KERRY ASSOCIATES Yage: 2

February 28, 2013

RECEIVED

By Alameda County Environmental Health at 3:25 pm, Mar 06, 2013

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Re: Kerry & Associates – Palace Garage 14336 Washington Avenue San Leandro, California ACEH Case No. RO0000208

Dear Mr. Detterman,

l declare, under penalty of perjury, that the information and/or recommendations contained in the First Quarter 2013 Groundwater Monitoring Report are true and correct to the best of my

Rowledge, Sincerely,

. . M Effrey Ker

February 28, 2013

Mr. Mark Detterman Alameda County Environmental Health 1000 San Leandro Boulevard, Suite 300 San Leandro, CA 94577

Subject: First Quarter 2013 Groundwater Monitoring Report Palace Garage 14336 Washington Avenue San Leandro, California ACEH Case No. RO0000208 SFRWQCB LUFT Case No. 01-1133

Dear Mr. Detterman:

On behalf of Kerry & Associates, Closure Solutions, Incorporated (Closure Solutions) has prepared this *First Quarter 2013 Groundwater Monitoring Report* (Report) for the Palace Garage facility (the Site), located at 14336 Washington Avenue, in San Leandro, California (Figure 1).

As part of the directive letter issued on January 24, 2013 by the Alameda County Environmental Health (ACEH), the ACEH has requested collection and analysis of groundwater from the recently installed groundwater monitoring wells MW-5 and MW-6 on a quarterly basis for one year.

1.0 SITE BACKGROUND SUMMARY

A 550-gallon gasoline underground storage tank (UST) was removed from the Site in 1991. Subsequent investigations included the installation of three monitoring wells (MW-1 through MW-3) and the drilling of 15 borings (B-1 through B-15). Based on data obtained from the wells and borings, impacted unsaturated-zone soil is confined to the area of the former dispenser pad and UST. The primary groundwater flow direction is toward the southwest.

In December 2002, Professional Service Industries, Inc. (PSI) conducted a soil and groundwater investigation to evaluate the lateral extent of petroleum hydrocarbons in the soil and groundwater at the Site. Borings B-16 and B-17 were advanced to between 20 and 24 feet below ground surface (bgs). Boring B-16 was converted into monitoring well MW-4. Concentrations of total petroleum hydrocarbons as gasoline (TPHg) and gasoline related contaminants were detected only in soil from boring B-17 and groundwater from wells MW-1 and MW-2. The locations of the monitoring wells and soil borings are presented on Figure 2.

Closure Solutions conducted a Sensitive Receptor Survey to identify all water supply wells and sensitive receptors within a 2,000-foot radius of the Site. The closest water supply wells are two industrial wells approximately 450 feet northwest (cross-gradient) of the Site. The closest domestic well is approximately 1,500 feet southeast (cross-gradient) of the Site. The closest down-gradient well is an irrigation well approximately 1,400 feet southwest of the Site. No surface water bodies were identified within a 2,000 foot radius of the Site. Results of the Sensitive Receptor Survey are presented in the *Sensitive Receptor Survey* report dated August 27, 2008.

Closure Solutions prepared and submitted a *Site Conceptual Model* (SCM) dated September 30, 2008 for the Site. The preparation of the SCM was requested by ACEH in their letter dated September 2, 2008.

In an email dated June 12, 2009, Mr. Steve Plunkett with the ACEH approved the reduction of groundwater monitoring to a semi-annual basis conducted in second and fourth quarters. Mr. Plunkett also approved the recommendation to eliminate fuel oxygenates from the suite of laboratory analytes.

On October 15, 2009, Closure Solutions discussed the Site status with ACEH. Data gaps presented in the SCM and other information that ACEH would require for site closure were identified. Closure Solutions submitted the *Soil Vapor Probe and Additional Assessment Work Plan* on November 13, 2009 to address the work necessary to move the Site toward closure.

On May 14, 2010, Closure Solutions submitted a letter to the ACEH stating that Closure Solutions intended to proceed with the proposed scope of work pursuant to CCR Title 23, Division 3, Chapter 16, Section 2722 (e) which states "Implementation of the proposed workplan may begin sixty (60) calendar days after submittal, unless the responsible party is otherwise directed in writing by the regulatory agency". On May 21, 2010, the ACEH responded to Closure Solutions' letter of intent via email explaining that the ACEH has been largely precluded from generating letters on cases due to the work load imposed by SWRCB Resolution 2009-0042 and they will attempt to raise the review interval for the Site.

On July 26, 2010, a representative from Closure Solutions was on site to oversee the installation and sampling of three temporary soil vapor probes (SV-1 through SV-3) and advancement of one down-gradient soil boring (SB-18). A *Soil Vapor Testing and Additional Assessment Report* describing field activities and discussing analytical soil and soil vapor results was submitted to the ACEH on August 30, 2010.

On January 24, 2012, Closure Solutions supervised the advancement of two soil borings, collection of additional soil and groundwater data, and installation of wells MW-5 and MW-6. The work was completed in order undertake further corrective actions at the site. Collected soil and groundwater samples were analyzed for gasoline range organics (GRO), benzene, toluene, ethylbenzene, and xylenes (BTEX compounds). Additionally, bio-attenuation parameters were analyzed for groundwater collected from well MW-5. A discussion of analytical results is presented in the *Groundwater Monitoring Well Installation Report* submitted on March 30, 2012

After completing the monitoring well installation, a dual-phase extraction (DPE) pilot test was performed from February 21 through 25, 2012. The pilot test was conducted to evaluate whether DPE would be a viable technology to remediate soil and groundwater beneath the Site. High groundwater extraction rates were encountered during pilot testing conducted from MW-1. As a result, subsurface soils could not be effectively dewatered to allow remediation via vapor extraction. Pilot testing from well MW-6 produced average groundwater extraction rates that were roughly two-thirds less than those observed during testing from MW-1. Subsequently, the technology was successful in lowering the groundwater table in the vicinity of well MW-6 and exposing the capillary fringe or "smear" zone. Based on the results of testing performed from MW-6, DPE appears to be a viable option for Site remediation.

On October 9, 2012 the well boxes for monitoring wells MW-1, MW-2, MW-5 and MW-6 were adjusted as part of repaving activities conducted in the alley between the Site building and adjacent building. Boxes for MW-1, MW-2, and MW-6 were elevated an average of 1.5 inches to assure the boxes were above the new grade elevations. Well box MW-5 had to be lowered approximately 3 inches. Because of the elevation drop, the well casing had to be cut down 3 inches as well in order for it to fit inside the repositioned well box. The well top-of-casing elevation was re-surveyed on October 11, 2012 to assure future measured groundwater elevations are consistent with historical data.

Closure Solutions continues to conduct groundwater monitoring and sampling on a semi-annual basis during second and fourth quarters.

2.0 WORK PERFORMED AND WORK PROPOSED

Following is a summary of work performed this quarter and work proposed for next quarter:

WORK PERFORMED THIS QUARTER:

 Performed quarterly groundwater monitoring of wells MW-5 and MW-6 on February 7, 2013

WORK PROPOSED FOR NEXT QUARTER:

1. The next groundwater monitoring event will be performed in second quarter 2013.

3.0 DISCUSSION OF RECENT ACTIVITIES

Closure Solutions performed this quarter's groundwater monitoring and sampling event at the Site on February 7, 2013. Gauging, purging and sampling were conducted in accordance with Closure Solution's Standard Operating Procedures (included in Attachment A). The collected groundwater samples were submitted to SunStar Laboratories for laboratory analysis under Chain-of-Custody protocols. The samples were analyzed for gasoline range organics (GRO) and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method 8260B. As requested by ACEH in their January 24, 2013 letter, analysis for naphthalene by EPA Method 8260 has been added to the monitoring program.

Following is a summary of the current status of the environmental program at the site:

Current Phase of Project:	Monitoring
Groundwater Monitoring & Sampling:	Quarterly: MW-5, MW-6 Semi-Annual: MW-1 through MW-6
Is Free Product (FP) Present On-Site:	No
Current Remediation Techniques:	Natural Attenuation

Following is a summary of this quarter's field and analytical data:

Average Depth to Groundwater (in feet bgs):	13.87
Groundwater Elevation (in feet above mean sea level)	23.05 (MW-5) to 23.71 (MW-6)
Groundwater Gradient (direction):	Southwest
Groundwater Gradient (magnitude):	0.004 feet per foot
GRO detected concentration:	7,700 μg/L (MW-6)
Benzene detected concentration:	250 µg/L (MW-6)
Toluene detected concentration:	240 µg/L (MW-6)
Ethylbenzene detected concentration:	2,800 µg/L (MW-6)
Xylenes detected concentration:	4,790 μg/L (MW-6)
Naphthalene detected concentration:	1,100 μg/L (MW-6)

Laboratory procedures, chain of custody records, and the certified analytical reports are included as Attachment B. Groundwater elevation and analytical data are summarized in Tables 1 and 2. Bio-attenuation parameters are summarized in Table 3. Purge water generated during the monitoring and sampling event was stored onsite pending characterization and disposal.

4.0 CONCLUSIONS AND RECOMMENDATIONS

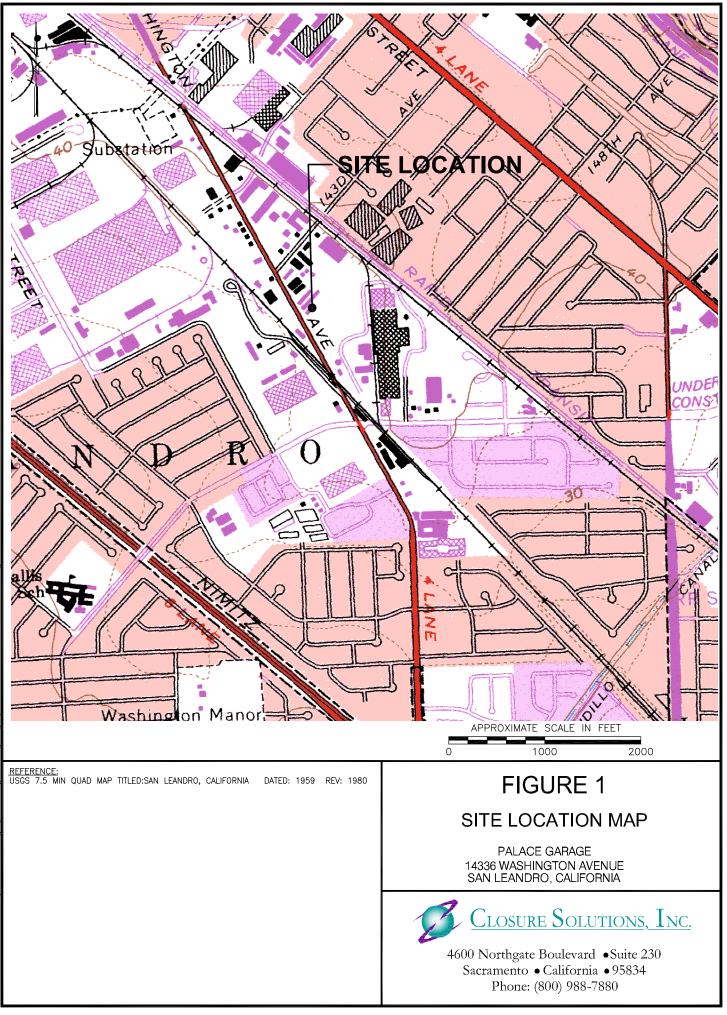
As noted in previous reports, periods of high groundwater elevation appear to be loading dissolved petroleum hydrocarbons to groundwater. Approximately six months following a period of high groundwater elevation, concentrations down-gradient (MW-2) undergo an increase; however, the concentrations attenuate by an order of magnitude. Concentrations in well MW-5, located down-gradient from well MW-2 remain below laboratory reporting limits, indicating dissolved hydrocarbon concentrations continue to attenuate before MW-5 and do not extend off-site. Anayltes detected in well MW-6 are consistent with previously reported concentrations.

Closure Solutions will continue to perform groundwater monitoring and sampling on a semiannual basis at the Site during the second and fourth quarters.

We appreciate the opportunity to present this document and trust that it meets with your approval. If you have any questions or concerns, please contact the undersigned at (916) 760-7579 or at mfarris@closuresolutions.com.

Sincerely,

Closure Solutions, Inc. 5 Jamo


Matthew Farris, P.G. Project Geologist

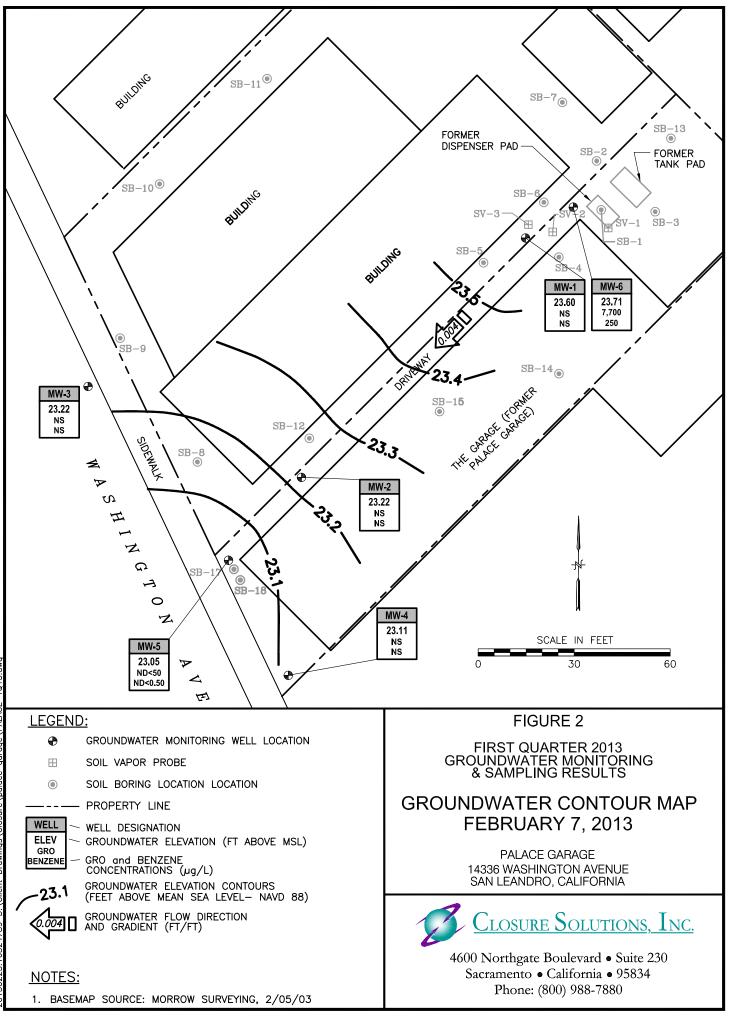

ATTACHMENTS:

Figure 1 Figure 2	Site Location Map First Quarter 2013 Groundwater Monitoring & Sampling Results – Groundwater Contour Map – February 7, 2013
Table 1 Table 2	Groundwater Elevation and Analytical Data Fuel Oxygenate & Lead Scavenger Analytical Data
Attachment A Attachment B	Field Procedures and Field Data Sheets Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody Records
cc: Mr. Jeff	Kerry, Kerry & Associates

Mr. Gerald Donnelly

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg/ GRO (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	Naphthalene (µg/L)
MW-1	12/31/2002	37.59	13.62	23.97	48,000	1,030	2,380	1,690	9,220	
	9/22/2006		13.33	24.26	44,000	870	2,200	720	9,700	
	12/21/2006		13.94	23.65	17,000	240	980	180	5,000	
	3/29/2007		13.71	23.88	2,000	30	85	23	550	
	9/27/2007		15.53	22.06	540	14	3.9	44	87	
	12/20/2007		15.69	21.90	280	4.3	1.3	15	37	
	2/21/2008		13.72	23.87	19,000	300	150	1,100	4,900	
	5/15/2008		14.60	22.99	7,200	140	50	370	2,040	
	8/7/2008		15.62	21.97	820	13	3.1	44	100	
	11/13/2008		16.14	21.45	670	10	2.1	31	110	
	6/19/2009		15.15	22.44	1,490	85.8	13.4	164	310	
	11/3/2009		15.98	21.61	75	6.0	0.70	12	40.5	
	5/4/2010		13.40	24.19	18,000	300	61	880	4,070	
	11/8/2010		15.83	21.76	170	4.9	ND<0.50	7.7	24	
	4/22/2011		12.34	25.25	3,800	250	48	810	3,260	
	12/15/2011		14.77	22.82	1,500	21	0.88	29	4.6	
	5/9/2012		13.56	24.03	20,000	190	27	810	3,150	
	11/8/2012		15.68	21.91	630	2.8	1.4	30	51.9	
	2/7/2013		13.99	23.60						

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg/ GRO (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	Naphthalene (µg/L)
MW-2	12/31/2002	37.12	13.38	23.74	1,670	1,030	11.00	23	16.4	
	9/22/2006		13.25	23.87	1,800	53	1.40	14	7.5	
	12/21/2006		13.89	23.23						
	3/29/2007		13.57	23.55	2,100	51	1.30		4.5	
	9/27/2007		15.37	21.75	1,600	58	0.99	12	3.7	
	12/20/2007		15.40	21.72	1,500	63	1.1	16	4.9	
	2/21/2008		13.60	23.52	710	23	ND<0.50	6.2	1.1	
	5/15/2008		14.47	22.65	1,600	84	1.4	28	9.8	
	8/7/2008		15.48	21.64	2,100	86	1.6	22	9.0	
	11/13/2008		15.99	21.13	2,300	46	1.1	15	4.5	
	6/19/2009		15.03	22.09	931	60.1	ND<2.0	30	3.1	
	11/3/2009		15.87	21.25	220	22	0.55	9.4	5.05	
	5/4/2010		12.92	24.20	950	14	0.57	9.1	13.2	
	11/8/2010		15.71	21.41	1,900	45	1.6	44	9.28	
	4/22/2011		12.27	24.85	1,400	30	1.2	29	5.78	
	12/15/2011		14.86	22.26	4,300	160	26	480	790	
	5/9/2012		13.44	23.68	4,300	21	0.65	23	7.77	
	11/8/2012		15.54	21.58	1,700	68	2.6	63	14.4	
	2/7/2013		13.90	23.22						

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg/ GRO (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	Naphthalene (µg/L)
MW-3	12/31/2002	37.01	13.29	23.72	<50	< 0.5	< 0.5	< 0.5	<1.0	
	9/22/2006		13.14	23.87	<50	<0.5	< 0.5	< 0.5	<1.5	
	12/21/2006									
	3/29/2007		13.47	23.54	<50	< 0.5	< 0.5	< 0.5	<1.5	
	9/27/2007		15.29	21.72	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	12/20/2007		15.30	21.71	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	2/21/2008									
	5/15/2008		14.35	22.66	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	
	8/7/2008		15.39	21.62	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	11/13/2008		15.90	21.11	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	6/19/2009		14.94	22.07	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0	
	11/3/2009		15.76	21.25	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	
	5/4/2010		13.20	23.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	11/8/2010		15.62	21.39	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	4/22/2011		12.17	24.84	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	12/15/2011		14.63	22.38	150	1.5	ND<0.50	3.0	12.2	
	5/9/2012		13.36	23.65	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	11/8/2012		15.48	21.53	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	2/7/2013		13.79	23.22						

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg/ GRO (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	Naphthalene (µg/L)
MW-4	12/31/2002	37.09	13.45	23.64	<50	< 0.5	< 0.5	< 0.5	<1.0	
	9/22/2006		13.40	23.69	<50	< 0.5	< 0.5	< 0.5	<1.5	
	12/21/2006		13.86	23.23	<50	< 0.5	< 0.5	< 0.5	<1.5	
	3/29/2007		13.69	23.40	<50	< 0.5	< 0.5	< 0.5	<1.5	
	9/27/2007		15.48	21.61	ND<50	1.5	ND<0.50	0.71	0.74	
	12/20/2007		15.28	21.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	2/21/2008		13.56	23.53	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	
	5/15/2008		14.58	22.51	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	
	8/7/2008		15.57	21.52	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	11/13/2008		16.09	21.00	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
	6/19/2009		15.15	21.94	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0	
	11/3/2009		16.03	21.06	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	
	5/4/2010		13.11	23.98	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	11/8/2010		15.89	21.20	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	4/22/2011		12.40	24.69	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	12/15/2011		15.03	22.06	86	ND<0.50	ND<0.50	ND<0.50	1.3	
	5/9/2012		13.51	23.58	ND<50	ND<0.50	0.84	ND<0.50	ND<1.5	
	11/8/2012		15.64	21.45	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	
	2/7/2013		13.98	23.11						

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg/ GRO (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	Naphthalene (µg/L)
MW-5	2/2/2012	37.27	15.06	22.21	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	
	5/9/2012		13.68	23.59	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	
	resurvey 10/11/12	36.96								
	11/8/2012		15.62	21.34	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	
	2/7/2013		13.91	23.05	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.50	ND<1.0
MW-6	2/2/2012	37.34	14.63	22.71	17,000	340	57	1,900	2,100	
	5/9/2012		13.26	24.08	34,000	170	310	1,700	3,920	
	11/8/2012		15.36	21.98	9,700	210	270	2,800	3,320	
	2/7/2013		13.63	23.71	7,700	250	240	2,800	4,790	1,100

Table 1 Groundwater Elevation and Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

WellDateCasingDepth ToGroundwaterIDSampledElevationWaterElevation(Feet MSL)(Feet)(Feet)	TPHg	B	T	E	X
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)

ABBREVIATIONS:

TPHg/ GRO total petroleum hydrocarbons as gasoline. Gasoline range organics

- B Benzene
- T Toluene
- E Ethylbenzene
- X Total xylenes
- μg/L Micrograms per liter (parts per billion [ppb])
- --- Not analyzed/measured/applicable
- ND< Not detected at or above specified laboratory reporting limit
- **Bold** Current sampling event
- MSL mean sea level

LIMITATIONS:

Background information, including but not limited to previous field measurements, analytical results, Site plans, and other data have been obtained from previous consultants, and/or third parties, in the preparation of this report. Closure Solutions has relied on this information as furnished. Closure Solutions is not responsible for, nor has it confirmed the accuracy of data collected or generated by others.

Table 2Fuel Oxygenate & Lead Scavenger Analytical DataPalace Garage14336 Washington AvenueSan Leandro, California

Well ID	Date Sampled	MTBE (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)
MW-1	12/31/2002	< 0.5						
	9/22/2006	<1.0						
	12/21/2006	3.9						
	3/29/2007	<1.0						
	9/27/2007	1.6	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/21/2007	1.5	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008	ND<7.0	ND<40	ND<7.0	ND<7.0	ND<7.0	ND<7.0	ND<7.0
	5/15/2008	ND<2.5	ND<15	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5
	8/7/2008	1.0	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
	11/13/2008	1.1	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
MW-2	12/31/2002	<0.5						
	9/22/2006	<1.0						
	12/21/2006							
	3/29/2007	1.10						
	9/27/2007	0.89	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/20/2007	0.95	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	5/15/2008	ND<0.90	ND<5.0	ND<0.90	ND<0.90	ND<0.90	ND<0.90	ND<0.90
	8/7/2008	0.59	ND<5.0	ND<0.90	ND<0.90	ND<0.90		
	11/13/2008	0.53	ND<5.0	ND<0.50	ND<0.50	ND<0.50		

Table 2Fuel Oxygenate & Lead Scavenger Analytical DataPalace Garage14336 Washington AvenueSan Leandro, California

Well ID	Date Sampled	MTBE (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)
MW-3	12/31/2002	< 0.5						
	9/22/2006	<1.0						
	12/21/2006							
	3/29/2007	<1.0						
	9/27/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/20/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008							
	5/15/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	8/7/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
	11/13/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
MW-4	12/31/2002	<0.5						
	9/22/2006	<1.0						
	12/21/2006	<1.0						
	3/29/2007	<1.0						
	9/27/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/20/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	5/15/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	8/7/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
	11/13/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		

Table 2 Fuel Oxygenate & Lead Scavenger Analytical Data

Palace Garage

14336 Washington Avenue

San Leandro, California

Well	Date	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB
ID	Sampled	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$

ABBREVIATIONS:

- MTBE Methyl Tertiary Butyl Ether
- TBA Tertiary Butyl Alcohol
- DIPE Diisopropyl Ether
- ETBE Ethyl Tertiary Butyl ether
- TAME Tertiary Amyl Methyl Ether
- 1,2-DCA 1,2-Dichloroethane
- EDB 1,2-Dibromoethane
- μg/L Micrograms per liter (parts per billion [ppb])
- --- Not analyzed/measured/applicable
- ND< Not detected at or above specified laboratory reporting limit
- LIMITATIONS Background information, including but not limited to previous field measurements, analytical results, Site plans, and other data have been obtained from previous consultants, and/or third parties, in the preparation of this report. Closure Solutions has relied on this information as furnished. Closure Solutions is not responsible for, nor has it confirmed the accuracy of data collected or generated by others.

Attachment A

Field Procedures and Field Data Sheets

Standard Operating Procedures: Basic Gauge, Purge, and Sample.

Routine Water Level Measurements

- 1. Confirm that water or debris will not enter the well box upon removal of the well box lid.
- **2.** Remove the cover using the appropriate tools.
- **3.** Inspect the wellhead for deficiencies and document accordingly.
- 4. Confirm that water or debris will not enter the well upon removal of the well cap.
- 5. Unlock and remove the well cap lock (if applicable). If lock is not functional cut it off.

6. Loosen and remove the well cap. CAUTION: DO NOT PLACE YOUR FACE OR HEAD DIRECTLY OVER WELLHEAD WHEN REMOVING THE WELL CAP. WELL CAP MAY BE UNDER PRESSURE AND/OR MAY RELEASE ACCUMULATED AND POTENTIALLY HARMFULL VAPORS.

7. Verify and identify survey point as written on S.O.W.

TOC: If survey point is listed as Top of Casing (TOC), look for the exact survey point in the form of a notch or mark on the top of the casing. If no mark is present, use the north side of the casing as the measuring point.

TOB: If survey point is listed as Top of Box (TOB), the measuring point will be established manually. Place the inverted well box lid halfway across the well box opening and directly over the casing. The lower edge of the inverted cover directly over the casing will be the measuring point.

8. Put new Nitrile gloves on your hands.

9. Slowly lower the decontaminated water level meter probe into the well until it signals contact with water with a tone and/or flashing a light.

10. Gently raise the probe tip slightly above the water and hold it there. Wait momentarily to see if the meter emits a tone, signaling rising water in the casing. Gently lower the probe tip slightly below the water. Wait momentarily to see if the meter stops emitting a tone, signaling dropping water in the casing. Continue process until water level stabilizes indicating that the well has equilibrated.

11. While holding the probe at first contact with water and the tape against the measuring point, note depth. Repeat twice to verify accuracy. Write down measurement on well gauging sheet under depth to water column.

12. Recover probe, replace and tighten well cap, replace lock (if applicable), replace well box cover and tighten hardware (if applicable).

Purging With a Bailer (Teflon or Disposable)

1. Attach bailer cord or string to bailer. Leave other end attached to spool.

2. Gently lower empty bailer into well until well bottom is reached.

3. Cut cord from spool. Tie a loop at end cord.

4. Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground.

5. Pour contents into graduated 5-gallon bucket or other graduated receptacle.

6. Repeat purging process.

7. Upon removal of first casing volume, fill clean parameter cup with purge water,

empty the remainder of the purge water into the bucket, lower the bailer back into the well and secure the cord on the Sampling Vehicle.

8. Use the water in the cup to collect and record parameter measurements.

9. Continue purging until second casing volume is removed.

10. Collect parameter measurements.

11. Continue purging until third casing volume is removed.

Purging With a Fixed Speed Electric Submersible Pump

1. Position thoroughly decontaminated pump over the top of the well.

2. Gently unreel and lower the pump to the well bottom.

3. Raise the pump to client specified location within screened interval. If no direction is given

the pump inlet will be placed 5 feet above the bottom of the well.

4. Secure the hose reel.

5. Begin purging.

6. Verify pump rate with flow meter or graduated 5-gallon bucket.

7. Upon removal of first casing volume, fill clean parameter cup with water.

8. Use the water in the cup to collect and record parameter measurements.

9. Continue purging until second casing volume is removed.

10. Collect parameter measurements.

11. Continue purging until third casing volume is removed.

12. Upon completion of purging, gently recover the pump and secure the reel.

Sampling with a Bailer (Teflon or Disposable)

1. Put new Latex or Nitrile gloves on your hands.

2. Determine required bottle set.

3. Fill out sample labels completely and attach to bottles.

4. Arrange bottles in filling order and loosen caps (see Determine Collection Order below).

5. Attach bailer cord or string to bailer. Leave other end attached to spool.

6. Gently lower empty bailer into well until water is reached.

7. As bailer fills, cut cord from spool and tie end of cord to hand.

8. Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground. If a set of parameter measurements is required, go to step 9. If no additional measurements are required, go to step 11.

9. Fill a clean parameter cup, empty the remainder contained in the bailer into the sink, lower the bailer back into the well and secure the cord on the sampling vehicle. Use the water in the cup to collect and record parameter measurements.

10. Fill bailer again and carefully remove it from the well.

11. Slowly fill and cap sample bottles. Fill and cap volatile compounds first, then semivolatile, then inorganic (see following steps). Return to the well as needed for additional sample material.

12. Fill 40-milliliter vials for volatile compounds as follows: Slowly pour water down the inside on the vial. Carefully pour the last drops creating a convex or positive meniscus on the surface. Gently screw the cap on eliminating any air space in the vial. Turn the vial over, tap several times and check for trapped bubbles. If bubbles are present, repeat the process.

13. Fill 1 liter amber bottles for semi-volatile compounds as follows: Slowly pour water into the bottle. Leave approximately 1 inch of headspace in the bottle. Cap bottle.

14. Field filtering of inorganic samples using a disposable bailer is performed as follows:

Attach 0.45 micron filter to connector plug. Attach connector plug to bottom of full disposable bailer. Gravity feed water through the filter and into the sample bottle. If high turbidity level of water clogs filter, repeat process with new filter until bottle is filled. Leave headspace in the bottle. Cap bottle.

15. Bag samples and place in ice chest.

16. Note sample collection details on well data sheet and Chain of Custody.

FIELD DATA SHEET-DEPTH TO WATER DATA

			SITE INFORM	ATION		
Site Information						
Palace Garage Project Name		2/7/13 Date	Project Number	A Contraction of the		
14336 Washington Ave. San Leandro		San Leandro	CA			
Address		City	State			
Water Level Equipme	nt		Kevin Dolan			
x Electronic Indicator	r					
Oil Water Interface	Probe		Event:	1Q 2013 QM	S	
Other (specify)						
		DE	PTH TO WAT	ER DATA		
			DTW	Tatal Danth	Depth to SPH /	
DTW Order	Well ID	Time (24:00)	DTW (toc)	Total Depth (toc)	Thickness	Notes:
DTW Order	MW-1	1311	13,991	23.25	Thickness	Hotosi
3	MW-2	1259	13,90	23,64		
2	MW-3	1256	13,79	23,06		
	mw-4	1252	13,98	21:85		
4	MW-5	1305	13,91	17,60		
6	MW-6	1319	13,63	19,60		
			And the second sec			
						1 drumousile
						1/4 Full
			1.3.5.1.1.1.1.1.1	-2-4-20 C		
					Contraction of the second	and the second
			Providence of the second	The second second	1	1
	1.464.07					
				and the second se		

GROUND WATER MONITORING WELL SAMPLING FIELD DATA SHEET

Project Na	me:	Palace	Garage				Date:	Feb. 7, 2013	_
Sample No	o.:	MW-	5						-
Samplers		Kevin Dolan							
Purge Equ	Purge Equipment:							oment: Disposable Bailer Whaler # Bladder Pump Submersible Pump er and Types of Bo	
				190		2,105			
Well Numb Depth to V Well Depth Height W-0 Volume in Gallons to	Vater: n: Column: Well:	3.69		ng volume			1	with Casing V 2" = (0.16 G 4" = (0.65 G 5" = (1.02 G 6" = (1.47 G 3/4" = (.0625 G/Ft)	allon/Feet) allon/Feet) allon/Feet) allon/Feet)
Lab:	SunStar		ganono (vola	10 / 0)		Transpo		0/4 = (.0020 0/1 ()	
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)		Color - Fines	Micropurge Paramaters Stabilized
1338	Stan	K							
1340	,75	18.2	1.13	1.36	6.81	/	21:00	our inin	
(342	1,50	18.3	1.06	1,91	6.85	/	520; Hr	424	
1344	2,25	18,3	1.03	1.38	6.85	/	473;	gray, mod	
Stup:	Purge	Complete		100	0,02		1.01		
	0								
	2								
	-10								
	1-2								
			it for 80% we depth to wate				ampling. ume recovery:		
	Origina	al Height of Water Co	Calc	ulate 80% of	orginal well vo	olume:		epth to water 14,65	5
Time: <u>1353</u> Time: Time:	1st measured	depth to water, depth to water, depth to water,		ow TOC. ow TOC.	ple Well	Is well with	nin 80% of original w	vell casing volume: Yes vell casing volume: Yes vell casing volume: Yes	No
Time:	1355		Sample ID:	Ŋ	NW-S		Depth:	13,9	3
Comments	NO	OdoR-	NO Shee	5					
	6		12						100 CON
Well Condit	tion:	Good	* 1					*	
	C. St.	*					Closure Solut	tions INC QMS	FDS

GROUND WATER MONITORING WELL SAMPLING FIELD DATA SHEET

Project Na	me:	Palace	Garage				Date:	Feb. 7, 2013	
Sample No	o.:	Ń	NW-b				-		
Samplers	Name:	Kevin Dolan							
Purge Equ	ipment: Bailer: Dis 12 v. Pump Bladder Pu SS Monsoc	mp					Wha Blac Sub	nt: bosable Bailer aler # der Pump mersible Pump ad Types of Bot	tle Used:
TPH-G / E	BTEX				3 voa's w/	ĥc			
Well Numb Depth to W Well Depth Height W-0 Volume in Gallons to Lab:	Vater: n: Column: Well:	MW-b 13.63 19.60 5,97 0.95 2,85	TOC BGS or TOC feet (well dep gallons (casin gallons (volum	oth - depth ng volume		Transpo		with Casing Va 2" = (0.16 Ga 4" = (0.65 Ga 5" = (1.02 Ga 6" = (1.47 Ga = (.0625 G/Ft)	illon/Feet) illon/Feet) illon/Feet)
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)	Turbidity: Col	or - Fines	Micropurge Paramaters Stabilized
1405	Stap								
1407		17.6	0,92	2,11	6,95	/	438' thank	two, mad -	
1409	2	17,7	0.93	1,96	6,93	-	412: 1	non, man	
1411	3					-			
1711	2	17.9	0,93	0,95	6,90		426: 1	V	
							a a transformation and the second		
				e .					
			it for 80% we				ampling. ume recovery:		
		Galdalate			orginal well vo		une recovery.		1.
	Origina	al Height of Water Co			0		19,60 = Depth t	o water 14,8	2
Time: <u>///2/</u> Time: Time:	1st measured 1st measured	depth to water, depth to water, depth to water,	68 feet bel	ow TOC. ow TOC. ow TOC.	ple Well	Is well with Is well with	in 80% of original well ca in 80% of original well ca in 80% of original well ca	asing volume: Yes _ asing volume: Yes _	×No No
Time:	1423		Sample ID:				Depth:	13.68	
Comments		Moderale	HC 0	odor -	NO	Shee	5		
							1		
Well Condit	tion:	good	-						

Attachment B

Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody Records

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

14 February 2013

Matt Farris Closure Solutions 2300 Clayton Rd. Suite 1435 Concord, CA 94520 RE: Palace Garage

Enclosed are the results of analyses for samples received by the laboratory on 02/09/13 09:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samiel J Chivy

Daniel Chavez Project Manager

Closure Solutions	Project: Palace Garage	
2300 Clayton Rd. Suite 1435	Project Number: [none]	Reported:
Concord CA, 94520	Project Manager: Matt Farris	02/14/13 17:27

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-6	T130298-01	Water	02/07/13 14:23	02/09/13 09:30
MW-5	T130298-02	Water	02/07/13 13:55	02/09/13 09:30

SunStar Laboratories, Inc.

Samily Chivy

Daniel Chavez, Project Manager

Closure Solutions 2300 Clayton Rd. Suite 1435 Concord CA, 94520	Project: Palace Garage Project Number: [none] Project Manager: Matt Farris								:27
		N T13029	/IW-6 8-01 (W	ater)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Volatile Organic Compounds by EP									
Benzene	250	12	ug/l	25	3021122	02/11/13	02/13/13	EPA 8260B	
Toluene	240	12	"	"	"	"	"		
Ethylbenzene	2800	12	"	"	"	"	"	"	
m,p-Xylene	4200	25	"	"	"	"	"	"	
o-Xylene	590	12	"	"	"	"	"		
C6-C12 (GRO)	7700	1200	"	"	"	"	"	"	
Surrogate: Toluene-d8		86.0 %	88.8	-117	"	"	"	"	S-GC
Surrogate: 4-Bromofluorobenzene		109 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		105 %	81.1	-136	"	"	"	"	

SunStar Laboratories, Inc.

Samil & Chivy

Daniel Chavez, Project Manager

Closure Solutions 2300 Clayton Rd. Suite 1435 Concord CA, 94520	Project: Palace Garage Project Number: [none] Project Manager: Matt Farris								Reported: 02/14/13 17:27		
			AW-5 8-02 (W	ater)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar La	aborato	ries, Inc.							
Volatile Organic Compounds by El	PA Method 8260	В									
Benzene	ND	0.50	ug/l	1	3021122	02/11/13	02/13/13	EPA 8260B			
Toluene	ND	0.50	"	"	"	"	"	"			
Ethylbenzene	ND	0.50	"	"	"	"	"	"			
m,p-Xylene	ND	1.0	"	"	"	"	"	"			
o-Xylene	ND	0.50	"	"	"	"	"	"			
C6-C12 (GRO)	ND	50	"	"	"	"	"	"			
Surrogate: Toluene-d8		93.5 %	88.8	-117	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		102 %	83.5	-119	"	"	"	"			
Surrogate: Dibromofluoromethane		127 %	81.1	-136	"	"	"	"			

SunStar Laboratories, Inc.

Samily Chivy

Daniel Chavez, Project Manager

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Closure Solutions	Project: Palace Garage	
2300 Clayton Rd. Suite 1435	Project Number: [none]	Reported:
Concord CA, 94520	Project Manager: Matt Farris	02/14/13 17:27

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3021122 - EPA 5030 GCMS										

Blank (3021122-BLK1) Prepared: 02/11/13 Analyzed: 02/13/13 ND 1.0 Bromobenzene ug/l Bromochloromethane ND 1.0 " Bromodichloromethane ND 1.0 " Bromoform ND 1.0 Bromomethane ND 1.0 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 0.50 Carbon tetrachloride ND Chlorobenzene ND 1.0 Chloroethane ND 1.0 Chloroform ND 1.0 Chloromethane ND 1.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 Dibromochloromethane ND 1.0 1.0 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND 1.0 Dibromomethane 1.0 ND 1,2-Dichlorobenzene ND 1.0 ., 1,3-Dichlorobenzene 1.0 ... ND 1,4-Dichlorobenzene ND 1.0 Dichlorodifluoromethane ND 0.50 1.1-Dichloroethane ND 1.0 1.2-Dichloroethane 0.50 ND 1,1-Dichloroethene ND 1.0 cis-1,2-Dichloroethene ND 1.0 trans-1,2-Dichloroethene ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 2,2-Dichloropropane ND 1.0 1,1-Dichloropropene ND 1.0 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Hexachlorobutadiene ND 1.0 Isopropylbenzene ND 1.0

SunStar Laboratories, Inc.

Saniel & Chivy

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Closure Solutions	Project: Palace Garage	
2300 Clayton Rd. Suite 1435	Project Number: [none]	Reported:
Concord CA, 94520	Project Manager: Matt Farris	02/14/13 17:27

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3021122 - EPA 5030 GCMS

Datch 3021122 - El A 3030 GCWB				
Blank (3021122-BLK1)				Prepared: 02/11/13 Analyzed: 02/13/13
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0		
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0		
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50		
Ethylbenzene	ND	0.50		
m,p-Xylene	ND	1.0		
o-Xylene	ND	0.50		
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10		
Di-isopropyl ether	ND	2.0		
Ethyl tert-butyl ether	ND	2.0		
Methyl tert-butyl ether	ND	1.0		
C6-C12 (GRO)	ND	50	"	
Surrogate: Toluene-d8	7.49		"	8.00 93.6 88.8-117
Surrogate: 4-Bromofluorobenzene	8.06		"	8.00 101 83.5-119
Surrogate: Dibromofluoromethane	9.82		"	8.00 123 81.1-136

SunStar Laboratories, Inc.

Samil & Chivy

Daniel Chavez, Project Manager

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Closure Solutions	Project: Palace Garage	
2300 Clayton Rd. Suite 1435	Project Number: [none]	Reported:
Concord CA, 94520	Project Manager: Matt Farris	02/14/13 17:27

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3021122 - EPA 5030 GCMS										
LCS (3021122-BS1)				Prepared:	02/11/13	Analyze	d: 02/13/13			
Chlorobenzene	18.6	1.0	ug/l	20.0		92.9	75-125			
1,1-Dichloroethene	20.1	1.0	"	20.0		100	75-125			
Trichloroethene	20.3	1.0		20.0		101	75-125			
Benzene	20.4	0.50		20.0		102	75-125			
Toluene	20.4	0.50	"	20.0		102	75-125			
Surrogate: Toluene-d8	7.69		"	8.00		96.1	88.8-117			
Surrogate: 4-Bromofluorobenzene	8.10		"	8.00		101	83.5-119			
Surrogate: Dibromofluoromethane	8.69		"	8.00		109	81.1-136			
LCS Dup (3021122-BSD1)				Prepared:	02/11/13	Analyze	d: 02/13/13			
Chlorobenzene	18.3	1.0	ug/l	20.0		91.6	75-125	1.46	20	
1,1-Dichloroethene	21.3	1.0		20.0		107	75-125	5.98	20	
Trichloroethene	20.0	1.0		20.0		100	75-125	1.29	20	
Benzene	21.1	0.50	"	20.0		105	75-125	3.33	20	
Toluene	19.1	0.50	"	20.0		95.6	75-125	6.68	20	
Surrogate: Toluene-d8	7.42		"	8.00		92.8	88.8-117			
Surrogate: 4-Bromofluorobenzene	7.93		"	8.00		99.1	83.5-119			
Surrogate: Dibromofluoromethane	9.90		"	8.00		124	81.1-136			

SunStar Laboratories, Inc.

Samil & Chivy

Daniel Chavez, Project Manager

SunStar — Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Closure Solutions	olutions Project: Palace Garage					
2300 Clayton Rd. Suite 1435	Project Number: [none]	Reported:				
Concord CA, 94520	Project Manager: Matt Farris	02/14/13 17:27				

Notes and Definitions

- S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

Samil & Chivy

Daniel Chavez, Project Manager

SunStar Laboratories, Inc.	Chain c	of Custo	ody Reco	ord	
25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020			T1302	98	
Client: <u>Closure st</u> Address: <u>2300</u> Clauston R Phone: Fa	OLUTIONS FUC, Ed., st. 1435, Concor	r0,c4	Date: Project Nar	ne: PALACE (Page: 1 Of
Phone:Fa Project Manager:	ax:	-	Collector: Batch #:	<u>Fi Dolan</u> 102013	EDF #: T0600101013
	Time Sample Container Type Type M23 GN 3V0A'S 355 V W Hcc	8260 TOHIS BIEX 8260 + OXY 8260 BIEX, OXY only	BTEX M (gasoline)		# 2.9.13 * Comments/Preservative
Relinquished by: (signature) Date / Time 2/7/13 Relinquished by: (signature) Date / Time	IN OFFICE +	Da ha pe pič Da	ite / Time 2/6 1/edup ite / Time	10-T Seals intact? V/N/NA	Notes Notes Notes Notes Notes Notes Notes Notes Casults to: Notes Closures oburtions.Com
Relinquished by: (signature) Date / Time GCO 2.9/13 9:30 Sample disposal Instructions: Disposal @ \$2.00 ead	LAD 1		230	Received good condition/cold	Kolokan @ Closureschiftions, Com

COC 112102

BATCH #				• -
Client Name: <u>CLOSURE SOLUTIONS</u> Projec	ct:	PALACE	. Сакт	9G <i>E</i>
Received by: Date/	Time Reco	vived:	2.9.13	9:30
Delivered by : 🗌 Client 🗌 SunStar Courier 🔀 GSO 🗌	FedEx [Other		
Total number of coolers received/ Temp criteri	a = 6°C >	0°C (no <u>i</u>	f <u>rozen</u> cor	itainers)
Temperature: cooler #1 <u>3.0</u> °C +/- the CF (- 0.2°C) = <u>2.8</u> °C	°C correcte	d temperatu	ire	
cooler #2°C +/- the CF (- 0.2° C) =	°C correcte	d temperatu	ire	
cooler #3°C +/- the CF (- 0.2° C) =	°C correcte	d temperati	ire	
Samples outside temp. but received on ice, w/in 6 hours of final san	npling.	Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample	·	Yes	No*	□N/A
Sample Containers Intact		Yes	□No*	•
ample labels match COC ID's		Yes	No*	
Total number of containers received match COC		Yes	No*	
Proper containers received for analyses requested on COC		⊠Yes	⊡No*	
Proper preservative indicated on COC/containers for analyses reque	ested	⊠Yes	∐No*	□ N/A
Complete shipment received in good condition with correct temperators and within method specified holding times. X Yes		tainers, la	ibels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked Cooler/S	Sample Rev	iew - Initia	ls and date	St 2.9.
Comments:				
	· · ·	·		
	<u></u>			

Page 1 of ____

SunStar Laboratories, Inc.