kerry & associates

SUITE 300 • 151 CALLAN AVE. • SAN LEANDRO, CA 94577 • (510) 483-4211 FAX 483-4200

September 24, 2010

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Re: Kerry & Associates – Palace Garage

14336 Washington Avenue San Leandro, California ACEH Case No. RO0000208

Dear Mr. Detterman,

Sincefely.

I declare, under penalty of perjury, that the information and/or recommendations contained in the Soil Vapor Testing and Additional Assessment Report and the Second Quarter 2010 Groundwater Monitoring Report is true and correct to the best of my knowledge.

RECEIVED

4:17 pm, Sep 29, 2010

Alameda County
Environmental Health

June 2, 2010

Mr. Mark Detterman Alameda County Environmental Health 1000 San Leandro Blvd., Suite 300 San Leandro, CA 94577

Subject: Second Quarter 2010 Groundwater Monitoring Report

Palace Garage

14336 Washington Avenue San Leandro, California ACEH Case No. RO0000208

SFRWQCB LUFT Case No. 01-1133

Dear Mr. Detterman:

On behalf of Kerry & Associates, Closure Solutions, Incorporated (Closure Solutions) has prepared this *Second Quarter 2010 Groundwater Monitoring Report* (Report) for the Palace Garage facility (the Site), located at 14336 Washington Avenue, in San Leandro, California (Figure 1).

1.0 SITE BACKGROUND SUMMARY

A 550-gallon gasoline underground storage tank (UST) was removed from the site in 1991. Subsequent investigations included the installation of 3 monitoring wells and the drilling of 15 borings. Based on data obtained from the wells and borings, impacted unsaturated-zone soil is confined to the area of the former dispenser pad and UST. The primary groundwater flow direction is toward the southwest.

In December 2002, Professional Service Industries, Inc. (PSI) conducted a soil and groundwater investigation to evaluate the lateral extent of petroleum hydrocarbons in the soil and groundwater at the site. Borings B-16 and B-17 were advanced to between 20 and 24 feet below ground surface (bgs). Boring B-16 was converted into monitoring well MW-4. Concentrations of total petroleum hydrocarbons as gasoline (TPHg) and gasoline related contaminants were detected only in soil from boring B-17 and groundwater from wells MW-1 and MW-2. The locations of the monitoring wells and soil borings are presented in Figure 2.

Closure Solutions conducted a Sensitive Receptor Survey to identify all water supply wells and sensitive receptors within a 2,000-foot radius of the Site. The closest water supply wells are two industrial wells approximately 450 feet northwest (cross-gradient) of the Site. The closest domestic well is approximately 1,500 feet southeast (cross-gradient) of the Site. The closest

down-gradient well is an irrigation well approximately 1,400 feet southwest of the Site. No surface water bodies were identified within a 2,000 foot radius of the Site. Results of the Sensitive Receptor Survey are presented in the *Sensitive Receptor Survey* report dated August 27, 2008.

Closure Solutions prepared and submitted a *Site Conceptual Model* (SCM) dated September 30, 2008 for the Site. The preparation of the SCM was requested by Alameda County Environmental Health (ACEH) in their letter dated September 2, 2008.

In an email dated June 12, 2009 Mr. Steve Plunkett with the ACEH approved the reduction of groundwater monitoring to a Semi-annual basis conducted in second and fourth quarters. Mr. Plunkett also approved the recommendation to eliminate the fuel oxygenates from the suite of laboratory analytes.

On October 15, 2009 Closure Solutions discussed the Site status with ACEH. Data gaps presented in the SCM and other information that ACEH would require for site closure was identified. Closure Solutions submitted the *Soil Vapor Probe and Additional Assessment Work Plan* on November 13, 2009 to address the work necessary to move the site toward closure.

On May 14, 2010 Closure Solutions submitted a letter to the ACEH stating that Closure Solutions intends to proceed with the proposed scope of work pursuant to CCR Title 23, Division 3, Chapter 16, Section 2722 (e) which states "Implementation of the proposed workplan may begin sixty (60) calendar days after submittal, unless the responsible party is otherwise directed in writing by the regulatory agency". On May 21, 2010 the ACEH responded to Closure Solutions' letter of intent via email explaining that the ACEH has been largely precluded from generating letters on cases due to the work load imposed by SWRCB Resolution 2009-0042 and they will attempt to raise the review interval for the Site.

2.0 WORK PERFORMED AND WORK PROPOSED

Following is a summary of work performed this quarter and work proposed for next quarter:

WORK PERFORMED THIS QUARTER:

- 1. Performed quarterly groundwater monitoring event on May 4, 2010.
- 2. Submitted an *Intent to Initiate Work Plan* letter on May 14, 2010.
- 3. Prepared and submitted Second Quarter 2010 Groundwater Monitoring Report.

WORK PROPOSED FOR NEXT QUARTER:

- 1. The next groundwater monitoring event will be performed in fourth quarter 2010.
- 2. Proceed with implementation of the Soil Vapor Probe and Additional Assessment Work

Plan date November 13, 2009.

3.0 DISCUSSION OF RECENT ACTIVITIES

Closure Solutions performed this quarter's groundwater monitoring and sampling event at the Site on May 4, 2010. Gauging, purging and sampling were conducted in accordance with Closure Solution's Standard Operating Procedures (included in Attachment A). The collected groundwater samples were submitted to SunStar Laboratories for laboratory analysis under Chain-of-Custody protocols. The samples were analyzed for TPHg and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method 8260B.

Following is a summary of the current status of the environmental program at the site:

Current Phase of Project:	Monitoring
Groundwater Monitoring & Sampling:	Semi-Annual: MW-1 through MW-4
Is Free Product (FP) Present On-Site:	No
Current Remediation Techniques:	Natural Attenuation

Following is a summary of this quarter's field and analytical data:

Average Depth to Groundwater (in feet bgs):	13.16				
Groundwater Elevation (in feet above mean sea level)	23.81 (MW-4) to 24.19 (MW-1)				
Groundwater Gradient (direction):	Southwest				
Groundwater Gradient (magnitude):	0.005 ft/ft				
TPHg detected concentrations:	950 μg/L (MW-2) to 18,000 μg/L (MW-1)				
Benzene detected concentrations:	14 μg/L (MW-2) to 300 μg/L (MW-1)				
Toluene detected concentrations:	$0.57 \mu g/L (MW-2)$ to $61 \mu g/L (MW-1)$				
Ethyl-benzene detected concentrations:	9.1 μg/L (MW-2) to 880 μg/L (MW-1)				
Xylenes detected concentrations:	13.2 μg/L (MW-2) to 4,070 μg/L (MW-1)				

Laboratory procedures, chain of custody records, and the certified analytical reports are included as Attachment B. Groundwater elevation and analytical data are summarized on Tables 1 and 2.

Purge water generated during the monitoring and sampling event was transported by Confluence Environmental, Inc. for disposal at the licensed Rio Vista, California hazardous waste treatment facility operated by Instrat, Inc.

FARRIS

No. 8316

4.0 CONCLUSIONS AND RECOMMENDATIONS

Closure Solutions intends to implement the *Soil Vapor Probe and Additional Assessment Work Plan* as stated in the May 14, 2010 letter to the ACEH. In accordance with directive received by the ACEH Closure Solutions will continue the Site groundwater monitoring and sampling on a semi-annual basis during the second and fourth quarters.

We appreciate the opportunity to present this document and trust that it meets with your approval. If you have any questions or concerns, please contact Kathleen Waldo at (916) 760-7025 or at kwaldo@closuresolutions.com.

Sincerely,

Closure Solutions, Inc.

Matthew Farris, P.G.

Project Geologist

Lasseen Walds

lathlus faun

Kathleen Waldo Project Engineer

ATTACHMENTS:

Figure 1 Site Location Map

Figure 2 Groundwater Monitoring & Sampling Results – Groundwater

Contour Map – May 4, 2010

Table 1 Groundwater Elevation and Analytical Data

Table 2 Fuel Oxygenate & Lead Scavenger Analytical Data

Attachment A Field Procedures and Field Data Sheets

Attachment B Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody

Records

cc: Mr. Jeff Kerry, Kerry & Associates

REFERENCE:
USGS 7.5 MIN QUAD MAP TITLED:SAN LEANDRO, CALIFORNIA DATED: 1959 REV: 1980

FIGURE 1 SITE LOCATION MAP

PALACE GARAGE 14336 WASHINGTON AVENUE SAN LEANDRO, CALIFORNIA

CLOSURE SOLUTIONS, INC.

2151 Salvio Street • Suite 301 Concord • California • 94520 Phone: (925) 429-5555 • Fax: (925) 459-5602

- **(** GROUNDWATER MONITORING WELL
- SOIL BORING LOCATION • LOCATION

PROPERTY LINE

24.0

00601.12560289 D:\Client Drawings\Closure\palace

WELL DESIGNATION

GROUNDWATER ELEVATION (FT ABOVE MSL)

TPHg, BENZENE, and MTBE CONCENTRATIONS (µg/L)

GROUNDWATER ELEVATION CONTOURS (FEET ABOVE MEAN SEA LEVEL- NAVD 88)

GROUNDWATER FLOW DIRECTION AND GRADIENT (FT/FT)

NOTES:

1. BASEMAP SOURCE: MORROW SURVEYING, 2/05/03

SECOND QUARTER 2010 GROUNDWATER MONITORING & SAMPLING RESULTS

GROUNDWATER CONTOUR MAP MAY 4, 2010

PALACE GARAGE 14336 WASHINGTON AVENUE SAN LEANDRO, CALIFORNIA

CLOSURE SOLUTIONS, INC.

2151 Salvio Street • Suite 301 Concord • California • 94520 Phone: (925) 429-5555 • Fax: (925) 459-5602

Table 1 Groundwater Elevation and Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	LAB
MW-1	12/31/2002	37.59	13.62	23.97	48,000	1,030	2,380	1,690	9,220	
	9/22/2006		13.33	24.26	44,000	870	2,200	720	9,700	
	12/21/2006		13.94	23.65	17,000	240	980	180	5,000	
	3/29/2007		13.71	23.88	2,000	30	85	23	550	
	9/27/2007		15.53	22.06	540	14	3.9	44	87	KIFF
	12/20/2007		15.69	21.90	280	4.3	1.3	15	37	KIFF
	2/21/2008		13.72	23.87	19,000	300	150	1,100	4,900	KIFF
	5/15/2008		14.60	22.99	7,200	140	50	370	2,040	KIFF
	8/7/2008		15.62	21.97	820	13	3.1	44	100	KIFF
	11/13/2008		16.14	21.45	670	10	2.1	31	110	KIFF
	6/19/2009		15.15	22.44	1,490	85.8	13.4	164	310	Accutes
	11/3/2009		15.98	21.61	75	6.0	0.70	12	40.5	SunSta
	5/4/2010		13.40	24.19	18,000	300	61	880	4,070	SunStar
MW-2	12/31/2002	37.12	13.38	23.74	1,670	1,030	11.00	23	16.4	
	9/22/2006		13.25	23.87	1,800	53	1.40	14	7.5	
	12/21/2006		13.89	23.23						
	3/29/2007		13.57	23.55	2,100	51	1.30		4.5	
	9/27/2007		15-37	21.75	1,600	58	0.99	12	3.7	KIFF
	12/20/2007		15.40	21.72	1,500	63	1.1	16	4.9	KIFF
	2/21/2008		13.60	23.52	710	23	ND<0.50	6.2	1.1	KIFF
	5/15/2008		14.47	22.65	1,600	84	1.4	28	9.8	KIFF
	8/7/2008		15.48	21.64	2,100	86	1.6	22	9.0	KIFF
	11/13/2008		15.99	21.13	2,300	46	1.1	15	4.5	KIFF
	6/19/2009		15.03	22.09	931	60.1	ND<2.0	30	3.1	Accutes
	11/3/2009		15.87	21.25	220	22	0.55	9.4	5.05	SunSta
	5/4/2010		12.92	24.20	950	14	0.57	9.1	13.2	SunSta

Table 1 Groundwater Elevation and Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	LAB
MW-3	12/31/2002	37.01	13.29	23.72	<50	<0.5	< 0.5	<0.5	<1.0	
	9/22/2006		13.14	23.87	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	12/21/2006									
	3/29/2007		13.47	23.54	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	9/27/2007		15.29	21.72	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	12/20/2007		15.30	21.71	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	2/21/2008									
	5/15/2008		14.35	22.66	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	KIFF
	8/7/2008		15.39	21.62	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	11/13/2008		15.90	21.11	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	6/19/2009		14.94	22.07	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0	Accutes
	11/3/2009		15.76	21.25	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	SunSta
	5/4/2010		13.20	23.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	SunSta
MW-4	12/31/2002	37.09	13.45	23.64	<50	<0.5	<0.5	<0.5	<1.0	
	9/22/2006		13.40	23.69	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	12/21/2006		13.86	23.23	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	3/29/2007		13.69	23.40	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	9/27/2007		15.48	21.61	ND<50	1.5	ND<0.50	0.71	0.74	KIFF
	12/20/2007		15.28	21.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	2/21/2008		13.56	23.53	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	KIFF
	5/15/2008		14.58	22.51	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	KIFF
	8/7/2008		15.57	21.52	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	11/13/2008		16.09	21.00	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	6/19/2009		15.15	21.94	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0	Accutes
	11/3/2009		16.03	21.06	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	SunSta
	5/4/2010		13.11	23.98	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.5	SunSta

Table 1 Groundwater Elevation and Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

Well Date Casing ID Sampled Elevation (Feet MS)		Groundwater Elevation (Feet)	TPHg (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	LAB
---	--	------------------------------------	----------------	-------------	-------------	-------------	-------------	-----

ABBREVIATIONS:

Total Petroleum Hydrocarbons as Gasoline
Benzene
Toluene

E EthylbenzeneX Total xylenes

μg/L Micrograms per liter (parts per billion [ppb])

--- Not analyzed/measured/applicable

ND< Not detected at or above specified laboratory reporting limit

MSL Mean Sea Level

KIFF Kiff Analytical LLC, Davis, Ca

SunStar SunStar Laboratoies, Inc., Lake Forest, Ca **Bold** Detection during latest sampling event

LIMITATIONS:

Background information, including but not limited to previous field measurements, analytical results, Site plans, and other data have been obtained from previous consultants, and/or third parties, in the preparation of this report. Closure Solutions has relied on this information as furnished. Closure Solutions is not responsible for, nor has it confirmed the accuracy of data collected or generated by others.

Table 2
Fuel Oxygenate & Lead Scavenger Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

	Date							
Well	Sampled	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB
ID		$(\mu g/L)$						
MW-1	12/31/2002	<0.5						
	9/22/2006	<1.0						
	12/21/2006	3.9						
	3/29/2007	<1.0						
	9/27/2007	1.6	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/21/2007	1.5	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008	ND<7.0	ND<40	ND<7.0	ND<7.0	ND<7.0	ND<7.0	ND<7.0
	5/15/2008	ND<2.5	ND<15	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5
	8/7/2008	1.0	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
	11/13/2008	1.1	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
MW-2	12/31/2002	<0.5						
	9/22/2006	<1.0						
	12/21/2006							
	3/29/2007	1.10						
	9/27/2007	0.89	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/20/2007	0.95	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	5/15/2008	ND<0.90	ND<5.0	ND<0.90	ND<0.90	ND<0.90	ND<0.90	ND<0.90
	8/7/2008	0.59	ND<5.0	ND<0.90	ND<0.90	ND<0.90		
	11/13/2008	0.53	ND<5.0	ND<0.50	ND<0.50	ND<0.50		

Table 2
Fuel Oxygenate & Lead Scavenger Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

	Date							
Well	Sampled	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB
ID		$(\mu g/L)$	(µg/L)					
MW-3	12/31/2002	<0.5						
	9/22/2006	<1.0						
	12/21/2006							
	3/29/2007	<1.0						
	9/27/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/20/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008							
	5/15/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	8/7/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
	11/13/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
MW-4	12/31/2002	<0.5						
	9/22/2006	<1.0						
	12/21/2006	<1.0						
	3/29/2007	<1.0						
	9/27/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/20/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	5/15/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	8/7/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
	11/13/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		

Table 2 Fuel Oxygenate & Lead Scavenger Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

	Date							
Well ID	Sampled	MTBE (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (µg/L)
110		(MS/L)	(MS/L)	(MB/L)	(MB/L)	$(\mu g/L)$	(MS/L)	(MS/L)

ABBREVIATIONS:

MTBE	Methyl Tertiary Butyl Ether
TBA	Tertiary Butyl Alcohol
DIPE	Diisopropyl Ether
ETBE	Ethyl Tertiary Butyl ether
TAME	Tertiary Amyl Methyl Ether
1,2-DCA	1,2-Dichloroethane
EDB	1,2-Dibromoethane
KIFF	Kiff Analytical LLC, Davis, Ca
Accutest	Accutest Laboratories, Santa Clara, Ca
μg/L	Micrograms per liter (parts per billion [ppb])
	Not analyzed/measured/applicable
ND<	Not detected at or above specified laboratory reporting limit
Bold	Detection during latest sampling event

LIMITATIONS

Background information, including but not limited to previous field measurements, analytical results, Site plans, and other data have been obtained from previous consultants, and/or third parties, in the preparation of this report. Closure Solutions has relied on this information as furnished. Closure Solutions is not responsible for, nor has it confirmed the accuracy of data collected or generated by others.

Attachment A

Field Procedures and Field Data Sheets

Standard Operating Procedures: Basic Gauge, Purge, and Sample.

Routine Water Level Measurements

- 1. Confirm that water or debris will not enter the well box upon removal of the well box lid.
- **2.** Remove the cover using the appropriate tools.
- **3.** Inspect the wellhead for deficiencies and document accordingly.
- **4.** Confirm that water or debris will not enter the well upon removal of the well cap.
- **5.** Unlock and remove the well cap lock (if applicable). If lock is not functional cut it off.
- **6.** Loosen and remove the well cap. CAUTION: DO NOT PLACE YOUR FACE OR HEAD DIRECTLY OVER WELLHEAD WHEN REMOVING THE WELL CAP. WELL CAP MAY BE UNDER PRESSURE AND/OR MAY RELEASE ACCUMULATED AND POTENTIALLY HARMFULL VAPORS.
- 7. Verify and identify survey point as written on S.O.W.
- TOC: If survey point is listed as Top of Casing (TOC), look for the exact survey point in the form of a notch or mark on the top of the casing. If no mark is present, use the north side of the casing as the measuring point.
- TOB: If survey point is listed as Top of Box (TOB), the measuring point will be established manually. Place the inverted well box lid halfway across the well box opening and directly over the casing. The lower edge of the inverted cover directly over the casing will be the measuring point.
- **8.** Put new Nitrile gloves on your hands.
- **9.** Slowly lower the decontaminated water level meter probe into the well until it signals contact with water with a tone and/or flashing a light.
- 10. Gently raise the probe tip slightly above the water and hold it there. Wait momentarily to see if the meter emits a tone, signaling rising water in the casing. Gently lower the probe tip slightly below the water. Wait momentarily to see if the meter stops emitting a tone, signaling dropping water in the casing. Continue process until water level stabilizes indicating that the well has equilibrated.
- 11. While holding the probe at first contact with water and the tape against the measuring point, note depth. Repeat twice to verify accuracy. Write down measurement on well gauging sheet under depth to water column.
- **12.** Recover probe, replace and tighten well cap, replace lock (if applicable), replace well box cover and tighten hardware (if applicable).

Purging With a Bailer (Teflon or Disposable)

- 1. Attach bailer cord or string to bailer. Leave other end attached to spool.
- **2.** Gently lower empty bailer into well until well bottom is reached.
- **3.** Cut cord from spool. Tie a loop at end cord.
- **4.** Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground.
- **5.** Pour contents into graduated 5-gallon bucket or other graduated receptacle.
- **6.** Repeat purging process.
- 7. Upon removal of first casing volume, fill clean parameter cup with purge water, empty the remainder of the purge water into the bucket, lower the bailer back into the well and secure the cord on the Sampling Vehicle.
- **8.** Use the water in the cup to collect and record parameter measurements.
- **9.** Continue purging until second casing volume is removed.

- **10.** Collect parameter measurements.
- 11. Continue purging until third casing volume is removed.

Purging With a Fixed Speed Electric Submersible Pump

- **1.** Position thoroughly decontaminated pump over the top of the well.
- **2.** Gently unreel and lower the pump to the well bottom.
- **3.** Raise the pump to client specified location within screened interval. If no direction is given the pump inlet will be placed 5 feet above the bottom of the well.
- **4.** Secure the hose reel.
- 5. Begin purging.
- **6.** Verify pump rate with flow meter or graduated 5-gallon bucket.
- 7. Upon removal of first casing volume, fill clean parameter cup with water.
- **8.** Use the water in the cup to collect and record parameter measurements.
- **9.** Continue purging until second casing volume is removed.
- 10. Collect parameter measurements.
- 11. Continue purging until third casing volume is removed.
- 12. Upon completion of purging, gently recover the pump and secure the reel.

Sampling with a Bailer (Teflon or Disposable)

- **1.** Put new Latex or Nitrile gloves on your hands.
- 2. Determine required bottle set.
- **3.** Fill out sample labels completely and attach to bottles.
- **4.** Arrange bottles in filling order and loosen caps (see Determine Collection Order below).
- **5.** Attach bailer cord or string to bailer. Leave other end attached to spool.
- **6.** Gently lower empty bailer into well until water is reached.
- **7.** As bailer fills, cut cord from spool and tie end of cord to hand.
- **8.** Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground. If a set of parameter measurements is required, go to step 9. If no additional measurements are required, go to step 11.
- **9.** Fill a clean parameter cup, empty the remainder contained in the bailer into the sink, lower the bailer back into the well and secure the cord on the sampling vehicle. Use the water in the cup to collect and record parameter measurements.
- **10.** Fill bailer again and carefully remove it from the well.
- **11.** Slowly fill and cap sample bottles. Fill and cap volatile compounds first, then semivolatile, then inorganic (see following steps). Return to the well as needed for additional sample material.
- **12.** Fill 40-milliliter vials for volatile compounds as follows: Slowly pour water down the inside on the vial. Carefully pour the last drops creating a convex or positive meniscus on the surface. Gently screw the cap on eliminating any air space in the vial. Turn the vial over, tap several times and check for trapped bubbles. If bubbles are present, repeat the process.
- **13.** Fill 1 liter amber bottles for semi-volatile compounds as follows: Slowly pour water into the bottle. Leave approximately 1 inch of headspace in the bottle. Cap bottle.
- **14.** Field filtering of inorganic samples using a disposable bailer is performed as follows: Attach 0.45 micron filter to connector plug. Attach connector plug to bottom of full disposable bailer. Gravity feed water through the filter and into the sample bottle. If high turbidity level of water clogs filter, repeat process with new filter until bottle is filled. Leave headspace in the bottle. Cap bottle.
- 15. Bag samples and place in ice chest.
- 16. Note sample collection details on well data sheet and Chain of Custody.

FIELD DATA SHEET-DEPTH TO WATER DATA

			SITE INFORM	ATION		
Site Information Palace Garage Project Name 14336 Washington Address	Ave.	5/4/10 Date San Leandro City	Project Number CA State			
Water Level Equipmer x Electronic Indicator Oil Water Interface Other (specify)			Kevin Dolan Event:	2Q 2010 QMS	5	
] Totaler (epochy)		DE	PTH TO WAT	ER DATA		
4	he dia s		DTW	Total Depth	Depth to SPH /	Name
DTW Order	Well ID	Time (24:00)	(toc)	(toc)	Thickness	Notes:
3	MW-1	1248	13,20	23.40		
4	MW-2	1250	13.11	23.64		
2	WW-3	1244	12,92	73.09		3/4" well, -
	MW-4	1238	13,40	21,95		79 0011
				.72.00		
					and the second	
					1	100
				-8	1	2 drums onsile
						1= 1/2 Full
				1-7		1= EMPTY
						both HANE
						Non Haz
					100	1961-
						Confluence to
						Pluse -
						1 1
					1	
						1
		1111111111111111				

Project Na	me:	Palace	Garage				Date:	May 4, 2010	2.07
Sample No		MW-1							
Samplers I		Kevin Dolan							
Purge Equ	Bailer: Disp 12 v. Pump Bladder Pu SS Monsoo	mp on #					Sample Equi	_ Disposable Bailer _ Whaler # _ Bladder Pump _ Submersible Pump	
		circle all that ap	oply):			2 1/0/16		per and Types of Bo	ottle Used:
TPH-G / E	STEX					5 VOA!	S W/ He		
Well Number: Depth to Water: Well Depth: Height W-Column: Volume in Well: Gallons to purge: Lab: Volume Temporature Conductivity Temporature Tempora						Transpor	ell Diameter:	2" = (0.16 0 4" = (0.65 0 5" = (1.02 0 6" = (1.47 0 8" = (2.61 0	Gallon/Feet) Gallon/Feet) Gallon/Feet) Gallon/Feet)
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)	Turbidit	y: Color - Fines	Micropurge Paramaters Stabilized
1420	Star	7 -	4/5						
1422	1,75	21.3	873	2.11	6.98	546	las ;	cloup, min	
1424	3.5	20.6	802	1,73	6.95	540			W T
1426	5	19,7	798	1,50	2.11	512	V	V	
Stol"	Purce	complet	9						
		4							
	/								
		160							
3	1		ait for 80% we						
	Origin	Calculate	10 2	culate 80% of	f orginal well v	olume:	23, 40°	**	J
Time: 1435 Time: Time:	1st measured	depth to water, depth to water, depth to water,	feet bel	low TOC. low TOC. low TOC.	nple Well	Is well with	in 80% of origina in 80% of origina	I well casing volume: Yes I well casing volume: Yes I well casing volume: Yes	sNo
Time	1436		Sample ID:		MW-1		Depth	: 13,31	
Comments		Slight	HC a	022 -	NO	Sheer	7		
Well Condi	tion:	andi-					· M		
		J				j	Closure Sc	olutions INC QMS	FDS

Project Na	me:	Palace	Garage				Date:	May 4, 2010	<u> </u>
Sample No).:	MW - 5	2						
Samplers I	Name:	Kevin Dolan							
Purge Equ			С				Sample Equi	pment: _ Disposable Bailer _ Whaler # Bladder Pump	
	SS Monsoo	n#						Submersible Pump	
Name and Address of the Owner, where the Person of the Owner, where the Person of the Owner, where the Owner, which the Owner	The second second second	circle all that a	oply):					er and Types of Bo	ttle Used:
TPH-G / E	BIEX				-3		3 VOY15	w/ the	
Well Numb	Vater:	13.11 23.64	TOC BGS or TOC	th double	to water)	W	ell Diameter:	2" = (0.16 G 4" = (0.65 G	allon/Feet) allon/Feet)
Height W-0		10155	feet (well dep	and the same				5" = (1.02 G	
Volume in		1168	gallons (casir		X height)			6" = (1.47 G	
Gallons to	SunStar	5.05	gallons (volur	me X 3)		T		8" = (2.61 G	allon/Feet)
Time	Volume Purged	Temperature	Conductivity	D.O.	рН	Transpo		r: Color - Fines	Micropurge Paramaters
(24 hr.)	(Gallons)	(°C)	(ms/cm)	(ppm)	P	(ppm)	, and and		Stabilized
1451	STAR	T -	4/5						
1453	1175	20,5	976	1.11	7,21	512	las:	leur, min	
1455	3,5	19.3	953	1,06	7,19	50b	1	1	
1457	5.10	18.9	950	0,93	7,10	501	V	W	
Stop	Purse	Comple +							
	0								
(1			
					10				
	- 16	2	/						
			it for 80% we				ampling. ume recovery:		
					orginal well v				
	Origina	al Height of Water Co					7311/= D	Depth to water 15,21	
Time: 150'	1st measured	depth to water,	128 feet bel	ow TOC.	3/12	Is well with	in 80% of original	well casing volume: Yes well casing volume: Yes	No
	1st measured	depth to water,		ow TOC.				well casing volume: Yes	No
				Sam	ple Well				
Time:	1507		Sample ID:	Mc	0-2		Depth:	13,28	
Comments:									
				4					
Well Condit	tion:	Rood							
) .							
							Closure Sol	utions INC - OMS	FDS

Project Na	me:	Palace	Garage				Date:	May 4, 2010	
Sample No	.:	MW-3	>						
Samplers I	Name:	Kevin Dolan							
Purge Equ	Bailer: Disp 12 v. Pump Bladder Pu SS Monsoo	mp on #					Sample Equ	Disposable Bailer Whaler # Bladder Pump Submersible Pump	
NAME OF TAXABLE PARTY.	NAME AND ADDRESS OF TAXABLE PARTY.	circle all that a	oply):			0 1	Mum BAIS WI	ber and Types of Bo	ottle Used:
TPH-G / E	BTEX					3 V	MID W	ACV	
Well Numb Depth to W Well Depth Height W-O Volume in Gallons to Lab:	/ater: :: Column: Well:	MW-3 12,92 23,09 10,17 1,62 4,88	TOC BGS or TOC feet (well dep gallons (casir gallons (volur	ng volume		Transpo		2" = (0.16 0) 4" = (0.65 0) 5" = (1.02 0) 6" = (1.47 0) 8" = (2.61 0)	Gallon/Feet) Gallon/Feet) Gallon/Feet) Gallon/Feet)
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)	Turbid	ity: Color - Fines	Micropurge Paramaters Stabilized
1352	CHA	et -	4/5						_
1354	1.75	23.8	536	4,12	7.41	363	hous:	clear, min	
1356	3,50	21.6	523	3,81	7,33	328		1	
1358	4,90	2013	528	3,13	7.26	309		V	
Stop!	Purce	Comple	te				V		
	0								
	/								
	(-100							
			ait for 80% we e depth to wate					y:	
					f orginal well v				
	Origin	al Height of Water C	olumn = 01	7 x 0.8	8.13	- (Well Dep	th) 23,09 =	Depth to water 14, 95	;
Time: 1402 Time: Time:	_1st measured	depth to water, depth to water, depth to water,	feet be	low TOC. low TOC. low TOC. San	nple Well	Is well wit	hin 80% of origin	nal well casing volume: Yes nal well casing volume: Yes nal well casing volume: Yes	SNo
Time	1410		Sample ID:		1W-3		_ Dept	th: 13,06	
Comments	: No	over-	NO She	ren					
Well Condi	tion: 9	90d							
	0						Closure	Solutions INC - OMS	EDS

Project Na	me:	Palace	Garage				Date:	May 4, 2010	20
Sample No	.:	WW-4							
Samplers N	Name:	Kevin Dolan							
Purge Equ		mp	c				Sample Equi	_ Disposable Bailer _ Whaler # _ Bladder Pump _ Submersible Pump	
	ASSESSMENT OF THE OWNER, THE OWNE	circle all that ap	oply):			3 1-01		ber and Types of Bo	ttle Used:
TPH-G / B	BTEX				-	3 5041	S W/ HCL	1	
Well Numb Depth to W Well Depth Height W-C Volume in Gallons to Lab:	/ater: :: Column: Well:	MW-4 13,40 21,95 8,55 0,35 1,05	TOC BGS or TOC feet (well dep gallons (casin gallons (volun	g volume			Tell Diameter: $\frac{3}{4} = 0.04$ $\frac{3}{4} = 0.04$	2" = (0.16 G	allon/Feet) allon/Feet) allon/Feet) allon/Feet)
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)	Turbidity	y: Color - Fines	Micropurge Paramaters Stabilized
11301	Star	и —	4/5						
1304	0.35	23,9	786	4,16	7,84	582	Highi Br	rown, many	
1308	0,10	23.1	7/1	4,21	7,73	511			
1312	1,10	21,8	683	4,26	7.70	493	/	V	
Stop.	Parge	Complete	p						
	0	•							
		- 1							
		KS							
			ait for 80% we				ampling. ume recovery:		
			7,00	D. a. Tarina ar	orginal well vo				
	Origin	al Height of Water Co	olumn = 855	5 x 0.8 =	6184	- (Well Depti	n) 2195 = 1	Depth to water 15	/1
Time:Time:	1st measured	depth to water,depth to water,	feet bel	ow TOC. ow TOC. ow TOC.	ple Well	Is well with	nin 80% of original	I well casing volume: Yes I well casing volume: Yes I well casing volume: Yes	
Time:	1324		Sample ID:	1	UW-Y		Depth	13.68	
Comments	: NO	odor-n	10 Shee						
	HAND ba	of well w/	SMALL (1/2") 8	palor	-			
Well Condit	tion:								

Attachment B

Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody Records

12 May 2010

Kate Waldo Closure Solutions 1243 Oak Knoll Dr. Concord, CA 94521

RE: Palace Garage

Enclosed are the results of analyses for samples received by the laboratory on 05/07/10 09:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

John Shepler For Kevin Moore

Director of Business Development

Closure Solutions Project: Palace Garage

1243 Oak Knoll Dr. Project Number: [none] Reported:
Concord CA, 94521 Project Manager: Kate Waldo 05/12/10 15:26

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	T000435-01	Water	05/04/10 14:36	05/07/10 09:15
MW-2	T000435-02	Water	05/04/10 15:07	05/07/10 09:15
MW-3	T000435-03	Water	05/04/10 14:10	05/07/10 09:15
MW-4	T000435-04	Water	05/04/10 13:24	05/07/10 09:15

SunStar Laboratories, Inc.

Closure Solutions
Project: Palace Garage

1243 Oak Knoll Dr.
Project Number: [none]
Reported:
Concord CA, 94521
Project Manager: Kate Waldo
05/12/10 15:26

MW-1 T000435-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Volatile Organic Compounds by EF	A Method 8260	В							
Benzene	300	50	ug/l	100	0050505	05/05/10	05/10/10	EPA 8260B	
Toluene	61	0.50	"	1	"	"	05/07/10	"	
Ethylbenzene	880	50	"	100	"	"	05/10/10	"	
m,p-Xylene	3400	100	"	"	"	"	"	"	
o-Xylene	670	50	"	"	"	"	"	"	

77.1-110

66.3-111

84.7-109

50

99.0 %

107 %

102 %

18000

SunStar Laboratories, Inc.

C6-C12 (GRO)

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene Surrogate: Dibromofluoromethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

05/07/10

Closure Solutions Project: Palace Garage

1243 Oak Knoll Dr. Project Number: [none] Reported:

Concord CA, 94521 Project Manager: Kate Waldo 05/12/10 15:26

MW-2 T000435-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Benzene	14	0.50	ug/l	1	0050505	05/05/10	05/08/10	EPA 8260B
Toluene	0.57	0.50	"	"	"	"	"	"
Ethylbenzene	9.1	0.50	"	"	"	"	"	"
m,p-Xylene	11	1.0	"	"	"	"	"	"
o-Xylene	2.2	0.50	"	"	"	"	"	"
C6-C12 (GRO)	950	50	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		97.8 %	77.1-	110	"	"	"	"
Surrogate: Dibromofluoromethane		110 %	66.3-	111	"	"	"	"
Surrogate: Toluene-d8		109 %	84.7-	109	"	"	"	"

SunStar Laboratories, Inc.

Closure Solutions Project: Palace Garage

1243 Oak Knoll Dr. Project Number: [none] Reported:

Concord CA, 94521 Project Manager: Kate Waldo 05/12/10 15:26

MW-3 T000435-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds	by EPA Method 8260B								
Benzene	ND	0.50	ug/l	1	0050505	05/05/10	05/07/10	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
C6-C12 (GRO)	ND	50	"	"	"	"	"	"	

 Surrogate: 4-Bromofluorobenzene
 96.6 %
 77.1-110
 " " " " "

 Surrogate: Dibromofluoromethane
 122 %
 66.3-111
 " " " " " " S-GC

 Surrogate: Toluene-d8
 102 %
 84.7-109
 " " " " " "

SunStar Laboratories, Inc.

Closure Solutions Project: Palace Garage

1243 Oak Knoll Dr.Project Number: [none]Reported:Concord CA, 94521Project Manager: Kate Waldo05/12/10 15:26

MW-4 T000435-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

volatile Organic Compounds by E.	I II Michiga 0200D	<u> </u>							
Benzene	ND	0.50	ug/l	1	0050505	05/05/10	05/07/10	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
C6-C12 (GRO)	ND	50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	77.1-	110	"	"	"	"	
Surrogate: Dibromofluoromethane		121 %	66.3-	111	"	"	"	"	S-GC
Surrogate: Toluene-d8		115 %	84.7-	109	"	"	"	"	S-GC

SunStar Laboratories, Inc.

RPD

Closure Solutions Project: Palace Garage

1243 Oak Knoll Dr.Project Number: [none]Reported:Concord CA, 94521Project Manager: Kate Waldo05/12/10 15:26

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

%REC

		Reporting		Spike	Dource		/OILLC		I D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0050505 - EPA 5030 GCMS										
Blank (0050505-BLK1)	Prepared: 05/05/10 Analyzed: 05/07/10									
Benzene	ND	0.50	ug/l							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
C6-C12 (GRO)	ND	50	"							
Surrogate: 4-Bromofluorobenzene	7.95		"	8.00		99.4	77.1-110			
Surrogate: Dibromofluoromethane	9.38		"	8.00		117	66.3-111			S-GO
Surrogate: Toluene-d8	8.28		"	8.00		104	84.7-109			
LCS (0050505-BS1)	Prepared: 05/05/10 Analyzed: 05/08/10									
Benzene	18.1	0.50	ug/l	20.0		90.7	75-125			
Toluene	15.8	0.50	"	20.0		79.1	75-125			
Surrogate: 4-Bromofluorobenzene	7.61		"	8.00		95.1	77.1-110			
Surrogate: Dibromofluoromethane	9.49		"	8.00		119	66.3-111			S-GO
Surrogate: Toluene-d8	7.72		"	8.00		96.5	84.7-109			
LCS Dup (0050505-BSD1)	Prepared: 05/05/10 Analyzed: 05/08/10									
Benzene	18.0	0.50	ug/l	20.0		90.0	75-125	0.775	20	
Toluene	16.2	0.50	"	20.0		80.9	75-125	2.25	20	
Surrogate: 4-Bromofluorobenzene	8.20		"	8.00		102	77.1-110			
Surrogate: Dibromofluoromethane	9.44		"	8.00		118	66.3-111			S-GO
Surrogate: Toluene-d8	7.86		"	8.00		98.2	84.7-109			

SunStar Laboratories, Inc.

Closure Solutions Project: Palace Garage

1243 Oak Knoll Dr.Project Number: [none]Reported:Concord CA, 94521Project Manager: Kate Waldo05/12/10 15:26

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.