VIP Service Station C/O L. B. Patel 385 Century Circle Danville, Ca 94526 June 8, 1993

Alameda County Health Agency Div. of Hazardous Materials 80 Swan Way, Rm 350 Oakalnd, CA 94621

Attention: Scot O. Seery CHMM

Subject: Underground Tank Removal Report

Site Address: 3889 Castro Valley Blvd. Castro Valley, CA 94546

Please find attached tank removal report for your review and information.

We are in process to obtain at least three cost estimates before the next phase of the work. Before start of any work, we look forward to contact you and will work with you closely to clean the site.

Should you have any questions, please contact us at (510)-838-0768 (L. Patel) or P. Gupta at (510)-226-0136 or write to us above address.

Sincerely,

RBPatel

L. B. Patel

Attached: Tank removal Reports.

Accutite Environmental Engineering

35 So. Linden Avenue, South San Francisco, CA 94080-6407

Tel: (415) 952-5551 Fax: (415) 952-7631 Tank Testing: (415) 952-0327

Recld by VIP 6/7/93

May 14, 1993

VIP Service Station c/o Gupta, P.K. 2060 Springwater Drive Fremont, CA 94539

Patel, Lalji B. 385 Century Circle Danville, CA 94526

Attention: Mr. Gupta

Subject:

Underground Tank Removal.

Sampling Report

Site Address:

3889 Castro Valley Blvd., Castro Valley, California

Sampling Date:

26 APR 93 @ Tank Excavation 28 APR 93 @ Piping Trenches

Summary of Tank Removals:

Four (4) single wall steel tanks were removed from the above mentioned site on April 26, 1993. Location and orientation of the tanks were as schematically shown on the attached drawing. Tank sizes and contents were as follows: 3-10,000 gallons gasoline, 1-550 gallons waste oil.

None of the gasoline tanks showed apparent holes. The waste oil tank had visible holes (3 holes approx. 1/4"). Tanks were not wrapped.

Water was encountered at approximately 10.5 feet below local grade elevation and sampled. A sheen was present on top of the water, with black floating particles.

Tank removals were conducted as per the guidelines of the Alameda County Health Agency under the direct supervision of Mr. Scott Seery, and under permit from the Castro Valley Fire Department.

Tanks were hauled by Erickson Inc. under uniform hazardous waste manifest nos. 92202047, and 92202048 to their facility at 255 Parr Blvd., Richmond, where they were steamed cleaned then cut and disposed of as scrap metal. All accessible piping was removed.

Backfill soil was discolored green coarse sand and silt mix. Gasoline odor was noticed in the excavated 4 Soil. Excavated soil was stockpiled on site on a paved area and covered with plastic sheeting.

Soil Sampling Methodology:

Typically, undisturbed soil samples were collected from the sampling locations with the use of mechanical or hand held excavating tools. Several inches of surface soil were removed before a brass liner was pounded into the soil with the use of a rubber mallet.

Soil sampling was performed at the above mentioned address at the locations designated on the attached drawing. Sampling was done in accordance with accepted sampling techniques. Samples were collected in approved containers (brass liners), properly labeled and sealed (aluminum foil, plastic caps and tape), placed on blue ice, and transported under chain of custody to Sequoia Analytical Laboratory, Redwood City, California. Sequoia Analytical Laboratory is a Department of Health Services certified Lab (DHS# 145).

Water sample was collected into 2 VOA glass vials, pre-cleaned at the lab.

Original results of the analyses performed and the chain of custody forms used, are attached with this report

Summary of Soil Sampling:

26 APR 93 @ Tank Excavation:

Based on field conditioned was agreed between all present (S. Seery, E. Tabet, P.K. Gupta, and L.B. Patel), to sample the side walls of the gasoline tank excavation. Two samples were collected from each side at an average depth of 10.5 feet below local grade elevation. Samples were labeled according to their geographical locations.

One grab water sample was collected from the bottom of the gasoline tanks excavation. 3

One soil sample labeled 'WO' was collected from the bottom of the waste oil excavation at a depth of 7.5 feet below local grade elevation.

28 APR 93 @ Piping Trenches:

Soil samples were also collected from beneath the six (6) removed dispensers. Additionally one soil sample was collected in the former piping trench. Samples were labeled I-1 through I-7. Island and piping trench samples were collected at an average depth of 3 feet below local grade elevation.

Soil and water sampling locations are indicated on the attached drawing. All sampling was conducted under direct County supervision.

Summary of Soil Sampling Results:

(Please refer to original lab results attached)

Samples collected from the gasoline tanks excavation did report Total Petroleum Hydrocarbons (TPH) as § Gasoline levels ranging from 120 to 4,000 parts per million (ppm). Samples reported various levels of Lead ranging from Non Detected (N.D.) to 13 ppm.

Water sample collected reported 140,000 parts per billion (ppb) TPH as G and 13,000 ppb Benzene.

Sample collected from under the waste oil tank reported 1,300 ppm of total oil and grease (TO and warious other constituents, please refer to attached original sampling results.

Samples collected from the islands and piping trench did report Total Petroleum Hydrocarbons (TPH) as Gasoline levels ranging from N.D. to 4.7 parts per million (ppm). Samples I-6 and I-7 reported 7.6 and 5.8 ppm of Lead respectively.

Next Step Recommendations:

A copy of this report should be forwarded to Mr. Scott Seery, CHMM for his review and comments. We have included Mr. Seery's address for your convenience:

ALAMEDA COUNTY HEALTH AGENCY Division of Hazardous Materials 80 Swan Way, Rm. 350

Oakland, CA 94621 Attention: Scott O. Seery, CHMM

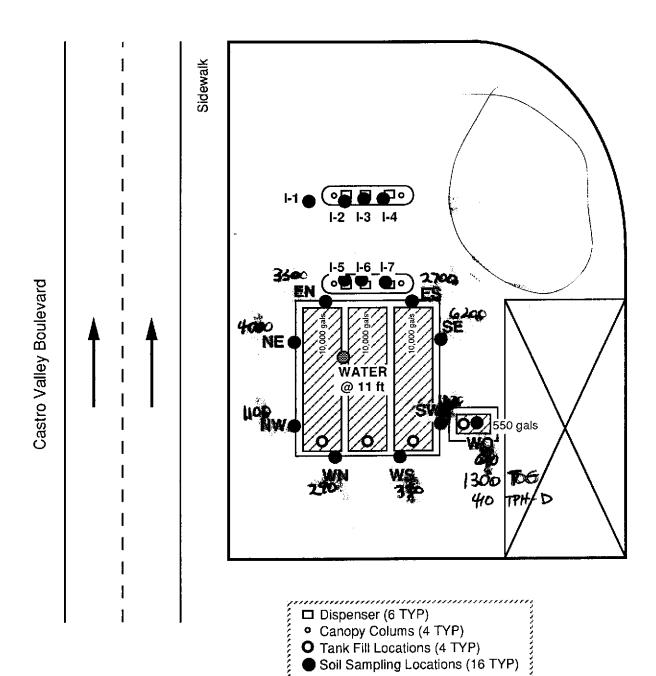
Limitations:

Our services consist of professional opinions, conclusions and recommendations made today in accordance with generally accepted engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. In case of litigation's, Accutite's maximum liability is limited to the US Dollar amount of contracted work.

If you need additional information regarding the tank removal or the sampling, please do not hesitate to contact our offices at (415) 952-5551.

Sincerely,

ACCUTITE ENVIRONMENTAL ENGINEERING


Eddy A. Tabet, MS, PE, REA

General Manager

Revisions 0	26 APR 93	Page 1 of	VIP Service Station c/o Patel, Lalji B. 385 Century Circle Danville, CA 94526	By: ACCUTITE
→ Z	SCALE: 1' (sampling loc only)		Site: VIP SERVICE STATAION 3889 Castro Valley Blvd Castro Valley, CA	35 South Linden Avenue South San Francisco California 94080

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Amy Marden

Client Project ID: VIP Service Sample Matrix:

Soil

Analysis Method: EPA 5030/8015/8020

First Sample #: 3DA9001 Sampled:

Reported:

Apr 26, 1993

Received:

Apr 26, 1993

May 4, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 3DA9001 NE	Sample I.D. 2DA9002 NW	Sample I.D. 3DA9003 SE	Sample I.D. 3DA9004 SW	Sample I.D. 3DA9005 EN _◆	Sample I.D. 3DA9006 E\$
Purgeable Hydrocarbons	1.0	4,660	1,104	6,200	120	3,300	2,700
Benzene	0.0050	47	8.1	92	4.1	11	10
Toluene	0.0050	300	41	360	5.4	170	95
Ethyl Benzene	0.0050	85	20	110	1.7	70	38
Total Xylenes	0.0050	490	120	610	8.5	420	220
Chromatogram Pat	tern:	Gas	Gas	Gas	Gas	Gas	Gas

Quality Control Data

accini, connect con						
Report Limit Multiplication Factor:	500	100	200	20	200	100
Date Analyzed:	4/28/93	4/28/93	4/29/93	4/28/93	4/29/93	4/29/93
Instrument Identification:	GCHP-7	GCHP-7	GCHP-7	GCHP-7	GCHP-6	GCHP-6
Surrogate Recovery, %: (QC Limits = 70-130%)	105	107	119	87	123	114

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

3DA9001.ACC <1>

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Amy Marden

Client Project ID: VIP Service

Soil

Sample Matrix: Analysis Method: EPA 5030/8015/8020

First Sample #: 3DA9007 Sampled:

Apr 26, 1993 Apr 26, 1993

Received: Reported:

May 4, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 3DA9007	Sample I.D. 3DA9008	Sample I.D. 3DA9009	Sample I.D.	Sample I.D.	Sample I.D.
Purgeable Hydrocarbons	1.0	290	330	670			
Benzene	0.0050	3.4	4.5	7.3			
Toluene	0.0050	16	12	21			
Ethyl Benzene	0.0050	4.7	5.7	8.7			
Total Xylenes	0.0050	26	30	44	·		
Chromatogram Pat	tern:	Gas	Gas	Gas			

Quality Control Data

dudiny cond or bate			_
Report Limit Multiplication Factor:	100	100	100
Date Analyzed:	4/28/93	4/28/93	4/28/93
Instrument Identification:	GCHP-7	GCHP-7	GCHP-7
Surrogate Recovery, %: (QC Limits = 70-130%)	103	86	105

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOTA ANALYTICAL

Project Manager

3DA9001.ACC <2>

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Amy Marden

Client Project ID: VIP Service Sample Matrix:

Water

Analysis Method: EPA 5030/8015/8020

First Sample #: 3DA9010 Sampled:

Apr 26, 1993

Received: Reported: Apr 26, 1993 May 4, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 3DA9010	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.
Purgeable Hydrocarbons	50	440,000					
Benzene	0.50	‡3,000 ₹					
Toluene	0.50	22,000					
Ethyl Benzene	0.50	3,200					
Total Xylenes	0.50	19,000					
Chromatogram Pat	tern:	Gas					

Quality Control Data

Report Limit

Multiplication Factor:

1,000

Date Analyzed:

4/28/93

Instrument Identification:

GCHP-2

Surrogate Recovery, %:

(QC Limits = 70-130%)

98

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

3DA9001.ACC <3>

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Amy Marden

Client Project ID: VIP Service

Sample Descript: Soil

Analysis for:

Lead

First Sample #: 3DA9001

Sampled:

Apr 26, 1993

Received:

Apr 26, 1993

Analyzed:

Apr 30, 1993

Reported:

May 4, 1993

LABORATORY ANALYSIS FOR:

Lead

			.	
Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg	
3DA9001	NE	5.0	5.8	
3DA9002	NW	5.0	6.0	
3DA9003	SE	5.0	13	
3DA9004	sw	5.0	N.D.	
3DA9005	EN	5.0	5.6	
3DA9006	ES	5.0	N.D.	
3DA9007	WN	5.0	8.0	
3DA9008	ws	5.0	N.D.	

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

3DA9001.ACC <4>

Client Project ID: VIP Service Accutite Sampled: Apr 26, 1993 35 South Linden Avenue Sample Descript: Soil, WO Received: Apr 26, 1993 South San Francisco, CA 94080 Analyzed: see below May 4, 1993 Attention: Amy Marden Lab Number: 3DA9009 Reported:

LABORATORY ANALYSIS

Analyte	Date Analyzed		tion Li ıg/kg	•
Cadmium	4/30/93	************	0.50	N.D.
Chromium	4/30/93	***********	0.50	41
Nickel	4/30/93	***********	2.5	
Lead	4/30/93	***********	5.0	21
Zinc	4/30/93	***********	0.50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,50

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

3DA9001.ACC <5>

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Amy Marden

Client Project ID: VIP Service

Sample Descript: Water-VIP &

Lab Number: 3DA9010 Sampled:

Apr 26, 1993

Received: Analyzed: Apr 26, 1993 see below

Reported:

May 4, 1993

LABORATORY ANALYSIS

Analyte

Date Analyzed **Detection Limit** mg/L

Sample Result

mg/L

4/28/93

0.0050

MCL = 0.05 mg/R

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA/ANALYTICA

Project Manage

3DA9001.ACC <6>

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Amy Marden

Client Project ID: VIP Service

Sampled:

Apr 26, 1993

Sample Matrix: Analysis Method:

EPA 3550/8015

Received: Reported: Apr 26, 1993

First Sample #:

3DA9009

May 4, 1993

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit mg/kg	Sample I.D. 3DA9009 WG	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.	
Extractable Hydrocarbons	1.0	410 💃						

Chromatogram Pattern:

Non-Diesel Mix C9-C14 + > C18

Quality Control Data

Report Limit

Multiplication Factor:

100

Date Extracted:

4/28/93

Date Analyzed:

4/29/93

Instrument Identification:

GCHP-5

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAI

Maria Lee

3DA9001.ACC <7>

SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Accutite
35 South Linden Avenue
South San Francisco, CA 94080

South Linden Avenue
South San Francisco, CA 94080
Attention: Amy Marden

Client Project ID: VIP Service

Matrix Descript: **30i**Analysis Method: SM 5520 E&F (Gravimetric)

First Sample #: 3DA9009

Sampled: Apr 26, 1993 Received: Apr 26, 1993 Extracted: Apr 29, 1993

Analyzed: Apr 30, 1993 Reported: May 4, 1993

TOTAL OIL & GREASE

Sample	Sample	Off & Grease	Se .
Number	Description	mg/kg	
3DA9009	wg	1,300	

Detection Limits:

50

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUQIA ANALYTICAL

Maria Lee Project Manager

Accutite 35 South Linden Avenue South San Francisco, CA 94080 Attention: Amy Marden Client Project ID: VIP Service Sample Descript: **Soil, WO** Analysis Method: EPA 5030/8010 Lab Number: 3DA9009 Sampled: Apr 26, 1993 Received: Apr 26, 1993 Analyzed: Apr 28, 1993 Reported: May 4, 1993

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		N.D.
Bromoform	5.0		N.D.
Bromomethane	10	***************************************	N.D.
Carbon tetrachloride	5.0		N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	10		N.D.
2-Chloroethylvinyl ether	10		N.D.
Chloroform	5.0		N.D.
Chloromethane	10	***************************************	N.D.
Dibromochloromethane	5.0	***************************************	N.D.
1,3-Dichlorobenzene	5.0	************	N.D.
1,4-Dichlorobenzene	5.0		N.D.
1,2-Dichlorobenzene	5.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
1,1-Dichloroethane	5.0	***************************************	N.D. 🖡
1,2-Dichloroethane	5.0		
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0	***************************************	N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	5.0	***************************************	N.D.
trans-1,3-Dichloropropene	5.0	***************************************	N.D.
Methylene chloride	50	***************************************	N.D.
1,1,2,2-Tetrachloroethane	5.0		N.D, 🔩
Tetrachloroethene	5.0	*************	
1,1,1-Trichloroethane	5.0	***************************************	N.D.
1,1,2-Trichloroethane	5.0		N.D.
Trichloroethene	5.0	***************************************	N.D.
Trichlorofluoromethane	5.0	***************************************	N.D.
Vinyl chloride	10	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

Accutite 35 South Linden Avenue South San Francisco, CA 94080 Attention: Amy Marden Client Project ID: VIP Service Sample Descript: Soil, WO Analysis Method: EPA 8270 Lab Number: 3DA9009 Sampled: Apr 26, 1993
Received: Apr 26, 1993
Extracted: Apr 28, 1993
Analyzed: May 1, 1993
Reported: May 4, 1993

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit		Sample Results
·	µg/kg		μg/kg
Acenaphthene	400	***************************************	N.D.
Acenaphthylene	400	*******************************	N.D.
Aniline	400	***************************************	N.D.
Anthracene	400		N.D.
Benzidine	10,000	***************************************	N.D.
Benzoic Acid	2,000	***************************************	N.D.
Benzo(a)anthracene	400	=======================================	N.D.
Benzo(b)fluoranthene	400	***************************************	N.D.
Benzo(k)fluoranthene	400	***************************************	N.D.
Benzo(g,h,i)perylene	400		N.D.
Benzo(a)pyrene	400	***************************************	N.D.
Benzyl alcohol	400	***************************************	N.D.
Bis(2-chloroethoxy)methane	400	***************************************	N.D.
Bis(2-chloroethyl)ether	400		N.D.
Bis(2-chloroisopropyl)ether	400		N.D.
Bis(2-ethylhexyl)phthalate	2,000		N.D.
4-Bromophenyl phenyl ether	400	***************************************	N.D.
Butyl benzyl phthalate	400	***************************************	N.D.
4-Chloroaniline	400	***************************************	N.D.
2-Chloronaphthalene	400	,	N.D.
4-Chloro-3-methylphenol	400		N.D.
2-Chlorophenol	400	***************************************	N.D.
4-Chlorophenyl phenyl ether	400	***************************************	N.D.
Chrysene	400	******************************	N.D.
Dibenz(a,h)anthracene	400	***************************************	N.D.
Dibenzofuran	400		N.D.
Di-N-butyl phthalate	2,000	************************	N.D.
1,3-Dichlorobenzene	400	***************************************	N.D.
1,4-Dichlorobenzene	400	4	N.D.
1,2-Dichlorobenzene	400	***************************************	N.D.
3,3-Dichlorobenzidine	2,000	<	N.D.
2,4-Dichlorophenol	400	***************************************	N.D.
Diethyl phthalate	400		N.D.
2,4-Dimethylphenol	400	***************************************	N.D.
Dimethyl phthalate	400	***************************************	N.D.
4,6-Dinitro-2-methylphenol	2,000		N.D.
2,4-Dinitrophenol	2,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.

Accutite 35 South Linden Avenue South San Francisco, CA 94080 Attention: Amy Marden

Client Project ID: VIP Service
Sample Descript: SAMP Service
Analysis Method: EPA 8270
Lab Number: 3DA9009

Sampled: Apr 26, 1993 Received: Apr 26, 1993 Extracted: Apr 28, 1993 Analyzed: May 1, 1993 Reported: May 4, 1993

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sampie Results μg/kg
2,4-Dinitrotoluene	400	***************************************	N.D.
2,6-Dinitrotoluene	400		N.D.
Di-N-octyl phthalate	400		N.D.
Fluoranthene		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Fluorene	400	,	N.D.
Hexachlorobenzene	400		N.D.
Hexachlorobutadiene.	400	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Hexachlorocyclopentadiene		***************************************	N.D.
Hexachloroethane	400	***************************************	N.D.
Indeno(1,2,3-cd)pyrene	400	=114144,000	N.D.
Isophorone		**************************	N.D.
2-Methylnapht balene			
25Methylphenol	400		N.D.
4-Methylphenol	400	***************************************	N.D.
Naphthalene	400		
2-Nitroaniline.			N.D.
3-Nitroaniline	2,000	*****	N.D.
4-Nitroaniline	2,000		N.D.
Nitrobenzene	400		N.D.
2-Nitrophenol	400		N.D.
4-Nitrophenol			N.D.
N-Nitrosodiphenylamine		***************************************	N.D.
N-Nitroso-di-N-propylamine		.,	N.D.
Pentachlorophenol			N.D.
Phenanthrene		***************************************	N.D.
Phenol	400	***************************************	N.D.
Pyrene		<-><<	N.Ď.
1,2,4-Trichlorobenzene	400	***********************************	N.D.
2,4,5-Trichlorophenol	2,000	***************************************	N.D.
2,4,6-Trichlorophenol	400	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Project Manager

Page 2 of 2

3DA9001.ACC <11>

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Amy Marden

Client Project ID: VIP Service

Matrix: Water

QC Sample Grou 3DA9010

Reported: May 4, 1993

QUALITY CONTROL DATA REPORT

		Ethyl-		
Benzene	Toluene	Benzene	Xylenes	
EPA 8020	EPA 8020	EPA 8020	EPA 8020	
M. Nipp	M. Nipp	M. Nipp	M. Nipp	
10	10	10	30	
μg/L	μg/L	μg/L	µg/L	
GBLK042893	GBLK042893	GBLK042893	GBLK042893	
-	-	_	-	
4/28/93	4/28/93	4/28/93	4/28/93	
GCHP-2	GCHP-2	GCHP-2	GCHP-2	
91	90	91	90	
80-120	80-120	80-120	80-120	
G3DA8103	G3DA8103	G3DA8103	G3DA8103	
-	-	-		
4/28/93	4/28/93	4 /29 /02	4 /00 /00	
		4/20/33	4/40/30	
GCHP-2	GCHP-2	GCHP-2	4/26/93 GCHP-2	
GCHP-2	GCHP-2	GCHP-2	GCHP-2	
GCHP-2 100	GCHP-2 100	GCHP-2 100	GCHP-2 100	
	EPA 8020 M. Nipp 10 µg/L GBLK042893 - 4/28/93 GCHP-2 91 80-120 G3DA8103	EPA 8020 EPA 8020 M. Nipp M. Nipp 10 10 μg/L GBLK042893 GBLK042893	EPA 8020 EPA 8020 EPA 8020 M. Nipp M. Nipp M. Nipp 10 10 10 μg/L μg/L GBLK042893 GBLK042893 GBLK042893	Benzene Toluene Benzene Xylenes EPA 8020 EPA 8020 EPA 8020 EPA 8020 M. Nipp M. Nipp M. Nipp M. Nipp 10 10 30 μg/L μg/L μg/L μg/L μg/L μg/L GBLK042893 GBLK042893 GBLK042893 GBLK042893 GBLK042893 GBLK042893 GBLK042893 GBLK042893 GCHP-2 GC

SEQUOIA ANALYTICAL

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

Project Manager

3DA9001.ACC <13>

Client Project ID: VIP Service

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Amy Marden

Matrix: Soil

QC Sample Grou 3DA9001-09

Reported: May 4, 1993

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-		
	Benzene	Toluene	Benzene	Xylenes	
					· · · · · · · · · · · · · · · · · · ·
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	R. Geckler	R. Geckler	R. Geckler	R. Geckler	
Conc. Spiked:	0.20	0.20	0.20	0.60	
Units:	mg/Kg	mg/Kg	mg/Kg	mg/Kg	
LCS Batch#:	GBLK042893	GBLK042893	GBLK042893	GBLK042893	
Date Prepared:	4/28/93	4/28/93	4/28/93	4/28/93	
Date Analyzed:	4/28/93	4/28/93	4/28/93	4/28/93	
Instrument I.D.#:	GCHP-7	GCHP-7	GCHP-7	GCHP-7	
LCS %					
Recovery:	115	105	100	102	
Control Limits:	60-140	60-140	60-140	60-140	
MS/MSD					
Batch #:	3DA8804	3DA8804	3DA8804	3DA8804	
Date Prepared:	4/28/93	4/28/93	4/28/93	4/28/93	
Date Analyzed:	4/28/93	4/28/93	4/28/93	4/28/93	
Instrument I.D.#:	GCHP-7	GCHP-7	GCHP-7	GCHP-7	
Matrix Spike					
% Recovery:	100	100	95	93	
Matrix Spike					
Duplicate %			50		
Recovery:	90	85	80	82	
Relative % Difference:	11	16	17	12	

SEQUOIA ANALYTICAL

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

Project Manager

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Amy Marden

Client Project ID: VIP Service

Soil, Water Matrix:

QC Sample Grou 3DA9001-10

Reported: May 4, 1993

QUALITY CONTROL DATA REPORT

ANALYTE

Lead

Method:

EPA 239.2

Analyst: Conc. Spiked: S. Chin. 0.050

Units:

mg/L

LCS Batch#:

BLK042793

Date Prepared: Date Analyzed: 4/27/93

4/27/93

Instrument I.D.#:

MV-1

LCS %

Recovery:

106

Control Limits:

75-125

MS/MSD

Batch #:

3DA6303

Date Prepared:

4/27/93

Date Analyzed:

4/27/93

Instrument I.D.#:

MV-1

Matrix Spike

% Recovery:

Matrix Spike

Duplicate %

Recovery:

Relative %

Difference:

* Matrix interference

SEQUOIA ANALYTIÇAL

Maria Lee Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

3DA9001.ACC <14>

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Amy Marden

Client Project ID: VIP Service

Matrix:

Soil

QC Sample Grou 3DA9001-09

Reported: May 4, 1993

QUALITY CONTROL DATA REPORT

ANALYTE	Beryllium	Cadmium	Chromium	Nickel		
Method:	EPA 6010	EPA 6010	EPA 6010	EPA 6010		
Analyst:	C. Medefessor	C. Medefessor	C. Medefessor	C. Medefessor		
Conc. Spiked:	100	100	100	100		
Units:	mg/kg	mg/kg	mg/kg	mg/kg		
LCS Batch#:	BLK043093	BLK043093	BLK043093	BLK043093		
Date Prepared:	4/30/93	4/30/93	4/30/93	4/30/93		
Date Analyzed:	4/30/93	4/30/93	4/30/93	4/30/93		
Instrument I.D.#:	MTJA-2	MTJA-2	MTJA-2	MTJA-2		
LCS %						
Recovery:	99	97	100	99	•	
Control Limits:	75-125	75-125	75-125	75-125		
MS/MSD						
Batch #:	3DA9001	3DA9001	3DA9001	3DA9001		
Date Prepared:	4/30/93	4/30/93	4/30/93	4/30/93		
Date Analyzed:	4/30/93	4/30/93	4/30/93	4/30/93		
Instrument I.D.#:	MTJA-2	MTJA-2	MTJA-2	MTJA-2		
Matrix Spike						
% Recovery:	95	91	97	90		
Matrix Spike						
Duplicate % Recovery:	95	91	94	86		
•	3 0	₽1	31	00		
Relative % Difference:	0.0	2.2	0.4	4.5		
Dillerence:	0.0	0.0	3.1	4.5		

SEQUOIA ANALYTICAL

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

Project Manager

3DA9001.ACC <15>

Client Project ID: VIP Service

35 South Linden Avenue

Attention: Amy Marden

Matrix: Soil

South San Francisco, CA 94080

QC Sample Grou 3DA9009

Reported: May 4, 1993

QUALITY CONTROL DATA REPORT

ANALYTE

Diesel

Method:

EPA 8015

Analyst: Conc. Spiked: C. Lee

Units:

15 mg/kg

LCS Batch#:

DBLK042893

Date Prepared: Date Analyzed: 4/28/93

4/28/93

Instrument I.D.#:

GCHP-5

LCS %

Recovery:

80

Control Limits:

50-150

MS/MSD

Batch #:

D3DA7302

Date Prepared: Date Analyzed: 4/28/93

4/29/93

Instrument I.D.#:

GCHP-5

Matrix Spike

% Recovery:

Matrix Spike

Duplicate %

Recovery:

Relative %

Difference:

* Note: Loss of diesel spike is due to matrix effect.

SEQUOIA ANALYTICAL

Maria Lee Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

3DA9001.ACC <16>

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Amy Marden

Client Project ID: VIP Service

Soil Matrix:

QC Sample Grou 3DA9009

Reported: May 4, 1993

QUALITY CONTROL DATA REPORT

ANALYTE

Oil & Grease

Method:

EPA 5520 EF

Analyst:

M. Shkidt

Conc. Spiked:

1000

Units:

mg/kg

LCS Batch#:

BLK042993

Date Prepared:

4/29/93

Date Analyzed:

4/29/93

Instrument I.D.#:

N/A

LCS %

Recovery:

89

Control Limits:

70-110

MS/MSD

Batch #:

3DB7001

Date Prepared:

4/29/93

Date Analyzed:

4/29/93

Instrument I.D.#:

N/A

Matrix Spike

% Recovery:

91

Matrix Spike

Duplicate % Recovery:

91

Relative %

Difference:

0.0

SEQUOIA ANALYTICAL

Maria Lee Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

3DA9001.ACC < 17>

Client Project ID: VIP Service

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Amy Marden

Matrix:

Soil

QC Sample Grou 3DA9009

Reported: May 4, 1993

QUALITY CONTROL DATA REPORT

ANALYTE	1,1-Dichloroethene	Trichloroethene	Chloro-	
			benzene	
Method:	EPA 8010	FD4 0040	ED4 0040	
Analyst:	B. Samra	EPA 8010 B. Samra	EPA 8010 B. Samra	
Conc. Spiked:	25	25	25	
Units:	μg/kg	μg/kg	μg/kg	
LCS Batch#:	VBLK042893	VBLK042893	VBLK042893	
Date Prepared:	4/28/93	4/28/93	4/28/93	
Date Analyzed:	4/28/93	4/28/93	4/28/93	
Instrument I.D.#:	GCHP-9	GCHP-9	GCHP-9	
LCS %				
Recovery:	108	128	96	
Control Limits:	59-172	62-137	60-133	
MS/MSD				

MS/MSD Batch #:	V3DA9009	V3DA9009	V3DA9009
Date Prepared: Date Analyzed: Instrument I.D.#:	4/28/93 4/28/93 GCHP-9	4/28/93 4/28/93 GCHP-9	4/28/93 4/28/93 GCHP-9
Matrix Spike % Recovery:	88	136	96
Matrix Spike Duplicate % Recovery:	100	140	108
Relative % Difference:	13	2.9	12

SEQUOJA ANALYTICAL

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

Project Manager

3DA9001.ACC <18>

Client Project ID: VIP Service

Soil

35 South Linden Avenue

Matrix:

South San Francisco, CA 94080

Attention: Amy Marden QC Sample Grou 3DA9009

Reported: May 4, 1993

QUALITY CONTROL DATA REPORT

ANALYTE	Phenol	2-Chlorophenol	1,4-Dichloro-		1,2,4-Trichloro-		
			benzene	N-propylamine	benzene	Methylphenyl	
Method:	EPA 8270	EPA 8270	EPA 8270	EPA 8270	EPA 8270	EPA 8270	
Analyst:	G. Meyer	G. Meyer	G. Meyer	G. Meyer	G. Meyer	G. Meyer	
Conc. Spiked:	50-100	50-100	50-100	50-100	50-100	50-100	
Units:	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	
LCS Batch#:	BLK042393	BLK042393	BLK042393	BLK042393	BLK042393	BLK042393	
Date Prepared:	4/23/93	4/23/93	4/23/93	4/23/93	4/23/93	4/23/93	
Date Analyzed:	4/29/93	4/29/93	4/29/93	4/29/93	4/29/93	4/29/93	
instrument i.D.#:	F4	F4	F4	F4	F4	F4	
LCS %							
Recovery:	86	81	80	92	90	83	
Control Limits:	26-90	25-102	28-104	41-126	38-107	26-103	
MS/MSD							
Batch #:	3D96502	3D96502	3D96502	3D96502	3D96502	3D96502	
Date Prepared:	4/23/93	4/23/93	4/23/93	4/23/93	4/23/93	4/23/93	
Date Analyzed:	4/29/93	4/29/93	4/29/93	4/29/93	4/29/93	4/29/93	
Instrument I.D.#:	H5	H5	H5	H5	H5	H5	
Matrix Spike							
% Recovery:	77	54	68	70	68	57	
Matrix Spike							
Duplicate %							•
Recovery:	70	51	58	66	58	44	
Relative %							
Difference:	9.5	5.7	16	5.9	16	26	

SEQUOIA ANALYTICAL

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

Project Manager

Page 1 of 2

3DA9001.ACC <19>

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Amy Marden

Client Project ID: VIP Service

Matrix: Soil

QC Sample Grou 3DA9009

Reported: May 4, 1993

QUALITY CONTROL DATA REPORT

ANALYTE	Acenaphthene	4-Nitrophenol	2,4-Dinitro- toluene	Pentachloro- phenol	Pyrene	-
			toldelle	priorior		
Method:	EPA 8270	EPA 8270	EPA 8270	EPA 8270	EPA 8270	
Analyst:	G. Meyer	G. Meyer	G. Meyer	G. Meyer	G. Meyer	
Conc. Spiked:	50-100	50-100	50-100	50-100	50-100	
Units:	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	
LCS Batch#:	BLK042393	BLK042393	BLK042393	BLK042393	BLK042393	
Date Prepared:	4/23/93	4/23/93	4/23/93	4/23/93	4/23/93	
Date Analyzed:	4/29/93	4/29/93	4/29/93	4/29/93	4/29/93	
Instrument I.D.#:	F4	F4	F4	F4	F4	
LCS %						
Recovery:	78	84	86	83	86	
Control Limits:	31-137	11-114	28-89	17-109	35-142	
MS/MSD						
Batch #:	3D96502	3D96502	3D96502	3D96502	3D96502	
Date Prepared:	4/23/93	4/23/93	4/23/93	4/23/93	4/23/93	
Date Analyzed:	4/29/93	4/29/93	4/29/93	4/29/93	4/29/93	
Instrument I.D.#:	H5	H5	H5	H5	H5	
Matrix Spike						
% Recovery:	68	0.0	0.0	61	86	
Matrix Spike						
Duplicate %						
Recovery:	62	0.0	0.0	34	74	
Relative %						
Difference:	9.2	0.0	0.0	5 7	15	

SEQUOIA ANALYTICAL

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

Maria Lee Project Manager

Page 2 of 2

3DA9001.ACC <20>

CHAIN OF CUSTODY REPORT

SOUTH SAN FRANCISCO, CA 94080 BILLING TO: ACCUTTTE FORT MARCHITES FORT MAR	LIENT: ACCUTITE ENVIRON	MENTAL	ENGI	NEERING	REPOR	T 10	: Ć	-757	ワン	Ť	AR	SET			,	IIDuan	Cruio.	21	Maria Property	***************************************		<u>trinterie</u>
BILLING TO: ACCUTTE DOLL IS DAY ANALYSIS REQUESTED ANALYSIS REMARKS ANALE MINGER STATION DESCRIPTION OF CONT. CONT. TIME/DATE NOW STATION DESCRIPTION OF CONT. CONT. TIME/DATE NOW ANALYSIS REQUESTED ANALYSIS REQ	nonsee. 35 SOUTH LINDEN			•						•	,	Ψ,			l'	UKAAK	COND	TIME:	1	Γ		
THORE: (415) 952-5551 ACCUTITE POSTRILLING REFERENCE: POSTRILLING REFERENCE			41 27		BILLI	HG T	n:								,	4	7	\top		1 1	HR.	
RELINGUISHED ST: DATE: VIP Service POOR/BILLING REFERENCE: AMALYSIS REQUESTED AMALYSIS REQUES	HONE: (415) 952-5551							יחידיון	t -			•			- 12					1 7	Z KR.	
AMPLE ID#/ SAMPLE NUMBER TIPE SAMPLING STATION DESCRIPTION OF CONT. CONT. THE/DATE NOW SOL / 20 3:45 pm x x x NOW SE /	ROJECT NAME/SITE: VIP Soci	11CE			PO#/E		*****								(5	DAY) <u> X</u>	10	DAY	1	S DAY	
STATION DESCRIPTION OF CONT. CONT. TIME/OATE POR PRINCE	HPLER:			10/02		111	ı	D				ı	1									
NE SOIL	AMPLE ID#/ SAMPLE NU	UMBER T	TYPE	SAMPLING,	T.P.H	B/X!	OTAL	TPH	704	8010	8270	8 5				REM	ARKS					
		····			 i	 i		, ,				314	_	_				`		"	O. 10 L.Y.	
1				7:49 pm	i i	i							_	ļ_						930	YANC	Za
	5E	, 	+ +	 				<u> </u>					_	_						1		
ES	5W	,	1		- 				[1		_									
1	EN 1	. /	1 1	· · · · · · · · · · · · · · · · · · ·		1	1	<u> </u>			<u> </u>		_ļ	.								
1		', 	+						_				_	_				·				
U.O. V 1 V 4:15 pm × × × × × × × × × × × × × × × × × ×	NN .	- (·		- 							_ -			<u> </u>			•	·		
U.O. Uater-vip H20 H25 pm X X X X X X X X X	**************************************			- :	i 						ļ		1						•			
Unitervie H20 4 200 4:26 pm X X X X X X X X X X X X X X X X X X	U.O. 1			11.15 000									1									
DATE TIME: RECEIVED BY: 10 10		1			!!		- 1	X	X	×	X		\perp									
CATALL HAVEL TIME: CATALL TIME: CATALL TIME: CATALL TIME: CHANGE TIME: CATALL TIME: CHANGE TIME: CATALL TIME: CON. SITE TIME: COTHER:					7									[_						1		
ELIHOUISHED BY: OTHER: RECEIVED BY: OTHER:	Essin Jalah				RECE	[VED	BY:														<u>-</u>	
OTHER:	ELINGUISHED BY:				; -	IVEN			·	·	,	· 				HE:						
				,			411				•								₁			
DATE TIME: RECEIVED IN LAB BY: 4/26/43 PRESERVED 7 PRESERVED 7 PRESERVED 7	ELINGUISHED BY:	Į	DATE	TIHE:	RECE	VED	IN 1	AB B1	(= /-	1]	RESE	RVED	7				res	_ DK	

35 South Linden Avenue

Client Project ID:

VIP Service

Sampled:

Apr 28, 1993

South San Francisco, CA 94080

Sample Matrix: Analysis Method:

EPA 5030/8015/8020

Received: Reported: Apr 28, 1993 May 5, 1993

Attention: Eddy Tabet

First Sample #:

3DB9101

Soil

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 3DB9101 I-1	Sample I.D. 3DB9102 I-2	Sample I.D. 3DB9103 I-3	Sample I.D. 3DB9104 I-4	Sample I.D. 3DB9105 I-5	Sample I.D. 3DB9106 I-6
Purgeable Hydrocarbons	1.0	N.D.	1.7	4.7	3.4	2.7	N.D.
Benzene	0.0050	0.0080	0.097	0.21	0.27	0.075	N.D.
Toluene	0.0050	N.D.	N.D.	0.038	0.031	N.D.	N.D.
Ethyl Benzene	0.0050	N.D.	0.052	0.10	0.14	0.058	N.D.
Total Xylenes	0.0050	N.D.	0.020	0.37	0.45	0.12	N.D.
Chromatogram Pat	ttern:	Disc Peak	Gas	Gas	Gas	Gas	

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	1.0	1.0	1.0
Date Analyzed:	4/30/93	4/30/93	4/30/93	4/30/93	4/30/93	4/30/93
Instrument Identification:	GCHP-6	GCHP-6	GCHP-6	GCHP-6	GCHP-6	GCHP-6
Surrogate Recovery, %: (QC Limits = 70-130%)	107	108	116	102	112	96

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

3DB9101.ACC <1>

35 South Linden Avenue

South San Francisco, CA 94080

Client Project ID:

VIP Service

Sampled: Received: Apr 28, 1993

Sample Matrix: Analysis Method:

Soil

EPA 5030/8015/8020

Reported:

Apr 28, 1993

Attention: Eddy Tabet

First Sample #:

3DB9107

May 5, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 3DB9107 I-7	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.	Sample I.D.
Purgeable Hydrocarbons	1.0	N.D.					
Benzene	0.0050	0.020					
Toluene	0.0050	N.D.					
Ethyl Benzene	0.0050	0.017					
Total Xylenes	0.0050	0.015					
Chromatogram Pat	itern:	-					

Quality Control Data Report Limit

Multiplication Factor:

1.0

Date Analyzed:

4/30/93

Instrument Identification:

GCHP-6

Surrogate Recovery, %:

101

(QC Limits = 70-130%)

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA-ANALYTICAL

Maria Lee Project Manager

3DB9101.ACC <2>

35 South Linden Avenue

South San Francisco, CA 94080

Client Project ID:

VIP Service

Sampled:

Apr 28, 1993

Sample Descript:

Soil

Received:

Apr 28, 1993

Attention: Eddy Tabet

Analysis for:

Lead

Analyzed:

May 3, 1993

First Sample #:

3DB9101

May 5, 1993 Reported:

LABORATORY ANALYSIS FOR:

Lead

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
3DB9101	l-1	5.0	N.D.
3DB9102	I-2	5.0	N.D.
3DB9103	1-3	5.0	N.D.
3DB9104	l-4	5.0	N.D.
3DB9105	I-5	5.0	N.D.
3DB9106	I-6	5.0	7.6
3DB9107	l -7	5.0	5.8

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

3DB9101.ACC <3>

Client Project ID: VIP Service

35 South Linden Avenue

Attention: Eddy Tabet

Matrix: Soil

South San Francisco, CA 94080

QC Sample Group 3DB9101-07

Reported: May 5, 1993

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-		
ANALTIE	Benzene	Toluene	⊏unyı- Benzene	Xylenes	
	Denzene	roluene	Delizerie	Ayleries	
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	C. Donohue	C. Donohue	C. Donohue	C. Donohue	
Conc. Spiked:	0.20	0.20	0.20	0.60	
Units:	mg/kg	mg/kg	mg/kg	mg/kg	
LCS Batch#:	GBLK043093	GBLK043093	GBLK043093	GBLK043093	
Date Prepared:	4/30/93	4/30/93	4/30/93	4/30/93	
Date Analyzed:	4/30/93	4/30/93	4/30/93	4/30/93	
Instrument I.D.#:	GCHP-6	GCHP-6	GCHP-6	GCHP-6	
LCS %					
Recovery:	90	100	100	102	
Control Limits:	66-142	59-139	60-133	60-133	
MS/MSD					
Batch #:	3DC2804	3DC2804	3DC2804	3DC2804	
Date Prepared:	4/30/93	4/30/93	4/30/93	4/30/93	
Date Analyzed:	4/30/93	4/30/93	4/30/93	4/30/93	
Instrument I.D.#:	GCHP-6	GCHP-6	GCHP-6	GCHP-6	
Matrix Spike					
% Recovery:	80	80	80	92	
Matrix Spike					
Duplicate %					
Recovery:	85	95	⁻ 95	97	
Relative %					
Difference:	6.1	17	17	5.3	

SEQUOIA ANALYTICAL

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

Maria Lee Project Manager

35 South Linden Avenue

South San Francisco, CA 94080

Attention: Eddy Tabet

Client Project ID:

Matrix:

Soil

VIP Service

QC Sample Group 3DB9101-07

Reported: May 5, 1993

QUALITY CONTROL DATA REPORT

Beryllium	Cadmium	Chromium	Nickel	
EPA 6010	EPA 6010	EPA 6010	EPA 6010	
	<u>-</u> ,			
mg/kg	mg/kg	mg/kg	mg/kg	
BLK050393	BLK050393	BLK050393	BLK050393	
5/3/93	5/3/93	5/3/93	5/3/93	
5/3/93	5/3/93	5/3/93	5/3/93	
MTJA-2	MTJA-2	MTJA-2	MTJA-2	
94	89	93	96	
75-125	75-125	75-125	75-125	
3DB9105	3DB9105	3DB9105	3DB9105	
5/3/93	5/3/93	5/3/93	5/3/93	
5/3/93	5/3/93	5/3/93	5/3/93	
MTJA-2	MTJA-2	MTJA-2	MTJA-2	
94	88	97	90	
92	85	∕Q1	ี 81	
92	85	∕91	81	
•	C. Medefesser 100 mg/kg BLK050393 5/3/93 5/3/93 MTJA-2 94 75-125 3DB9105 5/3/93 5/3/93 MTJA-2	C. Medefesser 100 mg/kg 100 mg/kg BLK050393 BLK050393 5/3/93 5/3/93 MTJA-2 94 89 75-125 75-125 3DB9105 3DB9105 5/3/93 5/3/93 5/3/93 5/3/93 MTJA-2 MTJA-2 MTJA-2	C. Medefesser C. Medefesser 100 100 mg/kg mg/kg mg/kg mg/kg BLK050393 BLK050393 BLK050393 5/3/93 5/3/93 5/3/93 5/3/93 MTJA-2 MTJA-2 MTJA-2 3DB9105 3DB9105 3DB9105 5/3/93 5/3/93 5/3/93 5/3/93 5/3/93 5/3/93 MTJA-2 MTJA-2 MTJA-2 MTJA-2	C. Medefesser C. Medefesser C. Medefesser C. Medefesser 100 100 100 100 100 mg/kg mg/kg mg/kg BLK050393 BLK050393 BLK050393 BLK050393 5/3/93 5/3/93 5/3/93 5/3/93 5/3/93 MTJA-2 MTJA-2 MTJA-2 MTJA-2 3DB9105 3DB9105 3DB9105 3DB9105 5/3/93 5/3/93 5/3/93 5/3/93 5/3/93 5/3/93 5/3/93 5/3/93 MTJA-2 MTJA-2 MTJA-2 MTJA-2 MTJA-2

SEQUQIA ANALYTICAL

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

Project Manager

CHAIN OF CUSTODY REPORT

ACCUTITE ENVIRONMENTAL ENGINEERING 35 SOUTH LINDEN SOUTH SAN FRANCISCO, CA 94080					REPORT TO:							TURHAROUND TIME:							
					BILLING TO:							j	24 HR.		48 HR.	\top	72 HR		
HONE: (415) 952-5551				ACCUTITE							•	5 DAY	b	CIO DAY	1	15 DA			
PROJECT HAME/SITE: VIP SETVICE 3889 Castro Valley Blud.					PO#/BILLING REFERENCE:											710 021	<u>-</u> !	113 04	
641101 50-			DATE: 4/28/93		5	×	1 Pb	ANAL	1515	SIS REQUES		Ì							
STATION	SAMPLE DESCRIPTION	NUMBER OF CONT.	TYPE CONT.	SAMPLING TIME/DATE	TPH	1-							REMARKS				SAMPLE		
T-1	5011	<u> </u>	2 6035	1:05Pm 4/28	X	X	X						ij	<u> </u>		<u></u>			
工-2	Ч		87350	1:10 Pm 4/28	X	X	X			1	İ		Ť				1930	4 B 91	
I-3	71		1 7 1	1:15Pm 4/28	1	X	X	Ī	1	1		-i -	+	· · · · · ·	<u> </u>	 .			Ø2
고-4	Ч	ı	1 2	1125Pm 4/zf	1		X		<u> </u>	i			- -				1	 	03
I-5	1	1.1		1:30 Pm4/28			X	- -	i	<u> </u>			-				- 	 	04
I-6	71	1	Brass	1:35 Pm 4/24	1	ĺχ	1		十	 	 		-						05
I-7	\(\(\)	i	8.00	1:40 Am 4/26	N/V	X	X		+			-	+		 -	-	<u>- · </u>		06
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			<u> </u>		'								\top				+		<u>07</u>
]	<u> </u>												1	<u> </u>	
RELINGUISHED BY			DATE	TIME:	PEC	FIVE													
			4-ZB-	RECEIVED BY:							TRAVEL TIME:								
RELINGUISHED BY:		DATE	TIME:	REC		BY			6.	<u> </u>		HER:		ME:					
RELINQUISHED BY:		4/28-43C DATE 1 TIME: 4/28 (050		RECEIVED IN LAB BY						PS	PRESERVED 7 IN GOOD CONDITION?				YES	NO)		
•	•				 Y	•	()X	X	/	1.	111	600	י כטאסן דן	O47		<u> </u>		