RECEIVED

9:04 am, Dec 09, 2010

Alameda County Environmental Health

December 1, 2010

Re:

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

> Kerry & Associates - Palace Garage 14336 Washington Avenue San Leandro, California ACEH Case No. RO0000208

Dear Mr. Detterman,

I declare, under penalty of perjury, that the information and/or recommendations contained in the Fourth Quarter 2010 Groundwater Monitoring Report is true and correct to the best of my knowledge.

Mr. Jeffrey Kerry

Sincerely

November 30, 2010

Mr. Mark Detterman Alameda County Environmental Health 1000 San Leandro Blvd., Suite 300 San Leandro, CA 94577

Subject: Fourth Quarter 2010 Groundwater Monitoring Report

Palace Garage

14336 Washington Avenue San Leandro, California ACEH Case No. RO0000208

SFRWQCB LUFT Case No. 01-1133

Dear Mr. Detterman:

On behalf of Kerry & Associates, Closure Solutions, Incorporated (Closure Solutions) has prepared this *Fourth Quarter 2010 Groundwater Monitoring Report* (Report) for the Palace Garage facility (the Site), located at 14336 Washington Avenue, in San Leandro, California (Figure 1).

1.0 SITE BACKGROUND SUMMARY

A 550-gallon gasoline underground storage tank (UST) was removed from the site in 1991. Subsequent investigations included the installation of 3 monitoring wells and the drilling of 15 borings. Based on data obtained from the wells and borings, impacted unsaturated-zone soil is confined to the area of the former dispenser pad and UST. The primary groundwater flow direction is toward the southwest.

In December 2002, Professional Service Industries, Inc. (PSI) conducted a soil and groundwater investigation to evaluate the lateral extent of petroleum hydrocarbons in the soil and groundwater at the site. Borings B-16 and B-17 were advanced to between 20 and 24 feet below ground surface (bgs). Boring B-16 was converted into monitoring well MW-4. Concentrations of total petroleum hydrocarbons as gasoline (TPHg) and gasoline related contaminants were detected only in soil from boring B-17 and groundwater from wells MW-1 and MW-2. The locations of the monitoring wells and soil borings are presented in Figure 2.

Closure Solutions conducted a Sensitive Receptor Survey to identify all water supply wells and sensitive receptors within a 2,000-foot radius of the Site. The closest water supply wells are two industrial wells approximately 450 feet northwest (cross-gradient) of the Site. The closest domestic well is approximately 1,500 feet southeast (cross-gradient) of the Site. The closest

down-gradient well is an irrigation well approximately 1,400 feet southwest of the Site. No surface water bodies were identified within a 2,000 foot radius of the Site. Results of the Sensitive Receptor Survey are presented in the *Sensitive Receptor Survey* report dated August 27, 2008.

Closure Solutions prepared and submitted a *Site Conceptual Model* (SCM) dated September 30, 2008 for the Site. The preparation of the SCM was requested by Alameda County Environmental Health (ACEH) in their letter dated September 2, 2008.

In an email dated June 12, 2009 Mr. Steve Plunkett with the ACEH approved the reduction of groundwater monitoring to a Semi-annual basis conducted in second and fourth quarters. Mr. Plunkett also approved the recommendation to eliminate the fuel oxygenates from the suite of laboratory analytes.

On October 15, 2009 Closure Solutions discussed the Site status with ACEH. Data gaps presented in the SCM and other information that ACEH would require for site closure was identified. Closure Solutions submitted the *Soil Vapor Probe and Additional Assessment Work Plan* on November 13, 2009 to address the work necessary to move the site toward closure.

On May 14, 2010 Closure Solutions submitted a letter to the ACEH stating that Closure Solutions intends to proceed with the proposed scope of work pursuant to CCR Title 23, Division 3, Chapter 16, Section 2722 (e) which states "Implementation of the proposed workplan may begin sixty (60) calendar days after submittal, unless the responsible party is otherwise directed in writing by the regulatory agency". On May 21, 2010 the ACEH responded to Closure Solutions' letter of intent via email explaining that the ACEH has been largely precluded from generating letters on cases due to the work load imposed by SWRCB Resolution 2009-0042 and they will attempt to raise the review interval for the Site.

On July 26, 2010 a Closure Solutions' representative was on site to oversee the installation and sampling of three temporary soil vapor probes (SV-1 through SV-3) and the advancement of one downgradient soil boring (SB-18). A *Soil Vapor Testing and Additional Assessment Report* describing field activities and discussing analytical soil and soil vapor results was submitted to the ACEH on August 30, 2010 and is awaiting response by the agency.

Closure Solutions continues to conduct groundwater monitoring and sampling on a semi-annual basis during second and fourth quarters.

2.0 WORK PERFORMED AND WORK PROPOSED

Following is a summary of work performed this quarter and work proposed for next quarter:

WORK PERFORMED THIS QUARTER:

- 1. Conducted soil vapor testing and additional assessment on July 26, 2010.
- 2. Prepared and submitted the *Soil Vapor Testing and Additional Assessment Report* on August 30, 2010.
- 3. Performed semi-annual groundwater monitoring event on November 8, 2010.
- 4. Prepared and submitted Fourth Quarter 2010 Groundwater Monitoring Report.

WORK PROPOSED FOR NEXT QUARTER:

1. The next groundwater monitoring event will be performed in second quarter 2011.

3.0 DISCUSSION OF RECENT ACTIVITIES

Closure Solutions performed this quarter's groundwater monitoring and sampling event at the Site on November 8, 2010. Gauging, purging and sampling were conducted in accordance with Closure Solution's Standard Operating Procedures (included in Attachment A). The collected groundwater samples were submitted to SunStar Laboratories for laboratory analysis under Chain-of-Custody protocols. The samples were analyzed for gasoline range organics (GRO) and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method 8260B.

Following is a summary of the current status of the environmental program at the site:

Current Phase of Project:	Monitoring
Groundwater Monitoring & Sampling:	Semi-Annual: MW-1 through MW-4
Is Free Product (FP) Present On-Site:	No
Current Remediation Techniques:	Natural Attenuation

Following is a summary of this quarter's field and analytical data:

Average Depth to Groundwater (in feet bgs):	15.76
Groundwater Elevation (in feet above mean sea level)	21.20 (MW-4) to 21.76 (MW-1)
Groundwater Gradient (direction):	Southwest
Groundwater Gradient (magnitude):	0.003 ft/ft
GRO detected concentrations:	170 μg/L (MW-1) to 1,900 μg/L (MW-2)
Benzene detected concentrations:	4.9 μg/L (MW-1) to 45 μg/L (MW-2)
Toluene detected concentration:	1.6 μg/L (MW-2)
Ethyl-benzene detected concentrations:	7.7 µg/L (MW-1) to 44 µg/L (MW-2)
Xylenes detected concentrations:	9.28 μg/L (MW-2) to 23.9 μg/L (MW-1)

Laboratory procedures, chain of custody records, and the certified analytical reports are included as Attachment B. Groundwater elevation and analytical data are summarized on Tables 1 and 2.

Purge water generated during the monitoring and sampling event was stored onsite pending characterization and disposal.

4.0 CONCLUSIONS AND RECOMMENDATIONS

On July 26, 2010 a Closure Solutions' representative was on site to oversee the installation and sampling of three temporary soil vapor probes and the advancement of one downgradient soil boring. A *Soil Vapor Testing and Additional Assessment Report* describing field activities and discussing analytical soil and soil vapor results was submitted to the ACEH on August 30, 2010 and Closure Solutions is awaiting response from the ACEH.

In accordance with directive received by the ACEH Closure Solutions will continue the Site groundwater monitoring and sampling on a semi-annual basis during the second and fourth quarters.

ullan Walds

We appreciate the opportunity to present this document and trust that it meets with your approval. If you have any questions or concerns, please contact Kathleen Waldo at (916) 760-7025 or at kwaldo@closuresolutions.com.

Sincerely,

Closure Solutions, Inc.

Kathleen Waldo Project Engineer

Matthew Farris, P.G. Project Geologist

ATTACHMENTS:

Figure 1 Site Location Map

Figure 2 Groundwater Monitoring & Sampling Results – Groundwater

Contour Map – November 8, 2010

Table 1 Groundwater Elevation and Analytical Data

Attachment A Field Procedures and Field Data Sheets

Attachment B Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody

Records

cc: Mr. Jeff Kerry, Kerry & Associates

REFERENCE: USGS 7.5 MIN QUAD MAP TITLED:SAN LEANDRO, CALIFORNIA DATED: 1959 REV: 1980

FIGURE 1 SITE LOCATION MAP

PALACE GARAGE 14336 WASHINGTON AVENUE SAN LEANDRO, CALIFORNIA

4600 Northgate Boulevard •Suite 230 Sacramento • California • 95834 Phone: (800) 988-7880

- **(** GROUNDWATER MONITORING WELL LOCATION
- SOIL VAPOR PROBE \blacksquare
- (1) SOIL BORING LOCATION LOCATION

PROPERTY LINE

101201.09430248 D:\Client Drawings\Closure\palace

WELL DESIGNATION

GROUNDWATER ELEVATION (FT ABOVE MSL)

TPHg and BENZENE CONCENTRATIONS (µg/L)

GROUNDWATER ELEVATION CONTOURS (FEET ABOVE MEAN SEA LEVEL- NAVD 88)

GROUNDWATER FLOW DIRECTION AND GRADIENT (FT/FT)

NOTES:

1. BASEMAP SOURCE: MORROW SURVEYING, 2/05/03

FOURTH QUARTER 2010 GROUNDWATER MONITORING & SAMPLING RESULTS

GROUNDWATER CONTOUR MAP NOVEMBER 8, 2010

PALACE GARAGE 14336 WASHINGTON AVENUE SAN LEANDRO, CALIFORNIA

CLOSURE SOLUTIONS, INC.

4600 Northgate Boulevard • Suite 230 Sacramento • California • 95834 Phone: (800) 988-7880

Table 1
Groundwater Elevation and Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	LAB
MW-1	12/31/2002	37.59	13.62	23.97	48,000	1,030	2,380	1,690	9,220	
	9/22/2006		13.33	24.26	44,000	870	2,200	720	9,700	
	12/21/2006		13.94	23.65	17,000	240	980	180	5,000	
	3/29/2007		13.71	23.88	2,000	30	85	23	550	
	9/27/2007		15.53	22.06	540	14	3.9	44	87	KIFF
	12/20/2007		15.69	21.90	280	4.3	1.3	15	37	KIFF
	2/21/2008		13.72	23.87	19,000	300	150	1,100	4,900	KIFF
	5/15/2008		14.60	22.99	7,200	140	50	370	2,040	KIFF
	8/7/2008		15.62	21.97	820	13	3.1	44	100	KIFF
	11/13/2008		16.14	21.45	670	10	2.1	31	110	KIFF
	6/19/2009		15.15	22.44	1,490	85.8	13.4	164	310	Accutes
	11/3/2009		15.98	21.61	75	6.0	0.70	12	40.5	SunStar
	5/4/2010		13.40	24.19	18,000	300	61	880	4,070	SunStar
	11/8/2010		15.83	21.76	170	4.9	ND<0.50	7.7	24	SunSta
MW-2	12/31/2002	37.12	13.38	23.74	1,670	1,030	11.00	23	16.4	
	9/22/2006		13.25	23.87	1,800	53	1.40	14	7.5	
	12/21/2006		13.89	23.23						
	3/29/2007		13.57	23.55	2,100	51	1.30		4.5	
	9/27/2007		15-37	21.75	1,600	58	0.99	12	3.7	KIFF
	12/20/2007		15.40	21.72	1,500	63	1.1	16	4.9	KIFF
	2/21/2008		13.60	23.52	710	23	ND<0.50	6.2	1.1	KIFF
	5/15/2008		14.47	22.65	1,600	84	1.4	28	9.8	KIFF
	8/7/2008		15.48	21.64	2,100	86	1.6	22	9.0	KIFF
	11/13/2008		15.99	21.13	2,300	46	1.1	15	4.5	KIFF
	6/19/2009		15.03	22.09	931	60.1	ND<2.0	30	3.1	Accutes
	11/3/2009		15.87	21.25	220	22	0.55	9.4	5.05	SunSta
	5/4/2010		12.92	24.20	950	14	0.57	9.1	13.2	SunStar
	11/8/2010		15.71	21.41	1,900	45	1.6	44	9.28	SunSta

Table 1
Groundwater Elevation and Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	LAB
MW-3	12/31/2002	37.01	13.29	23.72	< 50	< 0.5	< 0.5	< 0.5	<1.0	
	9/22/2006		13.14	23.87	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	12/21/2006									
	3/29/2007		13.47	23.54	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	9/27/2007		15.29	21.72	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	12/20/2007		15.30	21.71	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	2/21/2008									
	5/15/2008		14.35	22.66	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	KIFF
	8/7/2008		15.39	21.62	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	11/13/2008		15.90	21.11	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	6/19/2009		14.94	22.07	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0	Accutest
	11/3/2009		15.76	21.25	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	SunStar
	5/4/2010		13.20	23.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	SunStar
	11/8/2010		15.62	21.39	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	SunStar
MW-4	12/31/2002	37.09	13.45	23.64	<50	<0.5	<0.5	<0.5	<1.0	
	9/22/2006		13.40	23.69	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	12/21/2006		13.86	23.23	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	3/29/2007		13.69	23.40	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	9/27/2007		15.48	21.61	ND<50	1.5	ND<0.50	0.71	0.74	KIFF
	12/20/2007		15.28	21.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	2/21/2008		13.56	23.53	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	KIFF
	5/15/2008		14.58	22.51	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	KIFF
	8/7/2008		15.57	21.52	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	11/13/2008		16.09	21.00	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	6/19/2009		15.15	21.94	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0	Accutest
	11/3/2009		16.03	21.06	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	SunStar
	5/4/2010		13.11	23.98	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	SunStar
	11/8/2010		15.89	21.20	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	SunStar

Table 1 Groundwater Elevation and Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	LAB	
------------	-----------------	-----------------------------------	-----------------------------	------------------------------------	----------------	-------------	-------------	-------------	-------------	-----	--

ABBREVIATIONS:

TPHg	Total Petroleum Hydrocarbons as Gasoline
В	Benzene
T	Toluene
E	Ethylbenzene
X	Total xylenes
μg/L	Micrograms per liter (parts per billion [ppb])
	Not analyzed/measured/applicable
ND<	Not detected at or above specified laboratory reporting limit
MSL	Mean Sea Level
Accutest	Accutest Laboratories, Santa Clara, Ca
KIFF	Kiff Analytical LLC, Davis, Ca

SunStar Laboratoies, Inc., Lake Forest, Ca

LIMITATIONS:

SunStar

Background information, including but not limited to previous field measurements, analytical results, Site plans, and other data have been obtained from previous consultants, and/or third parties, in the preparation of this report. Closure Solutions has relied on this information as furnished. Closure Solutions is not responsible for, nor has it confirmed the accuracy of data collected or generated by others.

Attachment A

Field Procedures and Field Data Sheets

Standard Operating Procedures: Basic Gauge, Purge, and Sample.

Routine Water Level Measurements

- 1. Confirm that water or debris will not enter the well box upon removal of the well box lid.
- **2.** Remove the cover using the appropriate tools.
- **3.** Inspect the wellhead for deficiencies and document accordingly.
- **4.** Confirm that water or debris will not enter the well upon removal of the well cap.
- **5.** Unlock and remove the well cap lock (if applicable). If lock is not functional cut it off.
- **6.** Loosen and remove the well cap. CAUTION: DO NOT PLACE YOUR FACE OR HEAD DIRECTLY OVER WELLHEAD WHEN REMOVING THE WELL CAP. WELL CAP MAY BE UNDER PRESSURE AND/OR MAY RELEASE ACCUMULATED AND POTENTIALLY HARMFULL VAPORS.
- 7. Verify and identify survey point as written on S.O.W.
- TOC: If survey point is listed as Top of Casing (TOC), look for the exact survey point in the form of a notch or mark on the top of the casing. If no mark is present, use the north side of the casing as the measuring point.
- TOB: If survey point is listed as Top of Box (TOB), the measuring point will be established manually. Place the inverted well box lid halfway across the well box opening and directly over the casing. The lower edge of the inverted cover directly over the casing will be the measuring point.
- **8.** Put new Nitrile gloves on your hands.
- **9.** Slowly lower the decontaminated water level meter probe into the well until it signals contact with water with a tone and/or flashing a light.
- 10. Gently raise the probe tip slightly above the water and hold it there. Wait momentarily to see if the meter emits a tone, signaling rising water in the casing. Gently lower the probe tip slightly below the water. Wait momentarily to see if the meter stops emitting a tone, signaling dropping water in the casing. Continue process until water level stabilizes indicating that the well has equilibrated.
- 11. While holding the probe at first contact with water and the tape against the measuring point, note depth. Repeat twice to verify accuracy. Write down measurement on well gauging sheet under depth to water column.
- **12.** Recover probe, replace and tighten well cap, replace lock (if applicable), replace well box cover and tighten hardware (if applicable).

Purging With a Bailer (Teflon or Disposable)

- 1. Attach bailer cord or string to bailer. Leave other end attached to spool.
- **2.** Gently lower empty bailer into well until well bottom is reached.
- **3.** Cut cord from spool. Tie a loop at end cord.
- **4.** Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground.
- **5.** Pour contents into graduated 5-gallon bucket or other graduated receptacle.
- **6.** Repeat purging process.
- 7. Upon removal of first casing volume, fill clean parameter cup with purge water, empty the remainder of the purge water into the bucket, lower the bailer back into the well and secure the cord on the Sampling Vehicle.
- **8.** Use the water in the cup to collect and record parameter measurements.
- **9.** Continue purging until second casing volume is removed.

- **10.** Collect parameter measurements.
- 11. Continue purging until third casing volume is removed.

Purging With a Fixed Speed Electric Submersible Pump

- **1.** Position thoroughly decontaminated pump over the top of the well.
- **2.** Gently unreel and lower the pump to the well bottom.
- **3.** Raise the pump to client specified location within screened interval. If no direction is given the pump inlet will be placed 5 feet above the bottom of the well.
- **4.** Secure the hose reel.
- 5. Begin purging.
- **6.** Verify pump rate with flow meter or graduated 5-gallon bucket.
- 7. Upon removal of first casing volume, fill clean parameter cup with water.
- **8.** Use the water in the cup to collect and record parameter measurements.
- **9.** Continue purging until second casing volume is removed.
- 10. Collect parameter measurements.
- 11. Continue purging until third casing volume is removed.
- 12. Upon completion of purging, gently recover the pump and secure the reel.

Sampling with a Bailer (Teflon or Disposable)

- **1.** Put new Latex or Nitrile gloves on your hands.
- 2. Determine required bottle set.
- **3.** Fill out sample labels completely and attach to bottles.
- **4.** Arrange bottles in filling order and loosen caps (see Determine Collection Order below).
- **5.** Attach bailer cord or string to bailer. Leave other end attached to spool.
- **6.** Gently lower empty bailer into well until water is reached.
- **7.** As bailer fills, cut cord from spool and tie end of cord to hand.
- **8.** Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground. If a set of parameter measurements is required, go to step 9. If no additional measurements are required, go to step 11.
- **9.** Fill a clean parameter cup, empty the remainder contained in the bailer into the sink, lower the bailer back into the well and secure the cord on the sampling vehicle. Use the water in the cup to collect and record parameter measurements.
- **10.** Fill bailer again and carefully remove it from the well.
- **11.** Slowly fill and cap sample bottles. Fill and cap volatile compounds first, then semivolatile, then inorganic (see following steps). Return to the well as needed for additional sample material.
- **12.** Fill 40-milliliter vials for volatile compounds as follows: Slowly pour water down the inside on the vial. Carefully pour the last drops creating a convex or positive meniscus on the surface. Gently screw the cap on eliminating any air space in the vial. Turn the vial over, tap several times and check for trapped bubbles. If bubbles are present, repeat the process.
- **13.** Fill 1 liter amber bottles for semi-volatile compounds as follows: Slowly pour water into the bottle. Leave approximately 1 inch of headspace in the bottle. Cap bottle.
- **14.** Field filtering of inorganic samples using a disposable bailer is performed as follows: Attach 0.45 micron filter to connector plug. Attach connector plug to bottom of full disposable bailer. Gravity feed water through the filter and into the sample bottle. If high turbidity level of water clogs filter, repeat process with new filter until bottle is filled. Leave headspace in the bottle. Cap bottle.
- 15. Bag samples and place in ice chest.
- 16. Note sample collection details on well data sheet and Chain of Custody.

FIELD DATA SHEET-DEPTH TO WATER DATA

			SITE INFORM	ATION		
Palace Garage Project Name 14336 Washington Address	n Ave.	11/8/10 Date San Leandro City	Project Number CA State			
Water Level Equipme x Electronic Indicato Oil Water Interface Other (specify)	r		Kevin Dolan Event:	- 4Q 2010 QM	S	
		DE	PTH TO WAT	ER DATA		
			DTW	Total Depth	Depth to SPH /	
DTW Order	Well ID	Time (24:00)	(toc)	(toc)	Thickness	Notes:
4	MW-1	12:44	15.83	23,40		
3	MW-2	12:47	15,71	23,64		
2	MW-3	12:42	15.62	73,09		
	MW-4	12:36	15,89	21.95		3/4" well
						4 1 1/3 Full drum on stext
						back parking Ang w/ Labe?

Project Na	me:	Palace	Garage				Date:	Nov. 8, 2010	_
Sample No	.:	MW	-						
Samplers I		Kevin Dolan							
Purge Equ	Bailer: Disp 12 v. Pump Bladder Pu SS Monsoo	mp on #					X	Quipment: Disposable Bailer Whaler # Bladder Pump Submersible Pump	
Analyses F		circle all that a	oply):		3	VOACS		umber and Types of B	ottle Used:
Trii-G/ E	TLX					40.1-2	W(10		
Well Numb Depth to W Well Depth Height W-O Volume in Gallons to Lab:	/ater: : Column: Well:	MW-1 15.83 23,40 7,57 1,21 3.63	TOC BGS or TOC feet (well dep gallons (casir gallons (volur	ng volume		Transpo		4" = (0.65 0 5" = (1.02 0 6" = (1.47 0	Volume of: Gallon/Feet) Gallon/Feet) Gallon/Feet) Gallon/Feet)
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/em)	D.O. (ppm)	рН	TDS (ppm)	Turk	oidity: Color - Fines	Micropurge Paramaters Stabilized
1426	Stota	7 —	4/5						
1428	1.25	21.7	793	2.12	7.40	563	1000	vi cleer, min	
1430	2.50	21,1	790	2,06	7,38	560	1	1)
1432	3,75	19.6	786	1,93	7,34	552			
Stol!	PWGE	Complete	100				1	V	
08,	11130	Op., p							
	6								
			ait for 80% we depth to water		The state of the s			erv:	
					f orginal well vo				
	Origin	al Height of Water Co	olumn = 7.5	7 x 0.8 :	= 6.06	- (Well Dept	th) 23,40	= Depth to water 17.	34
Time:	1st measured	depth to water, depth to water, depth to water,	feet bel	ow TOC. ow TOC. ow TOC. San	nple Well	Is well wit	hin 80% of ori	iginal well casing volume: Yes iginal well casing volume: Yes ginal well casing volume: Yes	sNo
Time:	1457		Sample ID:		MW-1		_ De	epth: 15,89	
Comments:		slight	He od	82-	No She	ren			
Well Condit	ion:		godi -						
			-				Closuro	Solutions INC OMS	EDS

Project N	ame:	Palace	Garage				Date:	Nov. 8, 2010	
Sample N	lo.:	MW-2							7
Samplers	Name:	Kevin Dolan							
Purge Eq	uipment: Bailer: Dis 12 v. Pump Bladder Pu SS Monsoo	ımp	ic				Sample Equi	pment: _Disposable Bailer _Whaler # Bladder Pump Submersible Pump	
Analyses		(circle all that a	pply):				Numb	er and Types of B	
TPH-G/					2	5 VOA		- 7	
							1		
Well Num Depth to Well Dept	Water:	15,71 23,64	TOC BGS or TOC		V =	V	Vell Diameter:	2" = (0.16 G	Sallon/Feet)
	-Column:	7.93	feet (well dep		to water)			4" = (0.65 G	
Volume in		1,27	gallons (casir					5" = (1.02 G 6" = (1.47 G	
Gallons to		3,81	gallons (volu		A fleight)			8" = (2.61 G	
Lab:	SunStar	-101	ganono (voidi	110 / (0)		Transpo	rtation:	0 - (2.01 C	diloni/i eet)
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)		: Color - Fines	Micropurge Paramaters Stabilized
1410		7	US						
1412	1,30	20.9	868	2,03	7,60	603	Low'	clear, min	
1414	2.60	20,3	861	1,96	7,53	593	1	1	
1416	3,90	19.6	863	2.07	7.50	586	1	V	
Stay		Complete	000	2107	1,00	000	V		
	7	an par				17.3			
						1			
		10							
			it for 80% we						
		Calculate					ume recovery:		
					orginal well vo				
	Origina	al Height of Water Co	plumn = 7193	3 x 0.8 =	6.34	- (Well Depth	n) 23,64 = D	epth to water 17,	30
Time:	1st measured	depth to water,	feet belo	ow TOC. ow TOC.	ole Well	Is well with	nin 80% of original	well casing volume: Yes well casing volume: Yes well casing volume: Yes	No
Time	: 1449		Sample ID:	M	N-2		Depth:	15,96	
Comments	3:	Moderale	HZ O	dar-	NO S	heen			
						- 1			
						,			
Well Cond		200 d.							

Project Na	me:	Palace	Garage				Date:	Nov. 8, 2010	
Sample No).:	M	W-3						
Samplers	Name:	Kevin Dolan							
Purge Equ	Bailer: Disp 12 v. Pump		С				Sample Equ	ipment: _ Disposable Bailer _ Whaler #	
	Bladder Pu							Bladder Pump	
Analyses F	SS Monsoo	on # circle all that a	nnly):				Num	Submersible Pump ber and Types of Bo	
TPH-G / E	THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAME	on oro un triat a	pp.y/.		3	VOAIS		ber and Types of Do	ttie Oseu.
							10/ 1100		
Well Numb		MW-3 15.62	TOC			W	/ell Diameter:	2" = (0.16 G	
Well Depth		23,09	BGS or TOC					4" = (0.65 G	
Height W-0		7.47	feet (well dep	th - depth	to water)			5" = (1.02 G	
Volume in		1.20	gallons (casir					6" = (1.47 G	
Gallons to	purge:	3,60	gallons (volur		3,			8" = (2.61 G	
Lab:	SunStar		, 5			Transpo	rtation:	(2.01.0	anomi cot)
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)	3-15%	y: Color - Fines	Micropurge Paramaters Stabilized
1327	Sha	NT -	4/5						
1329	1,20	23.7	549	4,12	7.26	373	Moderale	· thry med	
1331	2,40	22	540	3,63	7,20	350		1	-
1333	3.75	20.9	536	3,70	7.16	343			
Stop!	Pureye	Complete	7	5/10	TITO	015	V		
V	0								
1				4					
/	140						in		
-	-14								11-11
		Wa Calculate	it for 80% we depth to wate	ell volume er (from To	recovery p OC), for 80%	% well vol	ampling. ume recovery:		
			Calcu	ulate 80% of	orginal well vo	lume:			
	Origina	al Height of Water Co	Jumn = 7,47	x 0.8 =	5198.	(Well Depth	1) 23,09=1	Depth to water (7.))	
Time:	1st measured of	depth to water,	feet belo	ow TOC.		Is well with	nin 80% of original	well casing volume: Yes well casing volume: Yes	X No
Time:	1st measured of	depth to water,	feet belo	ow TOC.		Is well with	nin 80% of original	well casing volume: Yes	No
				Sam	ole Well				
Time:	1346		Sample ID:	n	IW-3		Depth	15.78	
Comments:	*	o oder-	No s	sheen					
Well Conditi	ion:	goodi-							
		0					Closure So	lutions INC - OMS	EDS

Project Na	me:	Palace	Garage				Date:	Nov. 8, 2010	
Sample No	o.:	Mn	1-4				773		
Samplers	Name:	Kevin Dolan							
Purge Equ		mp () FOOT	ic Valve, —				Sample Equip	Disposable Bailer Whaler # Bladder Pump Submersible Pump	
		circle all that a	pply):					er and Types of Bo	
TPH-G / E	BTEX					3 10	Als w/ Ha		
Well Numb Depth to W Well Depth Height W-0	Vater: n: Column:	MW-4 15.89 21.95 6.06 0.25	TOC BGS or TOC feet (well dep				/ell Diameter: _ 3/4" well (0.041)	2" = (0.16 G 4" = (0.65 G 5" = (1.02 G	Gallon/Feet) Gallon/Feet) Gallon/Feet)
Gallons to		0,75	gallons (volur		A fleight)			,	
Lab:	SunStar	0,73	galloris (volui	ile X 3)		Transpo	rtation:	8" = (2.61 G	allon/Feet)
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)		Color - Fines	Micropurge Paramaters Stabilized
1251	STAN	25 —	4/15						
1253	0.25	24,2	763	4,18	7.71	514	Highi Br	own, many	
1255	0.50	23.6	712	3.96	7,68	493	0	, 1	
1258	0.75	23.1	646	3,58	7.62	45%	\	1	
Stop!	Purge	complete					· ·		
/									
	- 10								
		Wa Calculate	it for 80% we depth to water	Il volume r (from To	recovery p OC), for 80°	prior to sa % well volu	ampling. ume recovery:		
	Origina	al Height of Water Co			orginal well vo		21.95 De	enth to water	17.10
	1st measured	depth to water,/(depth to water, depth to water,	feet belo	ow TOC. ow TOC. ow TOC.	ple Well	Is well with	in 80% of original win 80% of original w	vell casing volume: Yes vell casing volume: Yes vell casing volume: Yes	X No
Time:	1315		Sample ID:)	NW-4		Depth:	16,43	
Comments:	cy well	NO odo	ed to bing	shoer + VV	1 6/1/2 -				
Well Condit	ion:	god							
							Closure Solu	tions INC - OMS	EDS

Attachment B

Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody Records

17 November 2010

Kate Waldo Closure Solutions 2151 Salvio Street, Suite 301 Concord, CA 94520

Saniel & Chivy

RE: Palace Garage

Enclosed are the results of analyses for samples received by the laboratory on 11/12/10 10:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Daniel Chavez

Project Manager

Concord CA, 94520

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Reported:

Closure Solutions Project: Palace Garage
2151 Salvio Street, Suite 301 Project Number: 1601.07.01

Project Manager: Kate Waldo 11/17/10 18:27

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	T001301-01	Water	11/08/10 00:00	11/12/10 10:00
MW-2	T001301-02	Water	11/08/10 00:00	11/12/10 10:00
MW-3	T001301-03	Water	11/08/10 00:00	11/12/10 10:00
MW-4	T001301-04	Water	11/08/10 00:00	11/12/10 10:00

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Closure SolutionsProject:Palace Garage2151 Salvio Street, Suite 301Project Number:1601.07.01Reported:Concord CA, 94520Project Manager:Kate Waldo11/17/10 18:27

MW-1 T001301-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	1	SunStar La	aborato	ries, Inc.					
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	4.9	0.50	ug/l	1	0111216	11/12/10	11/14/10	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	7.7	0.50	"	"	"	"	"	"	
m,p-Xylene	20	1.0	"	"	"	"	"	"	
o-Xylene	3.9	0.50	"	"	"	"	"	"	
C6-C12 (GRO)	170	50	"	"	"	"	"	"	
Surrogate: Toluene-d8		105 %	84.7	7-109	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		130 %	81.1	-136	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel of Chivy

Closure Solutions Project: Palace Garage

2151 Salvio Street, Suite 301 Project Number: 1601.07.01 Reported:
Concord CA, 94520 Project Manager: Kate Waldo 11/17/10 18:27

MW-2 T001301-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sunstar La	iboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260	В							
Benzene	45	0.50	ug/l	1	0111216	11/12/10	11/14/10	EPA 8260B	
Toluene	1.6	0.50	"	"	"	"	"	"	
Ethylbenzene	44	0.50	"	"	"	"	"	"	
m,p-Xylene	8.6	1.0	"	"	"	"	"	"	
o-Xylene	0.68	0.50	"	"	"	"	"	"	
C6-C12 (GRO)	1900	50	"	"	"	"	"	"	
Surrogate: Toluene-d8		105 %	84.7-	109	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.2 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		121 %	81.1-	136	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Closure Solutions Project: Palace Garage

2151 Salvio Street, Suite 301 Project Number: 1601.07.01 **Reported:**Concord CA, 94520 Project Manager: Kate Waldo 11/17/10 18:27

MW-3 T001301-03 (Water)

		D 4							
Analosta	D14	Reporting	T I:4	D:1	D-4-1	D 1	A 1	M-41 1	NI-4
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	SunStar La	aborator	ries, Inc.											
Volatile Organic Compounds by EPA Method 8260B														
Benzene ND	0.50	ug/l	1	0111216	11/12/10	11/14/10	EPA 8260B							
Toluene ND	0.50	"	"	"	"	"	"							
Ethylbenzene ND	0.50	"	"	"	"	"	"							
m,p-Xylene ND	1.0	"	"	"	"	"	"							
o-Xylene ND	0.50	"	"	"	"	"	"							
C6-C12 (GRO) ND	50	"	"	"	"	"	"							
Surrogate: Toluene-d8	100 %	84.7	-109	"	"	"	"							
Surrogate: 4-Bromofluorobenzene	101 %	83.5	-119	"	"	"	"							
Surrogate: Dibromofluoromethane	153 %	81.1	-136	"	"	"	"	S-GC						

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saniel of Chivy

Closure Solutions Project: Palace Garage

2151 Salvio Street, Suite 301 Project Number: 1601.07.01 **Reported:**Concord CA, 94520 Project Manager: Kate Waldo 11/17/10 18:27

MW-4 T001301-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	31	unstai La	1001 atol 1	es, me.										
Volatile Organic Compounds by EPA Method 8260B														
Benzene	ND	0.50	ug/l	1	0111216	11/12/10	11/14/10	EPA 8260B						
Toluene	ND	0.50	"	"	"	"	"	"						
Ethylbenzene	ND	0.50	"	"	"	"	"	"						
m,p-Xylene	ND	1.0	"	"	"	"	"	"						
o-Xylene	ND	0.50	"	"	"	"	"	"						
C6-C12 (GRO)	ND	50	"	"	"	"	"	"						
Surrogate: Toluene-d8		103 %	84.7-	109	"	"	"	"						
Surrogate: 4-Bromofluorobenzene		98.6 %	83.5-	119	"	"	"	"						
Surrogate: Dibromofluoromethane		120 %	81.1-	136	"	"	"	"						

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel of Chivy

RPD

Closure Solutions Project: Palace Garage

2151 Salvio Street, Suite 301 Project Number: 1601.07.01 **Reported:**Concord CA, 94520 Project Manager: Kate Waldo 11/17/10 18:27

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

%REC

Analyte	Result	Limit	Linite	Lovel	Dogult	%REC	70 KEC	RPD	Limit	Notes
Anialyte	Kesuit	Limit	Units	Level	Result	%KEC	Limits	KYD	Limit	Notes
Batch 0111216 - EPA 5030 GCMS										
Blank (0111216-BLK1)				Prepared:	11/12/10	Analyze	d: 11/14/10			
Benzene	ND	0.50	ug/l							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
C6-C12 (GRO)	ND	50	"							
Surrogate: Toluene-d8	8.17		"	8.00		102	84.7-109			
Surrogate: 4-Bromofluorobenzene	7.77		"	8.00		97.1	83.5-119			
Surrogate: Dibromofluoromethane	9.43		"	8.00		118	81.1-136			
LCS (0111216-BS1)				Prepared:	11/12/10	Analyze	d: 11/14/10			
Chlorobenzene	20.0	1.0	ug/l	20.0		100	75-125			
1,1-Dichloroethene	21.6	1.0	"	20.0		108	75-125			
Trichloroethene	22.0	1.0	"	20.0		110	75-125			
Benzene	19.8	0.50	"	20.0		98.8	75-125			
Toluene	19.4	0.50	"	20.0		97.2	75-125			
Surrogate: Toluene-d8	7.81		"	8.00		97.6	84.7-109			
Surrogate: 4-Bromofluorobenzene	8.54		"	8.00		107	83.5-119			
Surrogate: Dibromofluoromethane	11.1		"	8.00		139	81.1-136			S-G0
LCS Dup (0111216-BSD1)				Prepared:	11/12/10	Analyze	d: 11/14/10			
Chlorobenzene	20.3	1.0	ug/l	20.0		101	75-125	1.49	20	
1,1-Dichloroethene	24.8	1.0	"	20.0		124	75-125	13.8	20	
Trichloroethene	23.3	1.0	"	20.0		116	75-125	5.47	20	
Benzene	21.2	0.50	"	20.0		106	75-125	7.17	20	
Toluene	19.9	0.50	"	20.0		99.6	75-125	2.44	20	
Surrogate: Toluene-d8	7.77		"	8.00		97.1	84.7-109			
Surrogate: 4-Bromofluorobenzene	7.90		"	8.00		98.8	83.5-119			
Surrogate: Dibromofluoromethane	12.0		"	8.00		151	81.1-136			S-G0

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Closure Solutions Project: Palace Garage

2151 Salvio Street, Suite 301 Project Number: 1601.07.01 **Reported:**Concord CA, 94520 Project Manager: Kate Waldo 11/17/10 18:27

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saniel & Chivy

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Chain of Custody Record

T001301

Client CI Address 2151 SAL Phone: Project Manager: VACE	osure Solutions VIO ST, Sa WACNO	s INC. 2. 1630 Fax: Kw4 12	conco	nexo, CA swesdutu	ons :	,Con	4	Date: Project Collecto Batch #	Name		10/1 PA Polan 20/	LA	CE (Page Client EDF	:Of ACE Project#:1601,07,01 #:T0600101043	- - -
Sample ID	Date Sampled	Time	Sample Type GW	Container Type 3 von's	8260	8260 + OXY	8260 BTEX, OXY only	TPHg, BTEX (8260b)						01	Comments/Preservative	Total # of containers
MW-2 MW-3 NW-4	1		grab	WI NOC				Ŷ						03		
Relinquished by: (signatura)		ne izeo		y: (signature)	4	± èd	ł	e / Time		Cha	ain of C	Tota	I # of co	ontainers	Notes Co results to; Koolun & cursue san to	الله الله
Relinquished by: (signature) Relinquished by: (signature) FED EX 11-	Date / Tir		<u> </u>	y: (signature) y: (signature)		11	Date	e / Time e / Time	(D; DÜ	,	eceive	d goo	s intact d condi me:	tion/cold	3.6	

SAMPLE RECEIVING REVIEW SHEET

BATCH # <u> </u>			
Client Name: CLOSURE SOCUTIONS Project: PAL	ACE GAY	LAGE	
Received by: Branch Date/Time Re	eceived: 11/	(2/10	(0;00
Delivered by: ☐ Client ☐ SunStar Courier ☐ GSO ☒ FedEx	Other		
Total number of coolers received / Temp criteria = 6°C	> 0°C (no	frozen con	ıtainers)
Temperature: cooler #1 3.8 °C +/- the CF (-0.2°C) = 3.6 °C corre	cted temperati	ıre	
cooler #2°C +/- the CF (- 0.2°C) =°C corre	cted temperati	ure	
cooler #3°C +/- the CF (- 0.2°C) =°C corre	cted temperati	ure	
Samples outside temp. but received on ice, w/in 6 hours of final sampling.	⊠Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample	∐Yes	□No*	⊠N/A
Sample Containers Intact	⊠Yes	□No*	
Sample labels match COC ID's	⊠Yes	□No*	
Total number of containers received match COC	⊠Yes	□No*	
Proper containers received for analyses requested on COC	⋉Yes	□No*	
Proper preservative indicated on COC/containers for analyses requested	⊠Yes	□No*	□N/A
Complete shipment received in good condition with correct temperatures, or preservatives and within method specified holding times. Yes No		abels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample R	Review - Initi	als and date	BC 11/12/10
Comments:			