / 0.6	171 / 165	0.1	(°C or °F) 19.4	7.2
	3/23/2005	0.1 / 0.1	81 / 79	0.0	17.7	7.2
	6/22/2005	1.49/1.39	100.7 / 30.3	0.1	20.8	7.1
	3/2/2006	0.49 / 0.17	414.9 / 419.7	0.0	18.7	6.1
	6/1/2006	NS	NS	NS	NS	NS
	9/27/2006	0.64 / 0.39	-49.0 / -103.2	<0.2	22.1	7.0
	3/20/2007	0.1	92	0	64.3	7.2
	6/15/2007	0.22	82	0	20.0	7.3
	9/27/2007	0.40	216	0.6	21.3	7.2
	12/18/2007	NS	NS	NS	NS	NS
	3/4/2008	NS	NS	NS	NS	NS
	9/2/2008	0.15	22	0.0	20.0	7.2
	12/8/2008	NS	NS	NS	NS	NS
MW-4	12/14/2004	0.7 / 0.1	-7/-41	0.8	18.0	6.8
	3/23/2005	0.1 / 0.4	-17 / -19	1.2	15.9	6.9
	6/22/2005	0.23 / 0.12	-28.6 / -30.9	1.2	20.1	6.7
	3/2/2006	0.58 / 0.56	-169.5 / -205.6	1.2	16.2	7.5
	6/1/2006*	0.31	-78	1.0	18.5	7.0
	9/27/2006	1.88 / 0.51	109 / -1.9	<0.2	19.4	6.7
	3/20/2007	0.1	6.2	1.5	36.4	7.1
	6/15/2007	0.18	-30	1.0	20.3	7.4
	9/27/2007	0.20	30	0.95	18.7	7.1
	12/18/2007	15.89	10.8	0.0	17.5	8.7
	3/4/2008	4.73 / 2.93	217.5 / 159.9	0.0	16.5	7.4
	9/2/2008	0.11	-24	0.6	20.3	7.4
	12/8/2008	1.28	88	0.0	64.3	7.3

		Field Meter	Field Meter	Field Test Kit	Field Meter	Field Meter
Well ID	Sample Date	Dissoved Oxygen	Oxidation Reduction Potential	Ferrous Iron	Field Temperature	Field pH
		(mg/L)	(mV)	(Fe 2+)	(°C or °F)	pH units
MW-5	12/14/2004	0.5 / 2.0	5 / 532	0.1	17.9	7.1
	3/23/2005	0.1 / 0.9	-17 / 0	0.0	15.1	7.2
	6/22/2005	0.52 / 0.27	14.4 / -35.3	0.1	23.8	7.0
	3/2/2006	0.84 / 0.59	436.8 / 449.2	0.0	14.6	6.2
	6/1/2006*	0.49	-34	0.0	19.4	7.2
	9/28/2006	0.75 / 0.78	153.1 / 94.1	<0.2	20.5	6.7
	3/20/2007	1.4	108	0	61.6	7.3
	6/15/2007	2.21	5.5	0	18.3	7.8
	9/27/2007	0.90	27	0.08	20.6	7.3
	12/18/2007	NS	NS	NS	NS	NS
	3/4/2008	2.76 / 0.81	89.2 / 0.9	0.0	17.9	7.5
	9/2/2008	1.98	41	0.0	22.9	7.3
	12/8/2008	NS	NS	NS	NS	NS
MW-6	12/14/2004	0.3 / 1.2	125 / -25	0.0	15.5	7.2
	3/23/2005	0.1 / 0.8	52 / -4	0.0	13.9	7.2
	6/22/2005	0.53 / 0.49	-22.3 / -18	0.1	22.7	7.0
	3/2/2006	1.53 / 0.51	-116.5 / -189.9	0.2	13.5	8.2
	6/1/2006*	0.50	16	0.0	20.1	8.0
	9/27/2006	0.69 / 0.35	-50.2 / -72.9	<0.2	22.9	7.5
	3/20/2007	1.5	74	0	60.2	7.5
	6/15/2007	1.30	-51	0	20.5	7.7
	9/27/2007	1.2	-83	2.4	21.0	7.0
	12/18/2007	NS	NS	NS	NS	NS
	9/2/2008	NS	NS	NS	NS	NS
	9/2/2008	0.49	-77	0.0	23.0	7.6
	12/8/2008	NS	NS	NS	NS	NS

		Field Meter	Field Meter	Field Test Kit	Field Meter	Field Meter
Well ID	Sample Date	Dissoved Oxygen	Oxidation Reduction Potential	Ferrous Iron	Field Temperature	Field pH
		Date Oxygen Recomplete (mg/L) 005 NS 006 2.71 / 1.08 214. 006* 0.45 0006 0.67 / 0.26 70 0007 0.1 0007 0.25 0007 0.90 /2007 NS 0008 NS 0008 NS 0008 0.15 2008 NS 2000 1.20 / 0.85 42.5 2006 0.97 / 0.40 5 /2007 0.3 /2007 0.4	(mV)	(Fe 2+)	(°C or °F)	pH units
MW-7	7/18/2005	NS	NS	NS	68.7 / 69.4	7.5
	3/2/2006	2.71 / 1.08	214.3 / -176.9	0.4	14.0	8.0
	6/1/2006*	0.45	62	0.4	20.2	7.15
	9/27/2006	0.67 / 0.26	70.0 / 62.0	<0.2	19.8	7.0
	3/20/2007	0.1	92	0	63.9	7.4
	6/15/2007	0.25	56	0	20.1	7.4
	9/27/2007	0.90	125	0.85	18.4	7.1
	12/18/2007	NS	NS	NS	NS	NS
	3/4/2008	NS	NS	NS	NS	NS
	9/2/2008	0.15	20	0.0	20.3	7.3
	12/8/2008	NS	NS	NS	NS	NS
MW-8	3/2/2006	1.20 / 0.85	423.8 / 456.9	0.0	14.1	8.4
	6/1/2006*	0.60	-50	0.0	19.9	10.3
	9/28/2006	0.97 / 0.40	51.9 / 63.9	<0.2	20.2	10.3
	3/20/2007	0.1	101	0	62.3	9.9
	6/15/2007	0.3	4	0	19.0	9.1
	9/27/2007	0.4	1.53	0.2	21.3	9.2
	12/18/2007	5.6	-20.4	0.0	17.7	10.7
	3/4/2008	5.03 / 3.50	90.8 / 49.1	0.0	17.3	10.6
	9/2/2008	1.21	-2	0.0	20.7	8.8
	12/8/2008	0.12	33	0.0	67.7	9.1

	Administration of the second s	Field Meter	Field Meter	Field Test Kit	Field Meter	Field Meter
Well ID	Sample Date	Dissoved Oxygen	Oxidation Reduction Potential	Ferrous Iron	Field Temperature	Field pH
		(mg/L)	(mV)	(Fe 2+)	(°C or °F)	pH units
MW-9	3/2/2006	0.52 / 0.20	118.0 / 112.6	0.0	15.2	9.4
	6/1/2006*	0.42	-30	0.0	20.5	10.5
	9/28/2006	1.15 / 0.23	78.5 / -6.1	<0.2	21.1	10.8
	3/20/2007	0.2	136	0	62.8	8.9
	6/15/2007	0.21	46	0	19.0	6.9
	9/27/2007	0.4	-96	0.6	21.8	8.4
	12/18/2007	11.7	20	0.0	19.0	10.5
	3/4/2008	4.61 / 3.12	92.3 / 8.7	0.0	18.9	10.9
	9/2/2008	0.62	-51	0.0	21.8	10.1
	12/8/2008	0.06	42	0.0	67.6	10.1

Notes:

mV = Millivolts

mg/L = Milligrams per liter oC = Degrees Centigrade

2.6 / 2.2 = Initial reading (pre-purge) / Final reading (post-purge)

NS = Not sampled * = Post purge value

		Method SM	200		Method	Method		Method	Method	Method	
		5310B	Method F	5300.1	RSK 174	iviculou .	C/200.7	E365.1	SM 5210B	SM 5220D	
Well ID	Sample Date	CO2	Nitrate (as N)	Sulfate	Methane	Manganese	Potassium	Total Phosphorous (as P)	BOD	COD	
			mg/L			μg/L			mg/L		
MW-1	12/14/2004	580	<20	1,100	2.2	NA	NS	NS	NS	NS	
	3/23/2005	660	0.41	620	<0.5	NS	NS	NS	NS	NS	
	6/22/2005	660	<0.1	580	0.91	NS	NS	NS	NS	NS	
	3/2/2006	850	<0.71	610	.0.65	1,700	5,100	0.19	<3.0	43	
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	9/28/2006	660	<0.1	980	0.86	1,900	1,200	0.18	<4.0	15	
MW-2	12/14/2004	940	<5.0	220	4,700	NS	NS	NS	NS	NS	
	3/23/2005	1,100	0.34	180	3,700	NS	NS	NS	NS	NS	
	6/22/2005	990	<0.1	290	1,800	NS	NS	NS	NS	NS	
	3/2/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	9/28/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS	

		00000	Carren Co					T T	i Milio Milio Shiri Milio
	Method SM	Method E	300.1	Method RSK 174	Method 1	E200.7	Method E365.1	Method SM 5210B	Method SM 5220D
Sample Date	CO2	Nitrate (as N)	Sulfate	Methane	Manganese	Potassium	Total Phosphorous (as P)	BOD	COD
		mg/L			μg/L			mg/L	
12/14/2004	610	<20	780	<0.5	NS	NS	NS	NS	NS
		0.2	560	<0.5	NS	NS	NS	NS	NS
		1.3	540	<0.5	NS	NS	NS	NS	NS
	<u> </u>	2.0 1	630	<0.5	1,800	4,400	0.18	<3.0	<10
		NS	NS	NS	NS	NS	NS	NS	NS
	650	1.5	580	- <0.5	1,500	900	0.16	<4.0	<10
	680	<10	760	170	NS	NS	NS	NS	NS
	700	0.3	430	24	NS	NS	NS	NS	NS
	700	<0.1	480	71	NS	NS	NS	NS	NS
	370	0.88 1	490	90	5,300	3,900	0.17	<3.0	33
		NS	NS	NS	NS	NS	NS	NS	NS
		<0.1	480	51	4,100	670	0.13	<4.0	22
	12/14/2004 3/23/2005 6/22/2005 3/2/2006 6/1/2006 9/27/2006 12/14/2004 3/23/2005 6/22/2005 3/2/2006 6/1/2006 9/27/2006	Sample Date CO2 12/14/2004 610 3/23/2005 590 6/22/2005 320 3/2/2006 730 6/1/2006 NS 9/27/2006 650 12/14/2004 680 3/23/2005 700 6/22/2005 700 3/2/2006 370 6/1/2006 NS	Sample Date Method SM 5310B Method SM 5310B Method E SM 5310B L 12/14/2004 610 <20 3/23/2005 590 0.2 6/22/2005 320 1.3 3/2/2006 730 2.0¹ 6/1/2006 NS NS 9/27/2006 650 1.5 12/14/2004 680 <10	Sample Date Method SM 5310B Method E300.1 Nitrate (as N) Sulfate 12/14/2004 610 <20	Sample Date Method SM 5310B Method E300.1 Method RSK 174 Sample Date CO2 Nitrate (as N) Sulfate Method RSK 174 12/14/2004 610 Sulfate Method RSK 174 3/23/2005 590 N.2 20 7.3 540 <0.5 6/1/2006 NS NS NS NS 9/27/2006 650 1.5 580 <0.5	Nethod 3M Method E300.1 RSK 174 Method Internol Met	Sample Date Method SM 5310B Method E300.1 Method RSK 174 Method E200.7 CO2 Nitrate (as N) Sulfate Methane Manganese Potassium 12/14/2004 610 <20	Method SM S310B Method E300.1 Method RSK 174 Method E365.1	Method SM 5310B Method E300.1 Method RSK 174 RSK 174 Method E200.7 Method E365.1 SM 5210B Method SM 5210B Sample Date CO2 Nitrate (as N) Sulfate Methane Methane Potassium Phosphorous (as P) BOD (as P) 12/14/2004 610 <20

	N N		Method E300.1		Method RSK 174	Method E200.7		Method E365.1	Method SM 5210B	Method SM 5220D
Well ID	Sample Date	CO2	Nitrate (as N)	Sulfate	Methane	Manganese	Potassium	Total Phosphorous (as P)	BOD	COD
		mg/L			μg/L				mg/L	
MW-5	12/14/2004	1,400	<20	1,200	120	NS	NS	NS	NS	NS
	3/23/2005	1,400	1	640	57	NS	NS	NS	NS	NS
	6/22/2005	1,500	<0.1	590	1.5	NS	NS	NS	NS	NS
	3/2/2006	1,600	<0.7 1	450	490	960	4,000	0.14	<3.0	31
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/28/2006	1,400	<0.1	410	24	630	920	0.13	<4.0	15
MW-6	12/14/2004	790	<10	460	180	NS	NS	NS	NS	NS
	3/23/2005	770	0.12	380	60	NS	NS	NS	NS	NS
	6/22/2005	770	<0.1	400	36	NS	NS	NS	NS	NS
	3/2/2006	470	5.2 1	540	12	480	1,600	0.099	<3.0	21
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/27/2006	400	<0.1	530	55	410	320	0.079	<4.0	25

Table VI, Summary of Groundwater Intrinsic Bioremediation Analytical Results BEL Job No. 202016, Dolan Rentals

6393 Scarlett Court, Dublin, California

			03931	scarieu co	,	, California				Bir sing sing same
		Method SM 5310B	Method I	E300.1	Method RSK 174	Method 1	E200.7	Method E365.1	Method SM 5210B	Method SM 5220D
Well ID Sample Date	CO2	Nitrate (as N)	Sulfate	Methane	Manganese	Potassium	Total Phosphorous (as P)	BOD	COD	
		mg/L				μg/L			mg/L	
MW-7	7/18/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/2/2006	450	<0.7 1	260	1.7	5,500	7,300	0.16	<3.0	26
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/27/2006	350	<0.1	270	1.1	4,600	1,700	0.13	<4.0	<10
MW-8	3/2/2006	9	13 1	570	17	<20	19,000	0.21	<3.0	71
	6/1/2006	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/28/2006	5	0.29	290	18	<20	6,000	<0.04	<4.0	34
MW-9	3/2/2006	8	11 ¹	890	19	<20	20,000	<0.04	<3.0	61
	6/1/2006	NS	NS	NS	- NS	NS	NS	NS	NS	NS
	9/28/2006	6.3	<0.1	120	28	<20	5,300	<0.04	<4.0	42

Notes:

SM = Standard Method

mg/L = Milligrams per liter

 μ g/L = Micrograms per liter

 CO_2 = Carbon Dioxide

NS = Not sampled

BOD = Biological Oxygen Demand COS = Chemical Oxygen Demand

¹ = Total Nitrogen (Nitrate, Nitrite, & Ammonia)

Table VII, Summary of Groundwater Bacteria Enumeration Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

		Aerobic Bacteria Method 9215A (HPC) / SM 9215 B Modified							
Well ID	Sample Date	Hydrocarbon Degraders	Total Heterotrophs	Target Hydrocarbons Tested					
			cfu/ml						
MW-1	3/20/2007	80	400	Gasoline/Diesel					
MW-3	4/9/2007	700	300	Gasoline/Diesel					
MW-4	3/20/2007	5,000	10,000	Gasoline/Diesel					
MW-5	3/20/2007	400	1,000	Gasoline/Diesel					

Notes:

SM = Standard Method

cfu/ml = Colony forming units per milliliter

Table VIII, Summary of Lead and Fuel Oxygenate Soil Sample Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

Date	Method SW 7010		EPA Method 8260B								
				TOD		DIDE	ETRE	MTBE			
	Total Lead	TAME	TBA	EDB	1,2-DCA			****			
9/16/03	<3.0	NA	NA	NA	NA	NA	NA	NA			
9/16/03	<3.0	NA	NA	NA	· NA	NA	NA NA	NA			
9/16/03	<3.0	NA	NA	NA	NA	NA	NA	NA			
9/16/03	<3.0	NA	NA	NA	NA	NA	NA	NA			
	<3.0	NA	NA	NA	NA	NA	NA	NA			
	7.6	NA	NA	NA	NA	NA	NA	NA			
	<3.0	NA	NA	NA	NA	NA	NA	NA			
	NA	<0.005	<0.025	<0.005	<0.005	<0.005	< 0.005	<0.005			
Commercial / Land Use; ; IS Current or the of Drinking the A Shallow Table C Deep	750	NV	0.073	0,00033	0.0045	NV	NV	0.023			
	9/16/03 9/16/03 9/16/03 9/16/03 9/16/03 9/16/03 9/16/03 2/18/05 Commercial / and Use; ; IS Current or ce of Drinking A Shallow	7010 (mg/Kg) Total Lead 9/16/03 <3.0 9/16/03 <3.0 9/16/03 <3.0 9/16/03 <3.0 9/16/03 <3.0 9/16/03 <7.6 9/16/03 <7.6 9/16/03 <7.6 10	7010 (mg/Kg) Total Lead TAME 9/16/03 <3.0 NA 2/18/05 NA 2/18/05 NA 2/18/05 NA Commercial / and Use; ; IS Current or ce of Drinking et A Shallow Table C Deep	7010 (mg/Kg) Total Lead 7010 7010 (mg/Kg) Total Lead 7010 7010 7010 7010 7010 7010 7010 70	Total Lead TAME TBA EDB	Method 3 w 7010 (mg/Kg) (Mg/	Date Metal SW 7010 (mg/Kg)	Date			

Table VIII, Summary of Lead and Fuel Oxygenate Soil Sample Analytical Results, continued

Notes:	mg/Kg = <x 1,2-dca="" =="" dipe="" edb="" etbe="" mtbe="" na<="" tame="" tba="" th=""><th>Milli Less = = = = = =</th><th>grams per kilogram than the analytical detection limit (x) Methyl tert-Amyl Ether tert-Butyl Alcohol 1,2-Dibromoethane 1,2-Dichloroethane Di-isopropyl Ether Ethyl tert-Butyl Ether Methyl tert-butyl Ether Not analyzed</th></x>	Milli Less = = = = = =	grams per kilogram than the analytical detection limit (x) Methyl tert-Amyl Ether tert-Butyl Alcohol 1,2-Dibromoethane 1,2-Dichloroethane Di-isopropyl Ether Ethyl tert-Butyl Ether Methyl tert-butyl Ether Not analyzed
--------	--	---	--

Bold results indicate detectable analyte concentrations.
Shaded results indicate analyte concentrations above the RWQCB ESL values.

TABLE 9 Summary of Excavation Bottom Soil Sample Hydrocarbon Analytical Results BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California

EPA Method 8021B Modified EPA Method 8015 Date Sample ID (mg/Kg) (mg/Kg) MTBE Total Xylenes Ethylbenzene Toluene TPH as Diesel Benzene TPH as Gas < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 <1.0 <1.0 12/2/05 NWB-20.5 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 <1.0 <1.0 12/8/05 SEB-20 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 <1.0 <1.0 12/8/05 SWB-20 < 0.05 < 0.005 < 0.005 < 0.005 < 0.005 <1.0 <1.0 **NEB-20** 12/8/05 0.023 1.5 3.3 2.9 0.044 100 100 RWOCB ESL Commercial / Industrial Land Use;; Groundwater IS Current or Potential Source of Drinking Water; Table A Shallow Soils (<3m) or Table C Deep Soils (>3m)

Notes:	ft TPH NA <x< th=""><th>200000 200000</th><th>feet Total Petroleum Hydrocarbons Not analyzed Less than the analytical detection limit (x)</th><th>mg/Kg MTBE N/A *</th><th>=</th><th>Milligrams per kilogram Methyl <i>tert</i>-butyl ether Not available Depth mismarked in field.</th></x<>	200000 200000	feet Total Petroleum Hydrocarbons Not analyzed Less than the analytical detection limit (x)	mg/Kg MTBE N/A *	=	Milligrams per kilogram Methyl <i>tert</i> -butyl ether Not available Depth mismarked in field.
	EPA	ALANEM MARANE	Environmental Protection Agency	aa comno	unds are	significant (aged gasoline?)

Laboratory note indicates heavier gasoline range compounds are significant (aged gasoline?)

Laboratory note indicates that there is no recognizable pattern.

Laboratory note indicates gasoline range compounds are significant.

Laboratory note indicates oil range compounds are significant.

Laboratory note indicates diesel range compounds are significant, with no recognizable pattern.

Laboratory note indicates unmodified or weakly modified gasoline is significant

Bold results indicate detectable analyte concentrations.

Shaded results indicate analyte concentrations above the respective commercial RWQCB ESL value, (Groundwater IS Current or Potential Source of Drinking Water).

TABLE 10 Summary of Excavation Bottom Lead and Fuel Additive Soil Sample Analytical Results BEI Job No. 202016, Dolan Rentals

6393 Scarlett Court, Dublin, California

				6	393 Scarlet	t Court, Dup	iin, Camoin		NIII ANNI ANNI ANNI ANNI ANNI ANNI ANNI				
Sample ID	Date	Method SW		EPA Method 8260B									
-		6010 (mg/Kg)					· (n	mg/Kg)					
		Total Lead	TAME	TBA	EDB	1,2 - DCA	DIPE	Ethanol	ETBE	Methanol	MTBE		
> × × × × × × × × × × × × × × × × × × ×	12/2/05	8.2	<0.005	<0.05	< 0.005	<0.005	<0.005	<0.25	<0.005	<2.5	<0.005		
NWB-20.5				<0.05	<0.005	<0.005	< 0.005	<0.25	< 0.005	<2.5	<0.005		
SEB-20	12/8/05	7.6	<0.005				<0.005	<0.25	< 0.005	<2.5	< 0.005		
SWB-20	12/8/05	8.9	<0.005	<0.05	<0.005	<0.005	<0.003	~0.23			-0.005		
NEB-20	12/8/05	7.5	<0.005	<0.05	<0.005	< 0.005	<0.005	<0.25	<0.005	<2.5	<0.005		
RWQC		750	NV	0.073	0.00033	0.0045	NV	45	NV	NV	0.023		
Commercial Land Use; G IS Current of Source of Water; Table	roundwater or Potential Drinking A Shallow												
Soils (<3m) Deep Soi													

Notes:

Milligrams per kilogram
Less than the analytical detection limit (x)

tert-Butyl Alcohol TBA Methyl tert-Amyl Ether **TAME** 1,2-Dichloroethane 1,2-DCA 1,2-Dibromoethane EDB Ethyl tert-Butyl Ether ETBE Di-isopropyl Ether DIPE No value established NV MTBE = Methyl *tert*-butyl Ether Bold results indicate detectable analyte concentrations.

T.	ABLE 11	responding to the	BEI Job 1	vo. 202016	nple Fuel A , Dolan Re Dublin, Cal	ntals	alytical Re	sults				
Washing and a summand of the summand		EPA Method 8260B (ug/L)										
Well ID	Sample Date	TAME	TBA	EDB	1,2-DCA	DIPE	Ethanol	ETBE	Methanol	MTBE		
Table F-1: Screening Le IS a current o	roundwater ESLs a: Groundwater wels (groundwater r potential drinking er source)	NV	12.	0.05	0.5	NV	50,000	NV	NV	5.0		
	12/13/2002	<0.50	<2,000	NA	NA	< 0.50	NA	<0.50	NA	<0.50		
MW-2	3/23/2005	<5.0	<50	<5.0	5.4	<5.0	<500	<5.0	<5,000	<5.0		
MW-4	3/20/2007	<0.5	<5.0	NA	NA	<0.5	NA	<0.5	NA	<0.5		
IAI AA +	12/14/2004	<0.5	<5.0	<0.5	<0.5	<0.5	<50	<0.5	<500	12		
To the second se	3/2/2006	<0.5	<5.0	<0.5	<0.5	<0.5	<50	<0.5	<500	28*		
MW-5	6/1/2006	<0.5	<5.0	<0.5	<0.5	<0.5	<50	<0.5	<500	40*		
		<0.5	<5.0	<0.5	<0.5	<0.5	<50	<0.5	<500	48		
	9/28/2006	<1.0	<10	NA	NA	<1.0	NA	<1.0	NA	57*		

Notes:

TAME = Methyl tert-Amyl Ether

TBA = tert-Butyl Alcohol

EDB = 1,2-Dibromoethane

1,2-DCA = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

MTBE = Methly tert-butyl ether

 $(\mu g/L)$ = Micrograms per liter

NA = Not analyzed

NV = No value

* = Differs from result yielded by EPA 8021B

Bold results indicate detectable analyte concentrations.

Note: Shaded cell indicates that detected concentration exceeds ESL

Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)
MW-1	11/27/1991	326.61	4.82	321.79
	9/30/1992		5.34	321.27
	4/7/1994		3.38	323.23
	8/12/1994		4.23	322.38
	11/29/1994		3.44	323.17
	3/21/1995	-	1.00	325.61
	5/22/1995	4	2.20	324.41
	8/24/1995		3.45	323.16
	2/12/1996	_	1.95	324.66
	2/5/1997		Data	Missing
	8/6/1997		3.60	323.01
	6/6/02*		2.89	323.72
	9/23/2002		3.48	323.13
	12/13/2002		3.18	323.43
	12/14/2004		2.76	323.85
	3/23/2005		1.14	325.47
	6/22/2005	329.41	2.58	326.83
	7/18/2005		2.21	327.20
	9/6/2005		3.30	326.11
	3/2/2006		2.32	327.09
	6/12/2006		3.61	325.80
	9/28/2006		3.34 1	326.07
	3/20/2007	331.23 ³	4.60	326.63
	6/15/2007		NS	NS
	9/27/2007		5.14	326.09
	12/18/2007		4.55	326.68
	3/4/2008		3.96	327.27
	9/2/2008		4.83	326.40
	12/8/2008		NS	NS

Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)
MW-2	11/27/1991	326.67	4.92	321.75
	9/30/1992		5.42	321.25
	4/7/1994		3.48	323.19
	8/12/1994		4.18	322.49
	11/29/1994		3.76	322.91
	3/21/1995		1.25	325.42
	5/22/1995	_	2.20	324.47
	8/24/1995	-	3.57	323.10
	2/12/1996		2.60	324.07
	2/5/1997	-	1.72	324.95
	8/6/1997	_	3.72	322.95
	6/6/02*		3.46	323.21
	9/23/2002		4.14	322.53
	12/13/2002	-	3.45	323.22
	12/14/2004	 	2.96	323.71
	3/23/2005		1.83	324.84
	6/22/2005	329.46	3.82	325.64
	7/18/2005		3.55	325.91
	9/6/2005		3.70	325.76
	3/2/2006		Destroyed	Destroyed
	6/12/2006		Destroyed	Destroyed
	9/28/2006		Destroyed	Destroyed
	3/20/2007		Destroyed	Destroyed
	6/15/2007		Destroyed	Destroyed
	9/27/2007		Destroyed	Destroyed
	12/18/2007		Destroyed	Destroyed
	3/4/2008		Destroyed	Destroyed
	9/2/2008		Destroyed	Destroyed
	12/8/2008		Destroyed	Destroyed

	6393 Sc	carlett Court, Dubl	m, Camornia	
Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)
MW-3	11/27/1991	326.58	4.96	321.62
	9/30/1992		5.46	321.12
	4/7/1994		3.66	322.92
	8/12/1994		4.37	322.21
	11/29/1994		3.60	322.98
	3/21/1995		1.62	324.96
	5/22/1995		2.73	323.85
	8/24/1995		3.76	322.82
	2/12/1996	-	2.45	324.13
	2/5/1997		1.99	324.59
	8/6/1997	-	3.83	322.75
	6/6/02*		3.66	322.92
,	9/23/2002	_	4.66	321.92
	12/13/2002		3.66	322.92
	12/14/2004		3.52	323.06
	3/23/2005		1.83	324.75
	6/22/2005	329.37	3.99	325.38
	7/18/2005		3.60	322.98
	9/6/2005		4.42	324.95
	3/2/2006		2.50	326.87
	6/12/2006		3.52	325.85
	9/28/2006		3.88	325.49
	3/20/2007	330.69 ³	4.40	326.29
	6/15/2007		4.88	325.81
	9/27/2007		4.93	325.76
	12/18/2007		4.57	326.12
	3/4/2008		3.95	326.74
	9/2/2008		4.94	325.75
	12/8/2008		5.13	325.56

	6393 Sc	earlett Court, Dubl	in, California	
Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)
MW-4	11/27/1991	326.92	5.26	321.66
	9/30/1992		5.78	321.14
	4/7/1994		4.02	322.90
	8/12/1994		4.81	322.11
	11/29/1994		4.39	322.53
	3/21/1995		1.80	325.12
	5/22/1995		3.07	323.85
	8/24/1995		4.09	322.83
	2/12/1996	-	2.80	324.12
	2/5/1997		2.32	324.60
	8/6/1997		4.14	322.78
	6/6/02*		3.76	323.16
	9/23/2002		4.14	322.78
	12/13/2002	1 .	3.90	323.02
	12/14/2004		3.68	323.24
	3/23/2005		1.93	324.99
	6/22/2005	329.70	3.65	326.05
	7/18/2005		3.69	323.23
	9/6/2005		3.97	325.73
	3/2/2006		2.90	326.80
	6/12/2006		3.88	325.82
	9/28/2006		4.23	325.47
	3/20/2007	330.10 ³	3.91	326.19
	6/15/2007		4.35	325.75
	9/27/2007		4.39	325.71
	12/18/2007		3.55	326.55
	3/4/2008		3.33	326.77
	9/2/2008		4.38	325.72
i	12/8/2008		4.50	325.60

Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)
MW-5	3/21/1995	326.50	2.10	324.40
	5/22/1995		2.93	323.57
	8/24/1995		1.57	324.93
	2/12/1996		2.78	323.72
	2/5/1997	-	2.24	324.26
	8/6/1997		3.02	323.48
	6/6/02*	**	2.79	NM
	9/23/2002		3.07	NM
	12/13/2002	-	3.14	NM
	12/14/2004		2.92	NM
	3/23/2005		2.39	NM
	6/22/2005	329.16	2.99	326.17
	7/18/2005		3.39	325.77
	9/6/2005		3.07	326.09
	3/2/2006		2.74	326.42
	6/12/2006		3.36	325.80
	9/28/2006		3.33	325.83
,	3/20/2007	331.26 ³	4.80	326.46
	6/15/2007	-	5.31	325.95
	9/27/2007		5.33	325.93
	12/18/2007		5.30	325.96
	3/4/2008	_	4.68	326.58
	9/2/2008		5.14	326.12
	12/8/2008		5.47	325.79

Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)
MW-6	3/21/1995	327.23	3.24	323.99
	5/22/1995		4.70	322.53
	8/24/1995	•	4.95	322.28
	2/12/1996		4.50	322.73
	2/5/1997		3.68	323.55
	8/6/1997		4.79	322.44
	6/6/02*	-	4.81	322.42
	9/23/2002	327.23	5.10	322.13
	12/13/2002		4.88	322.35
	12/14/2004		4.61	322.62
	3/23/2005		3.40	323.83
	6/22/2005	330.02	4.72	325.30
	7/18/2005		2.65	327.37
	9/6/2005		4.98	325.04
	3/2/2006		3.89	326.13
	6/12/2006		4.73	325.29
	9/28/2006		4.85	325.17
	3/20/2007	329.55 ³	3.94	325.61
	6/15/2007		4.16	325.39
	9/27/2007		3.92	325.63
	12/18/2007		3.81	325.74
	3/4/2008		3.65	325.90
	9/2/2008		4.02	325.53
	12/8/2008		4.26	325.29

	PER LONG OF SERVICE STATE	Cancil Com 1, 7710		
Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)
MW-7	7/18/2005 ***	6.38	ua lui riv	
	9/6/2005		6.78	
	3/2/2006	330.25	3.33	326.92
	6/12/2006		4.18	326.07
	9/28/2006		4.52	325.73
	3/20/2007	330.17 ³	3.74	326.43
	6/15/2007		4.24	325.93
	9/27/2007		4.33	325.84
	12/18/2007		3.70	326.47
	3/4/2008		3.15	327.02
	9/2/2008		4.06	326.11
	12/8/2008		4.41	325.76
MW-8	3/2/2006	328.93	1.54	327.39
	6/12/2006		3.69	325.24
<u></u>	9/28/2006		3.10	325.83
	3/20/2007	330.51 3	4.16	326.35
	6/15/2007		4.62	325.89
	9/27/2007		4.51	326.00
	12/18/2007		3.55	326.96
	3/4/2008		3.69	326.82
	9/2/2008		4.41	326.10
	12/8/2008		4.61	325.90

Table II, Summary of Groundwater Elevation Measurements BEI Job No. 202016, Dolan Rentals 6393 Scarlett Court, Dublin, California Water Surface Elevation Depth to Water **TOC Elevation** Date Well ID (feet) (feet) (feet) 328.67 MW-9 327.13 1.54 3/2/2006 324.99 3.68 6/12/2006 325.59 3.08 9/28/2006 330.74^{-3} 326.37 4.37 3/20/2007 325.91 4.83 6/15/2007 326.03 4.71 9/27/2007 326.90 3.84 12/18/2007 326.79 3.95 3/4/2008 326.09 4.65 9/2/2008 4.91 325.83 12/8/2008

Notes:

TOC = Top of Casing

* = Initial data set collected under direction of Blymyer Engineers, Inc.

** = Surveyed elevation not available

¹ = Sampling form indicates casing is bent.

NM = Not measured

NS = Not sampled

= Resurveyed on April 13, 2005 by CSS Environmental Services, Inc.

² = Surveyed on February 7, 2006 by CSS Environmental Services, Inc.

³ = Surveyed on March 19, 2007 by CSS Environmental Services, Inc.

Elevations in feet above mean sea level

TABLE 13

ZONE 7 WATER QUALITY LABORATORY

era stated,	403.2		thus ugit.	
Santato Moner			38/15/061	18/1F 4F2
Lib Sample Nomber			140,204	040205
Sample Date.			V112004	4/1/1/2004
Andreis Date.			3-12/Juni4	4/22/2004
Regulated STPC's	D) R	мα.		
Noncinu	ą s		141)	ND
Carsin fetra filminic	0.9		N 23	ND.
/ 1 In blooderscop	t) i		*11	80
t, t-the blocoberteers	9.5		ND	ND
1,2 Parakwenthene	23,5		ND	ND
L. Dis Elwingthasse	r) s		80	NO
ex-1,2 Methorodylers	05		2011	0.5
ti ma-1,2 I militerantrylemo	19.5		NI	ND
Dr. istopastichistich	65		251}	NO
1.2 Dehlorspenpato	0.5		505	NO
1, 3 shebbooperspose	0,5		1417	ND
Eshylthen retor	18.3		50	ND
Marky sout busy's other (METIE)	1	0,5	2012	ND
Attana iduratenzene	0.5		50	Nb
Mydrole	65		(15)	ND
1.4, A, I - Less achilementhams	6.5		ND.	ND
first setstercardiyeleno	81.5		1 4	Mit
1 minore	0.9		NĐ	ND
1.4.4 For identifyers the	n v		ND	Ni
t, î, î - î rii dikwenciîtarse	a,		614	MĐ
1,1,2 Eindersechaste	扶		4134	(41)
for blesochylase	0.5		2.2	35
Localisationsemediane	4	0.5	NO	N3)
1,12 Transfer 1,2,2 Inflavor desc	143	0.5	ND	KĐ
Vestof # historia	18,5		Nio	ND
Volumes, 1984	6.5		SD	NO
darrantskas Valuillas				
the bitweet discussion to the control of the contro	0.5		₩Đ	255)
ritive-con-hatyl ather (FFFIII)	17,5	0.5	80	MO
ers Assylvanolyd other (TAMIs)	is)	8,8	ON	NB
urt-fluigt abreigs (TDA)	2,0			
Ndtobenzone	163			

114.8 - Transfort Lant for Purposes of Reporting, established by DBS
MHL - Maximum Reporting Lants, established by Zone 7 talk (select distinct from BLR,
ND - Analytic not detected at or showe DLR.

Additional Voisille Chemicals

linushing and	0.5	N3)	NO
ในเพราะเก่าโกรเพราะที่วิสุทธ	45.5	ND	NIX
Generalichlenssettand	0,5	ND	ND
ให้เหางในระบ	415	NI)	NO
Britishingliante	9,5	NĐ	NĐ
a-Henylhen/end	0.5	ND	ИÞ
er-Haylan-car	0.5	1483	ЯD
to Butyliseszese	# \$, 5	ND	ND
1 historifore	0.3	ND:	КÐ
Chloroforn	u s	252	NĐ
Sent despressivity 3	0.5	NO	NO
24Dilasantisene	18.5	NO	89
4.Chforpolikose	4,5	ND	NĐ
Miconschlorenchine	0.5	130	ND
(โปรงการสาธาร์เสษา	0.5	NO	ND
Ontgroupl other (DIPIs)	30 05	ND	0,5
La-Therdomben cets	0.5	ND	NO
1.2-Diferentetione	0,5	ND	ND
1, 1-Dicition proposes	9.5	ND	ND
2,2-Dichlampenpane	0.5	SD	ND:
1, 1-Dichlin intropene	U.5	NĐ.	ND
These at life sentential agree	0.5	NO	ND
Lapropolicasase	9.5	ND	ND
p-bageopyltolesind	0,5	2(1)	ND
Naphtalene	Ø,5	ND	NO
1.1.2 Transchipmentance	0.5	ND	ND
1,23-Tejehisronemzene	0.5	ND	ND
1,2,1-Frithwoonspane	0,5	24D	ND
1,24-Francily/horzone	# 5	ND	NĐ
1,3,5-Yennythylinenzena	0.5	ND	NU

DRILL FIG

CME-75

DRILL RIG

CME-75

11/21/91

DATE COMPLETED

CME-75

DRILL RIG

- 1					DIATE
	LOCATION JOB NUMBER	Dolan Rental Company 6393 Scarlett Court, Dublin, CA 102.01.001 NEER D. Trumbly CME-75	TOTAL DEPTH OF HOLE TOP OF CASING ELEVATION DATE STARTED	7.25 inches 20.0 feet I 0.25 feet below ground surface 11/21/91 11/21/91	7
	1				

Log of Boring B-1Dublin Rock and Ready Mix
Dublin, California

A-2

LOCALE MISSING DET, WKH, PL

DIAMETER OF HOLE TOTAL DEPTH OF HOLE DRRIL RIC

9.0' Hand, Augered...

our 3/93

ASSESSED DATE

Log of Baring B—2Dublin Řock and Ready Mix Dublin, California

A-3

100-14/1400 102.01.902 1000000 POSOME DET, MKH, PL DYMETER OF HOLE TOTAL DEPTH OF HOLE DRICL RIG

9.0' Hand Augered

part 3/93

NEWSES SHIE

200 HAMBOR 102.01.002 LOSCHO PORSONIEL DET, MICH, PL DRIME SH CHANGETER OF HOLE TOTAL DEPTH OF HOLE DRILL AIG

9.0° Hand Augered

out 3/93

CARRED DATE

Log of Boring B-4 Dublin Rock and Ready Mix Dublin, California

A-5

COS MEMORY 102-01-002 COCCUM PORTOWNS DET, MKH, PL DUMETER OF HOLE TOTAL DEPTH OF HOLE CRILL RIG

4" 9,0' Hond Augered

son 3/93

WYDD DAIT

Log of Boring B-5 Dublin Rock and Ready Mix Dublin, California

A-6

TO MARKET 102.01.002
(SECON PERSONNEL DET, MKH, PL.

DIAMETER OF HOLE TOTAL OFFTH OF HOLE DRILL RIG

9.0° Hand Augered

***E 3/93

REVISED INCT

Log of Baring B-6 Dublin Rock and Ready Mix Dublin, California

A-7

COCCUS PERSONNE DET, MICH, PL.

OWNETER OF HOLE TOTAL DEPTH OF HOLE ORAL RIG 4" 9.0' Hand Augered

ME 3/95

WANTED DELL

Log of Baring 8-7 Dublin Rock and Ready Mix Dublin, California **A-8**

102.01.002
LOUGHS DESCRIPTION SH

DAMETER OF HOLE TOTAL DEPTH OF HOLE DRILL RIG

4" 9,0" Hand Augered

sor 3/93

describe over

Log of Boring 8-8 Dublin Rock and Ready Mix Dublin, California

A-9

TOWNER 102.01.002
TOWNER PRODUCT DET, MKH, PL.

DIAMETER OF HOLE TOTAL DEPTH OF HOLE DRILL RIG

9.0° Hand Augered

ont 3/93

THE CHANGE

CD 31407 102.01.002 ME DET, WKH, PL Dublin, California

DIMMETER OF HOLE TOTAL DEPTH OF HOLE DRUL RIG

9.0" Hond Augered

mm 3/93

Dublin Rock and Ready Mix Dublin, California

102.01.002 ME DET, MKH. PL DWHETER OF HOLE TOTAL OSPITH OF HOLE DRILL RIG

9.0" Hand Augered

cate 3/95

CO HAMEN 102.01.002

CHAMETER OF HOLE TOTAL DEPTH OF HOLE DRILL SIG

9.0' Hand Augered

out 3/93

HEMMED DIST

□ PIO □ PIM DEPTH (FT) SYMBOLS 0 FB 0 PPS MATERIALS DESCRIPTION LANDSCAPE AGGREGATE Dark Brown Silty CLAY (CL/CH) moist, medium stiff (10YR3/3). 2 3 INTERBEDDED Gray Silty CLAY (CL/CH) moist, medium stiff (2.5YN5/). 4 Dark Gray SAND (SP) moist to wet, medium dense (2.5YN4/), fine-grained sand. 5 6 Bottom of Boring @ 6.7 feet bgs. 7 8 9 10 11 12 13 14 15 Log of Boring B-12

PES Environmental, Inc. Engineering & Environmental Services

Dublin Rock and Ready Mix Dublin, California

до намен 102.01.002 om DET, MICH, PL CHANGETER OF HOLE TOTAL DEPTH OF HOLE DRILL RIG

9.0' Hand Augered

purc 3/93

PES Engine

PES Environmental, Inc. Engineering & Environmental Services Log of Boring B-13

Dublin Rock and Ready Mix

Dublin, California

A-14

102.01.002 LOGGE POSSERS DET, MKH, PL CHANGEER OF HOLE
TOTAL DEPTH OF HOLE
DRILL RIC

4" 9.0" Hand Augered

or 3/93

MCVERCO CATE