12/01/2015 15:21

To: Fage Z of 3

5:21 05104834200

KERRY ASSOCIATES 2015-12-01 20:09:27 (GMT) PAGE 02/03 19230045000 From: Ronald Chinn

RECEIVED

By Alameda County Environmental Health 12:24 pm, Dec 24, 201:

December 1, 2015

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Re: Kerry & Associates - Palace Garage

14336 Washington Avenue San Leandro, California ACEH Case No. RO0000208

Dear Mr. Detterman,

I declare, under penalty of perjury, that the information and/or recommendations contained in the **Semi Annual 2015 Groundwater Monitoring Report** are true and correct to the best of my knowledge.

Sincerely

Mr. Jeffrey Kerry

December 21, 2015

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

RE: SEMI-ANNUAL 2015 GROUNDWATER
MONITORING REPORT – PALACE GARAGE
14336 Washington Boulevard
San Leandro, California
ACEH Case # RO0000208, SFRWQCB Case # 01-1133

Dear Mr. Detterman:

On behalf of Kerry & Associates, INNOVEX Environmental Management Inc. (INNOVEX) has prepared this Semi-Annual 2015 Groundwater Monitoring Report (Report) for the Palace Garage facility (the Site) located at 14336 Washington Avenue in San Leandro, California (Figure 1).

1.0 SITE BACKGROUND SUMMARY

A 550-gallon gasoline underground storage tank (UST) was removed from the Site in 1991. Subsequent investigations included the installation of three monitoring wells (MW-1 through MW-3) and the drilling of 15 borings (B-1 through B-15). Based on data obtained from the wells and borings, impacted unsaturated-zone soil is confined to the area of the former dispenser pad and UST. The primary groundwater flow direction is toward the southwest.

In December 2002, Professional Service Industries, Inc. (PSI) conducted a soil and groundwater investigation to evaluate the lateral extent of petroleum hydrocarbons in the soil and groundwater at the Site. Borings B-16 and B-17 were advanced to between 20 and 24 feet below ground surface (bgs). Boring B-16 was converted into monitoring well MW-4. Concentrations of total petroleum hydrocarbons as gasoline (TPHg) and gasoline related contaminants were detected only in soil from boring B-17 and groundwater from wells MW-1 and MW-2. The locations of the monitoring wells and soil borings are shown on Figure 2.

Closure Solutions, Inc. (Closure Solutions) conducted a Sensitive Receptor Survey to identify all water supply wells and sensitive receptors within a 2,000-foot radius of the Site. The closest water supply wells are two industrial wells approximately 450 feet northwest (cross-gradient) of the Site. The closest domestic well is approximately 1,500 feet southeast (cross-gradient) of the Site. The closest down-gradient well is an irrigation well approximately 1,400 feet southwest of the Site. No surface water bodies were identified within a 2,000 foot radius of the Site. Results

of the Sensitive Receptor Survey are presented in the Sensitive Receptor Survey report dated August 27, 2008.

Closure Solutions prepared and submitted a Site Conceptual Model (SCM) dated September 30, 2008 for the Site. The preparation of the SCM was requested by ACEH in their letter dated September 2, 2008.

In an email dated June 12, 2009, Mr. Steve Plunkett with the ACEH approved the reduction of groundwater monitoring to a semi-annual basis conducted in second and fourth quarters. Mr. Plunkett also approved the recommendation to eliminate fuel oxygenates from the suite of laboratory analytes.

On October 15, 2009, Closure Solutions discussed the Site status with ACEH. Data gaps discussed in the SCM and other information that ACEH would require for site closure were identified. Closure Solutions submitted the Soil Vapor Probe and Additional Assessment Work Plan on November 13, 2009 to address the work necessary to move the Site toward closure.

On May 14, 2010, Closure Solutions submitted a letter to the ACEH stating that Closure Solutions intended to proceed with the proposed scope of work pursuant to CCR Title 23, Division 3, Chapter 16, Section 2722 (e) which states, "Implementation of the proposed work plan may begin sixty (60) calendar days after submittal, unless the responsible party is otherwise directed in writing by the regulatory agency". On May 21, 2010, the ACEH responded to Closure Solutions' letter of intent via email explaining that the ACEH had been largely precluded from generating letters on cases due to the work load imposed by SWRCB Resolution 2009-0042, and they would attempt to shorten the review interval for the Site.

On July 26, 2010, a representative from Closure Solutions was on site to oversee the installation and sampling of three temporary soil vapor probes (SV-1 through SV-3) and advancement of one down-gradient soil boring (SB-18). A Soil Vapor Testing and Additional Assessment Report describing field activities and discussing soil and soil vapor analytical results was submitted to the ACEH on August 30, 2010.

On January 24, 2012, Closure Solutions supervised the advancement of two soil borings, collection of additional soil and groundwater data, and installation of wells MW-5 and MW-6. The work was completed in order undertake further corrective actions at the Site. Collected soil and groundwater samples were analyzed for gasoline range organics (GRO), benzene, toluene, ethylbenzene, and xylenes (BTEX compounds). Additionally, bio-attenuation parameters were analyzed for groundwater collected from well MW-5. A discussion of analytical results is presented in the Groundwater Monitoring Well Installation Report submitted on March 30, 2012.

After completing the monitoring well installation, a dual-phase extraction (DPE) pilot test was performed from February 21, 2015 through February 25, 2012. The pilot test was conducted to evaluate whether DPE would be a viable technology to remediate soil and groundwater beneath the Site. High groundwater extraction rates were encountered during pilot testing conducted from MW-1. As a result, subsurface soils could not be effectively dewatered to allow remediation via vapor extraction. Pilot testing from well MW-6 produced average groundwater extraction rates that were roughly two-thirds less than those observed during testing from MW-1. Subsequently,

the technology was successful in lowering the groundwater table in the vicinity of well MW-6 and exposing the capillary fringe or "smear" zone. Based on the results of testing performed from MW-6, DPE appears to be a viable option for Site remediation.

On October 9, 2012 the well boxes for monitoring wells MW-1, MW-2, MW-5 and MW-6 were reset as part of repaving activities conducted in the alley between the Site building and adjacent building. Boxes for MW-1, MW-2, and MW-6 were elevated an average of 1.5 inches to assure the boxes were above the new grade elevations. Well box MW-5 had to be lowered approximately 3 inches. Because of the elevation drop, the well casing had to be cut down 3 inches for it to fit inside the repositioned well box. The well top-of-casing elevation was re-surveyed on October 11, 2012 to assure future measured groundwater elevations are consistent with historical data.

On April 10, 2013 Closure Solutions submitted a Revised Draft Corrective Action Plan Addendum (Draft CAP Addendum) to the ACEH that presented an evaluation of hydrocarbon impacts to soil and groundwater beneath the site and evaluated and compared remedial alternatives to address cleanup of the impacts. Dual-phase extraction (DPE) was selected as the most effective remedial alternative. Details and procedures for the installation, operation, and evaluation of a temporary DPE system were included in the Draft CAP Addendum.

On May 29, 2013, the ACEH issued a letter requesting a Data Gap Investigation Work Plan and Focused Site Conceptual Model (Work Plan) to be prepared. The Work Plan was requested to address data gaps identified during an ACEH review of the environmental case under the State Water Resource Control Board's Low Threat Underground Storage Tank Case Closure Policy (LTCP). On June 28, 2013, Closure Solutions submitted the Work Plan as directed. Closure Solutions proposed advancing four soil borings within the source area to collect shallow soil and soil vapor samples. Field work for the proposed investigation was completed in early October 2013.

On November 22, 2013, INNOVEX submitted a Data Gap Investigation Report which described investigation activities, evaluated data, and provided conclusions and recommendations. Based on soil data collected from 0 to 10 feet bgs, concentrations of TPHg/GRO and naphthalene in the vicinity of the former dispenser island appear to increase with depth; however, BTEX concentrations are consistently low. A review of benzene, ethylbenzene, and naphthalene concentrations against LTCP criteria for vapor intrusion to indoor air indicated the constituents exceed their associated screening criteria for a commercial land use scenario with no bioattenuation zone. Additionally, soil data from zero to 10 feet bgs indicated benzene, ethylbenzene, and naphthalene are below the LTCP established criteria for direct contact and volatilization to outdoor air in commercial/industrial land use and utility worker scenarios.

On January 21, 2014, the ACEH issued a letter directing preparation of a revised Draft Corrective Action Plan (CAP) and Fact Sheet for public notification of the Draft CAP based on results of the November 2013 investigation. A completion date of March 28, 2014 for submittal of the Draft CAP was established by ACEH. However, due to budget constraints and the denial of a budget increase change order request for fiscal year 2013/2014 by the State Underground Storage Tank Cleanup Fund, the ACEH approved an extension on the Draft CAP submittal date with a new submittal date of September 2, 2014.

After approval of a budget change order in May 2014, an Interim Remedial Action Plan (IRAP) was prepared and submitted on June 30, 2014. The IRAP detailed a scope of work to perform secondary source area removal via excavation. ACEH staff indicated, as part of their June 11, 2014 directive letter, that Interim Remedial Actions appear appropriate in order to mitigate the risk of vapor intrusion and expeditiously move the site towards closure. The IRAP was approved by ACEH staff with some modifications on August 14, 2014.

Between May 15 and 29, 2015, interim remedial field activities were conducted at the Site to remove a secondary source of hydrocarbon impacted soil remaining in the vicinity of the former UST location and close data gaps in the LTCP closure review identified by ACEH staff. Field activities consisted of excavating hydrocarbon-impacted soil to the extent practicable within predefined limits. The total depth of the excavation was approximately 16 feet below ground surface (bgs). The open excavation was then backfilled with pre-approved aggregate base rock, and resurfaced to match existing Site conditions.

Analytical results from sidewall and floor confirmation soil samples collected post-excavation indicated that the bulk of the secondary source was removed, with minimal concentrations of petroleum hydrocarbons remaining at a depth of approximately 16 feet bgs. It is expected that the hydrocarbons remaining in soil within the capillary fringe zone of the groundwater table will attenuate within a reasonable time frame. Based on the results of the confirmation soil samples, INNOVEX believes the secondary source and risk of vapor intrusion to adjacent buildings has been mitigated. ACEH has indicated that upon completion of excavation activities and submittal of the IRAR, the environmental case associated with the Site would be evaluated for closure.

On September 24, 2015 and October 23, 2015 the ACEH issued letters directing semi-annual post-interim remedial action groundwater monitoring for one year, to verify effective removal of the majority of contaminated soil. The letters also described concerns that a potential for vapor intrusion to the building at the subject site may still exist. As such, the ACEH directed resampling of soil vapor probe SV-4 to verify recent interim remedial actions were successful. Unfortunately, all Site soil vapor probes were destroyed during excavation field activities performed in May 2015. Installation of a new soil vapor probe in the vicinity of the former SV-4 is also not possible due to the final excavation footprint as well as existing building footings. As an alternative to the preferred location, INNOVEX has prepared a work plan that proposes installing two sub-slab soil vapor probes within the building in an attempt to directly measure vapor intrusion to the building.

INNOVEX will continue to conduct groundwater monitoring and sampling on a semi-annual basis as directed by the ACEH.

2.0 WORK PERFORMED AND WORK PROPOSED

Following is a summary of work performed this semi-annual period and work proposed for the next semi-annual period:

WORK PERFORMED/PROPOSED THIS SEMI-ANNUAL PERIOD:								
1	Performed interim remedial action field activities between May 15 and 29, 2015.							
2	Prepared and submitted the Interim Remedial Action Report on July 31, 2015.							

3	Performed a semi-annual groundwater monitoring event on November 10, 2015.								
4	Prepared and submitted the Semi-Annual 2015 Groundwater Monitoring Report.								
	WORK PROPOSED FOR NEXT SEMI-ANNUAL PERIOD:								
1	Prepare and submit a sub-slab soil vapor investigation work plan.								
2	The next semi-annual groundwater monitoring event is scheduled for Second Quarter 2016.								

3.0 DISCUSSION OF RECENT ACTIVITIES

INNOVEX performed the first of two post-remediation semi-annual groundwater monitoring and sampling events at the Site on November 10, 2016. Gauging, purging and sampling were conducted in accordance with INNOVEX's Standard Operating Procedures (included in Attachment A). The collected groundwater samples were submitted to SunStar Laboratories of Lake Forest, California (SunStar) for laboratory analysis under Chain-of-Custody protocols. The samples were analyzed for gasoline range organics (GRO) and BTEX by EPA Method 8260B. As requested by ACEH in their January 24, 2013 letter, analysis for naphthalene by EPA Method 8260B has been added to the monitoring program. Additionally, monitoring well MW-6 was destroyed during excavation activities on May 15, 2015, due to its location within the proposed excavation footprint.

Following is a summary of the current status of the environmental program at the Site:

Current Phase Of Project:	Monitoring
Groundwater Monitoring & Sampling:	Semi-Annual: MW-1 through MW-5, (MW-6 destroyed on May 15, 2015)
Is Free Product (FP) Present On-Site:	No
Current Remediation Techniques:	Excavation performed in May 2015

Following is a summary of this period's field and analytical data:

Average Depth to GW (in feet below top of casing):	17.05
Groundwater Elevation (in feet above mean sea level [msl):	19.31 (MW-3) to 20.64 (MW-1)
Groundwater Gradient (direction):	Southwest
Groundwater Gradient (magnitude):	0.01 feet per foot
Reported GRO concentration:	1,300 micrograms per liter [µg/L](MW-1)
Reported benzene concentration:	32 μg/L (MW-1)
Reported toluene concentration:	3.0 μg/L (MW-1)
Reported ethylbenzene concentration:	82 μg/L (MW-1)
Reported xylene concentration:	47.4 μg/L (MW-1)
Reported Naphthalene concentration:	18 μg/L (MW-1)

Laboratory procedures, chain of custody records, and the certified analytical reports are included as Attachment B. Groundwater elevation and analytical data are summarized on Figure 2 and Table 1.

Purge water generated during the monitoring and sampling event was stored onsite in a plastic 55 gallon drum pending characterization and disposal. Water will be removed by a licensed waste transporter and disposed of at an appropriate treatment facility.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Depth to water measurements collected from all wells during this event are within historical ranges. Hydrocarbon concentrations reported in well MW-1, the remaining source area well, are also within historical ranges. However, samples from downgradient well MW-2 contained concentrations below laboratory reproving limits for the first time since sampling began in 2002. This indicates a significant reduction of up to three orders of magnitude. Based on available post-interim remedial action data, excavation of the secondary hydrocarbon source remaining in the vicinity of the former UST location appears to have been successful.

Currently INNOVEX is preparing a sub-slab soil vapor investigation work plan to address the ACEH directive for soil vapor sampling and to evaluate if a potential for vapor intrusion to the building at the subject site still exists.

The next scheduled semi-annual post-interim remedial action groundwater monitoring event is scheduled for Second Quarter 2016.

5.0 LIMITATIONS

This report is based on Site conditions, data, and other information available as of the date of the report, and the conclusions and recommendations herein are applicable only to the time frame in which the report was prepared. Background information used to prepare this report including, but not limited to, previous field measurements, analytical results, Site plans and other data have been furnished to INNOVEX by Kerry & Associates and as available on the GeoTracker database. INNOVEX has relied on this information as furnished, and is neither responsible for nor has confirmed the accuracy of this information.

FARRIS

No. 8316

OF CALIF

If you have any questions regarding this submission, please feel free to contact the undersigned at (916) 760-7579 or Matt.Farris@innovex.net.

Sincerely,

INNOVEX Environmental Management, Inc.

Matthew Farris, PG Senior Project Geologist

Attachments:

Figure 1

Site Location Map

Figure 2 Semi-Annual 2

Semi-Annual 2015 Groundwater Monitoring & Sampling Results -

Groundwater Contour Map - November 10, 2015

Table 1

Groundwater Elevation and Analytical Data

Attachment A

Field Procedures and Field Data Sheets

Attachment B

Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody

Records

CC:

Mr. Jeff Kerry, Kerry & Associates

Mr. Gerald Donnelly

FIGURES

REFERENCE:
USGS 7.5 MIN QUAD MAP TITLED:SAN LEANDRO, CALIFORNIA DATED: 1959 REV: 1980

FIGURE 1 SITE LOCATION MAP

PALACE GARAGE 14336 WASHINGTON AVENUE SAN LEANDRO, CALIFORNIA

Sacramento • California •95834
Phone: (800) 988-7880

Ø DESTROYED MONITORING WELL LOCATION

WELL DESIGNATION WELL

GROUNDWATER ELEVATION (FT ABOVE MSL) GRO BENZENE

GRO, BENZENE, and MTBE CONCENTRATIONS (µg/L)

GROUNDWATER ELEVATION CONTOURS (FEET ABOVE MEAN SEA LEVEL- NAVD 88)

0.01 GROUNDWATER FLOW DIRECTION AND GRADIENT (FT/FT)

NOT DETECTED AT OR ABOVE LABORATORY REPORTING LIMITS

NOTES:

20151209.08150092

ELEV

BASEMAP SOURCE: MORROW SURVEYING 02/05/03

GROUNDWATER CONTOUR MAP NOVEMBER 10, 2015

> PALACE GARAGE 14336 WASHINGTON AVENUE SAN LEANDRO, CALIFORNIA

3900 Lennane Drive • Suite 130 Sacramento • California • 95834 Phone: (800) 988-7880

TABLES

Table 1
Groundwater Elevation and Analytical Data

Well	Date	Casing	Depth To	Groundwater	TPHg/ GRO	В	Т	Е	Χ	Naphthalen																						
ID	Sampled	Elevation (Feet MSL)	Water (Feet)	Elevation (Feet)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)																						
MW-1	12/31/2002	37.59	13.62	23.97	48,000	1,030	2,380	1,690	9,220																							
	9/22/2006		13.33	24.26	44,000	870	2,200	720	9,700																							
	12/21/2006		13.94	23.65	17,000	240	980	180	5,000																							
		3/29/2007		13.71	23.88	2,000	30	85	23	550																						
	9/27/2007		15.53	22.06	540	14	3.9	44	87																							
	12/20/2007		15.69	21.90	280	4.3	1.3	15	37																							
	2/21/2008		13.72	23.87	19,000	300	150	1,100	4,900																							
	5/15/2008		14.60	22.99	7,200	140	50	370	2,040																							
	8/7/2008		15.62	21.97	820	13	3.1	44	100																							
	11/13/2008		16.14	21.45	670	10	2.1	31	110																							
	6/19/2009		15.15	22.44	1,490	85.8	13.4	164	310																							
	11/3/2009									15.98	21.61	, 75	6.0	0.70	12	40.5																
	5/4/2010																															
	11/8/2010		15.83	21.76	170	4.9	ND<0.50	7.7	24																							
	4/22/2011											,	12.34	25.25	3,800	250	48	810	3,260													
	12/15/2011		14.77	22.82	1,500	21	0.88	29	4.6																							
	5/9/2012		13.56	24.03	20,000	190	27	810	3,150																							
	11/8/2012		15.68	21.91	630	2.8	1.4	30	51.9																							
	2/7/2013		13.99	23.60																												
	5/2/2013		14.65	22.94	2,000	79	13	580	1,780	180																						
	9/6/2013		15.96	21.63																												
	2/7/2014		16.75	20.84	740	3.0	ND<0.50	19	31	3.7																						
	9/16/2014		17.01	20.58	590	6.7	ND<0.50	18	24	3																						
	11/10/2015		16.95	20.64	1,300	32.0	3.0	82	47.4	18																						

Table 1
Groundwater Elevation and Analytical Data

Well	Date	Casing	Depth To	Groundwater	TPHg/ GRO	В	Т	Е	Χ	Naphthalen																										
ID	Sampled	Elevation (Feet MSL)	Water (Feet)	Elevation (Feet)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)																										
MW-2	12/31/2002	37.12	13.38	23.74	1,670	1,030	11.00	23	16.4																											
	9/22/2006		13.25	23.87	1,800	53	1.40	14	7.5																											
	12/21/2006		13.89	23.23																																
		3/29/2007		13.57	23.55	2,100	51	1.30		4.5																										
	9/27/2007		15.37	21.75	1,600	58	0.99	12	3.7																											
	12/20/2007		15.40	21.72	1,500	63	1.1	16	4.9																											
	2/21/2008		13.60	23.52	710	23	ND<0.50	6.2	1.1																											
	5/15/2008		14.47	22.65	1,600	84	1.4	28	9.8																											
	8/7/2008		15.48	21.64	2,100	86	1.6	22	9.0																											
	11/13/2008		15.99	21.13	2,300	46	1.1	15	4.5																											
	6/19/2009		15.03	22.09	931	60.1	ND<2.0	30	3.1																											
	11/3/2009																												15.87	21.25	220	22	0.55	9.4	5.05	
	5/4/2010																																12.92	24.20	950	14
	11/8/2010																				15.71	21.41	1,900	45	1.6	44	9.28									
	4/22/2011		12.27	24.85	1,400	30	1.2	29	5.78																											
	12/15/2011		14.86	22.26	4,300	160	26	480	790																											
	5/9/2012		13.44	23.68	4,300	21	0.65	23	7.77																											
	11/8/2012		15.54	21.58	1,700	68	2.6	63	14.4																											
	2/7/2013		13.90	23.22																																
	5/2/2013		14.55	22.57	2,700	140	2.9	130	9.34	790																										
	9/6/2013		15.81	21.31																																
	2/7/2014		16.68	20.44	1,100	78	1.2	28	30	190																										
	9/16/2014		16.90	20.22	1,500	46	ND<0.50	18	1.2	26																										
	11/10/2015		16.85	20.27	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0																										

Table 1
Groundwater Elevation and Analytical Data

Well	Date	Casing	Depth To		•	В (п)	Τ (, ")	E	X	Naphthalen																									
ID	Sampled	Elevation (Feet MSL)	Water (Feet)	Elevation (Feet)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)																									
MW-3	12/31/2002	37.01	13.29	23.72	<50	<0.5	<0.5	<0.5	<1.0																										
	9/22/2006		13.14	23.87	<50	< 0.5	<0.5	<0.5	<1.5																										
	12/21/2006																																		
	3/29/2007		13.47	23.54	<50	< 0.5	<0.5	<0.5	<1.5																										
	9/27/2007		15.29	21.72	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50																										
	12/20/2007		15.30	21.71	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50																										
	2/21/2008																																		
	5/15/2008		14.35	22.66	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0																										
	8/7/2008		15.39	21.62	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50																										
	11/13/2008		15.90	21.11	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50																										
	6/19/2009		14.94	22.07	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0																										
	11/3/2009		15.76	21.25	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0																										
	5/4/2010																												13.20	23.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5
	11/8/2010		15.62	21.39	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5																										
	4/22/2011		12.17	24.84	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5																										
	12/15/2011		14.63	22.38	150	1.5	ND<0.50	3.0	12.2																										
	5/9/2012		13.36	23.65	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5																										
	11/8/2012		15.48	21.53	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5																										
	2/7/2013		13.79	23.22																															
	5/2/2013		14.41	22.60	75	ND<0.50	ND<0.50	ND<0.50	ND<1.50	ND<1.0																									
	9/6/2013		15.74	21.27																															
	2/7/2014		16.50	20.51	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0																									
	9/16/2014		16.76	20.25	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0																									
	11/10/2015		17.70	19.31	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0																									

Table 1
Groundwater Elevation and Analytical Data

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg/ GRO (mg/L)	B (mg/L)	T (mg/L)	E (mg/L)	X (mg/L)	Naphthalen (mg/L)																					
MW-4	12/31/2002	37.09	13.45	23.64	<50	<0.5	<0.5	<0.5	<1.0																						
	9/22/2006		13.40	23.69	<50	<0.5	<0.5	<0.5	<1.5																						
	12/21/2006		13.86	23.23	<50	< 0.5	<0.5	<0.5	<1.5																						
	3/29/2007		13.69	23.40	<50	<0.5	<0.5	<0.5	<1.5																						
	9/27/2007		15.48	21.61	ND<50	1.5	ND<0.50	0.71	0.74																						
	12/20/2007		15.28	21.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50																						
	2/21/2008		13.56	23.53	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0																						
	5/15/2008		14.58	22.51	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0																						
	8/7/2008		15.57	21.52	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50																						
	11/13/2008		16.09	21.00	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50																						
	6/19/2009		15.15	21.94	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0																						
	11/3/2009						16.03	21.06	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0																		
	5/4/2010																												13.11	23.98	ND<50
	11/8/2010		15.89	21.20	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5																						
	4/22/2011		12.40	24.69	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5																						
	12/15/2011		15.03	22.06	86	ND<0.50	ND<0.50	ND<0.50	1.3																						
	5/9/2012		13.51	23.58	ND<50	ND<0.50	0.84	ND<0.50	ND<1.5																						
	11/8/2012		15.64	21.45	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5																						
	2/7/2013		13.98	23.11																											
	5/2/2013		14.61	22.48	68	ND<0.50	ND<0.50	ND<0.50	ND<1.50	ND<1.0																					
	9/6/2013		15.90	21.19																											
	2/7/2014		16.69	20.40	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0																					
	9/16/2014		16.97	20.12	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0																					
	11/10/2015		16.89	20.20	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0																					

Table 1
Groundwater Elevation and Analytical Data

Well	Date	Casing	Depth To	Groundwater	TPHg/ GRO	В	Т	Е	Χ	Naphthalene
ID	Sampled	Elevation	Water	Elevation	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
		(Feet MSL)	(Feet)	(Feet)						
MW-5	2/2/2012	37.27	15.06	22.21	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	
	5/9/2012		13.68	23.59	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	
	resurvey 10/11/12	36.96								
	11/8/2012		15.62	21.34	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	
	2/7/2013		13.91	23.05	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	ND<1.5
	5/2/2013		14.56	22.40	82	ND<0.50	ND<0.50	ND<0.50	ND<1.50	ND<1.5
	9/6/2013		15.87	21.09	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	ND<1.5
	2/7/2014		16.70	20.26	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0
	9/16/2014		16.96	20.00	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0
	11/10/2015		16.88	20.08	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0
MW-6	2/2/2012	37.34	14.63	22.71	17,000	340	57	1,900	2,100	
10100	5/9/2012	37.54	13.26	24.08	34,000	170	310	1,700	3,920	
	11/8/2012		15.36	21.98	9,700	210	270	2,800	3,320	
	2/7/2013		13.63	23.71	7,700	250	240	2,800	4,790	1,100
	5/2/2013		14.35	22.99	16,000	82	36	1,200	1,050	490
	9/6/2013		15.64	21.70	19,000	130	61	1,900	1,480	830
	2/7/2014		16.62	20.72	13,000	46	13	550	224	290
	9/16/2014		16.70	20.64	5,400	78	14	780	282	410
					Destroyed Ma					

Table 1 Groundwater Elevation and Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg (mg/L)	B (mg/L)	T (mg/L)	E (mg/L)	X (mg/L)	Naphthalene (mg/L)
------------	-----------------	-----------------------------------	-----------------------------	------------------------------------	----------------	-------------	-------------	-------------	-------------	-----------------------

ABBREVIATIONS:

TPHg/ GRO total petroleum hydrocarbons as gasoline. Gasoline range organics

B Benzene

T Toluene

E Ethylbenzene

X Total xylenes

mg/L Micrograms per liter (parts per billion [ppb])

--- Not analyzed/measured/applicable

ND< Not detected at or above specified laboratory reporting limit

Bold Current sampling event

MSL mean sea level

LIMITATIONS:

Background information, including but not limited to previous field measurements, analytical results, Site plans, and other data have been obtained from previous consultants, and/or third parties, in the preparation of this report. Closure Solutions has relied on this information as furnished. Closure Solutions is not responsible for, nor has it confirmed the accuracy of data collected or generated by others.

ATTACHMENT A FIELD PROCEDURES AND FIELD DATA SHEETS

Standard Operating Procedures: Basic Gauge, Purge, and Sample.

Routine Water Level Measurements

- 1. Confirm that water or debris will not enter the well box upon removal of the well box lid.
- **2.** Remove the cover using the appropriate tools.
- **3.** Inspect the wellhead for deficiencies and document accordingly.
- **4.** Confirm that water or debris will not enter the well upon removal of the well cap.
- **5.** Unlock and remove the well cap lock (if applicable). If lock is not functional cut it off.
- **6.** Loosen and remove the well cap. CAUTION: DO NOT PLACE YOUR FACE OR HEAD DIRECTLY OVER WELLHEAD WHEN REMOVING THE WELL CAP. WELL CAP MAY BE UNDER PRESSURE AND/OR MAY RELEASE ACCUMULATED AND POTENTIALLY HARMFULL VAPORS.
- 7. Verify and identify survey point as written on S.O.W.

TOC: If survey point is listed as Top of Casing (TOC), look for the exact survey point in the form of a notch or mark on the top of the casing. If no mark is present, use the north side of the casing as the measuring point.

TOB: If survey point is listed as Top of Box (TOB), the measuring point will be established manually. Place the inverted well box lid halfway across the well box opening and directly over the casing. The lower edge of the inverted cover directly over the casing will be the measuring point.

- **8.** Put new Nitrile gloves on your hands.
- **9.** Slowly lower the decontaminated water level meter probe into the well until it signals contact with water with a tone and/or flashing a light.
- **10.** Gently raise the probe tip slightly above the water and hold it there. Wait momentarily to see if the meter emits a tone, signaling rising water in the casing. Gently lower the probe tip slightly below the water. Wait momentarily to see if the meter stops emitting a tone, signaling dropping water in the casing. Continue process until water level stabilizes indicating that the well has equilibrated.
- 11. While holding the probe at first contact with water and the tape against the measuring point, note depth. Repeat twice to verify accuracy. Write down measurement on well gauging sheet under depth to water column.
- **12.** Recover probe, replace and tighten well cap, replace lock (if applicable), replace well box cover and tighten hardware (if applicable).

Purging With a Bailer (Teflon or Disposable)

- **1.** Attach bailer cord or string to bailer. Leave other end attached to spool.
- **2.** Gently lower empty bailer into well until well bottom is reached.
- **3.** Cut cord from spool. Tie a loop at end cord.
- **4.** Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground.
- **5.** Pour contents into graduated 5-gallon bucket or other graduated receptacle.
- **6.** Repeat purging process.
- **7.** Upon removal of first casing volume, fill clean parameter cup with purge water, empty the remainder of the purge water into the bucket, lower the bailer back into the well and secure the cord on the Sampling Vehicle.
- **8.** Use the water in the cup to collect and record parameter measurements.
- **9.** Continue purging until second casing volume is removed.

- **10.** Collect parameter measurements.
- 11. Continue purging until third casing volume is removed.

Purging With a Fixed Speed Electric Submersible Pump

- **1.** Position thoroughly decontaminated pump over the top of the well.
- **2.** Gently unreel and lower the pump to the well bottom.
- **3.** Raise the pump to client specified location within screened interval. If no direction is given the pump inlet will be placed 5 feet above the bottom of the well.
- **4.** Secure the hose reel.
- 5. Begin purging.
- **6.** Verify pump rate with flow meter or graduated 5-gallon bucket.
- 7. Upon removal of first casing volume, fill clean parameter cup with water.
- **8.** Use the water in the cup to collect and record parameter measurements.
- **9.** Continue purging until second casing volume is removed.
- 10. Collect parameter measurements.
- 11. Continue purging until third casing volume is removed.
- **12.** Upon completion of purging, gently recover the pump and secure the reel.

Sampling with a Bailer (Teflon or Disposable)

- **1.** Put new Latex or Nitrile gloves on your hands.
- 2. Determine required bottle set.
- **3.** Fill out sample labels completely and attach to bottles.
- **4.** Arrange bottles in filling order and loosen caps (see Determine Collection Order below).
- **5.** Attach bailer cord or string to bailer. Leave other end attached to spool.
- **6.** Gently lower empty bailer into well until water is reached.
- **7.** As bailer fills, cut cord from spool and tie end of cord to hand.
- **8.** Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground. If a set of parameter measurements is required, go to step 9. If no additional measurements are required, go to step 11.
- **9.** Fill a clean parameter cup, empty the remainder contained in the bailer into the sink, lower the bailer back into the well and secure the cord on the sampling vehicle. Use the water in the cup to collect and record parameter measurements.
- **10.** Fill bailer again and carefully remove it from the well.
- **11.** Slowly fill and cap sample bottles. Fill and cap volatile compounds first, then semivolatile, then inorganic (see following steps). Return to the well as needed for additional sample material.
- **12.** Fill 40-milliliter vials for volatile compounds as follows: Slowly pour water down the inside on the vial. Carefully pour the last drops creating a convex or positive meniscus on the surface. Gently screw the cap on eliminating any air space in the vial. Turn the vial over, tap several times and check for trapped bubbles. If bubbles are present, repeat the process.
- **13.** Fill 1 liter amber bottles for semi-volatile compounds as follows: Slowly pour water into the bottle. Leave approximately 1 inch of headspace in the bottle. Cap bottle.
- **14.** Field filtering of inorganic samples using a disposable bailer is performed as follows: Attach 0.45 micron filter to connector plug. Attach connector plug to bottom of full disposable bailer. Gravity feed water through the filter and into the sample bottle. If high turbidity level of water clogs filter, repeat process with new filter until bottle is filled. Leave headspace in the bottle. Cap bottle.
- 15. Bag samples and place in ice chest.
- 16. Note sample collection details on well data sheet and Chain of Custody.

FIELD DATA SHEET-DEPTH TO WATER DATA

			SITE INFORMA	ATION		
Site Information Palace Garage Project Name 14336 Washingto Address	Site Information Palace Garage 11/10/15 Project Name Date 14336 Washington Ave. San Leandro					
Water Level Equipme x Electronic Indicato Oil Water Interface Other (specify)	or		Kevin Dolan Event:	4Q 201 5		
		DE	PTH TO WATE	R DATA		
DTW Order	Well ID	Time (24:00)	DTW (toc)	Total Depth (toc)	Depth to SPH / Thickness	Notes:
5	MW-1	806	16.95	23.25	N/A /	
4	MW-2	803	1635	23.64		
2	MW-3	758	17.70	23.06		
	MW-4	756	16.89	21.85	/	
3	MW-5	800	16.88	17.540	/	
	MW-6			19.6	Y	Well Destrayed
						. A
						ALLIAN BUS 10-
						BALL & Building Blue Poly
		-				13 tuit - 7
	1					

Project Na	me:	Palace	Garage				Date: No	ov. 10, 2015	_
Sample No	o.:	MM-					-		
Samplers	Name:	Kevin Dolan					-		
Purge Equ	Bailer: Dis	posable or Acryl	ic					sable Bailer	
X.	12 v. Pump Bladder Pu							er# der Pump	
	SS Monso							nersible Pump	
Analyses I	• 10	(circle all that a	ipply):					Types of Bot	tle Used:
TPH-G / E	BTEX / Napi	htalene			3 voa's w	/hc			
Well Numb	er:	MM-1				W	ell Diameter: 2" v	vith Casing V	olume of:
Depth to W		16.95	TOC					2" = (0.16 Ga	allon/Feet)
Well Depth		23,25	BGS or TOC					4" = (0.65 Ga	
Height W-0		6.30	feet (well der	oth - depth	to water)			5" = (1.02 Ga	
Volume in		1.03	gallons (casi		500 00 N N N			6" = (1.47 Ga	E 20 TO TO TO TO THE
Gallons to	0.	3,24	gallons (volu	100	3,			(.0625 G/Ft)	,
Lab:	SunStar		. 3 (,		Transpo		(
Time	Volume Purged	Temperature	Conductivity	D.O.	pН	TDS	Turbidity: Color	r - Fines	Micropurge Paramaters
(24 hr.)	(Gallons)	(°C)	(ms/cm)	(ppm)		(ppm)			Stabilized
948	Steer	-	 ,	1/9					
950	ls	14,9	1.09	1.86	6,59	_	439 : HAZY	h, moderale	
952	3	14.9	1,08	173	6,54		4311	,	
954	45	14.9	1.07	1,49	6,54		426; V		
Stop.	Purge	complet	2	15	680	J. W. T.			
	3						7		
			,						
/			7						
	- KD	9 494 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		W ^P Fig.			4		
			it for 80% we						
	-	Calculate	The second secon	*110 (2)	early of the others	91 9 7 7	ume recovery:		
	•		,	_	orginal well vo		23,25	10-	0 1
	Origina	al Height of Water Co	olumn = 616	0.8 =	Sidy	- (Well Depti	n) = Depth to v	vater / ෮ァ	21
Time:	1st measured	depth to water,depth to water,depth to water,	feet bel	ow TOC. ow TOC. ow TOC.		Is well with	nin 80% of original well casin nin 80% of original well casin nin 80% of original well casin	ng volume: Yes _	No
Time:	ist measured t	deptil to water,	icet bei			13 Well Will	in 60 % of original well cash	ig volume. Tes_	NO
				Sam	ple Well				
Time:	1006		Sample ID:	/	MW-1		Depth:	16.98	
Comments:		Blight	He alan-	NO	Sheen				
		·U					*	i, é	
Well Condit	ion:	FOR							
							INNO	VEX - QMS F	DS

Project Na	ame:		e Garage				Date:	Nov. 10, 2015	
Sample N	0.:	MW-2					<u>_</u>		
Samplers	Name:	Kevin Dolan							
Purge Equ	uipment: _Bailer: Dis _12 v. Pump _Bladder Pu _SS Monso	ump						ment: Disposable Bailer Whaler # Bladder Pump Submersible Pump r and Types of Bo) ottle Used
TPH-G / I	BTEX / Nap	htalene			3 voa's w	/hc			
Well Numl Depth to V Well Depth Height W-0	Vater: 1:	MW - 2 [6,85 23,64	TOC BGS or TOC		to water)	We	ell Diameter: <u>7</u>	with Casing V 2" = (0.16 Ga 4" = (0.65 Ga 5" = (1.02 Ga	allon/Feet allon/Feet
Volume in	Well:	109	gallons (casi	i.	150			6" = (1.47 Ga	
Gallons to	purge:	3,24	gallons (volu	Name of the State	, , , , , , , , , , , , , , , , , , ,		9	6/4" = (.0625 G/Ft)	anomi cci,
Lab:	SunStar		_9	,		Transpo		(.0020 0/1 t)	
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)		Color - Fines	Micropurge Paramaters Stabilized
851	Stars	r ——							
853	1,15	14.9	1,19	2.9%	6.63	_	49h. Ha	ny wany	
855	2,30	14,9	1.18	2,43	6.65		UIV!	1 1	
857	3,50	14.8	1.16	212	6.65	/	393:		
Stapi	Pieral	Complet			0 1		0.0.	V/	
0[0]	- 3	Compac							
$\overline{}$									
-(100								
	P								
			it for 80% we depth to wate				ampling. ume recovery:		
			Calcu	late 80% of	orginal well vo	lume:			
	Origina	I Height of Water Co	lumn = 670	x 0.8 =	5,43.	(Well Depth	23,64= Dept	th to water /8	21
Time:	1st measured of	depth to water,lepth to water,	feet belo	w TOC. w TOC. w TOC.	ile Well	Is well within	n 80% of original wel n 80% of original wel	casing volume: Yes 2 casing volume: Yes 2 casing volume: Yes 2	No
12 31 28 CH	Out		3040 Mari 20000-	JA.	1.1 -			li ~	
Time: _	915		Sample ID: _	JV	W-Z		Depth:	16.86	
Comments:		NO	ordor-	NO	Sneev	1			
Well Conditi	on:	2001-							
							IN	INOVEX - QMS F	DS

Project Na	me:		Garage		Date: Nov. 10, 2015					
Sample No	o.:)\/	W.3				-			
	ipment: Bailer: Dis 12 v. Pump Bladder Pu SS Monso	imp on #						ment: Disposable Bailer Whaler # Bladder Pump Submersible Pump r and Types of Bot	Wlo Hoods	
	Requested BTEX / Nap.	(circle all that a	ірріу):		3 voa's w/	'hc	Numbe	rand types of Bot	tue Osea:	
1111-07	TEXT Nup.									
Well Numb Depth to W Well Depth Height W-O Volume in Gallons to Lab:	Vater: n: Column: Well:	MW-3 17,70 23,06 5,36 0,85 2,55	TOC BGS or TOC feet (well dep gallons (casin	oth - depth ng volume						
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	pН	TDS (ppm)	Turbidity:	Color - Fines	Micropurge Paramaters Stabilized	
815	Sar	9								
817	1	17.1	0.731	2,48	5.73		999. F	Srown Many		
819	2	17.0	0.733	241	5,70		999:			
821	3	16,9	0,739	230	510	/	agg:	VV		
Stop:	Pural	Comp () E		0 100						
0,011										
							-			
	. 100)								
		Wa	it for 80% we	li volume	recovery	orior to s	ampling.			
	Origina	Calculate All Height of Water Co	Calc	ulate 80% of	orginal well vo	lume:	ume recovery:	pth to water $/8,77$	7	
Time: 82W	1st measured	depth to water,depth to water,depth to water,	feet bel	ow TOC. ow TOC. ow TOC.	olo Mali	Is well with	in 80% of original we	ell casing volume: Yes _ ell casing volume: Yes _ ell casing volume: Yes _	No	
	00 -				ple Well			10.00	-	
Time:	8:55		Sample ID:	yvı	W-3_		Depth: _	11:13		
Comments:			1 - 0	. [0]	1000					
		NO C	odon -	NO S	neen					
Well Condit	ion:									
								INNOVEY - OMS E	-DS	

Project Na	me:	Palace	Garage			· · · · · · · · · · · · · · · · · · ·	Date: Nov	. 10, 2015	•
Sample No).:		INN				-		
Samplers	Name:	Kevin Dolan					3		
Purge Equ	Bailer: Dis	sposable or Acryl	ic		V		Sample Equipment: Dispos Whaler	able Bailer	
/	12 v. Pump Bladder Pu	ımın .	Foot Vo	ilve -	, X			r Pump	
	SS Monso	on#	7.001				Subme	rsible Pump	
		(circle all that a	ipply):	- Marine 10			Number and 1	lypes of Bot	tle Used:
TPH-G / E	BTEX / Nap	htalene			3 voa's w	nc	A		
Well Numb	er:	MW-9				We	ell Diameter: <u>34 </u> wi	th Casing Vo	olume of:
Depth to W	Vater:	16.89	TOC				2	= (0.16 Ga)	llon/Feet)
Well Depth	1;	21.85	BGS or TOC				4	" = (0.65 Ga	llon/Feet)
Height W-0	Column:	496	feet (well dep	th - depth	to water)		5	" = (1.02 Ga	llon/Feet)
Volume in	Well:	0.3	gallons (casir	ng volume	X height)		6	" = (1.47 Ga	llon/Feet)
Gallons to	purge:	0,93	gallons (volui	me X 3)			((3/4" €)	.0625 G/Ft)	
Lab:	SunStar			Transpo	rtation:				
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)	Turbidity: Color -	Fines	Micropurge Paramaters Stabilized
926	Sant								
923	,40	19.9	0,799	4114	7,44	7	463; Hazay	Mod	
930		191, 8	0.763	3,98	7,43	/	4601	1	
	180	The state of the s	-	3,86	7.41	/			
932	1,10	198	0.761	5100	1,91	 	4511		
Stap.	Pura	Conplex		- 10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1					
)			 					
	6	9							
		VAG	it for 80% we	ll volumo	roccycry	nelos to o	ampling		
							ume recovery:		
			Çalcı	ulate 80% of	orginal well vo	olume:			
	Origina	al Height of Water Co	olumn = 49	6 x 0.8 =	397	- (Well Dept	n) Z/85= Depth to wa	11er [18	6
Time: 95%				aw TOC.		la well with	in 80% of original well casing	y volume: Yes _	X_Ne
Time:	1st measured	depth to water,		OW TOC. OW TOC.			in 80% of original well casing in 80% of original well casing		No
time.	(at medadied	depth to water,	1001 001			ie nen min	an se a si signimi nen emenc	1 15551115: 122	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				Sam	ple Well				
Time:	938		Sample ID:		MW-M		Depth:	16,94	
Comments:		NO	oder	- NO	Sneen				
Well Condit	ion:		Cal	-					
								EV 2112 -	De .
							INNOV	'ex - qms f	D S

Project Na	me:	Palace	Garage				Date: Nov. 10, 2015	_				
Sample No			MW-8				_					
Samplers I		Kevin Dolan	'				-					
Purge Equ	ipment: Bailer: Dis 12 v. Pump Bladder Pu SS Monsoo	ımp on #					Sample Equipment: Disposable Bailer Whaler # Bladder Pump Submersible Pump Number and Types of Bo					
The second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a section section in the section is a section section in the section is a section section in the section section in the section section is a section section in the section section in the section section is a section section section in the section section is a section sect	Requested BTEX / Napi	(circle all that a	ірріу):		3 voa's w/	hc	Number and Types of Be	Actic Odea.				
TPH-G7 E	TEX / Napi	intaiche			0 100 0 117							
		111.1				101	ell Diameter: 2 ^{//} with Casing \	Jaluma afu				
Well Numb Depth to W Well Depth Height W-C Volume in	/ater: :: Column:	16,88 17,40 0,52 0,083	TOC BGS or TOC feet (well dep	ng volume		VV	2" = (0.16 G 4" = (0.65 G 5" = (1.02 G 6" = (1.47 G	callon/Feet) callon/Feet) callon/Feet) callon/Feet)				
Gallons to purge: gallons (volume X 3) 3/4" = (.0625 G/Ft)												
Lab:	ab: SunStar Transportation:											
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	pН	TDS (ppm)	Turbidity: Color - Fines	Micropurge Paramaters Stabilized				
903	Sast	r —										
905	,75	16.4	0.816	4,06	5.59		646: Clear vin					
907	1.5	163	0,810	3,41	5,50	/	613:					
908	7.5	16.1	0.8()	3,13	5,43	/	S73; V					
Stol.	Pural	complete										
	5											
	140											
		Wa	it for 80% we	II volume	recovery p	orior to s	ampling.					
		Calculate	depth to wate	r (from To	OC), for 809	% well vo	lume recovery:					
					orginal well vo		7	Q/				
	Origina	al Height of Water Co	olumn = 0.5	Zx 0.8 =	0.41	(Well Depti	h) TMO = Depth to water 16.9	8				
Time:	1st measured	depth to water,depth to water,depth to water,	reet beid	ow TOC. ow TOC.	ple Well	Is well with	nin 80% of original well casing volume: Yes nin 80% of original well casing volume: Yes nin 80% of original well casing volume: Yes	No				
							11 0	١, ١				
Time:	1115		Sample ID:		NW-5		Depth:	71				
Comments:	4	NO (odon - n	10 5	sneen							
							1					
Well Condit	ion:	well Cor	1-nues	fugo	Cont	nous	to 2.5 gallons					
			100		No.	,	INNOVEX - QMS	FDS				

ATTACHMENT B LABORATORY PROCEDURES, CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

SunStar Laboratories, Inc.

Providing Quality Analytical Services Nationwide 25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

16 November 2015

Matt Farris Innovex-Environmental Management, Inc. 2300 Clayton Rd. Suite 1435 Concord, CA 94520

RE: Palace Garage

Enclosed are the results of analyses for samples received by the laboratory on 11/11/15 08:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine RunningCrane

Katherine Running Crane

Project Manager

Innovex-Environmental Management, Inc. Project: Palace Garage

 2300 Clayton Rd. Suite 1435
 Project Number: 1601 0701
 Reported:

 Concord CA, 94520
 Project Manager: Matt Farris
 11/16/15 17:11

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	T152817-01	Water	11/10/15 10:06	11/11/15 08:45
MW-2	T152817-02	Water	11/10/15 09:15	11/11/15 08:45
MW-3	T152817-03	Water	11/10/15 08:35	11/11/15 08:45
MW-4	T152817-04	Water	11/10/15 09:38	11/11/15 08:45
MW-5	T152817-05	Water	11/10/15 11:15	11/11/15 08:45

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Innovex-Environmental Management, Inc.

Project: Palace Garage

2300 Clayton Rd. Suite 1435

Concord CA, 94520

Project Number: 1601 0701
Project Manager: Matt Farris

Reported: 11/16/15 17:11

DETECTIONS SUMMARY

Sample ID: MW-1		Labora	tory ID:	1152817-01	T152817-01				
			Reporting						
Analyte		Result	Limit	Units	Method	Notes			
Naphthalene		18	1.0	ug/l	EPA 8260B				
Benzene		32	0.50	ug/l	EPA 8260B				
Toluene		3.0	0.50	ug/l	EPA 8260B				
Ethylbenzene		82	0.50	ug/l	EPA 8260B				
m,p-Xylene		45	1.0	ug/l	EPA 8260B				
o-Xylene		2.4	0.50	ug/l	EPA 8260B				
C6-C12 (GRO)		1300	1300 50		EPA 8260B				
Sample ID: M	W-2	Labora	tory ID:	T152817-02					
No Results Detected	ı								
Sample ID: M	W-3	Labora	Laboratory ID:						
No Results Detected	ı								
Sample ID: M	W-4	Labora	tory ID:	T152817-04					
No Results Detected	ı								
Sample ID: M	W-5	Labora	tory ID:	T152817-05					
No Results Detected	ı								

Katherine RunningCrane, Project Manager

Kotherine Running Crane

SunStar Laboratories, Inc.

Page 3 of 16

The results in this report apply to the samples analyzed in accordance with the chain of

custody document. This analytical report must be reproduced in its entirety.

Innovex-Environmental Management, Inc. Project: Palace Garage

 2300 Clayton Rd. Suite 1435
 Project Number: 1601 0701
 Reported:

 Concord CA, 94520
 Project Manager: Matt Farris
 11/16/15 17:11

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Innovex-Environmental Management, Inc. Project: Palace Garage

 2300 Clayton Rd. Suite 1435
 Project Number: 1601 0701
 Reported:

 Concord CA, 94520
 Project Manager: Matt Farris
 11/16/15 17:11

MW-1 T152817-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Naphthalene	18	1.0	ug/l	1	5111108	11/11/15	11/14/15	EPA 8260B	
Benzene	32	0.50	"	"	"	"	"	"	
Toluene	3.0	0.50	"	"	"	"	"	"	
Ethylbenzene	82	0.50	"	"	"	"	"	"	
m,p-Xylene	45	1.0	"	"	"	"	"	"	
o-Xylene	2.4	0.50	"	"	"	"	"	"	
C6-C12 (GRO)	1300	50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		103 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		91.5 %	88.8	-117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Innovex-Environmental Management, Inc. Project: Palace Garage

 2300 Clayton Rd. Suite 1435
 Project Number: 1601 0701
 Reported:

 Concord CA, 94520
 Project Manager: Matt Farris
 11/16/15 17:11

MW-2 T152817-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Naphthalene	ND	1.0	ug/l	1	5111108	11/11/15	11/15/15	EPA 8260B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
C6-C12 (GRO)	ND	50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.4 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		102 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		91.8 %	88.8	-117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Innovex-Environmental Management, Inc. Project: Palace Garage

 2300 Clayton Rd. Suite 1435
 Project Number: 1601 0701
 Reported:

 Concord CA, 94520
 Project Manager: Matt Farris
 11/16/15 17:11

MW-3 T152817-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Naphthalene	ND	1.0	ug/l	1	5111108	11/11/15	11/15/15	EPA 8260B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
C6-C12 (GRO)	ND	50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.0 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		112 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		91.0 %	88.8	-117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Innovex-Environmental Management, Inc. Project: Palace Garage

 2300 Clayton Rd. Suite 1435
 Project Number: 1601 0701
 Reported:

 Concord CA, 94520
 Project Manager: Matt Farris
 11/16/15 17:11

MW-4 T152817-04 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Naphthalene	ND	1.0	ug/l	1	5111108	11/11/15	11/15/15	EPA 8260B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
C6-C12 (GRO)	ND	50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.0 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		108 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		92.1 %	88.8	-117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Innovex-Environmental Management, Inc. Project: Palace Garage

 2300 Clayton Rd. Suite 1435
 Project Number: 1601 0701
 Reported:

 Concord CA, 94520
 Project Manager: Matt Farris
 11/16/15 17:11

MW-5 T152817-05 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Naphthalene	ND	1.0	ug/l	1	5111108	11/11/15	11/15/15	EPA 8260B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
C6-C12 (GRO)	ND	50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		116 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		89.9 %	88.8	-117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Innovex-Environmental Management, Inc. Project: Palace Garage

 2300 Clayton Rd. Suite 1435
 Project Number: 1601 0701
 Reported:

 Concord CA, 94520
 Project Manager: Matt Farris
 11/16/15 17:11

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch 5111108 - FDA 5030 CC	NAC

Blank (5111108-BLK1)				Prepared: 11/11/15 Analyzed: 11/14/15
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
1-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
,2-Dibromo-3-chloropropane	ND	5.0	"	
,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
,1-Dichloroethane	ND	1.0	"	
,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
rans-1,2-Dichloroethene	ND	1.0	"	
,2-Dichloropropane	ND	1.0	"	
,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
,1-Dichloropropene	ND	1.0	"	
eis-1,3-Dichloropropene	ND	0.50	"	
rans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RPD

%REC

Innovex-Environmental Management, Inc. Project: Palace Garage

 2300 Clayton Rd. Suite 1435
 Project Number: 1601 0701
 Reported:

 Concord CA, 94520
 Project Manager: Matt Farris
 11/16/15 17:11

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

		Reporting		Spike	Source		70KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5111108 - EPA 5030 GCMS										
Blank (5111108-BLK1)				Prepared: 1	11/11/15 A	nalyzed: 11	/14/15			
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
1,1,1-Trichloroethane	ND	1.0	"							
Trichloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0	"							
1,2,3-Trichloropropane	ND	1.0	"							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Surrogate: 4-Bromofluorobenzene	7.86		"	8.00		98.2	83.5-119			
Surrogate: Dibromofluoromethane	8.17		"	8.00		102	81-136			
Surrogate: Toluene-d8	7.26		"	8.00		90.8	88.8-117			
LCS (5111108-BS1)				Prepared: 1	11/11/15 A	nalyzed: 11	/15/15			
Chlorobenzene	23.5	1.0	ug/l	20.0		118	75-125			
1,1-Dichloroethene	23.9	1.0	"	20.0		119	75-125			
Trichloroethene	20.6	1.0	"	20.0		103	75-125			
Benzene	20.8	0.50	"	20.0		104	75-125			
Toluene	18.8	0.50	"	20.0		94.2	75-125			
Surrogate: 4-Bromofluorobenzene	8.15		"	8.00		102	83.5-119			
Surrogate: Dibromofluoromethane	10.0		"	8.00		126	81-136			
Surrogate: Toluene-d8	7.01		"	8.00		87.6	88.8-117			Ž.

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Innovex-Environmental Management, Inc. Project: Palace Garage

 2300 Clayton Rd. Suite 1435
 Project Number: 1601 0701
 Reported:

 Concord CA, 94520
 Project Manager: Matt Farris
 11/16/15 17:11

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5111108 - EPA 5030 GCMS										
LCS Dup (5111108-BSD1)				Prepared: 1	1/11/15 A	nalyzed: 11	/15/15			
Chlorobenzene	29.6	1.0	ug/l	20.0		148	75-125	22.8	20	QR-04
1,1-Dichloroethene	31.7	1.0	"	20.0		158	75-125	28.0	20	QR-04
Trichloroethene	22.6	1.0	"	20.0		113	75-125	9.16	20	
Benzene	23.9	0.50	"	20.0		119	75-125	13.9	20	
Toluene	19.6	0.50	"	20.0		98.0	75-125	3.95	20	
Surrogate: 4-Bromofluorobenzene	8.10		"	8.00		101	83.5-119			
Surrogate: Dibromofluoromethane	11.4		"	8.00		142	81-136			S-GO
Surrogate: Toluene-d8	6.02		"	8.00		75.2	88.8-117			S-GO

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Innovex-Environmental Management, Inc. Project: Palace Garage

 2300 Clayton Rd. Suite 1435
 Project Number: 1601 0701
 Reported:

 Concord CA, 94520
 Project Manager: Matt Farris
 11/16/15 17:11

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QR-04 The pecent recovery and/or RPD was outside acceptance criteria. Results accepted based upon percent recovery results in duplicate QC

sample and the CCV and CCB results.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SunStar Laboratories, Inc.

Chain of Custody Record

T152817

age 14 of 10

Providing Quality Analytical Services Nationwide
25712 Commercentre Drive Lake Forest C

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Client: NNOVE Address: 7500 CLAN Phone: (925) 878-9 Project Manager: NAH	X YTON RD 290 Fams	Fax:	1000)	CA	- - : - -	· ·	Di	ate:_ roject ollect atch #	Nan or: #:	ne: T	1	AL DOI	W		0	AQ	Clien	e: Of #: TOGOO 0 0 0 0 0 0 0 0 0	_ L
Sample ID Min - 2 Min - 3 Min - y Min - 5	Date Sampled	Time NOL NS SES	Sample Type	Container Type 3VAIS	CX8260 CTPHA BTEXY		8260 B LEX, OXY only	8021 BTEX	8015M (gasoline)	8015M (diesel)	8015M Ext./Carbon Chain	6010/7000 Title 22 Metals		X NACHTARING			R R B Laboratory ID #	Comments/Preservative	Total # of containers
Relinquished by: (signature)	Date / T	ime	Received by	y: (signature) N (P V in			Date /	Time		Cha	in of				ontain Y/N/	_ <u> -</u>		14336 WEHINGTON AND SAN CEANDAD, CH	
Relinquished by: (signature) 650 (1-11-15 Relinquished by: (signature)	Date / T 8:45 Date / T	ime	Received b	y: (signature) y: (signature)	- 		Date / <i>8: </i>	Time Time		R€	eceiv	Sea red g	als ir ood	itact?	Y/N/ tion/c		5.2	(esults to: Notes Watt. Furns & (NNOVEX Kevin. Dolauro ""	ru

SAMPLE RECEIVING REVIEW SHEET

BATCH#			
Client Name: /NOVEX Project:	PALACE.	GARAGE	
Received by: Date/Time Rec	eived:	1.11.15	8:45
Delivered by: ☐ Client ☐ SunStar Courier ☒ GSO ☐ FedEx	Other_	,	
Total number of coolers received Temp criteria = 6°C >	· 0°C (no <u>f</u>	rozen con	tainers)
Temperature: cooler #1 $\underline{5.4}$ °C +/- the CF (-0.2°C) = $\underline{5.2}$ °C correct	ed temperatu	re	
cooler #2°C +/- the CF (- 0.2°C) =°C correct	ed temperatu	re	
cooler #3°C +/- the CF (- 0.2°C) =°C correct	ed temperatu	re	•
Samples outside temp. but received on ice, w/in 6 hours of final sampling.	⊠Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample	Yes	□No*	MN/A
Sample Containers Intact	∑ Yes	□No*	
Sample labels match COC ID's	∑ Yes	□No*	
Total number of containers received match COC	⊠ Yes	□No*	
Proper containers received for analyses requested on COC	⊠Yes	□No*	
Proper preservative indicated on COC/containers for analyses requested	⊠Yes	□No*	□N/A
Complete shipment received in good condition with correct temperatures, corpreservatives and within method specified holding times. Yes No*		bels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample Re-	view - Initia	ls and date	EL 11:11:15
Comments:			

Printed: 11/11/2015 11:11:10AM

WORK ORDER

T152817

Client: Innovex-Environmental Management, Inc. Project Manager: Katherine RunningCrane

Project: Palace Garage Project Number: 1601 0701

Report To:

Innovex-Environmental Management, Inc.

Matt Farris

2300 Clayton Rd. Suite 1435

Concord, CA 94520

Date Due: 11/16/15 17:00 (3 day TAT)

Received By: Sunny Lounethone Date Received: 11/11/15 08:45
Logged In By: Sunny Lounethone Date Logged In: 11/11/15 09:35

Samples Received at: 5.2°C

Custody Seals No Received On Ice Yes

COC/Labels Agree Yes
Preservation Confir Yes

Analysis	Due	TAT	Expires	Comments
T152817-01 MW-1 [V	Vater] Sampled 11/10/15 10):06 (GMT	-08:00) Pacific Tin	ne
8260	11/16/15 15:00	3	11/24/15 10:06	GRO, BTEX, Napthalene ONLY
T152817-02 MW-2 [V (US &	Vater] Sampled 11/10/15 09	9:15 (GMT	-08:00) Pacific Tin	ne
8260	11/16/15 15:00	3	11/24/15 09:15	GRO, BTEX, Napthalene ONLY
T152817-03 MW-3 [V	Vater] Sampled 11/10/15 08	8:35 (GMT	-08:00) Pacific Tin	ne
8260	11/16/15 15:00	3	11/24/15 08:35	GRO, BTEX, Napthalene ONLY
T152817-04 MW-4 [V	Vater] Sampled 11/10/15 09	9:38 (GMT	-08:00) Pacific Tin	ne
8260	11/16/15 15:00	3	11/24/15 09:38	GRO, BTEX, Napthalene ONLY
T152817-05 MW-5 [V	Vater] Sampled 11/10/15 1	1:15 (GMT	-08:00) Pacific Tin	ne
8260	11/16/15 15:00	3	11/24/15 11:15	GRO, BTEX, Napthalene ONLY

Reviewed By

Date