June 7, 2011

Ń

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Re: Kerry & Associates – Palace Garage 14336 Washington Avenue San Leandro, California ACEH Case No. RO0000208

RECEIVED

11:26 am, Jun 09, 2011 Alameda County Environmental Health

Dear Mr. Detterman,

I declare, under penalty of perjury, that the information and/or recommendations contained in the Fourth Quarter 2010 Groundwater Monitoring Report and Second Quarter 2011 Groundwater Monitoring Report is true and correct to the best of my knowledge.

Sincerely. Mr. Jeffrey Kerry

May 27, 2011

Mr. Mark Detterman Alameda County Environmental Health 1000 San Leandro Boulevard, Suite 300 San Leandro, CA 94577

Subject: Second Quarter 2011 Groundwater Monitoring Report Palace Garage 14336 Washington Avenue San Leandro, California ACEH Case No. RO0000208 SFRWQCB LUFT Case No. 01-1133

Dear Mr. Detterman:

On behalf of Kerry & Associates, Closure Solutions, Incorporated (Closure Solutions) has prepared this *Second Quarter 2011 Groundwater Monitoring Report* (Report) for the Palace Garage facility (the Site), located at 14336 Washington Avenue, in San Leandro, California (Figure 1).

1.0 SITE BACKGROUND SUMMARY

A 550-gallon gasoline underground storage tank (UST) was removed from the site in 1991. Subsequent investigations included the installation of 3 monitoring wells and the drilling of 15 borings. Based on data obtained from the wells and borings, impacted unsaturated-zone soil is confined to the area of the former dispenser pad and UST. The primary groundwater flow direction is toward the southwest.

In December 2002, Professional Service Industries, Inc. (PSI) conducted a soil and groundwater investigation to evaluate the lateral extent of petroleum hydrocarbons in the soil and groundwater at the site. Borings B-16 and B-17 were advanced to between 20 and 24 feet below ground surface (bgs). Boring B-16 was converted into monitoring well MW-4. Concentrations of total petroleum hydrocarbons as gasoline (TPHg) and gasoline related contaminants were detected only in soil from boring B-17 and groundwater from wells MW-1 and MW-2. The locations of the monitoring wells and soil borings are presented in Figure 2.

Closure Solutions conducted a Sensitive Receptor Survey to identify all water supply wells and sensitive receptors within a 2,000-foot radius of the Site. The closest water supply wells are two industrial wells approximately 450 feet northwest (cross-gradient) of the Site. The closest domestic well is approximately 1,500 feet southeast (cross-gradient) of the Site. The closest

down-gradient well is an irrigation well approximately 1,400 feet southwest of the Site. No surface water bodies were identified within a 2,000 foot radius of the Site. Results of the Sensitive Receptor Survey are presented in the *Sensitive Receptor Survey* report dated August 27, 2008.

Closure Solutions prepared and submitted a *Site Conceptual Model* (SCM) dated September 30, 2008 for the Site. The preparation of the SCM was requested by Alameda County Environmental Health (ACEH) in their letter dated September 2, 2008.

In an email dated June 12, 2009 Mr. Steve Plunkett with the ACEH approved the reduction of groundwater monitoring to a Semi-annual basis conducted in second and fourth quarters. Mr. Plunkett also approved the recommendation to eliminate the fuel oxygenates from the suite of laboratory analytes.

On October 15, 2009 Closure Solutions discussed the Site status with ACEH. Data gaps presented in the SCM and other information that ACEH would require for site closure was identified. Closure Solutions submitted the *Soil Vapor Probe and Additional Assessment Work Plan* on November 13, 2009 to address the work necessary to move the site toward closure.

On May 14, 2010 Closure Solutions submitted a letter to the ACEH stating that Closure Solutions intends to proceed with the proposed scope of work pursuant to CCR Title 23, Division 3, Chapter 16, Section 2722 (e) which states "Implementation of the proposed workplan may begin sixty (60) calendar days after submittal, unless the responsible party is otherwise directed in writing by the regulatory agency". On May 21, 2010 the ACEH responded to Closure Solutions' letter of intent via email explaining that the ACEH has been largely precluded from generating letters on cases due to the work load imposed by SWRCB Resolution 2009-0042 and they will attempt to raise the review interval for the Site.

On July 26, 2010 a Closure Solutions' representative was on site to oversee the installation and sampling of three temporary soil vapor probes (SV-1 through SV-3) and the advancement of one downgradient soil boring (SB-18). A *Soil Vapor Testing and Additional Assessment Report* describing field activities and discussing analytical soil and soil vapor results was submitted to the ACEH on August 30, 2010.

Closure Solutions continues to conduct groundwater monitoring and sampling on a semi-annual basis during second and fourth quarters.

2.0 WORK PERFORMED AND WORK PROPOSED

Following is a summary of work performed this quarter and work proposed for next quarter:

WORK PERFORMED THIS QUARTER:

- 1. Performed semi-annual groundwater monitoring event on April 22, 2011
- 2. Prepared and Submitted Second Quarter 2011 Groundwater Monitoring Report

WORK PROPOSED FOR NEXT QUARTER:

1. The next groundwater monitoring event will be performed in fourth quarter 2011.

3.0 DISCUSSION OF RECENT ACTIVITIES

Closure Solutions performed this quarter's groundwater monitoring and sampling event at the Site on April 22, 2011. Gauging, purging and sampling were conducted in accordance with Closure Solution's Standard Operating Procedures (included in Attachment A). The collected groundwater samples were submitted to SunStar Laboratories for laboratory analysis under Chain-of-Custody protocols. The samples were analyzed for gasoline range organics (GRO) and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method 8260B.

Following is a summary of the current status of the environmental program at the site:

Current Phase of Project:	Monitoring
Groundwater Monitoring & Sampling:	Semi-Annual: MW-1 through MW-4
Is Free Product (FP) Present On-Site:	No
Current Remediation Techniques:	Natural Attenuation

Following is a summary of this quarter's field and analytical data:

Average Depth to Groundwater (in feet bgs):	12.30
Groundwater Elevation (in feet above mean sea level)	24.69 (MW-4) to 25.25 (MW-1)
Groundwater Gradient (direction):	Southwest
Groundwater Gradient (magnitude):	0.003 ft/ft
GRO detected concentrations:	1,400 µg/L (MW-2) and 3,800 µg/L (MW-1)
Benzene detected concentrations:	30 µg/L (MW-2) and 250 µg/L (MW-1)
Toluene detected concentration:	1.2 μ g/L (MW-2) and 48 μ g/L (MW-1)
Ethyl-benzene detected concentrations:	29 µg/L (MW-2) and 810 µg/L (MW-1)
Xylenes detected concentrations:	5.78 µg/L (MW-2) and 3,260 µg/L (MW-1)

Laboratory procedures, chain of custody records, and the certified analytical reports are included as Attachment B. Groundwater elevation and analytical data are summarized on Tables 1 and 2.

Purge water generated during the monitoring and sampling event was stored onsite pending characterization and disposal.

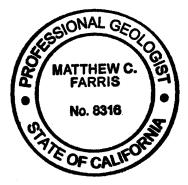
4.0 CONCLUSIONS AND RECOMMENDATIONS

On May 18, 2011 ACEH responded to the *Soil Vapor Testing and Additional Assessment Report* prepared by Closure Solutions. In their letter the ACEH requested preparation of a work plan or a corrective action plan by June 24, 2011. Closure Solutions will evaluate the available Site data and prepare the appropriate document by the June 24, 2011 deadline.

In accordance with directive received by the ACEH Closure Solutions will continue the Site groundwater monitoring and sampling on a semi-annual basis during the second and fourth quarters.

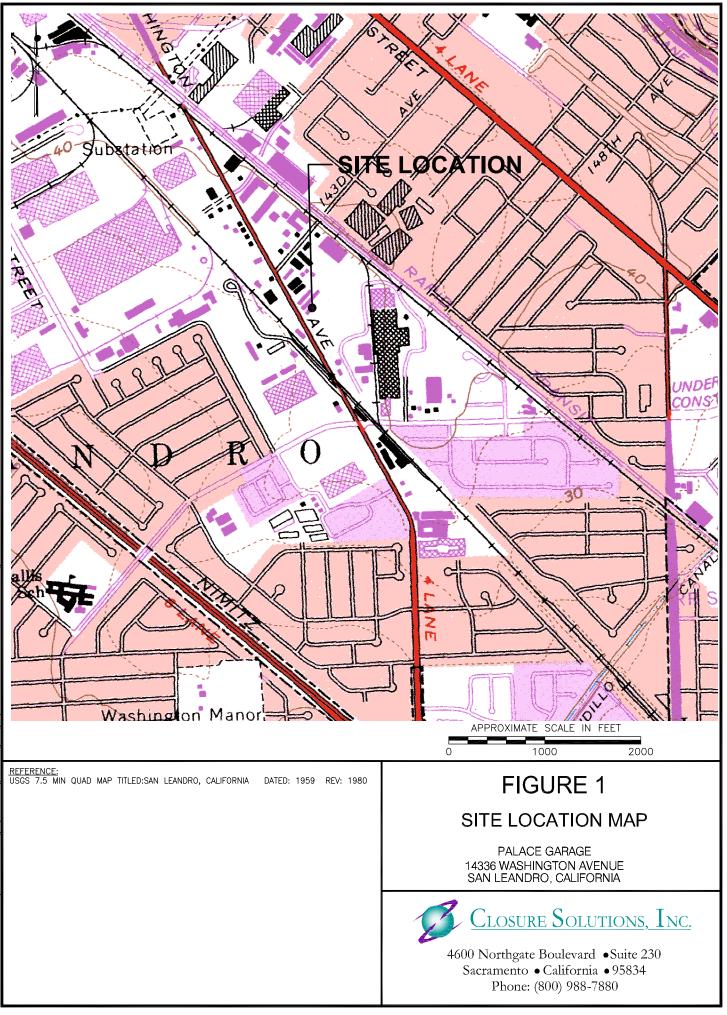
We appreciate the opportunity to present this document and trust that it meets with your approval. If you have any questions or concerns, please contact Kathleen Waldo at (916) 760-7025 or at kwaldo@closuresolutions.com.

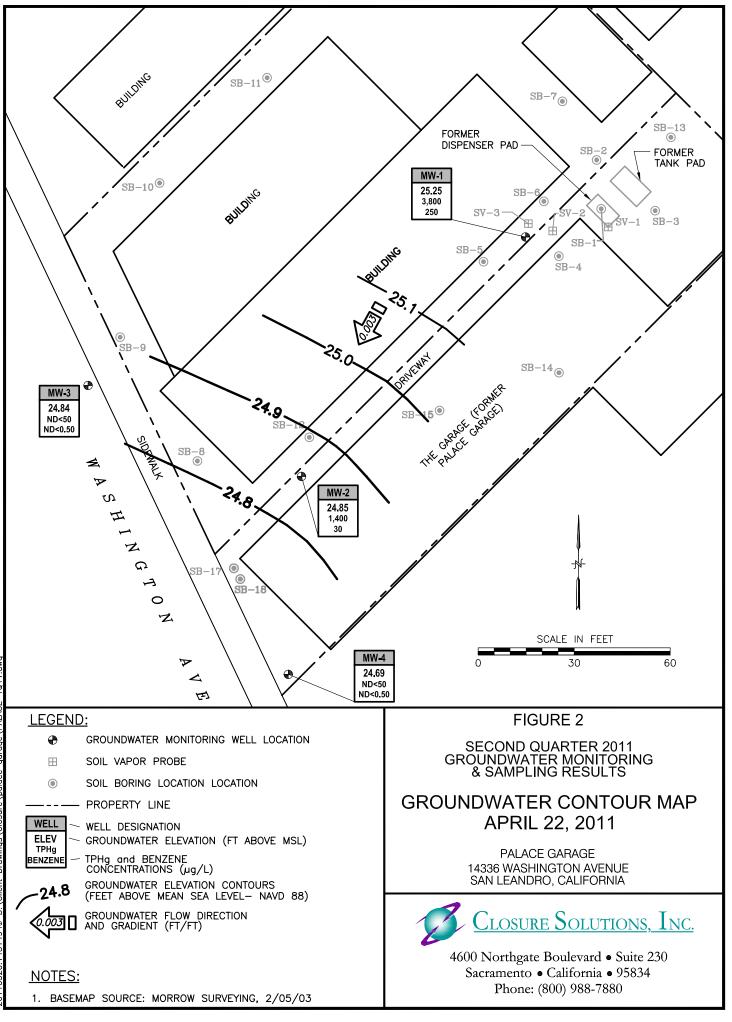
Sincerely,


Closure Solutions, Inc.

clean liblds

Kathleen Waldo Senior Project Engineer


Watthews Jesous


Matthew Farris, P.G. Project Geologist

ATTACHMENTS:

Figure 1	Site Location Map
Figure 2	Second Quarter 2011 Groundwater Monitoring & Sampling Results – Groundwater Contour Map – April 22, 2011
Table 1 Table 2	Groundwater Elevation and Analytical Data Fuel Oxygenate & Lead Scavenger Analytical Data
Attachment A Attachment B	Field Procedures and Field Data Sheets Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody Records
cc: Mr. Jeff	Kerry, Kerry & Associates

0110520.14514943 D:\Client Drawings\Closure\palace garage\PALACE 1Q11.

Table 1Groundwater Elevation and Analytical DataPalace Garage14336 Washington AvenueSan Leandro, California

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	LAB
MW-1	12/31/2002	37.59	13.62	23.97	48,000	1,030	2,380	1,690	9,220	
	9/22/2006		13.33	24.26	44,000	870	2,200	720	9,700	
	12/21/2006		13.94	23.65	17,000	240	980	180	5,000	
	3/29/2007		13.71	23.88	2,000	30	85	23	550	
	9/27/2007		15.53	22.06	540	14	3.9	44	87	KIFF
	12/20/2007		15.69	21.90	280	4.3	1.3	15	37	KIFF
	2/21/2008		13.72	23.87	19,000	300	150	1,100	4,900	KIFF
	5/15/2008		14.60	22.99	7,200	140	50	370	2,040	KIFF
	8/7/2008		15.62	21.97	820	13	3.1	44	100	KIFF
	11/13/2008		16.14	21.45	670	10	2.1	31	110	KIFF
	6/19/2009		15.15	22.44	1,490	85.8	13.4	164	310	Accutes
	11/3/2009		15.98	21.61	75	6.0	0.70	12	40.5	SunStar
	5/4/2010		13.40	24.19	18,000	300	61	880	4,070	SunStar
	11/8/2010		15.83	21.76	170	4.9	ND<0.50	7.7	24	SunStar
	4/22/2011		12.34	25.25	3,800	250	48	810	3,260	SunSta
MW-2	12/31/2002	37.12	13.38	23.74	1,670	1,030	11.00	23	16.4	
	9/22/2006		13.25	23.87	1,800	53	1.40	14	7.5	
	12/21/2006		13.89	23.23						
	3/29/2007		13.57	23.55	2,100	51	1.30		4.5	
	9/27/2007		15-37	21.75	1,600	58	0.99	12	3.7	KIFF
	12/20/2007		15.40	21.72	1,500	63	1.1	16	4.9	KIFF
	2/21/2008		13.60	23.52	710	23	ND<0.50	6.2	1.1	KIFF
	5/15/2008		14.47	22.65	1,600	84	1.4	28	9.8	KIFF
	8/7/2008		15.48	21.64	2,100	86	1.6	22	9.0	KIFF
	11/13/2008		15.99	21.13	2,300	46	1.1	15	4.5	KIFF
	6/19/2009		15.03	22.09	931	60.1	ND<2.0	30	3.1	Accutes
	11/3/2009		15.87	21.25	220	22	0.55	9.4	5.05	SunStar
	5/4/2010		12.92	24.20	950	14	0.57	9.1	13.2	SunStar
	11/8/2010		15.71	21.41	1,900	45	1.6	44	9.28	SunStar
	4/22/2011		12.27	24.85	1,400	30	1.2	29	5.78	SunSta

Table 1Groundwater Elevation and Analytical DataPalace Garage14336 Washington AvenueSan Leandro, California

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	LAB
MW-3	12/31/2002	37.01	13.29	23.72	<50	< 0.5	<0.5	< 0.5	<1.0	
	9/22/2006		13.14	23.87	<50	< 0.5	< 0.5	< 0.5	<1.5	
	12/21/2006									
	3/29/2007		13.47	23.54	<50	< 0.5	<0.5	< 0.5	<1.5	
	9/27/2007		15.29	21.72	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	12/20/2007		15.30	21.71	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	2/21/2008									
	5/15/2008		14.35	22.66	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	KIFF
	8/7/2008		15.39	21.62	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	11/13/2008		15.90	21.11	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	6/19/2009		14.94	22.07	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0	Accutes
	11/3/2009		15.76	21.25	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	SunStar
	5/4/2010		13.20	23.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	SunStar
	11/8/2010		15.62	21.39	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	SunStar
	4/22/2011		12.17	24.84	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	SunStar
MW-4	12/31/2002	37.09	13.45	23.64	<50	<0.5	<0.5	<0.5	<1.0	
	9/22/2006		13.40	23.69	<50	< 0.5	< 0.5	< 0.5	<1.5	
	12/21/2006		13.86	23.23	<50	< 0.5	<0.5	<0.5	<1.5	
	3/29/2007		13.69	23.40	<50	< 0.5	<0.5	<0.5	<1.5	
	9/27/2007		15.48	21.61	ND<50	1.5	ND<0.50	0.71	0.74	KIFF
	12/20/2007		15.28	21.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	2/21/2008		13.56	23.53	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	KIFF
	5/15/2008		14.58	22.51	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	KIFF
	8/7/2008		15.57	21.52	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	11/13/2008		16.09	21.00	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	6/19/2009		15.15	21.94	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0	Accutes
	11/3/2009		16.03	21.06	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	SunStar
	5/4/2010		13.11	23.98	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	SunStar
	11/8/2010		15.89	21.20	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	SunStar
	4/22/2011		12.40	24.69	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	SunStar

Table 1Groundwater Elevation and Analytical DataPalace Garage14336 Washington AvenueSan Leandro, California

Well Date ID Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg (µg/L)	B (µg/L)	Τ (μg/L)	E (µg/L)	X (µg/L)	LAB
-------------------------	-----------------------------------	-----------------------------	------------------------------------	----------------	-------------	-------------	-------------	-------------	-----

ABBREVIATIONS:

TPHg Total Petroleum Hydrocarbons as C	Gasoline
--	----------

- B Benzene
- T Toluene
- E Ethylbenzene
- X Total xylenes
- μg/L Micrograms per liter (parts per billion [ppb])
- --- Not analyzed/measured/applicable
- ND< Not detected at or above specified laboratory reporting limit
- **Bold** Current sampling event
- MSL Mean Sea Level
- Accutest Accutest Laboratories, Santa Clara, Ca
- KIFF Kiff Analytical LLC, Davis, Ca
- SunStar SunStar Laboratoies, Inc., Lake Forest, Ca

LIMITATIONS:

Background information, including but not limited to previous field measurements, analytical results, Site plans, and other data have been obtained from previous consultants, and/or third parties, in the preparation of this report. Closure Solutions has relied on this information as furnished. Closure Solutions is not responsible for, nor has it confirmed the accuracy of data collected or generated by others.

Table 2Fuel Oxygenate & Lead Scavenger Analytical DataPalace Garage14336 Washington AvenueSan Leandro, California

	Date							
Well	Sampled	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB
ID		$(\mu g/L)$	(µg/L)					
MW-1	12/31/2002	< 0.5						
	9/22/2006	<1.0						
	12/21/2006	3.9						
	3/29/2007	<1.0						
	9/27/2007	1.6	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/21/2007	1.5	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008	ND<7.0	ND<40	ND<7.0	ND<7.0	ND<7.0	ND<7.0	ND<7.0
	5/15/2008	ND<2.5	ND<15	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5
	8/7/2008	1.0	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
	11/13/2008	1.1	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
MW-2	12/31/2002	<0.5						
	9/22/2006	<1.0						
	12/21/2006							
	3/29/2007	1.10						
	9/27/2007	0.89	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/20/2007	0.95	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	5/15/2008	ND<0.90	ND<5.0	ND<0.90	ND<0.90	ND<0.90	ND<0.90	ND<0.90
	8/7/2008	0.59	ND<5.0	ND<0.90	ND<0.90	ND<0.90		
	11/13/2008	0.53	ND<5.0	ND<0.50	ND<0.50	ND<0.50		

Table 2Fuel Oxygenate & Lead Scavenger Analytical DataPalace Garage14336 Washington AvenueSan Leandro, California

	Date							
Well ID	Sampled	MTBE (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)
MW-3	12/31/2002	< 0.5						
	9/22/2006	<1.0						
	12/21/2006							
	3/29/2007	<1.0						
	9/27/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.5
	12/20/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.5
	2/21/2008							
	5/15/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.5
	8/7/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
	11/13/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
MW-4	12/31/2002	<0.5						
	9/22/2006	<1.0						
	12/21/2006	<1.0						
	3/29/2007	<1.0						
	9/27/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.5
	12/20/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.5
	2/21/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.5
	5/15/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.5
	8/7/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
	11/13/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		

Table 2 Fuel Oxygenate & Lead Scavenger Analytical Data

Palace Garage

14336 Washington Avenue

San Leandro, California

	Date							
Well	Sampled	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB
ID		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)

ABBREVIATIONS:

MTBE	Methyl Tertiary Butyl Ether
------	-----------------------------

- TBA Tertiary Butyl Alcohol
- DIPE Diisopropyl Ether
- ETBE Ethyl Tertiary Butyl ether
- TAME Tertiary Amyl Methyl Ether
- 1,2-DCA 1,2-Dichloroethane
- EDB 1,2-Dibromoethane
- KIFF Kiff Analytical LLC, Davis, Ca
- Accutest Accutest Laboratories, Santa Clara, Ca
- μg/L Micrograms per liter (parts per billion [ppb])
- --- Not analyzed/measured/applicable
- ND< Not detected at or above specified laboratory reporting limit
- LIMITATIONS Background information, including but not limited to previous field measurements, analytical results, Site plans, and other data have been obtained from previous consultants, and/or third parties, in the preparation of this report. Closure Solutions has relied on this information as furnished. Closure Solutions is not responsible for, nor has it confirmed the accuracy of data collected or generated by others.

Attachment A

Field Procedures and Field Data Sheets

Standard Operating Procedures: Basic Gauge, Purge, and Sample.

Routine Water Level Measurements

- 1. Confirm that water or debris will not enter the well box upon removal of the well box lid.
- **2.** Remove the cover using the appropriate tools.
- **3.** Inspect the wellhead for deficiencies and document accordingly.
- 4. Confirm that water or debris will not enter the well upon removal of the well cap.
- 5. Unlock and remove the well cap lock (if applicable). If lock is not functional cut it off.

6. Loosen and remove the well cap. CAUTION: DO NOT PLACE YOUR FACE OR HEAD DIRECTLY OVER WELLHEAD WHEN REMOVING THE WELL CAP. WELL CAP MAY BE UNDER PRESSURE AND/OR MAY RELEASE ACCUMULATED AND POTENTIALLY HARMFULL VAPORS.

7. Verify and identify survey point as written on S.O.W.

TOC: If survey point is listed as Top of Casing (TOC), look for the exact survey point in the form of a notch or mark on the top of the casing. If no mark is present, use the north side of the casing as the measuring point.

TOB: If survey point is listed as Top of Box (TOB), the measuring point will be established manually. Place the inverted well box lid halfway across the well box opening and directly over the casing. The lower edge of the inverted cover directly over the casing will be the measuring point.

8. Put new Nitrile gloves on your hands.

9. Slowly lower the decontaminated water level meter probe into the well until it signals contact with water with a tone and/or flashing a light.

10. Gently raise the probe tip slightly above the water and hold it there. Wait momentarily to see if the meter emits a tone, signaling rising water in the casing. Gently lower the probe tip slightly below the water. Wait momentarily to see if the meter stops emitting a tone, signaling dropping water in the casing. Continue process until water level stabilizes indicating that the well has equilibrated.

11. While holding the probe at first contact with water and the tape against the measuring point, note depth. Repeat twice to verify accuracy. Write down measurement on well gauging sheet under depth to water column.

12. Recover probe, replace and tighten well cap, replace lock (if applicable), replace well box cover and tighten hardware (if applicable).

Purging With a Bailer (Teflon or Disposable)

1. Attach bailer cord or string to bailer. Leave other end attached to spool.

2. Gently lower empty bailer into well until well bottom is reached.

3. Cut cord from spool. Tie a loop at end cord.

4. Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground.

5. Pour contents into graduated 5-gallon bucket or other graduated receptacle.

6. Repeat purging process.

7. Upon removal of first casing volume, fill clean parameter cup with purge water,

empty the remainder of the purge water into the bucket, lower the bailer back into the well and secure the cord on the Sampling Vehicle.

8. Use the water in the cup to collect and record parameter measurements.

9. Continue purging until second casing volume is removed.

10. Collect parameter measurements.

11. Continue purging until third casing volume is removed.

Purging With a Fixed Speed Electric Submersible Pump

1. Position thoroughly decontaminated pump over the top of the well.

2. Gently unreel and lower the pump to the well bottom.

3. Raise the pump to client specified location within screened interval. If no direction is given

the pump inlet will be placed 5 feet above the bottom of the well.

4. Secure the hose reel.

5. Begin purging.

6. Verify pump rate with flow meter or graduated 5-gallon bucket.

7. Upon removal of first casing volume, fill clean parameter cup with water.

8. Use the water in the cup to collect and record parameter measurements.

9. Continue purging until second casing volume is removed.

10. Collect parameter measurements.

11. Continue purging until third casing volume is removed.

12. Upon completion of purging, gently recover the pump and secure the reel.

Sampling with a Bailer (Teflon or Disposable)

1. Put new Latex or Nitrile gloves on your hands.

2. Determine required bottle set.

3. Fill out sample labels completely and attach to bottles.

4. Arrange bottles in filling order and loosen caps (see Determine Collection Order below).

5. Attach bailer cord or string to bailer. Leave other end attached to spool.

6. Gently lower empty bailer into well until water is reached.

7. As bailer fills, cut cord from spool and tie end of cord to hand.

8. Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground. If a set of parameter measurements is required, go to step 9. If no additional measurements are required, go to step 11.

9. Fill a clean parameter cup, empty the remainder contained in the bailer into the sink, lower the bailer back into the well and secure the cord on the sampling vehicle. Use the water in the cup to collect and record parameter measurements.

10. Fill bailer again and carefully remove it from the well.

11. Slowly fill and cap sample bottles. Fill and cap volatile compounds first, then semivolatile, then inorganic (see following steps). Return to the well as needed for additional sample material.

12. Fill 40-milliliter vials for volatile compounds as follows: Slowly pour water down the inside on the vial. Carefully pour the last drops creating a convex or positive meniscus on the surface. Gently screw the cap on eliminating any air space in the vial. Turn the vial over, tap several times and check for trapped bubbles. If bubbles are present, repeat the process.

13. Fill 1 liter amber bottles for semi-volatile compounds as follows: Slowly pour water into the bottle. Leave approximately 1 inch of headspace in the bottle. Cap bottle.

14. Field filtering of inorganic samples using a disposable bailer is performed as follows:

Attach 0.45 micron filter to connector plug. Attach connector plug to bottom of full disposable bailer. Gravity feed water through the filter and into the sample bottle. If high turbidity level of water clogs filter, repeat process with new filter until bottle is filled. Leave headspace in the bottle. Cap bottle.

15. Bag samples and place in ice chest.

16. Note sample collection details on well data sheet and Chain of Custody.

FIELD DATA SHEET-DEPTH TO WATER DATA

			SITE INFORM	ATION	11.11.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
Site Information			6 ₆			
Palace Garage		4/22/11	1601.07.01 Project Number			
Project Name 14336 Washingto		Date San Leandro				
Address	in Ave.	City	State	•		
Water Level Equipme	ent		Kevin Dolan R	AN SPARE	iand	
x Electronic Indicato						
Oil Water Interface	Probe		Event:	1Q 2011 QMS	5	
Other (specify)						
		DE	PTH TO WATE	ER DATA		
			DTW	Total Depth	Depth to SPH /	
DTW Order	Well ID	Time (24:00)	(toc)	(toc)	Thickness	Notes:
3	MW-1	1203	12,34	23.25		
4	MW-2	1206	12.27	23.61		
2	MW-3	1159	12.17	23.06		
1	MW-4	1147	12,40	21.85		
		°				
	1	1				

Project Nam	ne:	Palace	Garage				Date:	April 22, 2011		
Sample No.		MW-1								
Samplers N	ame:	Kevin Dolan	RYAN -	SPARS	200					
	Bailer: Disp 12 v. Pump Bladder Pur SS Monsoo	mp					Sample Equ	uipment: Disposable Bailer Whaler # Bladder Pump Submersible Pump ber and Types of Bot	ttle Used:	
TPH-G / B					3.	/da's	W/ HC			
Depth to Wa Well Depth: Height W-C Volume in V	leight W-Column: IOAI feet (well depth - depth to water) 5" = (1.02 Gallon/Feet) colume in Well: I.75 gallons (casing volume X height) 6" = (1.47 Gallon/Feet) Gallons to purge: SunStar Transportation: 8" = (2.61 Gallon/Feet) Time Volume Tomperature Conductivity D.0 TDS									
Time (24 hr.)	Time (24 hr.)Purged (Gallons)Temperature (°C)Conductivity (ms/cm)D.O. (ppm)pHTDS (ppm)Turbidity: Color - FinesParamaters Stabilized									
1355	STA	ET				3/L	CLR	SLT NONE		
1258	15	17.910	652	3.76	7.65	0.42	1	1		
1403	3.5	17.07	1090	307	7,64	0.44		MOD Y		
1	66	17.76	1070			0,45				
1408	212	17.91	707	2,82	7,59	0110	~	V ·		
STOP	: PUR	GE COI	NPLETE	-						
		W	ait for 80% w	ell volume	recovery	prior to s	ampling.			
	50 1	Calculate	e depth to wate	er (from T	OC), for 80	% well vol	ume recover	y:		
	Origin	al Height of Water C			orginal well vo 9.87		h)23,26=	Depth to water 13, 38		
Time: <u>1418</u> Time: Time:	Original Height of Water Column = 12.34 x 0.8 = 9.87 - (Well Depth) 3.26 = Depth to water 13.38 Filme: <u>1418</u> 1st measured depth to water, <u>12.36</u> feet below TOC. Filme: <u>1st measured depth to water</u> , <u>feet below TOC</u> . Is well within 80% of original well casing volume: Yes <u>No</u> Is well within 80% of original well casing volume: Yes <u>No</u> No Is well within 80% of original well casing volume: Yes <u>No</u> No Is well within 80% of original well casing volume: Yes <u>No</u> No									
				Sam	ple Well					
Time:	1420	-	Sample ID:	MW	-1		_ Dep	th: 12,36		
Comments:										
Well Condit	ion:									

Project Name:	:	Palace	Garage				Date:	April 22, 2011	
Sample No.:		MW.2			Tra-				
Samplers Nam	ne:	Kevin Dolan	RYAN S	RARR	00				
12 Bla SS	ailer: Disp v. Pump adder Pu Monsoo	mp						ment: Disposable Bailer Whaler # Bladder Pump Submersible Pump er and Types of Bot	ttla Usadi
TPH-G / BTE			Jpiy).			3 JOA	the state of the	CL	lile Oseu.
Well Number:		MW-2				W	ell Diameter: "	\mathbf{Z}^{H} with Casing V	olume of:
Depth to Wate		12.27	тос					2" = (0.16 Ga	
Well Depth:		23.61	BGS or TOC					4" = (0.65 Ga	,
Height W-Colu	umn.		feet (well dep	th - depth	to water)			5" = (1.02 Ga	
Volume in We		1.81	gallons (casin					6" = (1.47 Ga	
	allons to purge: <u>5.4 L</u> gallons (volume X 3							8" = (2.61 Ga	
	unStar		gallone (volu		1	Transpo	rtation:		
F (24 br)	Volume Purged Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)	Turbidity	Color - Fines	Micropurge Paramaters Stabilized
1.0		-7				6/L	and the second s	1	
1428 START 1432 1.5 18.69 755 4.20					7.79	048	CLR 1	JONE NONE	
1437 3.5 18.38 755 4.11					7,78	0,48			
1443 5	5.5	18:36	734	3.36	776	0.47			
STOP	PU	26E CC	MPLET	E					
			it for 000/						
			ait for 80% we depth to wate				ume recovery:		
			Calc	ulate 80% of	orginal well vo	olume:			
	Origina	al Height of Water Co	olumn = 11:34	x 0.8 =	9.07	- (Well Depth	1)23.61 = D	epth to water 14,54	ť
Time: 1st	t measured	depth to water, <u>2</u> depth to water, <u>depth to water</u> , <u>4</u>	feet bel	ow TOC. ow TOC.		Is well with	nin 80% of original v	well casing volume: Yes _ well casing volume: Yes _ well casing volume: Yes _	No
				Sam	ple Well				
Time:	455		Sample ID:	MW	-2		Depth:	12.27	
Comments:									
Well Condition	1:								
	ю.								

Project Name:	Palace	Garage				Date:	April 22, 2011	_		
Sample No.:	MW-3									
Samplers Name:	Kevin Dolan	24AN G	SPAR 2	000						
Purge Equipment:						Sample Equ	-			
	posable or Acryli	С				X	Disposable Bailer			
12 v. Pump							Whaler # Bladder Pump			
Bladder Pu SS Monsoo							Submersible Pump			
Analyses Requested		(vlac				Num	ber and Types of Bo			
TPH-G / BTEX					3 101		1 10			
				5708 M 100 107 108 8 404 Ave. 10 107 109						
Well Number:	MW-3				w	ell Diameter	: _ Z ["] with Casing \	/olume of:		
Depth to Water:	12.17	тос					2" = (0.16 G			
Well Depth:	23.06	BGS or TOC					4" = (0.65 G			
Height W-Column:	0,89	feet (well dep	th - depth	to water)			5" = (1.02 G			
Volume in Well:	1.74	gallons (casir		-			6" = (1.47 G			
	5:23	gallons (volur	-	X neight)			8" = (2.61 G			
Gallons to purge:	2160	gallons (volu	ne x s)		Tuenene		0 – (2.01 G	allon/Feel)		
Lab: SunStar					Transpo	rtation:				
Time Volume	Temperature	Conductivity	D.O.	-11	TDS	Truckid		Micropurge		
(24 hr.) Purged (Gallons)	(°C)	(ms/cm)	(ppm)	pН	(ppm)	i urbial	ty: Color - Fines	Paramaters Stabilized		
13118 STAT	2-1				3/2					
		100	todo	710	610	CLR	SLT			
1322 1.5	18.76	467	6.42	7.63	0:28		stanzi (gyzčita)	+		
1323 3.5	18.43	592	4,64	7.33	0.25					
1335 5.5	18.44	400	4.25	7.44	0.26					
STOP: PI	JRGE C	OMPU	ETE							
							1			
		-								
		ait for 80% we be depth to wate					<i>I</i> :			
				orginal well vo						
Origin	al Height of Water C	101	Solution = 00 m of	0	- (Well Depth) =	Depth to water			
. /					10					
Time: 1543 1st measured Time: 1st measured	I depth to water, <u>12</u>	feet bel	ow TOC.				al well casing volume: Yes			
	Sample Well									
Time: 1345	Time: 1345 Sample ID: MW-3 Depth: 12,18									
Comments:	nments									
Well Condition:										

Project Nar	ne:	Palace	Garage				Date:	April 22, 2011	
Sample No	.:	MW-	L	1					
Samplers N	lame:	Kevin Dolan	`	*.					
Purge Equi	Bailer: Dis 12 v. Pump Bladder Pu SS Monsoo	mp 🎽 🚧	ot value				V E	nent: Disposable Bailer Whaler # Bladder Pump Submersible Pump r and Types of Bot	ttle Used:
TPH-G / B						3 VDA	5 W/HCL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	/ater: : Column: Well:	MW-4 12:40 21:85 9:45 0:39	-	ng volume				with Casing V 2" = (0.16 Ga 4" = (0.65 Ga 5" = (1.02 Ga 6" = (1.47 Ga	allon/Feet) allon/Feet) allon/Feet) allon/Feet)
	Ilons to purge: \.\Le gallons (volume X 3) b: SunStar Time Volume Purged Temperature Conductivity (°C) (ms/cm) (ppr					-		8" = (2.61 Ga	allon/Feet)
Lab:						Transpo	rtation:		
Time (24 hr.)	Purged			D.O. (ppm)	рН	TDS (ppm)	Turbidity:	Color - Fines	Micropurge Paramaters Stabilized
1231									
1236	0.5	18.62	634	6.61	7.38	0.39	HIGH BEE	YLAM, LAWY	
1248	1.5	18.25	579	5,87	7,69	0.37			
STOP	10.00		Competizione Competizione		1100				
2167	' FORG	ECOMPLE	5 I 16000			+			<u> </u>
	I	Wa	ait for 80% w	ell volume	recoverv	prior to s	ampling.		
							ume recovery:		
			Calc	ulate 80% of	orginal well v	olume:			
	Origin	al Height of Water Co	olumn = 9.4	5 x 0.8 =	1	- (Well Dept	n) = De	pth to water	
Time:	1st measured	depth to water, depth to water, depth to water,	feet be	ow TOC. ow TOC. ow TOC. Sam	ple Well	Is well with	nin 80% of original w	ell casing volume: Yes _ ell casing volume: Yes _ ell casing volume: Yes _	
Time:	1300	-	Sample ID:	MW	-4		Depth:	12.40	
Comments:									
Well Condit	tion:								
							Closure Solu	tions INC - OMS	EDS

Attachment B

Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody Records

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

29 April 2011

Kate Waldo Closure Solutions 2300 Clayton Rd. Suite 1435 Concord, CA 94520 RE: Palace Garage

Enclosed are the results of analyses for samples received by the laboratory on 04/26/11 10:34. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

MALO

Kevin Moore For Daniel Chavez Project Manager

Closure Solutions	Project: Palace Garage	
2300 Clayton Rd. Suite 1435	Project Number: [none]	Reported:
Concord CA, 94520	Project Manager: Kate Waldo	04/29/11 16:34

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	T110518-01	Water	04/22/11 14:20	04/26/11 10:34
MW-2	T110518-02	Water	04/22/11 14:55	04/26/11 10:34
MW-3	T110518-03	Water	04/22/11 13:45	04/26/11 10:34
MW-4	T110518-04	Water	04/22/11 13:00	04/26/11 10:34

SunStar Laboratories, Inc.

Marc

Closure Solutions		5		e Garage				D (1	
2300 Clayton Rd. Suite 1435		Project Numb		-				Reported	
Concord CA, 94520	ŀ	Project Manag	er: Kate	Waldo				04/29/11 16	:34
		Ν	/W-1						
		T11051	8-01 (W	ater)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Volatile Organic Compounds by E	PA Method 826()B							
Benzene	250	12	ug/l	25	1042623	04/26/11	04/29/11	EPA 8260B	
Toluene	48	0.50	"	1	"	"	"	"	
Ethylbenzene	810	12	"	25	"	"	"	"	
m,p-Xylene	2900	25	"	"	"	"	"	"	
o-Xylene	360	12	"	"	"	"	"	"	
C6-C12 (GRO)	3800	50	"	1		"	04/27/11	"	
Surrogate: Toluene-d8		114 %	84.7	7-109	"	"	"	"	S-GC
Surrogate: 4-Bromofluorobenzene		68.1 %	83.5	-119	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		111 %	81.1	-136	"	"	"	"	

SunStar Laboratories, Inc.

SMARC

Closure Solutions		Proje	ct: Palac	e Garage					
2300 Clayton Rd. Suite 1435]	Project Numb	er: [none]				Reported	:
Concord CA, 94520	P	roject Manag	er: Kate	Waldo				04/29/11 16	:34
		Ν	AW-2						
		T11051	8-02 (W	ater)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Volatile Organic Compounds by E	PA Method 8260	B							
Benzene	30	0.50	ug/l	1	1042623	04/26/11	04/27/11	EPA 8260B	
Toluene	1.2	0.50	"	"	"	"	"	"	
Ethylbenzene	29	0.50	"	"	"	"	"	"	
m,p-Xylene	5.2	1.0	"	"	"	"	"	"	
o-Xylene	0.58	0.50	"	"	"	"	"	"	
C6-C12 (GRO)	1400	50	"	"	"	"	"	"	
Surrogate: Toluene-d8		108 %	84.7	-109	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.4 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %	81.1	-136	"	"	"	"	

SunStar Laboratories, Inc.

Marc

Closure Solutions 2300 Clayton Rd. Suite 1435 Concord CA, 94520		Project Numb	er: [none	- ;]				-	
				ater)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Volatile Organic Compounds by EP	No Clayton Rd. Suite 1435 ncord CA, 94520 Project Number: [none] Project Manager: Kate Waldo Reported: 04/29/11 16:34 WW-3 T110518-03 (Water) Superint Limit Units Dilution Batch Prepared Analyzed Method Notes adyte Result Reporting Limit Units Dilution Batch Prepared Analyzed Method Notes SumStar Laboratories, Inc. attle Organic Compounds by EPA Method 8260B ene ND 0.50 ug/l 1 1042623 04/26/11 04/27/11 EPA 8260B attle Organic Compounds by EPA Method 8260B ene ND 0.50 " " " " " with ene ND 0.50 " " " " " " with ene ND 0.50 "								
Benzene	ND	0.50	ug/l	1	1042623	04/26/11	04/27/11	EPA 8260B	
Toluene	ND	0.50	"	"		"	"	"	
Ethylbenzene	ND	0.50	"	"		"	"	"	
m,p-Xylene	ND	1.0	"	"		"	"	"	
o-Xylene	ND	0.50	"	"		"	"	"	
C6-C12 (GRO)	ND	50	"	"			"	"	
Surrogate: Toluene-d8		105 %	84.7	-109	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.8 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		110 %	81.1	-136	"	"	"	"	

SunStar Laboratories, Inc.

Marc

Closure Solutions 2300 Clayton Rd. Suite 1435 Concord CA, 94520		Proje Project Numb Project Manag	er: [none					Reported 04/29/11 16	
		N T11051	/IW-4 8-04 (W	ater)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Volatile Organic Compounds by EF	PA Method 8260)B							
Benzene	ND	0.50	ug/l	1	1042623	04/26/11	04/27/11	EPA 8260B	
Toluene	ND	0.50		"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"		"	
m,p-Xylene	ND	1.0	"	"	"	"		"	
o-Xylene	ND	0.50	"	"	"	"		"	
C6-C12 (GRO)	ND	50	"	"	"	"	"	"	
Surrogate: Toluene-d8		106 %	84.7	-109	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.2 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		110 %	81.1	-136	"	"	"	"	

SunStar Laboratories, Inc.

SMARC

Closure Solutions	Project: Palace Garage	
2300 Clayton Rd. Suite 1435	Project Number: [none]	Reported:
Concord CA, 94520	Project Manager: Kate Waldo	04/29/11 16:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1042623 - EPA 5030 GCMS										
Blank (1042623-BLK1)				Prepared:	04/26/11	Analyzed	d: 04/27/11			
Benzene	ND	0.50	ug/l							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
C6-C12 (GRO)	ND	50	"							
Surrogate: Toluene-d8	8.43		"	8.00		105	84.7-109			
Surrogate: 4-Bromofluorobenzene	6.78		"	8.00		84.8	83.5-119			
Surrogate: Dibromofluoromethane	9.08		"	8.00		114	81.1-136			
LCS (1042623-BS1)				Prepared:	04/26/11	Analyzed	d: 04/27/11			
Chlorobenzene	18.7	1.0	ug/l	20.0		93.7	75-125			
1,1-Dichloroethene	26.1	1.0	"	20.0		131	75-125			QM-12
Trichloroethene	21.7	1.0	"	20.0		108	75-125			
Benzene	22.7	0.50	"	20.0		114	75-125			
Toluene	22.5	0.50	"	20.0		112	75-125			
Surrogate: Toluene-d8	8.11		"	8.00		101	84.7-109			
Surrogate: 4-Bromofluorobenzene	7.27		"	8.00		90.9	83.5-119			
Surrogate: Dibromofluoromethane	8.93		"	8.00		112	81.1-136			
LCS Dup (1042623-BSD1)				Prepared:	04/26/11	Analyzed	d: 04/27/11			
Chlorobenzene	19.8	1.0	ug/l	20.0		98.8	75-125	5.30	20	
1,1-Dichloroethene	26.7	1.0	"	20.0		133	75-125	2.08	20	QM-12
Trichloroethene	22.9	1.0	"	20.0		114	75-125	5.48	20	
Benzene	23.9	0.50	"	20.0		120	75-125	5.14	20	
Toluene	23.8	0.50	"	20.0		119	75-125	5.66	20	
Surrogate: Toluene-d8	8.18		"	8.00		102	84.7-109			
Surrogate: 4-Bromofluorobenzene	7.33		"	8.00		91.6	83.5-119			
Surrogate: Dibromofluoromethane	8.86		"	8.00		111	81.1-136			

SunStar Laboratories, Inc.

100

SunStar – Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Closure Solutions	Project: Palace Garage	
2300 Clayton Rd. Suite 1435	Project Number: [none]	Reported:
Concord CA, 94520	Project Manager: Kate Waldo	04/29/11 16:34

Notes and Definitions

- S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).
- QM-12 The % recovery for this analyte was above acceptance criteria in the LCS and/or LCSD. The MB and sample(s) were ND for the analyte. The CCV(s) was within acceptance criteria. No negative impact on data is expected.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kevin Moore For Daniel Chavez, Project Manager

SunStar Laboratories, I 25712 Commercentre D Lake Forest, CA 92630 949-297-5020)r			Chain		Cu	sto	ody	/ R	ec			10	518	3		: • .		
Client: CUSURE Address: 2-151 SALVI Phone: Project Manager: LACE	50.4 0 51,4	57E 301 Fax: KWALT	s INC , conc	. (C-533 ORD CA WESSOU		ر چن	coh	_	ite: oject illect tch #			-	_		<u>الم</u> م	ے <u>،</u> ک	_ Clie	$\frac{1}{Project #: 1601.07.01}$ F #: TO 600 101043	
Sample ID MW-1 MW-2 MW-3 MW-4 TB	Date Sample		Sample Type Gui GOAS	Container Type 3 Con 3 W/I-CL	XXXX 8260 APHC BAEX	8260 + OXY	8260 BTEX, OXY only	8270	8021 BTEX	8015M (gasoline)	8015M (diesel)	8015M Ext./Carbon Chain	6010/7000 Title 22 Metals				0 0 0 0 0 Laboratory ID #	Comments/Preservative	
Relinquished by: (signature) Relinquished by: (signature) Relinquished by: (signature) Sample disposal Instructions: Dis		ime	SHIP? Received by	: (signature) : (signature)	anar) / Tin / Tin	ne		Re	ceiv	Custo Sea ed go	al # of ody sea ls intac od con	als Y/I :t? Y/I dition	V/NA V/NA /cold	(3 NA NA	Notes Notes CL RESULTS TO KWALDECLOSUE SOLUTIONS. COM	

COC 102451

SunStar	
PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE	Page 1 of
SAMPLE RECEIVING REVIEW SHEET	1
BATCH # THOSI8	
Client Name: <u>CLOSURE SOLUTIONS</u> Project: <u>PALACE GARA</u>	(- E
Received by: BRIAN Date/Time Received: 4/26	11 1034
Delivered by : Client SunStar Courier GSO FedEx Other	
Total number of coolers received Temp criteria = $6^{\circ}C > 0^{\circ}C$ (no <u>frozen</u>	containers)
Temperature: cooler #1 _6.4 °C +/- the CF (- 0.2°C) = _6.2 °C corrected temperature	
cooler #2°C +/- the CF (- 0.2°C) =°C corrected temperature	•
cooler #3°C +/- the CF (- 0.2°C) =°C corrected temperature	
Samples outside temp. but received on ice, w/in 6 hours of final sampling.	* 🗍 N/A
Custody Seals Intact on Cooler/Sample	* 🕅 N/A
Sample Containers Intact	•
Sample labels match COC ID's	*
Total number of containers received match COC	*
Proper containers received for analyses requested on COC	•
Proper preservative indicated on COC/containers for analyses requested	*N/A
Complete shipment received in good condition with correct temperatures, containers, labels, vo preservatives and within method specified holding times. \boxed{Yes} $\boxed{No*}$	lumes
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample Review - Initials and da	ite <u>BC 4/26/11</u>
Comments:	
	· · · · · · · · · · · · · · · · · · ·
	<u> </u>