RECEIVED

By Alameda County Environmental Health 3:36 pm, Sep 25, 2015

October 31, 2014

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Re: Kerry & Associates - Palace Garage

14336 Washington Avenue San Leandro, California ACEH Case No. RO0000208

Dear Mr. Detterman,

I declare, under penalty of perjury, that the information and/or recommendations contained in the **Second Semi Annual 2014 Groundwater Monitoring Report** are true and correct to the best of my knowledge.

Sincerely,

Mr. Jeffrey Kerry

October 31, 2014

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

RE: SECOND SEMI-ANNUAL 2014 GROUNDWATER MONITORING REPORT

Palace Garage 14336 Washington Boulevard San Leandro, California ACEH Case # RO0000208 SFRWQCB Case # 01-1133

Dear Mr. Detterman:

On behalf of Kerry & Associates, INNOVEX Environmental Management Inc., (INNOVEX) has prepared this Second Semi-Annual 2014 Groundwater Monitoring Report (Report) for the Palace Garage facility (the Site), located at 14336 Washington Avenue, in San Leandro, California (Figure 1).

1.0 SITE BACKGROUND SUMMARY

A 550-gallon gasoline underground storage tank (UST) was removed from the Site in 1991. Subsequent investigations included the installation of three monitoring wells (MW-1 through MW-3) and the drilling of 15 borings (B-1 through B-15). Based on data obtained from the wells and borings, impacted unsaturated-zone soil is confined to the area of the former dispenser pad and UST. The primary groundwater flow direction is toward the southwest.

In December 2002, Professional Service Industries, Inc. (PSI) conducted a soil and groundwater investigation to evaluate the lateral extent of petroleum hydrocarbons in the soil and groundwater at the Site. Borings B-16 and B-17 were advanced to between 20 and 24 feet below ground surface (bgs). Boring B-16 was converted into monitoring well MW-4. Concentrations of total petroleum hydrocarbons as gasoline (TPHg) and gasoline related contaminants were detected only in soil from boring B-17 and groundwater from wells MW-1 and MW-2. The locations of the monitoring wells and soil borings are presented on Figure 2.

Closure Solutions, Inc. (Closure Solutions) conducted a Sensitive Receptor Survey to identify all water supply wells and sensitive receptors within a 2,000-foot radius of the Site. The closest water supply wells are two industrial wells approximately 450 feet northwest (cross-gradient) of the Site. The closest domestic well is approximately 1,500 feet southeast (cross-gradient) of the Site. The closest down-gradient well is an irrigation well approximately 1,400 feet southwest of the Site. No surface water bodies were identified within a 2,000 foot radius of the Site. Results of the Sensitive Receptor Survey are presented in the Sensitive Receptor Survey report dated August 27, 2008.

Closure Solutions prepared and submitted a Site Conceptual Model (SCM) dated September 30, 2008 for the Site. The preparation of the SCM was requested by ACEH in their letter dated September 2, 2008.

In an email dated June 12, 2009, Mr. Steve Plunkett with the ACEH approved the reduction of groundwater monitoring to a semi-annual basis conducted in second and fourth quarters. Mr. Plunkett also approved the recommendation to eliminate fuel oxygenates from the suite of laboratory analytes.

On October 15, 2009, Closure Solutions discussed the Site status with ACEH. Data gaps presented in the SCM and other information that ACEH would require for site closure were identified. Closure Solutions submitted the Soil Vapor Probe and Additional Assessment Work Plan on November 13, 2009 to address the work necessary to move the Site toward closure.

On May 14, 2010, Closure Solutions submitted a letter to the ACEH stating that Closure Solutions intended to proceed with the proposed scope of work pursuant to CCR Title 23, Division 3, Chapter 16, Section 2722 (e) which states "Implementation of the proposed workplan may begin sixty (60) calendar days after submittal, unless the responsible party is otherwise directed in writing by the regulatory agency". On May 21, 2010, the ACEH responded to Closure Solutions' letter of intent via email explaining that the ACEH has been largely precluded from generating letters on cases due to the work load imposed by SWRCB Resolution 2009-0042 and they will attempt to raise the review interval for the Site.

On July 26, 2010, a representative from Closure Solutions was on site to oversee the installation and sampling of three temporary soil vapor probes (SV-1 through SV-3) and advancement of one down-gradient soil boring (SB-18). A Soil Vapor Testing and Additional Assessment Report describing field activities and discussing analytical soil and soil vapor results was submitted to the ACEH on August 30, 2010.

On January 24, 2012, Closure Solutions supervised the advancement of two soil borings, collection of additional soil and groundwater data, and installation of wells MW-5 and MW-6. The work was completed in order undertake further corrective actions at the site. Collected soil and groundwater samples were analyzed for gasoline range organics (GRO), benzene, toluene, ethylbenzene, and xylenes (BTEX compounds). Additionally, bio-attenuation parameters were analyzed for groundwater collected from well MW-5. A discussion of analytical results is presented in the Groundwater Monitoring Well Installation Report submitted on March 30, 2012

After completing the monitoring well installation, a dual-phase extraction (DPE) pilot test was performed from February 21 through 25, 2012. The pilot test was conducted to evaluate whether DPE would be a viable technology to remediate soil and groundwater beneath the Site. High groundwater extraction rates were encountered during pilot testing conducted from MW-1. As a result, subsurface soils could not be effectively dewatered to allow remediation via vapor extraction. Pilot testing from well MW-6 produced average groundwater extraction rates that were roughly two-thirds less than those observed during testing from MW-1. Subsequently, the technology was successful in lowering the groundwater table in the vicinity of well MW-6 and exposing the capillary fringe or "smear" zone. Based on the results of testing performed from MW-6, DPE appears to be a viable option for Site remediation.

On October 9, 2012 the well boxes for monitoring wells MW-1, MW-2, MW-5 and MW-6 were reset as part of repaving activities conducted in the alley between the Site building and adjacent building. Boxes for MW-1, MW-2, and MW-6 were elevated an average of 1.5 inches to assure the boxes were above the new grade elevations. Well box MW-5 had to be lowered approximately 3 inches. Because of the elevation drop, the well casing had to be cut down 3 inches for it to fit inside the repositioned well box. The well top-of-casing elevation was re-surveyed on October 11, 2012 to assure future measured groundwater elevations are consistent with historical data.

On April 10, 2013 Closure Solutions submitted a Revised Draft Corrective Action Plan Addendum (Draft CAP Addendum) to the ACEH that presented an evaluation of hydrocarbon impacts to soil and groundwater beneath the site and evaluated and compared remedial alternatives to address cleanup of the impacts. Dual-phase extraction (DPE) was selected as the most effective remedial alternative, for which, details and procedures for the installation, operation and evaluation of a temporary system were included in the Draft CAP Addendum.

On May 29, 2013 the ACEH issued a letter requesting a Data Gap Investigation Work Plan and Focused Site Conceptual Model (Work Plan) be prepared. The work plan was directed to address data gaps identified during an ACEH review of the environmental case under the State Water Resource Control Board's Low Threat Underground Storage Tank Case Closure Policy (LTCP). On June 28, 2013 Closure Solutions submitted the Work Plan as directed. Closure Solutions proposed advancing four soil borings within the source area to collect shallow soil and soil vapor samples. Field work for the proposed investigation was completed in early October 2013.

On November 22, 2013 INNOVEX submitted a Data Gap Investigation Report which described investigation activities, evaluated data, and provided conclusions and recommendations. Based on soil data collected from 0 to 10 feet bgs, concentrations of TPHg/GRO and naphthalene in the vicinity of the former dispenser island appear to increase with depth; however, BTEX concentrations are consistently low. A review of benzene, ethylbenzene, and naphthalene concentrations against LTCP criteria for vapor intrusion to indoor air indicated the constituents exceed their associated screening criteria for a commercial land use scenario with no bioattenuation zone. Additionally, soil data from 0 to 10 feet bgs indicated benzene, ethylbenzene, and naphthalene are below the LTCP established criteria for direct contact and volatilization to outdoor air in commercial/industrial land use and utility worker scenarios.

On January 21, 2014, the ACEH issued a letter directing preparation of a revised Draft Corrective Action Plan (CAP) and Fact Sheet for public notification of the Draft CAP based on results of the November 2013 investigation. A completion date of March 28, 2014 for submittal of the Draft CAP was established by ACEH. However, due to budget constraints and the denial of a budget increase change order request for fiscal year 2013/2014 by the State Underground Storage Tank Cleanup Fund, the ACEH approved an extension on the Draft CAP submittal date with a new submittal date of September 2, 2014.

After approval of a budget change order in May 2014, an *Interim Remedial Action Plan* (IRAP) was prepared and submitted on June 30, 2014. The IRAP detailed a scope of work to perform secondary source area removal via excavation. ACEH staff indicated, as part of their June 11, 2014 directive letter, that Interim Remedial Actions appear appropriate in order to mitigate the

risk of vapor intrusion and expeditiously move the site towards closure. Therefore, it is anticipated that case closure will be granted following completion of excavation activities and subsequent submittal of a report documenting those activities. The IRAP was approved by ACEH staff with some modifications on August 14, 2014.

Currently INNOVEX is preparing an excavation and grading permit application for the City of San Leandro and coordinating excavation work scopes with the property owner and surrounding property owners.

2.0 WORK PERFORMED AND WORK PROPOSED

Following is a summary of work performed this semi-annual period and work proposed for the next semi-annual period:

WORK PERFORMED/PROPOSED THIS SEMI-ANNUAL PERIOD:

- 1. Performed second semi-annual groundwater monitoring event on September 16, 2014.
- 2. Prepared and Submitted Second Semi-Annual 2014 Groundwater Monitoring Report.

WORK PROPOSED FOR NEXT SEMI-ANNUAL PERIOD:

- Prepare and submit an excavation and grading permit application package to the City of San Leandro.
- 2. Coordinate pre-field work scopes with the property owner and surrounding property owners
- 3. The first semi-annual 2015 groundwater monitoring event is scheduled for First Quarter 2015.

3.0 DISCUSSION OF RECENT ACTIVITIES

INNOVEX performed this semi-annual groundwater monitoring and sampling event at the Site on September 16, 2014. Gauging, purging and sampling were conducted in accordance with INNOVEX's Standard Operating Procedures (included in Attachment B). The collected groundwater samples were submitted to SunStar Laboratories of Lake Forest, California (SunStar) for laboratory analysis under Chain-of-Custody protocols. The samples were analyzed for gasoline range organics (GRO) and BTEX by U.S. EPA Method 8260B. As requested by ACEH in their January 24, 2013 letter, analysis for naphthalene by EPA Method 8260 has been added to the monitoring program.

Following is a summary of the current status of the environmental program at the Site:

Current Phase of Project:	Monitoring
Groundwater Monitoring & Sampling:	Semi-Annual: MW-1 through MW-6

Is Free Product (FP) Present On-Site:	No
Current Remediation Techniques:	None

Following is a summary of this period's field and analytical data:

Average Depth to GW (in feet below top of casing):	18.88
Groundwater Elevation (in feet above mean sea level) [MSL):	20.00 (MW-5) to 20.64 (MW-6)
Groundwater Gradient (direction):	Southwest
Groundwater Gradient (magnitude):	0.004 feet per foot
Reported GRO concentration range:	590 micrograms per liter [μg/L](MW-1) to 5,400 μg/L (MW-6)
Reported benzene concentration range:	6.7 μg/L (MW-1) to 78 μg/L (MW-6)
Reported toluene concentrations:	14 μg/L (MW-6)
Reported ethylbenzene concentration range:	18 μg/L (MW-1 and MW-2) to 780 μg/L (MW-6)
Reported xylene concentration range:	1.2 μg/L (MW-2) to 282 μg/L (MW-6)
Reported Naphthalene concentration range:	3.0 μg/L (MW-1) to 410 μg/L (MW-6)

Laboratory procedures, chain of custody records, and the certified analytical reports are included as Attachment C. Groundwater elevation and analytical data are summarized on Tables 1 and 2.

Purge water generated during the monitoring and sampling event was stored onsite in a plastic 55 gallon drum pending characterization and disposal. Water will be removed by a licensed waste transporter and disposed of at an appropriate treatment facility.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Depth to water measurements collected from all wells during this event are within historical ranges, as are reported concentrations of dissolved hydrocarbons.

An IRAP detailing secondary source area removal via excavation was approved by ACEH staff on August 14, 2014. ACEH has indicated that Interim Remedial Actions appear appropriate. It is anticipated that case closure will be granted following completion of excavation activities and subsequent submittal of a report documenting those activities.

Currently INNOVEX is preparing an excavation and grading permit application for the City of San Leandro and coordinating excavation work scopes with the property owner and surrounding property owners.

INNOVEX will continue to conduct groundwater monitoring and sampling on a semi-annual basis until future conditions change.

5.0 LIMITATIONS

This report is based on Site conditions, data, and other information available as of the date of the report, and the conclusions and recommendations herein are applicable only to the time frame in which the report was prepared. Background information used to prepare this report including, but not limited to, previous field measurements, analytical results, Site plans and other data have been furnished to INNOVEX by Kerry & Associates and as available on the GeoTracker database. INNOVEX has relied on this information as furnished, and is neither responsible for nor has confirmed the accuracy of this information.

If you have any questions regarding this submission, please feel free to contact the undersigned at (916) 760-7579 or Matt.Farris@innovex.net.

Sincerely,

INNOVEX Environmental Management, Inc.

Matthew Farris, PG Senior Project Geologist

Attachments:

Figure 1

Site Location Map

Figure 2

First Semi-Annual 2014 Groundwater Monitoring & Sampling Results -

Groundwater Contour ¬Map - September 16, 2014

Table 1

Groundwater Elevation and Analytical Data

Attachment A

ACEH Correspondence

Attachment B

Field Procedures and Field Data Sheets

Attachment C

Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody

Records

CC:

Mr. Jeff Kerry, Kerry & Associates

Mr. Gerald Donnelly.

FIGURES

REFERENCE:
USGS 7.5 MIN QUAD MAP TITLED:SAN LEANDRO, CALIFORNIA DATED: 1959 REV: 1980

FIGURE 1 SITE LOCATION MAP

PALACE GARAGE 14336 WASHINGTON AVENUE SAN LEANDRO, CALIFORNIA

Sacramento • California •95834
Phone: (800) 988-7880

- GROUNDWATER MONITORING WELL LOCATION 0
- \blacksquare SOIL VAPOR PROBE
- SOIL BORING LOCATION LOCATION (1)

PROPERTY LINE

WELL DESIGNATION

GROUNDWATER ELEVATION (FT ABOVE MSL)

GRO and BENZENE CONCENTRATIONS (µg/L)

20.5

GROUNDWATER ELEVATION CONTOURS (FEET ABOVE MEAN SEA LEVEL- NAVD 88)

20141010.13355205

GROUNDWATER FLOW DIRECTION AND GRADIENT (FT/FT)

NOTES:

1. BASEMAP SOURCE: MORROW SURVEYING, 2/05/03

THIRD QUARTER 2014 **GROUNDWATER MONITORING** & SAMPLING RESULTS

GROUNDWATER CONTOUR MAP SEPTEMBER 16, 2014

PALACE GARAGE 14336 WASHINGTON AVENUE SAN LEANDRO, CALIFORNIA

3900 Lennane Drive • Suite 130 Sacramento • California • 95834 Phone: (800) 988-7880

TABLES

Table 1
Groundwater Elevation and Analytical Data

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg/ GRO (mg/L)	B (mg/L)	T (mg/L)	E (mg/L)	X (mg/L)	Naphthalen (mg/L)
MW-1	12/31/2002	37.59	13.62	23.97	48,000	1,030	2,380	1,690	9,220	
	9/22/2006		13.33	24.26	44,000	870	2,200	720	9,700	
	12/21/2006		13.94	23.65	17,000	240	980	180	5,000	
	3/29/2007		13.71	23.88	2,000	30	85	23	550	
	9/27/2007		15.53	22.06	540	14	3.9	44	87	
	12/20/2007		15.69	21.90	280	4.3	1.3	15	37	
	2/21/2008		13.72	23.87	19,000	300	150	1,100	4,900	
	5/15/2008		14.60	22.99	7,200	140	50	370	2,040	
	8/7/2008		15.62	21.97	820	13	3.1	44	100	
	11/13/2008		16.14	21.45	670	10	2.1	31	110	
	6/19/2009		15.15	22.44	1,490	85.8	13.4	164	310	
	11/3/2009		15.98	21.61	75	6.0	0.70	12	40.5	
	5/4/2010		13.40	24.19	18,000	300	61	880	4,070	
	11/8/2010		15.83	21.76	170	4.9	ND<0.50	7.7	24	
	4/22/2011		12.34	25.25	3,800	250	48	810	3,260	
	12/15/2011		14.77	22.82	1,500	21	0.88	29	4.6	
	5/9/2012		13.56	24.03	20,000	190	27	810	3,150	
	11/8/2012		15.68	21.91	630	2.8	1.4	30	51.9	
	2/7/2013		13.99	23.60						
	5/2/2013		14.65	22.94	2,000	79	13	580	1,780	180
	9/6/2013		15.96	21.63						
	2/7/2014		16.75	20.84	740	3.0	ND<0.50	19	31	3.7
	9/16/2014		17.01	20.58	590	6.7	ND<0.50	18	24	3

Table 1
Groundwater Elevation and Analytical Data

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg/ GRO (mg/L)	B (mg/L)	T (mg/L)	E (mg/L)	X (mg/L)	Naphthalen (mg/L)
MW-2	12/31/2002	37.12	13.38	23.74	1,670	1,030	11.00	23	16.4	
	9/22/2006	07112	13.25	23.87	1,800	53	1.40	14	7.5	
	12/21/2006		13.89	23.23						
	3/29/2007		13.57	23.55	2,100	51	1.30		4.5	
	9/27/2007		15.37	21.75	1,600	58	0.99	12	3.7	
	12/20/2007		15.40	21.72	1,500	63	1.1	16	4.9	
	2/21/2008		13.60	23.52	710	23	ND<0.50	6.2	1.1	
	5/15/2008		14.47	22.65	1,600	84	1.4	28	9.8	
	8/7/2008		15.48	21.64	2,100	86	1.6	22	9.0	
	11/13/2008		15.99	21.13	2,300	46	1.1	15	4.5	
	6/19/2009		15.03	22.09	931	60.1	ND<2.0	30	3.1	
	11/3/2009		15.87	21.25	220	22	0.55	9.4	5.05	
	5/4/2010		12.92	24.20	950	14	0.57	9.1	13.2	
	11/8/2010		15.71	21.41	1,900	45	1.6	44	9.28	
	4/22/2011		12.27	24.85	1,400	30	1.2	29	5.78	
	12/15/2011		14.86	22.26	4,300	160	26	480	790	
	5/9/2012		13.44	23.68	4,300	21	0.65	23	7.77	
	11/8/2012		15.54	21.58	1,700	68	2.6	63	14.4	
	2/7/2013		13.90	23.22						
	5/2/2013		14.55	22.57	2,700	140	2.9	130	9.34	790
	9/6/2013		15.81	21.31						
	2/7/2014		16.68	20.44	1,100	78	1.2	28	30	190
	9/16/2014		16.90	20.22	1,500	46	ND<0.50	18	1.2	26

Table 1
Groundwater Elevation and Analytical Data

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg/ GRO (mg/L)	B (mg/L)	T (mg/L)	E (mg/L)	X (mg/L)	Naphthalen (mg/L)
MW-3	12/31/2002	37.01	13.29	23.72	<50	<0.5	<0.5	<0.5	<1.0	
	9/22/2006	0.101	13.14	23.87	<50	<0.5	<0.5	<0.5	<1.5	
	12/21/2006									
	3/29/2007		13.47	23.54	<50	<0.5	<0.5	<0.5	<1.5	
	9/27/2007		15.29	21.72	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	12/20/2007		15.30	21.71	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	2/21/2008									
	5/15/2008		14.35	22.66	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	
	8/7/2008		15.39	21.62	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	11/13/2008		15.90	21.11	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	6/19/2009		14.94	22.07	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0	
	11/3/2009		15.76	21.25	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	
	5/4/2010		13.20	23.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	11/8/2010		15.62	21.39	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	4/22/2011		12.17	24.84	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	12/15/2011		14.63	22.38	150	1.5	ND<0.50	3.0	12.2	
	5/9/2012		13.36	23.65	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	11/8/2012		15.48	21.53	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	2/7/2013		13.79	23.22						
	5/2/2013		14.41	22.60	75	ND<0.50	ND<0.50	ND<0.50	ND<1.50	ND<1.0
	9/6/2013		15.74	21.27						
	2/7/2014		16.50	20.51	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0
	9/16/2014		16.76	20.25	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0

Table 1
Groundwater Elevation and Analytical Data

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg/ GRO (mg/L)	B (mg/L)	T (mg/L)	E (mg/L)	X (mg/L)	Naphthalen (mg/L)
MW-4	12/31/2002	37.09	13.45	23.64	<50	<0.5	<0.5	<0.5	<1.0	
	9/22/2006		13.40	23.69	<50	<0.5	<0.5	<0.5	<1.5	
	12/21/2006		13.86	23.23	<50	< 0.5	<0.5	<0.5	<1.5	
	3/29/2007		13.69	23.40	<50	< 0.5	<0.5	<0.5	<1.5	
	9/27/2007		15.48	21.61	ND<50	1.5	ND<0.50	0.71	0.74	
	12/20/2007		15.28	21.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	2/21/2008		13.56	23.53	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	
	5/15/2008		14.58	22.51	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	
	8/7/2008		15.57	21.52	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	11/13/2008		16.09	21.00	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	6/19/2009		15.15	21.94	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0	
	11/3/2009		16.03	21.06	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	
	5/4/2010		13.11	23.98	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	11/8/2010		15.89	21.20	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	4/22/2011		12.40	24.69	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	12/15/2011		15.03	22.06	86	ND<0.50	ND<0.50	ND<0.50	1.3	
	5/9/2012		13.51	23.58	ND<50	ND<0.50	0.84	ND<0.50	ND<1.5	
	11/8/2012		15.64	21.45	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	2/7/2013		13.98	23.11						
	5/2/2013		14.61	22.48	68	ND<0.50	ND<0.50	ND<0.50	ND<1.50	ND<1.0
	9/6/2013		15.90	21.19						
	2/7/2014		16.69	20.40	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0
	9/16/2014		16.97	20.12	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0

Table 1
Groundwater Elevation and Analytical Data

Well ID	Date Sampled	Casing Elevation	Depth To Water	Groundwater Elevation	TPHg/ GRO (mg/L)	B (mg/L)	T (mg/L)	E (mg/L)	X (mg/L)	Naphthalene (mg/L)
		(Feet MSL)	(Feet)	(Feet)						
MW-5	2/2/2012	37.27	15.06	22.21	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	
	5/9/2012		13.68	23.59	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	
	resurvey 10/11/12	36.96								
	11/8/2012		15.62	21.34	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	
	2/7/2013		13.91	23.05	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	ND<1.5
	5/2/2013		14.56	22.40	82	ND<0.50	ND<0.50	ND<0.50	ND<1.50	ND<1.5
	9/6/2013		15.87	21.09	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	ND<1.5
	2/7/2014		16.70	20.26	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0
	9/16/2014		16.96	20.00	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	ND<1.0
MW-6	2/2/2012	37.34	14.63	22.71	17,000	340	57	1,900	2,100	
	5/9/2012		13.26	24.08	34,000	170	310	1,700	3,920	
	11/8/2012		15.36	21.98	9,700	210	270	2,800	3,320	
	2/7/2013		13.63	23.71	7,700	250	240	2,800	4,790	1,100
	5/2/2013		14.35	22.99	16,000	82	36	1,200	1,050	490
	9/6/2013		15.64	21.70	19,000	130	61	1,900	1,480	830
	2/7/2014		16.62	20.72	13,000	46	13	550	224	290
	9/16/2014		16.70	20.64	5,400	78	14	780	282	410

Table 1 Groundwater Elevation and Analytical Data

Well	Date	Casing	Depth To	Groundwater	TPHg/ GRO	В	Т	Е	X	Naphthalene
ID	Sampled	Elevation (Feet MSL)	Water (Feet)	Elevation (Feet)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)

Table 1 Groundwater Elevation and Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

Well Date ID Sampl	Casing d Elevation (Feet MSL)	Water	Groundwater Elevation (Feet)	TPHg (mg/L)	B (mg/L)	T (mg/L)	E (mg/L)	X (mg/L)	Naphthalene (mg/L)
-----------------------	-------------------------------	-------	------------------------------------	----------------	-------------	-------------	-------------	-------------	-----------------------

ABBREVIATIONS:

TPHg/ GRO total petroleum hydrocarbons as gasoline. Gasoline range organics

B Benzene

T Toluene

E Ethylbenzene

X Total xylenes

mg/L Micrograms per liter (parts per billion [ppb])

--- Not analyzed/measured/applicable

ND< Not detected at or above specified laboratory reporting limit

Bold Current sampling event

MSL mean sea level

LIMITATIONS:

Background information, including but not limited to previous field measurements, analytical results, Site plans, and other data have been obtained from previous consultants, and/or third parties, in the preparation of this report. Closure Solutions has relied on this information as furnished. Closure Solutions is not responsible for, nor has it confirmed the accuracy of data collected or generated by others.

- GROUNDWATER MONITORING WELL LOCATION 0
- \blacksquare SOIL VAPOR PROBE
- SOIL BORING LOCATION LOCATION (1)

PROPERTY LINE

WELL DESIGNATION

GROUNDWATER ELEVATION (FT ABOVE MSL)

GRO and BENZENE CONCENTRATIONS (µg/L)

20.5

GROUNDWATER ELEVATION CONTOURS (FEET ABOVE MEAN SEA LEVEL- NAVD 88)

20141010.13355205

GROUNDWATER FLOW DIRECTION AND GRADIENT (FT/FT)

NOTES:

1. BASEMAP SOURCE: MORROW SURVEYING, 2/05/03

THIRD QUARTER 2014 **GROUNDWATER MONITORING** & SAMPLING RESULTS

GROUNDWATER CONTOUR MAP SEPTEMBER 16, 2014

PALACE GARAGE 14336 WASHINGTON AVENUE SAN LEANDRO, CALIFORNIA

3900 Lennane Drive • Suite 130 Sacramento • California • 95834 Phone: (800) 988-7880

ATTACHMENT A

ACEH Correspondence

Matt Farris

From: Matt Farris < Matt.Farris@innovex.net> Sent: Friday, March 14, 2014 7:59 PM To: 'Detterman, Mark, Env. Health' Subject: RE: Change order for Palace Garage

Thank You Mark. I appreciate it immensely.

From: Detterman, Mark, Env. Health [mailto:Mark.Detterman@acgov.org]

Sent: Friday, March 14, 2014 4:20 PM

To: 'Matt Farris'

Subject: RE: Change order for Palace Garage

What you can't do the impossible? I'm seriously disappointed! ©

Thanks Matt. I'll extend the date to September 2, from what you've said.

Please use this email to document the change.

Mark Detterman Senior Hazardous Materials Specialist, PG, CEG Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502 Direct: 510.567.6876

Fax: 510.337.9335

Email: mark.detterman@acgov.org

PDF copies of case files can be downloaded at:

http://www.acgov.org/aceh/lop/ust.htm

From: Matt Farris [mailto:Matt.Farris@innovex.net]

Sent: Friday, March 14, 2014 2:47 PM To: Detterman, Mark, Env. Health Subject: Change order for Palace Garage

Hi Mark,

Just wanted to let you know I've been trying to contact the Fund to get a status report on the recent change order request I submitted for Palace Garage in San Leandro. So far no word on a decision. It's likely they won't have one either before the upcoming March 28 deadline for the revised CAP the county has requested has passed. As such I'm still behind the eight ball. There is no budget left for the site in the 2013/14 fiscal year. In addition, you may recall the previous change order request submitted back in July 2013 for the site was denied for this fiscal year. As such I'm unsure if we will be granted additional funds this year even with the new site information. If you have any connections with the Fund, would you be willing to ask and see if you can get an answer on the status? Otherwise I humbly ask that the extension I've requested to move the due date for the revised CAP to September 2, 2014 be granted. If you have any questions please feel free to call me.

Thanks, Matt

Matthew Farris P.G. Senior Project Geologist

Innovex Environmental Management

3900 Lennane Drive, Suite 130 Sacramento, CA 95834 Direct (916)760-7579 Cell (925) 808-9290 Fax +1 (925) 459-5602

ATTACHMENT B

Field Procedures and Field Data Sheets

Standard Operating Procedures: Basic Gauge, Purge, and Sample.

Routine Water Level Measurements

- 1. Confirm that water or debris will not enter the well box upon removal of the well box lid.
- **2.** Remove the cover using the appropriate tools.
- 3. Inspect the wellhead for deficiencies and document accordingly.
- **4.** Confirm that water or debris will not enter the well upon removal of the well cap.
- **5.** Unlock and remove the well cap lock (if applicable). If lock is not functional cut it off.
- **6.** Loosen and remove the well cap. CAUTION: DO NOT PLACE YOUR FACE OR HEAD DIRECTLY OVER WELLHEAD WHEN REMOVING THE WELL CAP. WELL CAP MAY BE UNDER PRESSURE AND/OR MAY RELEASE ACCUMULATED AND POTENTIALLY HARMFULL VAPORS.
- 7. Verify and identify survey point as written on S.O.W.

TOC: If survey point is listed as Top of Casing (TOC), look for the exact survey point in the form of a notch or mark on the top of the casing. If no mark is present, use the north side of the casing as the measuring point.

TOB: If survey point is listed as Top of Box (TOB), the measuring point will be established manually. Place the inverted well box lid halfway across the well box opening and directly over the casing. The lower edge of the inverted cover directly over the casing will be the measuring point.

- **8.** Put new Nitrile gloves on your hands.
- **9.** Slowly lower the decontaminated water level meter probe into the well until it signals contact with water with a tone and/or flashing a light.
- 10. Gently raise the probe tip slightly above the water and hold it there. Wait momentarily to see if the meter emits a tone, signaling rising water in the casing. Gently lower the probe tip slightly below the water. Wait momentarily to see if the meter stops emitting a tone, signaling dropping water in the casing. Continue process until water level stabilizes indicating that the well has equilibrated.
- 11. While holding the probe at first contact with water and the tape against the measuring point, note depth. Repeat twice to verify accuracy. Write down measurement on well gauging sheet under depth to water column.
- **12.** Recover probe, replace and tighten well cap, replace lock (if applicable), replace well box cover and tighten hardware (if applicable).

Purging With a Bailer (Teflon or Disposable)

- 1. Attach bailer cord or string to bailer. Leave other end attached to spool.
- 2. Gently lower empty bailer into well until well bottom is reached.
- **3.** Cut cord from spool. Tie a loop at end cord.
- **4.** Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground.
- **5.** Pour contents into graduated 5-gallon bucket or other graduated receptacle.

- **6.** Repeat purging process.
- 7. Upon removal of first casing volume, fill clean parameter cup with purge water, empty the remainder of the purge water into the bucket, lower the bailer back into the well and secure the cord on the Sampling Vehicle.
- **8.** Use the water in the cup to collect and record parameter measurements.
- **9.** Continue purging until second casing volume is removed.

Standard Operating Procedures: Basic Gauge, Purge and Sample

- **10.** Collect parameter measurements.
- **11.** Continue purging until third casing volume is removed.

Purging With a Fixed Speed Electric Submersible Pump

- 1. Position thoroughly decontaminated pump over the top of the well.
- **2.** Gently unreel and lower the pump to the well bottom.
- **3.** Raise the pump to client specified location within screened interval. If no direction is given the pump inlet will be placed 5 feet above the bottom of the well.
- **4.** Secure the hose reel.
- 5. Begin purging.
- **6.** Verify pump rate with flow meter or graduated 5-gallon bucket.
- 7. Upon removal of first casing volume, fill clean parameter cup with water.
- **8.** Use the water in the cup to collect and record parameter measurements.
- **9.** Continue purging until second casing volume is removed.
- **10.** Collect parameter measurements.
- 11. Continue purging until third casing volume is removed.
- **12.** Upon completion of purging, gently recover the pump and secure the reel.

Sampling with a Bailer (Teflon or Disposable) 1.

Put new Latex or Nitrile gloves on your hands.

- 2. Determine required bottle set.
- **3.** Fill out sample labels completely and attach to bottles.
- **4.** Arrange bottles in filling order and loosen caps (see Determine Collection Order below).
- **5.** Attach bailer cord or string to bailer. Leave other end attached to spool.
- **6.** Gently lower empty bailer into well until water is reached.
- 7. As bailer fills, cut cord from spool and tie end of cord to hand.
- **8.** Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground. If a set of parameter measurements is required, go to step 9. If no additional measurements are required, go to step 11.
- **9.** Fill a clean parameter cup, empty the remainder contained in the bailer into the sink, lower the bailer back into the well and secure the cord on the sampling vehicle. Use the water in the cup to collect and record parameter measurements. **10.** Fill bailer again and carefully remove it from the well.
- 11. Slowly fill and cap sample bottles. Fill and cap volatile compounds first, then semivolatile, then inorganic (see following steps). Return to the well as needed for additional sample material.
- **12.** Fill 40-milliliter vials for volatile compounds as follows: Slowly pour water down the inside on the vial. Carefully pour the last drops creating a convex or positive meniscus on the

- surface. Gently screw the cap on eliminating any air space in the vial. Turn the vial over, tap several times and check for trapped bubbles. If bubbles are present, repeat the process.
- **13.** Fill 1 liter amber bottles for semi-volatile compounds as follows: Slowly pour water into the bottle. Leave approximately 1 inch of headspace in the bottle. Cap bottle.
- **14.** Field filtering of inorganic samples using a disposable bailer is performed as follows: Attach 0.45 micron filter to connector plug. Attach connector plug to bottom of full disposable bailer. Gravity feed water through the filter and into the sample bottle. If high turbidity level of water clogs filter, repeat process with new filter until bottle is filled. Leave headspace in the bottle. Cap bottle.
- 15. Bag samples and place in ice chest.
- **16.** Note sample collection details on well data sheet and Chain of Custody.

FIELD DATA SHEET-DEPTH TO WATER DATA

			SITE INFORMA	ATION		
Site Information						
Palace Garage		9/16/14	1601 07 01 Project Number			
	- 4	Date				
14336 Washington	n Ave.	San Leandro City	CA State			
Water Level Equipme			Kevin Dolan			
x Electronic Indicato		-	1 CVIII DOIGH			
Oil Water Interface			Event:	3Q 2014		
Other (specify)		-		• • • • • • • • • • • • • • • • • • • •		
		DE	PTH TO WATE	R DATA		
			DTW	Total Depth	Depth to SPH /	
DTW Order	Well ID	Time (24:00)	(toc)	(toc)	Thickness	Notes:
5	MW-1	8:53	7.01	23.25	NIA	
<u>5</u>	MW-2	8:51	16,90	23.64		
2	MW-3	8:49	16.76	23.06		
1	MW-4	8:46	16.97	21.85		3/4" well
3	MW-5	8:49	16,96	17.6		
6	MW-6	8.54	16.70	19.6		
		1	1 0			
			_			
		1				
		1				
-		 				Full dram
		 				on 516-
_		 				LOW SIGHT
		 				Against Back
						Fence
		+	-			
		+				
		 				
		ļ				

Project Na	me:	Palace	Garage				Date:	9) 6	_
Sample No	0.:						_		
Samplers I	Name:	Kevin Dolan					_		
Purge Equ	ipment:						Sample Equ	uipment:	
		posable or Acryl	ic					Disposable Bailer	
X	12 v. Pump							Whaler#	
	Bladder Pu SS Monso							Bladder Pump Submersible Pump	,
Analyses F		circle all that a	(vlaaı				Num	ber and Types of Bo	
	BTEX / Napl				3 voa's w/	hc			
								10	
Well Numb		MW-1				W	all Diameter	211 with Casing \	/olume of:
Depth to W		171.01	TOC					2" = (0.16 G	
		1000	•					4" = (0.65 G	•
Well Depth		23,25	BGS or TOC					,	•
Height W-0		0,24	feet (well dep	•	•			5" = (1.02 G	•
Volume in		1,00	gallons (casir	_	X height)			6" = (1.47 G	•
Gallons to	purge:	3,00	gallons (volui	me X 3)				3/4" = (.0625 G/Ft)	l
Lab:	SunStar					Transpo	rtation:		
Time	Volume	Temperature	Conductivity	D.O.	T T	TDS			Micropurge
(24 hr.)	Purged	(°C)	(ms/cm)	(ppm)	pН	(ppm)	Turbidi	ity: Color - Fines	Paramaters Stabilized
244	(Gallons)								†
1150	2001				/			0 11 2	+
1150	1	18,9	0,94%	412	6.86		212	Cod Mostary	
11854	2	18,9	0,944	3.98	6.80		190		
1156	3	18.3	0,931	3,50	6.13		186		igwdown
500	onue	Comple	2					<u> </u>	<u> </u>
سيت									
	λ	_					-		
	15	2							
(Wa	it for 80% we	ll volume	recovery p	prior to s	ampling.		
			depth to wate					y:	
					orginal well vo	lume:			
	Origina	I Height of Water Co	olumn = 6.2	x 0.8 =	니의	(Well Depth) 25にデ	Depth lo water	25
Time: 1210	1st measured o	depth to water,	7.) feet belo	w TOC.		Is well with	in 80% of origina	al well casing volume: Yes	≥ No
Time:	1st measured	depth to water,	feet belo	w TOG.	•	Is well with	in 80% of origina	al well casing volume: Yes	No
Time:	1st measured of	depth to water,	feet belo	w TOC.		Is well with	in 60% of origina	al well casing volume: Yes	No
		_		Sam	ole Well				
Time:	1211		Sample ID:		MW-1		Depth	n:17,11	
Comments:		Modera	le 1tc	Oda	e - N	0 SI	ieun		
						Ŋ.,			
Well Conditi	ion:	Cox	el						
							Closure Sc	olutions INC QMS	FDS

Project Na	me:	Palace	Garage				Date:	9/16	_
Sample No			WO Z						
Samplers I		Kevin Dolan							
Purge Equ	ipment: Bailer: Disp	posable or\Acryli	c		_		Sample Equ	uipment:Disposable BailerWhaler #	
<u> </u>	12 v. Pump Bladder Pu							Bladder Pump	
	SS Monsoc							Submersible Pump	
		(circle all that a	pply):		<u> </u>		Num	ber and Types of Bo	ttle Usea:
TPH-G / E	BTEX / Napl	ntalene			3 voa's w/l	1C			
Well Numb	oer:	M (2) = S				We	ell Diameter:	<u> 2</u> with Casing \	
Depth to V	Vater:	16,90	TOC					2" = (0.16 G	-
Well Depth		23,04	BGS or TOC					4" = (0.65 G	
Height W-0		674	feet (well dep	th - depth	to water)			5" = (1.02 G	•
Volume in		1,07	gallons (casir	ng volume	X height)			6" = (1.47 G	allon/Feet)
Gallons to	purge:	3.22	gallons (volur	ne X 3)				3/4" = (.0625 G/Ft)	l
Lab:	SunStar		<u> </u>			Transpo	rtation:		
Time (24 hr.)	Volume Purged	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)	Turbid	ity: Color - Fines	Micropurge Paramaters Stabilized
 	(Gallons)								
1103	Sta			11 -	110		Ino!	2/25/2	+1
1105	1.10	18.9	0.999	4.03	6.60		Γ	clear, min	-
1107	2,20	18,9	0.991	3,16	6.6		101;		+
1100	3,30	18,9	0,983	3.62	6.50		98.		+
Stop	Percel	Complet							+
	Ļ						ļ		+
							 		
<u> </u>	<u>/</u>								
	145	<u> </u>				10040			
		Wa Calculate	it for 80% we depth to wate	er (fro <u>m T</u>	OC), for 80°	% well vo	lume recove	гу:	
			·		orginal well vo				
	Origin	nal Height of Wa ter C	olumn =	[√x 0.8 =	0.69	- (Well Dept	th) 23,59:	= Depth to water	24
1121								nal well casing volume: Yes	s × No
Time: 1121 Time:	1st measured	i deplh to water, i deplh lo water, i depth lo water,	feet be	low TOC.		Is well wit	hin 80% of origin	nal well casing volume: Yes nal well casing volume: Yes	s No
				San	ple Well_				
Time	: 1122	_	Sample ID:		Mw-7	(4	_ Dep	th:	<u> </u>
Comments	 3:	Slight	Itc &	0002	- N/O	Sue	ON		
		0							
Well Cond	lition:	Good -							
					45		Closure S	Solutions INC QMS	FDS

Project Name:		Palace Garage					Date:	9/16/14	
Sample No). <u>:</u>	MW-	3				_		
Samplers I	Name:	Kevin Dolan					_		
Purge Equ	•	posable or Acryl	ic				Sample Eq	uipment: Disposable Bailer	
	12 v. Pump) -						Whaler #	
	Bladder Pu							Bladder Pump	
Analysas	SS Monso		mmls.).				Mus	Submersible Pump nber and Types of Bot	tla Head:
	Requested BTEX / Napi	(circle all that a	ppiy):		3 voa's w/	hc	Null	inder and Types of Bot	.tie Oseu.
1111-07 E	//LX/ //up/	Ttu/C/IC	-	***					
Well Numb	er:	mw-3			-	W	ell Diameter	r: <u>2"</u> with Casing V	
Depth to W	later:	16.76	тос					2" = (0.16 Ga	illon/Feet)
Well Depth	:	<u>83,06</u>	BGS or TOC					4" = (0.65 Ga	illon/Feet)
Height W-C	Column:	6.3	feet (well dep	th - depth	to water)			5" = (1.02 Ga	illon/Feet)
Volume in	Well:	1:00	gallons (casir	ng volume	X height)			6" = (1.47 Ga	illon/Feet)
Gallons to	purae:	$\overline{}$	gallons (volui	-				3/4" = (.0625 G/Ft)	
Lab:	SunStar		, ,	,		Transpo	rtation:	, ,	
	Volume			•					
Time (24 hr.)	Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	pН	TDS (ppm)	Turbio	dity: Color - Fines	Micropurge Paramaters Stabilized
946	-Stav	巧 —							
0117		19.3	0.729	3.9%	6.26	/	186	1 Brown, many	
aya	2	18.9	0.721	300	6.20		180	· cour, min	
951	3	18.7	0.716	3.52	600		173	i V V	
Stop".	Purge	complet	e						
								_	
	/		72						
	1-	100							
	The same of the sa		it for 80% we depth to wate					r./·	
-		Calculate			orginal well vol		unie recove		
	Origina	al Height of Water Co					n 24 oo:	= Depth to water	~7
) X 0.0			/		
Time:	1st measured	depih to water,depih to water,depih to water,	feet belo	DW TOC. DW TOC. DW TOC.		Is well with	in 80% of origin	nal well casing volume: Yes _ nal well casing volume: Yes _ nal well casing volume: Yes _	No
				Sami	ole Well				
				Oam	DIC 44CII				
Time:	1004		Sample ID:		Mw-	2	Dep	th:\(o,\&\	
Comments:		170	nder -	W/D	Sheev	^			
Mall Carette	ion:	(25AO	Princip	-214	D. 10-0	we.	(j = 35a	UKU DOX	, c
Well Conditi	ion: OZ, ~	Vue ed	120	1 1		- 77 C			
	- CHI	10[(4)	(F. 1907 A. 1903)	\			Closure S	olutions INC QMS F	DS

Project Na	me:	Palace	Garage		Date:	9/14/14						
Sample No		V	UW-9				-					
Samplers N	lame:	Kevin Dolan					-					
Purge Equi							Sample E	iquipment:				
		oosable or Acryli	A.		l	v		Disposable Bailer Whaler #				
	12 v. Pump Bladder Pu	mp / Foot	value V		<			Bladder Pump				
	SS Monsoc							Submersible Pump				
		circle all that a	pply):		0!/	l	Nu	mber and Types of Bo	mie Used:			
TPH-G / B	RTEX / Naph	italene			3 voa's w/	nc						
Well Numb	er:	MW-4				W	ell Diamete					
Depth to W	/ater:	16.97	TOC			2" = (0.16 Gallon/Feet)						
Well Depth	ı :	21,85	BGS or TOC					4" = (0.65 G	*			
Height W-C	Column:	4.88	feet (well dep	th - depth	to water)			5" = (1.02 G	allon/Feet)			
Volume in	Well:	0.23	gallons (casir	ng volume	X height)			6" = (1.47 G				
Gallons to	purge:	0.69	gallons (volur	ne X 3)				(3/4")≠ (.0625 G/Ft))			
Lab:	SunStar					Transpo	ortation:					
	Volume		0 - 1 - 25 - 25 - 25 - 25 - 25 - 25 - 25	D.O.		TDS			Micropurge			
Time (24 hr.)	Purged	Temperature (°C)	Conductivity (ms/cm)	(ppm)	pН	(ppm)	Turb	oidity: Color - Fines	Paramaters Stabilized			
	(Gallons)	()	(1131311)	(1-1					1			
912	Sam						 		+			
914	0.25	18.70	0.739	496	7,09		517	Brown Way U	1			
916	0.50	18.60	0.736	4,71	7.09		501	. 0	 			
919	0.75	18.60	0.776	4.52.	7,03		UP13					
Stop	Pare	Conplat					<u> </u>					
	G	1										
	/											
							 					
4	- KS)											
		Wa Calculate	it for 80% we depth to wate	ell volume er (from T	OC), for 80	prior to s % well vo	sampling. olume recov	very:				
			Calc	ulate 80% o	forginal well vo	olume:						
	Origin	al Height of Water C	olumn = 4/5	7x 0.8	3.90	- (Well Dep	th) 2189	= Depth to water 17.9	M			
								iginal well casing volume: Yes				
Time:	1st measured	depth to water,	feet bel feet bel	ow TOC. ow TOC.		Is well wil	hin 80% of ori	iginal well casing volume: Ye:	s No			
Time:	-	depth to water,		low TOC.		Is well wit	hin 80% of ori	iginal well casing volume: Yes	; No			
				Sam	ple Well							
					/X. 1 . X/A			17 ~	3			
Time:			Sample ID:		MM - M		_ De	epth:17009				
Comments		NO	odaz - 1	D Che	Carlo							
Comments	<u> </u>	130	C. Marchael C. Mar	W_7 A. (
Mall Can di	tion:	Cood										
Well Condi	uon.	(3004)										
							Closure	Solutions INC QMS	S FDS			

Project Name: Palace Garage						Date: : s = 1	_			
Sample No.: MW-S							444			
Samplers N	lame:	Kevin Dolan					10/4			
Purge Equi	ipment: Bailer: Disp 12 v. Pump Bladder Pu	mp	C				Sample Equipment: Disposable Bailer Whaler # Bladder Pump Submersible Pump			
	SS Monsoo		nnlu):				Number and Types of Bo			
	Requested (RTEX / Naph	circle all that a	ppiy).	_	3 voa's w/	hc	, , , , , , , , , , , , , , , , , , ,			
1711-07	тех тары									
Well Number: INSTANTOC						We	ell Diameter: 2" with Casing V			
Depth to W	_	17.60	BGS or TOC				4" = (0.65 G			
Well Depth	-	0,60	feet (well dep	th - depth	to water)		5" = (1.02 G			
Height W-C		010	gallons (casir				6" = (1.47 G	•		
Volume in		0.30	gallons (volui	_	X neight)		3/4" = (.0625 G/Ft)			
Gallons to		0070	galloris (voldi	ile X 3/		Transpo				
Lab:	SunStar			_						
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)	Turbidity: Color - Fines	Micropurge Paramaters Stabilized		
1026	San					and the contract of		<u> </u>		
	020	7.1	0.861	3,96	5.70		113 Clear pin			
1078	10,40	17:0	0.860	3,12	5,68	_	393			
1030	0.50	17.0	0.857	2,78	5.63		307 1			
		complet			- "-					
Spal.	purel	Compace								
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	 -							161		
										
	1/6-			_		_		 		
	151	10/6	it for 80% we	ll volum	recovery	prior to s	sampling.			
		Calculate	depth to water	er (from T	OC), for 80	% well vo	olume recovery:			
					f orginal well vo					
	Origin	al Height of Water C					th) 1760= Depth to water 177)G		
1- 4/1					1.7			X' No		
Time:	1st measured	depth to water,	feet be	low TOC. low TOC.		Is well wil	hin 80% of original well casing volume: Yes hin 80% of original well casing volume: Yes	No		
Time:	1st measured	depth to water,	feet be	low TOC.		is well wit	hin 80% of original well casing volume: Yes	i No		
			P	San	nple Well					
Time:	1045		Sample ID:		mw-5		Depth: 17.03			
Comments		MO	One 11 -	110	548CH1					
	<u>-</u>									
Well Condi	tion:	סססכי								
VVEII COJIUI	iioit.							-		
							Closure Solutions INC QMS	FDS		

Project Nar	ne:	Palace	Garage				Date:	9/16	
Sample No.		Mw- b							
Samplers N		Kevin Dolan		-					
Purge Equi	pment:	oosable or Acryli	c			-	Sample Equ ×	i ipment: Disposable Bailer Whaler # _Bladder Pump	
	Bladder Pui SS Monsoo				,	-		Submersible Pum	
		n # circle all that a	pply):				Num	ber and Types of B	ottle Used:
	TEX / Naph				3 voa's w/l	1C			
Well Numb		WW-6	_			We	II Diameter:	2" with Casing	Volume of:
Depth to W	•		TOC					2" = (0.16	Gallon/Feet)
Well Depth			BGS or TOC					4" = (0.65	Gallon/Feet)
Height W-C			feet (well dep	th - depth	to water)			5" = (1.02	Gallon/Feet)
Volume in	,		gallons (casir					6" = (1.47	Gallon/Feet)
Gallons to			gallons (volur					3/4" = (.0625 G/F	t)
Lab:	SunStar		,	•		Transpo	rtation:		
Time (24 hr.)	Volume Purged	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)	Turbidi	ity: Color - Fines	Micropurge Paramaters Stabilized
<u> </u>	(Gallons)							15	X
12291	50	16.9	1,03	2,65	6,50		89b	¿ HAZIBANA	res i
			1,02	1.96	6.50	/	840		
1233	1,00	16.8	1:01	1,90	6,57		796	11/1/	
Stol.	pures	conplete						2	-
								<u> </u>	_
						Fire.			
-	-100								
<u> </u>	1_9/_	Wa Calculate	it for 80% we depth to wate	ell volume er (from 7	e recovery	prior to s % well vo	ampling. lume recove	ry:	
<i>!</i>					f orginal well vo				
	Outside	nal Height of Water C		Ox na	- 2/32	- (Weli Dept	h) 19,60	= Depth to water 17	2.8
Time:	31st measured	i depth to water,	feet be	low TOC. low TOC.		Is well will	hin 80% of origin	nal well casing volume: \ nal well casing volume: \ nal well casing volume: \	res No
Time	_ 13(11)@d3u1@t				nple Well				
Time	 : 12SC	<u> </u>	Sample ID				Dep	oth:	3
Comments	S:	Moder	ne H	2 0	dan 2 -	NO	Sugar	1	
Well Cond	lition:	ं ठ०							
							Closure	Solutions INC Q	VIS FDS

ATTACHMENT C Laboratory Procedures, Certified Laboratory Analytical Reports and Chain-of-Custody Records

25 September 2014

Matt Farris Innovex-Environmental Management, Inc. 2300 Clayton Rd. Suite 1435 Concord, CA 94520

RE: Palace Garage

Enclosed are the results of analyses for samples received by the laboratory on 09/20/14 08:14. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine RunningCrane

Kotherine Running Crane

Project Manager

Innovex-Environmental Management, Inc.

Project: Palace Garage

2300 Clayton Rd. Suite 1435 Concord CA, 94520 Project Number: [none]
Project Manager: Matt Farris

Reported: 09/25/14 10:30

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	T141940-01	Water	09/16/14 00:00	09/20/14 08:14
MW-2	T141940-02	Water	09/16/14 00:00	09/20/14 08:14
MW-3	T141940-03	Water	09/16/14 00:00	09/20/14 08:14
MW-4	T141940-04	Water	09/16/14 00:00	09/20/14 08:14
MW-5	T141940-05	Water	09/16/14 00:00	09/20/14 08:14
MW-6	T141940-06	Water	09/16/14 00:00	09/20/14 08:14

DETECTIONS SUMMARY

Sample ID:	MW-1	Laboratory ID:	T141940-01

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Naphthalene	3.0	1.0	ug/l	EPA 8260B	
Benzene	6.7	0.50	ug/l	EPA 8260B	
Ethylbenzene	18	0.50	ug/l	EPA 8260B	
m,p-Xylene	24	1.0	ug/l	EPA 8260B	
C6-C12 (GRO)	590	50	ug/l	EPA 8260B	

Sample ID: MW-2 Laboratory ID: T141940-02

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Naphthalene	26	1.0	ug/l	EPA 8260B	
Benzene	46	0.50	ug/l	EPA 8260B	
Ethylbenzene	18	0.50	ug/l	EPA 8260B	
m,p-Xylene	1.2	1.0	ug/l	EPA 8260B	
C6-C12 (GRO)	1500	50	ug/l	EPA 8260B	

SunStar Laboratories, Inc.

Innovex-Environmental Management, Inc.

2300 Clayton Rd. Suite 1435

Concord CA, 94520

Project Number: [none]

Project Manager: Matt Farris

Project: Palace Garage

Reported:

09/25/14 10:30

Sample ID: MW-3

T141940-03 **Laboratory ID:**

No Results Detected

Sample ID: MW-4 **Laboratory ID:** T141940-04

No Results Detected

Sample ID: MW-5 **Laboratory ID:** T141940-05

No Results Detected

Sample ID: MW-6 **Laboratory ID:** T141940-06

	Reporting			
Result	Limit	Units	Method	Note
410	10	ug/l	EPA 8260B	
78	0.50	ug/l	EPA 8260B	
14	0.50	ug/l	EPA 8260B	
780	5.0	ug/l	EPA 8260B	
270	10	ug/l	EPA 8260B	
12	0.50	ug/l	EPA 8260B	
5400	500	ug/l	EPA 8260B	
	410 78 14 780 270	Result Limit 410 10 78 0.50 14 0.50 780 5.0 270 10 12 0.50	Result Limit Units 410 10 ug/l 78 0.50 ug/l 14 0.50 ug/l 780 5.0 ug/l 270 10 ug/l 12 0.50 ug/l	Result Limit Units Method 410 10 ug/l EPA 8260B 78 0.50 ug/l EPA 8260B 14 0.50 ug/l EPA 8260B 780 5.0 ug/l EPA 8260B 270 10 ug/l EPA 8260B 12 0.50 ug/l EPA 8260B

SunStar Laboratories, Inc.

Innovex-Environmental Management, Inc.

2300 Clayton Rd. Suite 1435 Concord CA, 94520 Project: Palace Garage

Project Number: [none]
Project Manager: Matt Farris

Reported:

09/25/14 10:30

MW-1 T141940-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		a a. .							

SunStar Laboratories, Inc.

Naphthalene	3.0	1.0	ug/l	1	4092328	09/23/14	09/23/14	EPA 8260B
Benzene	6.7	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	18	0.50	"	"	"	"	"	"
m,p-Xylene	24	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
C6-C12 (GRO)	590	50	"	"	"	"	"	"
Surrogate: Toluene-d8		99.6 %	88.8-	117	"	"	"	"
Surrogate: 4-Bromofluorobenzene		102 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		115 %	81.1-	136	"	"	"	"

SunStar Laboratories, Inc.

Innovex-Environmental Management, Inc.

Project: Palace Garage

2300 Clayton Rd. Suite 1435 Concord CA, 94520 Project Number: [none]
Project Manager: Matt Farris

Reported:

09/25/14 10:30

MW-2 T141940-02 (Water)

ı									
		Reporting							
	Analyte Res	ult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds	by EPA Method 8260B								
Naphthalene	26	1.0	ug/l	1	4092328	09/23/14	09/23/14	EPA 8260B	
Benzene	46	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	18	0.50	"	"	"	"	"	"	
m,p-Xylene	1.2	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	

 C6-C12 (GRO)
 1500
 50
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "

SunStar Laboratories, Inc.

Innovex-Environmental Management, Inc.

2300 Clayton Rd. Suite 1435 Concord CA, 94520 Project: Palace Garage

Project Number: [none]
Project Manager: Matt Farris

Reported:

09/25/14 10:30

MW-3 T141940-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds 1	by EPA	Method 8260B

· · · · · · · · · · · · · · · · · · ·									
Naphthalene	ND	1.0	ug/l	1	4092328	09/23/14	09/23/14	EPA 8260B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
C6-C12 (GRO)	ND	50	"	"	"	"	"	"	
Surrogate: Toluene-d8		96.8 %	88.8-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		112 %	81.1-	136	"	"	"	"	

SunStar Laboratories, Inc.

Innovex-Environmental Management, Inc.

Concord CA, 94520

Surrogate: Toluene-d8

2300 Clayton Rd. Suite 1435

Volatile Organic Compounds by EPA Method 8260B

Project: Palace Garage

Project Number: [none] Project Manager: Matt Farris Reported:

09/25/14 10:30

MW-4 T141940-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Naphthalene	ND	1.0	ug/l	1	4092328	09/23/14	09/23/14	EPA 8260B
Benzene	ND	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
m,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
C6-C12 (GRO)	ND	50	"	"	"	"	"	"

88.8-117

98.0 % 100 % 83.5-119 Surrogate: 4-Bromofluorobenzene 120 % 81.1-136 Surrogate: Dibromofluoromethane

SunStar Laboratories, Inc.

Innovex-Environmental Management, Inc.

Volatile Organic Compounds by EPA Method 8260B

Project: Palace Garage

2300 Clayton Rd. Suite 1435 Concord CA, 94520 Project Number: [none]
Project Manager: Matt Farris

Reported:

09/25/14 10:30

MW-5 T141940-05 (Water)

ı										
			Reporting							
	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Naphthalene	ND	1.0	ug/l	1	4092222	09/22/14	09/23/14	EPA 8260B
Benzene	ND	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
m,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	••	"

 o-Xylene
 ND
 0.50
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 <t

SunStar Laboratories, Inc.

Innovex-Environmental Management, Inc.

Project: Palace Garage

2300 Clayton Rd. Suite 1435

Concord CA, 94520

Project Number: [none]
Project Manager: Matt Farris

Reported:

09/25/14 10:30

MW-6 T141940-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by E	PA Method 8260B								
Naphthalene	410	10	ug/l	10	4092222	09/22/14	09/23/14	EPA 8260B	
Benzene	78	0.50	"	1	"	"	"	"	
Toluene	14	0.50	"	"	"	"	"	"	
Ethylbenzene	780	5.0	"	10	"	"	"	"	
m,p-Xylene	270	10	"	"	"	"	"	"	
o-Xylene	12	0.50	"	1	"	"	"	"	
C6-C12 (GRO)	5400	500	"	10	"	"	"	"	
Surrogate: Toluene-d8		105 %	88.8-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		96.0 %	81.1-	136	"	"	"	"	

SunStar Laboratories, Inc.

Innovex-Environmental Management, Inc.

Project: Palace Garage

2300 Clayton Rd. Suite 1435 Concord CA, 94520 Project Number: [none]
Project Manager: Matt Farris

Reporting

Reported: 09/25/14 10:30

RPD

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 4092222 - EPA 5030 GCMS											
Blank (4092222-BLK1)				Prepared: 09/22/14 Analyzed: 09/23/14							
Chlorobenzene	ND	1.0	ug/l								
1,1-Dichloroethene	ND	1.0	"								
Naphthalene	ND	1.0	"								
Trichloroethene	ND	1.0	"								
Benzene	ND	0.50	"								
Toluene	ND	0.50	"								
Ethylbenzene	ND	0.50	"								
m,p-Xylene	ND	1.0	"								
o-Xylene	ND	0.50	"								
C6-C12 (GRO)	ND	50	"								
Surrogate: Toluene-d8	8.21		"	8.00		103	88.8-117				
Surrogate: 4-Bromofluorobenzene	8.31		"	8.00		104	83.5-119				
Surrogate: Dibromofluoromethane	8.23		"	8.00		103	81.1-136				
LCS (4092222-BS1)				Prepared:	09/22/14	Analyzed	1: 09/23/14				
Chlorobenzene	20.5	1.0	ug/l	20.0		102	75-125				
1,1-Dichloroethene	20.3	1.0	"	20.0		102	75-125				
Trichloroethene	16.2	1.0	"	20.0		81.1	75-125				
Benzene	16.8	0.50	"	20.0		84.0	75-125				
Toluene	16.1	0.50	"	20.0		80.7	75-125				
Surrogate: Toluene-d8	7.70		"	8.00		96.2	88.8-117				
Surrogate: 4-Bromofluorobenzene	8.69		"	8.00		109	83.5-119				
Surrogate: Dibromofluoromethane	9.50		"	8.00		119	81.1-136				
Matrix Spike (4092222-MS1)	Sou	rce: T14194	0-05	Prepared:	09/22/14	Analyzed	1: 09/23/14				
Chlorobenzene	19.7	1.0	ug/l	20.0	ND	98.7	75-125				
1,1-Dichloroethene	16.2	1.0	"	20.0	ND	81.2	75-125				
Trichloroethene	26.8	1.0	"	20.0	11.0	79.0	75-125				
Benzene	16.6	0.50	"	20.0	ND	82.9	75-125				
Toluene	15.8	0.50	"	20.0	ND	79.0	75-125				
Surrogate: Toluene-d8	7.61		"	8.00		95.1	88.8-117				
Surrogate: 4-Bromofluorobenzene	8.32		"	8.00		104	83.5-119				
Surrogate: Dibromofluoromethane	9.70		"	8.00		121	81.1-136				

SunStar Laboratories, Inc.

RPD

%REC

Innovex-Environmental Management, Inc. Project: Palace Garage

2300 Clayton Rd. Suite 1435Project Number: [none]Reported:Concord CA, 94520Project Manager: Matt Farris09/25/14 10:30

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Keporung Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
	Result	Lillit	Units	Level	Result	/0KEC	Lillits	KI D	Lillit	Notes
Batch 4092222 - EPA 5030 GCMS		TI 440.4	0.05	D 1	00/22/14	A1	1. 00/22/14			
Matrix Spike Dup (4092222-MSD1)		urce: T14194		Prepared:			20			
Chlorobenzene	20.3	1.0	ug/l "	20.0	ND	101	75-125	2.60	20	
1,1-Dichloroethene	16.2	1.0		20.0	ND	81.0	75-125	0.185	20	
Trichloroethene	27.5	1.0	"	20.0	11.0	82.7	75-125	2.76	20	
Benzene	17.1	0.50		20.0	ND	85.6	75-125	3.20	20	
Toluene	16.1	0.50	"	20.0	ND	80.4	75-125	1.76	20	
Surrogate: Toluene-d8	7.66		"	8.00		95.8	88.8-117			
Surrogate: 4-Bromofluorobenzene	7.96		"	8.00		99.5	83.5-119			
Surrogate: Dibromofluoromethane	9.91		"	8.00		124	81.1-136			
Batch 4092328 - EPA 5030 GCMS										
Blank (4092328-BLK1)				Prepared & Analyzed: 09/23/14						
Chlorobenzene	ND	1.0	ug/l			-				
1,1-Dichloroethene	ND	1.0	"							
Naphthalene	ND	1.0	"							
Trichloroethene	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
C6-C12 (GRO)	ND	50	"							
Surrogate: Toluene-d8	7.64		"	8.00		95.5	88.8-117			
Surrogate: 4-Bromofluorobenzene	7.63		"	8.00		95.4	83.5-119			
Surrogate: Dibromofluoromethane	9.25		"	8.00		116	81.1-136			
LCS (4092328-BS1)				Prepared:	09/23/14	Analyze	d: 09/24/14			
Chlorobenzene	20.7	1.0	ug/l	20.0		104	75-125			
1,1-Dichloroethene	16.0	1.0	"	20.0		80.1	75-125			
Trichloroethene	17.7	1.0	"	20.0		88.7	75-125			
Benzene	16.8	0.50	"	20.0		83.8	75-125			
Toluene	16.3	0.50	"	20.0		81.5	75-125			
Surrogate: Toluene-d8	7.56		"	8.00		94.5	88.8-117			
Surrogate: 4-Bromofluorobenzene	8.46		"	8.00		106	83.5-119			
Surrogate: Dibromofluoromethane	9.61		"	8.00		120	81.1-136			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Katherine Running Crane

Innovex-Environmental Management, Inc. Project: Palace Garage

2300 Clayton Rd. Suite 1435 Project Number: [none] Reported:
Concord CA, 94520 Project Manager: Matt Farris 09/25/14 10:30

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Katherine Running Crane

WORK ORDER

Printed: 9/22/2014 7:47:34AM

T141940

SunStar Laboratories, Inc.

Client: Innovex-Environmental Management, Inc. **Project Manager:** Katherine RunningCrane **Project: Palace Garage Project Number:** [none] **Invoice To:** Report To: Innovex-Environmental Management, Inc. Innovex-Environmental Management, Inc. Matt Farris Kate Waldo 2300 Clayton Rd. Suite 1435 2300 Clayton Rd. Suite 1435 Concord, CA 94520 Concord, CA 94520 Phone: (916) 760-7579 Phone: (916) 760-7025 Fax: (925) 459-5602 Fax:?

Date Due: 09/25/14 17:00 (3 day TAT)

Received By: Dan Marteski Date Received: 09/20/14 08:14 Logged In By: Dan Marteski Date Logged In: 09/20/14 09:25

Samples Received at: $3.4^{\circ}C$

Custody Seals Yes Received On Ice Yes

Containers Intact Yes
COC/Labels Agree Yes
Preservation Confir Yes

Analysis	Due	TAT	Expires	Comments								
T141940-01 MW-1 [W	ater] Sampled 09/16/14	00:00 Pacific		HOLD								
T141940-02 MW-2 [W	ater] Sampled 09/16/14	00:00 Pacific		HOLD								
T141940-03 MW-3 [W	[ater] Sampled 09/16/14	00:00 Pacific		HOLD								
T141940-04 MW-4 [W	[ater] Sampled 09/16/14	00:00 Pacific		HOLD								
T141940-05 MW-5 [W	[ater] Sampled 09/16/14	00:00 Pacific										
8260 BTEX/OXY	09/25/14 15:00	3	09/30/14 00:00	BTEX, GRO, Napthalene only								
T141940-06 MW-6 [W	T141940-06 MW-6 [Water] Sampled 09/16/14 00:00 Pacific											
8260 BTEX/OXY	09/25/14 15:00	3	09/30/14 00:00	BTEX, GRO, Napthalene only								

Reviewed By Date Page 1 of 1